Content:

CL – Climate: Past, Present, Future

CL1 – Open Session on Climate: Past, Present and Future

The controversy between the CO2 driving or lagging models is elucidated in a new climate model, that reunites insights from models from other planets, carbon draw down models during earth history as a whole, spores spike related to catastrophic events from the Phanerozoic, late Palaeozoic climate models and carbon dioxide and temperature fluctuations during the Quaternary as shown by Petit et al., (1999).

 

This model advocates that for the natural system orbitally induced insolation maxima (eccentricity in particular) momentarily and erratically trigger ocean degassing and drive temperature rise orbitally while it is otherwise driven by carbon drawdown through photosynthesis leading to cooling.

 

For the natural system high concentrations of particulate organic carbon (fungal spore, pollen, vegetation debris, soot and charcoal) or abiotic dust are forming crystallisation cores that trigger an ephemeral greenhouse effect in the cirrus from the lowermost stratosphere. This happens at the onset of orbital insolation peaks when warming leads to larger crystal sizes. The consecutive warming induces the waxing of the cirrus forming sphere which necessarily has lower concentrations of crystallisation cores and shifts back to the albedo effect.

 

In this model the decrease in CO2 concentration in the atmosphere through photosynthesis regulates temperature and supports the view that temperature lags CO2 concentration, yet in this natural system, the greenhouse effect is briefly triggered by orbital forcing and support the results of Feulner (2017) indicating that both the carbon drawdown and orbital forcing are driving temperature in the natural system. In this model the CO2 gets ping-ponged from the terrestrial to the marine system until both are depleted in CO2.  It indicates that, ultimately, under natural circumstances, spreading rate and tectonic events drive climate. From this model it also follows that the industrial use of organic and inorganic carbon sinks, as they have constantly been replenished during earth history through tectonic activity, will lead to CO2 concentrations as experienced before photosynthesis appeared and concentrations far beyond.

 

The aberrant CO2 and temperature rise in the Anthropocene reflects the tempering of the response system in the lowermost stratosphere because of increasing concentrations of particulate organic carbon and dust by changing land use, lowering of the ground water table by wood cutting, aridification (pyro-cumulonimbi), transport (contrails) and soot emission.

How to cite: Waveren, I.: Midas or Gaia revisited, about anthropogenic tempering with the natural response system, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2689, https://doi.org/10.5194/egusphere-egu2020-2689, 2020.

EGU2020-11039 | Displays | CL1

Global temperature response to regional and sectoral air pollutant and greenhouse gas emissions under the Shared Socioeconomic Pathways

Marianne T. Lund, Borgar Aamaas, Camilla W. Stjern, Zbigniew Klimont, Terje K. Berntsen, and Bjørn H. Samset

Achieving the ambition of the Paris Agreement and meeting the Sustainable Development Goals require both near-zero levels of long-lived greenhouse gases and deep cuts in emissions of so-called short-lived climate forcers (SLCFs), including methane and black carbon. Here we present a comprehensive dataset of contributions to future global temperature change from emissions of CO2 and individual SLCFs from 7 economic sectors and 13 source regions, both as they are today and as they are projected to change under the Shared Socioeconomic Pathways (SSPs). Such detailed knowledge about the mix of emissions from individual sources and benefits and trade-offs of reductions is essential for designing efficient mitigation strategies at the national and international levels, as well as for informing policy processes on how to best address linkages between climate, sustainable development and air quality.

Our results demonstrate that the mitigation potential inherent in the present SLCF emissions is highly inhomogeneous across region and sector, and that co-emissions of all species – including CO2 – should be considered in any targeted climate policy. We also reinforce the importance of reducing methane emissions, from agriculture, waste management and energy production, for reducing warming in the near-term. In contrast, in many regions, reducing industry emissions brings air quality benefits but may cause a net additional near-term warming. The spatiotemporal heterogeneity is expected to continue under the SSPs. Most scenarios project a particularly strong increase in aerosol and other SLCF emissions in South Asia and Africa South of the Sahara, suggesting that technology development and air pollution legislation in these regions is a key step in the transition to a low emission future. Moreover, both rapidly increasing and decreasing emissions of SLCFs will play an important role in shaping the regional climate and air quality.

By using an analytical climate model, we build a methodological framework that can be used to estimate the impact of any emission scenarios. Our data set hence provide a toolkit for further studies of implications of mitigation pathways and policy responses, and support assessments of environmental impacts.

How to cite: Lund, M. T., Aamaas, B., Stjern, C. W., Klimont, Z., Berntsen, T. K., and Samset, B. H.: Global temperature response to regional and sectoral air pollutant and greenhouse gas emissions under the Shared Socioeconomic Pathways, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11039, https://doi.org/10.5194/egusphere-egu2020-11039, 2020.

EGU2020-13155 | Displays | CL1

Evaluation of Clouds in the E3SM Atmosphere Model with Satellite Simulators

Yuying Zhang, Shaocheng Xie, Wuyin Lin, Stephen A. Klein, Mark Zelinka, Po-Lun Ma, and Philip J. Rasch

EGU2020-6095 | Displays | CL1

Short-Lived Climate Forcers over the Arctic between 1995 and 2015 as simulated by the GISS modelE2.1

Ulas Im, Kostas Tsigaridis, Cynthia H. Whaley, Gregory S. Faluvegi, Zbigniew Klimont, and Knut von Salzen

The Arctic Monitoring and Assessment Programme (AMAP) is currently assessing the impacts of Short-Lived Climate Forcers (SLCF) on Arctic climate and air quality. In support of the assessment, we used the NASA Goddard Institute of Space Sciences (GISS) Earth System Model (modelE2.1), with prescribed sea surface temperature and sea-ice fraction, to simulate SLCF concentrations globally between 1995 and 2015. Two simulations were conducted, using the One-Moment Aerosol (OMA) and the Multiconfiguration Aerosol TRacker of mIXing state (MATRIX) aerosol modules. OMA is a mass-based scheme in which aerosols are assumed to remain externally mixed and have a prescribed and constant size distribution, while MATRIX is an aerosol microphysics scheme based on the quadrature method of moments, which is able to explicitly simulate the mixing state of aerosols. Anthropogenic emissions from the ECLIPSE v6b emissions database were used, along with emissions from aircrafts and open biomass burning from the Coupled Model Intercomparison Project Phase 6 (CMIP6), while the natural emissions of sea salt, DMS, isoprene and dust are calculated interactively. The simulated monthly surface concentrations of sulfate (SO4), black carbon (BC), organic carbon (OA), and ozone (O3) are compared with observations from a set of Arctic stations, extracted from the EBAS and IMPROVE databases, as well as a few additional locations. Simulated aerosol optical depths (AOD) are also compared with Advanced Very-High Resolution Radiometer (AVHRR). The study will present the evaluation of the modelE2.1 in simulating SLCF levels over the Arctic using different aerosol schemes, along with observed and simulated trends of SLCFs over the Arctic between 1995 and 2015.

 

How to cite: Im, U., Tsigaridis, K., Whaley, C. H., Faluvegi, G. S., Klimont, Z., and von Salzen, K.: Short-Lived Climate Forcers over the Arctic between 1995 and 2015 as simulated by the GISS modelE2.1, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6095, https://doi.org/10.5194/egusphere-egu2020-6095, 2020.

The Turpan basin is one of the most arid and water insecure regions in China. The mountain snowmelt is the primary source of water. To assess the impact of climate change on stream flow, this study examined the long-term trends and change points of hydro-meteorological variables and explored the possible correlation between them at annual and seasonal scales. A set of non-parametric statistical tests including Mann-Kendall, Kendall’s tau, Sen’s slope estimator, and Pettitt test was applied, and change point of the hydro-meteorological variables. This study provided valuable information in understanding the changing properties of the stream flow in the basin and insights for a better integrated water resources management planning.

How to cite: Du, L.: Hydrological Variability and its Response to Climate Change in Turpan basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12545, https://doi.org/10.5194/egusphere-egu2020-12545, 2020.

EGU2020-8357 | Displays | CL1

New records of freshwater ostracoda from the xingyun lake

Manping Xie

This present paper reports eight modern ostracode collected from the bottom of the Xingyun Lake,Yunnan Province, including Candonocypris novaezelandiae (Baird, 1843), mateless cyclocypris Cypridopsis Vidua (O.F.M ller, 1776), star (which really wedge dielectric) Eucypris CF. Cuneata (Tsao, 1959), Cleveland star kraeplini (G.W.M mediated Cypris ller, 1903) Belgium, sheshi (similar) glass dielectric Schellencandona CF. Belgica (Klie, 1937), Fabaeformiscandona subacuta (Yang, 1982), unarmed mobs mediated Cetacella inermis (Martin, 1958), the Yunnan flower (compare kinds) Yunnanicyhere cf.reticulate mediated gen.etsp.nov. the true star (dielectric wedge comparison of three) Eucypris CF. Cuneata (Tsao, 1959), unarmed mobs mediated Cetacella inermis (Martin, 1958) and Yunnan (a comparison of dielectric reticulate flowers) Yunnanicyhere cf.reticulate gen.etsp.nov.  these species are newly recorded from modern lakes.It has enriched the understanding of freshwater ostracoda of the biological communities in China.

Key word  freshwater ostracods; Xingyun Lake; Yunnan Province

How to cite: Xie, M.: New records of freshwater ostracoda from the xingyun lake, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8357, https://doi.org/10.5194/egusphere-egu2020-8357, 2020.

In this study, we focus on the relationship between the water vapor source region and the isotopic composition of the precipitation. The change of isotope characteristics of precipitation depends on the moisture source region. Long-term stable isotope (δ18O, δ2H ) measurements of precipitation were performed in Debrecen, Hungary, between 2001 and 2014. The long-term isotope time series and trajectory modeling are suitable for determining moisture source regions. Backward trajectory analysis was carried out using the Lagrangian Raptor model based on ERA5 atmospheric data. Hourly backward trajectories were calculated for Debrecen for the days with precipitation in the period between 2001-2014.

Based on the study three source regions were identified. Of these, 60% represented the Carpathian Basin, which is where most of the moisture evaporated from near the surface. The remaining 40% of the northwest and southwest were represented by moisture source regions. This means that the isotopic composition of precipitation significantly determines the local and continental effects, i.e. the moisture evaporated from the continental surface contributes significantly to the spatial and temporal variation of the precipitation isotope composition.

How to cite: László, E., Palcsu, L., and Leelőssy, Á.: Identification of moisture source region based on trajectory model analysis and isotopic composition of the precipitation in Debrecen, Hungary , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18226, https://doi.org/10.5194/egusphere-egu2020-18226, 2020.

EGU2020-13537 | Displays | CL1

Comparison of noble gas temperature with recent mean annual air and soil temperature in different regions of Hungary

Anita Puskás-Preszner, Carmen Fekete, Elemér László, László Kompár, Andor Hajnakl, and László Palcsu

This paper describes the relation of noble gas temperature (NGT) and mean annual air (MAAT) and soil (MAST) temperature through studying water samples and meteorological data from six Hungarian regions. Alluvial plains, hilly and mountainous regions were studied to investigate the effects of geomorphological, hydrogeological and micro-climatic conditions. Water samples were collected from springs and wells fed from different aquifers. Comparing NGTs derived from these water samples with the MAAT and MAST values of the given region, we identified differences between the sampled areas. In case of the Geresd Hills, Mezőföld, Danube-Tisza Interfluves and Nyírség, the NGTs (13.0 ± 0.9 °C, 12.1 ± 1.1 °C, 12.1 ± 0.6 °C and 12.7 ± 1.6 °C, respectively)  generally reflect MAST, however in karstic Bükk Mts. (6.8 ± 0.6 °C) and Mecsek Mts. (10.7 ± 1.9 °C) they are closer to MAAT. Consequently, it can be concluded that the direct relationship between noble gas temperature and mean annual air temperature is not always as well-defined as it is often assumed. It is shown that MAAT and MAST should be distinguished, especially when using NGT as a paleoclimate proxy.

How to cite: Puskás-Preszner, A., Fekete, C., László, E., Kompár, L., Hajnakl, A., and Palcsu, L.: Comparison of noble gas temperature with recent mean annual air and soil temperature in different regions of Hungary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13537, https://doi.org/10.5194/egusphere-egu2020-13537, 2020.

EGU2020-9276 | Displays | CL1

A synchronous change of mid- to late- Holocene hydroclimate and prehistoric population in coastal East Asia indicated by pollen, XRF and grain size data

Jinheum Park, Jungjae Park, Sangheon Yi, Jin Cheul Kim, Eunmi Lee, Quihong Jin, and Jieun Choi

A relationship between climate change and prehistoric civilizations is a topic of growing interest. Here, we present a 6,000-year-long pollen, X-ray fluorescence (XRF), and grain size data of the core STP18-03 from the southern Korean peninsula, spanning the mid- to late- Holocene. The proxies generally show a synchronous change throughout the core. During dry periods, reduced precipitation indicated by lower sand proportion (river discharge) would have hindered tree growth, which then resulted in increased titanium erosion from nearby hills, and vice versa. The drying trend is remarkable during ca. 4.8, 4.3, 4.0, 3.3, 2.7-2.3 ka BP and corresponds with sudden dropping points of a summed probability distribution (SPD) of archaeological records found in the Korean Peninsula. This implies that ancient civilizations of Korea responded highly sensitively to abrupt climate deterioration. As an underlying mechanism of the change, we suggest a role of the equatorial Pacific Ocean. The temporal pattern of our arboreal pollen proportion closely follows that of sea surface temperature (SST) data from the Western Pacific Warm Pool (WPWP) region. Furthermore, the dry periods indicated by our multiple proxies coincide with strong El Niño–Southern Oscillation (ENSO) activity, when the core region of the warm seawater pool deviated eastward than usual. This supports that the equatorial Pacific Ocean has served as an important factor for modulating mid- to late- Holocene hydroclimate of the Korean Peninsula, where the East Asian Summer Monsoon (EASM) accounts for nearly 70 percent of the total annual precipitation amount.

How to cite: Park, J., Park, J., Yi, S., Kim, J. C., Lee, E., Jin, Q., and Choi, J.: A synchronous change of mid- to late- Holocene hydroclimate and prehistoric population in coastal East Asia indicated by pollen, XRF and grain size data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9276, https://doi.org/10.5194/egusphere-egu2020-9276, 2020.

Temperature cycles with periods > 2000 yr, including peaks of order 6000 yr, has been reported in 14C proxy records in sediments for Fennoscandia (Olsen et al, 2005) and in glacier geochemistry for the Greenland ice-sheet (Mayewski et al, 1997, 2004).  Similar spectral peaks are also seen in 14C and 10Be isotopes in Greenland GRIP ice-cores (Xapsos, 2009); these cycles have been attributed to solar sunspot activity (Solanki et al, 2004). Complicating the question of existence of global millennial cycles, a comparison of d18O data in ice cores for Greenland (NGRIP) and Antarctica (EDML) has shown that for events prior to the Last Glacial Maximum (LGM), variations on the scale of 2-6kyr are markedly stronger in northern hemisphere records, associated with ice dynamics and Dansgaard–Oeschger (D-O) and Heinrich events (EPICA, 2006).

This paper discusses ocean sediment cores from three temperate zone and sub-tropical sites which provide sea-surface temperature (SST) histories using the UK37 proxy.  The available time spans are 20, 70 and 136 ka.  This study restricts the three records to 0-20ka thus avoiding complexities of D-O and Heinrich events, and of the associated phase changes between hemispheres which have been discussed by EPICA (2006).  We apply Lomb-Scargle spectral analysis and find that all three sediment SST records (Okinawa Trough, Murray Canyon south of South Australia, and Iberian Margin) show a high-confidence 6000 yr period spectral peak for the time span 0-20ka; we may conclude that this post-LGM peak is unlikely to be related to glacial-epoch ice dynamics.  The same 6000 yr spectral peak also shows in 0-20ka EDML d18O data from EPICA (2006).

The three SST records also show spectral peaks in the range 1000 to 3500 yr periods. The high-resolution Okinawa Trough shows a clear 2300 yr (Hallstatt) peak and the Iberian Margin similarly.  The peak is visible on southern hemisphere Murray Canyon data but is of doubtful significance.  A unique feature of the Iberian Margin data is a strong 3400 yr spectral peak.  This peak is also visible but much weaker on the other SST records, and on the 0-20ka EPICA d18O data.   We hypothesize the strong peak for the Iberian Margin is a consequence of effects of ocean and ice dynamics in the north Atlantic.

Similar spectral analysis of limited 10Be data from McCracken et al 2013, (available length limited to 0-10ka) supports the hypothesis that millennial cycles in temperature (especially the 6000 yr and 2300 yr periods) are global and associated with cosmic ray/solar magnetic activity.  This is in contrast with the longer Milankovich cycles which are well established as being primarily related to forcing associated with variable solar insolation.

How to cite: Asten, M.: Holocene 6000-yr climate cycles in temperate and sub-tropical SST records – a cosmic ray connection?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7285, https://doi.org/10.5194/egusphere-egu2020-7285, 2020.

EGU2020-12830 | Displays | CL1

Perturbations in Antarctic bottom water formation in the Atlantic sector of the Southern Ocean during the last peak interglacial period

Julia Gottschalk, Robert F. Anderson, Adam P. Hasenfratz, Bärbel Hönisch, Samuel L. Jaccard, Jerry F. McManus, Luke C. Skinner, Claire Waelbroeck, and Gisela Winckler

Interglacial climate conditions are generally characterized by relatively strong and persistent deep-water formation both in the North Atlantic and in the Southern Ocean, and overall ‘stable’ climate conditions. Recent evidence, however, challenges the notion of persistent deep-water formation in both hemispheres during the last interglacial, and points at rapid reductions in convective mixing that may have lasted few centuries to millennia. The spatial pattern of this phenomenon and its driving mechanisms remain poorly constrained. Here we present multi-proxy data for rapid reductions in bottom water oxygen in the central sub-Antarctic Atlantic (sediment core MD07-3077, 44°9.20’S, 14°13.69’W, 3776 m water depth) during the warmer-than-present period of the last interglacial (i.e., 132-116 kyr before present). The first of these “stagnation events”, as they are often denoted, is synchronous, within dating uncertainties, with a similar drop in bottom water oxygenation at a more southern site, ODP Site 1094, south of the Polar Front. Our findings hint at a widespread and significant change in the formation rate and/or end-member pre-formed oxygen levels of Antarctic bottom water (AABW) in the South Atlantic during the last interglacial. The onset of these events closely coincides with increases in sea surface temperatures in the sub-Antarctic Atlantic above average Holocene levels. Although this needs to be further tested at more proximal sites, we argue that stagnation events were likely driven by excess ocean warming, in particular below ice shelves in the Weddell Sea, that may have perturbed AABW formation and/or air-sea gas exchange in that region during the last interglacial. Our findings highlight important feedback mechanisms linking hydrographic conditions at the sea surface, instabilities of the local cryosphere, and the strength of deep water formation in warmer-than-present climate scenarios – the full understanding of which has relevance for assessing the trajectory of future changes in the Southern Ocean.

How to cite: Gottschalk, J., Anderson, R. F., Hasenfratz, A. P., Hönisch, B., Jaccard, S. L., McManus, J. F., Skinner, L. C., Waelbroeck, C., and Winckler, G.: Perturbations in Antarctic bottom water formation in the Atlantic sector of the Southern Ocean during the last peak interglacial period, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12830, https://doi.org/10.5194/egusphere-egu2020-12830, 2020.

EGU2020-3496 | Displays | CL1

The Last Glacial Maximum and Holocene along the western Iberian Margin: paleoceanographic and paleoclimatic analyses preliminary results

Carmen Argenio, Pierluigi Palladino, José Abel Flores Villarejo, and Filomena Ornella Amore

During the past 25 ky, the Earth system underwent a series of dramatic climate transitions until the most recent glacial period. It peaked about 21 ky ago during the time interval known as “Last Glacial Maximum” (LGM). This study focuses on the reconstruction of global changes occurred from the LGM to the Holocene.

For this aim coccolithophore assemblages have been studied at Integrated Ocean Drilling Program (IODP) Site U1385 (37°34.285’N, 10°7.562’W, 2578 m below sea level) located on the continental slope of the southwestern Iberian Margin in a timeframe between 25 and 0 ky. Moreover, an integration with isotopic and biogeochemical data and a comparison with other proxies were carried out.

This IODP Site nowadays is influenced by the Portugal Current system (Pérez et al., 2001; Relvas et al., 2007), whose seasonality is driven by migrations of the semi-permanent subtropical Azores High pressure system (Coelho et al., 2002). The study area also undergoes intra-seasonal oscillations mainly related to changes, during winter, of westerly wind prevalence, induced by the North Atlantic Oscillation (Trigo et al., 2004).

Coccolithophore data were carried out by sediments from the first four sections of the core A of the IODP Site U1385. Coccolithophores, haptophyte algae living in the photic zone, are sensitive to some environmental parameters as temperature, salinity, availability of nutrients and sunlight. Thanks to their ecological sensitivity, coccolithophores are able to record paleoceanographic changes and for this reason are considered to be an important proxy to study the climate variability.

The age model was calculated using linear interpolation between 64 tie points based on log (Ca/Ti) records of Site U1385 and MD01-2444 (Hodell et al., 2015; Datema et al., 2019) and on δ18O records of Site MD01-2444 and Greenland (Hodell et al., 2013). About 500 samples were sampled and preliminary results are based on the analysis of samples with a time-resolution of about 0,3 ky.

The preservation of the assemblages is from good to moderate (Flores et al., 2003). For quantitative analyses, a minimum of 300 coccoliths was counted per slide in a varying number of visual fields using a light microscope at 1000x magnification. This allows a 95% level of confidence to be reached for all species present in at least 1% abundance (Patterson and Fishbein, 1989). Absolute abundance (coccoliths per gram of sediment) and nannofossil accumulation rate (NAR; coccoliths cm-2 ka-1) were estimated following Flores and Sierro (1997).

The preliminary results highlight a progressive increase of small Gephyrocapsa and a decrease of Emiliania huxleyi, between 4,26 ky and 0,91 ky. Moreover, most abundant species, in this interval, are Gephyrocapsa oceanica, Umbilicosphaera sibogae and Calcidiscus leptoporus. Furthermore, between 18,40 ky and 14,72 ky a significant increase of E. huxleyi > 4 µm and G. mullerae occurs associated with a decrease of small Gephyrocapsa and E. huxleyi.

How to cite: Argenio, C., Palladino, P., Flores Villarejo, J. A., and Amore, F. O.: The Last Glacial Maximum and Holocene along the western Iberian Margin: paleoceanographic and paleoclimatic analyses preliminary results, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3496, https://doi.org/10.5194/egusphere-egu2020-3496, 2020.

Long chain n-alcohols and n-alkanes in core sediments from the northern South China Sea (SCS) were measured to make a comparison during terrestrial vegetation reconstruction from ~42 to ~7 ka. The results showed that terrestrial vegetation record from long chain n-alkanes matched well with previous studies in nearby cores, showing more C4 plants developed during the Last Glacial Maximum (LGM) and C3 plants dominated in the interglacial period. However, these scenarios did not occur during terrestrial vegetation reconstruction using long chain n-alcohols, i.e., showing C3 plant expansion during the LGM. The discrepancy during the interglacial period could be likely attributed to aerobic degradation of functionalized long chain n-alcohols due to the oxygen-rich SCS bottom water, resulting in the weak response of terrestrial vegetation signals. On the other hand, the difference between functionalized n-alcohols and non-functional n-alkanes to record local and distal vegetation signals, respectively might be a potential interpretation for the contradiction during the LGM when the SCS was characterized by low-oxygen deep water. Nevertheless, large variations on n-alkyl lipid compositions in C3/C4 plants could likely play a part in modulating sedimentary long chain n-alcohols and n-alkanes towards different vegetation signals, and caution must be taken in respect to the terrestrial vegetation reconstruction using long chain n-alkanes and long chain n-alcohols.

How to cite: Mao, S., Zhu, X., Sun, Y., Liu, L., and Wu, N.: Last glacial terrestrial vegetation record of leaf wax n-alcohols in the northern South China Sea: Contrast to scenarios from long chain n-alkanes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12293, https://doi.org/10.5194/egusphere-egu2020-12293, 2020.

 

Calcareous stromatolite crusts overgrowing beach gravels and stabilising piles of rocks were observed on shoreline terraces of Lake Lisan along the eastern coast of the Dead Sea. The stromatolite crusts are thick, massive and hard, with a dark-grey or white-grey finely-laminated structure, indicating that they are mostly calcareous organic build-up of cyanobacterial origin. Samples from these stromatolites have been analyzed using Stable Isotopes (δ13C & δ18O), AAS and XRD analysis. The samples range in altitude between -350 m and -19 m, representing the time interval of Lake Lisan (~ 80-19 ka BP) according to our U/Th dating. Since stromatolites grow in shallow water, they are very sensitive to minor shifts in rainfall and evaporation and therefore an excellent tool to track small changes in hydrology, in climate and in paleoenvironmental conditions of the lake basin.

 

Oxygen and carbon isotopic compositions of these stromatolites show a linear covariant trend with a strong positive correlation (r = 0.8) and large ranges of 7.85 and 6.78‰, respectively. This trend is most typical of primary carbonates formed in closed lakes. Isotopes analyses show low negative values of stromatolites from the lake highest stands at -76 m to -19 m, reflecting fresh water conditions of the lake basin at the last interglacial-glacial boundary (80-76 ka BP). The lowest values were derived from stromatolites at -103 to -119 m associated with the transgression of the lake to these high stands between 55 and 33 ka BP. The heaviest values were derived from stromatolites at -137 to -160 m indicating a change to dry climatic conditions in the Eastern Mediterranean that caused a subsequent drop of the lake level during MIS 2 (31-19 ka BP).

 

The Mg/Ca ratio and the XRD analysis of the stromatolites correlate also with transgression-regression phases of the lake. Dominance of calcite in stromatolites at -76 to 0 m and inferred low Mg/Ca ratios of the lake water (i.e. ~2) imply a high fresh water input of the lake during the   highest stands period. A high Mg/Ca ratio of the lake water of >7 inferred from low-level stromatolite at -350 m and the existence of aragonite as the sole mineral reflect low fresh water input and high evaporation rates that caused a lake level regression during H6, ~ 60 ka BP.

 

Inferred low Mg/Ca ratios of stromatolites at -247 to -101 m and the existence of calcite as a main mineral phase indicate wet climatic conditions of the eastern Mediterranean and lake level transgression to higher than -137 during MIS 3. The appearance of more aragonite in stromatolites at -137 to -154 m and the inferred high Mg/Ca ratio of the lake water points to a return to dry climatic conditions that caused a regression of Lake Lisan between 32 to 22 ka BP (MIS 2). However, the change in the mineral composition to pure calcite at -160 m in addition to the inferred low Mg/Ca ratio correlates well with the transgression of the lake to this level by the end of the LGM.

 

 

How to cite: Abu Ghazleh, S. and Kempe, S.: Fluctuations of Lake Lisan (the Dead Sea) during the last glacial: Implications for paleoclimatic changes of the Levant. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12906, https://doi.org/10.5194/egusphere-egu2020-12906, 2020.

EGU2020-13551 | Displays | CL1

Reconstruction of paleoenvironmental changes using geochemical data from South Carpathian Mountains

Katalin Hubay, Mihály Braun, Sándor Harangi, Mihály Molnár, Krisztina Buczkó, and Enikő Magyari

This study applied bulk sediment geochemistry to reconstruct lateglacial and early Holocene climatic changes in a glacial lakes (Lake Brazi, 1740 m a.s.l. and Lake Lia, 1910 m a.s.l.) in the Retezat Mts. (South Carpathians, Romania). We studied how the changes of chemical element concentration in the sediment can indicate environmental changes, climate variations and human effects. Our aim was to develop analytical methods, which may complement the methodology of routinely applied paleoenvironmental methods and can be used to identify environmental changes in the past and help us reconstruct local and regional processes.

            In the Retezat Mts., Southern Carpathians, more than hundred glacial lakes were formed after the last glaciation. These glacial lakes are paleoecologically significant because they are characterized by continuous sedimentation since their origin to the present.

            In 2007 and 2008 continuous undisturbed sediment cores were obtained from Lake Brazi and Lake Lia in the Retezat Mts. (Southern Carpathians, Romania) with Livingstone and modified Kullenberg corers. The lowermost part of the sediment cores, covering the period between 9900 and 15 800 cal yr BP, was used for high resolution bulk analysis of major elements (Al2O3, SiO2, TiO2, CaO, MgO, K2O, Na2O, Fe2O3 and MnO). Linear discriminant analysis (LDA) was used to compare a priori classified main chemical groups. Subsamples from the core were priory ordered to “warm” and “cold” groups respectively, according to their age and evidence of cold and warm events in the record, as suggested by proxy correlation with the lateglacial event stratigraphy of North Greenland Ice Core Project (NGRIP). The discriminant function was calculated using concentration of major elements after log ratio transformation. Loss-on-ignition and silicon concentration were not used for the discriminant analysis, but regarded as comparison proxies for checking up the validity of outputs.

            The calculated discriminant values are good indicators of changes in sediment caused by climate change, as their values give the cold and warm directions. The “a posteriori” groups can be used to determine the period during which local changes differed from the climate changes in the North Atlantic region. The chemical composition of sediments deposited during the “cold” and “warm” periods shows differences in both sediments. The discriminant scores showed strong correlation with the NGRIP d18O data and with the pollen percentage sum of trees and shrubs.

            Discriminant analyses of bulk sediment major oxide chemical data may be a useful tool to identify the impact of climate events upon the nature and composition of materials delivered to a lake basin.

Key words: climate reconstruction, sediment geochemistry, Retezat Mts.

How to cite: Hubay, K., Braun, M., Harangi, S., Molnár, M., Buczkó, K., and Magyari, E.: Reconstruction of paleoenvironmental changes using geochemical data from South Carpathian Mountains, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13551, https://doi.org/10.5194/egusphere-egu2020-13551, 2020.

CL1.4 – Climate Change in the geological record: what can we learn from data and models?

EGU2020-10623 | Displays | CL1.4

Tectonic forcing of global chemical weathering since the mid-Paleozoic

Thomas Gernon, Thea Hincks, Andrew Merdith, Eelco Rohling, Martin Palmer, Gavin Foster, Clement Bataille, and Dietmar Muller

Weathering of the Earth’s surface has commonly been invoked as a driver of global cooling through geologic time. During the Phanerozoic Eon (541–0 million years ago, Ma), for example, the periodic onset of icehouse conditions has variously been attributed to enhanced weathering fluxes associated with mountain building (e.g. the Himalayas) (1), reductions in the global extent of continental arc volcanoes (e.g. the present-day Andes) (2), and uplift of oceanic crust during arc-continent collisions (e.g. present-day Indonesia and New Guinea) (3). These processes, tied to the global plate tectonic cycle, are inextricably linked.  The resulting collinearity (i.e. independent variables are highly correlated) makes it difficult — using conventional statistical techniques — to isolate the contributions of individual geologic processes to global chemical weathering.   An example of this is the Late Cenozoic Ice Age (34–0 Ma) that corresponds both to uplift of the Tibetan Plateau and Himalaya, and a gradual reduction in the extent of the global continental arc system. 

We developed a machine learning framework to analyse the interdependencies between multiple global tectonic and volcanic processes (e.g., continental distribution, extent of volcanic arcs, mid-ocean ridges etc.) and seawater Sr composition (a proxy for weathering flux) over the past 400 million years. We developed a Bayesian network incorporating a novel algorithm that accounts for time lags for each of the predictor variables, and joint conditional dependence (i.e. how variables combine to influence the environmental outcome). Our approach overcomes problems traditionally encountered in geologic time series, such as collinearity and autocorrelation. Our results strongly indicate a first-order role for volcanism in driving chemical weathering fluxes since the mid-Palaeozoic. This is consistent with the strong empirical correlation previously observed between the strontium isotope composition of seawater and continental igneous rocks over the past billion years (4). Our study highlights how geologic processes operate together — not in isolation — to perturb the Earth system over ten to hundred million-year timescales.

References

(1). M. E. Raymo, W. F. Ruddiman, Tectonic forcing of late Cenozoic climate, Nature 359, 117 (1992).

(2). N. R. McKenzie, et al., Continental arc volcanism as the principal driver of icehouse greenhouse variability, Science 352, 444 (2016).

(3). F. A. Macdonald, N. L. Swanson-Hysell, Y. Park, L. Lisiecki, O. Jagoutz, Arc-continent collisions in the tropics set Earth’s climate state, Science 364, 181 (2019).

(4). C. P. Bataille et al., Continental igneous rock composition: A major control of past global chemical weathering, Science Advances 3, e1602183 (2017).  

How to cite: Gernon, T., Hincks, T., Merdith, A., Rohling, E., Palmer, M., Foster, G., Bataille, C., and Muller, D.: Tectonic forcing of global chemical weathering since the mid-Paleozoic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10623, https://doi.org/10.5194/egusphere-egu2020-10623, 2020.

EGU2020-19675 | Displays | CL1.4

The contribution of numerical models to our understanding of the Phanerozoic CO2 history

Yves Godderis and Yannick Donnadieu

Our understanding of the geological regulation of the carbon cycle has been deeply influenced by the contribution of Bob Berner with his well-known model GEOCARB. Here, we will present a fundamentally different carbon cycle model that explicitly accounts for the effect of the paleogeography using physically based climate simulations and using 22 continental configurations spanning the whole Phanerozoic (GEOCLIM, geoclimmodel.wordpress.com). We will show that several key features of the Phanerozoic climate can be simply explained by the modulation of the carbon cycle by continental drift with the notable exception of the Late Paleozoic Ice Age, which is explained by the intense weathering of the Hercynian mountain range. In particular, the continental drift may have strongly impacted the runoff intensity as well as the weathering flux during the transition from the hot Early Cambrian world to the colder Ordovician world. Another fascinating example is the large atmospheric CO2 decrease simulated during the Triassic owing to the northward drift of Pangea exposing large continental area to humid sub-tropics and boosting continental weathering. Conversely, our model fails to reproduce the climatic trend of the last 100 Ma. This is due to the highly dispersed continental configurations of the last 100 Ma that optimize the consumption of CO2 through continental weathering. This discrepancy may be reduced if we account for a larger influence of the Earth degassing flux on the atmospheric CO2 evolution, which could come from the increase contribution of the pelagic component on the oceanic crust on the global carbonate flux and from the many sub-marine LIPs occurring during the Late Cretaceous.

 

How to cite: Godderis, Y. and Donnadieu, Y.: The contribution of numerical models to our understanding of the Phanerozoic CO2 history, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19675, https://doi.org/10.5194/egusphere-egu2020-19675, 2020.

EGU2020-242 | Displays | CL1.4

Temperate rainforests near the South Pole during peak Cretaceous warmth

Johann Philipp Klages, Salzmann Ulrich, Bickert Torsten, Hillenbrand Claus-Dieter, Gohl Karsten, Kuhn Gerhard, Bohaty Steven, Titschack Jürgen, Müller Juliane, Frederichs Thomas, Bauersachs Thorsten, Ehrmann Werner, van de Flierdt Tina, Simões Pereira Patric, Larter Robert, Lohmann Gerrit, Igor Niezgodzki, Uenzelmann-Neben Gabriele, Zundel Maximilian, and Spiegel Cornelia and the Science Team of Expedition PS104

The mid-Cretaceous was one of the warmest intervals of the past 140 million years (Myr) driven by atmospheric COlevels around 1000 ppmv. In the near absence of proximal geological records from south of the Antarctic Circle, it remains disputed whether polar ice could exist under such environmental conditions. Here we present results from a unique sedimentary sequence recovered from the West Antarctic shelf. This by far southernmost Cretaceous record contains an intact ~3 m-long network of in-situ fossil roots. The roots are embedded in a mudstone matrix bearing diverse pollen and spores, indicative of a temperate lowland rainforest environment at a palaeolatitude of ~82°S during the Turonian–Santonian (93–83 Myr). A climate model simulation shows that the reconstructed temperate climate at this high latitude requires a combination of both atmospheric COcontents of 1120–1680 ppmv and a vegetated land surface without major Antarctic glaciation, highlighting the important cooling effect exerted by ice albedo in high-COclimate worlds.

How to cite: Klages, J. P., Ulrich, S., Torsten, B., Claus-Dieter, H., Karsten, G., Gerhard, K., Steven, B., Jürgen, T., Juliane, M., Thomas, F., Thorsten, B., Werner, E., Tina, V. D. F., Patric, S. P., Robert, L., Gerrit, L., Niezgodzki, I., Gabriele, U.-N., Maximilian, Z., and Cornelia, S. and the Science Team of Expedition PS104: Temperate rainforests near the South Pole during peak Cretaceous warmth, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-242, https://doi.org/10.5194/egusphere-egu2020-242, 2020.

EGU2020-5962 | Displays | CL1.4

A new framework to quantify carbon cycle perturbations using trace metal isotopes

Markus Adloff, Sarah E. Greene, Fanny M. Monteiro, and Andy Ridgwell

Reconstructing the environmental consequences of large carbon additions in the past has the potential to improve our understanding and prediction of how the Earth system will respond to human carbon emissions. However, uncertainties over the scale and timing of external carbon additions during past carbon emission events limit quantitative knowledge gained from the geological record. The metals Sr, Os, Li and Ca are essential proxies for changes in volcanic activity and terrestrial weathering rates, and thus for major causes of pre-industrial carbon emission and sequestration, because their isotopic compositions in old continental crust and Earth’s mantle differ significantly. So far, box models and equilibrium-state equations have been the only method to quantitatively relate weathering-derived and magmatic input fluxes to trace metal concentrations and isotopic ratios preserved in ancient sediments. This approach results most commonly in a first order estimate of emitted carbon or weathering changes, but it does not account for the effect of climate feedbacks on metal sources and sinks and associated variations in the residence time of these metals in the ocean. Particularly during fast carbon emissions (e.g. Cenozoic hyperthermals, Oceanic Anoxic Events), the processes which added isotopically traceable metals to the oceans also enchained environmental changes which would have affected metal cycles and residence times, resulting in significant alterations of the recorded isotopic excursion in marine sediments. To disentangle the signals of causes and consequences of environmental change recorded by trace metal isotopes, we simulated various coupled carbon and metal cycle perturbations in the 3D Earth system model of intermediate complexity cGENIE, now containing the first representation of isotope-enabled trace metal dynamics. Here, we present a resulting extended framework to reconstruct metal and carbon fluxes from the geological trace metal record during periods of environmental change.

How to cite: Adloff, M., Greene, S. E., Monteiro, F. M., and Ridgwell, A.: A new framework to quantify carbon cycle perturbations using trace metal isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5962, https://doi.org/10.5194/egusphere-egu2020-5962, 2020.

When it comes to paleoclimate data-model integration, temperature is arguably the most important parameter. Although a range of temperature proxies has been developed over the decades, many of the available methods suffer from large calibration uncertainties, in particular when applied on deep-time intervals. Clumped isotope thermometry is based on thermodynamic principles and therefore can provide accurate temperature constraints for the deeper geological record. Recent analytical developments allow now the analysis of relatively small sample sizes and the application in paleoceanogaphic studies becomes more feasible. I will present new clumped isotope based temperature estimates for the Atlantic deep-sea across the Cenozoic. I will also show that the analysis of small samples now allows us to even resolve seasonal sea surface temperature estimates from high-resolution archives. Deep-sea temperatures as well as seasonally resolved surface temperature estimates are particularly useful for data-model comparison.

How to cite: Ziegler, M.: Cenozoic climate evolution revealed by clumped isotope thermometry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20336, https://doi.org/10.5194/egusphere-egu2020-20336, 2020.

A compilation of benthic δ18O from the whole Atlantic and the Southern Ocean (Atlantic sector), shows two major jumps in the interbasinal gradient of d18O (Δδ18O) during the Eocene and the Oligocene: One at ~40 Ma and the second concomitant with the isotopic event of the Eocene-Oligocene transition (EOT), ~33.7 Ma ago. From previously published circulation models, we show that the first Δδ18O jump reflects the thermal isolation of Antarctica associated with the proto-Antarctic circumpolar current (ACC). The second marks the onset of interhemispheric northern-sourced circulation cell, similar to the modern Atlantic meridional overturning circulation (AMOC). The onset of AMOC-like circulation probably slightly preceded (100-300 ky) the EOT, as we show by the high resolution profiles of δ18O and δ13C previously published from DSDP/ODP sites in the Southern Ocean and South Atlantic. We suggest that while the shallow proto-ACC supplied the energy for deep ocean convection in the Southern Hemisphere, the onset of the interhemispheric northern circulation cell was due to the significant EOT intensification of deepwater formation in the North Atlantic driven by the Nordic anti-estuarine circulation. This onset of the interhemispheric northern-sourced circulation cell could have prompted the EOT global cooling.

How to cite: Abelson, M. and Erez, J.: Was the onset of interhemispheric AMOC slightly prior to Antarctic glaciation at the Eocene-Oligocene transition?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2204, https://doi.org/10.5194/egusphere-egu2020-2204, 2020.

EGU2020-18410 | Displays | CL1.4

Reconstructing ocean temperatures using coccolith clumped isotopes

Luz Maria Mejia, Alvaro Fernandez, Hongrui Zhang, Jose Guitian, Stefano Bernasconi, and Heather Stoll

     Reliable temperature reconstructions of the ocean are often difficult to obtain due to the limitations of widely used proxies. The application of clumped isotope thermometry to coccolith calcite, which is geographical and chronological ubiquitously distributed, and whose production is limited to the photic zone, may provide ocean’s temperature information when and where other proxies have been shown inaccurate or not applicable.

     To evaluate the potential of coccolith clumped isotopes in paleoceanography we compare the temperatures derived from the fine fraction (<11µm), a pure mixed coccolith fraction (2-10 µm), and to a fraction of carbonate fragments from unidentified sources (<2 µm), with coeval alkenone sea surface temperatures (SST) from ODP Site 982 in the North Atlantic covering the last 16 Ma. The similarity in magnitudes and trends from the <11 and 2-10 µm size fractions, and trace element analysis of the <2 µm size fraction, suggest that for this site and time interval, exclusion of small unrecognizable fragments is not necessary to obtain reliable temperatures. The warmer values of alkenone SSTs compared to coccolith clumped isotope-derived temperatures cannot be explained by diagenetic processes, but may be related to temperature overestimations by alkenone calibrations, which assume a warm season and/or shallow production of coccolithophores in the study area.           

     Vital effects in coccolith clumped isotopes potentially associated to carbon limitation may also help to explain the differences in cooling magnitudes compared to the alkenone record. To further investigate vital effects in clumped isotopes, we compare calcification temperatures of three pure coccolith size fractions (3-5, 5-8, and 8-10 µm), and relate them to vital effects observed in their δ13C and δ 18O. The analysis of the fine fraction of Holocene sediments (<10 or <8 µm) showing a range of temperature and CO2 concentrations also provide information on the potential effects of carbon availability in coccolith clumped isotopes, and suggests calcification of coccolithophores may occur in deeper habitats than those considered by alkenone calibrations. Our study shows clumped isotope thermometry applied to coccolith calcite as a promising alternative proxy for calcification temperature of coccolithophores.

How to cite: Mejia, L. M., Fernandez, A., Zhang, H., Guitian, J., Bernasconi, S., and Stoll, H.: Reconstructing ocean temperatures using coccolith clumped isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18410, https://doi.org/10.5194/egusphere-egu2020-18410, 2020.

EGU2020-3350 | Displays | CL1.4

Resolution-dependent variations of sinking particle trajectories in general circulation models: Implications for data-model comparison in past climate

Peter Nooteboom, Philippe Delandmeter, Peter Bijl, Erik van Sebille, Henk Dijkstra, and Anna von der Heydt

Any type of non-buoyant material in the ocean is transported by currents during its sinking journey. This transport can be far from negligible for typical (plankton) particles with a low sinking velocity. To estimate the lateral transport, the material can be modelled as a set of Lagrangian particles advected by currents that are obtained from Ocean General Circulation Models (OGCMs). State-of-the-art OGCMs are often strongly eddying, providing flow fields with a horizontal resolution of  10km on a daily basis. However, many long term climate modelling studies (e.g. in palaeoclimate) rely on low resolution models that cannot capture mesoscale features. The lower model resolution could influence data-model comparisons using Lagrangian techniques, but this is not properly evaluated yet through a direct comparison.

In this study, we simulate the transport of sinking Lagrangian particles using low (1°; non-eddying)  and high (0.1°; eddying) horizontal resolution OGCMs of the present-day ocean, and evaluate the effect of the two resolutions on particle transport. We find major differences between the transport in the non-eddying versus the eddying OGCM (in terms of the divergence of particle trajectories and their mean trajectory). Addition of stochastic noise to the particle trajectory parameterizes the effect of eddies well in some regions (e.g. in the North Pacific gyre).

We recommend to apply sinking Lagrangian particles only in velocity fields with eddying OGCMs, which basically excludes all paleo-simulations. We are currently simulating the equilibrium Eocene (38Ma) climate using an eddying OGCM, to be able to apply these Lagrangian techniques in an eddying ocean of the past. We expect this to lead towards a better agreement between the OGCM and sedimentary fossil microplankton.

How to cite: Nooteboom, P., Delandmeter, P., Bijl, P., van Sebille, E., Dijkstra, H., and von der Heydt, A.: Resolution-dependent variations of sinking particle trajectories in general circulation models: Implications for data-model comparison in past climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3350, https://doi.org/10.5194/egusphere-egu2020-3350, 2020.

EGU2020-20554 | Displays | CL1.4

Neogene changes in land surface reactivity and implications for Earth system sensitivity to carbon cycle perturbations

Jeremy Caves Rugenstein, Daniel Ibarra, and Friedhelm von Blanckenburg

Long-term cooling, pCO2 decline, and the establishment of permanent, polar ice sheets in the Neogene has frequently been attributed to increased uplift and erosion of mountains and consequent increases in silicate weathering, which removes atmospheric CO2. However, geological records of erosion rates are potentially subject to averaging biases and the magnitude of the increase in weathering fluxes, and even its existence, remain debated. Moreover, a weathering increase scaled to the hypothesized erosional increase would have removed nearly all carbon from the atmosphere, leading to proposals of compensatory carbon fluxes in order to preserve carbon cycle mass balance. In contrast, increasing land surface reactivity—resulting from greater fresh mineral surface area or an increase in the supply of reactive minerals—rather than an increase in the weathering flux, has been proposed to reconcile these disparate views. We develop a parsimonious carbon cycle model that tracks two weathering-sensitive isotopic tracers (stable 7Li/6Li and cosmogenic 10Be/9Be) to show that an increase in land surface reactivity is necessary to simultaneously decrease atmospheric CO2, increase seawater 7Li/6Li, and retain constant seawater 10Be/9Be since 16 Ma. We find that the global silicate weathering flux remained constant, even as the global silicate weathering intensity—the fraction of the total denudation flux derived from silicate weathering—decreased, sustained by an increase in erosion. Thus, long-term cooling during the Neogene reflects a change in the partitioning of denudation into weathering and erosion. Variable partitioning of denudation and consequent changes in silicate weathering intensity reconcile marine isotope and erosion records with the need to maintain mass balance in the carbon cycle and without increases in the silicate weathering flux. These changes in land surface reactivity through time suggest that the Earth system’s response to carbon cycle perturbations is not constant and that today’s Earth can more efficiently remove excess carbon than during analogous perturbations observed in the geologic record. 

How to cite: Caves Rugenstein, J., Ibarra, D., and von Blanckenburg, F.: Neogene changes in land surface reactivity and implications for Earth system sensitivity to carbon cycle perturbations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20554, https://doi.org/10.5194/egusphere-egu2020-20554, 2020.

EGU2020-10864 | Displays | CL1.4

The continental Middle Miocene Climatic Transition in Southern Europe as derived from clumped isotope analyses

Niklas Löffler, Andreas Mulch, Wout Krijgsman, Emilija Krsnik, and Jens Fiebig

Reconstructing Cenozoic terrestrial paleoclimate is frequently limited by temporal resolution and suitable quantitative tools to reliably assess changes in temperature and aridity. The dynamics of ocean temperatures1 and chemistry2, varying pCO23, and faunal assemblages are known to a certain extent, however, terrestrial data on temperatures, which are mostly indirectly derived from fossil assemblages and palynologycal data4 are rare. This study contributes to the understanding of the dynamics and variability of terrestrial temperatures during one of the most extreme Neogene climate changes, the Middle Miocene Climate Transition (MCT). The comparison of pCO2 forecasts for the coming century and reconstructed Mid-Miocene pCO2 levels suggest that the Mid-Miocene is an important time interval for ascertaining suitable model projections of the future anthropogenic impact on climate. In order to establish an appropriate understanding and modeling of the natural variability of the European/Mediterranean climate system, quantitative climate information of the European continental Mid-Miocene is mandatory. This would facilitate the identification of main drivers of climate evolution in an area which is exposed to the present climate change and its subsequent natural hazards.

 

This study presents a profound and well-dated terrestrial clumped isotope (Δ47) paleosoil carbonate dataset from Spain that ranges from 13.0 to 15.1 Ma (100 kyr resolution) and hence covers an interval that was previously classified as the MCT. The Δ47 data is supported by stable carbon and oxygen isotope analyses that are in agreement with previously published continental and oceanic records. A distinct decline in apparent Δ47-based temperatures between 13.7 and 14.1 Ma reveals a substantial drop in continental temperatures and indicates changes in seasonality of pedogenic carbonate formation. The major cooling thereby coincides with a change in Milanković periodicities and can be linked to oceanic isotope records5. While the transition into the MCT shows a high temperature variability indicating varying environmental conditions, calculated oxygen isotopic values of the soil water point to a rather stable moisture source across the MCT in Southern Europe.

 

1: Super, J. R., Thomas, E., Pagani, M., et al. (2018) North Atlantic temperature and pCO2 coupling in the early-middle Miocene. Geology, 46(6), 519-522.

2: Pearson, P. N., and Palmer, M. R. (1999) Middle Eocene seawater pH and atmospheric carbon dioxide concentrations. Science, 284(5421), 1824-1826.

3: Pagani, M., Freeman, K. H., and Arthur, M. A. (1999) Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science, 285(5429), 876-879.

4: Lewis, A. R., Marchant, D. R., Ashworth, A. C., et al. (2008) Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proceedings of the National academy of Sciences.

5: Holbourn, A., Kuhnt, W., Clemens, S., et al. (2013) Middle to late Miocene stepwise climate cooling: Evidence from a high resolution deep water isotope curve spanning 8 million years. Paleoceanography, 28(4), 688-699.

How to cite: Löffler, N., Mulch, A., Krijgsman, W., Krsnik, E., and Fiebig, J.: The continental Middle Miocene Climatic Transition in Southern Europe as derived from clumped isotope analyses, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10864, https://doi.org/10.5194/egusphere-egu2020-10864, 2020.

EGU2020-9756 | Displays | CL1.4

A modeling study of physical and biogeochemical changes occurring in the tropical Indian Ocean during Miocene times.

Anta-Clarisse Sarr, Yannick Donnadieu, Clara Bolton, and Baptiste Suchéras-Marx

The South Asian Monsoon (SAM) is one of the most important climatic features of the Asian continent. Proxy-based reconstructions from continuous records in the Indian Ocean suggest a settlement of modern-like monsoon during the Miocene, with a modern winds distribution and strength potentially reached by ~13 Ma. Concurrent with the SAM intensification, a major reorganization of surface ocean currents occurred in the Indian Ocean. The timing of monsoon strengthening overlaps with changes in Indian Ocean and Indonesian Gateway configurations, Himalayas uplift, global cooling, as well as East Antarctic Ice Sheet expansion. Thus, the respective influence of each factor on SAM evolution and Indian Ocean paleoceanography is still poorly understood owing to the modification of multiple forcing mechanisms.

Here we will use a set of experiments with the IPSL-CM5A2 Earth System Model under early to late Miocene configurations in order to tease apart the effects of paleogeography changes, ice-sheet growth and CO2levels on the Indian Ocean region during the Miocene. We will focus on the impact of increasing SAM winds and precipitation on the oceanographic conditions in the Indian Ocean including not only physical parameters but also biogeochemical ones.

 

How to cite: Sarr, A.-C., Donnadieu, Y., Bolton, C., and Suchéras-Marx, B.: A modeling study of physical and biogeochemical changes occurring in the tropical Indian Ocean during Miocene times. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9756, https://doi.org/10.5194/egusphere-egu2020-9756, 2020.

EGU2020-13972 | Displays | CL1.4

Atmospheric CO2 during the Late Miocene Cooling

Thomas Tanner, José Guitián, Iván Hernández-Almeida, and Heather Stoll

Alkenone sea surface temperature records recently observed suggest a substantial long-term and large-magnitude ocean surface cooling during the Late Miocene. At the same time, starting about seven million years ago, both hemispheres on Earth witnessed synchronous cooling and large areas of the continents experienced drying and enhanced seasonality. Coinciding with this climatic shift were significant changes in ecology, including the rise of C4-photosynthesizing terrestrial plants and the emergence of so-called "vital effects" in oceanic coccolithophores. These changes are collectively hypothesized to be induced by declining atmospheric CO2. However, the sparse proxy data available for this time interval limits our understanding of the link between these changes and atmospheric greenhouse gas fluctuations and has let people to propose a "climate-CO2 decoupling".
In this study, the alkenone based pCO2 proxy is used to reconstruct atmospheric CO2 for the time interval between 4.5 and 8.5 Ma. Estimations are based on the carbon isotopic fractionation during photosynthesis (εp) and a new statistical multilinear regression model based on an analysis of culture and sediment data. Past coccolithophore growth rates are reconstructed using foraminiferal isotopic-based proxies, related to water column structure which favour or limit nutrient supply to the photic zone. A thorough sensitivity analysis of modern and past  εp values and its influencing factors in the Southern Ocean yield to a new, high resolution pCO2 record. Estimated pCO2 concentrations synchronously decline with the observed long-term cooling (5°C) from 6.8 to 5.9 Ma, periodically decreasing to sufficiently low values of <200 ppm, potentially inducing ephemeral Northern Hemisphere glaciation. CO2 concentrations during the Late Miocene Cooling Event are thus successfully reproduced in this study and allow a reasonable interpretation of past conditions as has not yet been previously achieved in the relevant literature. 

How to cite: Tanner, T., Guitián, J., Hernández-Almeida, I., and Stoll, H.: Atmospheric CO2 during the Late Miocene Cooling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13972, https://doi.org/10.5194/egusphere-egu2020-13972, 2020.

EGU2020-13946 | Displays | CL1.4

The linkage of dust cycle dynamics and loess during the Last Glacial Maximum in Europe

Patrick Ludwig, Erik J. Schaffernicht, Yaping Shao, and Joaquim G. Pinto

In this work, we present different aspects of the mineral dust cycle dynamics and the linkage to loess deposits during the Last Glacial Maximum (LGM) in Europe. To this aim, we simulate the LGM dust cycle at high resolution using a regional climate-dust model. The simulated dust deposition rates are found to be comparable with the mass accumulation rates of the loess deposits determined from Loess sites across Europe. In contrast to the present-day prevailing westerlies, easterly wind directions (36 %) and cyclonic regimes (22 %) were dominant circulation patterns over central Europe during the LGM. This supports the hypothesis that recurring east sector winds, dynamically linked with a high-pressure system over the Eurasian ice sheet (EIS), are an important component for the dust transport from the EIS margins towards the central Europe loess belt. Our simulations reveal the occurrence of highest dust emission rates in Europe during summer and autumn, with the highest emission rates located near the southernmost EIS margins corresponding to the present-day German-Polish border region. Coherent with the persistent easterlies, westwards running dust plumes resulted in high deposition rates in western Poland, northern Czechia, the Netherlands, the southern North Sea region and on the North German Plain including adjacent regions in central Germany. Further, a detailed analysis of the characteristics of LGM cyclones shows that they were associated with higher wind speeds and less precipitation than their present-day counterparts. These findings highlight the importance of rapid and cyclic depositions by cyclones for the LGM dust cycle. The agreement between the simulated deposition rates and the mass accumulation rates of the loess deposits corroborates the proposed LGM dust cycle hypothesis for Europe.

How to cite: Ludwig, P., Schaffernicht, E. J., Shao, Y., and Pinto, J. G.: The linkage of dust cycle dynamics and loess during the Last Glacial Maximum in Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13946, https://doi.org/10.5194/egusphere-egu2020-13946, 2020.

EGU2020-5526 | Displays | CL1.4

Antarctic Uncertainty: Learning more about past ice sheet shapes with Bayesian methods

Fiona Turner, Richard Wilkinson, Caitlin Buck, Julie M. Jones, and Louise Sime

Understanding the effect warming has on ice sheets is vital for accurate projections of climate change. A better understanding of how the Antarctic ice sheets have changed size and shape in the past would allow us to improve our predictions of how they may adapt in the future; this is of particular relevance in predicting future global sea level changes. This research makes use of previous reconstructions of the ice sheets, ice core data and Bayesian methods to create a model of the Antarctic ice sheet at the Last Glacial Maximum (LGM). We do this by finding the relationship between the ice sheet shape and water isotope values. 

We developed a prior model which describes the variation between a set of ice sheet reconstructions at the LGM. A set of ice sheet shapes formed using this model was determined by a consultation with experts and run through the general circulation model HadCM3, providing us with paired data sets of ice sheet shapes and water isotope estimates. The relationship between ice sheet shape and water isotopes is explored using a Gaussian process emulator of HadCM3, building a statistical distribution describing the shape of the ice sheets given the isotope values outputted by the climate model. We then use MCMC to sample from the posterior distribution of the ice sheet shape and attempt to find a shape that creates isotopic values matching as closely as possible to the observations collected from ice cores. This allows us to quantify the uncertainty in the shape and incorporate expert beliefs about the Antarctic ice sheet during this time period. Our results suggests that there may have been a thicker West Antarctic ice sheet at the LGM than previously estimated.

How to cite: Turner, F., Wilkinson, R., Buck, C., Jones, J. M., and Sime, L.: Antarctic Uncertainty: Learning more about past ice sheet shapes with Bayesian methods, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5526, https://doi.org/10.5194/egusphere-egu2020-5526, 2020.

EGU2020-3988 | Displays | CL1.4

Greenhouse climate forces expansion of peatlands into inland areas

Zhihui Zhang, Chengshan Wang, Dawei Lv, and Tiantian Wang

As a significant terrestrial carbon reservoir, peatland has great potential to affect the global carbon cycle and global climate. However, our understanding of broad-scale mechanisms that control the long-term global peatland expansion and carbon accumulation rates is still limited. Here we present a new data synthesis of global coal deposit location, thickness changes, carbon concentration, and distribution area changes, along with new carbon pool estimates of global peatlands from Devonian through geological time. By identifying orbital cycles in coal seams, we show that the long-term rate of carbon accumulation (LORCA) in peatland calculated from published data is controlled by pO2, pCO2, temperature, precipitation, and total solar irradiance. We use this relationship and latitudinal temperature gradients to reconstruct the equations between LORCA with latitude on different geological time. The results suggest that there are three main sets of high carbon pool and high carbon accumulation rate of global peatlands in Late Paleozoic, Early-Middle Jurassic, and Late-Cretaceous to Early Cenozoic under low tectonic activity and high terrestrial plant diversity background. In addition, we measure the shortest distances between all coal locations and coastlines based on the new Scotese’s paleo-Atlas for the past 400 million years, in order to exhibit the extent of peatland expansion into inland. The result shows the Early-Middle Jurassic period has the longest average distance, which is probably due to the high sea level that minimizes the development of peat swamps on coastal areas and facilitated the moisture to move into deeper inland under the Jurassic Greenhouse climate condition. This study highlights that combining comprehensive coal-related database with paleoclimate, tectonics, and evolution of land plants provides insights into the mechanisms of the long-term behavior of the peatland expansion and carbon reservoir through deep time.

Keywords: Greenhouse climate, Peatland expansion, Carbon pool, Cabon accumulation rates, Coal

This study wasfinancially supported by the National Natural Science Foundation of China (grant No. 41888101), the National Key R&D Plan of China (grant No. 2017YFC0601405) and the National Natural Science Foundation of China (grants 41790450, 41772096).

How to cite: Zhang, Z., Wang, C., Lv, D., and Wang, T.: Greenhouse climate forces expansion of peatlands into inland areas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3988, https://doi.org/10.5194/egusphere-egu2020-3988, 2020.

The Neoproterozoic glaciations, referred to as snowball Earth periods, describe the most extreme transition from a very cold climate to a state of strong greenhouse effect. Atmospheric CO2 concentrations are rising during the snowball, due to the shutdown of oceanic and terrestrial carbon sinks, until a tipping point is reached and a rapid deglaciation sets in. Subsequently, a warm and completely ice-free climate under very high CO2 concentrations develops. We show first results of simulations using a coupled atmosphere-ocean general circulation model covering the initiation, as well as the melting of the Marinoan snowball Earth (645 – 635 My ago) and the greenhouse climate in its aftermath. CO2 concentrations are decreased to initiate a global glaciation and then increased again in order to melt the snowball Earth. As soon as a certain CO2 threshold is reached, sea-ice melts rapidly, reaching a completely ice-free ocean after only one hundred years, in our model without land glaciers. The ocean becomes strongly stratified, because at the surface the freshwater from the sea-ice melt is warming up quickly, whereas the deeper ocean remains cold and salty. Ocean surface currents return to their pre-snowball behavior soon after the melt, but destratification is slow. The largest mixed layer depths of up to 500 m are reached in the mid latitudes of the winter hemisphere. We compare the climate before and after the snowball state and estimate the time needed for destratification.

How to cite: Ramme, L. and Marotzke, J.: Ocean dynamics and climate during a Neoproterozoic snowball Earth and its aftermath as simulated in a coupled Earth system model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10320, https://doi.org/10.5194/egusphere-egu2020-10320, 2020.

EGU2020-20746 | Displays | CL1.4

Modeling the impact of oceanic circulation and marine productivity on Cretaceous seafloor anoxia

Yannick Donnadieu, Marie Laugie, Jean-Baptiste Ladant, François Raisson, and Laurent Bopp

Oceanic anoxic events (OAEs) are abrupt events of widespread deposition of organic-rich sediments and extensive seafloor anoxia. Mechanisms usually invoked as drivers of oceanic anoxia are various and still debated today. They include a rise of the CO2 atmospheric level due to increased volcanic activity, a control by the paleogeography, changes in oceanic circulation or enhanced marine productivity. In order to assess the role of these mechanisms, we use an IPCC-class model, the IPSL-CM5A2 Earth System Model, which couples the atmosphere, land surface, and ocean components, this last one including sea ice, physical oceanography and marine biogeochemistry which allows to simulate oceanic oxygen.

We focus here on OAE2, which occurs during the Cretaceous at the Cenomanian-Turonian boundary (93.5 Ma), and is identified as a global event with evidence for seafloor anoxia in the Atlantic and Indian Oceans, the Southwest Tethys Sea and the Equatorial Pacific Ocean. Using a set of simulations from 115 to 70 Ma, we analyze the long-term paleogeographic control on oceanic circulation and consequences on oceanic oxygen concentration and anoxia spreading. Short-term controls such as an increase of pCO2, nutrients, or orbital configurations are also studied with a second set of simulations with a Cenomano-Turonian (90 Ma) paleogeographic configuration. The different simulated maps of oxygen are used to study the evolution of marine productivity and oxygen minimum zones as well as the spreading of seafloor anoxia, in order to unravel the interlocking of the different mechanisms and their specific impact on anoxia through space and time.

How to cite: Donnadieu, Y., Laugie, M., Ladant, J.-B., Raisson, F., and Bopp, L.: Modeling the impact of oceanic circulation and marine productivity on Cretaceous seafloor anoxia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20746, https://doi.org/10.5194/egusphere-egu2020-20746, 2020.

EGU2020-19916 | Displays | CL1.4 | Highlight

The simulated transition from a hard snowball Earth

Philipp de Vrese, Tobias Stacke, Victor Brovkin, and Jeremy Caves Rugenstein

Geological evidence suggests that Earth's past featured periods during which the planet was largely or even entirely covered by ice, a state termed "snowball Earth".  Model based studies confirm that one of Earth's equilibrium states is a fully glaciated planet (hard snowball) but it is not clear how this state could have been left once it had been established. We use simulations with the Max-Planck-Institute for Meteorology's Earth system model to investigate the conditions that enable the transition out of the snowball-state. We show that the high albedo of pure snow would have prevented deglatiation, even for extremely high atmospheric CO2 concentrations. Terminal deglaciation is only triggered for surface albedos corresponding to old, darkened snow or sea-ice. Here, increasing snowfall rates, resulting from the intensification of the hydrological cycle with rising CO2 concentrations, would have prohibited the gradual build-up of dust that leads to a darkening of the surface.  Only when assuming dust deposition fluxes at least similar to present-day fluxes, can the deglation be triggered for plausible atmospheric CO2 concentrations.

How to cite: de Vrese, P., Stacke, T., Brovkin, V., and Caves Rugenstein, J.: The simulated transition from a hard snowball Earth, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19916, https://doi.org/10.5194/egusphere-egu2020-19916, 2020.

EGU2020-15254 | Displays | CL1.4

Role of paleogeography in preconditioning the Late Cretaceous Oceanic Event (OAE2) in a full global circulation Earth System model

Alexander Manning, Paul Valdes, Fanny Monteiro, and Jonny Williams

Ocean anoxic event 2 (OAE2) was a large perturbation in the Earth's ocean carbon system, occurring at approximately 93.5 Ma, and is characterised by widespread black shales deposition in sediment records. This record has been interpreted as evidence of large anoxia in the global ocean for a long period, resulting in large scale extinction of marine life. However, the exact causes of OAE2, and how it initially developed, are not fully understood. We modelled the period leading up to OAE2 using the HadCM3L global climate model with full ocean (HADOCC) and terrestrial carbon cycle (TRIFFID) modules. We compared our results to equivalent simulations using late Cretaceous (Maastrichtian) paleogeographies. This allowed us to analyse the effects of continental configuration on the development to the OAE. Our results show that restricted ocean circulation, caused by the paleobathymetry, is necessary for anoxic conditions to develop but is not sufficient alone. This suggests that continental configuration is highly important in determining the ability of the oceans to develop an OAE and may explain why they only occur during some times during Earth history.

How to cite: Manning, A., Valdes, P., Monteiro, F., and Williams, J.: Role of paleogeography in preconditioning the Late Cretaceous Oceanic Event (OAE2) in a full global circulation Earth System model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15254, https://doi.org/10.5194/egusphere-egu2020-15254, 2020.

EGU2020-9074 | Displays | CL1.4

Exploring Mesozoic Climates - Modeling and Evaluation of Proxy Distributions

Jan Landwehrs, Georg Feulner, Matthias Hofmann, Stefan Petri, Benjamin Sames, and Michael Wagreich

The Mesozoic Era (~252-66 Ma) is a decisive period in Earth’s history. It is marked by a tectonic transition from the Pangea supercontinent towards a modern continental configuration as well as the ecological success of the dinosaurs and the evolution of mammals, flowering plants, stony corals and important groups of planktic calcifiers. The Mesozoic is generally considered as a greenhouse climate period, with especially high global temperatures during the Triassic and the Late Cretaceous. Here, we present novel modeling results on the evolution of global climatic conditions through the Mesozoic.

An ensemble of equilibrium climate states for 40 geological timeslices between 255 and 60 Ma is simulated with the CLIMBER-3α Earth System Model of Intermediate Complexity. The influence of changing paleogeography, sea level, vegetation cover, solar luminosity, orbital configuration and atmospheric CO2 concentration is systematically tested based on constraints from published geological proxy reconstructions and previous modeling work.

Atmospheric pCO2 is found to be the strongest driver of global mean temperatures, which are generally elevated above the present and reach 20°C in the Late Triassic to Early Jurassic and the mid-Cretaceous if a recently published pCO2 proxy compilation is employed. The simulated seasonal latitudinal shift of high precipitation zones exhibits a maximum during the mid-Triassic to Early Jurassic and therefore supports the notion of a “Megamonsoon” during this time. Simulated humid and arid climate zones generally agree well with spatial distributions of geologic climate indicators like coal and evaporites, although some discrepancies exist. The same applies to the correlation of fossil stony coral reef distributions with regions where seawater temperatures would have been suitable for (modern) coral reefs. We will discuss which changes of Earth System parameters throughout the Mesozoic can best explain shifts in these distributions.

How to cite: Landwehrs, J., Feulner, G., Hofmann, M., Petri, S., Sames, B., and Wagreich, M.: Exploring Mesozoic Climates - Modeling and Evaluation of Proxy Distributions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9074, https://doi.org/10.5194/egusphere-egu2020-9074, 2020.

Antarctic bryozoans are important colonial marine invertebrates in terms of their origin, palaeoenvironment and climatic approaches. The changes of the bryozoan fossil records during the last 55 Ma years  are well-defined by their biodiversity, taxonomic composition and colony growth-forms. The late Early Eocene biota from the shallow-marine–estuarine clastic succession of the lower part (Telm1-2) of the La Meseta Formation of Seymour Island are represented by the prolific, spectacular in size, massive multilamellar colonies dominated by the cerioporids as well as diverse ascophorans  cheilostomes (Hara, 2001). The free-living lunilitiform, disc-shaped colonies, which occur in the middle part of the La Meseta Formation (Telm4-Telm5), are characteristic for the warm, shallow-self environment and bottom temperature, which ranges from 10 to 29°C. The presence of the bimineralic skeletons of this fauna (such as Lunulites, Otionellina, and Uharella) with the traces of aragonite is indicative for the temperate shelf environment, sandy and often shifting substrate. Lunulitids are inhabited by the circumpolar to warm-temperate waters, at the present day. Contrary to that, the bryozoans  from the upper part of the LM (Telm6-7) are  represented by the scarce lepraliomorphs accompanied by the crustaceans, brachiopods and gadiform fish remains. The individuality of the Eocene bryozoan assemblages are well-correlated with the EECO, MECO and EOT climatic events, based on the other marine macrofaunal marine fossil records (see also Ivany et al. 2008). The lower Pliocene bryofauna recently described  from the Cockburn Island Formation  is composed of the rich encrusting shallow-water, membraniporiform zoaria (Hara and Crame, in review, 2020). The biota of thePectenConglomerate are indicative of the interglacial conditions during the deposition of the Cockburn Island Formation. At the present day bryozoans with the preponderance of cheilostomes are the most significant marine benthic community, thriving successfully in cool-water Antarctic  conditions.

References,

Hara, U., 2001. Bryozoans from the Eocene of Seymour Island, Antarctic Peninsula, Palaeontogia Polonica , 60:33-155.

Hara, U., Mors, T., Hagstrom, and Reguero M. A., 2018. Eocene bryozoans  assemblages from the La Meseta Formation of Seymour Island. Geological Quarterly, 62: 705-728. 

Hara., U., and Crame, J.A. 2019. Paleobiodiversity of the Lower Pliocene bryozoan  benthic community and its response to interglacial conditions.  Geological Review (in review).

Ivany L.C., Lohmann, K. C. Hasiuk, F., Blake D.B., Glass A., Aronson R.B., and Moody R.M. 2008. Eocene climate record of the high southern latitude continental shelf: Seymour Island, Antarctica. Geological Society of America Bulletin, v. 120, no. 5-6: 659-678.

 

How to cite: Hara, U.: Cenozoic bryozoan biota and their response to climatic changes in Antarctica, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22540, https://doi.org/10.5194/egusphere-egu2020-22540, 2020.

EGU2020-18748 | Displays | CL1.4

The climate in Antarctica during the Middle Eocene: a modelling perspective

Frederic Fluteau, Delphine Tardif, Guillaume Le Hir, Yannick Donnadieu, Pierre Sepulchre, Jean-Baptiste Ladant, Fernando Poblete, and Guillaume Dupont-Nivet

The Middle Eocene represents the last ice-free period of the Cenozoic. Vegetation proxy data (wood, leaves, palynomorphs) discovered in the Antarctica peninsula and neighbouring islands or hosted in sedimentary sequences deposited on the continental margin reveal the presence of paratropical rain forests which thrived along the Antarctica coast during the Early Eocene. During the Middle and Late Eocene these flora have been progressively replaced by temperate Nothofagus-dominated rainforests (Contreras et al., 2013). Jacques et al. (2012) proposed, using a physiognomic approach (CLAMP), that a warm temperate and wet climate (with a marked summer rainy season) prevails until the middle Eocene (43±2 Ma) on the tip of the Antarctica Peninsula.

            To better constrain the climate in Antarctica and understand processes governing the polar climate during the Middle Eocene, we performed a set of experiments using the IPCC-like Earth System Model (IPSL-CM5A2-VLR) forced with a Middle Eocene (~40 Ma) paleogeography reconstruction and a 4 times pre-industrial atmospheric CO2 level (1120ppm). To highlight the importance of the seasonality, we launched 6 orbital configurations exploring end-members situations. To complete the procedure, simulated sea surface temperatures and sea ice extents were then employed as boundary conditions to force the Atmospheric General circulation model LMDz6 (run at higher spatial resolution) coupled with a soil and vegetation model ORCHIDEE to simulate the corresponding vegetation over Antarctica. The 6 end-members Earth's orbital configuration allows exploring the full climatic spectrum which would have been recorded by proxy data. Simulated changes in atmospheric circulation will be discussed and the simulated climate and vegetation will be confronted to paleoclimatic indicators and vegetation data.

How to cite: Fluteau, F., Tardif, D., Le Hir, G., Donnadieu, Y., Sepulchre, P., Ladant, J.-B., Poblete, F., and Dupont-Nivet, G.: The climate in Antarctica during the Middle Eocene: a modelling perspective, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18748, https://doi.org/10.5194/egusphere-egu2020-18748, 2020.

EGU2020-8370 | Displays | CL1.4

Estimating structural and parametric uncertainties in the simulated early Eocene surface warming

Sebastian Steinig, Fran J. Bragg, Peter J. Irvine, Daniel J. Lunt, and Paul J. Valdes

Simulating the proxy-derived surface warming and reduced meridional temperature gradient of the early Eocene greenhouse climate still represents a challenge for most atmosphere-ocean general circulation models. A profound understanding of uncertainties associated with the respective model results is thereby essential to reliably identify any similarities or misfits to the proxy record. Besides incomplete knowledge of past greenhouse gas concentrations and other boundary conditions, structural and parametric uncertainties are the main factors that determine our confidence in paleoclimate simulation results.

The recent publication of coordinated model experiments that apply identical paleogeographic boundary conditions for key time periods of the early Eocene (DeepMIP) allows a systematic analysis of inter-model differences and therefore of structural uncertainties in the simulated surface warming. Here we additionally explore the parametric uncertainty of the early Eocene climatic optimum (EECO) surface warming within one DeepMIP model. For this we performed perturbed parameter ensemble (PPE) simulations with HadCM3B at different atmospheric CO2 concentrations following the DeepMIP protocol. Twenty-one parameter sets based on changes in six atmospheric parameters, a sea-ice parameter and the ocean background diffusivity were branched off from the respective DeepMIP control simulations and integrated for a further 1500 model years. The selected parameter sets are based on previous results demonstrating their ability to simulate a pre-industrial global-mean surface temperature within ±2 °C of the standard configuration.

Preliminary results indicate a large spread of the simulated low-latitude surface warming in the PPE and therefore significant changes of the large-scale meridional temperature gradient for the EECO. Some ensemble members develop numerical instabilities at CO2 concentrations of 840 ppmv and above, most likely in consequence of high temperatures in the tropical troposphere. We further compare the magnitude of the parametric uncertainty of the HadCM3B perturbation experiments with the structural differences found in the DeepMIP multi-model ensemble and explore the sensitivity of the results to the strength of the applied greenhouse gas forcing. Model skill of the PPE members is tested against the most recent DeepMIP compilations of marine and terrestrial proxy temperatures.

How to cite: Steinig, S., Bragg, F. J., Irvine, P. J., Lunt, D. J., and Valdes, P. J.: Estimating structural and parametric uncertainties in the simulated early Eocene surface warming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8370, https://doi.org/10.5194/egusphere-egu2020-8370, 2020.

EGU2020-13450 | Displays | CL1.4

Thermohaline Fingerprints of the Greenland-Scotland Ridge and Fram Strait Subsidence Histories

Akil Hossain, Gregor Knorr, Gerrit Lohmann, Michael Stärz, and Wilfried Jokat

Changes in ocean gateway configuration are known to induce basin-scale rearrangements in ocean characteristics throughout the Cenozoic. However, there is large uncertainty in the relative timing of the subsidence histories of ocean gateways in the northern high latitudes. By using a fully coupled General Circulation Model we investigate the salinity and temperature changes in response to the subsidence of two key ocean gateways in the northern high latitudes during early to middle Miocene. Deepening of the Greenland-Scotland Ridge causes a salinity increase and warming in the Nordic Seas and the Arctic Ocean. While warming this realm, deep water formation takes place at lower temperatures due to a shift of the convection sites to north off Iceland. The associated deep ocean cooling and upwelling of deep waters to the Southern Ocean surface causes a cooling in the southern high latitudes. These characteristic impacts in response to the Greenland-Scotland Ridge deepening are independent of the Fram Strait state. Subsidence of the Fram Strait for a deep Greenland-Scotland Ridge causes less pronounced warming and salinity increase in the Nordic Seas. A stronger salinity increase is detected in the Arctic while temperatures remain unaltered, which further increases the density of the North Atlantic Deep Water. This causes an enhanced contribution of North Atlantic Deep Water to the abyssal ocean and on the expense of the colder southern source water component. These relative changes largely counteract each other and cause little warming in the upwelling regions of the Southern Ocean.

How to cite: Hossain, A., Knorr, G., Lohmann, G., Stärz, M., and Jokat, W.: Thermohaline Fingerprints of the Greenland-Scotland Ridge and Fram Strait Subsidence Histories, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13450, https://doi.org/10.5194/egusphere-egu2020-13450, 2020.

EGU2020-10818 | Displays | CL1.4

Transport of planktic foraminifera by ocean currents in the Uruguayan margin

Anne Kruijt, Andrew Mair, Peter Nooteboom, Anna S. von der Heydt, Martin Ziegler, and Tracy Aze

Fossils of planktic foraminifera are found in marine sediments and are widely used as a proxy for past ocean conditions. The habitat of these unicellular marine zooplankton ranges from tropical to polar regions and is mostly located in the upper mixed layer of the ocean. The foraminifera form a calcium carbonate ’shell’ around their cell during their lifespan. When they die, foraminifera lose their ability to control their buoyancy and their shells sink to the ocean floor. It is often assumed that the proxies which are derived from the shells in sediment cores represent ocean conditions above the location of deposition. However, foraminifera are transported by ocean currents, both during and after their lifespan. Hence, the paleoclimatic conditions recorded from their shells may originate far from the core site, generating large footprints in foraminifera-based paleoclimatic proxies. 

In this project, we quantify the influence of the transport by ocean currents on the proxy signal of foraminifera found at core sites in the Uruguayan margin of the Punta del Este basin. This is a region where two western boundary currents meet: The southward flowing Brazil current and the northward flowing Malvinas current. We use a high resolution (0.1° horizontally) ocean general circulation model to track virtual sinking particles and the local oceanic conditions along their pathways. These model results are compared to proxy- and species analysis from the core sites. We found that offsets in modelled proxy signals due to transport in the Uruguayan margin are strongly linked to the relative position of the core site to the Brazil-Malvinas confluence. These offsets are most pronounced in the tails of the temperature distributions where they can reach up to +/- 7°C at sites located in the confluence zone. Species analysis from core tops taken slightly north of this region show more cold water species than reflected by the modelled temperature distributions, suggesting biological activity and nutrient availability not taken into account in the model play an important additional role in the relative abundances of species.
Our model simulations have provided both a first order insight into the potential proxy-signal offsets in highly dynamic ocean regions and show that understanding of the interplay between transportation effects and the biological activity of foraminifera is crucial for the interpretation of these proxies.

 

How to cite: Kruijt, A., Mair, A., Nooteboom, P., von der Heydt, A. S., Ziegler, M., and Aze, T.: Transport of planktic foraminifera by ocean currents in the Uruguayan margin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10818, https://doi.org/10.5194/egusphere-egu2020-10818, 2020.

EGU2020-5974 | Displays | CL1.4

Concurrent Miocene Antarctic ice sheet growth and CO2 increase caused by disequilibrium

Lennert Stap, Gregor Knorr, and Gerrit Lohmann

Geological evidence indicates considerable Antarctic ice volume variations during the early to mid-Miocene. Hitherto, ice modelling studies have mostly used equilibrium simulations to explain this variability. In these simulations, the gain in precipitation due to increased temperatures has to outweigh the loss caused by increased ice melt, to obtain simultaneous ice sheet growth and CO2 level rise. Here, conceptualising ice dynamical model results, we find that this is not a necessary condition for the transiently evolving Miocene Antarctic ice sheet. Instead, ice volume increase when CO2 levels are rising can also be explained as a consequence of disequilibrium between the transiently changing ice volume and forcing climate. This disequilibrium permits a continuation of ice sheet growth after a gradual CO2 decline. When the CO2 level is increased again, the ice sheet is still adapting to a relatively large equilibrium volume. Lowering the periodicity of the forcing leads to a larger disequilibrium, and consequently larger CO2-ice volume phase differences. Furthermore, amplified forcing variability increases ice volume variations, because the growth and decay rates depend on the forcing. It also leads to a reduced average ice volume, which is induced by the growth rate generally being smaller than the decay rate. We therefore submit that retrieval of high resolution proxy-CO2 records covering the Miocene would be very beneficial to constrain ice modelling studies.

How to cite: Stap, L., Knorr, G., and Lohmann, G.: Concurrent Miocene Antarctic ice sheet growth and CO2 increase caused by disequilibrium, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5974, https://doi.org/10.5194/egusphere-egu2020-5974, 2020.

The North American Great Plains are characterized by a sharp aridity gradient at around the 100th meridian with a more humid climate to the east and a more arid climate to the west. This aridity gradient shapes the region's agriculture and economy, and recent work suggests that arid conditions on the Great Plains may expand eastward with global warming. The abundant Neogene sediments of the Ogallala Formation in the Great Plains present an opportunity to reconstruct regional hydroclimate conditions at a time when pCO2 and global temperatures were much higher than today, providing insight into the aridity and ecosystem response to warming. We present new paleosol carbonate δ13C and δ18O data (n=366) across 37 sites spanning the Great Plains and compile previously published measurements (n=381) to evaluate the long-term hydroclimatic and ecosystem changes in the region during the late Neogene. This study combines a spatial and temporal analysis of carbon and oxygen isotope data with reactive-transport modeling of oxygen isotopes constrained by climate model output, providing critical constraints on the paleoenvironmental and paleoclimatological evolution of the Neogene Great Plains. Carbonate δ18O demonstrate remarkable similarity between the spatial pattern of paleo-precipitation δ18O and modern precipitation δ18O. Today, modern precipitation δ18O over the Great Plains is set by the mixing between moist, high-δ18O moisture delivered by the Great Plains Low-Level Jet and drier, low-δ18O westerly air masses. Thus, in the absence of countervailing processes, we interpret this similarity between paleo and modern δ18O to indicate that the proportional mixing between these two air masses has been minimally influenced by changes in global climate and that any changes in the position of the 100th meridian aridity gradient has not been forced by dynamical changes in these two synoptic systems. In contrast, prior to the widespread appearance of C4 plants in the landscape of the Great Plains, paleosol carbonate δ13C show a robust east-to-west gradient, with higher values to the west. We interpret this gradient as reflective of lower primary productivity and hence soil respiration to the west. Close comparison with modern primary productivity data indicates that primary productivity has declined and shifted eastward since the late Neogene, likely reflecting declining precipitation and/or a reduction in CO2 fertilization during the late Neogene. Finally, δ13C increases across the Miocene-Pliocene boundary, which, consistent with previous studies, we interpret as a shift from a C3 to a C4 dominated landscape. We conclude that, to first order, the modern aridity gradient and the hydrologic processes that drive it are not strongly sensitive to changes in global climate and any shifts in this aridity gradient in response to rising CO2 will be towards the west, rather than towards the east.

How to cite: Manser, L., Kukla, T., and Caves Rugenstein, J. K.: Long-term stability of large-scale hydroclimate processes in the North American Great Plains revealed by a Neogene stable isotope study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11141, https://doi.org/10.5194/egusphere-egu2020-11141, 2020.

For several decades, the comparison of climate data with results from water isotope-enabled Atmosphere General Circulation Models (AGCMs) significantly helped to a better understanding of the processes ruling the water cycle, which is one of the main drivers of the climate variability. For the modern period, the use of AGCMs nudged with weather forecasts reanalyses is a powerful way to obtain model outputs under the same weather conditions than at the sampling time of the observations.

Here we present new isotopic simulations results from ECHAM6-wiso [1] nudged with the last reanalyses dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF), ERA5 [2], at different spatial resolutions over the period 1979-2018. Model results are evaluated against isotopic data compilations, including GNIP (Global Network of Isotopes in Precipitation [3]), speleothems [4], ice cores datasets and water vapor measurements. To quantify the impact of these reanalyses on our simulations, we also performed nudged simulations with the previous model version ECHAM5-wiso [5] by using ERA5 data and its predecessor ERA-Interim [6].

These new simulation products could be a useful contribution to the isotopic data community for the interpretation of their water isotope records and for the exploration of the mechanisms controlling the variability of the surrounding water isotopic composition.

 

[1] Cauquoin et al., Clim. Past, 15, 1913–1937, https://doi.org/10.5194/cp-15-1913-2019, 2019.

[2] Copernicus Climate Change Service (C3S), 2017.

[3] IAEA, the GNIP Database, available at: https://nucleus.iaea.org/wiser.

[4] Comas-Bru et al., Clim. Past, 15, 1557–1579, https://doi.org/10.5194/cp-15-1557-2019, 2019.

[5] Werner et al., Geosci. Model Dev., 9, 647–670, https://doi.org/10.5194/gmd-9-647-2016, 2016.

[6] Dee et al., Q. J. R. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.

How to cite: Cauquoin, A. and Werner, M.: High-resolution isotopic simulations from ECHAM6-wiso nudged with ERA5 reanalyses: new products for isotopic model-data comparisons, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12319, https://doi.org/10.5194/egusphere-egu2020-12319, 2020.

EGU2020-12420 | Displays | CL1.4

Investigation of the response of water isotope records to the changes in orbital forcing with the isotope-enabled AGCM MIROC5-iso

Kanon Kino, Atsushi Okazaki, Alexandre Cauquoin, and Kei Yosnimura

It has been well demonstrated that the variations of orbital parameters, known as Milankovitch theory, are one of the most important drivers of the Earth’s climate system. However, the way how the changes in orbital forcing imprint the glacial-interglacial cycles recorded in paleo-proxies, such as stable water isotopes in ice cores and speleothems, is still unclear. One way to progress in this question is to make direct comparisons of isotopic data with simulation results from isotope-enabled General Circulation Models (GCMs). We use here such a model, the Japanese atmospheric GCM MIROC5-iso[1], to perform simulations under different idealized paleoclimate conditions. For that, corresponding orbital parameters and greenhouse gases concentrations are set. Prescribed sea surface temperature and sea ice coverage boundary conditions from the fully coupled atmosphere-ocean GCM MIROC (MIROC-AOGCM) experiments are used, after an adaptation to the MIROC5-iso grid. Because earlier version of MIROC-AOGCM has been widely used for paleoclimate modeling purposes, the climatological mean states of MIROC5-iso under preindustrial conditions are evaluated against simulation results from different versions of MIROC-AOGCM (MIROC4m, which is a slightly updated version of MIROC3.2(med), and MIROC5 [2]). In addition, several interglacial periods and idealized paleoclimate experiments will be investigated and implications for the interpretation of water isotope response to the changes in orbital forcing will be discussed.

[1] Okazaki and Yoshimura, J. Geophys. Res. Atmos, 124, 8972–8993, 2019.

[2] Watanabe et al., J. Climate, 23, 6312–6335, 2010.

How to cite: Kino, K., Okazaki, A., Cauquoin, A., and Yosnimura, K.: Investigation of the response of water isotope records to the changes in orbital forcing with the isotope-enabled AGCM MIROC5-iso, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12420, https://doi.org/10.5194/egusphere-egu2020-12420, 2020.

The hydrological response to radiative forcing is less understood than the thermal one: many climate models have difficulties in simulating seasonal rainfall and its variability. Indeed, future precipitation projections are much more uncertain than those of temperature. However, confident projections of precipitation are of crucial importance, particularly for highly populated regions where agriculture strongly relies on seasonal rainfall, such as South and Central Asia.

Instrumental data from Eurasia show a negative correlation between temperature and precipitation on short timescales (10-3 to 100 years). However, on longer timescales (101 to 103 years), proxy data covering the Holocene show a positive correlation between temperature and precipitation. Climate models in contrast simulate a negative correlation on all timescales. To extend previous estimates to longer time scales, we focus on the last Glacial period, characterized by colder temperature than the Holocene as well as pronounced millennial-scale climate fluctuations in the Northern Hemisphere.

We reconstruct temperature and precipitation from four high resolution pollen records at mid-latitudes in the Northern Hemisphere. The estimates are compared with climate simulations. The chosen proxy sites cover the East and West coasts of both the Eurasian and North American continent. We employ four different statistical reconstruction methods to assess validity and biases of each method. The differences between reconstructed and simulated temperature-precipitation relationships as well as the zonal structure of orbital- and millennial-scale variations are examined. In particular, we explore the thermodynamic and dynamic contributions to the inferred relationships between temperature and precipitation.

How to cite: Sommani, A., Weitzel, N., and Rehfeld, K.: Northern Hemisphere temperature to precipitation relationships during the last Glacial from pollen records and climate simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7293, https://doi.org/10.5194/egusphere-egu2020-7293, 2020.

The project PalMod II is the second phase of Germany’s national paleoclimate modelling initiative (www.palmod.de) whose aim is to model the transient climate evolution from the last interglacial to the anthropocene with state of the art earth system models. The second phase more precisely wants to perform simulations for the last glacial inception, the marine isotope stage 3, and the last deglaciation. It further plans to compile paleo-observational proxy data over the full glacial cycle from about 130,000 years before present until today. Models of differing complexity (fully-coupled earth system models and models of intermediate complexity) will be used to assess the scientific questions posed in PalMod II. Model output will be combined with the compiled paleo-proxy data for validation purposes. The sheer data amount in excess of several petabytes and different data handling practices of the participating communities require dedicated management of the data workflow both in- and outside of the immediate PalMod community.

The PalMod II data management takes place in close collaboration between data management specialists and the scientists. The objectives include the standardisation of each simulation and proxy dataset, the facilitation of data sharing and data reuse between work packages, the access channels for external collaborators, and the long-term preservation of the data. The data management follows the concept of the "Active Data Management Plan", which foresees a continuous development of the data management plan (DMP), starting with an initial basic version. The DMP covers the entire life cycle of the research data generated in the project, from generation and analysis to data publication and archiving. This includes aspects such as data formats, metadata standards and data usage licenses. Ownership and responsibilities for simulation and paleo data sets as well as the input data during and after the end of the project will also be considered.

This contribution will present the initial DMP for PalMod II. It will describe the amount of data produced in the project, highlight how the above mentioned aspects will be dealt with, and present how the project aims to ensure the Findability, Accessibility, Interoperability, and Reusability, i.e. the FAIR data principles, of simulation output, post-processed model data, and paleo-proxy data from PalMod II.

* This contribution presents results of the full PalMod II initiative, the authors present them on behalf of the initiative.

How to cite: Bothe, O. and Peters, K.: The initial Data Management Plan for PalMod II - FAIR simulation and paleo data from the Last Interglacial to the Anthropocene, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13189, https://doi.org/10.5194/egusphere-egu2020-13189, 2020.

CL1.8 – Orbital forcing and internal climate feedbacks in climate transitions of the last 5 million years

EGU2020-17480 | Displays | CL1.8

Ocean carbon storage and release over a glacial cycle

James Rae, Alan Foreman, Jessica Crumpton-Banks, Andrea Burke, Christopher Charles, and Jess Adkins

Perhaps the most important feedback to orbital climate change is CO2 storage in the deep ocean.  By regulating atmospheric CO2, ocean carbon storage synchronizes glacial climate in both hemispheres, and drives the full magnitude of glacial-interglacial climate change.  However few data exist that directly track the deep ocean’s carbon chemistry over a glacial cycle.  Here, we present geochemical reconstructions of deep ocean circulation, redox, and carbon chemistry from sediment cores making up a detailed depth profile in the South Atlantic, alongside a record of Southern Ocean surface water CO2, spanning the last glacial cycle.  These data indicate that initial glacial CO2 drawdown is associated with a major increase in surface ocean pH in the Antarctic Zone of the Southern Ocean, cooling at depth, enhanced deep ocean stratification, and carbon storage.  Deep ocean carbon storage and deep stratification are further enhanced when CO2 falls at the onset of Marine Isotope Stage 4, and are also pronounced during the LGM, illustrating a link between orbital scale climate stages and deep ocean carbon.  However our data also illustrate non-linear feedbacks to orbital forcing during glacial terminations, which show abrupt decreases in pH in Southern Ocean surface and subsurface waters, as CO2 is rapidly expelled from the deep ocean at the end of the last ice age.

How to cite: Rae, J., Foreman, A., Crumpton-Banks, J., Burke, A., Charles, C., and Adkins, J.: Ocean carbon storage and release over a glacial cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17480, https://doi.org/10.5194/egusphere-egu2020-17480, 2020.

EGU2020-6778 | Displays | CL1.8 | Highlight

Millennial-scale variability in Antarctic Circumpolar Current and its impacts during the last glacial cycle

Shuzhuang Wu, Frank Lamy, Gerhard Kuhn, Lester Lembke-Jene, Xu Zhang, Christian Haas, Nortbert Nowaczyk, Helge W. Arz, and Ralf Tiedemann

The Antarctic Circumpolar Current (ACC) is the largest current system in the world, linking the Pacific, Atlantic and Indian Ocean basins. However, the variability of the ACC, which plays a fundamental role on global ocean circulation and climate variability, is still poorly constrained. This information is crucial for understanding the role of the ACC on global ocean circulation in response to global warming. Here, we reconstruct changes in the ACC over the past 155,000 years based on sediment grain size variations recorded in a highly-resolved marine sedimentary record from the central Drake Passage near the Polar Front. Our results show significant changes in the ACC during the last glacial cycle and a remarkable boundary between the glacial and interglacial periods. Substantial decreases (~33% to ~47%) in the ACC flow speed from interglacial to glacial period, which corroborates and extends results of previous studies along the subantarctic northern limit of the ACC into the central Drake Passage. This strong variation of ACC likely plays a significant role in regulating Pacific-Atlantic water mass exchange via the “cold water route” and could significantly affect the Atlantic Meridional Overturning Circulation. Superimposed on these glacial-interglacial changes, we found strong millennial-scale variations in ACC current speed, increasing in amplitude close to full glacial conditions. We hypothesise that the central ACC increases its sensitivity to Southern Hemisphere millennial-scale climates oscillations, likely associated with westerlies’ wind stress and Antarctic sea ice extent once glacial conditions fully formed.

How to cite: Wu, S., Lamy, F., Kuhn, G., Lembke-Jene, L., Zhang, X., Haas, C., Nowaczyk, N., W. Arz, H., and Tiedemann, R.: Millennial-scale variability in Antarctic Circumpolar Current and its impacts during the last glacial cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6778, https://doi.org/10.5194/egusphere-egu2020-6778, 2020.

EGU2020-9828 | Displays | CL1.8

The Role of Changing Indian Ocean Salinity in shaping Pleistocene Climate

Sophie Nuber, James W. B. Rae, Morten B. Andersen, Bas de Boer, Xu Zhang, Ian R. Hall, and Stephen Barker

Indian Ocean surface salinity dynamics are thought to play an important role in shaping glacial-interglacial climate through controlling Agulhas leakage efficiency. It is proposed that a strong Agulhas leakage supplies warm and salty Indian ocean surface waters to Atlantic surface currents influencing convective potential at North Atlantic deep-water formation sites. Here, we present new planktonic foraminiferal Mg/Ca and stable isotope-derived salinity reconstructions for the last 1.2Ma from the northern Mozambique channel. We find salinity increases well before terminations, followed by early decrease before glacial inception. We present a possible link between the hydrography in the northern Mozambique channel and whole ocean salinity changes due to unique surface circulation in the Indian ocean. Despite being a mostly tropical and subtropical ocean, salinity in the modern tropical Indian Ocean is fresher than at comparable latitudes in the Atlantic or Pacific. This is due to the inflow of freshwater from the Indonesian throughflow and recycling via an active Agulhas leakage. We show that salinity in the glacial western Indian Ocean was significantly higher due to a reduced ITF and a weaker Agulhas leakage. We hypothesise that opening and closing of these two gateways influences the development/diminishment of a strong subtropical Indian Ocean gyre which controls sea surface salinity and temperature of tropical Indian Ocean water masses and subsequently the efficiency of the Agulhas Leakage.

How to cite: Nuber, S., Rae, J. W. B., Andersen, M. B., de Boer, B., Zhang, X., Hall, I. R., and Barker, S.: The Role of Changing Indian Ocean Salinity in shaping Pleistocene Climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9828, https://doi.org/10.5194/egusphere-egu2020-9828, 2020.

EGU2020-10495 | Displays | CL1.8 | Highlight

The Evolution of Subantarctic Fronts, Deep Ocean Ventilation and Flow Vigour at the Agulhas Plateau: Surface-Deep Coupling Across Climate Transitions of the past 3 Ma

Aidan Starr, Ian R. Hall, Stephen Barker, Jeroen van der Lubbe, Sidney R. Hemming, Francisco J. Jimenez-Espejo, and Nambiyathodi Lathika

The geometry of large-scale deep ocean circulation is closely linked to processes occurring in the Southern Ocean (SO). The SO is the ‘window’ through which much of the world’s ocean interior interacts with the atmosphere, and understanding the complex relationships coupling SO dynamics to deep circulation can provide valuable insights into biogeochemical and physical processes important to global climate. Of particular interest is how these processes interacted with, and behaved under different climate states, such as the glacial-interglacial cycles of the Pleistocene (0-2.8 Ma), and the intensification of Northern Hemisphere glaciation during the transition from the warm Mid-Pliocene (3.3-3.1 Ma) to the early Pleistocene. Here, we utilise new composite sediment core records (41oS, 25oE, 2700-2900 m water depth) to reconstruct deep chemical and physical ventilation at the Agulhas Plateau, as well as the competing presence of warm Subtropical waters vs cold Subantarctic waters in the surface, over the past ~3 Ma. We present records of the ‘sortable silt’ flow speed proxy, the stable isotope (δ18O, δ13C) composition of benthic foraminifera, bulk sediment element concentrations, and the accumulation of ice-rafted debris (IRD). The sortable silt proxy demonstrates that deep physical ventilation is largely decoupled from deep chemical ventilation as indicated by benthic δ13C, with higher flow speeds coincident with more depleted δ13C. Furthermore, deep ventilation is related to changes in the terrigenous sediment composition: deep flow speeds and δ13C vary concurrently with bulk sediment geochemistry (K/Al, Ti). At the Agulhas Plateau, we interpret deep chemical ventilation and near-bottom flow speeds to reflect changes in the advection of northern-sourced deep waters (e.g. North Atlantic Deep Water and its glacial equivalent) and meridional variability in the location of the deep-reaching Antarctic Circumpolar Current (ACC) and its associated fronts. The presence of IRD at the Agulhas Plateau is controlled primarily by the equatorward survivability far-travelling Antarctic icebergs, and therefore represents the relative presence of cold, iceberg-bearing Subantarctic Zone (SAZ) surface waters. Generally, at times of high near-bottom flow speed and more ‘southern’ terrigenous sediment composition, IRD is higher, implying a meridional expansion of the SAZ. Together, these proxy records provide a continuous and long-term insight into the evolution of coupled surface-deep conditions at the Agulhas Plateau. We postulate that these conditions may reflect the wider geometry of ocean circulation in the SO, documenting the interactions between the ACC and circum-Antarctic fronts with the upwelling, conversion, and export of deep water masses. Our records represent the first multi-proxy reconstruction of this system across climate transitions of the past ~3 Ma, allowing us to explore its evolution across a range of timescales, from million-year to orbital-scale. Furthermore, by measuring multiple proxies on the same samples, we are able to determine the relative phasing between different processes independent of chronostratigraphic uncertainties, for example the timing of SAZ changes vs perturbations in deep ocean circulation at the site.   

How to cite: Starr, A., Hall, I. R., Barker, S., van der Lubbe, J., Hemming, S. R., Jimenez-Espejo, F. J., and Lathika, N.: The Evolution of Subantarctic Fronts, Deep Ocean Ventilation and Flow Vigour at the Agulhas Plateau: Surface-Deep Coupling Across Climate Transitions of the past 3 Ma, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10495, https://doi.org/10.5194/egusphere-egu2020-10495, 2020.

EGU2020-18340 | Displays | CL1.8

Glacial-to-interglacial variations in the deep water at the Bermuda Rise inferred from a Nd isotope record covering the last million years

Maria Jaume-Seguí, Joohee Kim, Karla P. Knudson, Maayan Yehudai, Steven L. Goldstein, Louise Bolge, Patrizia Ferretti, and Leopoldo D. Pena

The formation of North Atlantic Deep Water (NADW) in the North Atlantic is an important modulator of the climate system, as it drives the global termohaline circulation, responsible for the distribution of heat, salts and nutrients across the oceans. ODP Site 1063 (4584 m), on the deep Bermuda Rise, is located in the mixing zone between NADW and Antarctic Bottom Water (AABW) and appears to be a good location to study how ocean circulation and climate interconnect. Here we present a new record based on Nd isotope ratios that covers ~1 Ma at that Site. Our data shows Nd isotope ratios during parts of interglacials that are much lower than present day NADW. These results are coherent with recent published studies on the last interglacial–glacial cycle that show that the deep North Atlantic Nd isotope ratios are also lower than NADW during the early interglacial. However, Nd isotope values from the shallower DSDP Site 607 (3427 m), within the core of NADW, have remained similar to modern NADW during interglacials over the same time interval. Site 607 is thought to represent the deep North Atlantic, as shown by an Atlantic meriodional transect that displays Nd isotopes ratios for glacial and interglacial maxima over the last ~1 Ma. We suggest that Nd isotope ratios at Site 1063 do not fully represent the North Atlantic endmember of the AMOC during interglacials, but regional or local processes. However, glacial values at Site 1063 fitting those of Site 607 suggest that Nd isotope ratios represent, indeed, water mass mixing during glacial periods. The low Nd-isotope ratios in the deep Bermuda Rise during interglacials would be the result of particle-seawater exchange derived from the arrival of freshly ground, poorly weathered bedrock from the Canadian shield to the North Atlantic during major ice sheet retreats, such as deglaciations as well as stadial-to-interstadial transitions. Consequently, a deep, regionally constrained layer of seawater is tagged with this extreme Nd isotope signature that is not representative of the AMOC. We suggest that a benthic nepheloid layer, whose development is driven by a deep-recirculating gyre system regulated by the interaction between the northward flowing Gulf Stream and the southward flowing deep western boundary current, facilitates the periodical masking of the deep Atlantic Nd isotope signature at Site 1063. The intermittence of the masking allows for a speculation on how the deep-recirculating gyre system might have changed over the last ~1 Ma glacial-to-interglacial cycles.

How to cite: Jaume-Seguí, M., Kim, J., Knudson, K. P., Yehudai, M., Goldstein, S. L., Bolge, L., Ferretti, P., and Pena, L. D.: Glacial-to-interglacial variations in the deep water at the Bermuda Rise inferred from a Nd isotope record covering the last million years , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18340, https://doi.org/10.5194/egusphere-egu2020-18340, 2020.

EGU2020-5427 | Displays | CL1.8 | Highlight

Exploring the nature and timing of glacial climate transitions

Henning Bauch

The causes for major climate transitions in the Upper Pleistocene are based on the assumption that orbital forcing, i.e. the increase in northern hemisphere summer insolation (NHSI), initiates glacial ice sheets to melt away leading to the formation of warm interglacials. Good examples are plentiful available, e.g. major glacial terminations (T) such as T1, 2, or 5. Besides these major climate transitions there are also other glacial terminations across marine substage boundaries that, although seemingly of minor scale, had nevertheless massive climate impacts either globally (MIS4/3, MIS7d/7c) or regionally (MIS5b/5a). While an interglacial decrease in NHSI seems to run in parallel with early glacial inception - as can be noted for the later Holocene and MIS5e - the onset of T2 vs. T1 has long been controversially discussed with respect to its orbitally forced timing. This study therefore explores the involvement of other mechanisms. Primarily, these have to do not so much with internally produced feedback processes but are the consequence of temperature changes to be found in the low-latitudes. Transferred northward through the atmosphere and ocean these changes then feed ice sheet growth and determine its geographical configuration of different magnitudes, also eventually leading to a glacial maximum. During the past, climate transitions from a glacial into an interglacial world therefore did not start with the end of a glacial maximum. It is the time just prior to that particular maximum when the major change occurred.

How to cite: Bauch, H.: Exploring the nature and timing of glacial climate transitions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5427, https://doi.org/10.5194/egusphere-egu2020-5427, 2020.

From the combination of orbital theory with benthic δ18O it has been suggested which obliquity cycles led to interglacials during the Quaternary (e.g. Tzedakis et al., 2017). Here, we define interglacials, as deduced for the last 800 kyr (Past Interglacials Working Group of PAGES, 2016), by the absence of substantial northern hemispheric land ice outside of Greenland. When applied to land-ice distribution derived from a 3D-ice-sheet model-based deconvolution of the LR04-benthic δ18O stack into its temperature and sea-level components (de Boer et al., 2014) we find an irregular pattern of interglacials not only, as suggested so far, in the late Pleistocene but across most of the last 2.6 Myr. In the early Pleistocene eight obliquity cycles miss the onset of new interglacials, therefore increasing the average interglacial periodicity to 60 kyr. Both prolonged glacials (due to skipped terminations) and prolonged interglacials (so-called continued interglacials) are the reasons for these new irregularities. This finding adds new irregularities to the already known glacial/interglacial pattern during the last 1 Myr that include eleven obliquity cycles without new interglacials. Only in the Mid-Pleistocene in-between interglacials reappear regularly once in each obliquity cycle (every 41 kyr) with an exception around 1.1 Myr BP in which the onset of two successing interglacials is more than 100 kyr apart. This finding suggests that the notation of the Quaternary as an obliquity driven period with a growing influence of ice volume on the timing of deglaciations is too simple, or that our definition of interglacials, that seems to be suitable for the last 1.6 Myr, is not applicable to the whole Quaternary.

References:

de Boer, B., Lourens, L. J. & van de Wal, R. S. Persistent 400,000-year variability of Antarctic ice volume and the carbon cycle is revealed throughout the Plio-Pleistocene. Nature Communications 5, 2999 (2014). doi: 10.1038/ncomms3999.

Past Interglacials Working Group of PAGES. Interglacials of the last 800,000 years. Reviews of Geophysics 54, 162–219 (2016). doi: 10.1002/2015RG000482.

Tzedakis, P. C., Crucifix, M., Mitsui, T. & Wolff, E. W. A simple rule to determine which insolation cycles lead to interglacials. Nature 542, 427–432 (2017). doi: 10.1038/nature21364.

How to cite: Köhler, P. and van de Wal, R.: Land ice distribution suggests an irregular pattern of interglacials across most of the Quaternary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1340, https://doi.org/10.5194/egusphere-egu2020-1340, 2020.

EGU2020-9574 | Displays | CL1.8

The role of eccentricity in determining the spacing between interglacials

Eric Wolff, Michel Crucifix, and Chronis Tzedakis

In a recent paper Tzedakis et al (2017) described a simple rule that predicts, using only caloric summer half-year insolation as input, which insolation cycles lead to the onset of an interglacial. The rule is based on an energy threshold, one of whose characteristics is that it reduces with time since the last interglacial onset, reflecting increased fragility of glacial climate as ice sheets get larger. The rule correctly predicts every complete deglaciation of the past million years, a period in which interglacial onset skips both precession and obliquity cycle maxima. This then raises the question to what extent the approximate 100 ka period observed in the last million years is due simply to internal dynamics rather than to the period of eccentricity present in the insolation record. Here we will test this by creating synthetic insolation curves from which eccentricity (or other orbital components) have been removed.  We will then use the proposed rule to test to what extent eccentricity influences the spacing of interglacials. We will also assess the impact of other orbital components and the impact earlier in the Quaternary when the energy threshold was lower.

How to cite: Wolff, E., Crucifix, M., and Tzedakis, C.: The role of eccentricity in determining the spacing between interglacials, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9574, https://doi.org/10.5194/egusphere-egu2020-9574, 2020.

EGU2020-4227 | Displays | CL1.8 | Highlight

Glacial Termination: Going, Going, Gone

Gregor Knorr and Stephen Barker

Within the Late Pleistocene, a ‘termination’ is the name given to the rapid (~10kyr) deglacial transition marking the end of a (~100kyr) glacial cycle. These massive events involve all the critical elements of Earth’s climate system: global temperatures, precipitation patterns, ice sheet extent, ocean and atmospheric circulation systems, atmospheric composition and biological activity. Investigations into the mechanisms of glacial termination have been many and it is now thought that abrupt shifts in the ocean/atmosphere system play a ubiquitous and critical role in deglaciation. However, significant uncertainties remain concerning the timing and magnitude of deglacial changes and the likelihood that they will be interrupted by ‘terminal oscillations’ such as the Bølling-Allerød / Younger Dryas oscillation during Termination 1. In this presentation we will address these uncertainties in the light of recent developments in the understanding of glacial terminations as the ultimate expression of the interaction between millennial and orbital timescale variations in Earth’s climate. Innovations in numerical climate simulation and new geologic records that enable us to test these simulations allow us to highlight new avenues of research as well as to emphasise the importance of lingering uncertainties in key climatic parameters such as sea level variability through time.

How to cite: Knorr, G. and Barker, S.: Glacial Termination: Going, Going, Gone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4227, https://doi.org/10.5194/egusphere-egu2020-4227, 2020.

EGU2020-12928 | Displays | CL1.8 | Highlight

Reconstructions of Global and Regional Temperature Change for the Last 5 Myr

Peter U. Clark, Jeremy Shakun, Yair Rosenthal, Patrick Bartlein, Peter Koehler, and Hari Mix

We use a global array of ~120 sea-surface temperature (SST) records based on Mg/Ca, alkenone, and faunal proxies to reconstruct global and regional temperature change over the last 5 Myr. All records are placed on the LR04 age model. Here we report the reconstructions and discuss their implications for characterizing global climate evolution (frequency, variance, transitions) over this interval and its relationship to changes in CO2, orbital forcing, and mean ocean temperature. Average global temperature has cooled by ~6.5oC since 5 Ma, with significant breakpoints tentatively identified at ~3.38 Ma, 1.34 Ma, and 0.88 Ma. We also invert the global reconstruction to reconstruct global sea level for the last 5 Myr.

How to cite: Clark, P. U., Shakun, J., Rosenthal, Y., Bartlein, P., Koehler, P., and Mix, H.: Reconstructions of Global and Regional Temperature Change for the Last 5 Myr, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12928, https://doi.org/10.5194/egusphere-egu2020-12928, 2020.

EGU2020-8762 | Displays | CL1.8

Reconstructing the evolution of ice sheets, sea level and atmospheric CO2 during the past 3.6 million years

Tijn Berends, Bas de Boer, and Roderik van de Wal

Understanding the evolution of, and the interactions between, ice sheets and the global climate over geological time is important for being able to constrain earth system sensitivity. However, direct observational evidence of past CO2 concentrations only exists for the past 800,000 years. Records of benthic d18O date back millions of years, but contain signals from both land ice volume and ocean temperature. In recent years, inverse forward modelling has been developed as a method to disentangle these two signals, resulting in mutually consistent reconstructions of ice volume, temperature and CO2. We use this approach to force a hybrid ice-sheet – climate model with a benthic d18O stack, reconstructing the evolution of the ice sheets, global mean sea-level and atmospheric CO2 during the late Pliocene and the Pleistocene, from 3.6 Myr ago to the present day. The resulting reconstructions of CO2 and sea level agree well with the ice core record and different sea-level proxies, indicating that this model set-up yields useful information for colder-than-present climates. For the warmer-than-present climates of the Late Pliocene, different proxies for both CO2 and sea level are contradictory, making model validation difficult. During the early Pleistocene, 2.6 – 1.2 Myr ago, we simulate 40 kyr glacial cycles with CO2 ranging between 270 – 280 ppmv during interglacials and 210 – 240 ppmv during glacial maxima. After the Mid-Pleistocene Transition (MPT), when the glacial cycles change from 40 kyr to 80/120 kyr cyclicity, these values change to 260 to 280 ppmv during interglacials, and 180 – 200 ppmv during glacial maxima.

How to cite: Berends, T., de Boer, B., and van de Wal, R.: Reconstructing the evolution of ice sheets, sea level and atmospheric CO2 during the past 3.6 million years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8762, https://doi.org/10.5194/egusphere-egu2020-8762, 2020.

EGU2020-20914 | Displays | CL1.8

Simulations of large climate transition occurring at high and low latitudes during the late Pliocene (3.3 Ma) and the Plio/Pleistocene (3-2.5 Ma) boundary

Ning Tan, Emma Yule, Gilles Ramstein, Doris Barboni, Rani Raj, and Christophe Dumas

The late Pliocene corresponds to a large cooling over Northern Hemisphere associated with sporadic occurrences of glaciations. The most important event occurred during the marine isotope stage M2 (MIS M2, 3.312–3.264 Ma) when a large glaciation took place with a sea level drop from 20 to 60 m, but its duration is short and the summer insolation forcing change at 65°N is weak. De Schepper et al (2013) invoked to explain the onset and termination of this glaciation with the opening and closing of the Central American Seaway (shallow CAS). Based on their hypothesis, we have intensively studied the onset mechanism of  MIS M2 through a series of sensitivity experiments using the IPSL AOGCM and the asynchronous coupling with an Ice sheet model (GRISLI). Our results demonstrate that the shallow CAS helps to precondition the low-latitude oceanic circulation and affects the related northward energy transport, but cannot alone explain the onset of the M2 glaciation, the most important contribution on MIS M2 are from the large change of pCO2 as well as the internal feedbacks of vegetation and ice sheet. Moreover, we have also investigated the period from the late Pliocene to the early Pleistocene (3-2.5 Ma) through a transient-like simulation using the same AOGCM and ISM. This enables to simulate the Greenland Ice Sheet (GRIS) onset and development using the pCO2 reconstructions from different proxies. All these simulations were analyzed with emphasis on cryosphere and focused on the Northern Hemisphere (mid-to-high latitudes). Here we used the same modeling simulations but with a focus over the tropical Africa. We first depict the large changes of temperatures and hydrological cycle produced over this area during these two periods and compare our data to reconstructions. Moreover, by prescribing our climate results as inputs for the vegetation model (Biome4), we compare more directly the simulated plant functional types (PFTs) with that constructed by the pollen data. In addition, we further quantify the respective impact of various driving factors on these PFTs variations.

How to cite: Tan, N., Yule, E., Ramstein, G., Barboni, D., Raj, R., and Dumas, C.: Simulations of large climate transition occurring at high and low latitudes during the late Pliocene (3.3 Ma) and the Plio/Pleistocene (3-2.5 Ma) boundary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20914, https://doi.org/10.5194/egusphere-egu2020-20914, 2020.

EGU2020-10925 | Displays | CL1.8 | Highlight

High resolution CO2 record of the great Plio-Pleistocene glaciations using boron isotopes

Rachel Brown, Thomas Chalk, Paul Wilson, Eelco Rohling, and Gavin Foster

The intensification of Northern Hemisphere glaciation (iNHG) at 3.4-2.5 million years ago (Ma) represents the last great transition in Cenozoic climate state with the development of large scale ice sheets in the Northern Hemisphere that waxed and waned with changes in insolation. Declining atmospheric CO2 levels are widely suggested to have been the main cause of iNHG but the CO2 proxy record is too poorly resolved to provide an adequate test of this hypothesis. The boron isotope-pH proxy, in particular, has shown promise when it comes to accurately estimating past CO2 concentrations and is very good at reconstructing relative changes in CO2 on orbital timescales. Here we present a new orbitally resolved record of atmospheric CO2 (1 sample per 3 kyr) change from Integrated Ocean Drilling Program Site 999 (12.74˚N, -78.74 ˚E) spanning ~2.6–2.4 Ma based on the boron isotope (δ11B) composition of planktic foraminiferal calcite, Globingerinoides ruber (senso stricto, white).  We find that δ11B values of G. ruber show clear glacial-interglacial cycles with a magnitude that is similar to those of the Mid-Pleistocene at the same site and elsewhere.  This new high-resolution view of CO2 during the first large glacial events of the Pleistocene confirms the importance of CO2 in amplifying orbital forcing of climate and offers new insights into the mechanistic drivers of natural CO2 change. 

How to cite: Brown, R., Chalk, T., Wilson, P., Rohling, E., and Foster, G.: High resolution CO2 record of the great Plio-Pleistocene glaciations using boron isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10925, https://doi.org/10.5194/egusphere-egu2020-10925, 2020.

EGU2020-14645 | Displays | CL1.8

Reconstruction of environmental and climatic change during the late Pliocene and early Pleistocene in northwestern North America based on a new drill core from paleo-Lake Idaho

Frederik Allstädt, Andreas Koutsodendris, Erwin Appel, Wolfgang Rösler, Alexander Prokopenko, Tammo Reichgelt, and Jörg Pross

The Pliocene to early Pleistocene yields a close analogy to near-future climate, with atmospheric pCO2 between pre-industrial and anthropogenically perturbed levels as they may be reached in few decades. A sedimentary archive that is well suited to study Plio-Pleistocene climate dynamics in the terrestrial realm has recently become available through the ICDP-sponsored HOTSPOT project on the evolution of the Snake River Plain (Idaho, USA). At the Mountain Home site, HOTSPOT drilling has yielded the MHAFB11 core that comprises 635 m of fine-grained lacustrine sediments (Shervais et al. 2013). Based on the yet available paleomagnetic age control, these sediments span from the late Pliocene to the early Pleistocene, which makes them the first archive in continental North America that covers this time interval at one site. Based on their geographic position, the sediments from paleo-Lake Idaho can contribute to a better understanding of climate variability across the Plio-Pleistocene transition in western North America, notably with respect to the hypothesis that enhanced moisture transport into the higher latitudes of North America from ~2.7 Ma onwards allowed the initiation of Northern Hemisphere glaciation (Haug et al., 2005).

To gain insight into the paleoclimatic evolution of northwestern North America during the late Pliocene to early Pleistocene, we have palynologically analyzed 131 samples from the 732–439 m depth interval (corresponding to an age of ~2.8 to ~2 Ma) of the MHAFB11 core. The obtained palynological dataset, which has a mean temporal resolution of ~7 ka, documents that a Pinus-dominated coniferous forest biome prevailed in the catchment area of paleo-Lake Idaho throughout the study interval. However, percentages of pollen from conifer taxa decrease in the latest Pliocene before reaching consistently lower values in the early Pleistocene at ~2.4 Ma. In contrast, pollen taxa representing an open vegetation (e.g., Artemisia, Asteraceae) and deciduous trees (e.g., Quercus, Betula and Alnus) become increasingly abundant in the early Pleistocene (at ~2.4 Ma). We interpret this vegetation shift to an open mixed conifer/deciduous forest to be caused by wetter climate conditions. This interpretation is supported by quantitative climate estimates, which show a gradual increase in mean annual precipitation in the early Pleistocene. This trend towards wetter conditions supports the notion that enhanced moisture transport to northern North America from the subarctic Pacific Ocean contributed to the onset of Northern Hemisphere glaciation at ~2.7 Ma (Haug et al., 2005).

 

References:

Haug, G.H., Ganopolski, A., Sigman, D.M., Rosell-Mele, A., Swann, G.E., Tiedemann, R., Jaccard, S.L., Bollmann, J., Maslin, M.A., Leng, M.J. and Eglinton, G., 2005. North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature, 433, 821-825.

Shervais, J.W., Schmitt, D.R., Nielson, D., Evans, J.P., Christiansen, E.H., Morgan, L.A., Shanks, P. W.C., Prokopenko, A.A., Lachmar, T., Liberty, L.M., Blackwell, D.D., Glen, J.M., Champion, D., Potter, K.E., Kessler, J., 2013. First Results from HOTSPOT: The Snake River Plain Scientific Drilling Project, Idaho, U.S.A. Scientific Drilling, 3, 36-45.

 

How to cite: Allstädt, F., Koutsodendris, A., Appel, E., Rösler, W., Prokopenko, A., Reichgelt, T., and Pross, J.: Reconstruction of environmental and climatic change during the late Pliocene and early Pleistocene in northwestern North America based on a new drill core from paleo-Lake Idaho , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14645, https://doi.org/10.5194/egusphere-egu2020-14645, 2020.

EGU2020-9940 | Displays | CL1.8

A Simple Model for Glacial Cycles and Impact of fossil fuel CO2 emissions

Stefanie Talento and Andrey Ganopolski

We propose a simple physically-based model of the coupled evolution of Northern Hemisphere (NH) landmass ice-volume, atmospheric CO2 concentration and global mean temperature. The model only external forcings are the orbital forcing (maximum solar insolation at 65°N) and anthropogenic CO2 emissions. The model consist of a system of 3 coupled non-linear differential equations, representing physical mechanisms relevant for the evolution of the climate system in time-scales longer than thousands of years.

 

When forced by the orbital forcing only, the model is successful in reproducing the natural glacial-interglacial cycles of the last 800kyr, in agreement with paleorecords and simulations performed with the CLIMBER-2 Earth System Model of intermediate complexity. The model is successful in reproducing both the timing and amplitude of the glacial-interglacial variations, producing a correlation with paleodata of 0.75 in terms of NH ice-volume.

 

For the next million years, we analyse the model results under different scenarios: the natural scenario (in which only orbital forcing is applied) and scenarios in which various magnitudes of fossil fuel CO2 emissions are considered (in addition to the orbital forcing).

 

When anthropogenic emissions are included the model shows that even fairly low CO2 anthropogenic emissions (100 Pg or larger) are capable of affecting the next glacial inception, expected to occur in 120kyr from now, delaying large NH ice formation by 50kyr. Considering total carbon releases ranging between 1000 and 5000 Pg (a reasonable expectation of fossil fuel CO2 emissions to occur in the next few hundred years) the temporal evolution of the climate system could be significantly different from the natural progression. Emissions larger than 3000 Pg could have long-lasting effects, being natural conditions not resumed even after 1 Million years have passed. In addition, emissions larger than 4000 Pg prevent glacial cycles in the next half million years.

How to cite: Talento, S. and Ganopolski, A.: A Simple Model for Glacial Cycles and Impact of fossil fuel CO2 emissions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9940, https://doi.org/10.5194/egusphere-egu2020-9940, 2020.

EGU2020-11682 | Displays | CL1.8

Orbital CO2 cycles and the Mid-Pleistocene Transition

Thomas Chalk, Mathis Hain, Gavin Foster, Sophie Nuber, Eelco Rohling, Stephen Barker, Soraya Cherry, and Paul Wilson

Over the past 1.5 million years, Earth’s climate has shifted from a predominantly 41 thousand year (kyr) dominated climate cycle to one dominated by longer and larger glacial-interglacial cycles, known as the Mid-Pleistocene Transition (MPT). The MPT occurs over a period of several hundreds of thousands of years, with little change to Earth’s external orbital forcing, thus implicating internal climate feedbacks. Here we interrogate the current capacity, and future potential, of boron isotope records to provide high quality carbon cycle information for the Pleistocene. We also present a compilation of boron isotope-derived pH-CO2 records from low-latitude ocean drill cores which closely follow the evolution of atmospheric CO2 over the ice core interval but extend it to 1.5 million years ago with a resolution of up to ~1 sample per 3 kyr. This new, near continuous δ11B-derived CO2 record is compared against other independent CO2 data from blue-ice cores and records of ocean and climate change., This confirms there is a decline in mean CO2 across the MPT which manifests as a lengthening and deepening of glacial CO2, and highlights the distinct difference in the nature of CO2 cycles in the 41-kyr world.

 

How to cite: Chalk, T., Hain, M., Foster, G., Nuber, S., Rohling, E., Barker, S., Cherry, S., and Wilson, P.: Orbital CO2 cycles and the Mid-Pleistocene Transition, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11682, https://doi.org/10.5194/egusphere-egu2020-11682, 2020.

The Mid-Pleistocene Transition (MPT, ~1.3-0.7 Ma) is one of the most drastic climatic transition in the recent climatic history of our planet. During this transition, glacial-interglacial variability shifted from 41- to 100-ka cycles, without notable changes in the orbital forcing. Internal forcing mechanisms in Earth’s climate likely shifted the system towards particularly more extreme glacial periods. A decrease in the atmospheric CO₂ contemporary to a severe weakening of the Atlantic deep-ocean circulation around 900 ky suggests that weakened deep-ocean circulation facilitated the capture of CO₂ into the deep ocean and thus contributed to the switch towards more intense and longer glacial periods.

 

ODP Site 668B, in the deep eastern equatorial Atlantic, has been previously used to reconstruct the atmospheric CO₂ evolution across the MPT using boron isotopes in surface dwelling foraminifera. Here we present new high resolution proxies from the same site covering the last 2 Ma. In particular, benthic foraminifera stable isotopes and trace elements (B/Ca, Mg/Ca, Cd/Ca), as well as Nd isotope data (εNd) from Fe-Mn encrusted foraminifera shells. Using the newly improved chronology based on benthic foraminifera stable isotopes we show that our new εNd data covaries substantially with the atmospheric pCO₂ data and shows a glacial-interglacial variability through the entire record, with εNd values matching typical glacial-interglacial range values in the North-Atlantic basin (~-11 to ~-14). Between ~1 to 2 Ma, when the 41-ka-cycles were dominant, εNd data also covaries with carbonate ion saturation index (ΔCO₃²-) as derived from the new B/Ca data, Bottom Water Temperatures (BWT, Mg/Ca) and, with deep ocean nutrient content (phosphate derived from Cd/Ca). Results indicate a higher fraction of warmer, less corrosive and nutrient-poor northern-sourced waters (higher BWT, higher ΔCO32-, lower Cd/Ca, lower εNd) reaching the deep-equatorial Atlantic during interglacial periods compared to glacial periods. Interestingly, this covariation does not stand after ~0.9Ma. Even though εNd and BWT data suggest an increased contribution of southern-sourced waters to the site during glacial periods after 0.9Ma, as shown by a gradual decrease in glacial BWT (>1°C) and increasing glacial εNd values (~1ε units), both B/Ca and Cd/Ca show a distinctive low frequency variability superimposed to the glacial-interglacial variability. These oscillations can be interpreted as infiltrations and/or overflows of southern-sourced waters across the mid-ocean ridge into the SE Atlantic basin that do not completely follow glacial-interglacial periodicity. We propose that bathymetrical constrains exert a control on the chemistry of the deep waters in the deep eastern equatorial Atlantic with potential impacts on global climate. Partially isolated sub-basins such as the SE Atlantic could have effectively acted as carbon reservoirs over longer time scales than glacial-interglacial changes.

How to cite: Pena, L. D. and Jaume-Seguí, M.: Deep water mass geometry in the south east Atlantic across the Mid-Pleistocene Transition: bathimetric vs oceanographic controls , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13196, https://doi.org/10.5194/egusphere-egu2020-13196, 2020.

EGU2020-19225 | Displays | CL1.8

Are Cryosphere-Driven Feedbacks a Requisite for Abrupt Climate Events?

Dakota Holmes and Audrey Morley

Abrupt climate events are generally believed to be characteristic of glacial (intermediate-to-large cryosphere) climate states, requiring either sizeable ice-sheets or large freshwater pulses to act as triggers for abrupt climate changes to occur. Amplification occurs when these triggers bear upon the Atlantic Meridional Overturning Circulation (AMOC). However, the focus on glacial climate states in abrupt climate change research has led to an underrepresentation of research into interglacial periods. It thus remains unclear whether high-magnitude climate variability requires large cryosphere-driven feedbacks or whether it can also occur under low ice conditions. Here we present a high resolution analysis of surface and deep water components of the AMOC spanning the transition from Marine Isotope Stage (MIS) 19c to 19a to test if orbital boundary conditions similar to our current Holocene can accommodate abrupt climate events. Sediment core DSDP 610B (53°13.297N, 18°53.213W), located approximately 700-km west of Ireland, was specifically chosen due to its high sedimentation rate during interglacial periods, excellent core recovery over the Quaternary and its unique geographical location. Above the core site, the dominant oceanographic feature is the North Atlantic Current and at 2417-m water depth, 610B is influenced by Wyville Thomson Overflow Water flowing southwards. A multiproxy approach including paired grain size analysis, planktic foraminifer assemblage counts, and ice-rafted debris counts within the same samples allows us to resolve the timing between both surface and bottom components of the AMOC and their response to abrupt climate events during MIS-19 in the eastern subpolar gyre. This study is societally relevant as future freshwater inputs from a melting Greenland ice sheet may impact ocean circulation, potentially causing shifts in climate for many European countries.

How to cite: Holmes, D. and Morley, A.: Are Cryosphere-Driven Feedbacks a Requisite for Abrupt Climate Events?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19225, https://doi.org/10.5194/egusphere-egu2020-19225, 2020.

EGU2020-19780 | Displays | CL1.8 | Highlight

The role of obliquity forcing on the interglacial climate instabilities in the mid-latitudes of the North Atlantic

Teresa Rodrigues, Xu Zeng, Mária Padilha, Dulce Oliveira, Joan O. Grimalt, and Fátima Abrantes

Anthropogenic CO2 release into the atmosphere leads to temperature projections for 2100 only experienced on Earth since many million years. However, those periods are poorly known due to low temporal and spatial data and ill-defined climate forcings. However past warm periods (interglacials), occurring during the Quaternary, under variable boundary conditions (e.g. greenhouse gases concentration, sea level and ice sheets size, insolation and orbital forcing), can provide invaluable information on the dynamics and processes behind natural warm climates. Here we present records for the sea surface temperature based in Uk’37-SST at orbital and millennial-scale over the last 1.25 Ma, with special focus on the past interglacials of two SW Iberian margin sedimentary sequences recovered during IODP Expedition 339,  Sites U1385 (37°34.285′N, 10°7.562′W;  2589m) and U1391 (37°21.5322′N, 9°24.6558′W; 991m). We also performed a data-model comparison to explore the dynamics related with the role of obliquity on the Atlantic Meridional Overturning Circulation (AMOC) changes. Our data  show that Interglacials are characterized by an interval of maximum warmth followed by a temperature decline punctuated by millennial-scale SST oscillations. In most cases the first stadial marks the beginning of a glacial inception that is characterized by an abrupt SST decrease, followed by high frequency SST oscillations, and large amounts of freshwater input. This suggests a climatic change from interglacial to glacial conditions linked to the start of ice sheets growth (enrichment of d18O) and the AMOC slowdown resulting in an enhanced cooling of the mid-latitudes.

How to cite: Rodrigues, T., Zeng, X., Padilha, M., Oliveira, D., O. Grimalt, J., and Abrantes, F.: The role of obliquity forcing on the interglacial climate instabilities in the mid-latitudes of the North Atlantic , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19780, https://doi.org/10.5194/egusphere-egu2020-19780, 2020.

EGU2020-21063 | Displays | CL1.8

Was the Atlantic a predominantly Polar Ocean during the last glacial?

Marleen Lausecker, Freya Hemsing, Thomas Krengel, Julius Förstel, Andrea Schröder-Ritzrau, Evan Border, Covadonga Orejas, Jürgen Titschack, Claudia Wienberg, Dierk Hebbeln, Anne-Marie Wefing, Paolo Montagna, Eric Douville, Lelia Matos, Jacek Raddatz, and Norbert Frank

The Last Glacial Maximum (LGM) is marked by significant cooling of the global ocean, which was recently estimated to 2.6°C using noble gases trapped in ice cores (1). This cooling is not equally distributed throughout the world oceans, since global ocean circulation models predict regional temperature anomalies during the LGM of up to 7°C (annually and zonally averaged) when compared to modern interior ocean temperature (2). The oceans deep interior thus became haline stratified (3) due to the drop in temperature to near freezing and the global increase in salinity from ice sheet growth. In contrast to a deepening of the modern thermocline as a result of anthropogenic global warming, cooling causes the thermocline to rise in the sub-tropics as more polar waters enter the mid-depth ocean.

Here we present glacial thermocline temperature reconstructions since the LGM based on the Li/Mg ratio in aragonite skeletons of precisely dated cold-water corals. Corals have been collected from 300-1000m water depths from sites in the northern and southern Atlantic (62°N to 25°S) and demonstrate synchronous 5 - 7°C glacial cooling, and a dramatic shoaling of the thermocline. Through the deglaciation the warming of the upper thermocline ocean occurs early in the southern hemisphere followed by fluctuating warming and thermocline deepening in the northern Hemisphere, which supports the oceanic climate seesaw proposed by Stocker and Johnson in 2003 (4). We thus propose dramatic changes in export of polar waters towards the Equator and augmented subsurface ocean stratification leading to a mostly polar Atlantic with a shallow permanent thermocline. This shoaling possibly increased the rate of nutrient recycling causing higher biological surface ocean activity and the cooling promoted carbon storage. During the glacial, we assume an atmospheric forcing, such as equatorward displacement of the Hadley circulation, to steer the glacial polar water advance as mid-depth boundary currents in the northern and southern hemisphere to effectively spread the cold water through the entire mid-depth Atlantic.

References:

  1. Bereiter et al.: Mean global ocean temperatures during the last glacial transition. Nature 553, 39-44 (2018).
  2. Ballarotta et al.: Last Glacial Maximum world ocean simulations at eddy-permitting and coarse resolutions: do eddies contribute to a better consistency between models and palaeoproxies?, Clim. Past 9, 2669-2686 (2013).
  3. Adkins et al.: The Salinity, Temperature, and d18O of the Glacial Deep Ocean. Science 298, 1769-1773 (2002).
  4. Stocker and Johnsen: A minimum thermodynamic model for the bipolar seesaw, Paleoceanography 18, 1087 (2003).

How to cite: Lausecker, M., Hemsing, F., Krengel, T., Förstel, J., Schröder-Ritzrau, A., Border, E., Orejas, C., Titschack, J., Wienberg, C., Hebbeln, D., Wefing, A.-M., Montagna, P., Douville, E., Matos, L., Raddatz, J., and Frank, N.: Was the Atlantic a predominantly Polar Ocean during the last glacial?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21063, https://doi.org/10.5194/egusphere-egu2020-21063, 2020.

EGU2020-2844 | Displays | CL1.8 | Highlight

Centennial-scale evolution of methane during the penultimate deglaciation

Loïc Schmidely, Lucas Silva, Christoph Nehrbass-Ahles, Juhyeong Han, Jinhwa Shin, Jochen Schmitt, Hubertus Fischer, and Thomas Stocker

Small air inclusions in ice cores represent a direct archive of past atmospheric compositions, allowing us to measure the concentration of the three most potent non-condensable Greenhouse Gases (GHG) CO2, CH4 and N2O as far back as 800,000 years before present (kyr BP). These records demonstrate that transitions from glacial to interglacial conditions are accompanied by a substantial net increase of CO2, CH4 and N2O in the atmosphere (Lüthi et al. 2008, Loulergue et al. 2008, Schilt et al. 2010). A sound understanding of the interplay between the reorganization of the climate system and the perturbation of GHG inventories during glacial terminations is partly limited by the temporal resolution of the records derived from ice cores. In fact, with the exception of the last deglaciation (23-9 kyr BP) centennial-scale GHG variability remained uncaptured for precedings glacial terminations.

In this work, we exploit the exceptionally long temporal coverage of the EPICA Dome C (EDC) ice core to reconstruct, for the first time, centennial-scale fluctuations of CH4 mole fractions from 145 to 125 kyr BP, encompassing the entire penultimate deglaciation (138-128 kyr BP). With a temporal resolution of ~100 years, our new record is now unveiling all climate-driven signals enclosed into the EDC ice core, exploiting the maximum resolution possible at Dome C (). This offers us the opportunity to study the timing and rates of change of CH4 in unprecedented details.

Preliminary analysis reveals that the deglacial CH4 rise is a superimposition of gradual millennial-scale increases (~0.01-0.02 ppb/year) and abrupt and partly intermittent centennial-scale events (~80-200 ppb in less than a millennium). We will investigate processes modulating the observed changes in the CH4 cycle, compare the structure of our record with the CH4 profile of the last deglaciation (Marcott, 2014) and contrast it with the EDC CO2 and N2O records over the penultimate glacial termination now available in similar resolution.

How to cite: Schmidely, L., Silva, L., Nehrbass-Ahles, C., Han, J., Shin, J., Schmitt, J., Fischer, H., and Stocker, T.: Centennial-scale evolution of methane during the penultimate deglaciation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2844, https://doi.org/10.5194/egusphere-egu2020-2844, 2020.

EGU2020-10253 | Displays | CL1.8

Primary productivity dynamics in the northeastern Bay of Bengal over the last 26,000 years

Xinquan Zhou, Stéphanie Duchamp-Alphonse, Masa Kageyama, Franck Bassinot, Luc Beaufort, and Christophe Colin

Paleo-records of primary productivity (PP) changes from the Arabian Sea (AS) have revealed the major influence of monsoon-wind intensity in controlling productivity variations at different timescales, through mixed-layer dynamics and upwelling activity. Much less is known, however, about past changes in paleo-PP in the Bay of Bengal (BoB).

       In the present study, we have reconstructed PP over the last 26,000 years from a sediment core located on the northeastern (NE-) BoB. Paleo-PP was estimated by a PP empirical equation using the relative abundance of Florisphaera profunda, a deep dwelling coccolithophore that develops in the lower euphotic zone. Our record does not reveal any obvious difference of PP between the Last Glacial Maximum (LGM) and the late Holocene, but strong oscillations characterize the deglaciation. Our NE-BoB record is anti-phased to PP records in the AS, and positively correlated to surface seawater salinity (SSS) changes reconstructed from the same core since the LGM. We propose that the strong correlation to salinity variations reflects the role of salinity-stratification related to monsoon precipitation on PP at both orbital- and millennial-scales. Outputs of a climatic transient simulation (TraCE-21) and runs obtained with the Earth System Model IPSL-CM5 support the above interpretation of a strong control of past PP variations by local hydrological changes in the NE-BoB. Our data also highlight the potential teleconnection of the Atlantic Meridional Overturning Circulation strength and Indian Monsoon intensity during the deglaciation.

How to cite: Zhou, X., Duchamp-Alphonse, S., Kageyama, M., Bassinot, F., Beaufort, L., and Colin, C.: Primary productivity dynamics in the northeastern Bay of Bengal over the last 26,000 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10253, https://doi.org/10.5194/egusphere-egu2020-10253, 2020.

EGU2020-17440 | Displays | CL1.8

Millennial-scale oceanic CO2 release during marine isotope stage 3

Rachael Shuttleworth, Helen Bostock, and Gavin Foster

During the last glacial period atmospheric CO2 and temperature in Antarctica varied together on millennial timescales, with CO2 abruptly increasing by 10-20 ppm in <1000 years in some cases. The exact causes of these rapid CO2 changes during a cold glacial climate remain unclear. Here we examine the role of ocean carbon storage and atmospheric exchange by applying the boron isotope-pH (CO2) proxy to Globigerina bulloides from core site TAN110628 located in the Pacific Sector of the Southern Ocean.  By reconstructing the surface carbonate system at TAN110628 at high temporal resolution (1 sample every 1 kyr) from 30 to 64 kyr we are able to fully constrain the nature of carbon leakage from the Sub Antarctic Zone of the Southern Pacific Ocean associated with these millennial-scale changes in atmospheric CO2.  This provides unique insights into the causes of abrupt changes in atmospheric CO2 during Marine Isotope Stage 3 and the last termination. 

How to cite: Shuttleworth, R., Bostock, H., and Foster, G.: Millennial-scale oceanic CO2 release during marine isotope stage 3, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17440, https://doi.org/10.5194/egusphere-egu2020-17440, 2020.

EGU2020-20750 | Displays | CL1.8

Deep water circulation patterns in the Atlantic during MISs 12-11

Jasmin M. Link and Norbert Frank

Glacial Termination V is one of the most extreme glacial-interglacial transitions of the past 800 ka [1]. However, the changes in orbital forcing from Marine Isotope Stage (MIS) 12 to 11 are comparatively weak. In addition, MIS 11c is exceptionally distinct compared to other interglacials with for example a longer duration [2] and a higher-than-present sea level [3] despite a relative low incoming insolation. Therefore, the term “MIS 11 paradox” was coined [4]. However, only little is known about the Atlantic overturning circulation during this time interval [e.g. 5,6].

Here, we present Atlantic-wide deep water circulation patterns spanning the glacial maximum of MIS 12, Termination V, and MIS 11. Therefore, sediment cores throughout the Atlantic were analyzed regarding their Nd isotopic composition of authigenic coatings to reconstruct the provenance of the prevailing bottom water masses.

During the glacial maximum of MIS 12, the deep Atlantic Ocean was bathed with a higher amount of southern sourced water compared to the following interglacial. Termination V is represented by a sharp transition in the high-accumulating sites from the North Atlantic with a switch to northern sourced water masses. MIS 11 is characterized through an active deep water formation in the North Atlantic with active overflows from the Nordic Seas, only disrupted by a short deterioration. A strong export of northern sourced water masses to the South Atlantic points to an overall strong overturning circulation.

 

[1] Lang and Wolff 2011, Climate of the Past 7: 361-380.

[2] Candy et al. 2014, Earth-Science Reviews 128: 18-51.

[3] Dutton et al. 2015, Science 349: aaa4019.

[4] Berger and Wefer 2003, Geophysical Monograph 137: 41-60.

[5] Dickson et al. 2009, Nature Geoscience 2: 428-433.

[6] Vázquez Riveiros et al. 2013, EPSL 371-372: 258-268.

How to cite: Link, J. M. and Frank, N.: Deep water circulation patterns in the Atlantic during MISs 12-11, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20750, https://doi.org/10.5194/egusphere-egu2020-20750, 2020.

Antarctic ice core and deep ocean sediment core records imply that the interglacial climate during Marine Isotope Stage 13 (MIS 13) was relatively cold, and ice sheets were likely larger than today. We model the MIS 13 climate with a coupled climate-ice sheet model AWI-ESM1.2-LR under different orbital configurations at 495, 506 and 517 kyr BP. Summer insolation at 65 °N at 495 kyr BP is similar to the preindustrial, but the lower greenhouse gas values lead to an ice sheet buildup relative to today. Boreal summer at perihelion at 506 kyr BP causes a warmer summer over Northern Hemisphere continents, inhibiting the development of Northern Hemisphere ice sheets. Lower obliquity induces cooling over the polar regions and is favorable for the ice sheet buildup. Aside from the polar regions, mountains with high elevation also have favorable conditions for ice sheet buildup. The Cordilleran Ice Sheet is more sensitive and has a faster response to boreal summer insolation change than the other large scale Northern Hemisphere ice sheets. This indicates that different ice sheets might have different development processes. In addition, ice sheets do not build up over northeastern North America and Eurasia in our simulations. In our final set of simulations, we address the multi-stability of the ice sheets which could be a reason for causing this phenomenon.

How to cite: Niu, L., Gierz, P., J. Gowan, E., and Lohmann, G.: The influence of orbital configurations on Northern Hemisphere ice sheet evolution during MIS 13 with a coupled climate-ice sheet model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9156, https://doi.org/10.5194/egusphere-egu2020-9156, 2020.

CL1.9 – Orbital forcing, tectonics and global climate change

EGU2020-158 | Displays | CL1.9 | Highlight

Astronomically paced climate changes during the demise of the penultimate icehouse

Qiang Fang and Huaichun Wu

Late Paleozoic deglaciation is the only deep-time analogue of an icehouse-to-greenhouse transition in a vegetated world, but the detailed processes of this climatic upheaval are still under debate due to the absence of higher precision and accuracy in global correlations. The astronomical calibration of sedimentary cycles (3–4 m) in a carbonate succession from Naqing in South China to the 405 kyr eccentricity cycle reveals short eccentricity (135 kyr and 96.1 kyr), main obliquity (31.6 kyr), and precession (21.5 kyr and 19.3 kyr) for the early Cisuralian (Early Permian). 405-kyr-eccentricity-forced teleconnections are established between Paleo-Tethyan deep-marine carbonate cyclicity and U-Pb zircon ages-calibrated cyclothems from Euramerica in the Pangean paleotropics, providing a refined chronostratigraphy for the Asselian and Sakmarian stages on global scale. Geological record indicates a (s4s3) − (g4g3) resonance likely transited into (s4s3) − 2(g4g3) resonance at ~296.8 Ma, which confirms the chaotic dynamical behaviour of the Solar System during the Cisuralian. The synchronized proxies from marine records (magnetic susceptibility, gamma ray, carbon and oxygen isotope) and terrestrial climate indicators (paleosols, evaporates and tillites) across continents and latitudes demonstrate that long-term glacial, glacioeustatic, and climatic events were in pace with eccentricity and obliquity modulation cycles superimposed on secular global warming, reinforcing solid linkage between climate changes at low and high latitudes regardless of the ice sheet volume. Quasi-periodic alignments of the maxima (minima) of eccentricity and obliquity amplitude decelerated (accelerated) the trajectory of the CO2-forced deglaciation. Intermittent nondeposition of the Cisuralian cyclothems on the North American Midcontinent correspond to the enhanced none-astronomical-related noise in the sedimentary record from South China, both of which were likely attributed to weaker or less apparent influence of astronomical forcing on the climate changes without an ice-sheet amplifier. Our study provides a better temporal resolution and understanding of the late Paleozoic deglaciation.

How to cite: Fang, Q. and Wu, H.: Astronomically paced climate changes during the demise of the penultimate icehouse, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-158, https://doi.org/10.5194/egusphere-egu2020-158, 2020.

EGU2020-5383 | Displays | CL1.9 | Highlight

Orbital pacing of large fluctuations in wildfire activity during the Pliensbachian

Teuntje Hollaar, Sarah Baker, Jean-Francois Deconinck, Luke Mander, Micha Ruhl, Stephen Hesselbo, and Claire Belcher

At present Earth’s climate is warming and the frequency of large wildfires appears to be increasing (Westerling and Bryant, 2008). Long term trends in climate and the effect on wildfire are understudied and examining the geological record can aid current understanding of natural variability of wildfire over longer time scales. The Early Jurassic is a period of overall global warmth, and therefore serves as a suitable modern-day analogue to understand changes in the Earth System. The Early Jurassic was characterized by major climatic and environmental perturbations which can be seen preserved at high resolution on orbital timescales. Recent research has indicated from Quaternary deposits that wildfires respond to orbital forcings (Daniau et al., 2013). This study tests whether wildfire activity corresponds to changes over Milankovitch timescales in the deep past.

        A high-resolution astrochronology exists for the Upper Pliensbachian in the Llanbedr (Mochras Farm) borehole (NW Wales). Ruhl et al. (2016) show that elemental concentration recorded by hand-held X-ray fluorescence (XRF), changes mainly at periodicities of ~21,000 year, ~100,000 year and ~400,000 year, and which can be related to visually described sedimentary bundles.

        We have quantified the abundance of fossil charcoal at a high resolution (10-15 cm) to test the hypothesis that these well-preserved climatic cycles influenced fire activity throughout this globally warm period. Our results suggest that variations in charcoal abundance are coupled to Milankovitch forcings over periods of ~21,000 and ~400,000 years. Supplementary to the charcoal record, a high-resolution clay minerology dataset has been generated, which indicates the presence of the 400ky cycle. Decreased hydrology on land, corresponds to increased charcoal production. We suggest that these changes in fire relate to changes in seasonality and monsoonal activity that drove changes in vegetation that are linked to variations in the orbital forcing.

How to cite: Hollaar, T., Baker, S., Deconinck, J.-F., Mander, L., Ruhl, M., Hesselbo, S., and Belcher, C.: Orbital pacing of large fluctuations in wildfire activity during the Pliensbachian, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5383, https://doi.org/10.5194/egusphere-egu2020-5383, 2020.

EGU2020-2209 | Displays | CL1.9

Pliocene ocean and climate dynamics in the eastern Indian Ocean and their implications for the global climate state.

David De Vleeschouwer, Angelina Füllberg, Rebecca Smith, Gerald Auer, Benjamin Petrick, Isla Castañeda, and Beth Christensen

The Indonesian Throughflow (ITF) operates as an important link in global thermohaline circulation and is often considered a modulator of global past climate changes, with effects as far as Africa or the Atlantic Ocean. Yet, to what extent ITF variability accounted for oceanographic change along the west Australian coast remains controversial. A tectonically reduced ITF has been invoked to explain the short, but intense Pliocene glaciation Marine Isotope Stage (MIS) M2 (3.3 Ma). The hypothesis hinges on a reduced equator-to-pole heat transfer in the Indian Ocean, in response to low connectivity with the Indo-Pacific warm pool. To clarify links between regional oceanographic change and global climate, we present a two-site multiproxy reconstruction from the Perth (U1459) and the Carnarvon (U1463) Basin. These sites provide the opportunity to unravel the Pliocene history of the Leeuwin Current (LC). We use the LC as a proxy for ITF connectivity, as the ITF is the source for the warm, low-salinity, nutrient-deficient LC. A U1459-U1463 comparison thus allows for investigating the possible relationship between mid-Pliocene glaciations and ITF heat flux. We show that the LC was active throughout the Pliocene, albeit with fluctuations in intensity and scope. We identify three main factors that controlled LC strength. First, a tectonic ITF reorganization caused an abrupt and permanent LC reduction at 3.7 Ma, coeval with the remarkably intense Pliocene glacial MIS Gi4. On shorter timescales, eustatic sea level and direct orbital forcing of wind patterns hampered or promoted the LC. At 3.3 Ma, LC intensity plunged in response to a eustatic ITF restriction. MIS M2 caused the latitudinal U1463–U1459 planktonic oxygen isotope gradient to steepen from 1.2 to 2.0‰ and the TEX86 sea surface temperatures gradient to increase from 3 to 6°C. Yet, comparison with Exmouth Plateau Site 763 shows that the LC did not shut down completely during MIS M2: The ITF heat flux dwindled but did not cease. Weakened ITF connectivity led to a significant drop in Indian Ocean poleward heat transport and thus constitutes a positive feedback mechanism that contributed to the relative intensity of MIS M2 and the thermal isolation of Antarctica. This positive feedback mechanism is ultimately driven by orbital-scale changes in relative sea level in the ITF region.

How to cite: De Vleeschouwer, D., Füllberg, A., Smith, R., Auer, G., Petrick, B., Castañeda, I., and Christensen, B.: Pliocene ocean and climate dynamics in the eastern Indian Ocean and their implications for the global climate state., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2209, https://doi.org/10.5194/egusphere-egu2020-2209, 2020.

EGU2020-19313 | Displays | CL1.9

Are models becoming more sensitive to Pliocene boundary conditions?

Alan Haywood and Julia Tindall

The nature and dynamics of Pliocene climate has been a focus of intense study for many years. This is because the Pliocene has a unique potential to inform science/society about how the Earth system responds to forcing of direct relevance to future climate change. We examine large-scale climate features derived from the second phase of the Pliocene Model Intercomparison Project. PlioMIP2 is composed of simulations derived from sixteen coupled atmosphere-ocean and Earth System Models of a variety of vintages (IPCC AR3/4 to 6). This represents one of the largest ensembles of models ever assembled to represent a particular interval in Earth history. Each model has been set up to include the very latest Pliocene boundary conditions provided by the U.S. Geological Survey Pliocene Research Interpretation and Synoptic Mapping Project (PRISM4). As well as examining large-scale features of the PlioMIP2 model ensemble we further examine trends in model sensitivity versus model age in order to ascertain if newer versions of models are becoming more sensitive to Pliocene boundary conditions. We examine this across the PlioMIP2 ensemble as a whole and within individual model families, and examine what this implies in terms of the potential for individual models, or families of models, to represent patterns of surface temperature change reconstructed from geological proxies.

How to cite: Haywood, A. and Tindall, J.: Are models becoming more sensitive to Pliocene boundary conditions?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19313, https://doi.org/10.5194/egusphere-egu2020-19313, 2020.

EGU2020-5897 | Displays | CL1.9

Reconstructing the intensity and location of Northern Hemisphere westerlies during the Plio-Pleistocene using marine sediments

Jordan T. Abell, Gisela Winckler, Robert F. Anderson, and Timothy Herbert

The warm Pliocene serves as an analogue for predicted warming over the next century. However, large uncertainties exist for atmospheric circulation and land surface conditions during the Pliocene. Dust transported by wind to locations of accumulation (terrestrial or marine) can provide a record of wind intensity and/or direction. Few dust flux records spanning the Plio-Pleistocene exist. As such, there is ample opportunity to use marine sediments to reconstruct changes in atmospheric conditions during a warmer-than-present world, as well as across the onset/intensification of Northern Hemisphere Glaciation (NHG). During this time, East Asia’s interior, the second largest source of mineral dust today, experienced aridification, occurring alongside a major reorganization of the subarctic North Pacific circulation which led to stratification of the surface ocean. Here, we present two North Pacific marine sediment records of extraterrestrial (ET) 3He-derived terrigenous dust flux proxies (4HeTerr and Th), along with a record of multiple paleoproductivity proxies (Baxs, Opal, and C37Total) for the period spanning ~2.5-4.5 Ma. Our results show that dust flux to the western North Pacific was relatively low and constant through the Pliocene up until ~2.7 Ma, with minor peaks during cooler phases from ~2.9-3.1 Ma. At ~2.7 Ma, concurrent with the intensification of NHG and formation of a permanent halocline cap in the subarctic North Pacific, dust fluxes increase dramatically. The central North Pacific record shows a less drastic shift in dust, but generally displays higher fluxes after ~3 Ma. Dust fluxes in East Asia and the North Pacific are consistent during this time interval, as are global dust fluxes from the North Atlantic, South Atlantic and North Pacific. Western North Pacific dust, SST, and paleoproductivity records point to northward-shifted and weakened Northern Hemisphere westerlies during the warm Pliocene, with evidence for strengthening and southward movement of the westerlies during glacials after ~2.7 Ma. Changes in both winds and dust production mechanisms are likely working in tandem to produce the coherent global dust signals.

How to cite: Abell, J. T., Winckler, G., Anderson, R. F., and Herbert, T.: Reconstructing the intensity and location of Northern Hemisphere westerlies during the Plio-Pleistocene using marine sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5897, https://doi.org/10.5194/egusphere-egu2020-5897, 2020.

EGU2020-9472 | Displays | CL1.9

Orbitally-paced South American Summer Monsoon variability during the mid- to late-Pleistocene

Alicia Meng Xiao Hou, André Bahr, Jacek Raddatz, Silke Voigt, Ana Luiza Albuquerque, Cristiano M. Chiessi, and Oliver Friedrich

Hydrological extremes related to the South American Summer Monsoon (SASM) are expected to become more frequent in the near future and might have devastating socioeconomic consequences for the densely populated region of eastern Brazil. Given the complexity in SASM behaviour in space and time, a dense coverage of monsoonal precipitation records, particular those spanning multiple glacial-interglacial cycles, are urgently needed to constrain this high spatial-temporal variability. This information is necessary to reduce the uncertainty associated with projections of SASM precipitation in response to rising anthropogenic greenhouse gas (GHG) emissions. Here we use elemental ratios from X-ray fluorescence scanning of two sediment cores retrieved off the eastern Brazil margin to reconstruct long-term rainfall changes in the hinterland. Our findings from core M125-55-7 (offshore the Doce River, 20°S) reveal that during the past ~320 kyr, precession-paced insolation forcing is the primary pacemaker of variations in SASM precipitation over the Doce basin. We also determined an anomalous interval of weak monsoonal response to insolation forcing during Marine Isotope Stage 6, which we attribute to enhanced wintertime precipitation due to exceptionally strong southeast trade winds created by a steep South Atlantic latitudinal temperature gradient. Moreover, our results suggest that albeit predominantly driven by insolation forcing, the intensity of SASM rainfall responds negatively to GHG forcing, most likely through indirect feedbacks. We propose that GHG forcing directly influences the magnitude of both the inter- and intrahemispheric latitudinal temperature gradients, which in turn modify the strength of atmospheric circulation and precipitation in the tropics. Thus, we suggest that SASM rainfall intensity over tropical eastern Brazil will likely be suppressed by rising CO2 emissions in the future. Our preliminary analysis of core M125-73-3 (off the Contas River; 12°S) reveals regional differences in monsoonal precipitation between the more northerly Contas basin and the more southerly Doce basin. Most notably, unlike the insolation-paced continental rainfall variability recorded at site M125-55-7, SASM rainfall intensity over the Contas basin appears to be more sensitive to glacial-interglacial scale pacing over the past ~800 kyr. Taken together, our records reveal both the high spatial variability in SASM precipitation over eastern Brazil and the dominant influence of orbital forcing on monsoonal rainfall intensity.

How to cite: Hou, A. M. X., Bahr, A., Raddatz, J., Voigt, S., Albuquerque, A. L., Chiessi, C. M., and Friedrich, O.: Orbitally-paced South American Summer Monsoon variability during the mid- to late-Pleistocene , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9472, https://doi.org/10.5194/egusphere-egu2020-9472, 2020.

EGU2020-4765 | Displays | CL1.9

Different response of sea surface temperature and sea ice to precession and obliquity between the two hemispheres

Zhipeng Wu, Qiuzhen Yin, Zhengtang Guo, and André Berger

The response of the climate system to astronomical parameters is an important scientific issue, but the internal processes and feedbacks need to be better understood. This study investigates the differences of the climate response to the astronomical forcing between the Northern (NH) and Southern (SH) hemispheres based on a more than 90,000-year long transient simulation using the model LOVECLIM. Our results show that the response of sea ice and sea surface temperature (SST) to precession and obliquity are different between the two hemispheres. Precession plays a dominant role on the NH sea ice. This is mainly due to its response to the local summer insolation and also, to a less degree, the influence of the northward oceanic heat transports. However, obliquity plays a dominant role on the SH sea ice through its influence on insolation and the westerly winds. As far as the SST is concerned, it shows a strong precession signal at low latitudes in both hemispheres. For the SST in the mid and high latitudes, obliquity plays a dominant role in the SH whereas precession is more important in the NH. This is largely due to the different response to insolation and feedbacks related to the different land-ocean distribution in the two hemispheres. Near the Equator, besides the precessional signal, the SST also shows strong half-precessional signal, which can be explained by the unique characteristics of the insolation variations at the Equator.

How to cite: Wu, Z., Yin, Q., Guo, Z., and Berger, A.: Different response of sea surface temperature and sea ice to precession and obliquity between the two hemispheres, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4765, https://doi.org/10.5194/egusphere-egu2020-4765, 2020.

EGU2020-7565 | Displays | CL1.9

Exceptionally preserved Milankovitch cycles in Lower Devonian argillaceous limestone of the Hudson Valley, New York State (USA)

Anne-Christine Da Silva, Alex Bartholomew, Carlton Brett, Frits Hilgen, Charles Ver Straeten, and Mark Dekkers

Uncertainties on the radiometric ages of Devonian stage boundaries are currently on the order of several millions of years. A cyclostratigraphic approach is the foremost way forward to improve the Devonian geological time scale. To do so requires well-preserved continuous records, as well as reliable paleoclimatic proxies.  The NY Route 199 section, from Kingston, in the Hudson Valley of eastern New York, is a road cut outcrop, which exposes most of the Schoharie Formation. It corresponds to the upper portion of the Emsian Stage (upper Lower Devonian, ~400 to ~394 Ma), with essentially continuous deposition. The lithology consists of a mixed siliciclastic-carbonate succession with overall increasing carbonate upsection, showing various degrees of bioturbation (traces includes primarily Zoophycos, Planolites and Chondrites); colors range from white to beige, brown or dark grey. The quality of most of the outcrop is so remarkable that the color variations by themselves permit recognition of Milankovitch cycles, with prominent bundles of light and dark beds. One type of cycle expression is represented by a succession of about six darker beds nested between lighter beds, which is interpreted as six precession cycles within a short eccentricity cycle (precession in the Devonian was ~17 kyr).

Samples were collected every 2 cm through 38 m of the section for magnetic susceptibility measurements. On top of these measurements, we provide elemental geochemistry, carbon isotopes and hysteresis measurements (every 50 cm) to constrain the depositional setting and the diagenesis. Hysteresis measurements show that despite being remagnetized (throughout the Appalachians, these Paleozoic rock sequences are all remagnetized during the Variscan-Alleghenian Orogeny), the magnetic susceptibility reflects depositional information. The geochemistry and carbon isotopes give insight into the occurrence of oxic/reducing conditions and detrital inputs. Milankovitch cycles are visible on the outcrop and in the magnetic susceptibility record, allowing a precise floating timescale framework to be constructed for this interval.

How to cite: Da Silva, A.-C., Bartholomew, A., Brett, C., Hilgen, F., Ver Straeten, C., and Dekkers, M.: Exceptionally preserved Milankovitch cycles in Lower Devonian argillaceous limestone of the Hudson Valley, New York State (USA) , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7565, https://doi.org/10.5194/egusphere-egu2020-7565, 2020.

The Late Paleozoic Ice Age (LPIA), one of the best known and prolonged glaciation events in Earth's history, resulted in the widespread deposition of glacial sediments over Gondwana (Crowell, 1999). Some of the most important LPIA deposits of the multiple glacial-deglacial episodes (Isbell et al., 2003) were preserved in the Itararé Group of the Paraná Basin (Brazil). This unit presents continental and marine glacially-influenced deposits formed by advances and retreats of glaciers and consists in an opportunity to better understand the mechanisms forcing climate shifts during the LPIA. In low latitudes, the deposition of the Carboniferous cyclothems was controlled by long- and short-eccentricity (Davydov et al., 2010). In high latitudes, orbital-scale climate cycles may also be preserved in the sedimentary succession. We aim to recognize whether or not orbital and millennial-scale climate cycles are preserved in the sedimentary succession of a core drilled in the southeastern border of the Paraná Basin. Here, we present the first cyclostratigraphic study based on X-ray fluorescence records from a 27 m-long interval of LPIA rhythmites of the Rio do Sul Formation (top of the Itararé Group). The sedimentary succession is composed of lithological couplets of fine-grained siliciclastic sediments, locally displaying subtle plane-bedding. Such rhythmites are characterized by abrupt contacts between couplets and normal grading internally. TiO2 and Fe2O3 vary in phase and display well-defined cyclicities in the stratigraphic domain. The TiO2 series presents millennial and orbital scale periodicities. Variations in the concentrations of the analyzed terrigenous components are likely indicative of glacial-interglacial changes, reflected by advances and retreats of glaciers under drier and wetter climate conditions, respectively. Here we show that these high latitude glacial-interglacial cycles were probably paced by short-eccentricity, as previously suggested for Carboniferous cyclothems in low latitude deposits, and highlight the importance of millennial-scale climate cycles forcing high latitudes glacial-related deposits, similar to patterns seen in Pleistocene records.

 

References:

Crowell, J. C. (1999). Pre-Mesozoic Ice Ages: Their Bearing on Understanding the Climate 375 System. Geologic Society of America Memoir 192, pp. 1–112.

Davydov, V. I., Crowley, J. L., Schmitz, M. D., & Poletaev, V. I. (2010). High-precision U-Pb zircon age calibration of the global Carboniferous time scale and Milankovitch band cyclicity in the Donets Basin, eastern Ukraine. Geochemistry, Geophysics, Geosystems, 11.

Isbell, J. L., Miller, M. F., Wolfe, K. L., & Lenaker, P. A. (2003). Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of Northern Hemisphere cyclothems? In Geologic Society of America Special Paper 370, pp. 5–24.

How to cite: Kochhann, M., Cagliari, J., Kochhann, K., and Franco, D.: Climate variability during the Late Paleozoic Ice Age in the southwestern Gondwana: records of orbital and millennial-scale cycles in the Carboniferous rhythmite of the Paraná Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11886, https://doi.org/10.5194/egusphere-egu2020-11886, 2020.

EGU2020-9556 | Displays | CL1.9

Cyclo and chemostratigraphic characteristics of the Middle Silurian in Gotland, Sweden

Michiel Arts, Bradley Cramer, Mikael Calner, Christian Rasmussen, Alyssa Bancroft, Stephan Oborny, Emma Hartke, Ellie Biebesheimer, and Anne-Christine Da Silva

The cumulative work of geoscientists over the past decades has shown that the Silurian Period which was once thought as warm and climatically stable time interval is in fact punctuated by numerous paleoenvironmental perturbations or events. These Silurian events follow a similar pattern where a minor extinction event precedes a substantial carbon isotope excursion. Many theories have been brought forward to explain these events ranging from glaciations, to changes in precipitations patterns, ocean currents and ocean anoxia. Constraints on the duration and timing of these extinction events and subsequent positive carbon isotope excursions are weak, which hampers a full understanding of the processes at play.

The data from the Altajme core from Gotland, Sweden provides us with a unique opportunity to look at two of these climatic perturbations during the Silurian. The Altajme core spans both the Sheinwoodian Ireviken event and the Homerian Mulde event. The Altajme core dataset includes a litholog, high-resolution δ13C data, correlated bentonites with U-Pb dates and a high-resolution XRF core scan: important data required for and integrated stratigraphic study. The U-Pb-dated bentonites give us age constraints. The δ13C data in combination with the high resolution XRF scan gives us insights into the changes in the ocean before during and after the events, while the XRF is also used to build cyclostratigraphic age constraints for the events and for the whole core. This stratigraphic study will provide us with a palaeoclimatological insights to explain these two events and provide us with a cyclostratigraphy based age model for the Middle Silurian.

How to cite: Arts, M., Cramer, B., Calner, M., Rasmussen, C., Bancroft, A., Oborny, S., Hartke, E., Biebesheimer, E., and Da Silva, A.-C.: Cyclo and chemostratigraphic characteristics of the Middle Silurian in Gotland, Sweden, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9556, https://doi.org/10.5194/egusphere-egu2020-9556, 2020.

EGU2020-8923 | Displays | CL1.9

Astrochronology of the Barremian Stage: implications for the dynamics of the anoxic events in the Early Cretaceous

Mathieu Martinez, Roque Aguado, Miguel Company, Jose Sandoval, and Luis O'Dogherty

Large uncertainties exist on the numerical ages of the stages in the Early Cretaceous which hamper from an accurate reconstruction of the past climate. Recent radio-astrochronologic data suggest to move the ages of the Tithonian to the Hauterivian stages by 3 to 5 Myr toward younger ages (Lena et al., 2019; Aguirre-Urreta et al., 2019). As the numerical ages in the Cenomanian are constrained with radio-astrochronology, this means that the duration of the Barremian to the Albian stages is overestimated. The duration of the Barremian Stage was estimated by bed counting on the assumption of a control by precession and eccentricity cycles (e.g., Bodin et al., 2006). The alternations and bundling can vanish leading to uncertainties in the duration estimates. Here, we provide an astrochronology from the eccentricity cycles based on spectral analyses performed on both magnetic susceptibility and calcium carbonate content series. Two sections are studied here in the Subbetic Domain (SE Spain). They are composed of marl-limestone alternations which reflect humid-arid cycles orbitally-driven. Detailed ammonite and calcareous nannofossil controls allow correlations with other sections in the basin and in the Tethyan Realm. The short and long-eccentricity cycles are identified throughout the Late Hauterivian to the earliest Aptian. The interval around the Hauterivian-Barremian boundary was recovered in a section previously studied for astrochronology and shows that the eccentricity cycles can be correlated to the sections studied here, validating the interpretations. From the record of the 405-kyr eccentricity cycle, the duration of the Barremian Stage is proposed at 4.25 ± 0.13 Myr. Anchoring this duration on previously obtained radio-astrochronology at the end of the Hauterivian, the Barremian Stage started at 125.91 ± 0.06 Ma and ended at 121.67 ± 0.11 Ma. The age of the latest Barremian agrees well with the age of the base of magnetochron M0r calculated from a synthesis of radiometric ages (Olierook et al., 2019). The Faraoni, Mid-Barremian and Taxy episodes show a pacing of 2.34 Myr, suggesting a strong orbital control on the expansion of oceanic anoxic conditions in the Tethys.

References:

Aguirre-Urreta, B., et al., 2019. Gondwana Res., 70, 104–132. https://doi.org/10.1016/j.gr.2019.01.006.

Bodin, S., et al., 2006. Palaeo-3, 235, 245–264. https://doi.org/10.1016/j.palaeo.2005.09.030.

Lena, L., et al., 2019. Solid Earth, 10, 1–14. https://doi.org/10.5194/se-10-1-2019.

Olierook, H.K.H., et al., 2019. Earth-Sci. Rev., 197, 102906. https://doi.org/10.1016/j.earscirev.2019.102906.

How to cite: Martinez, M., Aguado, R., Company, M., Sandoval, J., and O'Dogherty, L.: Astrochronology of the Barremian Stage: implications for the dynamics of the anoxic events in the Early Cretaceous, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8923, https://doi.org/10.5194/egusphere-egu2020-8923, 2020.

EGU2020-21479 | Displays | CL1.9 | Highlight

Thirty-five million years of changing climate – carbon cycle dynamics

David De Vleeschouwer, Anna Joy Drury, Maximilian Vahlenkamp, Diederik Liebrand, Fiona Rochholz, and Heiko Pälike

Fifty-one years of scientific ocean drilling through the International Ocean Discovery Program (IODP) and its predecessors generated a treasure trove of Cenozoic climate and carbon cycle dynamics. Yet, it remains unclear how climate system and carbon cycle interacted under changing geologic boundary conditions. Here, we present the carbon isotope (d13C) megasplice, documenting deep-ocean d13C evolution since 35 million years ago (Ma). We juxtapose the d13C megasplice with its d18O counterpart and determine their phase-difference on ~100-kyr eccentricity time-scales. This analysis uncovers that 2.4-Myr eccentricity modulates the in-phase relationship between d13C and d18O during the Oligo-Miocene (34-6 Ma), potentially related to changes in continental weathering. At 6 Ma, a striking switch from in-phase to anti-phase behaviour occurs, signalling a threshold in the climate system. We hypothesize that Arctic glaciation and the emergence of bipolar ice sheets enabled eccentricity to exert a major influence on the size of continental carbon reservoirs. Our results suggest that a reverse change in climate - carbon cycle interaction should be anticipated if CO2 levels rise further and we return to a world of unipolar ice sheets.

How to cite: De Vleeschouwer, D., Drury, A. J., Vahlenkamp, M., Liebrand, D., Rochholz, F., and Pälike, H.: Thirty-five million years of changing climate – carbon cycle dynamics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21479, https://doi.org/10.5194/egusphere-egu2020-21479, 2020.

EGU2020-15256 | Displays | CL1.9

Eccentricity-paced ice sheet variability and obliquity-driven bottom-water changes during the Oligocene-Miocene

Tim van Peer, Victoria Taylor, Diederik Liebrand, Swaantje Brzelinski, Iris Möbius, André Bornemann, Oliver Friedrich, Steven Bohaty, Chuang Xuan, Peter Lippert, and Paul Wilson

Variations in solar insolation exert a fundamental control on the high-latitude climate–cryosphere system. Controversy, however, exists about the relative importance of orbital eccentricity versus axial tilt (obliquity) in driving pre-Quaternary Antarctic ice sheet variability. This problem is particularly acute during the late Oligocene-to-early Miocene interval (Oligo-Miocene, ~27-21 Ma), because several benthic foraminiferal oxygen isotopes (δ18O) records show strong pacing by obliquity, while others primarily show eccentricity pacing. The differences in orbital pacing are impossible to reconcile with the globally congruent imprint of ice volume on benthic δ18O on orbital time scales. Here we present a new astronomically tuned δ18O record generated at Integrated Ocean Drilling Program (IODP) Site U1406 (north-western Atlantic Ocean), a key area in modern-day thermohaline circulation. Clear imprints of both obliquity and eccentricity on the δ18O record are observed at Site U1406 throughout the study interval, irrespective of changes in sedimentation rate. The eccentricity variations at Site U1406 are remarkably similar to those seen in all other δ18O records, suggesting that eccentricity exerts a strong control on the high-latitude climate–cryosphere system via the modulation of the precession cycle. In contrast, the δ18O sensitivity to obliquity is globally variable, suggesting the influence of temperature in different bottom-water masses.

How to cite: van Peer, T., Taylor, V., Liebrand, D., Brzelinski, S., Möbius, I., Bornemann, A., Friedrich, O., Bohaty, S., Xuan, C., Lippert, P., and Wilson, P.: Eccentricity-paced ice sheet variability and obliquity-driven bottom-water changes during the Oligocene-Miocene, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15256, https://doi.org/10.5194/egusphere-egu2020-15256, 2020.

EGU2020-10667 | Displays | CL1.9

Early to Late Pliocene climate change in the mid-latitude North Atlantic

Antje H. L. Voelker, Francisco J. Sierro, B. David A. Naafs, Nils Andersen, and Henning Kuhnert

The early Pliocene, with atmospheric CO2 concentrations at levels similar to today, is seen as a case study for Earth’s future climate evolution. During this period the progressive closing of the Central American Seaway led to increased poleward heat and salt transport within the Atlantic with North Atlantic Deep Water (NADW) becoming warmer and saltier and resulting in an enhanced Atlantic Meridional Overturning Circulation (AMOC). In order to evaluate how stable the Pliocene AMOC really was, we are producing surface and deep-water records for IODP Site U1313 (41°N, 33°W, 3412m) for the interval from 3.3 to 4.1 Ma. This site is ideally located to monitor past AMOC changes with North Atlantic Drift waters at the surface and NADW, exported by the deep western boundary current, in the deep. Surface water conditions are reconstructed based on the stable isotope data of planktonic foraminifer species Globigerinoides ruber (white) or Globigerinoides extremus with centennial-scale resolution and on sea-surface temperatures (Uk37' alkenone thermometer) with an average 4 ky resolution. Stable isotope records of the benthic foraminifer genus Cibicidoides reveal changes in the deep water.

Besides the interglacial/glacial cycles, higher frequency oscillations are recorded in both the planktonic and benthic foraminifer stable isotope records. Varying surface water conditions, especially during Late Pliocene interglacial periods, are reflected in the Globigerinoides isotope data and appear to be linked to salinity changes since they are not recorded in the sea-surface temperature data. The high-frequency oscillations in the planktonic isotope records are related to precession (insolation) forcing, especially its harmonics in the 5.5 ky and 11 ky ranges. The benthic δ13C values indicate nearly continuous NADW presence and confirm a strong AMOC throughout the studied interval, also during most of the glacial periods. Excluding the pronounced M2 glacial, glacial stage Gi 6 had a stronger impact on the AMOC, as revealed by cooler, less ventilated surface waters and a less ventilated NADW, than Gi 2 and Gi 4. Overall, the AMOC was strong throughout, but experienced high frequency oscillations at a level similar to the middle Pleistocene interglacial periods.

How to cite: Voelker, A. H. L., Sierro, F. J., Naafs, B. D. A., Andersen, N., and Kuhnert, H.: Early to Late Pliocene climate change in the mid-latitude North Atlantic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10667, https://doi.org/10.5194/egusphere-egu2020-10667, 2020.

EGU2020-20327 | Displays | CL1.9 | Highlight

Green Sahara Megaperiods during the Pliocene: What was the role of North Atlantic Ocean temperature?

Paul Wilson, Amy Jewell, Anya Crocker, Solana Buchanan, Bryce Mitsunaga, Thomas Westerhold, Ursula Röhl, James Russell, and Timothy Herbert

The Sahel region is one of the most vulnerable regions on Earth to anthropogenically-driven climate change, but also one of the least equipped to deal with the consequences. Predictions of precipitation levels over the forthcoming centuries diverge, not only in magnitude, but also in the sign of change. One key aspect of this uncertainty comes from the role of Atlantic Ocean sea surface temperatures (SST), which are known to exert a strong control over precipitation in the Sahel and are implicated in both the major drought of the late 20th century and extreme droughts associated with the Heinrich events of the last glacial. To better understand how Sahelian hydroclimate may respond to SST variability in a warmer world, we turn to the Pliocene epoch, when atmospheric CO2 levels were comparable to present.

 

We studied sediments from Ocean Drilling Project Site 659, which is situated in the subtropical North Atlantic beneath the major modern summer Saharan dust plume. Our new dust accumulation rates and X-ray fluorescence core scan data indicate that there were major shifts between highly arid conditions and humid intervals with vegetated or “Green Sahara” conditions over much of northern Africa, driven by both solar insolation and glacial-interglacial variability. We also report three unusually long Plio-Pliocene humid intervals (each lasting ca. 100 kyr) characterised by very low dust emissions, that we term “Green Sahara Megaperiods (GSMPs)”. All three of these GSMPs occur at times when insolation variability was weak, resulting in values close to the long-term mean. This observation strongly suggests that factors other than insolation drove the sustained humidity of GSMPs. We present paired alkenone SST estimates and multi-species planktonic foramaniferal isotope records from 3.5–2.3 Myr ago to explore the extent to which the GSMPs were accompanied by intervals of extended warmth in the surface waters of the North Atlantic Ocean.

How to cite: Wilson, P., Jewell, A., Crocker, A., Buchanan, S., Mitsunaga, B., Westerhold, T., Röhl, U., Russell, J., and Herbert, T.: Green Sahara Megaperiods during the Pliocene: What was the role of North Atlantic Ocean temperature?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20327, https://doi.org/10.5194/egusphere-egu2020-20327, 2020.

EGU2020-11480 | Displays | CL1.9 | Highlight

Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2 glaciation.

Elwyn de la Vega, Thomas B. Chalk, Paul A. Wilson, Ratna Bysani, and Gavin L. Foster

The Piacenzian stage of the Pliocene (2.6 to 3.6 Ma) is the most recent past interval of sustained global warmth with mean global temperatures markedly higher (by ~2-3 oC) than today. Quantifying CO2 levels during the mid-Piacenzian Warm Period (mPWP) provides a means, therefore, to deepen our understanding of Earth System behaviour in a warm climate state. Here we present a new high-resolution record of atmospheric CO2 using the δ11B-pH proxy from 3.35 to 3.15 million years ago (Ma) at a temporal resolution of 1 sample per 3-6 thousand years. Our study interval covers both the coolest marine isotope stage of the mPWP, M2 (~3.3 Ma) and the transition into its warmest phase including interglacial KM5c (centered on ~3.205 Ma) which has a similar orbital configuration to present. We find that CO2 ranged from ca. 390 ppm to ca. 330 ppm, with CO2 during the KM5c interglacial being ca. 370 ppm. Our findings corroborate the idea that changes in atmospheric CO2 levels played a distinct role in climate variability during the mPWP. They also facilitate ongoing data-model comparisons and suggest that, at present rates of human emissions, there will be more CO2 in Earth’s atmosphere by 2025 than at any time for at least the last 3.3 million years.  

How to cite: de la Vega, E., Chalk, T. B., Wilson, P. A., Bysani, R., and Foster, G. L.: Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2 glaciation., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11480, https://doi.org/10.5194/egusphere-egu2020-11480, 2020.

EGU2020-19088 | Displays | CL1.9

Modelling Tropical Precipitation in the mid-Pliocene Warm Period

Julia Tindall and Alan Haywood

Models from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) show that the mid-Pliocene Warm Period (mPWP) was a warmer and wetter world than today. However, there is not strong model agreement as to how tropical precipitation was different in the mPWP. Although PlioMIP2 models agree that there was more precipitation associated with the African Monsoon and the Asian Monsoon, away from these regions models do not show a consistent and robust change in precipitation between the mPWP and the preindustrial.

Here we use the HadGEM2 model to explore changes in tropical precipitation between the mPWP and the preindustrial, particularly those associated with the position and strength of the Intertropical Convergence Zone (ITCZ). Reasons for these changes within HadGEM2 will be discussed. We will also expand our discussion of the ITCZ to the PlioMIP2 ensemble in order to show the differing factors that could influence ITCZ characteristics in a warmer world.

How to cite: Tindall, J. and Haywood, A.: Modelling Tropical Precipitation in the mid-Pliocene Warm Period, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19088, https://doi.org/10.5194/egusphere-egu2020-19088, 2020.

EGU2020-21860 | Displays | CL1.9

Pacific Meridional Overturning Circulation during the Mid-Pliocene Warm Period

Heather L. Ford, Natalie Burls, and David Hodell

Today in the North Pacific only intermediate water forms because of a strong halocline, but Pacific Meridional Overturning Circulation (PMOC) may have existed in the past. The mid-Pliocene warm period (3.264-3.025 Ma) is a time of sustained warmth where atmospheric carbon dioxide concentrations were similar to today and the northern hemisphere was relatively ice free – making it a pseudo-analogue for future climate change. North Pacific sedimentological and climate modeling evidence suggests a PMOC formed during this time.  To determine the spatial extent of a PMOC during the mid-Pliocene warm period, we constructed a depth transect of sites between 2400 to 3400 m water depth on Shatsky Rise by measuring stable isotopes of Cibicidoides wuellerstorfi. We compare these new results with previously published records and calculate anomalies using the OC3 water column and core-top data products. The δ13C spatial pattern is consistent with a modest PMOC of intermediate depth (core ~2000 m) extending to the equator during the mid-Pliocene warm period. Ventilation of the North Pacific by a PMOC has broad implications for deep ocean carbon storage as the North Pacific contains the oldest, carbon-rich waters today. Future work will include minor and trace element analyses to determine the temperature and carbon characteristics of the PMOC water mass and comparisons with PlioMIP modeling outputs.

How to cite: Ford, H. L., Burls, N., and Hodell, D.: Pacific Meridional Overturning Circulation during the Mid-Pliocene Warm Period, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21860, https://doi.org/10.5194/egusphere-egu2020-21860, 2020.

EGU2020-399 | Displays | CL1.9

Reconstructing Past Indian Summer Monsoon Productivity and Stratification During the Late Pliocene and Early Pleistocene

Emmeline Gray, Pallavi Anand, Clara Bolton, Masafumi Murayama, and Marcus Badger

The South Asian or Indian Summer Monsoon (ISM) brings seasonal winds and rains to the Indian subcontinent and affects billions of people.  It is likely that the global monsoon will strengthen in a 1.5 °C warming scenario (IPCC special report (2018)), however our ability to predict ISM behaviour in the future is restricted due to lack of understanding of its behaviour under varying climatic conditions before instrumental records began.  Thus, reconstructing the palaeo-monsoon using proxies gives insight into past and potentially future controls on the ISM.  We present new data covering the interval ~5 to ~2 million years ago (Ma), during the Pliocene and early Pleistocene when the long-term Cenozoic cooling trend culminated in intense northern hemisphere glaciations from 2.7 Ma.  At this time, global temperatures are suggested to have been 2-3 °C warmer than today and atmospheric CO2 was over 400 ppm (similar to today). 

This study focuses on sediments from Site U1443 ( 5°N, 90°E), drilled during International Ocean Discovery Program (IODP) Expedition 353 in the Bay of Bengal (BoB) for the Pliocene – early Pleistocene.  We present X-ray fluorescence (XRF)-derived bulk sediment geochemical data and suggest that erosional flux (terrigenous elements/total counts) as well as productivity (Br/Cl) varied in response to runoff strength, precipitation, and wind stress at the study site to reconstruct ISM variability.  Additionally, new nannofossil assemblage and morphometric data, collected using the automated system SYRACO, are used to reconstruct BoB stratification and productivity and thereby assess ISM dynamics.  A new benthic oxygen isotope-based age model will allow us to place the Site U1443 records into the context of existing climate and monsoon records and evaluate ISM response due to external and internal climate forcing factors.

How to cite: Gray, E., Anand, P., Bolton, C., Murayama, M., and Badger, M.: Reconstructing Past Indian Summer Monsoon Productivity and Stratification During the Late Pliocene and Early Pleistocene , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-399, https://doi.org/10.5194/egusphere-egu2020-399, 2020.

EGU2020-2427 | Displays | CL1.9 | Highlight

Lessons from a high CO2 world: an ocean view from ~3 million years ago

Erin McClymont, Heather Ford, Sze Ling Ho, Julia Tindall, Alan Haywood, Montserrat Alonso Garcia, Ian Bailey, Melissa Berke, Kate Littler, Molly Patterson, Benjamin Petrick, Francien Peterse, Christina Ravelo, Bjorg Risebrobakken, Stijn De Schepper, George Swann, Kaustubh Thirumalai, Jessica Tierney, Carolien van der Weijst, and Sarah White

A range of future climate scenarios are projected for high atmospheric CO2 concentrations, given uncertainties over future human actions as well as potential environmental and climatic feedbacks. The geological record offers an opportunity to understand climate system response to a range of forcings and feedbacks which operate over multiple temporal and spatial scales. Here, we examine a single interglacial during the late Pliocene (KM5c, ca. 3.205 +/- 0.01 Ma) when atmospheric CO2 concentrations were higher than pre-industrial, but similar to today and to the lowest emission scenarios for this century. As orbital forcing and continental configurations were almost identical to today, we are able to focus on equilibrium climate system response to modern and near-future CO2. Using proxy data from 32 sites, we demonstrate that global mean sea-surface temperatures were warmer than pre-industrial, by ~2.3 ºC for the combined proxy data (foraminifera Mg/Ca and alkenones), or by ~3.2ºC (alkenones only). Compared to the pre-industrial, reduced meridional gradients and enhanced warming in the North Atlantic are consistently reconstructed. There is broad agreement between data and models at the global scale, with regional differences reflecting ocean circulation and/or proxy signals. An uneven distribution of proxy data in time and space does, however, add uncertainty to our anomaly calculations. The reconstructed global mean sea-surface temperature anomaly for KM5c is warmer than all but three of the PlioMIP2 model outputs, and the reconstructed North Atlantic data tend to align with the warmest KM5c model values.  Our results demonstrate that even under low CO2 emission scenarios, surface ocean warming may be expected to exceed model projections, and will be accentuated in the higher latitudes.

How to cite: McClymont, E., Ford, H., Ho, S. L., Tindall, J., Haywood, A., Alonso Garcia, M., Bailey, I., Berke, M., Littler, K., Patterson, M., Petrick, B., Peterse, F., Ravelo, C., Risebrobakken, B., De Schepper, S., Swann, G., Thirumalai, K., Tierney, J., van der Weijst, C., and White, S.: Lessons from a high CO2 world: an ocean view from ~3 million years ago, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2427, https://doi.org/10.5194/egusphere-egu2020-2427, 2020.

It remains unclear how El Niño–Southern Oscillation (ENSO)—the prominent interannual anomalous climate mode—varied during the full glacial cycles. We study the evolution of ENSO of the last 300,000 years using continuous fully-coupled climate model simulations. How the slow time‐varying changes in insolation, greenhouse gases concentration, and continental ice sheets could influence the behaviours of El Niño are taken into account. The simulated ENSO variance and the tropical eastern Pacific annual cycle (AC) amplitude change in phase, and both have pronounced precession-band variance (~21,000 years) rather than the obliquity-band (~40,000 years). The precession‐modulated slow (orbital time scales) ENSO evolution is determined linearly by the change of the coupled ocean‐atmosphere instability, notably the Ekman upwelling feedback and thermocline feedback. In contrast, the greenhouse gases and ice sheet forcings (~100,000‐year cycles with sawtooth shapes) are opposed to each other as they influence ENSO variability through changes in AC amplitude via a common nonlinear frequency entrainment mechanism. The relatively long simulations which involve pronounced glacial‐interglacial forcing effects gives us more confidence in understanding ENSO forcing mechanisms, so they may shed light on ENSO dynamics and how ENSO will change in the future.

How to cite: Lu, Z.: Prominent precession-band variance in El Niño–Southern Oscillation Intensity over the last 300,000 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11315, https://doi.org/10.5194/egusphere-egu2020-11315, 2020.

EGU2020-1092 | Displays | CL1.9

Coral reconstructed Mid-Holocene seasonality in the southwestern Caribbean

Vanessa Skiba, Ulrich Struck, Lars Reuning, Dieter Garbe-Schönberg, Norbert Frank, Reinhold Leinfelder, Aaron O'Dea, and Jens Zinke

Seasonality is a dominant factor in the Earth’s climate system, but proxy reconstructions on this time scale are sparse. Corals provide an excellent archive to reconstruct environmental conditions on seasonal time scale using geochemical proxies. Here, we use subfossil (~6.2-7.1 ka BP) Siderastrea siderea and Pseudodiploria labyrinthiformis corals from a pristine Mid-Holocene reef, located in Panamá, southwestern Caribbean. Mid-Holocene insolation seasonality in the Northern Hemisphere was stronger than at present. We investigate the resulting changes in SST and hydrological seasonality using coral Sr/Ca, δ18O and δ13C. To evaluate, if the coral heads can be utilised for geochemical analyses, they have been screened for diagenetic alteration (2D-XRD, thin section analysis). Obtained modern coral Sr/Ca-SST based annual cycle corresponds well with in situ measured SST. Fossil coral Sr/Ca-SST based cycles exceed the modern one by up to 50%. Fossil coral δ18O seasonal amplitudes are higher than the modern one by up to 30% and show a reduction in the mean gradient between wet and dry period, attributable to the northward shift of the Intertropical Convergence Zone. Increased SST and δ18O seasonality are consistent with model simulated SSTs (Kiel Climate Model) and model-based calculated pseudocoral δ18O, but the model underestimates the seasonality increase in the Mid-Holocene.

How to cite: Skiba, V., Struck, U., Reuning, L., Garbe-Schönberg, D., Frank, N., Leinfelder, R., O'Dea, A., and Zinke, J.: Coral reconstructed Mid-Holocene seasonality in the southwestern Caribbean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1092, https://doi.org/10.5194/egusphere-egu2020-1092, 2020.

EGU2020-2961 | Displays | CL1.9 | Highlight

Identifying sources of changed precipitation in paleoclimate studies through moisture tracking: A case study for orbital extremes over the Mediterranean Sea

Ruud van der Ent, Joyce Bosmans, Rein Haarsma, Sybren Drijfhout, and Frits Hilgen

Enhanced winter precipitation over the Mediterranean Sea at times of minimum precession and maximum obliquity could provide freshwater required to form orbitally-paced sedimentary cycles across the Mediterranean Sea floor, offering an alternative to monsoonal runoff. We investigate the sources of the enhanced winter precipitation by applying a moisture tracking model (WAM-2layers) on the results of idealized orbital extreme experiments with a state-of-the-art climate model (EC-Earth).

Tracking the moisture sources of the enhanced winter precipitation over the Mediterranean Sea shows that the source differs during the winter half year. In fall, the majority of the precession-induced precipitation increase originates from the Mediterranean itself. However, in late winter, the increase can be attributed to enhanced moisture advection from the Atlantic. This agrees with changes in evaporation and air-sea temperature differences over the Mediterranean. The obliquity-induced precipitation increase shows much less differences, with an equal contribution of local and Atlantic sources.

The mechanism behind the Atlantic source of moisture is not related to storm track activity, but to a weakened Azores High and slightly higher surface pressure over North Africa. The resulting anomalous circulation patterns generate enhanced Atlantic moisture transport towards the Mediterranean. Our combined climate and moisture tracking modelling approach thus provides an alternative mechanism for Atlantic sources of orbitally-paced Mediterranean precipitation changes.

The results of this study have been published in:

Bosmans, J. H. C., van der Ent, R. J., Haarsma, R. J., Drijfhout, S. S. and Hilgen, F. J.: Identifying sources of changed precipitation in paleoclimate studies through moisture tracking: A case study for orbital extremes over the Mediterranean Sea, Paleoceanogr. Paleoclimatology, accepted, doi:10.1029/2019PA003655, 2020.

The atmospheric moisture tracking through WAM-2layers revealed concrete information about the evaporative sources of enhanced/reduced precipitation. This method has not been previously applied in paleoclimate studies, but thus proved to be a powerful tool in attributing reasons for precipitation changes in addition to climate model experiments and classical meteorological analyses. New ideas for collaborations to apply this method in other (paleo)climate studies are welcome.

How to cite: van der Ent, R., Bosmans, J., Haarsma, R., Drijfhout, S., and Hilgen, F.: Identifying sources of changed precipitation in paleoclimate studies through moisture tracking: A case study for orbital extremes over the Mediterranean Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2961, https://doi.org/10.5194/egusphere-egu2020-2961, 2020.

EGU2020-6318 | Displays | CL1.9

Upper ocean heat content (OHC) changes in the tropical Pacific induced by orbital insolation and greenhouse gases (GHG)

Yue Wang, Zhimin Jian, Haowen Dang, Zhongfang Liu, Haiyan Jin, Shuai Zhang, Li Luo, and Xingxing Wang

The ocean is the largest heat capacitor of the earth climate system and a main source of atmospheric moist static energy. Especially, upper ocean heat content changes in the tropics can be taken as the heat engine of global climate. Here we provide an orbital scale perspective on changes in OHC obtained from a transient simulation of the Community Earth System Model under orbital insolation and GHG forcings. Considering the vertical stratification of the upper ocean, we calculate OHC for the mixed layer and the upper thermocline layer according to the isotherm depths of 26℃ and 20℃ respectively. Generally, our simulated OHC are dominated by thickness changes rather than temperature changes of each layer. In details, there are three situations according to different forcings:

(1) Higher GHG induces positive mixed layer OHC anomalies inside the western Pacific warm pool but with neglected anomalies outside it. For the upper thermocline layer, there are negative OHC anomalies inside the warm pool and positive anomalies in the subtropical Pacific of two hemispheres. For the total OHC above 20℃ isotherm depth, positive anomalies mainly come from the mixed layer between 15ºS-15ºN and from the thermocline between 15º-30º. Lower obliquity induces similar spatial patterns of OHC anomalies as those of higher GHG, but total OHC anomalies are more contributed by upper thermocline anomalies.

(2) Lower precession results in positive mixed layer OHC anomalies in the core of warm pool (150ºE-150ºW, 20ºS-10ºN) and the subtropical northeastern Pacific, but with negative anomalies in other regions of the tropical Pacific. Upper thermocline layer OHC anomalies have similar patterns but with opposite signs relative to the mixed layer in regions between 15ºN-30ºS. As a combination, positive total OHC anomalies occupy large areas of 130ºE-120ºW from 30ºS to10ºN, while negative anomalies dominate the subtropical north Pacific, the western and eastern ends of the tropical Pacific.

If confirmed by paleoceanographic proxies, our simulated OHC results can be served as the first guide map of anomalous energetic storage & flows in the earth climate system under orbital forcings.

How to cite: Wang, Y., Jian, Z., Dang, H., Liu, Z., Jin, H., Zhang, S., Luo, L., and Wang, X.: Upper ocean heat content (OHC) changes in the tropical Pacific induced by orbital insolation and greenhouse gases (GHG), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6318, https://doi.org/10.5194/egusphere-egu2020-6318, 2020.

The climate's mean state reflects only part of the changing climate and how it affects everyday lives. Understanding the climate's variability is crucial to provide more reliable simulations and projections, but temporal and spatial variability patterns and how they are related to changes in the mean state remain unclear. Here, we examine changes in variability since the Last Glacial in response to the warming of the global climate by several degrees. The analysis uses simulations from climate models of different complexity: a two-dimensional energy balance model (TransEBM), an earth system model of intermediate complexity (LoveClim), and a general circulation model (HadCM3). We analyse the simulated variability with respect to the different processes and parameterizations included in the different models and compare the temporal and spatial patterns that emerge. Commonalities as well as differences between models and how they relate to the changing mean state show that fast, low complexity models can capture a range of features of a climate variable's development, but also where such reduced descriptions fall short. As such, the results offer implications for the complexity that is needed and sufficient in parameterizations of climatic processes. Furthermore, we envisage that a comparison to paleoclimate archives can provide limits on the temporal and spatial scales that dominate the variability of climate.

How to cite: Ziegler, E. and Rehfeld, K.: Evaluation of simulated climate variability since the Last Glacial using climate models of varying complexity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8615, https://doi.org/10.5194/egusphere-egu2020-8615, 2020.

Periodic bottom water oxygen deficiency in the Mediterranean Sea has led to the deposition of organic rich sediments during geological history, so called sapropels. Although a mechanism linking the formation of these deposits to orbital variability has been derived from the geological record, physics-based proof is limited to snapshot and short time-slice experiments with (Oceanic) General Circulation Models. Specifically, previous modelling studies have investigated atmospheric and oceanographic equilibrium states during orbital extremes (minimum and maximum precession).

In contrast, we use a conceptual box model that allows us to focus on the transient response of the Mediterranean Sea to orbital forcing and investigate the physical processes causing sapropel formation. The model is constrained by present day measurement data, while proxy data offers constraints on the timing of sapropels.

The results demonstrate that it is possible to describe the first order aspects of sapropel formation in a conceptual box model. A systematic model analysis approach provides new insights on features observed in the geological record, such as timing of sapropels, intra-sapropel intensity variations and interruptions. Moreover, given a scenario constrained by geological data, the model allows us to study the transient response of variables and processes that cannot be observed in the geological record. The results suggest that atmospheric temperature variability plays a key role in sapropel formation, and that the timing of the midpoint of a sapropel can shift significantly with a minor change in forcing due to nonlinearities in the system.

How to cite: Dirksen, J. P. and Meijer, P.: The mechanism of sapropel formation in the Mediterranean Sea: Insight from long duration box-model experiments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8717, https://doi.org/10.5194/egusphere-egu2020-8717, 2020.

EGU2020-10137 | Displays | CL1.9

On the astronomical forcing of simple conceptual ice age models

Gaëlle Leloup and Didier Paillard

Variations of the Earth’s orbital parameters are known to pace the ice volume variations of the last million year [1], even if the precise mechanisms remain unknown.
Several conceptual models have been used to try to better understand the connection between ice-sheet changes and the astronomical forcing. An often overlooked question is to decide which astronomical forcing can best explain the observed cycles.

A rather traditional practice was to use the insolation at a some specific day of the year, for instance at mid-july [2] or at the june solstice [3].
But it was also suggested that the integrated forcing above some given threshold could be a better alternative [4]. In a more recent paper, Tzedakis et al. [5] have shown that simple rules, based on the original Milankovitch forcing or caloric seasons, could also be used to explain the timing of ice ages.
Here we adapt and simplify the conceptual model of Parrenin and Paillard 2003 [6], to first reduce the set of parameters.
Like in the original conceptual model from [6], this simplified conceptual model is based on climate oscillations between two states: glaciation and deglaciation. It switches to one another when crossing a defined threshold. While the triggering of glaciations is only triggered by orbital parameters, the triggering of deglaciations is triggered by a combination of orbital parameters and ice volume.
Then, we apply the different possible forcings listed above and we try to adapt the model parameters to reproduce the ice volume record, at least in a qualitative way. This allows us to discuss which kind of astronomical forcing better explains the Quaternary ice ages, in the context of such simple threshold-based models.

[1] Variations in the Earth's Orbit: Pacemaker of the Ice Ages, Hays et al., 1976, Science


[2] Modeling the Climatic Response to Orbital Variations, Imbrie and Imbrie, 1980, Science


[3] The timing of Pleistocene glaciations from a simple multiple-state climate model, Paillard, 1998, Nature

[4] Early Pleistocene Glacial Cycles and the Integrated Summer Insolation Forcing, Huybers et al., 2006, Science

[5] A simple rule to determine which insolation cycles lead to interglacials, Tzedakis et al., 2017, Nature

[6] Amplitude and phase of glacial cycles from a conceptual model, Parrenin Paillard, 2003, EPSL.

How to cite: Leloup, G. and Paillard, D.: On the astronomical forcing of simple conceptual ice age models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10137, https://doi.org/10.5194/egusphere-egu2020-10137, 2020.

EGU2020-19923 | Displays | CL1.9

Towards image based assessment and characterization of cyclic paleo-wind and flow fields

Matthias Halisch, Christian Zeeden, and Christian Rolf

Cylcostratigraphy is used to investigate quasi-cyclic patterns in sediments. It often provides insight about time and climate. While most studies utilize proxies related to precipitation and temperature, reconstruction of wind and flow directions is more challenging. Due to this, the dynamic change of atmospheric circulations from geophysical data is not well established on orbital timescales. One key method for this purpose is the assessment of the anisotropy of the magnetic susceptibility. Nevertheless, the so derived data are of volume-integrated nature, i.e. a result of the combined mineral composition and structure of the entire investigated sample material. Accordingly, it would be most favorable to link and assess the volume integrated data with spatial sample features. X-ray micro computed imaging enables extensive and non-destructive sample material characterization in three dimensions, with special regards to mineralogical, textural, geometrical and topological material features. By combining volume specific magnetic anisotropy data with state of the art X-ray micro CT imaging data sets, we can derive spatially resolved information about (e.g.) grain sizes, grain shapes, sorting, layering patterns, preferential grain / pore/ layer orientations, secondary precipitates, pore sizes, pore shapes and many other parameters. With this, we greatly increase our understanding about the ancient depositional environment, which is important for investigating and characterizing the dynamic and quasi-cyclic wind and flow fields.

How to cite: Halisch, M., Zeeden, C., and Rolf, C.: Towards image based assessment and characterization of cyclic paleo-wind and flow fields, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19923, https://doi.org/10.5194/egusphere-egu2020-19923, 2020.

Lake Towuti is a tectonic lake on central Sulawesi, Indonesia. It is located within the Indo Pacific Warm Pool, a convection cell which has major impact on tropical climate and the ability to project its influence on a global scale (Chiang, 2009; De Deckker, 2016). Pre-site surveys using seismic methods and piston cores indicated that sediments in Lake Towuti provide best conditions to obtain a long-term paleoclimate record in this key region (Russel et al., 2014).  

During an ICDP-project in 2015, downhole logging equipment of the Leibniz Institute for Applied Geophysics was used at two drill-sites to record a series of chemical and physical parameters (spectral gamma ray, magnetic susceptibility, resistivity, sonic velocity, dipmeter, ultrasonic imaging of the borehole wall). Continuous lithological logs based on downhole logging data were constructed using cluster analysis. Although the spatial resolution of constructed logs is not as detailed as core descriptions, good correlation to core descriptions and differentiation between the upper lacustrine facies and the lower pre-lacustrine facies (Russell et al., 2016) show that cluster analysis is a powerful tool in giving an instant overview of in situ sediments and determining their physical properties.

Cyclostratigraphic methods in downhole logging can help developing a better understanding of sedimentation rates and thus improving age-depth models for lacustrine sediments (Molinie and Ogg, 1990; Hinnov, 2013; Baumgarten et al., 2015). In case of Lake Towuti, a magnetic susceptibility log from the upper lacustrine facies (0-98 meters below lake floor) was analysed to calculate changes in sediment influx. A careful pre-processing of the data is crucial to secure undisturbed amplitude spectra. This includes the identification and exclusion of event-layers (tephra and turbidite-like mass movement deposits) from the log. Also side effects of those layers to surrounding sediments were diminished from the record.

Sedimentation rates for certain parts were calculated and complement the preliminarily age model derived from 14C- (Russel et al., 2014) and tephra-dating (A. Deino, personal communication, December, 2018). Further refining of the model and omission of an interpretation of long cyclicities results in the most detailed age-depth model for Lake Towuti, and thus is a fundamental step towards our understanding of paleoclimate processes in this region.

How to cite: Ulfers, A., Hesse, K., and Wonik, T.: Paleoenvironmental indications and cyclostratigraphic studies of sediments from tropical Lake Towuti obtained from downhole logging, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21806, https://doi.org/10.5194/egusphere-egu2020-21806, 2020.

The Milutin Milankovic Astronomical Model of Ice Ages revisited

As per the M.M.-Model, the 3 combined precessional effects have a cycle of ca. 21,000 years;

the cycle of the axis tilting from 21.80 to 24.40 runs ca. 41,000 years; the cycle from circle to ellipse, back to circle spans ca. 90,000 - 120,000 years. Science predicts the inception of a new ice age, fearing that the period the system achieved its best parameters is already behind us.

However, the data from other sources, from Plato and the Greek Sibyls to the New Testament and beyond, predict the imminence of a Golden Age, with optimal weather patterns, following a prophesied earthshaking and a few other astrophysical and geophysical woes. This is most consistent with what Milankovic’s true parameters would predict, once certain hidden variables are dealt with.

Besides the pull of sun, moon and planets, affecting the motions of the earth and insolation levels on a regular basis of solar system motions, we must factor in periodic entries of special "controller" comets whose purpose is to exercise potent "sucking" power, which helps re-calibrate the motions of the earth. Such comets do not cause impacts, but earth-shaking all the same, due to the reaction of the earth to such potent attraction. We have evidence of many comets entering the system (the "myths", Plato's Timaeus, Critias, Politicus, etc.) and geological evidence of the effects of such cometary activity.

Depending on the comet's size and its motion parameters, we get ekpyrosis and cataclysm, at global levels. Plate tectonic activity due to a major earthshaking `fatal attraction' will most definitely influence the axis' obliquity, once the `dust is settled'. If at the same time we get a minor impact that generates Flooding and enhanced volcanic activity, the results are more pronounced.

What is the periodicity of such "controller" comets which enter the inner solar system and change so drastically our motion parameters? The notion of `aeon' as per Heraclitus of Ephesus deserves our attention.

The Heraclitus aeon is a period of 10,800 years. Besides being twenty times the `age of Phoenix' calculated at 540 years, the aeon of 10,800 years is the most accurate unit for measuring the cycles of the Milankovic model. In fact,

10,800 x 2 = 21,600 our best approximation to the combined effects of all three precessional cycles.

10,800 x 4 = 43,200 (the cycle of axis tilting)

10,800 x 10 =108,000 the best calibration, so far, of the "eniautos" from circle to ellipse and back.

It is no `co-incidence' that makes the numbers fit so neatly. Not to mention the `ancient myths' which loved periods of 540 years; or 432,000; the combined effects of 25,920 and 108,000 etc.

Very soon we shall witness such a`controller comet', making the year 360 days long. It will provide the parameters for a new Golden Age for the survivors of the Floods and the Ekpyrosis. Golden Ages and years of 360 days with enhanced insolation come at a high price in the Drama Of Evolution.

How to cite: Otto, H.: The Milutin Milancovic Astronomical Model of Ice Ages Revisited, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22130, https://doi.org/10.5194/egusphere-egu2020-22130, 2020.

CL1.12 – Exploring spatiotemporal variability of abrupt climate change through the INTegration of Ice core, MArine and TErrestrial records (INTIMATE)

EGU2020-9422 | Displays | CL1.12

New approaches to radiocarbon calibration arising from statistical developments in IntCal20

Christopher Bronk Ramsey, Timothy Heaton, Maarten Blaauw, Paul Blackwell, Paula Reimer, and Marian Scott

Calibration is a key element of the radiocarbon dating methodology and the underlying Bayesian statistical approach taken, and algorithms used, are well established and used in calibration software and associated analysis packages.  These calibration methods are based on a calibration curve which provides a mean estimate for the radiocarbon isotope ratio (fractionation corrected) expected in samples, and the associated standard uncertainty, both as a function of time (or calendar age).  The measured samples also have their radiocarbon isotope ratio reported in the same form and so the calibration process involves comparison of the sample radiocarbon measurements with the calibration curve at different points on the calendar age scale.  This then yields a probability distribution function, with associated highest probability density ranges, for the sample calendar age.  We discuss here how improvements in the construction of the IntCal20 curve offer new opportunities, enabling users to obtain more from the calibration curve than previously possible and address some of the limitations of previous calibration approaches.

Previous approaches to calibration assumed that the values of the calibration curves at any time were normally distributed around their estimated mean. However, there are time periods where the distribution of these curves are not well represented by such a normal distribution. This is potentially significant even for calibrations of single samples. The new IntCal20 curve generates multiple possible calibration curves, providing us with the opportunity to identify and adapt to such non-normality.  A second limitation of previous approaches to calibration arises when multiple determinations are used within a broader chronological model. In such cases the usual assumption is that the calibrated uncertainties are independent.  This is certainly not the case if all the samples are the same age (which is currently addressed by combination before calibration) but also is potentially wrong if the samples are close enough in age for there to be correlated uncertainty in the calibration curve.  Again, using the collection of possible curves provided in the construction of IntCal20, rather than just the summary curve, we look at possible solutions to this challenge.  The implications for high-precision chronologies are also discussed.

How to cite: Bronk Ramsey, C., Heaton, T., Blaauw, M., Blackwell, P., Reimer, P., and Scott, M.: New approaches to radiocarbon calibration arising from statistical developments in IntCal20, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9422, https://doi.org/10.5194/egusphere-egu2020-9422, 2020.

EGU2020-1955 | Displays | CL1.12

Heinrich Stadials: Globa Climate Impacts and the "Bipolar Seesaw" Phase Relationsip

Richard Peltier, Jesse velay-Vitow, and Deepak Chandan

With the recent demonstration that millennial timescale Dansgaard-Oeschger oscillations of MIS 3 are predictable in a modern coupled climate model following a Heinrich event-like reduction of AMOC strength (eg. Peltier and Vettoretti, 2014), the stage was set for a renewed attack upon the physics of H-events themselves (see Velay-Vitow et al, 2019, JGR-Oceans). This predicts that the freshwater forcing of the AMOC by individual H-events will be on the order of 0.1 Sv and to be maintained for a period between 500 years and 1500 years in accord with data-based inferences (Hemming, 2004). Whereas in the original analysis of H-event induced D-O oscillations the D-O initiating H-event appeared simply as a sharp reduction in AMOC strength in the spin-up of the coupled model, in the work to be reported we transform the pseudo H-event into one that involves explicit freshwater forcing applied at a strength and over a range of times in accord with observational constraints. This has enabled a detailed analysis of the global climate impacts of these events as represented in the coupled climate model that we continue to employ. A critical focus of this analysis is upon the phase relationship between events recorded in the oxygen isotopic records from Greenland and Antarctic ice cores, analyses which demonstrate that this phase relationship is set by the D-O initiating Heinrich event. We also address the expected global climate impacts of stadial-interstadial transitions and provide an initial discussion of these impacts with those recorded in speliothems and other archives.

How to cite: Peltier, R., velay-Vitow, J., and Chandan, D.: Heinrich Stadials: Globa Climate Impacts and the "Bipolar Seesaw" Phase Relationsip, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1955, https://doi.org/10.5194/egusphere-egu2020-1955, 2020.

EGU2020-5638 | Displays | CL1.12

N2O changes during Heinrich Stadials - Isotopic source deconvolution over HS0, HS1 and HS4 and its implication for the marine and terrestrial nitrogen cycle

Hubertus Fischer, Jochen Schmitt, Michael Bock, Barbara Seth, Fortunat Joos, Renato Spahni, Gianna Battaglia, Benjamin Stocker, Sebastian Lienert, Colin Prentice, Bette Otto-Bliesner, Zhengyu Liu, Adrian Schilt, and Ed Brook

Using high precision and centennial resolution ice core information on atmospheric nitrous oxide concentrations and its stable nitrogen and oxygen isotopic composition enables us to quantitatively reconstruct changes in the terrestrial and marine N2O emissions over the last 21,000 years as well as over Heinrich Stadial (HS) 4.

We show that over the deglaciation N2O emissions from land and ocean increased in parallel by 1.8 ± 0.3 TgN yr-1 and 0.7 ± 0.3 TgN yr-1, respectively. However, close to 50% of the terrestrial increase is accomplished within less than 200 years at the end of HS1 starting essentially in parallel with the co-occurring CH4 increase. A similarly rapid but smaller increase is observed at the end of HS0 and suggested at the end of HS4, showing that terrestrial N2O emissions respond strongly and rapidly to the northward shift in the Intertropical Convergence Zone connected to the resumption of the Atlantic Meridional Overturning Circulation (AMOC). However, little change in terrestrial N2O emissions is observed during the onsets of Heinrich Stadials. Assuming that N2O loss from terrestrial ecosystems is directly connected to nitrogen turnover in soils, the fast increase at the end of Heinrich Stadials suggests that terrestrial ecosystems did not become nitrogen-limited on this relatively short time scales, as also supported by model runs in our LPX-Bern dynamic vegetation/biogeochemical model. However, changes in number of moles of N2O lost to the atmosphere per mole nitrogen turned over in soils (yield factor) may also contribute to the atmospheric N2O changes.

Marine N2O emissions also respond to Heinrich events and AMOC changes, however more gradually and less strongly compared to terrestrial emissions both in our data-based reconstruction and the Bern3D coupled ocean/biogeochemistry model. In fact, reconstructed marine emissions start to slowly increase many centuries before the rapid warmings, connected to a re-equilibration of subsurface oxygen concentrations in response to previous AMOC changes. At the onset of HS1 marine emissions decreased by about 0.5 TgN yr-1, concomitantly with changes in atmospheric CO2 and δ13C(CO2), and started to re-increase after about 1500 years, when also rapid CO2 and CH4 jumps occurred, pointing to Southern Ocean and low-latitude circulation changes. A similar decrease as at the start of HS1 is found after the onset of HS0, but little N2O emission change is suggested by N2O concentrations and their isotopic signature at 39.5 kyr before present when Heinrich Event 4 presumably occurred, as suggested by a co-occurring intermittent CH4 peak and a sudden increase in CO2.

How to cite: Fischer, H., Schmitt, J., Bock, M., Seth, B., Joos, F., Spahni, R., Battaglia, G., Stocker, B., Lienert, S., Prentice, C., Otto-Bliesner, B., Liu, Z., Schilt, A., and Brook, E.: N2O changes during Heinrich Stadials - Isotopic source deconvolution over HS0, HS1 and HS4 and its implication for the marine and terrestrial nitrogen cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5638, https://doi.org/10.5194/egusphere-egu2020-5638, 2020.

EGU2020-18942 | Displays | CL1.12

Dating rapid climate change in the North Atlantic during Heinrich Stadial 1

Andrea Burke, Rosanna Greenop, James Rae, Rhian Rees-Owen, Paula Reimer, and Timothy Heaton

Paleoclimate records from the North Atlantic show some of the most iconic signals of abrupt climate change during the ice ages. Here we use radiocarbon as a tracer of ocean circulation and air-sea gas exchange to investigate potential mechanisms for the abrupt climate changes seen in the North Atlantic over the last deglaciation. We have created a stack of North Atlantic surface radiocarbon reservoir ages over the past 20,000 years, using new synchronized age models from thirteen sediment cores refined with thorium normalization between tie-points. This stack shows consistent and large reservoir age increases of more than 1000 years from the LGM into HS1, dropping abruptly back to approximately modern reservoir ages before the onset of the Bolling-Allerod. We use the intermediate complexity earth system model cGENIE to investigate the potential drivers of these reservoir age changes. We find that sea ice, circulation and CO2 all play important roles in setting the reservoir age. We use these coherently dated records to revisit the sequence and timing of climatic events during HS1 and the last deglaciation, and show that Laurentide Heinrich Events are a response to stadial conditions, rather than their root cause.

How to cite: Burke, A., Greenop, R., Rae, J., Rees-Owen, R., Reimer, P., and Heaton, T.: Dating rapid climate change in the North Atlantic during Heinrich Stadial 1, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18942, https://doi.org/10.5194/egusphere-egu2020-18942, 2020.

During the Last Glacial Maximum, the terrestrially based Connemara ice dome was one of several principal ice accumulation centres in western Ireland, distributing ice radially and terminating along its western margins in the North Atlantic Ocean. Our new beryllium-10 chronology, constrained with surface-exposure ages of erratics on a longitudinal coast-to-interior transect, demonstrates that post-LGM deglaciation of Connemara was rapid and that the ice dome was gone by ~17.5 ka. Coupled with the abundance of landforms in this mountainous region indicative of glacial meltwater production, we interpret the rapid and early deglaciation of Connemara as reflecting pronounced melting during the summer ablation season driven by strong atmospheric warming. While this model contrasts with the traditional view of Heinrich stadials as periods of intense cold in the North Atlantic, we note similarities with glacial records from elsewhere in the Northern Hemisphere and globally, as well as with recent marine-geologic evidence for enhanced melting of European ice sheets during Heinrich stadials.

How to cite: Foreman, A., Hall, B., and Bromley, G.: Glacial deposits in Connemara, dated with cosmogenic 10Be, document melting of terrestrial ice in Western Ireland during Heinrich Stadial 1, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-889, https://doi.org/10.5194/egusphere-egu2020-889, 2020.

EGU2020-742 | Displays | CL1.12

Dynamic environmental response to the Younger Dryas cooling in the sediment record of Lake Gościąż

Daniela Müller, Rik Tjallingii, Birgit Plessen, Mateusz Płóciennik, Arne Ramisch, Ina Neugebauer, Markus J. Schwab, Michał Słowiński, Mirosław Błaszkiewicz, and Achim Brauer

The last deglaciation in the northern hemisphere was interrupted by several short cold setbacks of which the Younger Dryas (YD) was the last and most pronounced. This abrupt and extreme cold period provides valuable insights into regional climate and environmental responses. To decipher the rate of such rapid changes continuous climate archives of annually laminated (varved) sediments are crucial.

Lake Gościąż (central Poland) exhibits an iconic varved lake sediment record that is one of the few European lake records preserving varves throughout the complete YD. To re-investigate this archive, 10 new sediment cores have been obtained along a N-S transect through the deepest part of the lake basin. We used a combination of continuous microfacies analyses, XRF element core scanning, µ-XRF mapping, and high-resolution chironomid-inferred mean July air temperature as well as analyses of stable oxygen and carbon isotopes.

Lacustrine sedimentation begins in the late Allerød, is briefly interrupted by a slump during the early YD and proceeds continuously afterwards. Here, we present a first continuous microfacies investigation of the complete YD in Lake Gościąż. Varve composition during the YD is the most complex and variable one, featuring primarily diatom frustules, calcite, re-worked and re-suspended material. Contrastingly, the simpler structured varves during the early Preboreal and late Allerød are characterized predominantly by calcite, rhodochrosite and dissolved organic matter. The change in microfacies at both YD transitions occurs not simultaneously with the other proxy responses.

Causes of and differences in proxy responses in regard to the dynamics of environmental change during a major change in climate are discussed. Further, we conduct a proxy comparison at both YD transitions and provide a detailed documentation of the transitions through µ-XRF mapping.

This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis (ICLEA) of the Helmholtz Association (grant number VH-VI-415). It is further a contribution to a scientific project financed by the National Science Centre, Poland – No. UMO-2015/19/B/ST10/03039.

How to cite: Müller, D., Tjallingii, R., Plessen, B., Płóciennik, M., Ramisch, A., Neugebauer, I., Schwab, M. J., Słowiński, M., Błaszkiewicz, M., and Brauer, A.: Dynamic environmental response to the Younger Dryas cooling in the sediment record of Lake Gościąż, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-742, https://doi.org/10.5194/egusphere-egu2020-742, 2020.

EGU2020-21845 | Displays | CL1.12

Reconstructing abrupt climate changes of the last deglaciation & Holocene: Pollen & biomarker analyses from the Portuguese Margin

Anna Cutmore, Blanca Ausin, Timothy Eglinton, Mark Maslin, and Chronis Tzedakis

In light of the current rate of anthropogenic climate change, it is becoming increasingly critical to enhance knowledge of past abrupt climate events and subsequent responses of the Earth system. One period that can provide such insight is the last ~28 kyr, with several abrupt changes occurring over the course of the deglaciation. The Portuguese Margin has been an ideal location to study the impacts of these abrupt climate events on marine and terrestrial environments.  The combined effect of the narrow continental shelf and close proximity to the Tagus and Sado rivers, lead to the rapid delivery of a high quantity of sediment, including our pollen and biomarker proxies, to the Tagus Abyssal Plain. Joint terrestrial and palaeoceanographic analyses from the same sediment samples enable an in situ assessment of the relative timing of changes in palaeoceanographic and terrestrial proxies.

 

Here we document the response of western Iberian vegetation to millennial and centennial-scale changes, particularly changes in moisture availability, over the deglaciation and Holocene, by combining (for the first time at a Portuguese Margin site) pollen and leaf-wax isotopic biomarker records (δ13C and δD) from core SHAK06-5K. A high-resolution pollen record (every 2cm) and lower-resolution n-alkane δ13C and δD records spanning 28kya are compared with high-resolution XRF sediment and planktonic foraminiferal d18O analyses from the same core.  The sequence is supported by high-resolution age control, based on 40 Accelerator mass spectrometry (AMS) 14C dates from monospecific samples of the planktonic foraminifera, Globigerina bulloides.

 

Our pollen record indicates the rapid response of regional vegetation to centennial changes and millennial-scale climate events, with forest expansion during the warm interglacial/ interstadial Bølling-Allerød and Holocene, and forest contraction and steppe expansion during cold glacial/ stadial conditions of the Last Glacial Maximum and Younger Dryas. Comparing our pollen and n-alkane biomarker data with the XRF Zr:Sr ratio and planktonic foraminiferal δ18O records, a clear synchroneity can be seen in the timing of millennial-scale changes in all records.  The millennial-scale changes in our leaf wax n-alkane δD and δ13C records can be explained by both vegetation composition and growing season water availability. 

How to cite: Cutmore, A., Ausin, B., Eglinton, T., Maslin, M., and Tzedakis, C.: Reconstructing abrupt climate changes of the last deglaciation & Holocene: Pollen & biomarker analyses from the Portuguese Margin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21845, https://doi.org/10.5194/egusphere-egu2020-21845, 2020.

EGU2020-11311 | Displays | CL1.12

The 2.8 BP Event: a high-resolution multiproxy perspective from Diss Mere, Norfolk, UK.

Poppy Harding, Cath Langdon, Amy Walsh, George E. Biddulph, Simon P. E. Blockley, Alice M. Milner, Pete Langdon, and Celia Martin-Puertas

The INTIMATE group has, for a number of years, outlined the most robust approaches for comparing high resolution palaeoclimate archives in order to understand the regional pattern of response to climate change, and hence test models of climate forcing. These have tended to focus on the Last glacial and Early Holocene, until recently. However, in the later Holocene there are similar climatic oscillations with a variety of proposed mechanisms and regional responses. One such climatic oscillation, the 2.8 ka BP event, is a cold spell thought to be driven by a grand solar minimum with potential impacts on atmospheric dynamics and hydrology across parts of Western Europe1. At present there are only a small number of independently-dated, high-resolution records for this event, limiting the extent to which a regional expression of this event can be understood. This is a problem, as there is significant interest in understanding the impact of solar minima on recent and future climates2.

High resolution, multiproxy records of this event are limited in the UK, however, annually laminated sediments from Diss Mere, Norfolk, UK, provide an excellent opportunity to improve our understanding of the environmental impacts of this climatic oscillation on ecosystems of the region. Here we consider multiple proxies including diatoms, chironomids, pollen, ẟ18O and ẟ13C isotopes, integrated through a highly constrained age model based on varve counts, radiocarbon dating, tephrochronology and Bayesian modelling3. Our analyses highlight distinct responses linked to the associated cooling of the 2.8 ka BP oscillation. These include an opening of the landscape around the lake, documented in our pollen record, accompanied by diatom community changes, linked to alterations in temperature, nutrients, turbidity and water clarity. These are potentially a result of increased landscape instability changing the nutrients entering the lake water and its clarity, while increased wind shear due to a more open environment, is linked to the changes in turbulence. Chironomid inferred temperatures also indicate cooling during this period. We compare the Diss palaeorecord with another annually-resolved lake record for this event, Meerfelder Maar, Germany, and with peat bog sites in Ireland, where the event is also associated with tephra layers, to outline the similarities and differences in the regional response to this solar induced event. These results are particularly significant for studies of environmental/ecological impact1 of grand solar minima on future climates in a warming world, through the potential for palaeodata climate model comparisons2.

References:

1.      Martin-Puertas, C. et al. (2012). Nat. Geo. 5, 397-401.

2.      Ineson, E. et al. (2015) Nat. Commun. 6, 7535.

3.      Martin-Puertas, C. et al. (2020) European Geosciences Union.

 

How to cite: Harding, P., Langdon, C., Walsh, A., Biddulph, G. E., Blockley, S. P. E., Milner, A. M., Langdon, P., and Martin-Puertas, C.: The 2.8 BP Event: a high-resolution multiproxy perspective from Diss Mere, Norfolk, UK., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11311, https://doi.org/10.5194/egusphere-egu2020-11311, 2020.

EGU2020-9550 | Displays | CL1.12

Antarctic-like temperature variations in the Tropical Andes recorded by glaciers during the last deglaciation (20 – 10 ka BP)

Léo Martin, Pierre-Henri Blard, Jérôme Lavé, Maarten Lupcker, Julien Charreau, Vincent Jomelli, and Didier Bourles

The paleoclimatic changes that occurred in the Southern and Northern hemispheres during the last deglaciation are thought to have affected the continental tropical regions. However, the respective impact of North and Southern climatic changes in the tropics are still poorly understood. In the High Tropical Andes, the Antarctic Cold Reversal (ACR, 14.3-12.9 ka BP) was reported to be more represented than the Younger Dryas (12.9-11.7 ka BP) among morainic records. However, in the Altiplano basin (Bolivia), two cold periods of the North Hemisphere (Heinrich Stadial 1a (16.5-14.5 ka) and Younger Dryas) are synchronous with (i) major advances or stillstands of paleo-glaciers and with (ii) the highstands of the giant palaeo-lakes Tauca and Coipasa. Therefore, additional results are needed to disentangle between potential North and South Hemisphere climatic influence on the glacial dynamics in the region.

We present new Cosmic Ray Exposure (CRE) ages from glacial landforms of the Bolivian Andes that extend pre-existing datasets for four different sites spreading from 16 to 21°S. We reconstruct the Equilibrium Line Altitudes (ELA) associated with each moraine with the AAR method and use them in an inverse algorithm that combines both the palaeo-glaciers and palaeo-lake budgets to derive temperature and precipitation reconstructions. Our temperature reconstruction (ΔT vs. Present) shows a consistent trend through the four glacial sites with a progressive warming from ΔT= -5°C (17 ka BP) to –2.5°C (15-14.5 ka BP, at the end of the Tauca highstand). This is followed by a return to colder conditions, around -4°C, during the ACR (15.5-12.9 ka BP). The Coipasa highstand is coeval with another warming trend followed by ΔT stabilization at the onset of the Holocene (circa 10 ka BP), around -3°C. Precipitation is mainly characterized by increases during the lake highstands, modulated by the distance from the glacial sites to the center of the paleolakes that are moisture sources (recycling processes).

These new results highlight the decorrelation of the glacier dynamics to the temperature signal in regions that are characterized by high precipitation variability. They also provide a theoretical frame to explain how both regional and global forcings can imprint the paleo-glacial records. Our results strongly suggest that during the last deglaciation (20 – 10 ka BP), in the Tropical Andes, atmospheric temperatures follow the Antarctic variability, while precipitation is driven by the changes occurring in the Northern Hemisphere.

How to cite: Martin, L., Blard, P.-H., Lavé, J., Lupcker, M., Charreau, J., Jomelli, V., and Bourles, D.: Antarctic-like temperature variations in the Tropical Andes recorded by glaciers during the last deglaciation (20 – 10 ka BP), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9550, https://doi.org/10.5194/egusphere-egu2020-9550, 2020.

EGU2020-19591 | Displays | CL1.12

Last Glacial multi-decadal to millennial-scale precipitation variability inferred from Puerto Rican speleothems

Sophie Warken, Rolf Vieten, Amos Winter, Christoph Spötl, Thomas Miller, Norbert Frank, Klaus Peter Jochum, Aaron Mielke, Jonas Schandl, Andrea Schröder-Ritzrau, Augusto Mangini, and Denis Scholz

The high sensitivity of climate variability to the mean position of the intertropical convergence zone at different time scales is well known. However, due to a lack of absolutely dated high-resolution proxy records, the long-term changes in the tropical Atlantic oceanic and atmospheric circulation system prior to the late Holocene are still not well constrained. Paleo climate reconstructions and model studies suggest a very complex response of the northern hemispheric tropical rain belts in the western tropical Atlantic depending on the nature of the forcing, surface type and surrounding continent-ocean configuration.

Here we present a high resolution multi-proxy speleothem record from Cueva Larga (Puerto Rico) covering the last Glacial between 46 and 15 ka BP. Precise 230Th/U-dating reveals growth rates between 50 up to more than 1000 µm/year which allow for the investigation of multi-decadal to millennial scale variability in the stable isotope (δ18O and δ13C) and elemental records.

The analysed proxies document a pronounced response of regional precipitation to abrupt centennial to millennial scale climatic excursions across the last Glacial, such as Heinrich Stadials and Dansgaard/Oeschger oscillations. Here, we observe a strong agreement between our paleo-precipitation reconstruction and climate proxy records which are indicative of the strength of the Atlantic meridional overturning circulation and northern hemispheric temperature changes. The coherence of speleothem δ18O values with sedimentary 231Pa/230Th also on sub-millennial timescales supports a persistent link of regional precipitation variability to ocean circulation variability. Spectral analysis further suggests that multi-decadal to centennial variability persisted in the western tropical Atlantic hydro-climate not only during stadial and interstadial conditions, but also during the last Glacial maximum, supporting the hypothesis that the Atlantic low-latitude regions respond to internal modes of climate variability on these time scales regardless of the global climate state.

The compilation of our dataset from Puerto Rico with other paleo-precipitation records allows for the reconstruction of past changes in position, strength and extent of the intertropical convergence zone in the western tropical Atlantic and reveal the existence of spatio-temporal gradients in response to millennial to orbital climate change.

How to cite: Warken, S., Vieten, R., Winter, A., Spötl, C., Miller, T., Frank, N., Jochum, K. P., Mielke, A., Schandl, J., Schröder-Ritzrau, A., Mangini, A., and Scholz, D.: Last Glacial multi-decadal to millennial-scale precipitation variability inferred from Puerto Rican speleothems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19591, https://doi.org/10.5194/egusphere-egu2020-19591, 2020.

EGU2020-8561 | Displays | CL1.12

Bipartite response in the Black Sea sediment record to Greenland-Interstadial 10

Markus Czymzik, Norbert Nowaczyk, Olaf Dellwig, Antje Wegwerth, Raimund Muscheler, Marcus Christl, and Helge Arz

High-latitude climate variations during Greenland Interstadials (GI) are expected to transfer globally in a complex way through interactions of fast atmospheric as well as slower cryospheric and oceanic processes. Prerequisite for an investigation of the evolution of GI is a climate independent synchronization of the considered paleoenvironmental archives. Measuring and aligning globally common production rate variations of the cosmogenic radionuclide 10Be in different archives provides a tool for such synchronizations and the investigation of environmental gradients in space and time, with minimized uncertainties in the relative timing.

A 10Be time-series at < 40-year resolution was measured along with new proxy records down to sub-mm step size from Black Sea sediment core M72/5-22-GC8 around GI-10 (~41 ka BP). We synchronized our 10Be time-series to that from Central Greenland ice cores based on the globally common production rate variations using the globally optimal fit.

Comparing the synchronized environmental proxy records points to a bipartite response of the Black Sea sediment record at the onset of GI-10. First, synchronous with the abrupt temperature increase in Greenland, costal sea ice decreases on the Black Sea, reflected by reduced sedimentary ice rafted debris contents. Second and with a lag of ~190 years, abrupt increases in the K/Ti proxy point to enhanced regional precipitation causing higher riverine sediment supply into the basin.

This bipartite structure might be connected to both differential thresholds of proxy responses in Black Sea sediments to locally abrupt environmental forcing and/or a bipartite climate transition in the region in response to GI-10. The latter could possibly be explained by an initial fast atmospheric-transmitted warming in the Black Sea region synchronous to the onset of GI-10, followed by a shift from predominantly continental to Mediterranean weather systems ~190 years later, after regional oceanic adjustments. However, further investigations during more GIs are necessary to test the robustness of these results.

How to cite: Czymzik, M., Nowaczyk, N., Dellwig, O., Wegwerth, A., Muscheler, R., Christl, M., and Arz, H.: Bipartite response in the Black Sea sediment record to Greenland-Interstadial 10, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8561, https://doi.org/10.5194/egusphere-egu2020-8561, 2020.

EGU2020-5500 | Displays | CL1.12

Impacts of climatic extremes during MIS 3 on Alpine vegetation: evidence from Nesseltalgraben (SE Germany)

Christoph Mayr, Philipp Stojakowits, Andreas Lücke, Holger Wissel, Lars Hedenäs, Bernhard Lempe, Arne Friedmann, and Volker Diersche

The effects of extreme climatic changes on Alpine ecosystems during the last glacial are poorly understood. The recently discovered Nesseltalgraben site in the northern Alps provides a high-resolution sediment sequence covering the Marine Isotope Stage (MIS) 3 (59-28 ka BP), a period characterized by climatic extremes known as Dansgaard-Oeschger cycles or Greenland interstadials/stadials. The radiocarbon-dated composite profile of 21 m stratigraphic height provided a continuous pollen profile, bryophyte macrofossils, and wood remains. Additional to palaeobotanic studies, stable isotope analyses (δ2H, δ13C, δ18O) of bulk sedimentary cellulose and plant macrofossils (wood, monocots, and bryophytes) complemented the palaeoenvironmental and palaeoclimatic studies. Among the terrestrial pollen, Poaceae and arboreal pollen showed an antithetic behaviour and high variability reflecting interstadial-stadial climatic switches. Arboreal pollen are dominated by Pinus sylvestris-type, with admixtures of Picea, Betula, Alnus, and Salix. The arboreal pollen record exhibits several maxima indicating milder climatic conditions, tentatively attributed to Greenland interstadials 5.1, 6, 8, 11/12 and 14-17. During Heinrich events 4 and 5, arboreal pollen show distinct minima underlining a severe impact of these events on regional climate and vegetation. Bryophyte assemblages show dominant wetland conditions at the site during the entire MIS 3. The sudden occurrence of Drepanocladus turgescens after 31.6 ka cal BP indicates a change from a fen to a frequently drying wetland habitat linked to enhanced glacifluvial action caused by glaciers approaching towards the site. Stable isotope analyses of extracted bulk sedimentary cellulose revealed strongly fluctuating values best interpreted by variable mixtures between a terrestrial end member (lignified plants, monocots) with high δ2H, δ13C, and δ18O values on the one hand, and wetland (bryophyte) cellulose sources with low isotope values on the other. Strong negative isotope excursions in the sedimentary and bryophyte cellulose records between 37.3 and 34.8 ka cal BP are best explained by a change to more humid conditions, possibly related to enhanced permafrost, and are contemporaneous with massive increases of Cyperaceae pollen. We conclude that the vegetation at Nesseltalgraben responded to several Greenland stadials/interstadials and Heinrich events. A straightforward correlation between vegetation oscillations and Greenland ice core records, as has been found in Alpine speleothem isotope records, is, however, not always obvious which could be the result of multiple additional abiotic and biotic factors influencing tree dissemination and growth.

How to cite: Mayr, C., Stojakowits, P., Lücke, A., Wissel, H., Hedenäs, L., Lempe, B., Friedmann, A., and Diersche, V.: Impacts of climatic extremes during MIS 3 on Alpine vegetation: evidence from Nesseltalgraben (SE Germany), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5500, https://doi.org/10.5194/egusphere-egu2020-5500, 2020.

EGU2020-19955 | Displays | CL1.12

Central European vegetation and climate dynamics during the past 130 ka at Füramoos, SW Germany

Oliver Kern, Frederik Allstädt, Andreas Koutsodendris, Bertil Mächtle, Gerd Schukraft, Oliver Heiri, and Jörg Pross

To better understand the response of Central European vegetation to rapid climate change during the late Quaternary, we have revisited the Füramoos peat bog in southwestern Germany. Located between two moraine ridges of Rissian age and comprising a near-complete sedimentary sequence from late Marine Isotope Stage (MIS) 6 to 1, this peat bog represents the longest continuous pollen record from the last glacial-interglacial cycle north of the Alps. The Füramoos site has been in the focus of several palynological studies in the past, showing that it presents an excellent archive to study the impact of Dansgaard-Oeschger (D-O) events on the Central European ecosystems (e.g., Müller et al., 2003). However, these previous studies were only of limited temporal resolution, which has yet precluded detailed insight into the ecosystem response to short-term climate change. We present a new, highly resolved pollen record (temporal resolution: 80–200 yrs) and XRF core scanning data from Füramoos spanning the past ~130 ka based on two new drill cores that consist of peat and lake sediments (Kern et al., 2019).

Our results show that closed temperate forests thrived at Füramoos during full interglacials characterized by Alnus, Corylus, Quercus, and Ulmus. The major difference between the past two interglacials is that Fagus dominates during MIS 1 whereas it is mostly absent during MIS 5e. During MIS 5, the vegetation evolved from closed temperate (MIS 5e) to boreal forests (dominated by Betula, Picea, and Pinus; MIS 5d–5a). The youngest part of the last interglacial (MIS 5d–5a) is marked by six distinct forests contractions (decreases in arboreal pollen by ~30–50%) before the establishment of a steppe vegetation that prevailed throughout the Last Glacial (MIS 2–4). In addition, seven transient increases in tree-pollen percentages document the expansion of boreal forests during MIS 2–4; they are associated with synchronous increases of Si, Ti, K and Fe contents as evidenced in XRF data.

We attribute the forest contractions during MIS 5d–5a to the cooling events C19–C24 known from marine records in the North Atlantic and terrestrial records from southern Europe. Moreover, the forest expansions during MIS 2–4 are associated with warm and moist conditions occurring during D-O events 7–12, and 14. In contrast, D-O events 13 and 15–19 don’t leave an imprint on the vegetation although their presence is clearly documented in the XRF data. Our findings emphasize that the sediments from Füramoos are exceptionally well suited to reconstruct ecosystem dynamics in Central Europe yielding unprecedented insight into the vegetation response to short-term climatic forcing north of the Alps during the past 130 kyrs.

 

Müller, U.C., Pross, J., Bibus, E., 2003. Vegetation response to rapid climate change in Central Europe during the past 140,000 yr based on evidence from the Füramoos pollen record. Quaternary Research 59, 235–245.

Kern, O.A., Koutsodendris, A., Mächtle, B., et al., 2019. X-ray fluorescence core scanning yields reliable semiquantitative data on the elemental composition of peat and organic-rich lake sediments. Science of the Total Environment 697, 134110.

How to cite: Kern, O., Allstädt, F., Koutsodendris, A., Mächtle, B., Schukraft, G., Heiri, O., and Pross, J.: Central European vegetation and climate dynamics during the past 130 ka at Füramoos, SW Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19955, https://doi.org/10.5194/egusphere-egu2020-19955, 2020.

EGU2020-7620 | Displays | CL1.12

Direct dating of marine sediments using optically stimulated luminescence techniques: Insights from ODP cores 658B and 659A.

Simon Armitage, Diana Sahy, Joanna Tindall, and Robyn Pinder

Chronologies for marine sediments are usually constructed by tuning marine proxies for global ice volume (δ18O) to the well understood variations in the Earth's orbit, by the identification of event horizons (e.g. tephra or biostratigraphic markers) and/or by radiocarbon dating. However, these techniques are not universally applicable. Optically stimulated luminescence dating (OSL) is potentially widely applicable to marine cores and may offer significant advantages over more conventional chronometric techniques. However, methodological considerations regarding the application of OSL techniques have yet to be systematically explored. Using material from Ocean Drilling Program (ODP) cores 658B and 659A, we assess the applicability of OSL dating to deep ocean sediments. For these cores, severe uranium-series disequilibrium is found, but the cause and character of this disequilibrium is spatially and temporally variable. Uranium-series disequilibrium causes the environmental dose rate to vary over time, and an iterative dose rate calculation is required to generate accurate ages. For the last glacial-interglacial cycle, these calculations yield OSL ages which are in good agreement with independent age estimates, suggesting that the application of luminescence dating techniques to deep-sea sediments merits further investigation.

How to cite: Armitage, S., Sahy, D., Tindall, J., and Pinder, R.: Direct dating of marine sediments using optically stimulated luminescence techniques: Insights from ODP cores 658B and 659A., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7620, https://doi.org/10.5194/egusphere-egu2020-7620, 2020.

EGU2020-3222 | Displays | CL1.12

Upper-ocean stratification of the NE South China Sea during the last 35 ka: Implications from oxygen isotope records from planktonic foraminifera

Tzu-Chun Wang, Andrew Tien-Shun Lin, Horng-Sheng Mii, Chorng-Shern Horng, and Christophe Colin

The sedimentation rate in the northeastern South China Sea (SCS) is high and it therefore offers an opportunity for a high-resolution paleoceanographic study. This study is based on high-resolution AMS 14C dating on forams and oxygen isotope data of two planktonic foraminifera species (Globigerinoides ruber and Neogloboquadrina dutertrei) from the sediment core, MD18-3568, collected from the northeastern SCS, to reconstruct upper-ocean stratification since 35 ka.

The marine sediment core MD18-3568 is located on the accretionary wedge off SW Taiwan at a water depth of 1,315 m, the whole core is dominated by hemipelagic sediments and is of 20.7 m in length. Samples for AMS 14C dating were selected at roughly 2 ka interval with a total of 16 samples. The ages show a continuously younging-upward trend with bottom of this core around 35,000 years BP. Samples for high-resolution oxygen isotope measurements were selected at a nominal 500-year age interval. The difference in δ18O between G. ruber (mixed layer dwelling species) and N. dutertrei (thermocline dwelling species) is used to reconstruct the upper ocean stratification with large difference indicating significant ocean stratification and vice versa. The results show moderate upper ocean stratification during 35-24 ka, and it became less stratified during the Last Glacial Maximum (LGM, 23-19 ka). During the deglacial stage, the stratification gradually became stronger until the early Holocene (12-9 ka), and it has kept strong upper-ocean stratification since 9 ka. Literature has documented less rainfall intensity during the LGM and heavy rainfall during the Holocene in southern Taiwan. We interpret the upper-ocean stratification in the NE South China Sea near Taiwan is linked to the amount of freshwater inputs from Taiwan. Less Taiwan freshwater input during the LGM led to a weak stratified upper ocean and a large amount of freshwater input from Taiwan led to a strong upper-ocean stratification during the Holocene.

How to cite: Wang, T.-C., Lin, A. T.-S., Mii, H.-S., Horng, C.-S., and Colin, C.: Upper-ocean stratification of the NE South China Sea during the last 35 ka: Implications from oxygen isotope records from planktonic foraminifera, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3222, https://doi.org/10.5194/egusphere-egu2020-3222, 2020.

EGU2020-5011 | Displays | CL1.12

Tracking Late Quaternary ice sheet dynamics by multi-proxy detrital mineral U-Pb analysis: A case study from the Odyssea contourite, Ross Sea, Antarctica

Roland Neofitu, Chris Mark, Michele Rebesco, Renata Giulia Lucchi, Nessim Douss, Caterina Morigi, Sam Kelley, and J. Stephen Daly

Late Quaternary Antarctic ice-sheet instability is recorded by ice-rafted debris (IRD) in mid- to high-latitude marine sediment, especially during marine isotope stages (MIS) 2-3, but drivers of this instability remain enigmatic (Labeyrie et al., 1986). A key step in resolving this puzzle is to determine the location of iceberg calving sites, thus highlighting ice sheet sectors exhibiting repeated instability. Single-grain U-Pb provenance analysis applied to clastic IRD provides a suitable high-resolution tool for this task, and also permits discrimination of continental IRD from volcanic material. The application of multiple proxies (apatite, rutile, and zircon) is critical in order to reduce source area fertility biases: for example, the near exclusive occurrence of zircon in felsic-intermediate igneous rocks (e.g., Hietpas et al., 2010).

Here, we present detrital apatite, zircon, and rutile U-Pb data from samples taken from a gravity core from the Odyssea contourite drift system, located on the margin of the Ross Sea (Rebesco et al., 2018) and deposited during MIS2-3. Contourites are marine clastic sediment deposits forming by along-slope, bottom currents reworking of fine-grained (clay-silt) sediments delivered by down-slope sedimentary processes (e.g. meltwaters, turbidity currents, debris flows). Crucially, contourite targetting eliminates the challenge of distinguishing IRD from coarse (sand-gravel) turbidite material in basin deposits, as ice-sheet instability is also associated with turbidite production at glaciated shelf margins (e.g., Bart et al., 1999).

We couple our analysis with the multi-proxy sediment analyses previously performed by Lucchi et al. (2019). We consider the implications of our data for the advance and retreat of the Antarctic Ice Sheet during MIS 2-3, and discuss the further applicability of our multi-proxy approach around Antarctica.

Bart, P.J, et al., 1999, Journal of Sedimentary Research, v. 69, p. 1276–1289, doi:10.2110/jsr.69.1276.

Hietpas, J, et al., 2010, Geology, v. 38, p. 167–170, doi:10.1130/G30265.1.

Lucchi, R.G, et al., 2019. EGU General Assembly 2019, Vienna April 7th–12th, Geophysical Research Abstracts Vol. 21, EGU2019-10409-1

Rebesco, M, et al., 2018, preliminary results, in POLAR 2018 SCAR/IASC Open Science Conference, v. GG2 Arctic, p. 14133.

Labeyrie, L, et al., 1986, Nature, v. 322, p. 701–706.

How to cite: Neofitu, R., Mark, C., Rebesco, M., Lucchi, R. G., Douss, N., Morigi, C., Kelley, S., and Daly, J. S.: Tracking Late Quaternary ice sheet dynamics by multi-proxy detrital mineral U-Pb analysis: A case study from the Odyssea contourite, Ross Sea, Antarctica, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5011, https://doi.org/10.5194/egusphere-egu2020-5011, 2020.

EGU2020-5925 | Displays | CL1.12

Developing a multi-methods dating framework for the Eastern Mediterranean region over the Late Quaternary

Shuang Zhang, Christina Manning, Christopher Satow, Simon J Armitage, and Simon Blockley

The Eastern Mediterranean is an important region for understanding the late Quaternary, as there is evidence for a complex pattern of climatic and environmental change, influenced by orbital forcing and complex feedback mechanisms (Rohling et al., 2013). It is also a key region for examining the dispersal of humans out of Africa. Consequently, it is important to develop robust chronologies for palaeoclimatic, environmental and archaeological records in the region, to allow synchronisation, comparison and hypothesis testing. Tephrochronology is a vital tool for correlating such records, but the fine detail of the Eastern Mediterranean tephra depositional history is not yet well defined. Part of the problem relates to a lack of cryptotephra (non-visible ash) studies on long stratigraphic records. It is well known from the Atlantic and Central Mediterranean that cryptotephra studies can significantly improve tephra inventories, and constrain the relationship between key tephra markers and important environmental transitions. Another key problem for the region is that for distal tephra there is a relatively limited geochemical database from different volcanic centres, especially in terms of trace element compositions. One important method for addressing this problem is to develop detailed tephrostratigraphic records and tephra geochemical inventories from long sediment sequences (e.g. Bourne et al., 2010; Satow et al., 2015).

Here we present the first marine crypto-tephrostratigraphy from the Levantine Sea, covering approximately the last ~200,000 years, from a long marine core (MD81-LC31). The new data for the core include tephra shard concentrations, major and trace element geochemistry, correlations to the eruptive record of the Aegean and Anatolian volcanic centres, and new radiometric age information. Our new data is compared to existing chronological information from LC-31, including sedimentological, geochemical, paleomagnetic and radiocarbon evidence. Our data helps to refine the chronology for this important record and will underpin ongoing studies into the detail of palaeoceanographic and environmental change in the region.

 

Bourne, A.J., Lowe, J.J., Trincardi, F. et al. 2010. Distal tephra record for the last ca 105,000 years from core PRAD 1-2 in the central Adriatic Sea: implications for marine tephrostratigraphy. Quaternary Science Reviews, 29(23-24), 3079-3094.

Rohling, E.J., Grant, K.M., Roberts, A.P. et al. 2013. Paleoclimate variability in the Mediterranean and Red Sea regions during the last 500,000 years: implications for hominin migrations. Current Anthropology, 54(S8), S183-S201.

Satow, C., Tomlinson, E.L., Grant, K.M. et al. 2015. A new contribution to the Late Quaternary tephrostratigraphy of the Mediterranean: Aegean Sea core LC21. Quaternary Science Reviews, 117, 96-112.

How to cite: Zhang, S., Manning, C., Satow, C., Armitage, S. J., and Blockley, S.: Developing a multi-methods dating framework for the Eastern Mediterranean region over the Late Quaternary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5925, https://doi.org/10.5194/egusphere-egu2020-5925, 2020.

EGU2020-6707 | Displays | CL1.12

Tephra-based time-markers from the Last Glacial Period recorded in the North Atlantic: an emerging tool for an east-west synchronization of paleoclimate records

Sunniva Rutledal, Sarah M. P. Berben, Trond M. Dokken, Amandine A. Tisserand, and Eystein Jansen

Geochemically distinct volcanic ash (tephra) deposits have the potential to act as a key geochronological tool to independently synchronize independent paleoclimate archives. Recent advances in the detection of invisible (crypto) tephra have led to the ongoing development of regional tephra frameworks. These frameworks provide an overview of the spatial coverage of existing geochemically distinct tephra horizons attributed to dated eruptions. Hence, these developing frameworks produce an essential tool for precise correlation of different and/or disparate climate archives within a certain region. Here, using cryptotephra analysis, we investigate the potential occurrence of two well-known tephra horizons from the Last Glacial Period (i.e. FMAZ II-1 (26.7 ka b2k) and NAAZ II (II-RHY-1) (55.3 ka b2k)), in five different marine sediment cores from the Denmark Strait, as well as the Nordic, Irminger and Labrador Seas. We have successfully identified FMAZ II-1 in both the Nordic and Irminger Seas. Even more so, this study presents the first identification of an isochronous FMAZ II-1 horizon detected in the Irminger Sea. This clearly demonstrates an increased potential for tephrochronology within this region. In addition, NAAZ II (II-RHY-1) was also recorded in the Denmark Strait, the Irminger Sea and the Labrador Sea. Using those identified tephra time-markers allows us to discuss the synchronization of paleoclimate records retrieved from the in this study and previously investigated marine sediment cores. We focus on both time periods when the tephra time-markers were deposited (i.e. Greenland Stadial-3 (FMAZ II-1) and Greenland Interstadial-15 (NAAZ II (II-RHY-1)) with the aim to provide synchronized records of ocean temperature and salinity changes. Therefore, we use Mg/Ca ratios of benthic foraminifera and stable isotopes (d18O & d13C) of benthic and planktonic foraminifera. By coupling the paleoclimatic information with the identified tephra time-markers, we provide a robust overview of the climatic conditions in the North Atlantic Ocean during these two time periods.

How to cite: Rutledal, S., Berben, S. M. P., Dokken, T. M., Tisserand, A. A., and Jansen, E.: Tephra-based time-markers from the Last Glacial Period recorded in the North Atlantic: an emerging tool for an east-west synchronization of paleoclimate records, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6707, https://doi.org/10.5194/egusphere-egu2020-6707, 2020.

EGU2020-8106 | Displays | CL1.12

Disentangling the effects of particles and circulation on 231Pa/230Th during Heinrich Stadials

Jörg Lippold, Finn Süfke, Jens Grützner, and Frerk Pöppelmeier

It has been shown that during Heinrich stadials northern deep water production ceased leading to an enhanced inflow of southern sourced water. Although Heinrich events are not considered to represent the primary trigger of Heinrich stadials the reorganisation of Atlantic ocean dynamics during their occurrences is an active field of research. In particular, Heinrich stadial 2 (HS2) is of high interest, based on the observation that the interplay with the climate system was very different during HS2 compared to HS1, although the magnitude of iceberg and freshwater discharge was similar (Hemming, 2004). During HS2 sea-level was still decreasing while the atmospheric CO­2 content was relatively stable unlike the climatic evolution during Heinrich HS1.

The notion of a reduced Atlantic Meridional Overturning Circulation (AMOC) during Heinrich Stadials is mainly strengthened by the 231Pa/230Th records from the Bermuda Rise. However, other influencing factors, capable of increasing the sedimentary 231Pa/230Th without according decreases in AMOC strength, need to be considered as well. Besides biogenic opal, high dust fluxes may also result in enhanced scavenging rate of both radionuclides and consequently higher sedimentary 231Pa/230Th signals, since another distinct feature that accompanies Heinrich Stadials is the high atmospheric concentration of dust in the northern hemisphere. Furthermore, high dust concentrations might be an indicator of a vigorous wind system and therefore strong ocean mixing, which can lead to the enhanced formation of nepheloid layers These layers are suspected to cause strong bottom scavenging and consequently high sedimentary 231Pa/230Th. Very high dust fluxes were observed e.g. during HS2 and MIS4. Here, we compare 231Pa/230Th with dust records in order to disentangle the effects of scavenging and circulation on the recorded sedimentary 231Pa/230Th from the northwestern Atlantic.

How to cite: Lippold, J., Süfke, F., Grützner, J., and Pöppelmeier, F.: Disentangling the effects of particles and circulation on 231Pa/230Th during Heinrich Stadials, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8106, https://doi.org/10.5194/egusphere-egu2020-8106, 2020.

EGU2020-9051 | Displays | CL1.12

Challenges and opportunities extending the INTIMATE tephra event stratigraphy into the Levant and Arabia.

Simon Blockley, Dustin White, Rhys Timms, Paul Lincoln, Simon Armitage, and Chris Stringer

The nature and expression of climate change in the Eastern Mediterranean, the Levant and further into Arabia is of considerable interest across a range of communities. This is in part due to the need to understand the potential for future climate forcing on environments given the complex range of climatic forcing factors that play out in the region. These include the role of prevailing winds across the Mediterranean, Northerly winds pushing down into the region during cold glacial conditions, and the influence of the Afro-Arabian Monsoon. The last glacial to interglacial period is a critical window to examine such processes, as a range of climatic signals are recorded, many of which have been proposed as correlatives of events seen in the North Atlantic. Dating issues are as ever an issue when trying to precisely compare different climate archives. To address such, the INTIMATE event stratigraphy has been developed for the North Atlantic region, with recent extensions into parts of the Mediterranean. This couples the stratigraphic framework of the Greenland Ice core records as a regional stratotype, with  a number of tephra horizons in the North Atlantic and Europe, aiding the process of correlation. The last INTIMATE event stratigraphy coupled the extended GICC05 timescale for Greenland back to 128 b2k (Blockley et al., 2014). This paper reports on attempts to test the potential for tephrochronology to be extended into the Levant and potentially Arabia, through the identification of tephra layers in sediment focussing archives, such as archaeological cave sequences. We have examined tephra presence in archaeological sites, principally in Israel, that record sediment deposition from ~30ka BP through to >100ka BP. Analyses of these records show that tephra is present in almost all of the studied sites (e.g., Kebara, Tabun, Amud, Shovakh). Moreover, tephra in these sequences can be chemically correlated to known volcanic systems, demonstrating the potential going forward to analyse long lake and marine records around the region for cryptotephra. At the same time clear challenges are emerging. Firstly, there is a range of chemistry in many of the layers and careful analyses is needed to pick apart the geochemical signal and to identify reworking, as opposed to chemically heterogeneous ash layers from a single volcano. This process is complicated by the relatively limited range of published geochemical data from some volcanic centres. This presentation will outline the current state of knowledge of key volcanic centres, particularly in the Aegean and Turkey, alongside the new Levantine data, to consider the steps needed to establish a secure extension of the INTIMATE approach into this region.

Blockley, S., et al., 2014. Quaternary Science Reviews. 106, 88-100. doi:10.1016/j.quascirev.2014.11.002.

How to cite: Blockley, S., White, D., Timms, R., Lincoln, P., Armitage, S., and Stringer, C.: Challenges and opportunities extending the INTIMATE tephra event stratigraphy into the Levant and Arabia., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9051, https://doi.org/10.5194/egusphere-egu2020-9051, 2020.

EGU2020-10124 | Displays | CL1.12

Modes of response of the subsurface western South Atlantic to the last glacial Dansgaard-Oeschger cycles

Thiago Santos, João Ballalai, Daniel Franco, Rômulo Oliveira, Douglas Lessa, Igor Venancio, Cristiano Chiessi, Henning Kuhnert, Heather Johnstone, and Ana Luiza Albuquerque

The last glacial was an interval characterized by a sequence of abrupt millennial-scale events well documented mainly from the Greenland and Antarctica ice-cores. Although the triggers are not fully understood, most of the works agree that they occurred in consonance with oscillations in the strength of the Atlantic Meridional Overturning Circulation (AMOC). Paleoceanographic reconstructions have shown that cold millennial-scale stadials were accompanied by high temperatures in the subsurface to intermediate waters of the Atlantic Ocean that may have acted in both the basal melting of ice-sheets and in the rapid atmospheric warming during the onset of warm interstadials. Assuming that recent transient models indicated an accentuated response of the subsurface western South Atlantic to the millennial-scale disturbances, here we present a paleoceanographic reconstruction in this area based on the deep-dwelling planktic foraminifer Globorotalia inflata. Our high-resolution oxygen isotope (d18O) presents a sequence of millennial-scale variability that strongly resembles the structure of the Greenland Dansgaard-Oeschger cycles, mainly during Marine Isotope Stage (MIS) 5. On the other hand, during MIS 3, this millennial-scale feature is absent or weakly represented. Cross-spectral analyzes indicate a meaningful north-to-south forcing over the western South Atlantic subsurface during early-glacial. Mg/Ca-derived temperature and ice-volume free seawater d18O (d18OIVF-SW) executed for the MIS 5 interval demonstrated that the subsurface western South Atlantic was warmer and saltier (colder and fresher) during early glacial stadial (interstadials). We hypothesized that a wide reorganization of the northward heat transport throughout the last glacial occurred, in which regions so far south as 24 ºS worked as prominent heat reservoirs in periods of weakened AMOC during MIS 5 but not necessarily during MIS 3. Our data suggest that future impacts over the AMOC along the Brazilian margin will likely be recognized in the subsurface layers of the western South Atlantic.

How to cite: Santos, T., Ballalai, J., Franco, D., Oliveira, R., Lessa, D., Venancio, I., Chiessi, C., Kuhnert, H., Johnstone, H., and Albuquerque, A. L.: Modes of response of the subsurface western South Atlantic to the last glacial Dansgaard-Oeschger cycles , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10124, https://doi.org/10.5194/egusphere-egu2020-10124, 2020.

EGU2020-11910 | Displays | CL1.12

Holocene vegetation and climate changes inferred from pollen record of Nordenskiöld Land (West Spitsbergen Island)

Diana Soloveva, Larisa Savelieva, and Sergei Verkulich

Pollen analysis is one of the methods that allow revealing ecological and climatic changes in the
past based on vegetation reconstruction. Spitsbergen (Svalbard) archipelago, as well as other
regions of the Arctic, is difficult for creation of regional models of vegetation and climate
development during the Holocene. This is primarily due to the limited distribution, low thickness
and relative young ages (usually this is the late Holocene) of organogenic deposits, which are
most suitable for palynological studies.
Nordenskiöld Land is located in the central part of the West Spitsbergen Island and different the
most favorable climatic conditions. The largest number of sites suitable for paleobotanical
researches is located here. The Coles valley has length about 12 km, well-developed profile and
situated on the north shore of Nordenskiöld Land. The field campaign with studying of
floodplain peat sediments from Coles River valley was carried out in August 2018. Two sites
(K18-15, K18-16) were studied on the remains of first terrace. Excavated deposits are
represented by leafy peat of varying degrees of decomposition with silt lenses. The laboratory
studies of sediments included radiocarbon dating, pollen and non-pollen palynomorph analyses.
They were carried out in Laboratory of St-Petersburg State University and Russian chemical-
analytical Lab on the Spitsbergen archipelago.
The pollen analysis of two sections from Coles River valley allowed us to reconstruct
paleovegetation changes. Samples from K18-15 site contain more mineral components and more
pollen and spores than samples from K18-16 site. This is probably due to the inflow of pollen
with water. The main components of spore-pollen spectra are Poaceae, Cyperaceae, Salix and
Betula sect. Nanae. The relationship between these taxa shows a different degree of moisture of
the study area under the dominance of the grass - sedge tundra. Thus, a significant influence on
the formation of spores and pollen spectra in the studied deposits is played by the dynamics of
the sedimentation.
Results of radiocarbon dating showed that studied deposits formed during mid and late
Holocene.
A generalization of all available palynological data on the Nordenskjöld land made it possible to
construct a scheme of dwarf birch (Betula sect. Nanae) distribution during the Middle and Late
Holocene. A comparison of received data with our previous data and published data from
Nordenskiöld Land shows the asynchronous of appear and distribution of shrubs on these area
from ~5000 to ~2500 yrs ago.

How to cite: Soloveva, D., Savelieva, L., and Verkulich, S.: Holocene vegetation and climate changes inferred from pollen record of Nordenskiöld Land (West Spitsbergen Island), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11910, https://doi.org/10.5194/egusphere-egu2020-11910, 2020.

EGU2020-12314 | Displays | CL1.12 | Highlight

The Adams Event, a geomagnetic-driven environmental crisis 42,000 years ago

Alan Cooper and Chris Turney and the Adams Event Team

Geological archives record multiple reversals of Earth’s magnetic poles, yet the potential impacts of these events remain unknown. The lack of any obvious association between the last major inversion, the Laschamps Excursion ~41 thousand years ago (ka), and polar ice paleoclimate records has underpinned the view that geomagnetic reversals do not have major environmental consequences. We find this is not the case. Importantly, the weakened geomagnetic field causes rapid production of atmospheric radiocarbon, and the lack of accurate calibration records has complicated dating of environmental and archaeological events in other parts of the world. Here we exploit the first detailed record of radiocarbon levels across the Laschamps Excursion using New Zealand swamp kauri (Agathis australis) trees to precisely align Pacific Basin environmental changes with polar paleoclimate records (via 10Be). Comprehensive radiocarbon-dated and glacial sequences are consistent with global chemistry climate modelling, and show synchronous climate changes across the mid to low latitudes that are concentrated during the geomagnetic field minima (42.2-41.5 ka) in the transitional phase that precedes the Laschamps Excursion. Critically, the revised timing reveals associations with a wide range of extinction events and major changes in the global archaeological record, which we hereby term the Adams Event. The climatic, environmental, and evolutionary impacts of past magnetic reversals now form a critical issue for future investigation.

How to cite: Cooper, A. and Turney, C. and the Adams Event Team: The Adams Event, a geomagnetic-driven environmental crisis 42,000 years ago, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12314, https://doi.org/10.5194/egusphere-egu2020-12314, 2020.

EGU2020-12846 | Displays | CL1.12

The role of volcanism for abrupt climate change during the last glacial period

Anders Svensson, Johannes Lohmann, Sune Olander Rasmussen, and Christo Buizert

During the last glacial period, abrupt climate events known as Dansgaard-Oeschger (DO) and Heinrich events have been observed in various types of Northern Hemispheric (NH) paleoclimate archives. It has been speculated that volcanism may play a role in the abrupt climate variability of the last glacial period, for example as a trigger of abrupt changes. The investigation of a possible link between abrupt climate events and volcanic eruptions has been hampered by the lack of a global volcanic eruption record from the last glacial period. A recent identification of 80 major bipolar volcanic eruptions in Greenland and Antarctic ice core records within the interval 12-60 ka BP now enables us to investigate this link.

Using high-resolution ice-core records of climate (δ18O), atmospheric circulation changes (calcium) and volcanic eruptions (sulfate and other volcanic proxies) we investigate the timing of abrupt climate events and large volcanic eruptions at decadal resolution. We consider possible links between major volcanic eruptions and DO onsets (NH warming), DO terminations (NH cooling), and Heinrich stadials (strong NH cooling). Heinrich stadials are cold Greenland stadial periods during which Heinrich events occurred; large Hudson Strait iceberg discharge events that are characterized by deposition of significant amounts of ice rafted debris in North Atlantic marine sediments.

Significant links of volcanic and climatic events are tested in a statistical framework under the null hypothesis of random and memoryless volcanic activity. Our analysis shows that while certainly not all abrupt climate change of the last glacial period is associated with volcanism, we find that volcanism may have induced some abrupt Greenland warming events and perhaps several of the extreme North Atlantic cold Heinrich stadials; no significant link is found between volcanism and DO terminations. We speculate that volcanic cooling can drive such transitions when the coupled system of Atlantic Ocean circulation and North Atlantic sea ice is close to a tipping point.

How to cite: Svensson, A., Lohmann, J., Rasmussen, S. O., and Buizert, C.: The role of volcanism for abrupt climate change during the last glacial period, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12846, https://doi.org/10.5194/egusphere-egu2020-12846, 2020.

EGU2020-13383 | Displays | CL1.12

Sediment record of precipitation and changes in circulation in Bohol Sea area since the Last Glacial Maximum

Sarahmae Buen, Fernando Siringan, and Ronald Lloren

Deep marine sediments may provide insights of past climate and oceanographic events. Knowledge of the past events can aid in scenario setting of future climate and their oceanographic consequences. A deep sea sediment core from the western side of Bohol Sea, a marginal sea located south of the Philippines, was used to reconstruct precipitation and identify the impacts of sea level rise on the circulation of Bohol Sea.  Five radiocarbon dates from bulk organic matter provide age control spanning back to the Last Glacial Maximum. Sedimentological (lithics and carbonate fractions; bulk density; sedimentation rate and mass accumulation rate) and geochemical (Ti, Al, Zr, Ti/Al and Y/Ni) data were used to reconstruct the sediment input for the area. Sediment input was decreasing from 20-15ka, followed by a relatively stable trend until ~9ka. After ~9ka sediment input increased up until the most recent years. Sedimentation trend follows the average winter (DJF) insolation curve at 10oN. This signifies that the sediment input reflects the general changes in precipitation in the area. Lithics and carbonate contents reflect a shift in sediment source that could be attributed to the change in circulation in the basin as the sea level rose to overtop the Surigao Strait located at the northeastern side of the basin. Greater westward transport of suspended material from large rivers to the east would contribute to the sedimentation in the western part of Bohol Sea.

How to cite: Buen, S., Siringan, F., and Lloren, R.: Sediment record of precipitation and changes in circulation in Bohol Sea area since the Last Glacial Maximum, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13383, https://doi.org/10.5194/egusphere-egu2020-13383, 2020.

EGU2020-13928 | Displays | CL1.12

Reconstruction of regional humidity variations during the Younger Dryas - Holocene transition in NW Iberia using lipid biomarker stable isotope ratios

Oliver Rach, Oliver Heiri, Castor Muñoz Sobrino, Andrea Vieth-Hillebrand, and Dirk Sachse

The impact of global temperature changes on hydroclimate, especially on regional spatial scales, is difficult to predict with global climate models. These models are generally too coarse in resolution and do not fully constrain complex atmospheric processes. We can study past climatic changes to understand the evolution of hydroclimate and identify its mechanisms on regional scales. The Younger Dryas (YD) cold period ca. 12.000 years ago was the last major abrupt climate change in Earth history and as such provides us with a natural laboratory to better understand impacts of such change on both global and regional scales. Increasingly, high resolution datasets from terrestrial archives throughout Europe are being developed which suggest atmospheric controls on abrupt changes in local ecosystems, such as the southward movement of the jet stream during the YD period. Therefore, regions located at the boundary between major moisture sources are particularly interesting, such as NW Iberia, which is situated between Atlantic and Mediterranean moisture sources and their effects. Here we present terrestrial lipid biomarker (n-alkane) stable hydrogen (δ2Hwax) and carbon (δ13Cwax) isotope records from lake Laguna de la Roya (LR) (NW Iberia), covering the YD. In combination with pollen and chironomid reconstructed temperature data, we aim to identify the evolution of atmospheric conditions during the YD in NW Iberia. Since LR is located close to the Atlantic Ocean and the reconstructed maximum YD sea-ice extent, we are specifically interested in amplitude and variability of local hydroclimatic changes compared to more continental sites during the YD-Holocene transition. During the YD, La Roya δ2Hwax values were characterized by ~6‰ more negative values compared to the preceding Allerød, indicative of colder and drier conditions, which is supported by local temperature reconstruction and pollen analysis. More continental records from western Europe such as Lake Meerfelder Maar (MFM) showed ~12‰ more negative values during YD. This doubling in depletion of MFM samples compared to LR could be, in part, attributed to the stronger temperature drop in continental Europe of about 4-6°C. For the same time at LR, the chironomid data show a drop of only 2.5°C. In general, δ2Hwax from LR were more positive, on average, compared to MFM, by ~27‰ in the Allerød and ~33‰ during the YD. However, in the Holocene both records converge to an average difference of 15‰, which is close to the modern measured 10‰ difference in δ2Hprecipition (source water for δ2Hwax) and consistent with a shared Atlantic moisture origin and subsequent Rayleigh rainout towards the East. Considering possible temperature related depletions in the LR δ2Hwax record during YD, the 27‰ difference in the Allerød implies additional influences on the recorded signal. A different moisture source area (Mediterranean) for LR during Allerød/YD period, and/or increased air mass transport distances from LR to MFM compared to Holocene conditions can explain the δ2Hwax differences. These findings suggest significant changes in the atmospheric circulation at the YD-Holocene transition when the jet stream shifted northward due to lower seasonal sea-ice expansions and intensification of the Atlantic Meridional Overturning Circulation.

How to cite: Rach, O., Heiri, O., Muñoz Sobrino, C., Vieth-Hillebrand, A., and Sachse, D.: Reconstruction of regional humidity variations during the Younger Dryas - Holocene transition in NW Iberia using lipid biomarker stable isotope ratios, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13928, https://doi.org/10.5194/egusphere-egu2020-13928, 2020.

EGU2020-13933 | Displays | CL1.12

Sequence of Heinrich Event 1 to the Bølling-Allerød in transient climate model simulations

Yuchen Sun, Xu Zhang, Martin Werner, Gregor Knorr, and Gerrit Lohmann

During the last deglaciation, the North Atlantic was punctuated by evident millennial-scale climate variability – surface cooling during Heinrich Event 1 (H1), followed by abrupt warming during the Bølling-Allerød (BA). Given its abundance of available proxy records, the last deglaciation is thus a perfect testbed for us to assess the triggering dynamics of these abrupt events. Here, a water-isotope enabled, coupled atmosphere-ocean general circulation model COSMOS-wiso (Werner et al., 2016) is applied to test different mechanisms potentially responsible for a BA abrupt warming. First, two sets of experiments are conducted to test the sensitivity to background boundary conditions: one is based on the Last Glacial Maximum (LGM), and the other was 16ka BP background climate. We also consider the spatial distribution of freshwater flux (FWF) forcing. We find that during the LGM a weak freshwater forcing cannot trigger an Atlantic Meridional Overturning Circulation (AMOC) mode transition. However, the same freshwater forcing can rapidly weaken the AMOC at 16ka BP, including an abrupt AMOC resumption in the subsequent one thousand years. Our experiments support the idea that ice volume plays a dominant role in the stability of AMOC during the termination. Furthermore, we explore the impact of different initial fields on the timing of AMOC recovery. Based on the above 16ka hosing experiment mimicking H1, several phases before the AMOC recovery are selected as initial fields, also with different FWF forcing. Our experiments indicate that the larger the FWF forcing, the longer it would take for the AMOC to recover. In all simulations, we detect an overshoot behavior typically for the BA transition. Finally, we implement a transient experiment from H1 to BA with changing GHGs and orbital forcing to explore the mechanisms of the sequence of rapid climate changes during the last termination.

Werner, M., Haese, B., Xu, X., Zhang, X., Butzin, M., and Lohmann, G.: Glacial–interglacial changes in H218O, HDO and deuterium excess – results from the fully coupled ECHAM5/MPI-OM Earth system model, Geosci. Model Dev., 9, 647-670, doi:10.5194/gmd-9-647-2016, 2016.

How to cite: Sun, Y., Zhang, X., Werner, M., Knorr, G., and Lohmann, G.: Sequence of Heinrich Event 1 to the Bølling-Allerød in transient climate model simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13933, https://doi.org/10.5194/egusphere-egu2020-13933, 2020.

EGU2020-16361 | Displays | CL1.12

South American climatic response to changes in the tropical South Atlantic Ocean hydrography during Termination 1

Karl J. F. Meier, Andrea Jaeschke, Julia Hoffmann, Barbara Hennrich, Oliver Friedrich, Cristiano M. Chiessi, Ana Luiza S. Albuquerque, Janet Rethemeyer, Dirk Nürnberg, and André Bahr

Rapid climatic reorganizations during the last Termination (i.e. Heinrich Stadials 0-1) had major impacts on the Atlantic Meridional Overturning Circulation (AMOC) strength and on global atmospheric circulation patterns. However, if and how this high-latitude forcing affected low-latitude climate variability is still poorly constrained. Here we present a high-resolution multi-proxy record from marine sediment core M125-3-35 recovered in the western tropical South Atlantic combining foraminiferal Mg/Ca, Ba/Ca ratios, stable oxygen isotope measurements and organic biomarker-based sea surface temperature (SST) proxies (TEX86 and UK’37). The near-shore core position of M125-3-35 off the Paraíba do Sul river mouth in southeastern Brazil and the means of foraminiferal Ba/Ca ratios, which depends on the quantity of continental freshwater input, enables us to investigate direct coupling of continental hydroclimate and oceanographic changes.

The data show a complex interplay of oceanic and atmospheric forcing dominating the tropical South American climate, which is mainly controlled by the strength and position of the Intertropical Convergence Zone (ITCZ) and South Atlantic Convergence Zone (SACZ). During times of weakest AMOC in Heinrich Stadial 1 (HS1) , a distinct SST peak in the tropical South Atlantic points to an enhanced Brazil Current and strong recirculation of heat within the southern hemisphere. Further, wet conditions prevailed during this time in tropical South America caused by a maximum southward shift of the ITCZ. This happened in coincidence with a temperature drop and weakening of the North Brazil Current (NBC) in the tropical North Atlantic (Bahr et al., 2018) as result of maximum AMOC slowdown. Therefore, for the first time, we reveal a clear seesaw-like pattern of the NBC and BC during times of abrupt AMOC variability.

While HS1 is generally characterized by a warm and wet anomaly in our record, Ba/Ca ratios and SST show a distinct centennial-scale alternation between warmer (colder) and wetter (drier) phases indicating a distinct climate instability during this climatic phase. A distinct offset exists between SST reconstructed using Mg/Ca, TEX86, and UK’37 which points to strong seasonal differences in the oceanographic settings and/or changes in the terrestrial input from the south American continent. These findings illustrate the strong sensitivity of hydroclimate variability in tropical South America to oceanic forcing as expected also during future climate change, in line with recent studies that showed a severe impact on modern South American climate by changes in (tropical) South Atlantic SSTs (Rodrigues et al., 2019, Utida et al., 2018).

 

Bahr, A., Hoffmann, J., Schönfeld, J., Schmidt, M. W., Nürnberg, D., Batenburg, S. J., & Voigt, S. (2018). Low-latitude expressions of high-latitude forcing during Heinrich Stadial 1 and the Younger Dryas in northern South America. Global and Planetary Change, 160, 1-9.

Rodrigues, R. R., Taschetto, A. S., Gupta, A. S., & Foltz, G. R. (2019). Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. Nature Geoscience, 12(8), 620-626.

UTIDA, Giselle, et al. Tropical South Atlantic influence on Northeastern Brazil precipitation and ITCZ displacement during the past 2300 years. Scientific reports, 2019, 9. Jg., Nr. 1, S. 1698.

How to cite: Meier, K. J. F., Jaeschke, A., Hoffmann, J., Hennrich, B., Friedrich, O., Chiessi, C. M., Albuquerque, A. L. S., Rethemeyer, J., Nürnberg, D., and Bahr, A.: South American climatic response to changes in the tropical South Atlantic Ocean hydrography during Termination 1, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16361, https://doi.org/10.5194/egusphere-egu2020-16361, 2020.

EGU2020-18522 | Displays | CL1.12

Holocene chronology and tephrostratigraphy for the varved record of Lake Diss Mere (UK)

Celia Martin-Puertas, Amy Walsh, Simon P.E Blockley, George E. Biddulph, Adrian Palmer, Arne Ramisch, and Achim Brauer

The lacustrine record of Lake Diss Mere, Norfolk (UK) is 15 m long, and shows 4.2 m of finely-laminated sediments, which are present between 9 and 13 m of core depth. The microfacies analysis identified three major seasonal patterns of deposition (microfacies 1 – 3), which corroborate the annual nature of sedimentation throughout the whole interval. The sediments are diatomaceous organic and carbonate varves with an average thickness of 0.45 mm. Microfacies 1 consists of a pale layer made of authigenic calcite crystals and diatom frustules, and a dark layer composed of a planktonic diatoms and filaments of organic matter. Microfacies 2 is similar to microfacies 1 but includes a mono-specific diatom bloom layer preceding the calcite layer. Microfacies 3 are varves with an occasional very thin calcite layer and mono-specific diatom blooms in spring and autumn.

A total of 8252 varves were counted with an error of up to  27 varves. To tie the resulting floating varve chronology to the IntCal 2013 radiocarbon timescale, we used a Bayesian Deposition model (P_Sequence with outlier detection) on all available chronological data. The data included seven radiocarbon dates, six tephra layers with known radiocarbon ages, and the relative varve counts between dated points. The resulting age uncertainties are decadal in scale (95% confidence) and allow detailed comparisons to other high-resolution Holocene varved lake and ice-core records on absolute timescales. The potential for this record as a palaeoclimate archive for the British Isles is enhanced by the Glen Garry1(2172 ± 107 cal a BP) and OMH-1852(2667 ± 38 cal a BP) volcanic eruptions which lie amongst 3 further late-Holocene cryptotephra layers at ca 2400 cal a BP, 2540 cal a BP, and 3870 cal a BP, and a mid-Holocene cryptotephra layers at ca 6420 cal a BP. Initial investigations and geochemical characterisation suggest Icelandic eruption centres for these cryptotephra layers which are known to be present in sites in the British Isles and elsewhere in Europe.

1 Barber, K., Langdon, P., Blundell, A. Dating the Glen Garry tephra: a widespread late-Holocene marker horizon in the peatlands of northern Britain. The Holocene, 18: 31-43. 2008.

Plunkett, G.M., Pilcher, J.R., McCormac, F.G., Hall, V.A. New dates for first millennium BC tephra isochrones in Ireland. The Holocene, 14: 780-786. 2004

How to cite: Martin-Puertas, C., Walsh, A., Blockley, S. P. E., Biddulph, G. E., Palmer, A., Ramisch, A., and Brauer, A.: Holocene chronology and tephrostratigraphy for the varved record of Lake Diss Mere (UK), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18522, https://doi.org/10.5194/egusphere-egu2020-18522, 2020.

EGU2020-18990 | Displays | CL1.12

A high-resolution ostracod-derived δ18O record of early Holocene abrupt climatic change from N. Scotland.

Joanna Tindall, Jonathan Holmes, Ian Candy, Melanie Leng, Rhys Timms, Christopher Francis, Daniel Petts, Simon Blockley, Ian Matthews, and Adrian Palmer

Oxygen-isotope ratios can be measured on a range of materials (e.g. ostracods, bulk carbonates, diatom silica) and this, alongside their sensitivity to changes in temperature and precipitation has resulted in oxygen-isotope analyses becoming a well-established tool for investigating palaeoclimatic change. We use δ18O of calcite from ostracod shells to reconstruct palaeotemperature and palaeo-precipitation variability during an early Holocene abrupt climatic event in Crudale Meadow, SW Orkney Mainland, Scotland, UK. The research ultimately aims to further our understanding of the driving mechanisms of palaeoclimatic change during the early Holocene by producing a high-resolution palaeoclimate record from Crudale Meadow and comparing this to the existing data of NW Europe. 

Crudale Meadow is an ideal study site for this research. Spatially, it completes a transect of published early Holocene δ18O records that span Western Ireland1, NW England2 and into Scandinavia3. It has a ~3m thick early Holocene carbonate sequence which offers a multi-decadal or multi-centennial scale study resolution and its proximity to the N. Atlantic makes it highly likely to have been influenced by any climatic changes in the region. A previous study4 presented a bulk carbonate δ18O record for Crudale Meadow but the skeletal chronology limits its usefulness for comparing with regional trends. Here, we present an improved chronology using  tephra and pollen stratigraphy, in addition to the ostracod-derived δ18O record. The studied sequence is anchored by the previously identified Saksunarvatn visible tephra layer dated to 10,210 ± 70 cal. years BP5.

Ostracods are micro-crustaceans with low-Mg calcite shells which take on the isotopic signal of the water body they are in, at the time of shell calcification. In this study, we use winter calcifying Candona spp. for isotopic analysis. These were abundant and well preserved throughout the sequence. Members of this genus have a well-characterised vital offset6 so the δ18O curve can be reliably corrected for vital effects. Moreover, the species analysed are probable winter calcifers, thus reducing the impact of isotopic enrichment through lake water evaporation during summer months. The high-resolution study allows us to identify structure within the identified isotopic excursion and suggest palaeotemperature estimates from the ostracod- and chironomid-inferred temperatures.

The new data presents a clear climatic event with internal structure, which with the current chronology, we hypothesise to be the 9.3ka event. The 9.3ka event has fewer detailed records in comparison to other early Holocene abrupt climatic events (e.g. 8.2ka). Consequently, to identify a structured isotopic signal of the 9.3ka event in NW Europe is an important contribution to our early Holocene records. It emphasises the need for high-resolution δ18O studies during the early Holocene across NW Europe in order to be able to fully identify subtle abrupt climatic events. 

References: 1Holmes, J.H. et al. (2016) QSR, p.341-349; 2Marshall, J.D. et al. (2007) Geology, 35, p.639–642; 3Hammarlund, D. et al. (2002) The Holocene, 12, p.339–351; 4Whittington, G. et al. (2015) QSR, 122, p.112–130; 5Timms, R.G.O. et al. (2018) Quat. Geochron. 46, p.28–44; 6Holmes, J.H & Chivas, A. (2002) AGU Geophysical Monograph, p.118-204.

How to cite: Tindall, J., Holmes, J., Candy, I., Leng, M., Timms, R., Francis, C., Petts, D., Blockley, S., Matthews, I., and Palmer, A.: A high-resolution ostracod-derived δ18O record of early Holocene abrupt climatic change from N. Scotland., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18990, https://doi.org/10.5194/egusphere-egu2020-18990, 2020.

EGU2020-20608 | Displays | CL1.12

Fast and slow components of millennial-scale climate changes

Chronis Tzedakis, Vasiliki Margari, Luke Skinner, Laurie Menviel, Emilie Capron, Rachael Rhodes, Maryline Vautravers, Mohamed Ezat, Belen Martrat, Joan Grimalt, and David Hodell

Despite a substantial body of evidence on millennial-scale climate variability during Marine Isotope Stage 3, uncertainty remains over the precise sequence of changes in different parts of the climate system, and ultimately their causes.  Here, we present results of joint marine and terrestrial proxy analyses from the Portuguese Margin, showing the typical succession of cold stadials and warm interstadials over the interval 35-57 ka, with most extreme changes occurring during Heinrich Stadials (HS).  The planktonic and benthic foraminiferal isotope records map onto Greenland and Antarctic temperature variations, respectively, while the pollen record bears a close similarity to changes in the Asian summer monsoon, atmospheric methane and dust concentrations, indicating coupled changes in hydroclimate in middle-to-low latitudes.  Closer inspection of HS4 and HS5 reveals considerable structure, with a relatively fast transition to maximum cooling and aridity associated with a peak in ice-rafted detritus, containing detrital carbonate grains originating from the Hudson Strait.  This was followed by an interval of slowly increasing sea-surface temperatures (SST) and moisture availability, in line with evidence indicating a gradual evolution in low-latitude hydroclimate.  A climate model experiment closely reproduces the gradual increase in SST and precipitation in W. Iberia during the final part of HS4 as a result of the recovery of the Atlantic overturning circulation, but does not capturethe abrupt warming in Greenland.  What emerges is a diversity of response timescales, from centuries in low-to-mid latitude SST and precipitation to decades in Greenland temperatures.

How to cite: Tzedakis, C., Margari, V., Skinner, L., Menviel, L., Capron, E., Rhodes, R., Vautravers, M., Ezat, M., Martrat, B., Grimalt, J., and Hodell, D.: Fast and slow components of millennial-scale climate changes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20608, https://doi.org/10.5194/egusphere-egu2020-20608, 2020.

CL1.13 – Carbon cycle changes from the Last Glacial Maximum to the Pre-industrial: new insights?

EGU2020-1338 | Displays | CL1.13 | Highlight

Global cooling linked to increased glacial carbon storage via changes in Antarctic sea ice

Alice Marzocchi and Malte Jansen

Palaeo-oceanographic reconstructions indicate that the distribution of global ocean water masses has undergone major glacial–interglacial rearrangements over the past ~2.5 million years. Given that the ocean is the largest carbon reservoir, such circulation changes were probably key in driving the variations in atmospheric CO2 concentrations observed in the ice-core record. However, we still lack a mechanistic understanding of the ocean’s role in regulating CO2 on these timescales. Here, we show that glacial ocean–sea ice numerical simulations with a single-basin general circulation model, forced solely by atmospheric cooling, can predict ocean circulation patterns associated with increased atmospheric carbon sequestration in the deep ocean. Under such conditions, Antarctic bottom water becomes more isolated from the sea surface as a result of two connected factors: reduced air–sea gas exchange under sea ice around Antarctica and weaker mixing with North Atlantic Deep Water due to a shallower interface between southern- and northern-sourced water masses. These physical changes alone are sufficient to explain ~40 ppm atmospheric CO2 drawdown—about half of the glacial–interglacial variation. Our results highlight that atmospheric cooling could have directly caused the reorganization of deep ocean water masses and, thus, glacial CO2 drawdown. This provides an important step towards a consistent picture of glacial climates.

How to cite: Marzocchi, A. and Jansen, M.: Global cooling linked to increased glacial carbon storage via changes in Antarctic sea ice, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1338, https://doi.org/10.5194/egusphere-egu2020-1338, 2020.

EGU2020-2920 | Displays | CL1.13

A weaker Atlantic Meridional Overturning Circulation at the Last Glacial Maximum led to a greater deep ocean carbon content

Laurie Menviel, Paul Spence, Luke Skinner, Kazuyo Tachikawa, Tobias Friedrich, Lise Missiaen, and Jimin Yu

While paleoproxy records and modelling studies consistently suggest that North Atlantic  Deep Water (NADW) was shallower at the Last Glacial Maximum (LGM) than during pre-industrial times, its strength is still subject to debate partly due to different signals across the North Atlantic. Here, using a series of LGM experiments performed with a carbon isotopes enabled Earth system model, we show that proxy records are consistent with a shallower and weaker NADW. A significant equatorward advance of sea-ice over the Labrador Sea and the Nordic Seas shifts the NADW convection sites to the south of the Norwegian Sea. While the deep western boundary current in the Northwest Atlantic weakens with NADW, a change in density gradients strengthens the deep southward flow in the Northeast Atlantic. A shoaling and weakening of NADW further allow penetration of Antarctic Bottom Water in the North Atlantic despite its transport being reduced. This resultant globally weaker oceanic circulation leads to an increase in deep ocean carbon of ~500 GtC, thus significantly contributing to the lower LGM atmospheric CO2 concentration.

 

How to cite: Menviel, L., Spence, P., Skinner, L., Tachikawa, K., Friedrich, T., Missiaen, L., and Yu, J.: A weaker Atlantic Meridional Overturning Circulation at the Last Glacial Maximum led to a greater deep ocean carbon content, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2920, https://doi.org/10.5194/egusphere-egu2020-2920, 2020.

EGU2020-4837 | Displays | CL1.13

Climate, Mixing, and Carbon Budgets in a LGM set-up of CESM

Markus Jochum, Guido Vettoretti, Zanna Chase, and Roman Nuterman

We use a free running Last Glacial Maximum (LGM) setup of CESM1 with its full ecosystem model to understand which processes are responsible for the large difference in atmospheric CO2 concentration between the LGM  and 1850 CE.
Just by accounting for the changed orbital forcing  and replacing today's bathymetry and icesheet orography with their Peltier et al. (2015) LGM reconstructions, leads to a 55 ppm difference in atmospheric CO2.  Additional experiments with increased aolian iron fluxes make it plausible that IPCC class ESMs can reproduce the processes that were hypothesized to be important for the observed low LGM CO2 concentration.

A second focus of our study is the connection between sea level, ocean turbulence and the strengths of the various carbon pumps. Including the full amount of the suggested increase in ocean mixing during the LGM would lead to a 20 ppm larger CO2 concentration.This suggests that either mixing during the LGM is not understood yet, or that ESMs may indeed misrepresent one or more aspects of the various carbon pumps.

We conclude with a discussion of uncertainties within the model setup, in particular with regards to the assumed structure of ocean mixing.

How to cite: Jochum, M., Vettoretti, G., Chase, Z., and Nuterman, R.: Climate, Mixing, and Carbon Budgets in a LGM set-up of CESM, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4837, https://doi.org/10.5194/egusphere-egu2020-4837, 2020.

EGU2020-9899 | Displays | CL1.13

Poleward shift in the Southern Ocean westerlies synchronous with the deglacial rise in atmospheric CO2

William Gray, Robert Wills, Elisabeth Michel, and Masa Kageyama

The Southern Ocean westerly winds are hypothesised to play a key role in regulating atmospheric CO2 over glacial-interglacial cycles; constraints on the paleo-latitude of the westerly winds have, however, remained allusive.  Here we use changes in the spatial pattern of planktic foraminiferal ∂18O to track changes in the latitude of the Southern Ocean polar and subtropical fronts over the last deglaciation, which are closely tied to the position of the westerly winds. We find a ~5° equator-ward shift in the position of the fronts (and thus westerlies) during the last glacial maximum relative to their Holocene position. Our reconstruction shows the poleward shift in the westerlies over deglaciation closely mirrors the sub-millennial scale variability seen in the rise in atmospheric CO2. We propose that changes in the position of the westerly winds modulate CO2 via changes in the extent of Southern Ocean sea ice and circulation of the abyssal ocean. Using climate model simulations, we explore the possibility of a feedback loop by which these CO2/climatic changes may lead to further changes in the position of the westerly winds.

How to cite: Gray, W., Wills, R., Michel, E., and Kageyama, M.: Poleward shift in the Southern Ocean westerlies synchronous with the deglacial rise in atmospheric CO2, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9899, https://doi.org/10.5194/egusphere-egu2020-9899, 2020.

EGU2020-1353 | Displays | CL1.13

Northern Sourced Water dominated the Atlantic Ocean during the Last Glacial Maximum

Frerk Pöppelmeier, Patrick Blaser, Marcus Gutjahr, Samuel Jaccard, Martin Frank, Lars Max, and Jörg Lippold

Increased carbon sequestration in the ocean subsurface is commonly assumed to have been one of the main causes responsible for lower glacial atmospheric CO2 concentrations. This carbon must have been stored away from the atmosphere for thousands of years, yet the water mass structure accommodating such increased carbon storage continues to be debated. Here we present new sediment derived bottom water neodymium isotope data that allow fingerprinting of water masses and their mixtures and provide a more complete picture of the Atlantic overturning circulation geometry during the Last Glacial Maximums. These results suggest that the vertical and meridional structure of the Atlantic deep water mass distribution only experienced minor changes since the last ice age. In particular, we find no compelling evidence supporting glacial southern sourced water substantially expanding to shallower depths and farther into the northern hemisphere than today, which has been inferred from stable carbon isotope reconstructions. We argue that depleted δ13C values observed in the deep Northwest Atlantic do not necessarily indicate the presence of southern sourced water. Instead, these values may represent a northern sourced water mass with lower than modern preformed δ13C values that were further modified downstream by increased sequestration of remineralized carbon, facilitated by a more sluggish glacial deep circulation. If proven to be correct, the glacial water mass structure inferred from Nd isotopes has profound implications on our understanding of the deep ocean carbon storage during the Last Glacial Maximum.

How to cite: Pöppelmeier, F., Blaser, P., Gutjahr, M., Jaccard, S., Frank, M., Max, L., and Lippold, J.: Northern Sourced Water dominated the Atlantic Ocean during the Last Glacial Maximum, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1353, https://doi.org/10.5194/egusphere-egu2020-1353, 2020.

EGU2020-8652 | Displays | CL1.13

New pH evidence for changes in intermediate South East Pacific carbon storage during the last deglaciation

Romain Euverte, Elisabeth Michel, Franck Bassinot, James Rae, William Gray, and Molly Trudgill

The leading hypotheses proposed to explain the rise in atmospheric CO2 during the last glacial to interglacial transition proposes enhanced carbon transfer from the intermediate and deep oceans to the atmosphere via the intensification of southern ocean upwelling. To test this scenario, we generated a high resolution record of boron isotopes (d11B) and B/Ca (proxies for pH and carbonate ion concentration, respectively) measured on shells of the benthic foraminifera C. wuellestorfi from a marine sedimentary core located at intermediate depth (1536m) on the Chilean margin. Our records confirm the link between changes in ocean circulation and variations in the carbonate chemistry at this site. The data also reveal the increase of intermediate water pH at the very late LGM, before the beginning of the deglaciation and the rise in atmospheric pCO2. To account for this observation, we suggest the existence of an early release of carbon from the intermediate ocean to the atmosphere in response to sea ice retreat occurring at the same time. The lack of any clear increase in atmospheric CO2 suggests that this release of intermediate ocean carbon was compensated by enhanced biological pumping.

How to cite: Euverte, R., Michel, E., Bassinot, F., Rae, J., Gray, W., and Trudgill, M.: New pH evidence for changes in intermediate South East Pacific carbon storage during the last deglaciation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8652, https://doi.org/10.5194/egusphere-egu2020-8652, 2020.

EGU2020-4241 | Displays | CL1.13

Storage/Release of Geologic Carbon Influenced Pleistocene Glacial/Interglacial Atmospheric pCO2 Cycles

Lowell Stott, Jun Shao, Kathleen Harazin, Bryan Davy, Ingo Pecher, Richard Coffin, Ludovic Reiss, and Jenny Suckale

For over 100 years scientists have puzzled over the mechanisms responsible for the repeated climate changes known as Ice Ages. A breakthrough was achieved when ice cores and marine archives revealed that the Ice Ages were paced at 100kyr intervals in alignment with Earth’s eccentricity cycle for the past million years. A second breakthrough was achieved when ice core records revealed that the Ice Ages were accompanied by ~80-90ppm variations in atmospheric pCO2. But after decades of research the mechanisms responsible for those atmospheric pCO2 variations remains an open and unresolved puzzle.

Here we present new findings that challenge the long-standing paradigm that geologic processes that regulate carbon exchange between the Earth’s interior and exterior act too slowly to have influenced the ocean and atmosphere carbon budgets on glacial time scales. The evidence includes large Δ14C excursions found in biogenic sediments in each of the Ocean basins at the last glacial termination. These excursions point to a sustained release of 14C-dead carbon spanning several thousand years.  In the Atlantic, Pacific and Indian Ocean the excursions are found near seafloor deformation features, including pockmarks that are indicative of gas-rich fluid release from sub-surface reservoirs. In the eastern equatorial Pacific, the Δ14C excursions are associated with enhanced hydrothermal metal concentrations including Fe, and Z that point to a hydrothermal source. Our ongoing research seeks to identify the storage and release mechanisms that operate on these carbon reservoirs on glacial time scales and to put constraints on the amount of carbon released at the last glacial termination. While the amount of carbon released from these geologic sources remains an open question for now, it is clear that geologic processes have affected changes in the global carbon budget on glacial time scales.

How to cite: Stott, L., Shao, J., Harazin, K., Davy, B., Pecher, I., Coffin, R., Reiss, L., and Suckale, J.: Storage/Release of Geologic Carbon Influenced Pleistocene Glacial/Interglacial Atmospheric pCO2 Cycles, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4241, https://doi.org/10.5194/egusphere-egu2020-4241, 2020.

EGU2020-3433 | Displays | CL1.13

Ocean carbon cycle during the last deglaciation in the Max Planck Institute Earth System Model

Bo Liu, Katharina Six, and Tatiana Ilyina

The deglacial atmospheric CO2 increase has been attributed to a combination of mechanisms, many of which relate to the ocean outgassing triggered by changing marine physical and biogeochemical states. To quantify the impact of proposed processes and feedback on the deglacial CO2 rise, previous modelling studies mostly conducted time-slice sensitivity experiments. Here, we present results from a transient deglaciation simulation (24 kB.P. - 1850) using the comprehensive Max Planck Institute Earth System Model (MPI-ESM). We force the model with the deglacial atmospheric greenhouse gases (CO2, CH4, N2O) concentrations, obital parameters, ice sheet reconstruction and transient dust deposition. The ocean biogeochemical component of MPI-ESM is using the same automatical adjustment of bathymetry and land-sea mask in response to deglacial continental runoff and melt water discharge. In and around the areas of changing land-sea mask, we redistribute the marine biogeochemical tracers in accord with the simulated salinity. Terrestrial organic matter is transferred from flooded land areas to the ocean, which guarantees mass conservation with respect to carbon. We also include 13C tracers in the ocean biogeochemical component to evaluate the simulated ocean state against proxy data. The initial marine nutrients and carbon inventories are set the same as those in the present-day ocean. 
During the first 3 kyr, the climate and ocean state show, as expected, only modest variations. Some flooding events of coastal areas bring terrestrial organic matter to the ocean and lead locally to CO2 outgassing for several decades. Terrestrial organic matter has a higher carbon to nutrient stoichiometry as compared to marine organic matter, thus its remineralization favours CO2 outgassing. Additionally, the accumulation of terrestrial organic matter in the top layers of the marine sediment reduces the replenishment of the water-column nutrients by the re-flux of remineralization products from marine sediment. Consequently, the strength of the local biological pump decreases. Further results will be presented and discussed. 

How to cite: Liu, B., Six, K., and Ilyina, T.: Ocean carbon cycle during the last deglaciation in the Max Planck Institute Earth System Model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3433, https://doi.org/10.5194/egusphere-egu2020-3433, 2020.

EGU2020-1370 | Displays | CL1.13

Modelled response of marine ecosystems to Last Glacial Maximum forcing

Himadri Saini, Karin F. Kvale, Katrin J. Meissner, Laurie Menviel, and Lise Missiaen

Marine plankton play a key role in climatic transitions through their ability to transfer atmospheric carbon dioxide (CO2) to the deep ocean via the biological pump. It has been suggested that the lower atmospheric CO2 concentrations during the Last Glacial Maximum (LGM) might have resulted from enhanced export production triggered by higher micronutrient (Fe, Si) availability from continental dust, particularly in the Southern Ocean. Such a scenario is consistent with higher sediment accumulation rates observed during the LGM.

In this study we use a new competition-driven ecosystem model that includes four major plankton types (diazotrophs, coccolithophores, diatoms and other general phytoplankton) to investigate their response to LGM climatic boundary conditions and to reconstructed micronutrient (Fe, Si) availability. We apply different dust fluxes, based on two plausible reconstructions (Mahowald et al., 2006 and Ohgaito et al., 2018). We compare LGM simulations with preindustrial simulations and disentangle the simulated ecosystem response due to climate forcing from the response due to micronutrient availability. We find that the ecosystem responses are complex and spatially heterogenic.

How to cite: Saini, H., Kvale, K. F., Meissner, K. J., Menviel, L., and Missiaen, L.: Modelled response of marine ecosystems to Last Glacial Maximum forcing, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1370, https://doi.org/10.5194/egusphere-egu2020-1370, 2020.

EGU2020-13761 | Displays | CL1.13

Transient simulations of the last deglaciation with interactive carbon cycle using CLIMBER-X

Matteo Willeit and Andrey Ganopolski

The processes leading to the observed atmospheric CO2 variations of ~80 ppm between glacial and interglacial times associated with the glacial cycles of the past million years are still not fully understood. Computationally efficient Earth system models are a unique tool to help elucidate the mechanisms behind the CO2 variations. Here we use the newly developed Earth system model of intermediate complexity CLIMBER-X to explore the effect of different processes on the atmospheric CO2 evolution since the last glacial maximum using transient simulations.

CLIMBER-X includes the frictional-geostrophic 3D ocean model GOLDSTEIN coupled to the HAMOCC ocean and sediment carbon cycle model, the semi-empirical statistical-dynamical atmosphere model SESAM and the land model PALADYN. The model also includes the ice sheet model SICOPOLIS, but for in presented experiments the ice sheets are prescribed from reconstructions. CLIMBER-X can simulate ~10,000 model years per day.

In transient experiments of the last 20,000 years we test the sensitivity of simulated atmospheric CO2 to changes in ocean circulation, ocean temperature, sea level, atmospheric dust deposition and the model representation of crucial ocean biogeochemistry and land carbon cycle processes.

How to cite: Willeit, M. and Ganopolski, A.: Transient simulations of the last deglaciation with interactive carbon cycle using CLIMBER-X, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13761, https://doi.org/10.5194/egusphere-egu2020-13761, 2020.

EGU2020-18562 | Displays | CL1.13

Role of sediment in the marine C cycle—insights from a coupled ocean-sediment model

Christoph Völker, Ying Ye, Martin Butzin, Peter Köhler, and Guy Munhoven

Fluxes of particles and solutes between deep ocean and marine sediment are essential in the biogeochemical cycles of carbon and nutrients, such as nitrogen, silicon and iron. On a millennial time scale, sediment accumulation connects the ocean with the surface lithosphere which impacts the climate through weathering. Despite the importance of sediments in the climate system, fluxes between ocean and sediment are poorly constrained and most of the ocean models use very simplified parameterisation based on some measurements on shelves.

Here we like to present the coupling of the marine biogeochemical model REcoM2 (Regional Ecosystem Model, version2) coupled with the sediment model MEDUSA (Model of Early Diagenesis in the Upper Sediment with Adaptable complexity) for a better understanding of the role of sediments in the marine carbon cycle. MEDUSA resolves chemical reactions and physical processes within the marine sediments. As REcoM allows deviations from the Redfield C:N ratio both in phytoplankton production and remineralisation, the molar ratio of carbon and nitrogen in sinking fluxes vary with time and depth. Our MEDUSA set-up is made to be able to deal with flexible stoichiometry in sinking fluxes by resolving two classes of organic matter with different C:N ratios and degradation rates. We performed model-data comparisons of calcite, opal and particulate organic matter in sediment for present-day to constrain the biological productivity and sinking behaviour of particles in water column, and studied the role of the marine carbon cycle for glacial carbon storage and the drawdown of atmospheric CO2 in simulations under glacial climate conditions. 

How to cite: Völker, C., Ye, Y., Butzin, M., Köhler, P., and Munhoven, G.: Role of sediment in the marine C cycle—insights from a coupled ocean-sediment model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18562, https://doi.org/10.5194/egusphere-egu2020-18562, 2020.

EGU2020-13279 | Displays | CL1.13

PMIP-carbon: towards a multi-models comparison of climate-carbon interactions at the Last Glacial Maximum

Nathaelle Bouttes, Ruza Ivanovic, Ayako Abe-Ouchi, Hidetaka Kobayashi, Laurie Menviel, Akira Oka, and Akitomo Yamamoto and the PMIP-carbon members

More and more climate models now include the carbon cycle, but multi-models studies of climate-carbon simulations within the Climate Model Intercomparison Project (CMIP) are limited to present and future time periods. In addition, the carbon cycle is not considered in the simulations of past periods analysed within the Paleoclimate Modelling Intercomparison Project (PMIP). Yet, climate-carbon interactions are crucial to anticipate future atmospheric CO2 concentrations and their impact on climate. Such interactions can change depending on the background climate, it is thus necessary to compare model results among themselves and to data for past periods with different climates such as the Last Glacial Maximum (LGM).

The Last Glacial Maximum, around 21,000 years ago, was about 4°C colder than the pre-industrial, and associated with large ice sheets on the American and Eurasian continents. It is one of the best documented periods thanks to numerous paleoclimate archives such as marine sediment cores and ice cores. Despite this period having been studied for years, no consensus on the causes of the lower atmospheric CO2 concentration at the time (around 180 ppm) has been reached and models still struggle to simulate these low CO2 values. The ocean, which contains around 40 times more carbon than the atmosphere, likely plays a key role, but models tend to simulate ocean circulation changes in disagreement with proxy data, such as carbon isotopes.

This new project aims at comparing, for the first time, the carbon cycle representation at the Last Glacial Maximum from general circulation models and intermediate complexity models. We will explain the protocol and present first results in terms of carbon storage in the main reservoirs (atmosphere, land and ocean) and their link to key climate variables such as temperature, sea ice and ocean circulation. The use of coupled climate-carbon models will not only allow to compare changes in the carbon cycle in models and analyse their causes, but it will also enable us to better compare to indirect data related to the carbon cycle such as carbon isotopes.

How to cite: Bouttes, N., Ivanovic, R., Abe-Ouchi, A., Kobayashi, H., Menviel, L., Oka, A., and Yamamoto, A. and the PMIP-carbon members: PMIP-carbon: towards a multi-models comparison of climate-carbon interactions at the Last Glacial Maximum, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13279, https://doi.org/10.5194/egusphere-egu2020-13279, 2020.

EGU2020-11702 | Displays | CL1.13

How well is the deep Tore seamount basin ventilated?

Laura Antón, Susana Lebreiro, Silvia Nave, Luke Skinner, Elizabeth Michel, Claire Waelbroeck, and Francisco Sierro

The Last Glacial Maximum (LGM) was characterized by increased carbon storage in the deep ocean, as well as extremely poorly ventilated southern-sourced deep water (AABW) compared to northern-sourced deep water (NADW).

Here we analyse benthic (Cibicidoides wellerstorfi) d13C, and compare 3 sites sitting on the deep floor at 5 km water depth: MD13-3473 in the Tore inside basin; MD03-2698 in the Iberian margin; and TN057-21 in the South Atlantic. The Tore Seamount is a geological structure 300 km off the West Iberian margin at 40°N latitude. It has a crater-like morphology with a 5500 m deep basin in its middle, where calypso core MD13-3473 was collected, confined from the open ocean by a summit rim at 2200 m water depth (wd). The only connection between the deepest Tore Seamount basin and the Atlantic circulation is a NE gateway down to 4300 mwd.

The results for the LGM show similar values around -1.0 ‰ for the South Atlantic and the Iberian margin, in other words these sites were both bathed by AABW. However, the Tore basin record exhibits values around 0 ‰, similarly to open sites in the Iberian margin at 3.5 km depth. This seems to indicate a remarkable isolation of the Tore inside basin from the Atlantic deep bottom waters influence.

Among other things, we plan to examine the residence time of the Tore basin bottom water by measuring the radiocarbon age difference between benthic and planktonic foraminifera. 

Our results confer to this enclosed environment the status of an in-situ deep ocean laboratory where to test hypotheses of past ocean circulation changes like the role of deep waters in sequestering glacial CO2. Core MD13-3473 covers 430 thousands of years, therefore 5 deglacial cycles (Spanish project “TORE5deglaciations”, CTM2017-84113-R, 2018-2020).

How to cite: Antón, L., Lebreiro, S., Nave, S., Skinner, L., Michel, E., Waelbroeck, C., and Sierro, F.: How well is the deep Tore seamount basin ventilated?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11702, https://doi.org/10.5194/egusphere-egu2020-11702, 2020.

EGU2020-20171 | Displays | CL1.13

Inferring deglacial ventilation ages in Western Mediterranean waters using cold-water corals

Maria de la Fuente, Luke Skinner, Gemma Ercilla, Elia d'Acremont, Luis Somoza, Francisco Javier González Sanz, Claudio Lo Iacono, Guillem Corbera, Leopoldo D. Pena, Aleksey Sadekov, Pete Scott, Pu Zhang, Hai Cheng, and Isabel Cacho

Mediterranean Outflow Water (MOW) acts as a net source of salt and heat into North Atlantic intermediate depths that ultimately contributes to the Atlantic Meridional Overturning Circulation. On this basis, it has been hypothesised that MOW variability might influence global climate. Although several studies have documented major glacial-interglacial changes in deep- and intermediate Mediterranean circulation patterns, little is known about associated impacts on MOW properties, in particular its residence time and geochemical signature. Using a set of cold-water coral samples from along the ‘pre-MOW’ and MOW path, i.e. from the Alboran Sea to the northern Galician Bank including the Strait of Gibraltar and the Gulf of Cadiz, we aim to identify changes in both the ventilation state of the water masses flowing out of the Mediterranean and the distribution of coral growth.With this purpose, paired Uranium-series and AMS radiocarbon ages have been obtained in the same coral samples allowing any potential change in the reservoir age to be inferred accurately, as well as allowing a spatio-temporal ‘coral map’ to be created. Furthermore, these results have been complemented by trace element measurements in benthic foraminifera from the Alboran coral mound sediment core.

Our results show a particular spatio-temporal coral distribution with glacial presence only at the deepest sites of the Gulf of Cadiz (~1000m), followed by ~300m Western Mediterranean (WMed) coral appearance across the deglaciation/mid Holocene (14-4 kyr), to end with a proliferation at the Strait of Gibraltar and Galicia Bank from ~6 kyr towards the present. We hypothesise 1) that ~300m WMed area might have been bathed in Atlantic waters inflow during the glacial due to sea-level drop, returning to LIW (Levantine Intermediate Water) influence over the deglaciation, and 2) that MOW reached deeper areas outside of the Mediterranean Sea in the Gulf of Cadiz during the glacial period. Regarding the reservoir age, little change at the WMed is observed at 150-450m across the deglaciation as compared to the large ventilation excursion detected in the Iberian Margin at ~1000m. However, a ventilation age gradient of ~300 yr related to water depth is observed within WMed corals when appearing at the Bølling-Allerød, in synchrony with significant changes in hydrographical parameters inferred from foraminiferal trace element from the same area. Overall, our results suggest a water mass reorganization at the surface-intermediate layer of the WMed during the deglaciation and early Holocene, but the ultimate nature of these changes needs yet to be explored by further analysis of Nd isotopes as well as of trace elements beyond the deglaciation.

How to cite: de la Fuente, M., Skinner, L., Ercilla, G., d'Acremont, E., Somoza, L., González Sanz, F. J., Lo Iacono, C., Corbera, G., Pena, L. D., Sadekov, A., Scott, P., Zhang, P., Cheng, H., and Cacho, I.: Inferring deglacial ventilation ages in Western Mediterranean waters using cold-water corals, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20171, https://doi.org/10.5194/egusphere-egu2020-20171, 2020.

EGU2020-4230 | Displays | CL1.13

Release of old carbon from the deep South Pacific during the last deglaciation

Yuhao Dai, Jimin Yu, and Patrick Rafter

The release of old carbon via the Southern Ocean has been thought to contribute to the last deglacial atmospheric CO2 rise, but underlying processes are not fully understood, in part, due to insufficient high-fidelity radiocarbon (Δ14C) reconstructions minimally complicated by age models and release of “dead carbon”. Here, we present a new deep-water Δ14C record for a core located at 3.3 km water depth from the Southwest Pacific, based on a robust age model using planktonic Mg/Ca along with co-existing benthic 14C measurements. Our results confirm previous records that suggest enhanced ventilation in the Southern Ocean during Heinrich Stadial 1 and the Younger Dryas. For the first time, our data show a large Δ14C decline during the Antarctic Cold Reversal, indicating strengthened stratification in the deep South Pacific. Our results strongly support that the deep ocean supplied old carbon to the atmosphere during the last deglaciation.

How to cite: Dai, Y., Yu, J., and Rafter, P.: Release of old carbon from the deep South Pacific during the last deglaciation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4230, https://doi.org/10.5194/egusphere-egu2020-4230, 2020.

Atmospheric carbon dioxide (CO2) concentrations during the last glacial period (70,000 – 23,000 years ago) fluctuated on millennial timescales closely following variations in Antarctic temperature. This close coupling has suggested that the sources and sinks driving millennial scale CO2 changes are dominated by processes in the Southern Ocean. However, recent work revealed centennial-scale increases in CO2 during abrupt climate events of the last deglaciation which may represent a second mechanism of carbon cycle variability. 

Here we analyze a high resolution CO2 record from the last glacial period from the West Antarctic Ice Sheet (WAIS Divide) that precisely defines the timing of CO2 changes with respect to Antarctic ice core proxies for temperature, dust delivery, and sea-ice extent down to the centennial-timescale. Although CO2 closely tracks all these proxies over millennia, peak CO2 levels most often lag behind all proxies by a few hundred years. This decoupling from Antarctic climate variability is most prominent during the onset of DO interstadial events when CO2, CH4 and Greenland temperature all increase simultaneously. Regression analysis suggests that the CO2 variations can be explained by a combination of two mechanisms: one operating on the time scale of Antarctic climate variability, and a second responding on the Dansgaard-Oeschger time scale.  

Recent δ13C-CO2 data from the last glacial period support our finding that CO2 variability is the sum of multiple mechanisms.  The Antarctic climate variability is likely associated with the release of respired organic carbon from the deep ocean.  Superimposed on these oscillations are two types of centennial-scale changes: CO2 increases and δ13C-CO2 minima in the middle of Heinrich stadials and ii) CO2 increases and small changes in δ13C-CO2 that at the onset of DO interstadial event.

To provide a comprehensive and quantitative constraint on the mechanisms of CO2 variability during the last glacial period, we run a large suite of transient box model experiments (n = 500) forced with varying combinations of forcings based on proxy time-series (e.g. AABW formation, NADW formation, ocean temperature, dust delivery, and sea-ice extent).  Using data constraints from the ice core records of CO2, δ13C-CO2 and mean ocean temperature, we arrive at an ensemble of scenarios that can explain a large amount of the centennial and millennial-scale variability observed in the ice core record. Parsing this into a series of factorial experiments we find that Southern Hemisphere processes can explain 80% of the observed variability and Northern Hemisphere processes account for the remaining 20%.  A further breakdown on the level of individual mechanisms is marred by the high degree of correlation between carbon cycle forcings likely operating in the Southern Hemisphere.  None-the-less, our results highlight how multiple mechanisms operating over multiple timescales may have interacted during the last glacial period to drive changes in atmospheric CO2

How to cite: Bauska, T., Marcott, S., and Brook, E.: The ice core record of atmospheric CO2 variability during the Last Glacial Period: new insights from timing and isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7292, https://doi.org/10.5194/egusphere-egu2020-7292, 2020.

It has been known since the 1980s that as the Last Glacial Period ended carbon dioxide (CO2) rose from ~190 ppm to 280 ppm, but the source of this carbon is still unknown. Here it is proposed that the reason why this problem is still unsolved is that the current carbon cycle models are based on outdated chemistry. For instance, many geologists and oceanographers believe that CO2 is drawn down out of the atmosphere by silicate weathering. This idea originated in the 19th Century when it was believed that CO2 was an acid.  Now we know that acids are proton donors and that only when CO2 reacts with water does it form weak carbonic acid (H2CO3). Silicate weathering is the result of the protons (H+ ions) from the carbonic acid increasing the solubility of the insoluble silicate rocks, with the carbon (HCO3 and CO32) acting purely as spectator ions in those reactions.

Here a new carbon cycle is presented where:

  • 1) a new reservoir, the ‘aquasphere’, is incorporated in the inorganic carbon system, which is the hydrosphere less the oceans, i.e. freshwater including rainwater;
  • 2) CO2 is drawn down from the atmosphere into the aquasphere by dissolution in rainwater, rather than by silicate weathering;
  • 3) CO2 is also drawn down from the atmosphere by photosynthesis, some of which is respired into the aquasphere;
  • 4) carbonate weathering is a source of dissolved inorganic carbon to the aquasphere and from there to the oceans, rather than being a neutral player in the carbon system;
  • 5) carbonate sediments in the ocean, which provides a major sink for inorganic carbon, are produced by biotic activity, not chemical precipitation, thus no CO2 is generated by their formation;
  • 6) the carbon sediment sink can also become an inorganic carbon source if the lysocline shoals, e.g. when oceanic pH falls or sea level rises.

With this model, it can be shown that the sea-level rise, caused by melting ice sheets, will shoal the lysocline, which explains both the source and the cause of increased atmospheric CO2 during glacial terminations. This implies that there will be a further increase in CO2 from the ocean sediments caused by sea-level rise when the Greenland and West Antarctic ice sheets melt as a result of anthropogenic global warming. Moreover, since ocean acidification also causes the lysocline to shoal, producing more atmospheric CO2 in a positive feedback loop, then we may have a repeat of the PETM (Paleo-Eocene Thermal Maximum) event when runaway global warming was caused by an increase in atmospheric CO2.

How to cite: McDonald, A.: Increase in CO2 during the Last Termination explained by a new inorganic carbon cycle. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19047, https://doi.org/10.5194/egusphere-egu2020-19047, 2020.

EGU2020-10779 | Displays | CL1.13

Revisiting Carbon Storage in Northern Peatlands: Ground-Based Estimates and Top-Down Constraints from Holocene Global Carbon Budget Reconstructions
not presented

Zicheng Yu, Fortunat Joos, Thomas Bauska, Benjamin Stocker, Hubertus Fischer, Julie Loisel, Victor Brovkin, Gustaf Hugelius, Christoph Nehrbass-Ahles, Thomas Kleinen, and Jochen Schmitt3

Northern peatlands store large amounts of carbon (C) and have played an important role in the global carbon cycle since the Last Glacial Maximum. Most northern peatlands have established since the end of the deglaciation and accumulated C over the Holocene, leading to a total present-day stock of 500 ± 100 GtC. This is a consolidated estimate, emerging from a diversity of methods using observational data. Recently, Nichols and Peteet (2019 Nature Geoscience 12: 917-921) presented an estimate of the northern peat C stock of 1055 GtC—exceeding previous estimates by a factor of two. Here, we will review various approaches and estimates of northern peatlands C storage in the literature and consider peat C storage in the context of the Holocene global C budget. We argue that the estimate by Nichols and Peteet is an overestimate, caused by systematic bias introduced by their inclusion of data that are representative for the major peatland regions and of records that lack direct measurements of C density. In particular, some “peatland” sites and data that were included in their synthesis were likely from lacustrine sediments prior to the onset of peat deposits. Furthermore, we argue that their estimate cannot be reconciled within the constraints offered by ice-core and marine records of stable C isotopes and estimated contributions from other processes that affected the terrestrial C storage during the Holocene.

How to cite: Yu, Z., Joos, F., Bauska, T., Stocker, B., Fischer, H., Loisel, J., Brovkin, V., Hugelius, G., Nehrbass-Ahles, C., Kleinen, T., and Schmitt3, J.: Revisiting Carbon Storage in Northern Peatlands: Ground-Based Estimates and Top-Down Constraints from Holocene Global Carbon Budget Reconstructions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10779, https://doi.org/10.5194/egusphere-egu2020-10779, 2020.

EGU2020-18643 | Displays | CL1.13

Sediment archives from the Arctic Ocean provide evidence for massive remobilization of permafrost carbon in Siberia during the last glacial termination

Jannik Martens, Birgit Wild, Tommaso Tesi, Francesco Muschitiello, Matt O’Regan, Martin Jakobsson, Igor Semiletov, Oleg V. Dudarev, and Örjan Gustafsson

Environmental archives and carbon cycle models suggest that climate warming during the last deglaciation (the transition from the last glacial to the Holocene) caused large-scale thaw of Arctic permafrost, followed by the release of previously freeze-locked carbon. In addition to changing oceanic circulation and outgassing of CO2 trapped in the deep glacial ocean, organic carbon (OC) release from thawing permafrost might have contributed to the rise in atmospheric CO2 by 80 ppmv or ~200 Pg C between 17.5 and 11.7 kyr before present (BP). The few Arctic sediment cores to date, however, lack either temporal resolution or reflect only regional catchments, leaving most of the permafrost OC remobilization of the deglaciation unconstrained.

Our study explores the flux and fate of OC released from permafrost to the Siberian Arctic Seas during the last deglaciation. The Arctic Ocean is the main recipient of permafrost material delivered by river transport or collapse of coastal permafrost, providing an archive for current and past release of OC from thawing permafrost. We studied isotopes (Δ14C-OC, δ13C-OC) and terrestrial biomarkers (CuO-derived lignin phenols, n-alkanes, n-alkanoic acids) in a number of sediment cores from the Siberian Shelf and Central Arctic Ocean to reconstruct source and fate of OC previously locked in permafrost.

The composite record of three cores from the Laptev, East Siberian and Chukchi Seas suggest a combination of OC released by deepening of permafrost active layer in inland Siberia and by thermal collapse of coastal permafrost during the deglaciation. Coastal erosion of permafrost during the deglaciation suggests that sea-level rise and flooding of the Siberian shelf remobilized OC from permafrost deposits that covered the dry shelf areas during the last glacial. A sediment core from the Central Arctic Ocean demonstrates that this occurred in two major pulses; i) during the Bølling-Allerød (14.7-12.9 kyr BP), but most strongly ii) during the early Holocene (11-7.6 kyr BP). In the early Holocene, flooding of 80% of the Siberian shelf amplified permafrost OC release to the Arctic Ocean, with peak fluxes 10-9 kyr BP one order of magnitude higher than at other times in the Holocene.

It is likely that the remobilization of permafrost OC by flooding of the Siberian shelf released climate-significant amounts of dormant OC into active biogeochemical cycling and the atmosphere. Previous studies estimated that a pool of 300-600 Pg OC was held in permafrost covering Arctic Ocean shelves during the last glacial maximum; one can only speculate about its whereabouts after the deglaciation. Present und future reconstructions of historical remobilization of permafrost OC will help to understand how important permafrost thawing is to large-scale carbon cycling.

How to cite: Martens, J., Wild, B., Tesi, T., Muschitiello, F., O’Regan, M., Jakobsson, M., Semiletov, I., Dudarev, O. V., and Gustafsson, Ö.: Sediment archives from the Arctic Ocean provide evidence for massive remobilization of permafrost carbon in Siberia during the last glacial termination, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18643, https://doi.org/10.5194/egusphere-egu2020-18643, 2020.

CL1.14 – Past climate reconstructions from ice core records: limits and gaps in the interpretation of proxies embedded in the ice

EGU2020-21734 | Displays | CL1.14

Offsets among ice core derived CO2 reconstructions covering the Holocene and Last Interglacial

Christoph Nehrbass-Ahles, Jochen Schmitt, Bernhard Bereiter, Sarah Eggleston, Lars Mächler, Lucas Silva, Thomas Stocker, and Hubertus Fischer

There is a general consensus in the scientific community that Greenlandic ice cores do not allow for reconstruction of past atmospheric carbon dioxide (CO2) concentrations due to artifacts likely caused by in-situ production of excess CO2 from both organic and inorganic carbon compounds within the ice archive. In the case of Antarctic ice cores such processes are thought to be insignificant, making Antarctic ice cores the only direct archive of past atmospheric CO2 concentrations beyond modern observations. However, with increasing numbers of high-precision CO2 reconstructions from multiple Antarctic ice cores – mostly covering specific time intervals during the last 130 ka – it has become evident that offsets in CO2 are not unique to Greenland ice cores. Over the last decade evidence is mounting that small systematic offsets of typically 2-10 ppm exist among different Antarctic CO2 records covering the same time period. Because CO2 is well-mixed within the atmosphere different ice cores should agree with each other within their measurement uncertainty, independent of the ice core drilling site. The unambiguous detection of such offsets between different ice cores is only possible in the absence of strong atmospheric trends, such as during interglacial periods. Here, we take a closer look at CO2 offsets among records available for the Holocene and the Last Interglacial and investigate their long-term evolution. We present unpublished CO2 data from multiple ice cores, including Talos Dome and EPICA Dome C, and discuss possible offset producing mechanisms. We speculate that Antarctic ice cores are also subject to slowly progressing in-situ production of CO2 over many millennia, similar to Greenlandic ice cores, however to a much smaller extent and limited to about 10 ppm. We further note a tendency for higher offsets in the case of high accumulation sites. Despite all possible mechanisms that have the potential to alter CO2 concentrations within the ice archive, we highlight that the overall integrity of the ice core-based CO2 reconstruction is not in question, as all records generally share the same common signal. However, the absolute CO2 levels should be interpreted with care and in light of such potential offsets.

How to cite: Nehrbass-Ahles, C., Schmitt, J., Bereiter, B., Eggleston, S., Mächler, L., Silva, L., Stocker, T., and Fischer, H.: Offsets among ice core derived CO2 reconstructions covering the Holocene and Last Interglacial, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21734, https://doi.org/10.5194/egusphere-egu2020-21734, 2020.

EGU2020-20586 | Displays | CL1.14

Continuous (CFA) CH4 record of the Elbrus ice core, Caucasus (preliminary results)

Diana Vladimirova, Xavier Faïn, Patrick Ginot, Stanislav Kutuzov, and Vladimir Mikhalenko

Methane (CH4) is the third most powerful greenhouse gas. However, its warming potential is two orders of magnitude higher than of carbon dioxide and its residence time in the atmosphere is only 9.1 ± 0.9 years. It makes CH4 a good indicator of rapid climate variations both under natural conditions and due to the anthropogenic influence.

The Elbrus ice core was drilled in 2009 on the Western Plato (43°20’53.9’’N, 42°25’36.0’’E) at elevation 5115 m a.s.l. It is 182 m long and is dated back to 280 ± 400 CE (Common Era). The CH4 mixing ratios were analyzed using a continuous flow analysis (CFA) system paired with optical-feedback cavity-enhanced absorption spectroscopy. The measurements campaign was organized at Institut des Géosciences de l'Environnement (IGE), Grenoble, France. This is a first high-resolution mid-latitude CH4 record. The record aims to better constrain the past evolution of mid-latitude methane sources.

Here we present preliminary results of the methane concentration measurements of the Elbrus ice core in high-resolution (CFA CH4 record). We observe in situ production (max level 2900 ppb) and a baseline. We inspect a potential origin of the multiple spikes in the high-resolution record. Supposedly, either an in-situ production in the dust-rich layers occurred or a gas dissolution in the melt layers took place. However, the possibility of in-situ production during continuous gas extraction has to be further studied. The identified melt layers can serve as an indicator of interrupted stable water isotopic signal and may be supportive in the regional temperature reconstructions based on the Elbrus ice core record. A cleaned off the spikes record is inspected for the natural variability of the CH4 baseline concentration related to the short-term climate and methane emissions variability.

How to cite: Vladimirova, D., Faïn, X., Ginot, P., Kutuzov, S., and Mikhalenko, V.: Continuous (CFA) CH4 record of the Elbrus ice core, Caucasus (preliminary results), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20586, https://doi.org/10.5194/egusphere-egu2020-20586, 2020.

EGU2020-15202 | Displays | CL1.14

First continuous high-resolution aerosol record from the East Greenland Ice Core Project (EGRIP), covering the last 15,000 years

Camilla Marie Jensen, Tobias Erhardt, Giulia Sinnl, and Hubertus Fischer

Ice sheets are reliable archives of atmospheric impurities such as aerosols and gasses of both natural and anthropogenic origin. Impurity records from Greenland ice cores reveal much information about previous atmospheric conditions and long-range transport in the Northern hemisphere going back more than a hundred thousand years.

Here we present the data from the upper 1,411 m from the EGRIP ice core, measuring conductivity, dust, sodium, calcium, ammonium, and nitrate. These records contain information about ocean sources, transport of terrestrial dust, soil and vegetation emissions as well as biomass burning, volcanic eruptions, etc., covering approximately the past 15,000 years. This newly obtained data set is unique as it provides the first high-resolution information about several thousands of years of the mid-Holocene period in Greenland that none of the previous impurity records from the other deep Greenland ice cores had managed to cover before due to brittle ice. This will contribute to further understanding of the atmospheric conditions for the pre-industrial period.

The ammonium record contains peaks significantly higher than the background level. These peaks are caused by biomass burning or forest fires emitting plumes of ammonia large enough so that they can extend to the free troposphere and be efficiently transported all the way to the Greenland ice sheet. Here we present preliminary results of the wild fire frequency covering the entire Holocene, where the wild fires are defined as outliers in the ammonium record of annual means.

How to cite: Jensen, C. M., Erhardt, T., Sinnl, G., and Fischer, H.: First continuous high-resolution aerosol record from the East Greenland Ice Core Project (EGRIP), covering the last 15,000 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15202, https://doi.org/10.5194/egusphere-egu2020-15202, 2020.

EGU2020-14381 | Displays | CL1.14

Representativeness of decadal-scale climate signals in ice-core aerosol records

Tobias Erhardt, Camilla Jensen, Maria Hörhold, and Hubertus Fischer

Records of past aerosol deposition to the polar ice sheets have enabled us to study variability in different parts of the earth system in great temporal detail over past glacial cycles. Furthermore, the high temporal resolution of ice-core aerosol records has been the basis for precise dating of climate records using annual layer counting. Nonetheless, the intermittent character of show deposition and especially the redistribution of snow on the surface of the ice sheet intrinsically affects the preservation of climate signals in the ice. This strongly limits how representative a climate record from a single ice core can be. It has been well established that even though seasonal variability might be preserved in an ice-core aerosol record, the inter annual variability of that record is different from a different core from the same site.

Until now most of the investigations have focused on inter annual representatives. This is mostly due to limited sample availability as multiple long records are needed for investigations on longer time scales. However, with the prospect of new high-resolution records over the Holocene from the EastGRIP ice core, understanding the representativeness of this record on decadal time scales is an important question. To tackle this problem, we use high-resolution aerosol records from multiple closely spaced ice cores from the EastGRIP deep ice core drill site. The records approximately cover the last millennium and are sub-seasonally resolved enabling the study of interannual to decadal variability over multiple aerosol species. All records are dated using annual layer counting and cross dating to the EastGRIP deep ice core using volcanic match points. In the presented pilot study, we focus on records of sea-salt and dust related aerosol species as well as on episodic aerosol signals from volcanos and wildfires.

How to cite: Erhardt, T., Jensen, C., Hörhold, M., and Fischer, H.: Representativeness of decadal-scale climate signals in ice-core aerosol records, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14381, https://doi.org/10.5194/egusphere-egu2020-14381, 2020.

EGU2020-16739 | Displays | CL1.14

Diffusion of climatic signals in ice cores by vein migration

Felix S. L. Ng

EGU2020-15986 | Displays | CL1.14

Soluble/insoluble fractionation of elements in mineral dust from Antarctic samples

Elena Di Stefano, Giovanni Baccolo, Paolo Gabrielli, Aja Ellis, Barbara Delmonte, and Valter Maggi

Deposition of dust on the Antarctic continent is controlled by many factors, such as the primary supply of dust particles from the continents [1], the long range transport, the hydrological cycle and the snow accumulation rate [2, 3]. Thus, the study of mineral dust in ice cores gives the possibility to reconstruct past climatic and environmental conditions.

Generally, when an ice core sample is melted, soluble elements dissolve in water, while insoluble elements remain in the solid phase. Other elements, such as iron, calcium, potassium and sulfur, typically partition between the soluble and the insoluble fractions. However recent studies have shown how the dust record may be chemically and physically altered in deep ice cores [4, 5], posing a challenge in the interpretation of the climatic signal that may lie within such samples. In particular, relative abundance of specific elements was shown to be different when comparing shallow and deep dust samples, suggesting that post depositional processes are taking place.

In this study we present a comparison between samples belonging to the Talos Dome ice core analyzed through two different techniques: instrumental neutron activation analysis (INAA) and inductively coupled plasma mass spectrometry (ICP-MS). While the former is used to investigate only the insoluble fraction of dust, as it can only be applied to solid samples, the latter is used to assess the elemental composition of both the total and the soluble fraction of dust. We determined 45 elements through ICP-MS and 39 through INAA, with a good overlapping of the elements between the two techniques. Besides the determination of major elements, the high sensibility of both techniques also permitted the determination of trace elements. Among these, rare earth elements (REE) are of particular importance as they have been widely used as a geochemical tracer of aeolian dust sources [6]. We here present depth profiles for each analysed element, covering discrete portions of the entire ice core.

 

Bibliography

[1] Petit, Jean-Robert, et al. "Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica." Nature 399.6735 (1999): 429-436.

[2] Lambert, Fabrice, et al. "Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core." Nature 452.7187 (2008): 616.

[3] Wegner, Anna, et al. "The role of seasonality of mineral dust concentration and size on glacial/interglacial dust changes in the EPICA Dronning Maud Land ice core." Journal of Geophysical Research: Atmospheres 120.19 (2015): 9916-9931.

[4] Baccolo, Giovanni, et al. “The contribution of synchrotron light for the characterization of atmospheric mineral dust in deep ice cores: Preliminary results from the Talos Dome ice core (East Antarctica).” Condensed Matter 3, no. 3 (2018): 25.

[5] De Angelis, Martine, et al. “Micro-investigation of EPICA Dome C bottom ice: Evidence of long term in situ processes involving acid-salt interactions, mineral dust, and organic matter.” Quaternary Science Reviews 78 (2013): 248-265.

[6] Gabrielli, Paolo, et al. “A major glacial-interglacial change in aeolian dust composition inferred from Rare Earth Elements in Antarctic ice.” Quaternary Science Reviews 29, no. 1-2 (2010): 265-273.

 

How to cite: Di Stefano, E., Baccolo, G., Gabrielli, P., Ellis, A., Delmonte, B., and Maggi, V.: Soluble/insoluble fractionation of elements in mineral dust from Antarctic samples, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15986, https://doi.org/10.5194/egusphere-egu2020-15986, 2020.

EGU2020-8537 | Displays | CL1.14

Towards an improved understanding of high-resolution impurity signals in deep Antarctic ice cores

Pascal Bohleber, Marco Roman, Carlo Barbante, Barbara Stenni, and Barbara Delmonte

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) offers minimally destructive ice core impurity analysis at micron-scale resolution. This technique is especially suited for exploring closely spaced layers of ice within samples collected at low accumulation sites or in regions of highly compressed and thinned ice. Accordingly, LA-ICP-MS promises invaluable insights in the analysis of a future “Oldest ice core” from Antarctica. However, in contrast to ice core melting techniques, taking into account the location of impurities is crucial to avoid misinterpretation of ultra-fine resolution signals obtained from newly emerging laser ablation technologies. Here we present first results from a new LA-ICP-MS setup developed at the University of Venice, based on a customized two-volume cryogenic ablation chamber optimized for fast wash-out times. We apply our method for high-resolution chemical imagining analysis of impurities in samples from intermediate and deep sections of the Talos Dome and EPICA Dome C ice cores. We discuss the localization of both soluble and insoluble impurities within the ice matrix and evaluate the spatial significance of a single profile along the main core axis. With this, we aim at establishing a firm basis for a future deployment of the LA-ICP-MS in an “Oldest Ice Core”. Moreover, our work illustrates how LA-ICP-MS may offer new means to study the impurity-microstructure interplay in deep polar ice, thereby promising to advance our understanding of these fundamental processes.

How to cite: Bohleber, P., Roman, M., Barbante, C., Stenni, B., and Delmonte, B.: Towards an improved understanding of high-resolution impurity signals in deep Antarctic ice cores, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8537, https://doi.org/10.5194/egusphere-egu2020-8537, 2020.

EGU2020-22651 | Displays | CL1.14 | Highlight | Milutin Milankovic Medal Lecture

Astronomical forcing and climate : insights from ice core records

Valérie Masson-Delmotte

Ice cores provide a wealth of insights into past changes in climate and atmospheric composition.

Obtaining information on past polar temperature changes is important to document climate variations beyond instrumental records, and to test our understanding of past climate variations, including the Earth system response to astronomical forcing.

Since the 1960s, major breakthrough in ice core science have delivered a matrix of quantitative Greenland and Antarctic ice core records.

Temperature reconstructions from polar ice cores document past polar amplification, and provide quantitative constraints to test climate models.

Climate information from the air and ice preserved in deep ice cores has been crucial to unveil the tight coupling between the carbon cycle and climate and the role of past changes in atmospheric greenhouse gas composition in the Earth system response to astronomical forcing.

Ice core constraints on past changes in ice sheet topography are also key to characterize the contribution of the Greenland and Antarctic ice sheets to past sea level changes.

The construction of a common chronological framework for Greenland and Antarctic ice core records has unveiled the bipolar sequence of events during the glacial-interglacial cycle, and the interplay between abrupt change and the response of the climate system to astronomical forcing.

International efforts have started to obtain the oldest ice cores (hopefully back to 1,5 million years) from Antarctica, in order to understand the reasons for the major shifts in the response of the climate system to astronomical forcing at that time, leading to more intense and longer glacial periods. 

How to cite: Masson-Delmotte, V.: Astronomical forcing and climate : insights from ice core records, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22651, https://doi.org/10.5194/egusphere-egu2020-22651, 2020.

EGU2020-12753 | Displays | CL1.14

Oxygen-to-nitrogen ratios in 1.5-million-year-old ice cores from Allan Hills Blue Ice Areas: implications for the long-term atmospheric oxygen concentrations

Yuzhen Yan, Michael Bender, Edward Brook, Heather Clifford, Preston Kemeny, Andrei Kurbatov, Sean Mackay, Paul Mayewski, Jessica Ng, Jeffrey Severinghaus, and John Higgins

Gases preserved in ice cores provide a potential direct archive for atmospheric oxygen. Yet, oxygen-to-nitrogen ratios in ice cores (expressed as δO2/N2) are modified by a number of processes related to gas trapping and gas losses in the ice. Such complications have long hindered the use of ice core δO2/N2 to derive true atmospheric oxygen concentrations. Recently, a persistent decline in δO2/N2, observed in four different ice cores (GISP2, Vostok, Dome F, and EDC), is interpreted to reflect decreasing atmospheric O2 concentrations over the late Pleistocene (Stolper et al., 2016). The rate of δO2/N2 change is -8.4±0.2 ‰/Myr (1σ). Using new measurements made on EDC samples stored at -50 °C and therefore free from gas loss, Extier et al (2018) confirms the decrease in δO2/N2 with a slope of -7.0±0.6‰/Myr (1σ).

Here, we present new δO2/N2 measurements made on 1.5-million-year-old blue ice cores from Allan Hills Blue Ice Areas, East Antarctica. We use argon-to-nitrogen ratios (δAr/N2) in the ice to correct for the fractionations during bubble close-off and gas losses. In those processes, δAr/N2 is fractionated in a fashion similar to δO2/N2 (Huber et al., 2006; Severinghaus and Battle, 2006). Paired δO2/N2-δAr/N2 values measured from the same sample were classified into three different time slices: 1.5 Ma (million years old), 950 ka, and 490 ka. Between 950 ka and 490 ka, we observe a decline in δO2/N2 similar to that observed in the aforementioned deep ice cores. This observation gives us confidence in the validity of the Allan Hills blue ice δO2/N2 records. Between 1.5 Ma and 950 ka, however, there is no statistically significant trend in ice core δO2/N2. Our results show a surprising lack of variability from 1.5 to 0.95 Ma; even during the past ~0.9 Ma, the rate of decline was very slow.

How to cite: Yan, Y., Bender, M., Brook, E., Clifford, H., Kemeny, P., Kurbatov, A., Mackay, S., Mayewski, P., Ng, J., Severinghaus, J., and Higgins, J.: Oxygen-to-nitrogen ratios in 1.5-million-year-old ice cores from Allan Hills Blue Ice Areas: implications for the long-term atmospheric oxygen concentrations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12753, https://doi.org/10.5194/egusphere-egu2020-12753, 2020.

EGU2020-20166 | Displays | CL1.14

Theoretical limits and new approaches to reconstruct temperature from the isotopic composition of ice cores in low-accumulation regions

Thomas Laepple, Thomas Münch, Mathieu Casado, Maria Hörhold, Johannes Freitag, Martin Werner, and Remi Dallmayr

For several decades, ice-core water-isotope research was focused on retrieving and interpreting single cores, measured on increasingly finer resolution and higher analytic precision. However, not only the sampling resolution or analytical precision limits the ability to recover the climate signal, but also the way the climatic signal is imprinted in the isotopic composition profile obtained from ice cores. Therefore, despite three decades of Antarctic ice-coring and dozens of firn cores, especially the temperature evolution in the low accumulation region of East Antarctica during the last millennium is still barely known.  In the recent years, strong progress has been made in the understanding of the isotopic signal formation based on process studies, snow pits, snow trenches and replicate cores. Using this knowledge, we will review the limits of temperature reconstructions based on theoretical considerations, empirical signal-to-noise ratio estimates and forward models of the signal formation. We will further discuss new avenues for sharpening the ability to recover high-resolution temperature signals from firn and ice cores by optimally combining multiple cores and by combining isotope with impurity records.

How to cite: Laepple, T., Münch, T., Casado, M., Hörhold, M., Freitag, J., Werner, M., and Dallmayr, R.: Theoretical limits and new approaches to reconstruct temperature from the isotopic composition of ice cores in low-accumulation regions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20166, https://doi.org/10.5194/egusphere-egu2020-20166, 2020.

EGU2020-19341 | Displays | CL1.14 | Highlight

Quantifying the influence of natural forcing on oxygen isotope variability in alpine and polar ice core sites

Kira Rehfeld, Moritz Kirschner, Max Holloway, and Louise Sime

Stable water isotope ratios are routinely used to infer past climatic conditions in palaeoclimate archives. In particular, oxygen isotope ratios in precipitation co-vary with temperature in high latitudes, and have been established as indicators for past temperature changes in ice-cores. The timescales for which this holds, and the validity of spatial/temporal regression slopes are difficult to constrain based on the observational record.

Here, surface climate and oxygen isotope ratio variability are compared across an ensemble of millennial-long simulations with the isotope-enabled version of the Hadley Centre Coupled Model version 3 (iHadCM3). The ensemble consists, amongst others, of paired experiments. One half were performed as conventional palaeoclimate equilibrium simulations for the Last Glacial Maximum (LGM, orbital and trace gas concentrations of 21kyrs BP), the mid Holocene (conditions 6kyrs BP) and the pre-industrial period (PI, 1850CE) analogously to the simulations in the Palaeoclimate Modeling Intercomparison Project. The second half of the ensemble is additionally perturbed by radiative forcing variations from solar variability and volcanic forcing as for the last millennium. Each simulation is continued for at least 1050 years.

We find that global mean surface temperature and precipitation decrease significantly in all considered climate states (LGM, 6k, PI). Post-volcanic temperature reduction is fairly consistent across the globe, but weak in Antarctica. In the PI state, we find a significant increase in the AMOC strength after eruptions. This does not occur for the LGM state. No significant responses to solar forcing were detectable in the isotopic record. Correlating precipitation-weighted δ18O (δ18Opr) at these locations with surface temperature across the globe shows strong linear relationships and teleconnections. In Greenland, δ18Opr, at the decadal scale, shows high correlations across the Northern hemisphere for the PI simulations, but this spatial representativeness is smaller in the LGM.

We finally examine the detectability of strong interannual volcanic impacts in the climate and isotope record at ice core drill sites in West and East Antarctica, Greenland, the European Alps and the Tibet Plateau. At all locations, modeled isotope and climate variance is higher in the naturally forced simulations. On annual time scales, we find only weak imprints of sub-supervolcanic eruptions in annual δ18Opr at most locations compared to interannual variability, with the exception of the Tibet plateau. We extend this epoch analysis to high-resolution ice core records to assess the consistency between modeled and measured isotope variations for prominent volcanic eruptions over the last millennium.

The inclusion of natural forcing in the simulations alleviates the discrepancy between modeled and observed isotope variability. However, the gap cannot be closed completely. This suggests that improving our understanding of the signal formation process, the dynamical origins of isotope signatures, and model biases at all latitudes is important to constrain the regional to global representativeness of stable water isotopes in ice cores.

How to cite: Rehfeld, K., Kirschner, M., Holloway, M., and Sime, L.: Quantifying the influence of natural forcing on oxygen isotope variability in alpine and polar ice core sites, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19341, https://doi.org/10.5194/egusphere-egu2020-19341, 2020.

EGU2020-9013 | Displays | CL1.14

Exploring ice core sea ice proxies through process-based modelling

Rachael Rhodes, Xin Yang, and Eric Wolff

It is important to understand the magnitude and rate of past sea ice changes, as well as their timing relative to abrupt shifts in other components of Earth’s climate system. Furthermore, records of past sea ice over the last few centuries are urgently needed to assess the scale of natural (internal) variability over decadal timescales. By continuously recording past atmospheric composition, polar ice cores have the potential to document changing sea ice conditions if atmospheric chemistry is altered.  Sea salt aerosol, specifically sodium (Na), and bromine enrichment (Brenr, Br/Na enriched relative to seawater ratio) are two ice core sea ice proxies suggested following this premise.

Here we aim to move beyond a conceptual understanding of the controls on Na and Brenr in ice cores by using process-based modelling to test hypotheses. We present results of experiments using a 3D global chemical transport model (p-TOMCAT) that represents marine aerosol emission, transport and deposition. Critically, the complex atmospheric chemistry of bromine is also included. Three fundamental issues will be examined: 1) the partitioning of Br between gas and aerosol phases, 2) sea salt aerosol production from first-year versus multi-year sea ice, and 3) the impact of increased acidity in the atmosphere due to human activity in the Arctic.

How to cite: Rhodes, R., Yang, X., and Wolff, E.: Exploring ice core sea ice proxies through process-based modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9013, https://doi.org/10.5194/egusphere-egu2020-9013, 2020.

EGU2020-801 | Displays | CL1.14

Examining the strength of the link between surface temperature and surface mass balance in ice cores and models over the last centuries in Antarctica

Marie G. P. Cavitte, Quentin Dalaiden, Hugues Goosse, Jan T.M. Lenaerts, and Elizabeth R. Thomas

Ice cores constitute an important record of the past surface mass balance (SMB) of the ice sheets, with SMB ultimately modulating the ice sheets’ sea level impact. For the Antarctic Ice Sheet (AIS), SMB is dominated by snow accumulation and strongly controlled by atmospheric circulation. Large-scale atmospheric depressions collect warmth and moisture from further north that they then release over the AIS in the form of widespread accumulation or focused atmospheric rivers. This implies that snow deposited at the surface of the AIS should show strongly coupled SMB and surface air temperatures (SAT) variations. Ice cores do not record SAT directly but their d18O record is often used as a temperature proxy.

 

Here, using the PAGES 2k Network ice core compilations of SMB and d18O of Thomas et al. (2017) and Stenni et al. (2017), we obtain a weak correlation between SMB and d18O over historical timescales, and an equivalently weak correlation between SMB and SAT based on the Nicolas & Bromwich (2014) SAT reconstructions. However, we calculate a strong and positive SMB-SAT correlation in the majority of regions of the AIS using Global Climate Models (GCM) and the regional model RACMO2.3p2.

 

To resolve the discrepancy between measured and modeled signals, we show that averaging the ice core records in close spatial proximity increases their SMB-SAT correlation. This increase in measured SMB-SAT correlation likely results from noise present in the ice core records, but is not enough to match the strong correlation calculated in the models. On the model side, the high spatial resolution of the RACMO2.3p2 model allows us to highlight a number of areas of the AIS where SMB and SAT are not strongly correlated. We describe how wind-driven processes acting on the SMB and SAT locally, through Foehn and katabatic effects, can overwhelm the large-scale atmospheric input that induces the positive SMB-SAT correlations. In particular, we focus on Dronning Maud Land, East Antarctica, where each ice promontory clearly shows this wind-driven snow redistribution. Nevertheless, those regions displaying a low SMB-SAT correlation cover only a small fraction of the AIS and are not sufficient to explain the model-data discrepancy, suggesting a critical role of processes at a scale smaller than the one resolved by the regional model.

 

References:

Thomas, E. R., 2017, Regional Antarctic snow accumulation over the past 1000 years, Climate of the Past, 13, 1491–1513.

Stenni, B. et al., 2017, Antarctic climate variability on regional and continental scales over the last 2000 years, Climate of the Past, 13, 1609–1634.

Nicolas, J. P. & Bromwich, D. H., 2014, New reconstruction of Antarctic near-surface temperatures: Multidecadal trends and reliability of global reanalyses, Journal of Climate, 27, 8070–8093.

How to cite: Cavitte, M. G. P., Dalaiden, Q., Goosse, H., Lenaerts, J. T. M., and Thomas, E. R.: Examining the strength of the link between surface temperature and surface mass balance in ice cores and models over the last centuries in Antarctica, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-801, https://doi.org/10.5194/egusphere-egu2020-801, 2020.

EGU2020-3583 | Displays | CL1.14

Coupled artefact production of methane, ethane, and propane in polar ice cores

Jochen Schmitt, James Lee, Jon Edwards, Edward Brook, Thomas Blunier, Michaela Mühl, Barbara Seth, Jonas Beck, and Hubertus Fischer

Air inclusions trapped in polar ice provide unique records of the past atmospheric composition ranging from key greenhouse gases to short-lived trace gases like ethane and propane. Provided the analyzed species concentrations and their isotopic fingerprints accurately reflect past atmospheric composition, valuable constraints can be put onto biogeochemical cycles. However, it is already known that not all drill sites or specific time intervals are equally suitable to derive artefact-free gas records; e.g., CO2 data from Greenland ice is overprinted by CO2 ‘in situ’ production due to impurities in the ice, and only the cleaner Antarctic ice allows to reconstruct past atmospheric CO2.

Until recently, CH4 artefacts in polar ice were only detected on melt affected samples or for short spikes related to exceptional impurity deposition events (Rhodes et al 2013). However, careful comparison of CH4 records obtained using different extraction methods revealed disagreements among Greenland CH4 records and initiated targeted experiments.

Here, we report experimental findings of CH4 artefacts occurring in dust-rich sections of Greenland ice cores. The artefact production happens during the melt extraction step (‘in extractu’) of the classic wet extraction technique and typically reaches 20 ppb in dusty stadial ice which causes erroneous reconstructions of the interhemispheric CH4 difference and strongly affects the hydrogen isotopic signature of CH4 (Lee et al. 2020). The measured CH4 excess is proportional to the amount of mineral dust in the ice. Knowing the empirical relation between produced CH4 and the dust concentration of a sample allows a first-order correction of existing CH4 data sets and to revise previous interpretations.

To shed light on the underlying mechanism, we analyzed samples for other short-chain alkanes ethane (C2H6) and propane (C3H8). The production of CH4 was always tightly accompanied with C2H6 and C3H8 production at amounts exceeding the past atmospheric background levels derived from low-dust samples. Independent of the produced amounts, CH4, C2H6, and C3H8 were produced in molar ratios of roughly 16:2:1, respectively. The simultaneous production at these ratios does not point to an anaerobic methanogenic origin which typically exhibits methane-to-ethane ratios of >>100. Such alkane patterns are indicative of abiotic degradation of organic matter as found in sediments.

We found this specific alkane pattern not only for dust-rich samples but also for samples that were affected by surface melting from the last interglacial (NEEM ice core) with low dust concentrations. This implies that the necessary precursor is an impurity also present in low-dust ice and the step leading to the production of the alkanes could then be activated when a sufficient boundary condition is met for the production, e.g. by melt/refreeze of surface snow.

How to cite: Schmitt, J., Lee, J., Edwards, J., Brook, E., Blunier, T., Mühl, M., Seth, B., Beck, J., and Fischer, H.: Coupled artefact production of methane, ethane, and propane in polar ice cores, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3583, https://doi.org/10.5194/egusphere-egu2020-3583, 2020.

EGU2020-9860 | Displays | CL1.14

Variability of gas-trapping characteristics on the central Antarctic Plateau

Patricia Martinerie, Kévin Fourteau, Jérôme Chappellaz, Anaïs Orsi, Xavier Faïn, Geoffrey Lee, Amaëlle Landais, and William Sturges

Central Antarctic Plateau sites display a strong contrast in deep firn gas ages with relatively high accumulation sites (South Pole, EPICA DML) showing very old (about a century) gas ages in the open porosity of deep firn on one side, and very young (few decades) gas ages and an absence of deep firn δ15N plateau (indicative of remaining gas transport) at low accumulation rate sites (Dome C, Dome F, Vostok) on the other side. Multi-tracer results from an intermediate accumulation site named "Lock-in" will be presented. At this fairly low accumulation rate site (~3.6 cm water equivalent / year), very old air ages were obtained in deep firn but the lock-in zone looks narrower than at South Pole. Analytical results, as well as gas transport and densification modelling results will be discussed in terms of variability of gas-trapping characteristics on the central Antarctic Plateau and degree of understanding of the underlying mechanisms.

How to cite: Martinerie, P., Fourteau, K., Chappellaz, J., Orsi, A., Faïn, X., Lee, G., Landais, A., and Sturges, W.: Variability of gas-trapping characteristics on the central Antarctic Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9860, https://doi.org/10.5194/egusphere-egu2020-9860, 2020.

EGU2020-21651 | Displays | CL1.14

Constraining ice core chronologies with 39Ar and 81Kr

Florian Ritterbusch, Yan-Qing Chu, Ilaria Crotti, Xi-Ze Dong, Ji-Qiang Gu, Shui-Ming Hu, Wei Jiang, Amaelle Landais, Volodya Lipenkov, Zheng-Tian Lu, Lili Shao, Barbara Stenni, Taldice Team, Lide Tian, A-Min Tong, Wen-Hao Wang, and Lei Zhao

Paleoclimate reconstructions from ice core records can be hampered due to the lack of a reliable chronology, especially when the stratigraphy is disturbed and conventional dating methods are not readily applied. The noble gas radioisotopes 81Kr and 39Ar can in these cases provide robust constraints as they yield absolute, radiometric ages. 81Kr (half-life 229 ka) covers the time span from 50-1300 ka, which is particularly relevant for polar ice cores, whereas 39Ar (half-life 269 a) with a dating range of 50-1400 a is suitable for high mountain glaciers. For a long time the use of 81Kr and 39Ar for dating of ice samples was hampered by the lack of a detection technique that can meet its extremely small abundance at a reasonable sample size. Here, we report on 81Kr and 39Ar dating of Antarctic and Tibetan ice cores with the detection method Atom Trap Trace Analysis (ATTA), using 5-10 kg of ice for 81Kr and 2-5 kg for 39Ar. Among others, we measured 81Kr in the lower section of Taldice ice core, which is difficult to date by conventional methods, and in the meteoric bottom of the Vostok ice core in comparison with an age scale derived from hydrate growth. Moreover, we have obtained an 39Ar profile for an ice core from central Tibet in combination with a timescale constructed by layer counting. The presented studies demonstrate how the obtained 81Kr and 39Ar ages can complement other methods in developing an ice core chronology, especially for the bottom part.

[1] Z.-T. Lu, Tracer applications of noble gas radionuclides in the geosciences, Earth-Science Reviews 138, 196-214, (2014)

[2] C. Buizert, Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica, Proceedings of the National Academy of Sciences, 111, 6876, (2014)

[3] L. Tian, 81Kr Dating at the Guliya Ice Cap, Tibetan Plateau, Geophysical Research Letters, (2019)

[4] http://atta.ustc.edu.cn

How to cite: Ritterbusch, F., Chu, Y.-Q., Crotti, I., Dong, X.-Z., Gu, J.-Q., Hu, S.-M., Jiang, W., Landais, A., Lipenkov, V., Lu, Z.-T., Shao, L., Stenni, B., Team, T., Tian, L., Tong, A.-M., Wang, W.-H., and Zhao, L.: Constraining ice core chronologies with 39Ar and 81Kr, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21651, https://doi.org/10.5194/egusphere-egu2020-21651, 2020.

EGU2020-13557 | Displays | CL1.14

New data from the 40 year old Dye3 core

Thomas Blunier, Janani Venkatesh, David Aaron Soestmeyer, Jesper Baldtzer Liisberg, Rachael Rhodes, James Andrew Menking, Jeffrey P. Severinghaus, Meg Harlan, Helle Astrid Kjær, and Paul Vallelonga

The Dye3 core was drilled at Dye3 (65°11’N, 43°50’W) in 1979 – 1981. The core has been analyzed for numerous components over the last decades. We measured remaining sections, the Younger Dryas and a larger portion of the last glacial, in a continuous flow setup in fall 2019. Here we focus on gas measurements. We measured methane, δ15N, δ40Ar, and the elemental ratio of Ar and N2. We present the continuous flow setup for measuring those components in parallel and first results with a focus on the exact timing of changes in methane and δ15N and δ40Ar at the Younger Dryas and Dansgaard-Oeschger transitions.

How to cite: Blunier, T., Venkatesh, J., Soestmeyer, D. A., Liisberg, J. B., Rhodes, R., Menking, J. A., Severinghaus, J. P., Harlan, M., Kjær, H. A., and Vallelonga, P.: New data from the 40 year old Dye3 core, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13557, https://doi.org/10.5194/egusphere-egu2020-13557, 2020.

EGU2020-15726 | Displays | CL1.14

Hafnium (and Sr-Nd) isotope analysis of mineral dust: from sample digestions to mass spectrometry

Gabor Ujvari, Urs Klötzli, Monika Horschinegg, Wencke Wegner, Dorothee Hippler, Nathalie Tepe, Gabriella Kiss, Anikó Horváth, and Anders Svensson

Mineral dust in ice cores provides insight into past atmospheric circulation patterns provided that the source(s) of these aerosols can be identified. Isotopes of strontium, neodymium and lead are frequently used for source discrimination in ice cores, while those of hafnium much less so. This is because of the extremely low (1-5 ng) amounts of Hf present in 5-10 mg dust samples usually available for isotopic analyses from the dustiest periods of past glaciations, e.g. the Last Glacial Maximum. The use of 176Hf/177Hf isotopic ratios in dust fingerprinting is crucial in situations when Sr-Nd isotopes are inconclusive in source identification.

The overall Hf budget is dominated by the heavy mineral zircon in silt-sized, wind-blown material, while it is significantly depleted in the finer (<5 µm) fractions and the effects of other minerals (apatite, sphene, monazite, xenotime and clay minerals) become increasingly important. Since the major hosts of Hf are refractory heavy minerals, the complete digestion of dust material is crucial in determining reliable Hf isotope ratios.

Here we introduce a closed vessel ammonium bifluoride (NH4HF2) digestion method (220 °C), which is a fast and low blank (0.5 ng for Sr, 0.2 ng for Nd, and <25 pg for Hf) technique for dust dissolution, prior to column chemistry for combined Hf-Sr-Nd isotope analyses. Repeated measurements of the Hf isotope ratios of USGS geological reference materials (AGV-2, BCR-2 and GSP-2) demonstrate that raw, non fractionation corrected 176Hf/177Hf ratios are accurate within 5-50 ppm, while the JMC-475 fractionation corrected values are accurate to 5-10 ppm, compared to reference values using our ion exchange chemistry setup. This methodology also allows separating Sr and Nd from the same samples, and analysing the 87Sr/86Sr and 143Nd/144Nd isotopic compositions. Here we discuss mass spectrometry issues (including sensitivity) of TIMS and two different MC-ICP-MS instruments, and major limitations on dust sample size for Hf-Sr-Nd isotope analyses. Furthermore, the mineralogical background of Hf isotopic compositions, including zircon depletion effects and clay mineralogy (illite) control will be demonstrated. Hf isotope data obtained from four NorthGRIP ice core samples will be presented.

This study was financially supported by the FWF Austria through a Lise Meitner grant (project nr. M 2503-N29) and the European Regional Development Fund in the project of GINOP-2.3.2.-15-2016-00009 ‘ICER’.

How to cite: Ujvari, G., Klötzli, U., Horschinegg, M., Wegner, W., Hippler, D., Tepe, N., Kiss, G., Horváth, A., and Svensson, A.: Hafnium (and Sr-Nd) isotope analysis of mineral dust: from sample digestions to mass spectrometry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15726, https://doi.org/10.5194/egusphere-egu2020-15726, 2020.

EGU2020-19625 | Displays | CL1.14

Setup and first testing of Laser Ablation - ICP-MS measurements for high resolution chemical ice core analyses at University of Cambridge

Helene Hoffmann, Eric Wolff, Jason Day, Mackenzie Grieman, Jack Humby, and Sally Gibson

The ice in the deepest and therefore oldest parts of polar ice cores is highly compressed and therefore annual layers, although potentially preserved, can be thinned to a millimeter level or even below. However, for many palaeoclimate studies these are the most interesting sections. Within the WACSWAIN project we aim to investigate the basal part of an ice core recently drilled to bedrock at the Skytrain ice rise in West Antarctica to obtain unique information on the state of the Filchner-Ronne ice shelf during the last interglacial. To achieve this we have set up a system to perform high resolution laser-ablation ICP-MS measurements using a cryocell stage on selected segments of the deepest parts of the ice cores.

Here we present first results of system performance including assessment of measurement sensitivity and precision with respect to analyses of the most relevant components, namely sodium, calcium and aluminium. We also report on the development and the performance of a matrix matched calibration method using flash-freezed water samples of known composition to convert relative signal intensities into concentrations. This especially focuses on homogeneity and reproducibility of the in-house produced standard. Finally, the results of laser ablation ICP-MS results are compared to parallel low resolution data from continuous flow analysis of the Skytrain core to evaluate the capabilities of the method in terms of improving depth resolution.

How to cite: Hoffmann, H., Wolff, E., Day, J., Grieman, M., Humby, J., and Gibson, S.: Setup and first testing of Laser Ablation - ICP-MS measurements for high resolution chemical ice core analyses at University of Cambridge , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19625, https://doi.org/10.5194/egusphere-egu2020-19625, 2020.

EGU2020-19976 | Displays | CL1.14

Microfluidic device for continuous-flow analysis of organics in oldest ice

Daniele FIlippi and Chiara Giorio

The Beyond EPICA Oldest Ice (BEOI) project will drill an ice core dating back to 1.5 million-years (1.5 Myr) ago. This ice core is of particular interest to the scientific community as it will be the only one covering the climate history of the Mid Pleistocene Transition, when glacial-interglacial cycles changed from a 40 Kyr to 100 Kyr cyclicity, and for which causes are not well understood currently. Obtaining useful climatic information beyond 800 Kyr represents an analytical challenge due to the fact that the deepest section of the ice core is very compact and the amount of sample available is very low.

Current analytical methods for the determination of organics in ice are characterized by a large number of steps that requires large amounts of sample for a single analysis. This results in the loss of the high time resolution desired from ice cores which is particularly problematic for deeper (i.e. older) records where the ice is more compact.

This work aims at combining the growing field of microfluidics with improvements to conventional mass spectrometry to allow for continuous analysis of organics in ice cores, melted in continuous on a melting-head. In fact, microfluidic is a powerful technology in which, only a small amount of liquid (10-9-10-18 liters) is manipulated and controlled with an extremely high precision. The method invokes a three-step process: (1) the melted ice core sample is sent to a nebulizer to produce aerosol, then (2) the aerosol is dried to remove water content and concentrate the sample, and (3) the aerosol is sent to a mass spectrometer for continuous analysis through a modified electrospray ionization (ESI) probe.

This novel system, once operational, can be applied to a range of ice cores but is especially useful for older ice cores given the stratification of deeper segments. It will allow the research community to measure organic compounds with a high time resolution, even in the oldest of ice, to retrieve paleoclimatic information that would otherwise be lost using traditional methods.

How to cite: FIlippi, D. and Giorio, C.: Microfluidic device for continuous-flow analysis of organics in oldest ice, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19976, https://doi.org/10.5194/egusphere-egu2020-19976, 2020.

EGU2020-4179 | Displays | CL1.14

New δ18Oatm, δ18Oice and δDice profiles from deep ice of the TALDICE core

Ilaria Crotti, Carlo Barbante, Massimo Frezzotti, Wei Jiang, Amaelle Landais, Zheng-Tian Lu, Florian Ritterbusch, Barbara Stenni, and Guo-Min Yang

The study of the deep portions of ice cores still represents a poorly explored field due to the presence of processes acting in the lowermost layers and possibly affecting the preservation of the original climatic signal. For the 1620 m TALDICE ice core, drilled at Talos Dome (East Antarctica), the high-resolution climate reconstruction and chronology definition are available only until the depth of ~1450 m (150 kyr BP) (Stenni et al., 2011, Bazin et al., 2013). Our aim is to investigate the portion below 1460 m depth to the bottom of the core, where radargrams show the presence of an unconformity in the ice sheet, to define a preliminary chronology and identify a discernible climatic signal.

Here we present the new TALDICE δ18Oatm record in the air bubbles, in association with the new high-resolution δ18Oice and δDice profiles and an 81Kr radiometric date. New 46 measurements of δ18Oatm  allowed to increase the resolution of the available profile from 1357 to 1553.95 m depth and to extend the record till the bottom of the core at 1617 m depth. The comparison between the δ18Oatm profile of TALDICE and the one of EPICA Dome C (EDC) ice core (Extier et al., 2018) allows to solidly define a preliminary age-depth relationship for the TALDICE core until 1500 m depth, where the gas age is estimated to be ~200 kyr BP. Below 1500 m, supplementary δ18Oatm measurements will be needed to identify older precession cycles and to extend the age-depth relationship further back in time. On the other hand, the high-resolution isotopic profiles in the ice (18O/16O and D/H ratios) obtained below the depth of 1528 m and compared with the EDC ones suggest that the climatic signal in the ice is preserved until to the lower level of 1547.8 m, which is dated back to 343 kyr BP. However, the lack of similarities with the EDC water isotopes record below this depth, in spite of the 81 Kr radiometric age 459 ± 50 kyr BP at the depth of 1574-1578 m, indicates the missing of the MIS 11 in the isotopic profiles. Moreover, the increase of high-frequency variability in the δ18Oice and δDice below 1547.8 m depth implies that this part of the core lays in an area of the ice sheet characterized by different properties in comparison to the ice above.

Additional δ18Oatm, 40Ar, δ18Oice, and δDice measurements will be performed in the lowermost portion of the core and the results will be compared with the new 81Kr radiometric dating at the depth of 1560-1564 m and 1614-1619 m to better constrain the chronology and to investigate the ice properties in the deeper portion of the core.

How to cite: Crotti, I., Barbante, C., Frezzotti, M., Jiang, W., Landais, A., Lu, Z.-T., Ritterbusch, F., Stenni, B., and Yang, G.-M.: New δ18Oatm, δ18Oice and δDice profiles from deep ice of the TALDICE core, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4179, https://doi.org/10.5194/egusphere-egu2020-4179, 2020.

EGU2020-8610 | Displays | CL1.14

A Nine-year series of daily oxygen and hydrogen isotopic composition of precipitation at Concordia station, East Antarctica

Barbara Stenni, Giuliano Dreossi, Mathieu Casado, Claudio Scarchilli, Amaelle Landais, Massimo Del Guasta, Paolo Grigioni, Giampietro Casasanta, Martin Werner, Mauro Masiol, Alexandre Cauquoin, and Virginia Ciardini

The atmospheric processes determining the isotopic composition of precipitation on the Antarctic plateau are yet to be fully understood, as well as the post-depositional processes altering the snow pristine isotopic signal. Improving the comprehension of these physical mechanisms is of crucial importance for interpreting the isotopic records from ice cores drilled in the low accumulation area of Antarctica, e.g., the upcoming Beyond EPICA drilling at Little Dome C.

Up to now, few records of the isotopic composition of precipitation in Antarctica are available, most of them limited in time or sampling frequency. Here we present a 9-year long δ18O and δD record (2008-2016) of precipitation at Concordia base, East Antarctica. The snow is collected daily on a raised platform (1 m), positioned in the clean area of the station; the precipitation collection is still being carried out each year by the winter over personnel.

A significant positive correlation between isotopes in precipitation and 2-m air temperature is observed at both seasonal and interannual scale; the lowest temperature and isotopic values are usually recorded during winters characterized by a strongly positive Southern Annular Mode index.

To improve the understanding of the mechanisms governing the isotopic composition of precipitation, we compare the isotopic data of Concordia samples with on-site observations, meteorological data from the Dome C AWS of the University of Wisconsin-Madison, as well as with high-resolution simulation results from the isotope-enabled atmospheric general circulation models ECHAM5-wiso and ECHAM6-wiso, nudged with the ERA-Interim and ERA5 reanalyses respectively.

How to cite: Stenni, B., Dreossi, G., Casado, M., Scarchilli, C., Landais, A., Del Guasta, M., Grigioni, P., Casasanta, G., Werner, M., Masiol, M., Cauquoin, A., and Ciardini, V.: A Nine-year series of daily oxygen and hydrogen isotopic composition of precipitation at Concordia station, East Antarctica, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8610, https://doi.org/10.5194/egusphere-egu2020-8610, 2020.

EGU2020-11774 | Displays | CL1.14

Quantifying the role of post-depositional processes on the isotopic composition of surface snow – new findings from the SNOWISO project

Hans Christian Steen-Larsen, Maria Hörhold, Sonja Wahl, Abigail Hughes, Anne-Katrine Faber, Alexandra Zuhr, Arny Sveinbjørnsdottir, Melanie Behrens, and Sepp Kipfstuhl

The goal of the SNOWISO project is to quantify the role of the post-depositional processes, which are influencing the isotopic composition of the surface snow and hence the ice core water isotope climate signal. Here we are reporting on findings from field campaigns carried out at EastGRIP over the four summers 2016-2019. We have collected a suite of observations containing the isotopic composition of the surface snow and the snowpack, together with direct observations of atmospheric water vapor isotopes and fluxes between the snow surface and the atmosphere. To support the analysis of the isotopic data we also collected meteorological observations comprising of atmospheric temperature and humidity gradients alongside with sub-surface and snow surface temperature along with atmospheric temperature and humidity gradients. With this dataset we are able to document significant changes in the snow isotopic composition, which are driven by post-depositional processes. The changes in the snow surface isotopic composition is observed to occur on time scales ranging from diurnal to several days. The changes in the snow surface isotopic composition is observed to occur on time scales ranging from diurnal to several days. We can show that the changes in the snow surface is consistent with the flux of the isotopologues between the snow surface and the atmosphere. This gives us confidence that we will be able to develop parameterizations of post-depositional effects, and model their influence on the ice core isotopic climate signal.

 
 

How to cite: Steen-Larsen, H. C., Hörhold, M., Wahl, S., Hughes, A., Faber, A.-K., Zuhr, A., Sveinbjørnsdottir, A., Behrens, M., and Kipfstuhl, S.: Quantifying the role of post-depositional processes on the isotopic composition of surface snow – new findings from the SNOWISO project, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11774, https://doi.org/10.5194/egusphere-egu2020-11774, 2020.

EGU2020-13653 | Displays | CL1.14

Spatial variability of surface snow isotopic composition on the East Antarctic Plateau and implications for climate reconstructions

Maria Hörhold, Alexander Weinhart, Sepp Kipfstuhl, Johannes Freitag, Georgia Micha, Martin Werner, and Gerrit Lohmann

The reconstruction of past temperatures based on ice core records relies on the quantitative but empirical relationship of stable water isotopes and annual mean temperature. However, its relation varies through space and time. On the East Antarctic Plateau, temperature reconstructions from ice cores are poorly constrained or even fail on decadal and smaller time scales. The observed discrepancy between annual mean temperature and isotopic composition partly relies on surface processes altering the signal after deposition but also, to a great deal, on spatially coherent processes prior to or during deposition. However, spatial coverage over larger areas on the East Antarctic Plateau is challenging. We here present in-situ measurements of the isotopic composition of surface snow with unprecedented statistical quality and coverage. 1m surface snow profiles were collected during an overland traverse between Kohnen station and Plateau Station, covering a 1200km long transect. We explore regional differences of the temperature-isotope relationship and discuss possible mechanisms affecting the isotopic composition in areas with accumulation rates lower than 60mmWEa^-1.

How to cite: Hörhold, M., Weinhart, A., Kipfstuhl, S., Freitag, J., Micha, G., Werner, M., and Lohmann, G.: Spatial variability of surface snow isotopic composition on the East Antarctic Plateau and implications for climate reconstructions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13653, https://doi.org/10.5194/egusphere-egu2020-13653, 2020.

EGU2020-15866 | Displays | CL1.14

Testing the ideal ice-core record for past temperature reconstructions using combined isotope and impurity analyses

Thomas Münch, Maria Hörhold, Johannes Freitag, Melanie Behrens, and Thomas Laepple

Ice cores represent one of the most important palaeoclimate archives, which record, among many other parameters, changes in stable oxygen and hydrogen isotopic composition and soluble ionic impurities. While impurities serve, for example, as proxies for sea ice, marine biological activity and volcanism, records of isotopic composition are the major proxy for the reconstruction of natural polar temperature variability. The latter is based on the temperature-dependent distillation and fractionation of the isotopic composition of water vapour along its atmospheric pathway and empirically determined relationships thereof.

However, temperature is by far not the only driver of isotopic composition changes. A single isotopic ice-core record will comprise variations caused by a multitude of processes, from variable atmospheric circulation and moisture pathways to the intermittency of precipitation and finally to the mixing and re-location of surface snow by wind drift (stratigraphic noise). Taken together, these additional processes constitute a large amount of noise in the single isotope record, which masks the true temperature-related variability. Averaging a sufficient number of records to reduce overall noise is one means to allow for quantitative reconstructions, but its effectiveness depends on the spatial scales of the involved processes. Here, we discuss an alternative approach. Assuming that major impurity species exhibit a seasonal cycle and are mainly also, along with the isotopic composition, deposited by precipitation and redistributed by wind, a large portion of their interannual variability should be linked, which would offer the possibility of using the impurities to correct the variability of the isotopic records.

In this contribution, we present the "ideal" dataset for testing this idea. We sampled and analysed isotopic composition and major impurity species on a four metre deep and 50 metre long trench at Kohnen Station, East Antarctica. This enables us to study the two-dimensional structure and relationship of both proxies to learn about their deposition mechanisms, their seasonality, and to test the ability of a combined isotope–impurity approach to reconstruct local temperatures by comparing so obtained temperature reconstructions with the local weather station data.

 

How to cite: Münch, T., Hörhold, M., Freitag, J., Behrens, M., and Laepple, T.: Testing the ideal ice-core record for past temperature reconstructions using combined isotope and impurity analyses, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15866, https://doi.org/10.5194/egusphere-egu2020-15866, 2020.

EGU2020-20679 | Displays | CL1.14

High frequency water isotopes records during glacial/interglacial cycles on EPICA Dome C ice core.

antoine Grisart, Bo Vinther, vasileos Gkinis, Trevor Popp, Barbara Stenni, Katy Pol, Valerie Masson Delmotte, Jean Jouzel, Mathieu Casado, Thomas Laepple, Maria Horhold, Frederic Prie, Benedicte Minster, Elise Fourre, and Amaelle Landais

The iconic curve of D in water showing the 8 glacial/interglacial cycles from the EPICA Dome C ice
core is now a reference in paleoclimate. It shows past temperature variability back to 800 ka over the
3200 m deep ice core with a 55 cm resolution. However, the millennial and centennial scale
variability gets more challenging to observe in the deepest part of the core. Indeed, the time
resolution worsens when going deeper in the ice because of the ice thinning: it is larger than 200
years at 2500 m depth. Furthermore, isotopic diffusion affects the signal at the bottom of the ice
core. Pol et al., (2010) have thus shown that the sub-millennial MIS (Marine Isotopic Stage) 19 signal
(3157-3181 m deep) is erased because of diffusion and high resolution doesn’t add any further
information at this depth. In this study we want to better characterize the increase of the isotopic
diffusion with depth by providing new high resolution water isotopes at several intervals over the
EPICA ice core (EDC).
We present here published high resolution (11 cm) d18O measurements over the EDC ice core as
well as new records of high resolution (11 cm) D over MIS 7;13 and 14). We use spectral analyses to
determine at which depth the isotopic diffusion erases the sub-millennial variability. We also show
that cold periods exhibit a larger variability of water isotopes than interglacial periods.
The information obtained here is crucial for the new project Beyond EPICA oldest ice core, which has
the goal of analyzing a 1.5 Ma old ice core. In the deepest part, 1 m of ice core could represent
10 000 years of climate archive.

How to cite: Grisart, A., Vinther, B., Gkinis, V., Popp, T., Stenni, B., Pol, K., Masson Delmotte, V., Jouzel, J., Casado, M., Laepple, T., Horhold, M., Prie, F., Minster, B., Fourre, E., and Landais, A.: High frequency water isotopes records during glacial/interglacial cycles on EPICA Dome C ice core., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20679, https://doi.org/10.5194/egusphere-egu2020-20679, 2020.

EGU2020-22237 | Displays | CL1.14 | Highlight

ENSO modulates the variability of ice core δ18O in the central Tibetan Plateau

Jing Gao, Tandong Yao, Guangjian Wu, and Camille Risi

The El Nino-Southern Oscillation (ENSO) drives interannual variability of rainfall, ecosystems and floods in many parts of the world. Climates in the Tibetan Plateau (TP) called as the “water tower” may be impacted by ENSO, but the character of ENSO impact and its mechanism are still not well understood. Here we present the isotopic profiles (δ18O) from a new Zangsegangri (ZSGR) ice core drilled in 2013 in the central TP covering 200 years to understand the ENSO impact on the TP climate. The imprint of ENSO is evidenced at annual scale as recorded in ice core. This ice core δ18O record also reveal contributions of south/north moisture sources change with the transition of El nino/La nina events which are triggered by the tropical sea surface temperature, associated with the change of convections along the moisture transport paths. These rapid changes lead to the variation of ZSGR ice core δ18O, namely El Nino events result in lower δ18O in the ZSGR ice core record. The mechanism of ENSO impact on the ZSGR ice core δ18O are quantified with LMDZiso model. The significant impact of ENSO activity on the Tibetan ice core record during the past centuries implies the importance of ENSO in land surface processes in the TP.

How to cite: Gao, J., Yao, T., Wu, G., and Risi, C.: ENSO modulates the variability of ice core δ18O in the central Tibetan Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22237, https://doi.org/10.5194/egusphere-egu2020-22237, 2020.

EGU2020-9202 | Displays | CL1.14

Evolution in geometry of firn in ice sheets detected by dielectric anisotropy

Shuji Fujita, Kotaro Fukui, Motohiro Hirabayashi, Yoshinori Iizuka, Sumito Matoba, Atsushi Miyamoto, Hideaki Motoyama, Takeshi Saito, and Toshitaka Suzuki

Ice in polar ice sheets once experience a state of firn at near-surface depths. Therefore, it is important to understand physical processes of firn formation, metamorphism and deformation for ice core studies. We investigated firn through measurement of tensorial values of the dielectric permittivity at microwave and millimeter-wave frequencies. This method can detect presence and strength of anisotropic structure in the geometry of pore spaces and ice matrix. We applied the method to many firn cores drilled at both ice sheets. We find that firn that have shorter residence time at the near-surface depths does not form strong vertical anisotropy that is caused by vertical movement of moistures. In contrast, firn that have longer residence time at the near-surface depths tend to form vertical anisotropy. When density exceeds  ~600 kg/m3, a common feature of firn at many polar sites is that there are evolution of vertically elongated features of pore spaces in firn despite growth of vertical compression. We hypothesize an explanation as follows. As firn becomes denser, air within firn needs escape paths to upward directions as compared to sinking firn. In firn, porous structure tend to have vertically elongated structure because of this vertical escape movement of air. The observed phenomena of the grow th of the vertical dielectric anisotropy
can be understood by this vertical movement of the air w ithin firn.

How to cite: Fujita, S., Fukui, K., Hirabayashi, M., Iizuka, Y., Matoba, S., Miyamoto, A., Motoyama, H., Saito, T., and Suzuki, T.: Evolution in geometry of firn in ice sheets detected by dielectric anisotropy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9202, https://doi.org/10.5194/egusphere-egu2020-9202, 2020.

CL1.16 – Polar regions – climate, oceanography, tectonics, and geohazards

For the period between 14.7 and 11.5 cal. (calibrated) kyr B.P, the sediment flux of Bindschadler Ice Stream (BIS; West Antarctica) averaged 1.7 × 108 m3 a−1. This implies that BIS velocity averaged 500 ± 120 m a-1. At a finer resolution, the data suggest two stages of ice stream flow. During the first 2400 ± 400 years of a grounding-zone stillstand, ice stream flow averaged 200 ± 90 m a-1. Following ice-shelf breakup at 12.3 ± 0.2 cal. kyr B.P., flow accelerated to 1350 ± 580 m a-1. The estimated ice volume discharge after breakup exceeds the balance velocity by a factor of two and implies ice mass imbalance of ~40 Gt a-1 just before the grounding zone retreated >200 km. We interpret that the paleo-BIS maintained sustainable discharge throughout the grounding-zone stillstand first due to the buttressing effect of its fringing ice shelf and then later (i.e., after ice-shelf breakup) due to the stabilizing effects of grounding-zone wedge aggradation. Major paleo–ice stream retreat, shortly after the ice-shelf breakup that triggered the inferred ice flow acceleration, substantiates the current concerns about rapid, near-future retreat of major glaciers in the Amundsen Sea sector where Pine Island and Thwaites Glaciers are already experiencing ice-shelf instability and grounding-zone retreat that have triggered upstream-propagating thinning and ice acceleration.

How to cite: Bart, P. and Tulaczyk, S.: A significant acceleration of ice volume discharge preceded a major retreat of a West Antarctic paleo-ice stream, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5875, https://doi.org/10.5194/egusphere-egu2020-5875, 2020.

EGU2020-7493 | Displays | CL1.16 | Highlight

Arctic closure as a trigger for Atlantic overturning at the Eocene-Oligocene Transition

David Hutchinson, Helen Coxall, Matt O'Regan, Johan Nilsson, Rodrigo Caballero, and Agatha de Boer

The Eocene-Oligocene Transition (EOT), approximately 34 Ma ago, marks a period of major global cooling and inception of the Antarctic ice sheet. Proxies of deep circulation suggest a contemporaneous onset or strengthening of the Atlantic meridional overturning circulation (AMOC). Proxy evidence of gradual salinification of the North Atlantic and tectonically driven isolation of the Arctic suggest that closing the Arctic-Atlantic gateway could have triggered the AMOC at the EOT. We demonstrate this trigger of the AMOC using a new paleoclimate model with late Eocene boundary conditions. The control simulation reproduces Eocene observations of low Arctic salinities. Subsequent closure of the Arctic-Atlantic gateway triggers the AMOC by blocking freshwater inflow from the Arctic. Salt advection feedbacks then lead to cessation of overturning in the North Pacific. These circulation changes imply major warming of the North Atlantic Ocean, and simultaneous cooling of the North Pacific, but no interhemispheric change in temperatures.

How to cite: Hutchinson, D., Coxall, H., O'Regan, M., Nilsson, J., Caballero, R., and de Boer, A.: Arctic closure as a trigger for Atlantic overturning at the Eocene-Oligocene Transition, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7493, https://doi.org/10.5194/egusphere-egu2020-7493, 2020.

EGU2020-7943 | Displays | CL1.16

Relating changes in seabed properties and retreating glacier fronts in West-Antarctic fjords.

Katrien Van Landeghem, Kate Retallick, Floyd Howard, Dave Barnes, Stuart Jenkins, Chester Sands, Carlos Muñoz-Ramirez, and James Scourse

Retreating marine terminating glaciers influence the rate at which larger ice mass is lost, and thus the rate at which global sea levels rise. About 90% of the circa 240 glaciers terminating in fjords along the West-Antarctic Peninsula coastline are retreating. This happens at variable rates as these fjords have internal feedback mechanisms with e.g. the oceanographic make-up of the bay and the geology / geomorphology of the local hinterland. The NERC-CONICYT funded “ICEBERGS” project is a UK-Chile research collaboration to assess the effects of ice loss and deglaciation on benthic marine ecosystems in Antarctica. Three West-Antarctic fjords where glaciers have been consistently retreating in the last few decades were investigated: Marian Cove (King George Island), Börgen Bay (Anvers Island) and Ryder Bay (Adelaide Island). As part of this project, we monitored the changes in seabed bathymetry and backscatter intensity as a signature of past and on-going ice flow and ice retreat. Together with sediment analyses, the data provide insights in glacial landscape development and on sediment accumulation / seabed erosion rates. We also managed to insonify parts of the changing glacier ice fronts, detailing the grounding zones at the seabed. At the time of abstract submission, the third of three surveys was just underway. In this presentation we will explore the preliminary search for spatial and temporal relationships between grounded ice advance and retreat, undercutting of the grounded glacier terminus, sediment discharge, ice berg scouring, glacial landscape development and mass waste deposits. Our direct time-lapse observations of the seabed and glacier fronts of different fjord systems will help us understand how the local fjord environments define the dynamics of the retreating glaciers they host, whilst the results help elucidate the impact of that deglaciation on the newly emerged seabed and the fast-growing ecosystem it supports. Understanding the ice-filled fjord dynamics in the present-day and in the recent past will also help interpretations made from data representing these environments in the distant past.

How to cite: Van Landeghem, K., Retallick, K., Howard, F., Barnes, D., Jenkins, S., Sands, C., Muñoz-Ramirez, C., and Scourse, J.: Relating changes in seabed properties and retreating glacier fronts in West-Antarctic fjords., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7943, https://doi.org/10.5194/egusphere-egu2020-7943, 2020.

EGU2020-9948 | Displays | CL1.16 | Highlight

Deglaciation of the Northeast Greenland ice stream and interaction with ocean circulation

Jerry Lloyd, Louise Callard, Colm O'Cofaigh, David Roberts, Kaarina Weckstrom, and Sofia Ribeiro

Large sections of the Greenland Ice Sheet (GrIS) drain directly to the ocean through tidewater glaciers and are, therefore, sensitive to changes in ocean circulation through time. Recent research has identified the dynamic response of many tidewater glaciers draining the GrIS showing thinning, flow acceleration and, in many cases, the break-up and retreat of fringing ice shelves and calving margins. This instability has been linked to incursion of relatively warm Atlantic Water as well as increased air temperatures and sea-ice loss.

The Northeast Greenland Ice Stream (NEGIS) is one of the largest ice streams draining approximately 15% of the GrIS with a sea level equivalent of ~ 1.4 m. Recent observations have identified ice shelf loss and grounding line retreat of Zachariae Isstrom, the southern arm of the NEGIS, post 2010 suggesting this sector of the GrIS might be starting to respond to climate forcing. The primary aim of the ‘NEGIS’ project is to reconstruct the history of NEGIS since the Last Glacial Maximum (LGM) to improve our understanding of the interaction between NEGIS and climate (specifically ocean circulation). A series of sediment cores were collected along with bathymetric and sub-bottom profiler data concentrating on the Westwind and Norske Trough systems, two cross-shelf troughs originating from the present day margin of NEGIS. The data were collected through collaboration with the Alfred Wegener Institute as part of the GRIFF project supported by two cruises of the RV Polarstern in 2016 and 2017.

This presentation will focus on the deglaciation and palaeoceanographic evolution of the inner section of Norske Trough (inner continental shelf) investigating the interaction between ocean circulation and the dynamics of the tidewater margins of NEGIS. We present multiproxy results from a spliced box core and 10 m long gravity core collected from the same location covering the last 11,000 cal years. We use the benthic foraminiferal fauna and stable isotope signature to investigate variability in ocean circulation, specifically the relative strength of the Atlantic Water inflow along Norske Trough to the present day ice margin. We also investigate surface water conditions (including sea ice concentration) based on diatoms, dinoflagellates, IP25 and planktic foraminiferal stable isotopes. Our benthic foraminiferal assemblages record the variability in strength of Atlantic Water flow since deglaciation indicating relatively strong Atlantic Water flux during deglaciation reaching a peak during the early Holocene. Surface water proxies indicate variability in meltwater flux and sea ice concentration from the early Holocene. These results provide the first evidence for a variable ocean circulation with the potential to influence ice margin dynamics during deglaciation and through the Holocene.

How to cite: Lloyd, J., Callard, L., O'Cofaigh, C., Roberts, D., Weckstrom, K., and Ribeiro, S.: Deglaciation of the Northeast Greenland ice stream and interaction with ocean circulation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9948, https://doi.org/10.5194/egusphere-egu2020-9948, 2020.

EGU2020-10880 | Displays | CL1.16

The timing of fjord formation and early glaciations in North and Northeast Greenland
not presented

Vivi Kathrine Pedersen, Nicolaj Krog Larsen, and David Lundbek Egholm

The timing and extent of early glaciations in Greenland, and their co-evolution with the underlying landscape remain elusive. In this study, we explore the timing of fjord erosion in Northeast and North Greenland between Scoresby Sund (70°N) and Independence Fjord (82°N). By determining the timing of fjord formation, we can improve our understanding of the early history of the Greenland Ice Sheet in these regions.

We use the concept of geophysical relief to estimate fjord erosion and calculate the subsequent flexural isostatic response to erosional unloading. The timing of erosion and isostatic uplift is constrained by marine sediments of late Pliocene-early Pleistocene age that are now exposed on land between ~24 and 230 m a.s.l.

We find that the northern Independence Fjord system must have formed by glacial erosion at average rates of ~0.5-1 mm/yr since ~2.5 Ma, in order to explain the current elevation of the marine Kap København Formation by erosion-induced isostatic uplift. In contrast, fjord formation in the outer parts of southward Scoresby Sund commenced before the Pleistocene, most likely in late Miocene, and continued throughout the Pleistocene by fjord formation progressing inland. Our results suggest that the inception of the Greenland Ice Sheet began in the central parts of Northeast Greenland before the Pleistocene and spread to North Greenland only at the onset of the Pleistocene.  

How to cite: Pedersen, V. K., Krog Larsen, N., and Lundbek Egholm, D.: The timing of fjord formation and early glaciations in North and Northeast Greenland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10880, https://doi.org/10.5194/egusphere-egu2020-10880, 2020.

EGU2020-19301 | Displays | CL1.16

A contourite drift succession in north-east Baffin Bay: a high-resolution Pleistocene archive of Greenland ice sheet and ocean variability

Paul C. Knutz, Katrine Juul Andresen, John R. Hopper, Lara F. Perez, Calvin Campbell, Boris Dorschel, Ole Bennike, Henrieka Detlef, Katrine Elnegaard Hansen, Rebecca Jackson, Anne Jennings, Nicolaj Krog Larsen, Niels Nørgaard-Pedersen, Christof Pearce, Hans Røy, and Sofia Ribeiro

The Greenland ice sheet’s response to anthropogenic warming will have major consequences for global sea levels but its behavior and stability during past warm intervals is poorly known. To elucidate the long-term behavior of the Greenland ice sheet, high-resolution marine records in ice proximal settings are required. Here we report the first results of a study of a deep-water contourite system on the north-east slope Baffin Bay based on geophysical and shallow core data obtained during two marine expeditions in 2017 and 2019. The contourite drift is incised by channels extending from the slope that is build up by prograding ice stream deposits (Melville Bugt trough-mouth fan). As a result, the contourite system presents a complex architecture. While the mechanisms for deposition and erosion are not yet clear, it is likely that the drift accumulated as a result of interactions between a deep contour current and downslope transport of sediments, presumably of glacigenic origin and therefore constitutes an example of an intertwined contourite-turbidite system. A preliminary age-depth model of the trough-mouth fan evolution indicates that the contourite system began to form during the late Early Pleistocene, possibly around 1 million years ago. The contourite drift is a key target for IODP proposal 909, aimed at unravelling the late Cenozoic evolution of the northern Greenland ice sheet and associated changes in Arctic paleoclimate. Shallow sediment cores from this target area have been retrieved and will be analyzed to generate high-resolution multi-proxy records of ocean circulation and sea-surface conditions including sea ice and paleoproductivity for the late Quaternary-Holocene.

How to cite: Knutz, P. C., Andresen, K. J., Hopper, J. R., Perez, L. F., Campbell, C., Dorschel, B., Bennike, O., Detlef, H., Hansen, K. E., Jackson, R., Jennings, A., Larsen, N. K., Nørgaard-Pedersen, N., Pearce, C., Røy, H., and Ribeiro, S.: A contourite drift succession in north-east Baffin Bay: a high-resolution Pleistocene archive of Greenland ice sheet and ocean variability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19301, https://doi.org/10.5194/egusphere-egu2020-19301, 2020.

EGU2020-12484 | Displays | CL1.16

Deriving paleo-perspectives on polar systems: Continued results from the 2012 Sawtooth Lake (Ellesmere Island) and 2015 Petermann (North Greenland) Expeditions

Joseph Stoner, Brendan Reilly, Alan Mix, Martin Jakobsson, Maureen Walczak, Mark Abbott, Francois Lapointe, Pierre Francus, Nicholas Balascio, Anne Jennings, Kelly Hogan, and Larry Mayer

Deriving paleo-perspectives on polar systems in so-called “last ice” regions of North Greenland and the High Canadian Arctic have been traditionally challenged by logistical/accessibility issues and paleo proxy (including chronology) limitations. Sea-ice retreat and proxy development are changing this paradigm, allowing the region to be mapped, materials collected, and paleo-records developed that provide new insights on the evolution of the region.  Here we report on continued progress from the joint US/Swedish 2015 Petermann Expedition to North Greenland and the joint US/Canadian 2012 Sawtooth Lake Expedition to Ellesmere Island, where new developments in physical properties and chronology are changing our understanding of the region. Computed tomography, X-Ray fluorescence, ice-rafted debris counts, and the magnetic properties of specific particle size fractions constrain changes in depositional processes and sediment sources providing info on glacial retreat and advance and other environmental changes. While an improved understanding of the geomagnetic field supported by radiocarbon dating enables regional magnetic synchronization allowing Holocene ice sheet and environmental dynamics to be placed in the context of High Arctic climate evolution.

How to cite: Stoner, J., Reilly, B., Mix, A., Jakobsson, M., Walczak, M., Abbott, M., Lapointe, F., Francus, P., Balascio, N., Jennings, A., Hogan, K., and Mayer, L.: Deriving paleo-perspectives on polar systems: Continued results from the 2012 Sawtooth Lake (Ellesmere Island) and 2015 Petermann (North Greenland) Expeditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12484, https://doi.org/10.5194/egusphere-egu2020-12484, 2020.

EGU2020-768 | Displays | CL1.16

Southern Chilean continent-ocean interaction over the last glacial cycle

Julia Rieke Hagemann, Frank Lamy, Kana Nagashima, Naomi Harada, Shinya Iwasaki, Alfredo Martínez-Garcia, Jérôme Kaiser, Helge W. Arz, Norbert Nowaczyk, Carina Lange, and Ralf Tiedemann

Available sea surface temperature (SST) records from the subantarctic SE Pacific reveal large amplitude changes at orbital time-scales. High sedimentation rates along the southern Chilean margin provided higher resolution records back to ~70 ka showing millennial-scale SST variations paralleling temperatures reconstructed in Antarctic ice-cores.

Here we present high-resolution millennial-scale SST and subsurface temperature records based on core MR16-09 PC03 covering a complete glacial/interglacial cycle back to Marine Isotope Stage 6, including a high-resolution record of the Eemian. Located on the Chilean margin at the bifurcation of the Antarctic Circumpolar Current into the Peru-Chile Current to the North and the Cape Horn Current to the South, core MR16-09 PC03 is in an ideal position to study the continent-ocean interactions, including changes in water masses, ice sheet formation, precipitation and vegetation.

We used alkenones and GDGTs to determine SST (UK’37) and subsurface temperatures (TEXH86; 0 - 200 m), and integrated these results with XRF core scanner and planktic δ18O data (G. bulloides). During the Eemian, SSTs and subsurface temperatures were ~2° C and ~4° C, higher than during the Holocene, respectively. The high Eemian temperatures at our site are roughly consistent with the few available subantarctic SST records. The large temperature difference in the subsurface water masses between the Eemian and the Holocene could be explained by a deeper thermocline during the Eemian. During the last glacial period, the strongly fluctuating temperatures averaged ~8° C at the surface and ~6° C in the subsurface. The relative amount of C37:4 alkenone (%C37:4) show a drastic increase during the glacial period, especially in Marine Isotope Stage 3 in concentration. High %C37:4 values suggest increased freshwater supply, which could be related to fluctuations of the Patagonian Ice sheet and/ or precipitation on the adjacent land. The sedimentation rate and other terrigenous proxies, e.g. Titanium, BIT, Iron and Alkanes, confirm such increased and highly variable terrestrial inputs.

How to cite: Hagemann, J. R., Lamy, F., Nagashima, K., Harada, N., Iwasaki, S., Martínez-Garcia, A., Kaiser, J., Arz, H. W., Nowaczyk, N., Lange, C., and Tiedemann, R.: Southern Chilean continent-ocean interaction over the last glacial cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-768, https://doi.org/10.5194/egusphere-egu2020-768, 2020.

EGU2020-782 | Displays | CL1.16

Ocean surface warming in Krossfjorden, Svalbard, during the last 60 years

Harikrishnan Guruvayoorappan, Arto Miettinen, Dmitry Divine, Matthias Moros, Lisa Orme, and Rahul Mohan

A high-resolution marine sediment core NP16-Kro1-MCB from Krossfjorden, Western Svalbard is studied to investigate changes in sea surface conditions in the fjord during the last 60 years (1953-2014). The diatom-based reconstruction of August sea surface temperature (aSST) demonstrates a clear warming trend of 0.6 °C through the record. As inferred from Marginal Ice Zone (MIZ) diatoms, surface warming occurs in parallel with a decline in sea ice extent (SIE) during recent decades. Factor analysis identified variations in diatom assemblages representing different water masses, showing a dominance of Arctic water diatoms throughout the period and decadal variations in the sea ice assemblage during periods of peak sea ice extent. The strong dominance of Arctic water diatoms along with increasing aSST suggest prolonged open water conditions and increased sea ice melting in the region throughout the observed period. The reconstructed ocean surface changes are in line with the background warming occurring over the Arctic region. A comparison with instrumental records from neighboring regions supports the quality of the reconstructions, including the average reconstructed aSST and the magnitude of the warming trend. We suggest that increased CO2 forcing together with ocean-atmospheric interaction have caused the increasing SST trend and decreasing sea ice presence in Krossfjorden rather than an increasing influence from Atlantic Water, which has amplified changes in many regions of Svalbard. 

How to cite: Guruvayoorappan, H., Miettinen, A., Divine, D., Moros, M., Orme, L., and Mohan, R.: Ocean surface warming in Krossfjorden, Svalbard, during the last 60 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-782, https://doi.org/10.5194/egusphere-egu2020-782, 2020.

EGU2020-2301 | Displays | CL1.16

Occurrence of gas hydrate in the Chukchi plateau, Arctic

Young Keun Jin, Seung-Goo Kang, Ugeun Jang, Sookwan Kim, Yeonjin Choi, Ji-Hoon Kim, Young-Gyun Kim, Dong-Hun Lee, and Young-Mi Lee

EGU2020-7552 | Displays | CL1.16

Dynamics of Pliocene East Antarctic Ice Sheet from depositional signatures of the Prydz Bay shelf and Trough Mouth Fan

Xiaoxia Huang, German Leitchenkov, Anne Bernhardt, Graeme Eagles, Karsten Gohl, and Jinyao Gao

The Pliocene saw multiple advances and retreats of the ice-sheet margin in East Antarctica. Amery Ice Shelf (AIS) is the largest ice shelf in East Antarctica and also the largest single ice stream draining from the Antarctic Plateau. It buttresses the Lambert Glacier drainage system, and accounts for 14% of the outflow from the East Antarctic Ice Sheet (EAIS). However, evidence for the state of the EAIS during the Pliocene is sparse and difficult to interpret unequivocally. Marine geological-geophysical data collected from the continental shelf in Prydz Bay, Antarctica, including seismic-reflection data, bathymetry, core records from ODP drilling and gravity coring sites, reveal a complex paleo-subglacial drainage system linked to an offshore depositional regime dominated on a trough mouth fan (TMF). Detailed seismic stratigraphic and facies analysis reveals the glacial evolution of Prydz Bay shelf and its TMF, including several glacial expansions across the shelf indicated by erosional surfaces and stratal bodies with chaotic acoustic character. The geometry of seismic sequences suggests that the glaciers and their associated TMF developed after a major episode of shelf and slope erosion during the Pliocene-Pleistocene.

 The shelf in Prydz Bay is dominated by a wide, south-north trending glacially-eroded trough (the Prydz Channel: -500~-1000 m depth) and shallower banks (-500~0 m depth). Well preserved grounding zone wedges areevidenced by prograding foreset deposits. Evidence for erosion of the wedges and/or lineations that extend across their upper surfaces indifferent water depths ranging from 200 m to 800 m imply their formation during multiple glacial stages or cycles.  Stacked erosional surfaces reveal major cross-shelf glacial expansions and the development of deep channel systems (up to -500 m depth) associated with extensive subglacial meltwater in Prydz Bay. These glacial related features provide good constraints for reconstructing the stability of the Pliocene EAIS.

How to cite: Huang, X., Leitchenkov, G., Bernhardt, A., Eagles, G., Gohl, K., and Gao, J.: Dynamics of Pliocene East Antarctic Ice Sheet from depositional signatures of the Prydz Bay shelf and Trough Mouth Fan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7552, https://doi.org/10.5194/egusphere-egu2020-7552, 2020.

EGU2020-10921 | Displays | CL1.16

New results on the dynamics of the NW part of the Svalbard Ice Sheet during the deglaciation of the Woodfjorden Trough

Tom Arne Rydningen, Amando Lasabuda, Jan Sverre Laberg, Christine Tømmervik Kollsgård, Stine Bjordal Olsen, Matthias Forwick, Monica Winsborrow, and Ólafur Ingólfsson

Present-day warming is most pronounced at high latitudes, raising concern for the stability of modern ice caps such as the ones overlying the Svalbard archipelago. Palaeo-records give us opportunity to understand past behavior of these systems, including the ice retreat from the continental shelf at the end of the last glaciation. In order to evaluate and reconstruct this in a robust way, it is essential that we acquire high-quality data sets covering key areas in the Arctic.

New multi-beam bathymetric data was acquired in July 2019 from the Woodfjorden Trough; an up to 60 km long and 40 km wide transverse trough on the northwestern part of the Svalbard continental shelf. Previous investigations have shown that this trough was occupied by a major ice stream draining the Svalbard Ice Sheet during the last glacial, but the deglacial dynamics of this sector of the Svalbard Ice Sheet are presently not well constrained.

The new data reveal a complex seabed morphology including larger (2 km wide, 50 m high) and smaller (100 m wide, 3 m high) ridges, as well as sediment wedges (1 to 2 km wide, 30 m high), partly showing crosscutting relationships. These ridges and wedges are discontinuous in the outer part of the trough, where they are partly superposed by glacial lineations and small- to larger sized iceberg ploughmarks (up to 1500 m wide and 30 m deep). In the middle part of the trough, more continuous ridges dominate.

The ridges and wedges are interpreted to be glacial landforms formed by grounded ice within the Woodfjorden Trough. Their crosscutting relationships testify to a complex deglaciation, including several advances and still stands of the ice front during overall ice retreat, and their size could indicate that the glacier front was stable for some time. Smaller ridges may be retreat moraines formed during shorter (annual?) still stands of the glacier front. Based on their discontinuous characteristics, the ridges and wedges in the outer part of the trough may pre-date the final Late Weichselian deglaciation, i.e. they may have been overridden by a grounded glacier. The more continuous character of the ridges in the middle part of the trough indicate that these likely date from the Late Weichselian deglaciation.

The glacial landforms identified here are rather atypical for glacial troughs, commonly dominated by mega-scale glacial lineations superposed by one or a few grounding zone wedges and/or smaller retreat moraines. The abundant morainal systems and glacial lineations of the Woodfjorden Trough, instead, testify to highly dynamic grounded ice occupying the trough, and a retreat which was characterized by several periods of ice margin stability, interrupted by readvances. This fits with recent studies from onshore areas, showing that the deglaciation of northern Svalbard was at least partly characterized by glacial readvances during the overall ice retreat.

How to cite: Rydningen, T. A., Lasabuda, A., Laberg, J. S., Kollsgård, C. T., Olsen, S. B., Forwick, M., Winsborrow, M., and Ingólfsson, Ó.: New results on the dynamics of the NW part of the Svalbard Ice Sheet during the deglaciation of the Woodfjorden Trough, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10921, https://doi.org/10.5194/egusphere-egu2020-10921, 2020.

EGU2020-10963 | Displays | CL1.16

The age of surface-exposed ice along the northern margin of the Greenland Ice Sheet

Joseph MacGregor, Mark Fahnestock, William Colgan, Nicolaj Larsen, Kristian Kjeldsen, and Jeffrey Welker

Each summer, surface melting of the margin of the Greenland Ice Sheet exposes a distinctive visible stratigraphy that is related to past variability in subaerial dust deposition across the accumulation zone and subsequent ice flow toward the margin. Here we map this surface stratigraphy along the northern margin of the ice sheet using mosaicked Sentinel-2 multispectral satellite imagery from the end of the 2019 melt season and finer-resolution WorldView-2/3 imagery for smaller regions of interest. We trace three distinct transitions in apparent dust concentration and the top of a darker basal layer. The three dust transitions have been identified previously as representing late-Pleistocene climatic transitions, allowing us to develop a coarse margin chronostratigraphy for northern Greenland. Substantial folding of late-Pleistocene stratigraphy is observed but uncommon. The oldest conformal surface-exposed ice in northern Greenland is likely located adjacent to Warming Land and may be up to ~55 thousand years old. Basal ice is commonly exposed hundreds of meters from the ice margin and may indicate a widespread frozen basal thermal state. We conclude that the ice margin across northern Greenland offers multiple compelling opportunities to recover paleoclimatically valuable ice relative to previously studied regions in southwestern Greenland.

How to cite: MacGregor, J., Fahnestock, M., Colgan, W., Larsen, N., Kjeldsen, K., and Welker, J.: The age of surface-exposed ice along the northern margin of the Greenland Ice Sheet, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10963, https://doi.org/10.5194/egusphere-egu2020-10963, 2020.

EGU2020-12940 | Displays | CL1.16

Multi-proxy analysis of Late Quaternary ODYSSEA Contourite Depositional System (Ross Sea, Antarctica) and the depositional record of contour current and cold, dense waters

Michele Rebesco, Renata Giulia Lucchi, Andrea Caburlotto, Stefano Miserocchi, Leonardo Langone, Yanguang Liu, Caterina Morigi, Patrizia Macrì, Aldo Winkler, Alessio Di Roberto, Paola Del Carlo, Ester Colizza, Davide Persico, Giuliana Villa, Rudy Conte, Nessim Douss, Roland Neofitu, and Chris Mark

The Ross Ice Shelf is the Antarctic region that over the last deglaciation experienced the greatest change in areal ice cover. Today, cold, dense and saline water masses (brines) produced in the Ross Sea polynya, flow from the shelf to the deep ocean providing a significant contribution to the propelling of the global ocean circulation regulating the climate. In particular, the Hillary Canyon in the Eastern Ross Sea is the main conduit through which brines descend the slope to reach the deeper ocean and is thus one of the greatest regions of cold, dense water export in the world.

A Contourite Depositional System (the ODYSSEA CDS) on the western flank of the Hillary Canyon is inferred to have been generated through several hundred-thousand years by along-slope, contour currents that transported and accumulated the sediments brought down the Hillary Canyon by means of brines. A multi-proxy investigation was conducted on the shallowest part of the ODYSSEA CDS depositional sequences, which we expect to contain i) the record of the brine formation, ii) the indication on contour current strength through time, and iii) their interplay and modulation associated to climate change.

Six gravity cores, collected in both the proximal and distal area of the ODYSSEA CDS, were studied through multi-proxy analyses including sediment physical properties (texture, structures, water content, wet bulk density), compositional characteristics (XRF, geochemistry and detrital apatite, zircon, and rutile U-Pb on ice-rafted debris) (Lucchi et al., 2019; Neofitu et al., 2020) and microfossil content (planktonic and benthic foraminifera, calcareous nannofossils and diatoms). An age model has been reconstructed combining palaeomagnetic record, biostratigraphic content, tephrochronology and AMS radiocarbon dating on planktonic foraminifera tests.

Inferred variations in dense water formation, contour current strength and ice sheet dynamics are discussed in the light of our data interpretation.

 

Lucchi, R.G., Caburlotto, A., Miserocchi, S., Liu, Y., Morigi, C., Persico, D., Villa, G., Langone, L., Colizza, E., Macrì, P., Sagnotti, L., Conte, R., Rebesco, M., 2019. The depositional record of the Odyssea drift (Ross Sea, Antarctica). Geophysical Research Abstracts, Vol. 21, EGU2019-10409-1, 2019. EGU General Assembly, Vienna (Austria), 7–12, April, 2019 (POSTER).

Neofitu, R., Mark, C., Rebesco, M., Lucchi, R.G., Douss, N., Morigi, C., Kelley, S., Daly, J.S., 2020. Tracking Late Quaternary ice sheet dynamics by multi-proxy detrital mineral U-Pb analysis: A case study from the Odyssea contourite, Ross Sea, Antarctica. Geophysical Research Abstracts. EGU General Assembly, Vienna (Austria), 3–8, May, 2020 (POSTER for session CL1.11).

How to cite: Rebesco, M., Lucchi, R. G., Caburlotto, A., Miserocchi, S., Langone, L., Liu, Y., Morigi, C., Macrì, P., Winkler, A., Di Roberto, A., Del Carlo, P., Colizza, E., Persico, D., Villa, G., Conte, R., Douss, N., Neofitu, R., and Mark, C.: Multi-proxy analysis of Late Quaternary ODYSSEA Contourite Depositional System (Ross Sea, Antarctica) and the depositional record of contour current and cold, dense waters, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12940, https://doi.org/10.5194/egusphere-egu2020-12940, 2020.

EGU2020-13950 | Displays | CL1.16

Deglacial sea ice variability at the continental margin off western Dronning Maud Land

Juliane Müller, Catalina Gebhardt, Gesine Mollenhauer, and Ralf Tiedemann

Reconstructions of sea ice conditions proximal to the Antarctic coast are often hampered by a limited preservation potential of diatoms in these areas. While silica frustules are affected by opal dissolution, specific organic molecules, highly branched isoprenoids (HBIs) produced by diatoms, are well preserved in continental margin and shelf sediments and may help to overcome this gap. Here, we present biomarker and geochemical data obtained from a very well 14C-dated gravity core from the continental slope off Atka Bay in the northeastern part of the Weddell Sea. HBIs, the HBI-based PIPSO25 index (Vorrath et al., 2019), glycerol dialkyl glycerol tetraether (GDGT) proxies and phytosterols reveal highly variable sea ice conditions and water temperatures as well as primary productivity changes over the last deglacial. These biomarker records are compared to ice core data and further complemented by physical property and XRF scanning data to estimate potential linkages between oceanic forcing and ice-shelf dynamics.

 

References

Vorrath, M.E., Müller, J., Esper, O., Mollenhauer, G., Haas, C., Schefuß, E., and Fahl, K., 2019. Highly branched isoprenoids for Southern Ocean sea ice reconstructions: a pilot study from the Western Antarctic Peninsula. Biogeosciences, v. 16, no. 15, p. 2961-2981.

How to cite: Müller, J., Gebhardt, C., Mollenhauer, G., and Tiedemann, R.: Deglacial sea ice variability at the continental margin off western Dronning Maud Land, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13950, https://doi.org/10.5194/egusphere-egu2020-13950, 2020.

EGU2020-17953 | Displays | CL1.16

Late glacial and Holocene glacier fluctuations at the Sub-Antarctic Island Kerguelen in the Southern Indian Ocean

Jostein Bakke, Fabien Arnaud, Philip Deline, Charline Guiguet-Covex, Henriette Linge, Ludovic Ravanel, Eivind Støren, and Willem van der Bilt

The Southern Hemisphere`s westerly winds play a critical role in regulating Earth`s climate by shielding Antarctica from low-latitude heat, driving global ocean circulation and regulate the uptake of CO2 in the Southern Ocean. Both strength and position of this globally significant atmospheric pattern are rapidly shifting in the face of ongoing global warming. A string of recent studies links these developments to dramatic coupled changes in temperature, precipitation, sea-ice coverage and glacier extent that unfold across the Southern Ocean region. Critically, a lack of baseline information restricts our ability to understand the causes and patterns of these shifts and represent them robustly in the future projections that underpin climate policies. To help do so, we utilize the sensitivity of glaciers to atmospheric climate change and the potential of glacier-fed lake sediments to record this signal through time. For this purpose, we integrate emerging sedimentological, geochemical and glacier modelling tools in a new method framework to reconstruct changes in glacier extent, temperature and precipitation on human-relevant timescales. To do so, we rely on a number of novel sedimentological and geochemical approaches. These include biomarker-based temperature reconstructions, exposure dating of moraines and the use emerging non-destructive scanning techniques (e.g. Computed Tomography – CT) to fingerprint depositional pathways. Our study area in this cross-disciplinary project is the poorly investigated sub-Antarctic Kerguelen Archipelago, well-situated in the core southern westerly wind belt. During an extensive 2019 field campaign, we collected 130 meters of sediment cores from six lakes, 110 rock samples for exposure dating and numerous catchment samples. 

How to cite: Bakke, J., Arnaud, F., Deline, P., Guiguet-Covex, C., Linge, H., Ravanel, L., Støren, E., and van der Bilt, W.: Late glacial and Holocene glacier fluctuations at the Sub-Antarctic Island Kerguelen in the Southern Indian Ocean , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17953, https://doi.org/10.5194/egusphere-egu2020-17953, 2020.

EGU2020-18143 | Displays | CL1.16

Geological, geochemical and cosmogenic nuclides constraints from the NEEM core basal sediments, Greenland

Marie Protin, Pierre-Henri Blard, Jean-Louis Tison, Dorthe Dahl-Jensen, Jørgen Steffensen, Vinciane Debaille, François Fripiat, Philippe Claeys, Marc Caffee, Paul Bierman, Lee Corbett, and Andrew Christ

As the melting of the Greenland Ice Sheet (GrIS) accelerates, it is critical to improve our knowledge of its Pleistocene history in order to better understand its sensitivity to different climate states. The study of sediment from the base of the ice sheet offers valuable insights, since this material holds useful information about its history and origin. Here, we present various mineralogical and geochemical analysis from basal sediments of the NEEM ice core from northwestern Greenland (NEEM community, 2013), a complement to the first analysis of the basal ice made by Goossens et al. (2016).

In an effort to specify the provenance and characterize the sediments in the basal ice of the NEEM ice core, strontium and neodymium isotopic ratios were measured in 7 bulk till samples located into the deepest part of the core. Laser granulometry and shape characterization by SEB images of the grains suggest a mixed origin of this material. The deepest sample yield in situ cosmogenic 10Be and 26Al concentrations lower than 104 at.g-1 and 21Ne concentration in the 107-108 at.g-1 range. These preliminary cosmogenic nuclides data suggest that several cycles of waning and waxing of the GrIS had occurred over the last 10 million years. Additional sample material is being processed to reduce the uncertainty of 26Al and 10Be measurements and refine this chronology.

To better characterize the origin of the basal sediment and the duration of pre-burial exposure, measurements of meteoric cosmogenic 10Be in 7 samples distributed along the basal part of the core are currently in progress. These data will be combined with the measurement of total organic carbon and nitrogen in the same samples. C and N concentrations and isotopes bring useful information about the type of soil and till material in these basal sediments (Bierman et al., 2016).

 

Bierman, P.R., Shakun, J.D., Corbett, L.B., Zimmerman, S.R., Rood, D.H., 2016. A persistent and dynamic East Greenland Ice Sheet over the past 7.5 million years. Nature 540, 256–260. https://doi.org/10.1038/nature20147

Goossens, T., Sapart, C.J., Dahl-Jensen, D., Popp, T., El Amri, S., Tison, J.-L., 2016. A comprehensive interpretation of the NEEM basal ice build-up using a multi-parametric approach. The Cryosphere 10, 553–567. https://doi.org/10.5194/tc-10-553-2016

NEEM community, 2013. Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 493. doi:10.1038/nature11789

How to cite: Protin, M., Blard, P.-H., Tison, J.-L., Dahl-Jensen, D., Steffensen, J., Debaille, V., Fripiat, F., Claeys, P., Caffee, M., Bierman, P., Corbett, L., and Christ, A.: Geological, geochemical and cosmogenic nuclides constraints from the NEEM core basal sediments, Greenland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18143, https://doi.org/10.5194/egusphere-egu2020-18143, 2020.

EGU2020-18455 | Displays | CL1.16

Stratigraphy, environment and climate of the mid Cretaceous succession from the Arctic region (Baffin Bay)

Kasia K. Sliwinska, Jørgen Bojesen-Koefoed, David Naafs, Henrik Nøhr-Gansen, Gunver Krarup Pedersen, Jussi Hovikovski, and Paul C. Knutz

The super greenhouse climate of the middle Cretaceous represents an analogue for an extreme CO2 induced (run-away) climate system. In order to improve the understanding of how the high northern latitudes responded to the escalating middle Cretaceous warmth we analysed dinocysts, palynofacies, δ13C and various biomarker proxies through a unique mid Cretaceous succession from the northern Baffin Bay. Our study is based on a several sites that were cored during the IODP Expedition 344S.
The composite section represents a nearly complete Albian - Turonian succession deposited during the syn-rift phase separating Greenland from Canada/North America. Depositional environments range from anoxic outer shelf and pro-delta fringe to oxygen-restricted lower delta front. The organic geochemical proxies are focusing on the OAE 2 and will investigate changes in the sea surface temperature and water column oxygenation related with this event.

How to cite: Sliwinska, K. K., Bojesen-Koefoed, J., Naafs, D., Nøhr-Gansen, H., Krarup Pedersen, G., Hovikovski, J., and Knutz, P. C.: Stratigraphy, environment and climate of the mid Cretaceous succession from the Arctic region (Baffin Bay), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18455, https://doi.org/10.5194/egusphere-egu2020-18455, 2020.

EGU2020-19076 | Displays | CL1.16

Glendonites from Mesozoic succession of eastern Barents sea: distribution, genesis and paleoclimatic implications

Kseniya Mikhailova, Victoria Ershova, Mikhail Rogov, Boris Pokrovsky, and Oleg Vereshchagin

Glendonites often used as paleoclimate indicator of cold near-bottom temperature, as these are calcite pseudomorphs of ikaite, a metastable calcium carbonate hexahydrate, precipitates mostly under low temperature (mainly from 0-4oC) and may be stabilized by high phosphate concentrations that occurs due to anaerobic oxidation of methane and/or organic matter; dissolved organic carbon, sulfates and amino acid may contribute ikaite formation as well.  Therefore, glendonites-bearing host rocks frequently include glacial deposits that make them useful as a paleoclimate indicator of near-freezing temperature.

Our study is based on material collected from five wells drilled in eastern Barents Sea: Severo-Murmanskaya, Ledovaya – 1,2; Ludlovskaya – 1,2. The studied glendonites, mainly represented by relatively small rhombohedral pseudomorphs (0,5-2 cm) and rarely by stellate aggregates, collected from Middle Jurassic to Lower Cretaceous shallow marine clastic deposits. They scattered distributed throughout succession. Totally 18 samples of glendonites were studied. The age of host-bearing rocks were defined by fossils: bivalves or ammonites, microfossils or dinoflagellate. Bajocian-Bathonian glendonites were collected from Ledovaya – 1 and Ludlovskaya – 1 and 2 wells; in addition to these occurrences Middle Jurassic glendonites are known also in boreholes drilled at Shtockmanovskoe field. Numerous ‘jarrowite-like’ glendonites of the Middle Volgian (~ latest early Tithonian) age were sampled from Severo-Murmanskaya well. Unique Late Barremian glendonites were found in Ledovaya – 2 well.

δ18O values of Middle Jurassic glendonite concretions range from – 5.4 to –1.7 ‰ Vienna Pee Dee Belemnite (VPDB); for Upper Jurassic – Lower Cretaceous δ18O values range from – 4.3 to –1.6 ‰ VPDB; for Lower Cretaceous - δ18O values range from – 4.5 to –3.4 ‰ VPDB. Carbon isotope composition for Middle Jurassic glendonite concretions δ13C values range from – 33.3 to –22.6 ‰ VPDB; for Upper Jurassic – Lower Cretaceous δ13C values range from – 25.1 to –18.4 ‰ VPDB; for Lower Cretaceous - δ13C values range from – 30.1 to –25.6 ‰ VPDB.

Based on δ18O data we supposed that seawater had a strong influence on ikaite-derived calcite precipitation. Received data coincide with δ18O values reported from other Mesozoic glendonites and Quaternary glendonites formed in cold environments. Values of δ13C of glendonites are close to bacterial sulfate reduction and/or anaerobic oxidation of methane or organic matter. Glendonites consist of carbonates forming a number of phases which different in phosphorus and magnesium content. Mg-bearing calcium carbonate and dolomite both include framboidal pyrite, which can indicate (1) lack of strong rock transformations activity and (2) presence of sulfate-reduction bacteria in sediments.

To conclude, Mesozoic climate was generally warm and studied concretions indicate cold climate excursion in Middle Jurassic, Upper Jurassic-Early Cretaceous and Early Cretaceous.

 

The study was supported by RFBR, project number 20-35-70012.

How to cite: Mikhailova, K., Ershova, V., Rogov, M., Pokrovsky, B., and Vereshchagin, O.: Glendonites from Mesozoic succession of eastern Barents sea: distribution, genesis and paleoclimatic implications, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19076, https://doi.org/10.5194/egusphere-egu2020-19076, 2020.

EGU2020-19216 | Displays | CL1.16

Reconstruction of Holocene glacier fluctuations at Kongsbreen based on sediments deposited in lake Sarsvatnet, Ossian Sarsfjellet, Svalbard

Eivind W. N. Støren, Ane Brun Bjerkås, Jostein Bakke, Henriette Linge, William D`Andrea, Willem van der Bilt, Torgeir Røthe, Nicholas L. Balascio, Raymond S. Bradley, Oliver Grant, Derek Fabel, and Sheng Xu

The Arctic is warming twice as fast as the global average, and the melting of mountain glaciers and ice caps has accelerated over the last two decades accompanied by reduced sea ice in the Arctic Ocean. Here we combine sedimentological and geochemical approaches to reconstruct changes in glacier extent at the marine terminating glacier Kongsbreen in order to put present-day climate changes into a longer time perspective. Glaciers are highly sensitive climate indicators as they rapidly respond to variations in summer temperature and precipitation, two parameters that are closely linked to atmospheric dynamics. This climate response is recorded by variations in glacier extent and moraine formation and by variations in glacial erosion and hence sedimentation rates in distal glacier-fed lakes. Lake Sarsvatnet is a threshold-lake that only receive glacial derived sediments when the surface of Kongsbreen crosses a local threshold. When the catchment is ice-free, lake sedimentation rate is lower and dominated by material weathered from the immediate proximity and organic-rich sediments. Based on seismic surveying seven coring sites were selected in three different sub-basins in lake Sarsvatnet. Laboratory analyses, including geochemical measurement by XRF scanning and XRD, CT scanning, grain size and measurements of magnetic proxies, were preformed in order to fingerprint the inorganic sediments. Chronological control is based on radiometric dating (14C, 210Pb, and 10Be). Erratics (n=3, 125-306 m a.s.l.) indicate ice-free conditions since 13.0±1.1 ka (2σ), overlapping with the oldest organic material found in the lake which is 11 860±80 cal. yr BP. Until around 7400 cal. yr BP lake Sarsvatnet is dominated by organic sedimentation. From around 7400 – 6900 cal. yr BP there is evidence for glacial input into the lake indicating the expansion of Kongsbreen and corresponding to the decline in temperature after the HTM. In the following millennia, and entering the Neoglacial period, there is evidence for mulitiple (~20) decadal to centennial-scale periods of glacier expansion, the most recent dated to AD 1650 marking the onset of glacier build-up towards the LIA maximum. This indicate that the Kongsbreen glacier had short lived expansion periods reaching LIA-like extension already during the middle Holocene, as well as multiple times during the Neoglacial.

 

 

How to cite: Støren, E. W. N., Brun Bjerkås, A., Bakke, J., Linge, H., D`Andrea, W., van der Bilt, W., Røthe, T., Balascio, N. L., Bradley, R. S., Grant, O., Fabel, D., and Xu, S.: Reconstruction of Holocene glacier fluctuations at Kongsbreen based on sediments deposited in lake Sarsvatnet, Ossian Sarsfjellet, Svalbard, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19216, https://doi.org/10.5194/egusphere-egu2020-19216, 2020.

EGU2020-19312 | Displays | CL1.16

Plio-Pleistocene glacial history of the Melville Bugt Ice Stream

Andrew Newton, David Cox, Mads Huuse, and Paul Knutz

In this work we use high-resolution seismic reflection surveys collected across the northeast Baffin Bay region to investigate the glacigenic Melville Bugt Trough Mouth Fan (MB-TMF). The MB-TMF stratigraphy is characterised by over 100 km of progradation since ~2.7 Ma and the heterogeneous truncation or subsidence of topset strata. Variation in topset character is thought to relate to the waxing and waning of the northwest sector of the Greenland Ice Sheet across the shelf since ~2.7 Ma. 3D seismic reflection data reveal the preservation of multiple sets of mega-scale glacial lineations, suggesting that grounded ice extended across the shelf a number of times since the onset of the Middle Pleistocene Transition. Seismic geomorphology and facies analysis of the prograding clinoforms show repeated observations of debrites and gully systems. These features, when considered with other evidence of adjacent glacial landforms and strata, are taken to infer gravity-driven processes and the presence of meltwater-related hyperpycnal flows in areas proximal to the ice sheet on the outer shelf. Bottomset contourites at the base of the continental slope also provide insights into the evolution of the West Greenland Current in Baffin Bay through the Pleistocene, with deposition estimated to have started in the latest Calabrian, based on the current age model. Regional stratigraphic mapping shows that the MB-TMF can be summarised into four stages that were primarily controlled by variations in ice sheet erosion patterns, topographic forcing of ice flow, and changes in accommodation that are related to glacigenic deposition and tectonic subsidence. 

How to cite: Newton, A., Cox, D., Huuse, M., and Knutz, P.: Plio-Pleistocene glacial history of the Melville Bugt Ice Stream, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19312, https://doi.org/10.5194/egusphere-egu2020-19312, 2020.

EGU2020-21591 | Displays | CL1.16

Detrital mineral composition and provenance of the Camp Century basal ice sediments

Tonny B. Thomsen, Paul C. Knutz, Julie C. Fosdick, Sidney R. Hemming, Andrew Christ, Paul R. Bierman, Nico Perdrial, John Hughes, Joerg Schaefer, Jean-Louis Tison, Pierre-Henri Blard, Marie Protin, Dorthe Dahl-Jensen, and Jørgen P. Steffensen

The Camp Century Ice core, NW Greenland, recovered a 4.5 m basal section consisting of frozen sediments and debris-rich ice. This material was recently re-discovered in Danish ice core storage and visually logged. As part of a multi-disciplinary effort to unlock the climatic and paleo-environmental signal of this unique record, we have analysed detrital mineral composition and metamorphic ages. Bulk mineral analyses were performed at the Geological Survey of Denmark and Greenland on grain mounts from 2 core intervals using a SEM automated quantitative mineralogy (AQM) approach coupled to laser ablation ICP-MS analyses. This setup allows us to gain a full mineral description together with single-grain U-Pb dates for a large population of metamorphic components, e.g. apatite, rutile, titanite and zircon. In addition, amphibole grains were picked for 40Ar-39Ar dating performed at the LDEO Argon Isotope Lab. Mineralogical characterization was completed by X-Ray diffraction analysis of the fine fraction to determine the presence and nature of potential clay weathering products, and single-crystal X-ray diffraction was utilized to characterize the atomic arrangements of minerals that occur in solid solutions. The AQM results indicate that metamorphic minerals are present in sufficient amounts (100’s) for gaining statistically valid provenance data. Preliminary results show ages in the 1900 – 1700 Ma range (amphibole, rutile) and around 2700 Ma (zircon). This, along with the presence of swelling clays in the sediments, is consistent with weathering of the local bedrock, and/or sediments transported from the Inglefield orogenic belt north of the site. To gain information on the youngest thermal events of sediment sources, potentially revealing deep glacial incision, (U-Th-Sm)/He dating of single apatite grains is underway. Preliminary work on the 125-250 µm size fraction yield abundant subhedral-to-subrounded, euhedral apatite suitable for thermochronology. Here we report the results from the different methods and discuss the implications for understanding erosional processes and potential transport pathways of the Camp Century basal ice sediments. 

How to cite: Thomsen, T. B., Knutz, P. C., Fosdick, J. C., Hemming, S. R., Christ, A., Bierman, P. R., Perdrial, N., Hughes, J., Schaefer, J., Tison, J.-L., Blard, P.-H., Protin, M., Dahl-Jensen, D., and Steffensen, J. P.: Detrital mineral composition and provenance of the Camp Century basal ice sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21591, https://doi.org/10.5194/egusphere-egu2020-21591, 2020.

CL1.18 – Studying the climate of the last two millennia

EGU2020-8982 | Displays | CL1.18

Comparison of isotopic signatures in speleothem records and model simulations for the past millennium

Janica Buehler, Moritz Kirschner, Carla Roesch, Max D. Holloway, Louise Sime, and Kira Rehfeld

Global changes in climate, especially in mean temperature, receive increasing public as well as scientific attention under the current warming trend. However, the probability of extreme events and their societal impact is also governed by changes in climate variability. Improving the understanding of changes in both and their relationship is crucial for projecting reliable climate change scenarios. Model-data comparisons between general circulation models and speleothem paleoclimate archives, with δ18O as a temperature and precipitation proxy, have been suggested to test and validate the capability of different climate models.

Speleothems are precisely date-able and provide well preserved (semi-)continuous climate signals in the lower and mid-latitudes, providing a suitable archive to assess a model’s capability to simulate climate variability on time scales longer than those observable. However, the δ18O measured in speleothem calcite does not directly represent temperature or precipitation but results from multivariate, non-linear processes on top of the dominant meteoric controls on δ18O in precipitation.

Here, we evaluate correlations and networks between different records and power spectral densities across a speleothem database for the past millennium (850-2000CE), testing for representativity of individual records for the time period. Similarity measures are applied to proxy records and to the local climate variables obtained from three isotope-enabled HadCM3 simulations to evaluate simulation biases across different parameters and to distinguish main climate drivers for individual records or regions. The proxy records show strong damping of variability on shorter time scales compared to simulations down-sampled to record-resolution, acting like simple filter processes with realistic time scales for karst transit times.

Based on the evidence from proxies and models for the past 1000 years, we test for realistic parameter constraints and sufficient complexity of a speleothem proxy system model to represent low-latitude changes in climate variability on interannual to centennial timescales.

How to cite: Buehler, J., Kirschner, M., Roesch, C., Holloway, M. D., Sime, L., and Rehfeld, K.: Comparison of isotopic signatures in speleothem records and model simulations for the past millennium, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8982, https://doi.org/10.5194/egusphere-egu2020-8982, 2020.

EGU2020-525 | Displays | CL1.18

Multiproxy climate and sea ice reconstruction of the industrial era at the Western Antarctic Peninsula

Maria-Elena Vorrath, Paola Cárdenas, Lorena Rebolledo, Xiaoxu Shi, Juliane Müller, Carina B. Lange, Gesine Mollenhauer, Praxedes Muñoz, Gema Martínez Méndez, Walter Geibert, and Oliver Esper

Recent changes and variability in climate conditions leave a significant footprint on the distribution and properties of sea ice, as it is sensitive to environmental variations. We investigate the rapidly transforming region of the Western Antarctic Peninsula (WAP) focusing on the conditions and development of sea ice in the pre-satellite era. For this study on past sea ice cover we apply the novel proxy IPSO25 (Ice Proxy for the Southern Ocean with 25 carbon atoms; Belt et al., 2016). Three sampling sites were selected to cover areas near the Antarctic mainland, in the Bransfield Basin (2000 m depth) and the deeper shelf under an oceanographic frontal system. Analysis of short cores (multicores) resolving the last 200 years (based on 210Pbex dating) focused on geochemical bulk parameters, biomarkers (highly branched isoprenoids, GDGTs, sterols) and diatoms. These results are compared to multiple climate archives and modelled data. This multiproxy based approach provides insights on changes in spring sea ice cover, primary production regimes, subsurface ocean temperature (SOT based on TEXL86) and oceanographic as well as atmospheric circulation patterns. While environmental proxies preserved in two cores near the coast and in the Bransfield Basin reflect the properties of water masses from the Bellingshausen Sea and Weddell Sea, respectively, data from the third core at the deeper shelf depict mixed signals of both water masses. Our study reveals clear evidence for warm and cold periods matching with ice core records and other marine sediment data at the WAP. We observe a general decrease in SOT and an increase in sea ice cover overprinted by high decadal fluctuations. Trends in SOT seem to be decoupled from atmospheric temperatures in the 20th century, and this is supported by previous studies (e.g. Barbara et al., 2013), and may be related to the Southern Annual Mode. We consider numerical modelling of sea ice conditions, sea surface temperature and SOT for further support of our findings.

 

References:

Barbara, L., Crosta, X., Schmidt, S. and Massé, G.: Diatoms and biomarkers evidence for major changes in sea ice conditions prior the instrumental period in Antarctic Peninsula, Quat. Sci. Rev., 79, 99–110, doi:10.1016/j.quascirev.2013.07.021, 2013.

Belt, S. T., Smik, L., Brown, T. A., Kim, J. H., Rowland, S. J., Allen, C. S., Gal, J. K., Shin, K. H., Lee, J. I. and Taylor, K. W. R.: Source identification and distribution reveals the potential of the geochemical Antarctic sea ice proxy IPSO25, Nat. Commun., 7, 1–10, doi:10.1038/ncomms12655, 2016.

How to cite: Vorrath, M.-E., Cárdenas, P., Rebolledo, L., Shi, X., Müller, J., Lange, C. B., Mollenhauer, G., Muñoz, P., Martínez Méndez, G., Geibert, W., and Esper, O.: Multiproxy climate and sea ice reconstruction of the industrial era at the Western Antarctic Peninsula, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-525, https://doi.org/10.5194/egusphere-egu2020-525, 2020.

EGU2020-6218 | Displays | CL1.18

An annually dated Interdecadal Pacific Oscillation reconstruction spanning the last two millennia

Tessa Vance, Anthony Kiem, Jason Roberts, Lenneke Jong, Chris Plummer, Mark Curran, Andrew Moy, and Tas van Ommen

The Interdecadal Pacific Oscillation (IPO) is a nominally 15-30 year climate mode that has been identified through analysis of tropical and extratropical Pacific sea surface temperatures over the past 150 years. It is still unclear whether the IPO is a true oscillation or whether it is simply the low frequency response of the climate system to forcing (natural and potentially anthropogenic), principally ENSO. Regardless of this, the IPO as it is currently known has clear climate impacts, one example being hydroclimate variability in Australia. In positive phases of the IPO, drought risk is heightened due to a reduction in the likelihood of large, recharging La Nina-derived rainfall events. Conversely, in IPO negative phases, flood risk in Australia is greatly increased due to an increased likelihood of such rain events.

Previous work derived a 1000 year, accurately dated reconstruction of the IPO from multiple palaeoclimate archives from the Law Dome ice core in East Antarctica. This reconstruction provided a long-term reconstruction with which to assess the true risk of drought- and flood-prone epochs in Australia. Subsequently, an entirely independent reconstruction of the IPO was developed using SE Asian tree rings by Buckley et al. in 2019, also spanning most of the last millennium. The fidelity the two reconstructions display with respect to the instrumental IPO record and with each other suggests both are faithfully representing IPO variability. Here we present an IPO reconstruction that doubles the temporal span of existing reconstructions to cover the last 2000 years using newly analysed and dated material from the Law Dome ice core. This new, longer reconstruction identifies important features of Pacific decadal variability that have significant implications for understanding hydroclimate epochs across not only Australasia, but the Pacific region as a whole.

How to cite: Vance, T., Kiem, A., Roberts, J., Jong, L., Plummer, C., Curran, M., Moy, A., and van Ommen, T.: An annually dated Interdecadal Pacific Oscillation reconstruction spanning the last two millennia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6218, https://doi.org/10.5194/egusphere-egu2020-6218, 2020.

EGU2020-12476 | Displays | CL1.18

Cooling and freshening of the eastern equatorial Pacific over the last 2000 years

Gerald Rustic, Athanasios Koutavas, and Thomas Marchitto

Sea surface temperatures in the eastern equatorial Pacific exert powerful influence on the climate beyond the tropics through strong atmosphere-ocean coupling. Records of eastern Pacific sea surface temperatures are of vital importance for identifying the linkages between short-term climate variability and long-term climate trends. Here we reconstruct eastern equatorial Pacific sea surface temperature and salinity from paired trace metal and stable isotope analyses in foraminifera from a sediment core near the Galápagos Islands. Sea surface temperatures are correlated with reconstructed Northern and Southern hemisphere temperature records suggesting a common origin. We propose that this temperature signal originates in the extra-tropics and is transmitted to the eastern Pacific surface via its source waters. We find exceptions to this cooling during the Little Ice Age and during the last century, where notable sea surface temperature increases are observed. We calculate δ18Osw from paired stable isotope and trace element analyses and derive salinity, which reveals a significant trend toward fresher surface waters in the eastern equatorial Pacific. The overall trend toward cooler and fresher sea surface conditions is consistent with longer-term trends from both the Eastern and Western Pacific.

How to cite: Rustic, G., Koutavas, A., and Marchitto, T.: Cooling and freshening of the eastern equatorial Pacific over the last 2000 years , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12476, https://doi.org/10.5194/egusphere-egu2020-12476, 2020.

EGU2020-11844 | Displays | CL1.18

A 1300-year reconstruction of the South Pacific Convergence Zone using a Pacific-wide tree-ring network

Philippa Higgins, Jonathan Palmer, Christian Turney, Martin Andersen, and Edward Cook

The South Pacific Convergence Zone (SPCZ) is the largest driver of precipitation variability over South Pacific island communities during the austral warm season influencing the severity and duration of drought and the frequency of tropical cyclones. The SPCZ is known to exhibit variability on a range of timescales, from intra-seasonal to multidecadal variations, modulated by the Interdecadal Pacific Oscillation (IPO). Despite its climatic and societal importance, determining the causes of low frequency variability in the SPCZ has been hampered by the short instrumental data record, with most comprehensive analyses since the satellite era. Here we report the first paleoclimate reconstruction of the SPCZ, allowing climate variability in the South Pacific region to be explored back to 700 CE. Our 1300-year reconstruction of the SPCZI (South Pacific Convergence Zone Index; the difference between mean sea level pressure between Apia, Samoa and Suva, Fiji) is based on a trans-Pacific network of precisely dated tree-ring proxies. Capturing SPCZ teleconnections from both sides of the Pacific has produced a robust, unbiased reconstruction with excellent reconstruction skill over the entire period. El Niño-Southern Oscillation periodicities (∼3-7 years) are pervasive throughout the SPCZI reconstruction. Multidecadal periodicities wax and wane, apparently coinciding with the timing of the Medieval Climate Anomaly (c. 1000-1200 CE) and Little Ice Age (1300-1700 CE). We discuss some of the drivers of SPCZI variability including global dimming events. Our reconstruction helps improve our understanding of past hydroclimatic behaviour in the southwest Pacific and can be used to validate general circulation model projections for Pacific Island communities in the twenty-first century.

How to cite: Higgins, P., Palmer, J., Turney, C., Andersen, M., and Cook, E.: A 1300-year reconstruction of the South Pacific Convergence Zone using a Pacific-wide tree-ring network, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11844, https://doi.org/10.5194/egusphere-egu2020-11844, 2020.

EGU2020-19795 | Displays | CL1.18

Setting the tree-ring record straight

Josef Ludescher, Armin Bunde, Ulf Büntgen, and Hans Joachim Schellnhuber

Tree-ring chronologies are the main source for annually resolved and absolutely dated temperature reconstructions of the last millennia and thus for studying the intriguing problem of climate impacts. Here we focus on central Europe and compare the tree-ring based temperature reconstruction with reconstructions from harvest dates, long meteorological measurements, and historical model data. We find that all data are long term persistent, but in the tree-ring based reconstruction the strength of the persistence quantified by the Hurst exponent is remarkably larger (h = 1.02) than in the other data (h = 0.52 − 0.69), indicating an unrealistic exaggeration of the historical temperature variations. We show how to correct the tree-ring based reconstruction by a mathematical transformation that adjusts the persistence and leads to reduced amplitudes of the warm and cold periods. The new transformed record agrees well with both the observational data and the harvest dates-based reconstructions and allows more realistic studies of climate impacts. It confirms that the present warming is unprecedented.

How to cite: Ludescher, J., Bunde, A., Büntgen, U., and Schellnhuber, H. J.: Setting the tree-ring record straight, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19795, https://doi.org/10.5194/egusphere-egu2020-19795, 2020.

EGU2020-12153 | Displays | CL1.18

Be-10 measurements and modeling results from the South Pole ice core – here comes the sun!

Joerg M. Schaefer, Eric J. Steig, and Qinghua Ding

The production of 10Be in the atmosphere in the high latitudes is modulated by solar variability. Time-series records of 10Be from ice cores therefore provide important information on variations in solar activity through time, which is fundamental to understanding climate variability. However, deposition of 10Be to the ice surface is also influenced by variability in atmospheric circulation and deposition processes, and thus, many 10Be ice core records remain difficult to interpret.

South Pole is arguably the best available location for minimizing the influence of variable atmospheric circulation on 10Be deposition. The single existing 10Be record from South Pole covers the last millennium and ends in CE 1982.

We present a new South Pole 10Be record from the late Holocene, together with examplary measurements from the last glacial period, complemented by climate modeling experiments of atmospheric 10Be production, transport and deposition physics. Our continuous one-meter resolution record covers so far the last three millennia. The data from the last millennium agree well with the existing 10Be record by Raisbeck et al. (1990). The 10Be data from the South Pole ice core matches the historic sunspot records strikingly, providing a robust calibration between sunspot number and 10Be deposition. The coincident timing of major shifts in sunspot number and 10Be provides an independent confirmation of the South Pole ice core timescale.

Independently, our model simulations of both internannual variablity and glacial vs. interglacial 10Be production, transport and deposition indicate that 10Be in South Pole snow is robust even to significant climate changes, suggesting that the measured 10Be primarily reflect changes of solar activity over that period. In turn, our model-data comparison allows to evaluate potential shifts in solar activity through the late Holocene, and during the glacial-interglacial transition.

How to cite: Schaefer, J. M., Steig, E. J., and Ding, Q.: Be-10 measurements and modeling results from the South Pole ice core – here comes the sun!, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12153, https://doi.org/10.5194/egusphere-egu2020-12153, 2020.

EGU2020-6120 | Displays | CL1.18

Placing the east-west United States aridity gradient in a millennial context

Daniel Bishop, Park Williams, Richard Seager, Edward Cook, Dorothy Peteet, Benjamin Cook, and Mukund Rao

Global climate change is projected to exacerbate regional droughts across much of the globe by the end of the 21stcentury, while increases in precipitation extremes are projected to increase regional flood risk. Trends consistent with these changes have already been observed across the contiguous United States (US). Instrumental records indicate a 20th-century trend towards drier soil moisture conditions over a large portion of the western US and wetter conditions over the eastern US, termed here as the east-west US aridity gradient. If these trends continue through the end of the 21st century, there would be significant consequences for human and ecological health, socioeconomics, water resources, and agriculture in both the semi-arid southwestern and flood-prone eastern US. A greater understanding of the spatiotemporal nature of terrestrial water variability across the US is critical to mitigate its impacts and inform policy decisions in the coming decades.

Using empirical orthogonal functions (EOFs) of instrumental summer (JJA) drought and soil moisture indices with a normalized Varimax rotation, we identify multiple independent regional soil moisture modes across the contiguous US. Modes in the northeastern and midwestern US contribute to wetting in the eastern US and a mode in the southwestern US contributes to drying in the western US, collectively increasing the east-west aridity gradient during the 20th century. The gradient has been studied previously, but its recent observed trend has not been contextualized within the natural range of variability in the paleoclimate record. Such a contextualization would improve our understanding of the underlying drivers of the modern trend and help benchmark future climate change projections. Here, we seek to (1) determine the timescales that the aridity gradient has been most active, (2) contextualize and evaluate the spatial characteristics and physical mechanisms of the aridity gradient trend within its natural range of climate variability, and (3) evaluate the relative roles of anthropogenic climate change and natural climate variability on the recent gradient trend.

The modes impacting the observed US aridity gradient are also apparent in multiple paleoclimate data products that span the past millennium (e.g., tree ring-reconstructed North American Drought Atlas, multi-proxy Paleo Hydrodynamics Data Assimilation product), although spatial characteristics of these modes vary through time. Using these products, we find that the recent observed multidecadal trend toward wetting in the east and drying in the west was abnormal relative to the last millennium. During 1956-2005, the mean soil-moisture difference between the east and west US was larger than during any other 50-year period since the end of the Medieval Warm Period (1201-1250 CE). Additional work will decompose the effects of temperature and precipitation on soil moisture trends and variability through time and relate the reconstructions to last-millennium CMIP5/CMIP6 climate simulations to assess model ability to simulate the reconstructed range of multi-annual to decadal hydroclimatic variability across the US. We will also assess climate projections to investigate the potential contribution of anthropogenic climate trends to the strengthened aridity gradient observed over the past century, providing insights into how this gradient may trend in future decades.

How to cite: Bishop, D., Williams, P., Seager, R., Cook, E., Peteet, D., Cook, B., and Rao, M.: Placing the east-west United States aridity gradient in a millennial context, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6120, https://doi.org/10.5194/egusphere-egu2020-6120, 2020.

EGU2020-22649 | Displays | CL1.18

Unraveling South American spatial precipitation patterns, intensity and variability through a multi-proxy approach for the past 2 kyr

Francisco J. Briceño-Zuluaga, Juliana Nogueira, Heitor Evangelista, James Apaéstegui, Abdelfettah Sifeddine, Jhan Carlo Espinosa, Raphael Neukom, Lucien Von Gunten, Catalina Gonzalez Arango, Myriam Khodri, Hugo Leonardo Monteiro, Alan Prestes, Mariza Pereira de Souza Echer, Marie-Pierre Ledru, Jorge Valdez, Francisco W. Cruz, Nicolas Strikis, and Pedro Dias

South America hydrological cycle is highly dependent on the water vapor transport advected from tropical-equatorial Atlantic, Southern Pacific as well as the polar advections. While the Pacific contribution in the continental water budget is basically restricted to the western Andes region, the Atlantic Ocean and others mechanism – as advection in Amazonas basin – play a great role in modulating precipitation over the continent. Besides, modes of climatic variability, such as ENSO, have an important role in pluviosity distribution patterns and respectively intensity, influencing the availability of water resources from mountainous regions, vital to ecosystems and to economy and human wellbeing. Intense droughts and floods observed continentally during the modern epoch have pointed to the need of better understanding the regional climate related issue. Recent paleoclimate advances, especially the creation of high-standard regional proxy record databases, allow describing the South American climate from a new perspective. Here we present an effort of the South American PAGES 2k paleo-community LOTRED-SA to build a South America hydrology robust and unique multiproxy database. We present a spatial and temporal approach of the South American hydro-climate reconstruction based on more than 360 available databases in an attempt to unravel their changes and impacts. Following a multi-proxy approach, we expect to better describe duration and location of wet and dryer climate regimes at most important climate spatial domains, and modes patterns on South America, during each period; as well as their predominant variability base on high resolution records (tree rings, speleothems, lake, marine and ice cores). we combine here the use of different proxy records and spatial-temporal approach, owing to consolidate interpretations of the hydrological cycles in South America.

How to cite: Briceño-Zuluaga, F. J., Nogueira, J., Evangelista, H., Apaéstegui, J., Sifeddine, A., Carlo Espinosa, J., Neukom, R., Von Gunten, L., Gonzalez Arango, C., Khodri, M., Monteiro, H. L., Prestes, A., Pereira de Souza Echer, M., Ledru, M.-P., Valdez, J., Cruz, F. W., Strikis, N., and Dias, P.: Unraveling South American spatial precipitation patterns, intensity and variability through a multi-proxy approach for the past 2 kyr, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22649, https://doi.org/10.5194/egusphere-egu2020-22649, 2020.

EGU2020-20153 | Displays | CL1.18

Influences of the seasonal Indian monsoons, 1790-1993 CE: Sub-annual sea surface temperature and precipitation reconstructed from laminated Pakistan Margin sediments

Tiffany J. Napier, Lars Wӧrmer, Jenny Wendt, Andreas Lückge, and Kai-Uwe Hinrichs

Sub-decadal to annual climate oscillations are particularly relevant to human climate perception, including such well-known phenomena as the seasonal monsoons and El Niño-Southern Oscillation (ENSO). To assess the variability of these oscillations in the past, proxies for climate parameters that are influenced by these oscillations (e.g., temperature, precipitation) and geologic materials with a temporal resolution able to record them are both needed. However, even in settings where these two criteria are met, the sample size needed for laboratory analysis can limit temporal resolution.

We utilize a novel mass spectrometry imaging technique to measure and map distributions of climate-relevant biomarkers (e.g., GDGTs, alkenones) from intact sediment core surfaces in sub-mm increments, unlocking the ability to reconstruct sub-annual paleoclimate. These same sediment sample surfaces are analyzed with micro-XRF mapping to enable congruent examination of complementary elemental- and biomarker-derived paleoenvironmental proxies at ultra-high spatial resolution, both down-core and along-lamination.

We applied our biomarker and elemental mapping techniques to annually-laminated Pakistan Margin (northeastern Arabian Sea) sediment core SO90-58KG, spanning 1790-1993 CE. Laminated Pakistan Margin marine sediments are excellent archives of past climate and oceanographic conditions that are influenced by the summer (Southwest) and winter (Northeast) monsoons of India. We measured alkenones and GDGTs at 200 µm resolution, and elemental abundances at 50 µm resolution. Reconstructed sea surface temperatures (SSTs) were calculated from alkenone (UK'37) and GDGT (CCaT) ratios, respectively, with sample resolution up to four points per year. Principal component analysis was applied to the elemental measurements. The first principal component (PC1) is associated with siliciclastic elements (Al, Si, K, Ti, Fe), and is used as a proxy for sub-annual precipitation-driven river runoff.

Reconstructed SSTs for both biomarker proxies contain congruent trends, and align with the annual range of instrumental measurements (23 to 30 °C). The annual cycles in SST, with low temperatures driven by mixing during the winter monsoon, are prominent in the time series and highly significant in their power spectra. Using this annual cycle in SST and our paired elemental measurements, we determine the season(s) of river runoff. PC1 is typically highest when SST is low, suggesting runoff/deposition usually occurs during the winter monsoon, consistent with precipitation from westerly storms. However, some years contain PC1 peaks that occur in-phase with warm SSTs, suggesting expansion of summer monsoon rainfall west of Karachi during these years. This work demonstrates the cutting edge of high-resolution paleoclimate science, and provides new insights into the variability of the Indian monsoon from its sensitive western edge.

How to cite: Napier, T. J., Wӧrmer, L., Wendt, J., Lückge, A., and Hinrichs, K.-U.: Influences of the seasonal Indian monsoons, 1790-1993 CE: Sub-annual sea surface temperature and precipitation reconstructed from laminated Pakistan Margin sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20153, https://doi.org/10.5194/egusphere-egu2020-20153, 2020.

EGU2020-19571 | Displays | CL1.18

Variability of the Azores High and regional hydroclimate over the past millennium

Caroline Ummenhofer, Nathaniel Cresswell-Clay, Diana Thatcher, Alan Wanamaker, and Rhawn Denniston

The subtropical dry zones, including the broader Mediterranean region, are likely to experience considerable changes in hydroclimate in a warming climate. An expansion of the atmosphere’s meridional overturning circulation, the Hadley circulation, over recent decades has been reported, with implications for regional hydroclimate. Yet, there exists considerable disagreement in magnitude and even sign of these trends among different metrics that measure various aspects of the Hadley circulation, as well as discrepancies in trends between different analysis periods and reanalysis products during the 20th century. In light of these uncertainties, it is therefore of interest to explore variability and trends in subtropical hydroclimate and its dominant driver, the Hadley Circulation. We focus on the North Atlantic sector and explore variability in the Azores High, the manifestation of the Hadley Circulation’s downward branch, and hydroclimate across the Iberian Peninsula using a combination of observational/reanalysis products, state-of-the-art climate model simulations, and hydroclimatically-sensitive stalagmite records over the past 1200 yr. The Last Millennium Ensemble (LME) with the Community Earth System Model provides thirteen transient simulations covering the period 850 to 2005 A.D. with prescribed external forcing (e.g. greenhouse gas, solar, volcanic, land use, orbital, and aerosol) and smaller subsets with individual forcing only. The LME is shown to accurately simulate the variability and trends in the Azores High when compared to observational records from the 20th century. We evaluate variability in the Azores High (e.g., size, intensity, position) in relation to other key metrics that measure different aspects of the Hadley circulation throughout the course of the last millennium, as well as during key periods, such as the Little Ice Age or Medieval Climate Anomaly. The smaller subsets of LME simulations with individual forcing factors (e.g., solar, volcanic) allow for an attribution of past changes in regional hydroclimate to external drivers. Results from the climate model simulations are compared with hydroclimate reconstructed from stalagmites from Portuguese caves.

How to cite: Ummenhofer, C., Cresswell-Clay, N., Thatcher, D., Wanamaker, A., and Denniston, R.: Variability of the Azores High and regional hydroclimate over the past millennium, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19571, https://doi.org/10.5194/egusphere-egu2020-19571, 2020.

EGU2020-19963 | Displays | CL1.18

European drought during the last two millennia from reconstructions and model simulations

Fidel González-Rouco, María Angeles López-Cayuela, Jorge Navarro, Elena García-Bustamante, Nuria García-Cantero, Camilo Melo-Aguilar, and Norman Steinert

The spatial and temporal variability of droughts in the Euro-Mediterranean area during the last two millennia has been analyzed by comparing the Old World Drought Atlas (OWDA) dentrochronological based reconstruction and 13 simulations including a complete set of natural and anthropogenic forcings from the Community Earth System Model- Last Millennium Ensemble (CESM-LME). The OWDA represents scPDSI estimates, whereas for the CESM-LME soil moisture is used. A clustering into regions of objectively different behavior is achieved through rotation of principal components and the resulting regionalizations of the OWDA and the CESM-LME are compared.

The resulting regions from the reconstructions and model are overall consistent. Some regions are coincident in both and in some cases model regions are a combination of the reconstructed ones. The resulting classification is also robust across the model ensemble, although It is found that the definition of some hydroclimatic regions shows some sensitivity to internal variability.

The temporal variability of drought within each region is analyzed. Differences are found in the level of low frequency variability among regions with implications for the probability of having long intense droughts in different areas. Megadroughts have been found to exist both in the reconstructions and in the simulations and their occurrence suggest rather internal variability dependances rather than responses to external forcing.

How to cite: González-Rouco, F., López-Cayuela, M. A., Navarro, J., García-Bustamante, E., García-Cantero, N., Melo-Aguilar, C., and Steinert, N.: European drought during the last two millennia from reconstructions and model simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19963, https://doi.org/10.5194/egusphere-egu2020-19963, 2020.

EGU2020-11257 | Displays | CL1.18

The significance of climate and solar variability on historical European grain prices

Fredrik Charpentier Ljungqvist, Peter Thejll, Bo Christiansen, Andrea Seim, Claudia Hartl, and Jan Esper

Grain was the most important food source for a majority of the population in early modern Europe (c. 1500–1800). The price level and volatility had huge societal effects: high prices tended to increase mortality, decrease fertility as well as affect overall consumption patterns. To what extent climate variability influenced the long-term grain price evolution in early modern Europe has for a long time been a matter of debate. Recent advances in high-resolution palaeoclimatology and historical climatology have made it possible to reassess the grain price–climate relationship in time and space with unprecedented detail (Esper et al. 2017). We analyse the climate signal in 56 multi-centennial long series of annual prices of barley, oat, rye, and wheat across Europe. The grain price–climate relationship in regional clusters of grain price data is analysed using both tree-ring based temperature reconstructions, documentary-based temperature reconstructions, tree-ring based drought reconstructions, and early temperature and precipitation instrumental data, considering possible different climate responses in each grain type and different seasonal targets. In addition, we systematically investigate whether, and to what extent, the imprints of variations in solar forcing, including possible lag effects, can be detected in the grain prices.

We find a highly significant and persistent negative temperature–price relationship (i.e., cold = high prices and vice versa) across all of Europe and for all four grain types using both temperature reconstructions and instrumental temperature data. Excluding the Thirty Years’ War (1618–1648) and the period following the French Revolution (1789), this relationship is as strong as r = –0.41 between the annual average of all the 56 included European grain price series and the reconstructed June–August temperature for the previous year. The correlations to drought and precipitation are, on the other hand, mainly insignificant and inconsistent in time and space. The evidence for the existence of the effect of solar forcing variations on early modern European grain prices is not strong, although we can detect statistically significant grain price–solar forcing relationships for certain regions. In conclusion, we find much stronger evidence than hitherto reported for long-term temperature imprints on historical grain prices in Europe, implying that temperature variability and change have been a more important factor in European economic history, even in southern Europe, than commonly acknowledged.

 

Reference:

Esper J., et al., 2017. Environmental drivers of historical grain price variations in Europe. Clim. Res. 72: 39–52.

How to cite: Charpentier Ljungqvist, F., Thejll, P., Christiansen, B., Seim, A., Hartl, C., and Esper, J.: The significance of climate and solar variability on historical European grain prices, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11257, https://doi.org/10.5194/egusphere-egu2020-11257, 2020.

EGU2020-4141 | Displays | CL1.18

Climate, volcanism and human impact on Iceland’s landscape during the last two millennia.

Áslaug Geirsdóttir, David Harning, John Andrews, Gifford Miller, Yafang Zhong, and Alexandra Jahn

Biogeochemical proxy records from Icelandic lake sediment reflect large-scale shifts in North Atlantic Holocene climate and highlight the impact that North Atlantic Ocean- and atmospheric circulation has on Iceland’s local climate. Following Early Holocene warmth, millennial-scale cooling has been modulated by centennial-scale climate change, culminating in the transition to the Little Ice Age (ca. 1300-1900 CE). Although the long-term cooling trend is presumably driven by variations in Earth’s orbit and the concomitant decline in Northern Hemisphere summer insolation, the centennial-scale variability has been linked to variations in solar irradiance, the strength of the Atlantic Meridional Overturning Circulation, volcanism coupled with sea ice/ocean related feedbacks and internal modes of atmospheric variability. One manifestation of these regional climate changes on Iceland is the intensification of soil erosion, resulting in the degradation of its eco-systems and landscape. In recent millennia, persistent and severe soil erosion has also been linked to human impact on the environment following the settlement ~874 CE, rapid population growth and the poorly consolidated nature of tephra dominated soils. However, against the argument that the onset of severe soil erosion coincided with human settlement are composite landscape stability proxies extracted from the high-resolution, precisely-dated lake sediment cores. These data suggest event-dominated landscape instability and soil erosion began in the Middle to Late Holocene with an intensification of landscape instability around ~500 CE, several centuries before the acknowledged settlement of Iceland, after which soil erosion continue to increase. In order to statistically identify abrupt and persistent changes within our landscape stability proxy records, we performed an analysis that targets mean regime shifts in individual time series. The first clear regime shift occured around ~500 CE, with a second large shift ~1200 CE. In order to provide a causal explanation for these regime shifts, we looked to a new 2 ka fully coupled climate transient simulation using CESM1, with forcing data from PMIP4, including insolation, volcanic aerosols, land-cover, and GHG. The CESM results show a ~0.5°C reduction in summer temperature in the first millennium CE, consistent with increased landscape instability and soil erosion in Iceland.  A second phase of persistent summer cooling in the model occurs after 1150 CE, with stronger cooling after 1450 CE, reaching a minimum shortly after 1850 CE, ~1°C lower than at the start of the experiment. Orbitally driven declines in summer insolation appear to be the dominant forcing early in the first millennium CE, with volcanism and solar irradiance reductions increasingly important after 500 CE and in the second millennium CE, but positive feedbacks from sea ice and the overturning circulation are necessary to explain the magnitude of peak LIA cooling when soil erosion is at its greatest in Iceland. Collectively, our initial results suggest that natural variations in regional climate and volcanism are likely responsible for soil erosion prior to human impact, with intensification of these processes following settlement particularly during the cooling associated with the Little Ice Age.

How to cite: Geirsdóttir, Á., Harning, D., Andrews, J., Miller, G., Zhong, Y., and Jahn, A.: Climate, volcanism and human impact on Iceland’s landscape during the last two millennia., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4141, https://doi.org/10.5194/egusphere-egu2020-4141, 2020.

EGU2020-89 | Displays | CL1.18

Indian Monsoon Rainfall Variability and associated Climatic forcings in the last two millennia inferred by a Stalagmite from the peninsular India

Naveen Gandhi, Phannindra Reddy A., Raghavan Krishnan, and Madhusudan G. Yadava

We present high temporal (near-annually) resolved δ18O values from absolutely dated stalagmite record that represents the Indian Summer Monsoon (ISM) rainfall variations for the Indian subcontinent spanning from 207 AD to 2014 AD. This rainfall reconstruction shows ISM varaitions for four major global climatic periods viz., Roman Warm Period (RWP), Dark Ages Cold Period (DACP), Medieval Warm Period (MWP) and Little Ice Age (LIA). Cave records from different patrs of the sub-continent synchronously show enhanced precipitation during DACP. This wet period was forced by Solar-induced El-NiNo Southern Oscillation (ENSO) and Tibetan Plateau Temperature. Cliamtic conditions were wetter during LIA than that during MWP, as the former witnessed more number of wet monsoon years. However, MWP witnessed the strongest and the weakest monsoon years in the last two millennia. The direct influence of Soalr activity on the position of Inter Tropical Convergance zone (ITCZ) might have caused the observed ISM variability of MWP. Altough ISM shows largest variability during MWP, the overall monsoon state was moving towards wetter conditions, forced by ENSO. Solar induced forcings on ENSO influenced ISM during LIA. Our results suggest of non-stationary dynamical forcings over ISM during different periods in the last two millennia.

How to cite: Gandhi, N., Reddy A., P., Krishnan, R., and Yadava, M. G.: Indian Monsoon Rainfall Variability and associated Climatic forcings in the last two millennia inferred by a Stalagmite from the peninsular India, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-89, https://doi.org/10.5194/egusphere-egu2020-89, 2020.

EGU2020-903 | Displays | CL1.18

2000 years of marine primary productivity in the Eastern Tropical North Pacific

Christina Treinen-Crespo, Jose Carriquiry, Julio Villaescusa, and Elisabet Repiso-Terrones

Changes in marine primary productivity (MPP) over the 21st century are expected to occur under the prevailing climate change scenario. For better understanding of past climate variability, we reconstructed MPP at high resolution (~1-2 years) for the past 2000 years analyzing biogenic silica and total organic carbon (TOC %) on a sediment core collected from Soledad Basin (25°N, 112°W), Baja  California, Mexico. Located in the Eastern Tropical North Pacific, this suboxic basin is ideal for palaeoceanographic reconstructions due to its high sedimentation rate (2 mm/year), which allow us to reconstruct past changes in the ocean and climate at high resolution. Our results show an increasing trend in the variability of MPP for the past 2000 years: biogenic silica content does not show a well-defined trend, but rather it is dominated by strong multidecadal and prominent centennial-scale cycles while TOC (%) shows a slight increasing trend towards the present, starting at least 2000 years ago. Spectral analysis confirms the presence of multidecadal to centennial cycles. These results will be discussed in the context of the Anthropocene and natural climate variability.

How to cite: Treinen-Crespo, C., Carriquiry, J., Villaescusa, J., and Repiso-Terrones, E.: 2000 years of marine primary productivity in the Eastern Tropical North Pacific, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-903, https://doi.org/10.5194/egusphere-egu2020-903, 2020.

EGU2020-941 | Displays | CL1.18

Beach-foredune ridges as proxies for climate-induced wave direction changes in South Atlantic during Late Holocene

Ana Paula Da Silva, Antonio Henrique da Fontoura Klein, Antonio Fernando Harter Fetter Filho, Christopher Hein, Fernando Mendez, Micael Broggio, and Charline Dalinghaus

Variability in global wave climate has been observed to occur in response to climate changes influencing the wave-generating zones. This highlights the need for an improved understanding of long-term wave-climate cycles, considering the multi-decadal variability of the atmospheric patterns and large-scale climate drivers. In this study, a novel use of the morphology of former shorelines preserved in beach-foredune ridges was applied to reconstruct changes in predominant wave directions in the Subtropical South Atlantic during the Late Holocene. A 3km wide semi-continuous sequence of beach-foredune ridges preserved within the Pinheira Strandplain (Santa Catarina State, Brazil) was mapped in order to extract the orientation of the former shorelines and derive a 3000-year record of inferred mean wave direction. The mean wave direction series was compared to ~1000 years of decadal means of mid-latitude mean sea-level pressure gradients (∆MSLP) and zonal westerly wind velocities estimated from the CESM1-CAM5 “Last Millennium Ensemble (LME)”, and to 2000 years of air-surface temperature anomalies for Southern Hemisphere. Results showed that multi-centennial cycles of oscillation in predominant wave direction occurred in accordance with stronger (weaker) South Atlantic mid-latitude mean sea-level pressure and zonal westerlies winds, favouring wave generation zones in higher (lower) latitudes and consequent southerly (easterly) wave climate dominance. It was identified the Southern Annular Mode as the main climate driver responsible for these changes, responding for 43% of the variance in the Subtropical South Atlantic atmospheric patterns in the last 1000 years. Long-term variations in interhemispheric air-surface temperature offsets, coincident with oscillations in wave direction, may have influenced wave-generation patterns similarly to the seasonal behaviour observed over recent decades. Periods of relatively warmer Southern Hemisphere (SH) as compared with Northern Hemisphere (NH) (e.g., during 400–800 CE and the Little Ice Age) favours the predominance of easterly wave energy flux along the eastern South American coast, whereas periods with equivalent NH-SH temperature anomalies (e.g., Medieval Warm Period) or with colder relative SH (last ~150 years) support an increase in the influence of the southerly wave energy flux over the South Atlantic. These results provide a novel geomorphic proxy for paleoenvironmental reconstructions and present new insights into the role of multi-decadal to multi-centennial climate variability on controlling coastal ocean wave climate.

How to cite: Da Silva, A. P., Klein, A. H. D. F., Fetter Filho, A. F. H., Hein, C., Mendez, F., Broggio, M., and Dalinghaus, C.: Beach-foredune ridges as proxies for climate-induced wave direction changes in South Atlantic during Late Holocene, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-941, https://doi.org/10.5194/egusphere-egu2020-941, 2020.

EGU2020-2477 | Displays | CL1.18

Resolving the differences in the simulated and reconstructed climate response to volcanism over the last millennium

Feng Zhu, Julien Emile-Geay, Greg Hakim, Jonathan King, and Kevin Anchukaitis

Explosive volcanism imposes impulse-like radiative forcing on the climate system, providing a natural experiment to study the climate response to perturbation. Previous studies have identified disagreements between paleoclimate reconstructions and climate model simulations (GCMs) with respect to the magnitude and recovery from volcanic cooling, questioning the fidelity of GCMs, reconstructions, or both. Using the paleoenvironmental data assimilation framework of the Last Millennium Reanalysis, this study investigates the causes of the disagreements, using both real and simulated data. We demonstrate that the disagreement may be resolved by assimilating tree-ring density records only, by targeting growing-season temperature instead of annual temperature, and by performing the comparison at proxy locales. Our work suggests that discrepancies between paleoclimate models and data can be largely resolved by accounting for these features of tree-ring proxy networks.

How to cite: Zhu, F., Emile-Geay, J., Hakim, G., King, J., and Anchukaitis, K.: Resolving the differences in the simulated and reconstructed climate response to volcanism over the last millennium, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2477, https://doi.org/10.5194/egusphere-egu2020-2477, 2020.

EGU2020-2926 | Displays | CL1.18

Data assimilation of oceanic proxies in the North Atlantic over the Common Era

Hugues Goosse, Gaelle Gilson, François Klein, Guillaume Lenoir, Anne de Vernal, Michael N. Evans, and Casey Saenger

The mismatch between oceanic proxy data and climate model results over the past millennia has been a long-lasting challenge. Although both are valuable sources of paleoclimate information, there is a strong discrepancy in variance between models and proxies, so that they cannot be compared directly. In addition, local sea-surface temperature (SST) reconstructions are often inconsistent among proxy types. We first performed several offline data assimilation experiments with different standardized SST proxy datasets using the climate models LOVECLIM and CESM in order to investigate the effect of proxy selection on local and regional reconstructions over the Common Era (0-2000 CE). All experiments work technically at the local scale, but the spatial pattern of the reconstructions vary with the type(s), number and density of proxies, and, where there is no proxy, the choice of the model. We then developed empirical scaling factors based on independent SST observations to correct for the discrepancy between model and proxy amplitude. While it is essential to scale proxies, scaling the model leads to complications because of the biases in the sea ice extent. Data assimilation of scaled proxies results in coherent SST reconstructions at the scale of the North Atlantic, with timing and amplitude that are in agreement with those given by forced models. Finally, results are compared to online data assimilation experiments.

How to cite: Goosse, H., Gilson, G., Klein, F., Lenoir, G., de Vernal, A., Evans, M. N., and Saenger, C.: Data assimilation of oceanic proxies in the North Atlantic over the Common Era, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2926, https://doi.org/10.5194/egusphere-egu2020-2926, 2020.

EGU2020-3138 | Displays | CL1.18

Long-Term Global Ground Heat Flux and Continental Heat Storage from Geothermal Data

Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, J. Fidel González-Rouco, and Elena García-Bustamante

Energy exchanges among climate subsystems are of critical importance the climate sensitivity of the Earth's system to greenhouse gases, to quantify the magnitude and evolution of the Earth's energy imbalance, and to project the evolution of future climate. Thus, ascertaining the magnitude and change of the Earth's energy partition within climate subsystems has become urgent in recent years.

Here, we provide new global estimates of changes in ground surface temperature, ground surface heat flux and continental heat storage derived from geothermal data using an expanded database and new techniques. Results reveal markedly higher changes in ground heat flux and heat storage within the continental subsurface than previously reported, with land temperature changes of 1K and continental heat gains of around 12 ZJ during the last part of the 20th century relative to preindustrial times. Half of the heat gain by the continental subsurface since 1960 occurred in the last twenty years.

How to cite: Cuesta-Valero, F. J., García-García, A., Beltrami, H., González-Rouco, J. F., and García-Bustamante, E.: Long-Term Global Ground Heat Flux and Continental Heat Storage from Geothermal Data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3138, https://doi.org/10.5194/egusphere-egu2020-3138, 2020.

EGU2020-4028 | Displays | CL1.18

Stalagmite geochemical proxy-inferred precipitation records over the past 800 years in northern Italy

C.-C. (River) Shen, Hsun-Ming Hu, Véronique Michel, Patricia Valensi, Horng-Sheng Mii, Christoph Spötl, Elisabetta Starnini, Marta Zunino, Takaaki Watanabe, Tsuyoshi Watanabe, Hsien-Chen Tsai, Wen-Hui Sung, and Wei-Yi Chien

We here present new 230Th-dated stalagmite multi-proxy records from Toirano cave (44˚ N, 8˚E), northern Italy, characterized by a semi-arid Mediterranean climate with humid winters and dry summers. Eleven U-Th ages was used to build the regional hydroclimate evolution over the past 800 years. Sr/Ca and Ba/Ca records show a similar pattern with an increasing trend at the end of Medieval Warm Period (MWP; 950-1250 C.E.) and a decreasing trend at the inception of Little Ice Age (LIA; 1300 to 1800 C.E). The temperature effect on the Sr partition coefficient in calcite is negligible and no significant influence of deposition rate on Sr/Ca and Ba/Ca is observed. The high degree of co-variation between the two records (r = 0.91; n = 212) suggest the variation should be mainly governed by prior calcite precipitation (PCP). Dry conditions lead to a longer water residence time in the epikarst, enhanced CO2 degassing and decreasing drip rate, resulting in high Sr/Ca and Ba/Ca ratios due to the preferential removal of Ca during PCP. Our results suggest a dry period during the transition of MCA and LIA in our region.

How to cite: Shen, C.-C. (., Hu, H.-M., Michel, V., Valensi, P., Mii, H.-S., Spötl, C., Starnini, E., Zunino, M., Watanabe, T., Watanabe, T., Tsai, H.-C., Sung, W.-H., and Chien, W.-Y.: Stalagmite geochemical proxy-inferred precipitation records over the past 800 years in northern Italy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4028, https://doi.org/10.5194/egusphere-egu2020-4028, 2020.

Extreme precipitation in Europe over summer time is one type of climate extreme with strongest impact on societies, at present and over the past centuries. In contrast to mean and extreme temperatures, it is still unclear to what extant the external forcing may modulate the intensity and frequency of this type of hydrological extremes. This contribution focuses on the identification of the impact of external forcing on European extreme precipitation over the past millennium in one small ensembles of simulations with the Earth System model MPI-ESM-P and in the Large Millennium Ensemble with the model CESM.

Both models realistically simulate the meteorological conditions that give rise to sustained (over several days) strong precipitation, compared to present conditions. The analysis of both ensembles indicates that the role of the external forcing over the past millennium has been weak at most, with individual members of the ensemble providing different timings for period with high and low probability of extreme summer precipitation in this region. This conclusion is also valid for mean summer precipitation.

This result confirms the evidence obtained from analysis of proxy records, mostly palaeoclimatological records but also historical evidence. This analysis indicates that the frequency and intensity of extreme summer precipitation has been so far independent of the mean climate state.

How to cite: Zorita, E.: Extreme summer precipitation in Central Europe over the past millennium: role of external forcing in enseble of simulations with Earth System models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4191, https://doi.org/10.5194/egusphere-egu2020-4191, 2020.

EGU2020-5232 | Displays | CL1.18

SST Variability in the Southeastern Caribbean Sea over the Past 1800 Years

Anastasia Zhuravleva, Henning Bauch, Mahyar Mohtadi, and Kirsten Fahl

Sea surface temperature (SST) of the Caribbean Sea exerts a strong control on the amount of precipitation on the adjacent land. However, a clear understanding of the regional climate development on centennial timescales is missing due to scarcity of SST records. To fill this gap, we generated a new high-resolution proxy dataset of the last 1800 years from the Tobago Basin, a region that is presently affected by both Atlantic and Pacific climate variability on one hand, and by the South Atlantic circulation on the other hand. Our dataset is comprised of Mg/Ca and alkenone-derived SSTs, stable isotopes, element composition of bulk sediment and planktic foraminiferal assemblages. Our Mg/Ca-based reconstruction suggests significant SST variability over the past 1800 years CE, particularly during the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). The MCA encompasses an abrupt 2 °C SST reduction between 1050-1100 years CE, which coincided with a distinct episode of precipitation minima in the region and was followed by a century of warm and wet MCA conditions. A 1 °C cooling also characterized the onset of the LIA between 1400-1550 years CE, which was associated with a reduction in water column stratification inferred from stable isotopes and foraminiferal assemblage data. The initial LIA cooling was followed by a robust 1 °C SST rise between 1550-1750 years CE. This warming trend is also supported by alkenone-derived SSTs. Our reconstructed SST variability across the LIA may help to explain the occurrence of alternating dry and wet conditions on the Caribbean islands.

How to cite: Zhuravleva, A., Bauch, H., Mohtadi, M., and Fahl, K.: SST Variability in the Southeastern Caribbean Sea over the Past 1800 Years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5232, https://doi.org/10.5194/egusphere-egu2020-5232, 2020.

EGU2020-6484 | Displays | CL1.18

Paleoclimate drivers of the Indonesian and South China Sea throughflows, the curious case of the IOD

Ankitha Kannad, Nathalie F. Goodkin, Sujata A. Murty, Riovie D. Ramos, Dhrubajyoti Samanta, and Arnold L. Gordon

The Indonesian and South China Sea throughflows play an important role in global ocean circulation as the only low-latitude pathway for the exchange of heat and salt between the Pacific and Indian oceans. This transport is modulated by different climate systems including the El Niño Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO) and the East Asian Monsoon. The interactions of these climate systems across the Southeast Asian region are still being understood, particularly the role of sea surface salinity (SSS) in inhibiting flow from the Makassar Strait into the Indian Ocean.

Reconstructions of SSS from corals provide an opportunity to study long-term trends in climate and ocean circulation. Coral records from north and south of the Luzon Strait, the Makassar Strait, and Lombok Strait for the period 1926 to 2010 are examined to evaluate their shared variability. Principal component analysis synthesizes these records for the boreal winter (December to March) and boreal summer (June to September). The first and second principal components or empirical orthogonal functions (EOF) describe over 55% of the shared variance in both seasons. In the winter, the EOF of both modes correlates to PDO and the first EOF correlates to the Indian Ocean Dipole (IOD). A high-pass filter of the first EOF for <10 years per cycle for the winter and summer significantly correlates to ENSO and IOD respectively. While several sites individually correlate with ENSO and PDO, no individual SSS record correlates to the IOD. This consistent relationship of the IOD to the winter EOF indicates a regional influence on salinity variance that is not identified locally. One hypothesis to explain IOD’s regional influence is that the interaction of the IOD and ENSO through the atmospheric bridge or the Madden Julian Oscillation (MJO) is influencing the region. Spectral analysis, and climatic and oceanographic models will be used to further investigate this connection.

How to cite: Kannad, A., Goodkin, N. F., Murty, S. A., Ramos, R. D., Samanta, D., and Gordon, A. L.: Paleoclimate drivers of the Indonesian and South China Sea throughflows, the curious case of the IOD, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6484, https://doi.org/10.5194/egusphere-egu2020-6484, 2020.

EGU2020-7159 | Displays | CL1.18

Components of past cold mega-droughts and modern warm dry events in central Europe could interfere constructively in the future

Monica Ionita-Scholz, Mihai Dima, Viorica Nagavciuc, Patrick Scholz, and Gerrit Lohmann

Mega-droughts are notable manifestations of the American Southwest, but not so much of the European climate. By using long-term hydrological and meteorological observations, as well as paleoclimate reconstructions, we show that central Europe has experienced much longer and severe droughts during the Spörer Minimum (~AD 1400 – 1500) and Dalton Minimum (~AD 1770 – 1850), than the ones observed during the 21st century. These two mega-droughts appear to be linked with a weak state of the Atlantic Meridional Overturning Circulation (AMOC) and enhanced winter atmospheric blocking activity over the British islands and western part of Europe, associated with reduced solar forcing and explosive volcanism. In contrast with these mega-droughts, present-day extreme dry events in Europe are mainly related to high temperature levels. Since numerical simulations indicate a future slowdown of AMOC in a globally warming world, we argue that these two forcing factors for droughts, weakening ocean circulation and temperature increase, could interfere constructively in the future. Consequently, this will potentially lead to an increase in the frequency of hot and dry summers, especially over the central part of Europe, posing enormous challenges to governments and society.

How to cite: Ionita-Scholz, M., Dima, M., Nagavciuc, V., Scholz, P., and Lohmann, G.: Components of past cold mega-droughts and modern warm dry events in central Europe could interfere constructively in the future, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7159, https://doi.org/10.5194/egusphere-egu2020-7159, 2020.

Ice cores are key archives in the quest to reconstruct and understand past climate variability. They are generally found in polar and high latitude regions, but caves in the Carpathian Mountains (East-central Europe) host several glaciers thousands of years old. Here, we present a reconstruction of summer and winter air temperatures during the last millennium based on the d18O and d2H values measured in ice cores drilled in the glaciers hosted by Focul Viu (FV) and Scărișoara Ice Caves (SIC), both in the Western Carpathians (East-Central Europe, Romania). In order to understand the climatic signal locked in the two cores, we analyzed the stable isotope composition of the rainfall water, which was subsequently compared with that of the cave ice. Accordingly, d18O in ice in SIC is a proxy for late-autumn through early winter air temperature, while that in FV for summer air temperatures. The analysis of d18O values indicate that on centennial scales, air temperature variability during the last 1000 years was controlled by changes during the winter season, summer temperatures being relatively constant (on these time scales). Contrary, short-term variability (decadal to multi-decadal) was well expressed in both seasons. In summer, the main controlling factors seem to be changes in solar radiation and possibly in the strength of the Atlantic Multidecadal Oscillation, while in winter, the strength of the Siberian High could have acted as the main forcing factor.

How to cite: Bădăluță, C.-A. and Perșoiu, A.: Late Holocene climate variability in the Western Carpathians (East-Central Europe) reconstructed from ice cores records, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7411, https://doi.org/10.5194/egusphere-egu2020-7411, 2020.

EGU2020-8744 | Displays | CL1.18

Global monthly sea surface temperature and sea ice reconstruction for historical simulations

Eric Samakinwa and Stefan Brönnimann

Variability in Sea Surface Temperature (SST) is one of the prime sources of intra-annual variability, and also an important boundary condition for Atmospheric General Circulation Models (AGCMs). In many AGCM simulations, SST and Sea Ice Concentration (SIC) are prescribed. While SSTs are specified according to observations available in recent period of instrumental records (1850 – present), SIC depends on climatological averages with less variability prior to the inception of satellite measurements. This limits our understanding of large-scale climate variations in the past.

In this study, we augment multi-proxy reconstructed annual mean temperature of Neukom et al. (2019) with intra-annual variability from HadISST (v2.0), for 850 years (1000 – 1849). Intra-seasonal variability, such as the phase-locking of El-Nino Southern Oscillation, Indian Ocean Dipole and Tropical Atlantic SST indices to annual-cycle, are utilized. The intra-annual component of HadISST and SST indices estimated from the multi-proxy reconstructed annual mean, are used to develop grid-based multivariate linear regression models using the Frisch-Waugh-Lovell theorem, in a monthly stratified approach. Furthermore, we introduce a scaling technique to ensure homogeneous mean and variance, similar to that of the target. SST observations obtained from ship measurements by ICOADS before 1850, will be integrated in an off-line data assimilation approach.

Similarly, we reconstruct SIC via analogue resampling of HadISST SIC (1941 – 2000), for both hemispheres. We pool our analogues in four seasons, comprising of 3 months each, such that for each month within a season, there are 180 possible analogues. The best analogues are selected based on correlation coefficients between reconstructed SST and its target.

How to cite: Samakinwa, E. and Brönnimann, S.: Global monthly sea surface temperature and sea ice reconstruction for historical simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8744, https://doi.org/10.5194/egusphere-egu2020-8744, 2020.

EGU2020-10616 | Displays | CL1.18

Volcanic fluxes over the last millennium as recorded in the GV7 ice core (Northern Victoria Land, Antarctica)

Rita Traversi, Silvia Becagli, Mirko Severi, Raffaello Nardin, Laura Caiazzo, Alessandra Amore, Massimo Frezzotti, and Barbara Stenni

Explosive volcanic eruptions are able to affect significantly the atmosphere for 2‐3 years. During this time, volcanic products (mainly H2SO4) with high residence 
time are stored in the stratosphere/troposphere, and eventually deposited onto polar ice caps; snow layers may thus record signals providing a history of past 
volcanic events. A high resolution sulphate concentration profile along a 197 m long ice core drilled at GV7 (Northern Victoria Land) was obtained by Ion Chromatography. The relatively high accumulation rate (241±13 mm we yr-1) and the 5‐cm resolution allowed a preliminary counted age scale. The obtained stratigraphy covers roughly the last millennium and 24 major volcanic eruptions were identified, dated and 
ascribed to a source volcano. The deposition flux of volcanic sulfate was calculated and the results were compared with data from other Antarctic ice cores at regional and continental scale. Our results show that the regional variability is of the same order of magnitude 
of the continental scale.

How to cite: Traversi, R., Becagli, S., Severi, M., Nardin, R., Caiazzo, L., Amore, A., Frezzotti, M., and Stenni, B.: Volcanic fluxes over the last millennium as recorded in the GV7 ice core (Northern Victoria Land, Antarctica), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10616, https://doi.org/10.5194/egusphere-egu2020-10616, 2020.

EGU2020-10959 | Displays | CL1.18

Establishing past firn accumulation records from ice caves of the European Alps

Tanguy Racine, Christoph Spötl, and Paula Reimer

Mid-latitude, cave-hosted temperate ice is increasingly scrutinised for its palaeoclimatic potential. Findings of dendrochronologically dated wood trunks and radiometrically dated woody macrofossils demonstrate that underground ice accumulations records may locally span several millenia. The cave geometries conducive to underground firn accumulation were additionally shown to favour the preservation of a winter signal, making cave-hosted ice an attractive and complementary archive to existing and largely summer-biased proxy records. Proxy derivation from these ice accumulations first requires the establishment of firn accumulation/ablation chronologies from stratigraphic mapping and radiometric dating of organic inclusions. Decadal to centennial trends in accumulation/ablation recorded by the ice stratigraphy thus provide insight in past variations of solid precipitation .

Preliminary results from several well-dated ice caves of the Northern Calcareous Alps in Austria suggest local preservation of ice since ca. 3600-3300 BC. Inclusion-rich unconformities in the ice stratigraphy from these alpine caves mark short breaks in firn accumulation between 250 BC and 250 AD and longer hiatuses during Late Antiquity and the 8th and 9th century AD. The majority of dated ice sequences testify the onset of rapid ice accumulation from the 11th and 12th century AD onwards and build up throughout the 'Litte Ice Age'.

How to cite: Racine, T., Spötl, C., and Reimer, P.: Establishing past firn accumulation records from ice caves of the European Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10959, https://doi.org/10.5194/egusphere-egu2020-10959, 2020.

EGU2020-11271 | Displays | CL1.18

The impact of global warming on the upwellings and primary productivity at the southern limb of the California Current, Baja California, Mexico

Jose Carriquiry, Christina Treinen-Crespo, Julio Villaescusa, Ann Pearson, and Loic Barbara

Although most simulation models published have concluded that coastal upwelling will intensify in three of the most productive marine ecosystems of the world, the results seem contradictory for the California Current System (CCS). These contradictory results may be due to the fact that instrumental records are too short to yield reliable predictions. Because of this, we opted to test this hypothesis by studying the sedimentary record of Soledad basin, in Baja California, Mexico, using geochemical proxies to reconstruct at ultra-high resolution the history of productivity and sea surface temperature during the last two millennia, with particular emphasis on the Anthropocene. Our results indicate that SST (alkenones and TEX-86) do not show a cooling trend during the Anthropocene, but rather multidecadal cycles related to PDO. Likewise, primary productivity organic biomarkers [i.e., alkenone concentration (C37 Total) as a proxy for phytoplankton productivity, etc] show an increasing trend that started 2000 years ago with prominent multidecadal cycles, but without any observable trend taking place during the Anthropocene. An interesting feature of the organic matter record is the increasing amplitude of the cycles towards the present, starting 2000 years ago. Primary productivity is probably controlled by large scale mesoscale eddies developing at the southern Baja California margin.

How to cite: Carriquiry, J., Treinen-Crespo, C., Villaescusa, J., Pearson, A., and Barbara, L.: The impact of global warming on the upwellings and primary productivity at the southern limb of the California Current, Baja California, Mexico, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11271, https://doi.org/10.5194/egusphere-egu2020-11271, 2020.

EGU2020-13378 | Displays | CL1.18

Global climate changes during the most recent two millennia

Sarah S. Eggleston, Oliver Bothe, Nerilie Abram, Bronwen Konecky, Hans Linderholm, Belen Martrat, Helen McGregor, Steven Phipps, and Scott St. George

The past two thousand years is a key interval for climate science because this period encompasses both the era of human-induced global warming and a much longer interval when changes in Earth's climate were governed principally by natural drivers. This earlier 'pre-industrial' period is particularly important for two reasons. Firstly, we now have a growing number of well-dated, climate sensitive proxy data with high temporal resolution that spans the full period. Secondly, the pre-industrial climate provides context for present-day climate change, sets real-world targets against which to evaluate the performance of climate models, and allows us to address other questions of Earth sciences that cannot be answered using only a century and a half of observational data. 

Here, we first provide several perspectives on the concept of a 'pre-industrial climate'. Then, we highlight the activities of the PAGES 2k Network, an international collaborative effort focused on global climate change during the past two thousand years. We highlight those aspects of pre-industrial conditions (including both past climate changes and past climate drivers) that are not yet well constrained, and suggest potential areas for research during this period that would be relevant to the evolution of Earth's future climate.

How to cite: Eggleston, S. S., Bothe, O., Abram, N., Konecky, B., Linderholm, H., Martrat, B., McGregor, H., Phipps, S., and St. George, S.: Global climate changes during the most recent two millennia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13378, https://doi.org/10.5194/egusphere-egu2020-13378, 2020.

EGU2020-14384 | Displays | CL1.18

Vegetation history of Western Russia (Upper Dnieper, Smolensk region): Climate and human impact on landscape in last two millennia

Nikita Lavrenov, Ekaterina Ershova, Margarita Zhuravkova, and Nikolay Krenke

Climate and vegetation history of Upper Dnieper region (Western Russia) is investigated poorly while archaeological studies provide evidences of human activities during last 3 millennia. Our study presents vegetation reconstruction based on pollen analysis of sediments extracted from two sites in Smolensk region. The first site is located in Katynka river bassin and pollen analysis of extracted buried soil, alluvium and peat sediments demonstrates vegetation dynamics in archaeologically rich area over 5 millennia. The second site is located in 50 km from to the west from Smolensk and in 15 km to east from the Russian-Belarus state border. The analysis of extracted peat sediments presents regional history of vegetation. The aim of our study is to compare data obtained from both sites and to estimate climate and human influence on vegetation during last two millennia when activities associated with agriculture changed Dnieper valley landscape significantly.

The first results of pollen analysis data of the first site allow to register significant human impact on vegetation 2.0-0.8 ka BP. Before that period pollen of indigenous forest trees dominates in spectra while since 2.0 ka BP pollen compassion changes dramatically and pollen of Betula and Pinus is in majority in so-called “Gnezdovo soil” lay. Medieval lays of sapropel contains mostly pollen of Pinus with admixture of Betula and Alnus. Taxonomic diversity and presence of meadow herbs, weeds and cultivated taxa pollen increases significantly (up to 30%). Dynamics of pollen composition in specimens from the second site allows us to register slow processes of indigenous vegetation recovery over last 3 centuries approximately. Modern analogue technique applied on pollen data and analysis of historical data makes possible to separate impacts of climate and human on vegetation of the past and to reconstruct the climate of last two millennia.

The study was funded by RFBR, project number 19-34-90172.



How to cite: Lavrenov, N., Ershova, E., Zhuravkova, M., and Krenke, N.: Vegetation history of Western Russia (Upper Dnieper, Smolensk region): Climate and human impact on landscape in last two millennia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14384, https://doi.org/10.5194/egusphere-egu2020-14384, 2020.

EGU2020-17966 | Displays | CL1.18

Subdaily instrumental data from Graz, Austria, starting in 1795

Ulrich Foelsche, Erik Kraml, and Bruno Besser

The meteorological station at University of Graz, Austria has been recently recognised as WMO "Centennial Station", with measurements taken at
the same location going back to the year 1891. Combined with data from nearby downtown stations (in particular at the former location of the University) the record extends back to the year 1836 - in this form the data are currently used in the HISTALP dataset. This record can, however, be extended at least four decades back in time:

Mr. Rospini, a man of great interest in natural sciences (and later his son and grandsons) measured  temperature and pressure three times per day (morning, noon and evening) in the historic center of Graz - close to the former location of the University. Measurements apparently started as early as 1781, and have been continuously published in the "Grätzer Zeitung" from 1795 onwards. So far, we have been able to compile an almost uninterrupted
record since 1797 (with just a few weeks missing in total), and we are trying to fill the remaining gaps for the two previous years. Temperatures are given in Réaumur, recorded at 7, 15 and 22 (confirmed for 1823, very likely for the time before). For the year 1837 we performed a consistency check, comparing our recently retrieved data with those from the University (which are used in the HISTALP dataset), yielding an annual mean offset of just +0.2 °C.

With those subdaily measurements, we cannot only extend the climate record, but we can also attempt to analyse particularly interesting years. Using the temperature recorded at 15:00 as proxy for the maximum temperature, we could identify the extremely warm Summer of 1834, with at least 35 days, where the temperature maximum was 30 °C or higher. Since we slightly underestimate the true number of “Hot Days” with this approach, we can assume that this summer was not too different from the record Summer of 2003, where our meteorological station recorded 41 “Hot Days” (with actual maximum temperature measurements). The second highest value in the “official” time series was obtained in 2015 with 34 “Hot Days”. The year 1816, on the other hand, was indeed a "year without summer" - also in Graz, with just 11 days reaching a temperature of 25 °C or more.

How to cite: Foelsche, U., Kraml, E., and Besser, B.: Subdaily instrumental data from Graz, Austria, starting in 1795, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17966, https://doi.org/10.5194/egusphere-egu2020-17966, 2020.

EGU2020-19746 | Displays | CL1.18

Influence of external forcings on the hydroclimate conditions in the Europe-Mediterranean Region over the Common Era : a model/data approach

Myriam Khodri, Yang Feng, Laurent Li, Marie-Alexandrine Sicre, and Nicolas Lebas

The climate system has been largely influenced by emerging anthropogenic forcing effects during the last decades of the historical period. Hence, the historical simulations may not be the most appropriate ones to constrain the internal climate variability at such long time scales. The last 2000 years provide a promising time frame constrained by climate reconstructions to explore the interactions between external forcings and the internal dynamics of climate. The Common Era is indeed relatively long and forcing are reasonably well reconstructed and physical processes modelled. In this contribution, we use IPSL-CM6A-LR model simulations covering the last 1500 years (500AD to Present Day) and available paleo-proxy reconstructions to study the influence of the internal variability and external forcing on climate variability in the North Atlantic at decadal-to-multi-decadal time scales and the impacts on the hydro-climate conditions evolution over Europe-Mediterranean sector.

How to cite: Khodri, M., Feng, Y., Li, L., Sicre, M.-A., and Lebas, N.: Influence of external forcings on the hydroclimate conditions in the Europe-Mediterranean Region over the Common Era : a model/data approach , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19746, https://doi.org/10.5194/egusphere-egu2020-19746, 2020.

EGU2020-19943 | Displays | CL1.18

Impact of the 536/540 CE double volcanic eruption event on the 6th-7th century climate using model and proxy data

Evelien van Dijk, Claudia Timmreck, Johann Jungclaus, Stephan Lorenz, Manon Bajard, Josh Bostic, and Kirstin Krüger

The mid of the 6th century is an outstanding period and started with an unusual cold period that lasted several years to decades, due to the 536/540 CE double eruption event, with the strongest decadal volcanic forcing in the last 2000 years. Evidence from multiple tree ring records from the Alps to the Altai Mountains in Russia identified a centennial cooling lasting from 536 up to 660 CE. A previous Earth System Model (ESM) study with reconstructed volcanic forcing covering 535-550 CE like conditions already found that the double eruption led to a global decrease in temperature and an increase in Arctic sea-ice for at least a decade. However, the simulations were too short to fully investigate the multi-decadal cooling event and the atmospheric forcing from this double volcanic eruption alone may not be enough to sustain such a prolonged cooling. To better understand forced versus internal decadal climate variability in the first millennium we have performed mid 6th century ensemble simulations with the MPI-ESM1.2 for the 520-680 CE period. The ensemble consists of 10 realizations, which were branched of the MPI-ESM1.2 PMIP4 Past2k run, including the evolv2k volcanic forcing.

Here, we present results of this new set of the 6th-7th century MPI-ESM simulations in comparison to paleo-proxies. Summer surface temperatures are analyzed and compared with available tree-ring data, which fits very well for the entire 160 year period. As part of the VIKINGS project, special focus is placed on the impact of the 536/540 CE double volcanic eruption event on the surface climate in the Northern Hemisphere, in particular Scandinavia, Northern Europe and Siberia. The goal is to also compare the model data with new tree-ring and lake sediment proxies from southeastern Norway. Detailed comparison with proxy data will allow us to better understand the regional and seasonal climate variations of the 6th-7th century. Duration, strength and the possible mechanism for a long lasting volcanic induced cooling will be discussed.

How to cite: van Dijk, E., Timmreck, C., Jungclaus, J., Lorenz, S., Bajard, M., Bostic, J., and Krüger, K.: Impact of the 536/540 CE double volcanic eruption event on the 6th-7th century climate using model and proxy data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19943, https://doi.org/10.5194/egusphere-egu2020-19943, 2020.

EGU2020-20483 | Displays | CL1.18

Analysis of methodological and physical bias on borehole temperature reconstructions from a pseudo-proxy approach.

Camilo Melo Aguilar, Fidel González Rouco, Elena García Bustamante, Norman Steinert, Jorge Navarro, Pedro Roldan Gómez, and Johann Jungclaus

The analysis of subsurface temperature measurements from boreholes is a well established approach for reconstructing last millennium (LM) surface air temperature (SAT). It is based on the assumption that SAT variations are strongly coupled to ground surface temperature (GST) variations and transferred to the subsurface by thermal conduction. We have evaluated the long-term SAT-GST coupling over the LM using an ensemble of both full- and single-forcing simulations form the Community Earth System Model-Last Millennium Ensemble (CESM-LME). Such a premise is explored by investigating the evolution of the long-term SAT–GST relationship. The results indicate that SAT–GST coupling is strong at global and above multi-decadal timescales in CESM-LME. However, at local to regional scales this relationship experiences considerable long-term changes mostly after the end of the 19th century. Land use land cover (LULC) changes stand as the main driver for locally and regionally decoupling SAT and GST, due to the changes in the energy fluxes at the surface. Snow cover feedbacks due to the influence of GHG forcing are also important for corrupting the long-term SAT–GST coupling. These processes may represent a source of bias for SAT reconstructions from GST borehole profiles. In light of these findings, we subsequently assessed the potential effects on SAT reconstructions from the borehole method in pseudo-proxy experiments that make use of the same set of simulations from the CESM-LME. First, a heat-conduction forward model has been used to estimate subsurface temperature-anomaly profiles using simulated GST as boundary conditions. Subsequently, singular value decomposition inversion (SVD) has been applied to reconstruct LM GST variations from the simulated profiles. We implemented and ideal scenario in which it is assumed the existence of borehole logs at every model grid point. Further, this scenario considers that all boreholes are logged homogenously at the same time. In addition, we implemented a more realistic approach in which the real-world spatio-temporal distribution of the global borehole network is considered. Results show that the SVD inversion is able to retrieve the long-term GST variations over the LM when an appropriated coverture of borehole logs is available. However, due to the limited spatio-temporal distribution of the actual borehole network, there is a lost in the accuracy to retrieve the simulated GST 20th century trends, with the temporal logging of the BTPs as the main sampling issue. Furthermore, in the surrogate reality of the CESM-LME the SAT-GST decoupling, due to the influence of LULC and GHG forcings, leads to a slightly underestimation of SAT warming during the industrial period across the CESM-LME. The level of impact is, however, highly depended on the realization of internal variability.

How to cite: Melo Aguilar, C., González Rouco, F., García Bustamante, E., Steinert, N., Navarro, J., Roldan Gómez, P., and Jungclaus, J.: Analysis of methodological and physical bias on borehole temperature reconstructions from a pseudo-proxy approach., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20483, https://doi.org/10.5194/egusphere-egu2020-20483, 2020.

EGU2020-20714 | Displays | CL1.18

Millennial-scale variations in atmospheric N2O during the past 2000 years

Yeongjun Ryu, Jinho Ahn, Ji-Woong Yang, Ed Brook, Axel Timmermann, Thomas Blunier, Soondo Hur, and Seong-Joong Kim

Improved knowledge of greenhouse gas-climate feedbacks is required to understand past and future climate changes. Atmospheric nitrous oxide (N2O) is of concern for its potential role in global warming and future stratospheric ozone destruction. Existing ice core N2O records for the Holocene have not been sufficiently consistent to allow an examination of small changes on sub-millennial time scales. Here, we present new high-resolution and high-precision N2O records obtained from the Greenland NEEM (North Greenland Eemian Ice Drilling) and Antarctic Styx Glacier ice cores. Our reconstruction shows, for the first time, a centennial-scale variability of ~10 ppb during the last 2000 years.  Comparisons with proxy records suggest that centennial- to millennial-scale variations in N2O are driven, to a large extent, by changes in tropical and subtropical land hydrology and marine productivity.

How to cite: Ryu, Y., Ahn, J., Yang, J.-W., Brook, E., Timmermann, A., Blunier, T., Hur, S., and Kim, S.-J.: Millennial-scale variations in atmospheric N2O during the past 2000 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20714, https://doi.org/10.5194/egusphere-egu2020-20714, 2020.

CL1.20 – Historical climatology and hydrology: the role of documentary evidence in the reconstruction of past (hydro)climate and its variabilities

EGU2020-586 | Displays | CL1.20

A critical evaluation of present flood hazard maps in Southwest Germany using epigraphic marks and historical written data

Annette Sophie Bösmeier, Iso Himmelsbach, and Rüdiger Glaser

Engraved in stone or attached as metal plates to bridges or house walls, flood marks are mostly publicly accessible symbols of high-water level and form part of the cultural heritage. They serve as tangible representations of the extent of past floods and are thus regarded a medium which can raise public risk awareness and contribute to a collective risk memory. Moreover, epigraphic marks are often regarded a valuable source of information on the frequency and magnitude of historical extreme events. However, a flood mark´s informational value may be considered too rudimentary, and the large number of potential error sources is a challenge that often cannot be fully resolved. We therefore conducted a multi-temporal study in the Kinzig catchment, Southwest Germany, in order to, firstly, test for the credibility and the temporal continuity of flood marks. Secondly, we used the knowledge gathered to verify the current flood hazard maps (FHM). For this study, more than 60 flood marks corresponding to 14 events since the beginning of the 19thcentury were checked and/or mapped in three communities in the upper and middle catchment. A detailed historical survey of flood marks dating back to the early 20th century provided a unique opportunity to assess the preservation of marks as well as the extent of relocation since that time. The flood mark heights were then compared with the flooding depths of the modelled FHM for floods between HQ10 and HQextreme at the respective locations. The gauge record was additionally included to assign return periods to the more recent events. Altogether, a high relative agreement between flood marks and the FHM was found in this systematic study, particularly for events during the 20th century. The extreme extents of some events within headwater catchments documented both by epigraphic marks and further documentary sources however appear to be underestimated by the FHM.

How to cite: Bösmeier, A. S., Himmelsbach, I., and Glaser, R.: A critical evaluation of present flood hazard maps in Southwest Germany using epigraphic marks and historical written data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-586, https://doi.org/10.5194/egusphere-egu2020-586, 2020.

EGU2020-5087 | Displays | CL1.20

The forgotten drought of 1765-1768: Reconstructing and re-evaluating historical droughts in the British and Irish Isles

Conor Murphy, Robert Wilby, Tom Matthews, Csaba Horvath, Arlene Crampsie, Francis Ludlow, Simon Noone, Jordan Brannigan, Jamie Hannaford, Robert MacLeman, and Eva Jobbova

Historical precipitation records are fundamental for the management of water resources, yet rainfall observations typically span 100 – 150 years at most, with considerable uncertainties surrounding earlier records. Here, we analyse some of the longest available precipitation records globally, for England and Wales, Scotland and Ireland. To assess the credibility of these records and extend them further back in time, we statistically reconstruct (using independent predictors) monthly precipitation series representing these regions for the period 1748-2000. By applying the Standardised Precipitation Index at 12-month accumulations (SPI-12) to the observed and our reconstructed series we re-evaluate historical meteorological droughts. We find strong agreement between observed and reconstructed drought chronologies in post-1870 records, but divergence in earlier series due to biases in early precipitation observations. Hence, the 1800s decade was less drought prone in our reconstructions relative to observations. Overall, the drought of 1834-1836 was the most intense SPI-12 event in our reconstruction for England and Wales. Newspaper accounts and documentary sources confirm the extent of impacts across England in particular. We also identify a major, ‘forgotten’ drought in 1765-1768 that affected the British-Irish Isles. This was the most intense event in our reconstructions for Ireland and Scotland, and ranks first for accumulated deficits across all three regional series. Moreover, the 1765-1768 event was also the most extreme multi-year drought across all regional series when considering 36-month accumulations (SPI-36). Newspaper and other sources confirm the occurrence and major socio-economic impact of this drought, such as major rivers like the Shannon being fordable by foot. Our results provide new insights into historical droughts across the British Irish Isles. Given the importance of historical droughts for stress-testing the resilience of water resources, drought plans and supply systems, the forgotten drought of 1765-1768 offers perhaps the most extreme benchmark scenario in more than 250-years.

How to cite: Murphy, C., Wilby, R., Matthews, T., Horvath, C., Crampsie, A., Ludlow, F., Noone, S., Brannigan, J., Hannaford, J., MacLeman, R., and Jobbova, E.: The forgotten drought of 1765-1768: Reconstructing and re-evaluating historical droughts in the British and Irish Isles, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5087, https://doi.org/10.5194/egusphere-egu2020-5087, 2020.

EGU2020-8058 | Displays | CL1.20

The weather diary of Felipe de Zúñiga (1775-1786): A key documentary source to understand the hunger year in Mexico

Fernando Domínguez-Castro, María Cruz Gallego, José M. Vaquero, Ricardo García Herrera, and Sergio M. Vicente-Serrano

The weather diary of Felipe de Zúñiga y Ontiveros (FZO) (Oaxtepec, 1717–Mexico City, 1793) provides daily meteorological information for rain frequency, temperature, frost, hail, thunderstorms, and windy days, from January 1775 to December 1786. It is the earliest obser­vational data collection with daily resolution retrieved in the region so far and it has higher time resolution than any other climate proxy available for this period. Some of the meteorological information provided by FZO could be compared with current meteorological records i.e. frequency of rain, hail, and thunderstorm. The seasonal distribution of these variables corresponds well during the FZO period and the present climate. 1781 was the warmest year in the FZO record while 1785 and 1778 were the coldest. FZO also identified a wet period (1782/1783) and two dry periods (1780/1781 and 1785/1786). The later coincides with the hunger year. It is considered the worst famine in Mexico during the colonial period (1521–1821).  A combination of adverse climate, lack of food, and an outbreak of typhus epidemic killed around 300,000 people. During these years a drought event extended over almost all the Mexican territory and was particularly severe over the central and northeastern regions. During the period 1785/86 FZO only recorded 188 rainy days. A similar record of low rainy days only occurred two times in the instrumental period: i) 1909/10 (188 days) and ii) 2010/11 (189 days). Both episodes with harmful consequences to the country e.g. water shortages, important loses in agriculture, farming, and forest fires. However, the climate during the hunger year was worse than during the instrumental droughts due to the high frequency of early killing frost. During 1785, frost events happened on April, August and September. FZO describes the impact of the frost and the attempt of the government to alleviate the famine “the frosts since August 28th have been so general that the fruits have been lost throughout the Kingdom, with the excep­tion of the warm lands; the government has asked them to sow corn, beans and other seeds in the irri­gated lands immediately so that they can be harvested by March 1786 and partially remedy the hunger that threatens”. Nevertheless, this decision was no useful because 1786 was driest than the 1785 impeding the growing of any crop. The annual summary of FZO for 1786 was, “It has been an unfortunate year due to scarcity of rain, supplies and everything needed for life, also in misfortune and public diseases”. The FZO´s diary is a good example of a documentary source that allows understanding the climate situation and the socio-economic response in detail during an extreme event.

How to cite: Domínguez-Castro, F., Gallego, M. C., Vaquero, J. M., García Herrera, R., and Vicente-Serrano, S. M.: The weather diary of Felipe de Zúñiga (1775-1786): A key documentary source to understand the hunger year in Mexico, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8058, https://doi.org/10.5194/egusphere-egu2020-8058, 2020.

EGU2020-9647 | Displays | CL1.20

North Atlantic Oscillation, East Atlantic pattern and jet variability since 1685

Javier Mellado-Cano, David Barriopedro, Ricardo García-Herrera, Ricardo Trigo, and Armand Hernández

Instrumental records of the leading patterns of variability are short, hampering a proper characterization of the atmospheric circulation beyond the mid-19th century. In this work, recently published in Mellado-Cano et al. (2019), we present the longest (1685-2014) observational-based records of winter NAO and East Atlantic (EA) indices as well as estimates of the North Atlantic eddy-driven jet stream for the same period. They are inferred from wind direction observations over the English Channel assembled in monthly indices of the persistence of the wind in the four cardinal directions. Our NAO and EA series are significantly correlated with traditional indices, showing comparable skill to that obtained between some instrumental indices, and capture their main signatures on European temperature and precipitation.

By identifying winters with different combinations of NAO/EA phases in the 20th century, our results highlight the additional role of EA in shaping the North Atlantic action centers and the European climate responses to NAO. The joint effects of NAO and EA cause European surface climate anomalies that can substantially differ from their canonical signatures, meaning that a proper characterization of regional climates cannot be achieved by the NAO alone. The EA interference with the NAO signal is stronger in precipitation than in temperature and affects areas with strong responses to NAO such as Greenland and the western Mediterranean.

The time series display large variability from interannual to multidecadal time scales, with e.g. positive (negative) EA (NAO) phases dominating before 1750 (during much of the 19th century). The last three centuries uncover multidecadal periods characterized by specific NAO/EA states and substantial variability in the North Atlantic jet stream, thus providing new evidences of the dynamics behind some outstanding periods. Transitions in the NAO/EA phase space have been recurrent and pin down long-lasting anomalies, such as the displacement of the North Atlantic action centers in the late 20th century, besides some disagreements between historical NAO indices.

Mellado-Cano, J., D. Barriopedro, R. García-Herrera, R.M. Trigo, 2019: Examining the North Atlantic Oscillation, East Atlantic pattern and jet variability since 1685. Journal of Climate. doi: https://doi.org/10.1175/JCLI-D-19-0135.1

How to cite: Mellado-Cano, J., Barriopedro, D., García-Herrera, R., Trigo, R., and Hernández, A.: North Atlantic Oscillation, East Atlantic pattern and jet variability since 1685, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9647, https://doi.org/10.5194/egusphere-egu2020-9647, 2020.

EGU2020-11506 | Displays | CL1.20

The impacts of spring-summer droughts in England, 1200-1700

Kathleen Pribyl

This paper studies the occurrence and impacts of spring-summer droughts in pre-industrial England from 1200 to 1700. The study is based on documentary data, and the types of records and source availability are described, and an overview of droughts in those 500 years is provided. The focus lies on identifying the meteorological, hydrological and agricultural aspects of late medieval and early modern droughts, and on highlighting the structural impacts on the agricultural and pastoral economy, transport, energy supply and health. Due to the specific characteristics of wheat cultivation in medieval and early modern England, the grain production was comparatively resilient to drought. However, livestock farming was under threat, when rainfall levels fell noticeably below average. The most important problem in warm and dry summers was the risk to health. Partly steeply raised mortality levels were associated with these conditions during the study period, because malaria, gastrointestinal disease and plague showed an affinity to heat and drought. Adaptation strategies adopted by the people of pre-industrial England to reduce the stress posed by summer droughts will be discussed.

How to cite: Pribyl, K.: The impacts of spring-summer droughts in England, 1200-1700, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11506, https://doi.org/10.5194/egusphere-egu2020-11506, 2020.

EGU2020-14388 | Displays | CL1.20

Historical droughts in the Qing dynasty (1644-1911) of China and the role of human interventions

Kuan-Hui Elaine Lin, Pao K. Wang, Pi-Ling Pai, and Yu-Shiuan Lin

This study presents a new epistemology to analyze drought chronology through a clear-cut methodology for reconstructing past drought series as well as series for other associated ecological and societal variables. Instead of building grading system based on mixed criteria, this method can facilitate transparency in the reconstruction process and can enable statistical examinations of all variables when building the series. The data used is from the REACHES database, however other archival documentary and index data from independent sources are also applied to understand drought narratives and to cross check and validate the analysis derived from the REACHES. From time series analysis, six severe drought periods are identified in the Qing dynasty, and then spatial analysis is performed to demonstrate spatial distribution of drought and other variables in the six periods as well as social network analysis to reveal connections between drought and other ecological and societal variables. Research results clearly illustrate the role of human intervention to influence the impacts of drought on societal consequences. Particularly, the correlation between drought and socioeconomic is not strong; crop failure and famine are important intermediate factors, meanwhile ecological factor such as locust and disaster relief measures are all imperative to intervene between crop production and famine. Implications of the study on drought impact are provided as well as the significance of historical climate reconstruction studies.

How to cite: Lin, K.-H. E., Wang, P. K., Pai, P.-L., and Lin, Y.-S.: Historical droughts in the Qing dynasty (1644-1911) of China and the role of human interventions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14388, https://doi.org/10.5194/egusphere-egu2020-14388, 2020.

EGU2020-17417 | Displays | CL1.20

Reconstructing the climate of Ancient Babylonia

Rhonda McGovern, Conor Kostick, Laura Farrelly, and Francis Ludlow

Ancient Babylonia is a kingdom / province in the Fertile Crescent in south-central Mesopotamia (modern day Iraq). It has a rich textual and archaeological history and is the origin of many scientific and cultural advances, such as the definition of the seven-day week, the invention of zero, and many legal principles still underlying modern contract, tort, criminal, property, and family law.

The Irish Research Council-funded “Climates of Conflict in Ancient Babylonia” (CLICAB) project aims to investigate climatic changes in Babylonia during the final eight centuries BCE and assess for linkages to patterns of violence and conflict, through the application of methods from historical climatology to the wealth of data available. Although there are gaps in the recorded observations, and potentially more tablets yet to be found and translated, the 209 precisely dated, transliterated and translated tablets presently available will provide for many years a sub-daily window into the weather, and therefore the climate of this key historical region. This is a far greater resolution than is currently available for any region or period in the Ancient world, and indeed unprecedented in the world of historical climatology before the Early Modern Period.

Key to the project’s broader aims is the reconstruction of the climate for the region based on the information held in the Babylonian Astronomical Diaries. This paper thus examines the process of mining information from the detailed record maintained by Ancient Babylonian scribes in the Astronomical Diaries and presents an overview of the findings. These diaries are a collection of cuneiform tablets spanning 652-61BC, housed in the British Museum. They are rich in systematic weather observations (even down to an hourly resolution), astronomical phenomena, price data, and river heights for the Euphrates. Much work has been undertaken to examine the economic, astronomical and fluvial data, but until now the weather observations have remained relatively untouched, despite their unparalleled temporal resolution for this period, the systematic methodology applied in their recording, and the sheer breadth of information provided. This ranges from wind direction and intensity, to the level of cloud cover and references to atmospheric clarity (clear vs. dusty skies), to the general conditions (temperature and precipitation), for all seasons. This project will see the reconstruction of the climate for the region of Babylonia, and therefore provide one of the oldest weather records in the world. This paper presents high-resolution weather data from the Astronomical Diaries. Specifically, the authors will present the frequency of meteorological extremes over the period, alongside a discussion into the mitigation methods the Babylonians employed to reduce their vulnerability to these extremes. 

KEYWORDS: Ancient Babylonia, Climate, Conflict

How to cite: McGovern, R., Kostick, C., Farrelly, L., and Ludlow, F.: Reconstructing the climate of Ancient Babylonia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17417, https://doi.org/10.5194/egusphere-egu2020-17417, 2020.

Japan has plenty of diaries in the 17th to 19th centuries, which include records of daily weather conditions ("fine", "cloudy", "rainy", etc.) It is well known that they have been used for reconstructing climate variation and events, although it provided qualitative data, not instrumental observations.

We estimate global solar radiation from weather conditions. Global solar radiation is an important factor for the energy balance of the Earth, and is also fundamental to the hydrological cycle and agricultural productivity. Our method is effective for all seasons and which could produce reconstruction with higher temporal resolution than other proxy data, for example tree rings.

Weather descriptions are classified into 3 categories and weather categories convert to solar radiation. The parameters of conversion are calculated by using JMA observations from 1995 to 1999.

We reconstructed monthly mean global solar radiation from 1821 to 1850 based on the weather records described in 11 historical diary documents. We focused on the years of Tempo Famine from 1833 to 1839.

In 1836, monthly solar radiation in summer in the east-west zone of Japan including Kanto, Kinki, and northern Kyushu was smaller than the provisional normal (average of 1821-1850). It was 10% or more smaller than the normal in July and August. However, it was not particularly small in Tohoku to the north of the zone and in southern Kyushu to the south of the zone. The characteristic of reconstruction in 1836 is that lower solar radiation prolonged from May to September in the central area of Japan. This suggests that climatic condition similar to Baiu was prolonged, and that it was cold in Tohoku. On the other hand, in 1833 and 1838, when famines also occurred, the reconstructed solar radiation was low in Tohoku.

We also checked the effect on market economy by observing the daily price of rice, the main crop at that time. For 1836, we can observe the sharp rise of the price in July. It suggests that the market had reacted to the bad climate condition before the harvest season. After this sharp rise, four times higher than usual, rice price reached a plateau then fell in September 1837.

While the rice price in 1833 and 1838 also rose up in summer, they were only two or three times higher than usual and, more importantly, they quickly bounced back.

Cross check between the reconstructed solar radiation and the rice price data support thus enables us to conclude that there existed a big difference even among the years recorded as “famine years” on the historical documents.

How to cite: Ichino, M., Masuda, K., Mikami, T., and Takatsuki, Y.: Reconstruction of solar radiation based on historical weather records in Japan - Climatic condition and market economy in the famine of 1830s -, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12300, https://doi.org/10.5194/egusphere-egu2020-12300, 2020.

Humid weather conditions of the sixteenth century enabled the introduction of aqua crops to Southeastern European landscapes. The Ottoman government employed a group of experts for the cultivation of rice to implement and rehabilitate rice production. Rice plantations, as an anthropogenic intrusion in the region between Tigris to the Danube, had a fundamental social and environmental impact. Organization of human resources on a large scale; land reclamations, deforestation, and kilometres-long irrigation work changed the landscape, produced seasonal miasma and aquatic pests. Ottoman rice plantations transformed the Southeastern European socio-ecological landscapes in early modern times. Historical data about the Ottoman rice plantations open new insights for improving our knowledge about climate history, the history of riverbeds and the history of malaria in this landscape. The study presents a monography of the plantations with historical drawings and maps, showing the farms on river beds, delineates the responsiveness of the rice harvest to precipitation and temperature changes and maps the triggered aquatic pests due to climate change and deforestation. The presentation aims at opening a historical perspective to today's questions on climate change, hydrology and vector caused diseases.

How to cite: Sert, Ö.: Effects of Ottoman Rice Plantations in South-eastern European Landscape: Climate Change, Hydrology and Disease, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22271, https://doi.org/10.5194/egusphere-egu2020-22271, 2020.

EGU2020-648 | Displays | CL1.20

Documentary evidence of historical floods in lowland Romania during the last millennium

Gheorghe Badaluta, Carmen - Andreea Badaluta, Monica Ionita, and Marcel Mindrescu

Floods are among the most destructive natural hazards which affect socio-economical systems. Flood occurrence is considered to be a sensitive indicator of climate variability and is related in particular with changes in atmospheric circulation modes. One of the best archive of the floods evidence are historical documents. In this study we present 1000 years of floods reconstruction, which are some of the most frequent and well documented hazards in lowland areas of Romania. Our investigation spans over three distinct periods: the Medieval Warm Period (MWP), the Little Ice Age (LIA) and the Modern Period (MD), respectively, and it’s the longest one, on record, over this area. In total, we extracted 191 flood events which occurred in 167 years. Of 191 flood events, 16 occurred in winter, 34 in spring, 76 in summer, 18 in autumn, whereas for 47 flood events the season was not specified. The results show three periods of increasing floods activity during the Late Medieval Warm Period, middle part of LIA (between AD 1550-1750) and the entire Modern Period. A small increase in the number of flood events was observed during the MWP with an occurrence rate slightly higher than 0.15/year. The highest flood occurrence rates have been documented during LIA (i.e. 16th and 17th centuries) with an increasing trend of up to ~ 0.4/year. The majority of these events were recorded in summer and were typically generated by heavy thunderstorms. Moreover, the rising temperatures of MD were reflected in the increasing flood occurrence rates of up to 0.39/year. In conclusion, our 1000-year long reconstruction of past flood events could bring a major contribution to the knowledge of hydro-meteorological events of Central Eastern Europe and may be used as an indicator for assessment of floods hazards and for predicting the influence in future, in the context of ongoing climatic changes.

How to cite: Badaluta, G., Badaluta, C.-A., Ionita, M., and Mindrescu, M.: Documentary evidence of historical floods in lowland Romania during the last millennium, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-648, https://doi.org/10.5194/egusphere-egu2020-648, 2020.

EGU2020-5133 | Displays | CL1.20

Documentary data in the study of fatalities caused by meteorological and hydrological events: the Czech Republic, 1964–2019

Kateřina Chromá, Rudolf Brázdil, Lukáš Dolák, Jan Řehoř, and Ladislava Řezníčková

Reports from the newspaper “Rudé právo/Právo”, complemented by chronicles, epigraphic evidence, systematic meteorological/hydrological observations, media (including internet), professional reports and papers were used to create a database of fatalities taking place in the course of hydrological and meteorological events over the territory of the Czech Republic during the 1964–2019 period. The spatiotemporal variability of fatalities arising out of floods, flash floods, windstorms, convective storms, lightning, frosts, snow/glaze-ice calamities, avalanches, heats and other events is shown, with particular attention to closer characterisation of fatalities (gender, age, cause of death, place, type of death and behaviour). In the classification of fatalities, males and adults clearly prevail, while indirect victims and hazardous behaviour are strongly represented. Examples of two outstanding events with the highest numbers of fatalities during a flash flood on 9 June 1970 (34 fatalities) and a rain-induced flood in July 1997 (60 fatalities) are described in detail. Discussion of results includes the problem of data uncertainty, factors influencing the numbers of fatalities, and the broader context. The study emphasises the significance of documentary data and reveals its new utilisation in the study of fatalities in the Czech Republic.

How to cite: Chromá, K., Brázdil, R., Dolák, L., Řehoř, J., and Řezníčková, L.: Documentary data in the study of fatalities caused by meteorological and hydrological events: the Czech Republic, 1964–2019, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5133, https://doi.org/10.5194/egusphere-egu2020-5133, 2020.

EGU2020-5149 | Displays | CL1.20

Towards a better assessment of the historical climate of Extremadura region (SW Spain)

José Manuel Vaquero, María Cruz Gallego, Víctor M. S. Carrasco, Nieves Bravo-Paredes, María Ángeles Obregón, and Carlos Lara

Our efforts to a better understanding of the historical climate of the region of Extremadura (interior of the SW Iberia) have been directed in two main aspects. First, we have tried to recover all the meteorological data of the pre-instrumental period. Second, we have been working on the localization and analysis of proxy data, including “pro-pluvia” rogation ceremonies and a chronology of catastrophic floods in this region.

The recovery of historical meteorological data from libraries and archives and the subsequent digitization to obtain readable-machine version has been a main task in our research. Meteorological data from different sources (manuscripts, books, newspapers, etc.) and eight different locations in Extremadura have been recovered and digitized. The oldest data were read in 1824 (Fernández-Fernández et al., 2014). Other important meteorological series can be highlighted as the actinometric measurements in Cáceres for the period 1913-1920 (Bravo-Paredes et al., 2019).

“Pro-pluvia” rogations were celebrated during dry conditions to ask God for rain. In our case, 35 “pro-pluvia” rogations were retrieved for the period 1824-1931 from different locations in Extremadura. The winter climate of this region is strongly dominated by the North Atlantic Oscillation (NAO) and, therefore, these pro-pluvia rogations were associated to the NAO index to analyze this relationship. The results of our analysis show that the rogation ceremonies in Extremadura can be considered a good proxy for the NAO index. Also, it is important to know the magnitude and the impact of the catastrophic floods occurred in Extremadura. In total, 40 floods occurred in Badajoz were recovered from different documentary sources for the period 1545-1989.

All these research efforts will allow for a better understanding of the past climate in the region of Extremadura, where such studies have been very scarce.

References

Bravo-Paredes, N. et al. (2019) “Analysis of actinometric measurements under different sky conditions in Cáceres (Spain) for the period 1913-1920” Tellus B 71, 1663597. DOI: 10.1080/16000889.2019.1663597

Fernández-Fernández, M.I. et al. (2014) "The climate of Zafra from 1750 to 1840: History and description of weather observations" Climatic Change 126, 107–118. (doi: 10.1007/s10584-014-1201-5)

How to cite: Vaquero, J. M., Gallego, M. C., Carrasco, V. M. S., Bravo-Paredes, N., Obregón, M. Á., and Lara, C.: Towards a better assessment of the historical climate of Extremadura region (SW Spain), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5149, https://doi.org/10.5194/egusphere-egu2020-5149, 2020.

Climate disasters such as droughts and floods are becoming very important in 21st century India especially in the semi-arid tracts of rain-shadow regions of peninsular India – stretching from Maharashtra in the west to Tamil Nadu in the south. The role of climate variability in these climate disasters and the climate forcings working behind these needs a special attention. Here we present new data, pertaining to climate disasters, impacts and adaptive strategies, from a review of 60 volumes of archival institutional documents from the British Colonial Period pertaining to administration of districts of peninsular India. The documents span ~ 220 years (1729-1947 AD) and encompass the two phases of the British colonial period, the Company period (before 1858) and the Crown period (1858-1947) respectively. We found archival institutional documents to be excellent archives for reconstructing a chronology of climate disasters, studying the effects of these disasters and assessing the efficacy of adaptive strategies and policies at local scales, often at the level of districts (<30 kms). Vivid accounts describe impacts of climate disasters e.g crop failure, price hike, farmer migration, riot, starvation, epidemic diseases, death during droughts, and colossal destruction, migration and death due to heavy rainfall (and associated floods). Farmers being the most affected group. In 19th century famines due to droughts continued to occur every 5-10 years if the rainfall fell below 14% of the average annual rainfall, consistent with decadal and sub-decadal modes of rainfall variability. This data is comparable with the tree ring data found in this area. Climate variability is to some extent at par with ENSO events but land atmosphere interaction especially due to anthropogenic activities such as deforestation can be a major climate forcing that acted in this area. During the Crown period protective measures were very similar even though governance changed. But British government had to change their policies when sudden huge fall in rainfall occurred in 1876 and 1899 causing major famines (Great Famine 1876-1877, Indian Famine1899-1900). Formation of Famine Codes and Famine Commissions (1880-1901) after these two major famines made situation better, changes were done in grass root level. We see no major famine caused by droughts in peninsular India after that.

How to cite: Ray, R. and Bhattacharya, A.: Assessing the impacts of climate variability - a study of institutional archival data spanning 1700-1947 (British Colonial Period) pertaining to semi-arid tracts of peninsular India, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5350, https://doi.org/10.5194/egusphere-egu2020-5350, 2020.

EGU2020-6740 | Displays | CL1.20

Analysis of Subdaily Meteorological Measurements by Louis Morin in the Late Maunder Minimum 1665 – 1713 in Paris

Thomas Pliemon, Ulrich Foelsche, Christian Rohr, and Christian Pfister

Based on copies of the original data (source: Oeschger Center for Climate Change Research) we perform climate reconstructions for Paris. The focus lies on the following meteorological variables: temperature, cloudiness, moving direction of clouds and precipitation. We assess the early instrumental temperature dataset with state of the art statistical methods to get further knowledge of inhomogeneities. There are already several studies showing monthly and yearly means of the temperature, but a detailed statistical analysis based on the original measurements has not been done yet. Due to the lack of metadata, we do a qualitative analysis. With rare contemporary time series, like the CET (Central England Temperature), and proxydata, like grape harvest dates, we attempt to make a quantitative statement. We analyse and discuss the documentary datasets of the cloudiness and the moving direction of the clouds relating to the cooling in the Late Maunder Minimum. Because of the subjective character of documentary records, we compare these results with available data from former publications. Precipitation is given in terms of intensity and duration. We calculate indices like rainfall frequency and average rainfall per year/season/month.

How to cite: Pliemon, T., Foelsche, U., Rohr, C., and Pfister, C.: Analysis of Subdaily Meteorological Measurements by Louis Morin in the Late Maunder Minimum 1665 – 1713 in Paris, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6740, https://doi.org/10.5194/egusphere-egu2020-6740, 2020.

EGU2020-6803 | Displays | CL1.20

Chronology of strong winds based on documentary evidence in the Czech Republic from AD 1510

Lukáš Dolák, Rudolf Brázdil, Petr Dobrovolný, Hubert Valášek, Ladislava Řezníčková, Kateřina Chromá, and Oldřich Kotyza

To develop an understanding of recent variability in strong winds, it is necessary to analyse their past behaviour. While relatively short series of wind-speed measurement in the Czech Lands (recent Czech Republic) started mostly in the first half of the 20th century, documentary evidence represents a valuable source of information helping extend the knowledge of strong winds to the pre-instrumental period. In this study, we analyse strong winds on the basis of chronicles, weather diaries, early journalism, economic and financial sources, as well as old academic journals, newspapers, professional papers and recent scientific papers. The created dataset presents a chronology of strong winds in the Czech Lands from AD 1510 to present. The dataset contains more than 5000 events, which are classified on duration, location, extent, severity and type of damage on squalls (convective storms), tornadoes, blizzards, gales and windstorms. Gales, often accompanied by loss of human lives, damage to buildings and forests (windthrows), are the most frequently recorded type of strong winds (44%), followed by blizzards (26%), squalls (18%), and tornadoes (7%). Strong winds detected are concentrated 1820s to late-1840s, 1900s to late-1930s and in the 2000s. Seasonal distribution of strong winds is relatively equal throughout the chronology with the highest frequency in July (10.0%), January (8.6%), and December (8.1%). Uncertainties in results emerge from a different spatiotemporal density of documentary data and from the ambiguous nature of some records in determining the classification of strong winds or attribution of damage caused to particular events. Our results highlight the importance of documentary evidence in the analysis of strong winds and contribute to a better understanding of their spatiotemporal variability in the past.

How to cite: Dolák, L., Brázdil, R., Dobrovolný, P., Valášek, H., Řezníčková, L., Chromá, K., and Kotyza, O.: Chronology of strong winds based on documentary evidence in the Czech Republic from AD 1510, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6803, https://doi.org/10.5194/egusphere-egu2020-6803, 2020.

EGU2020-10147 | Displays | CL1.20

Climate of the Reformation: droughts and anomalous weather in the 1500s-1510s in Europe

Andrea Kiss, Mariano Barriendos, Rudolf Brázdil, Chantal Camenisch, Silvia Enzi, Piotr Olinski, Kathleen Pribyl, and Dag Retsö

In the 1500s-1510s an unusually high number of significant droughts in Central and Western, and partly in Southern Europe; the years 1502-1504, 1506-1507, 1513-1514 and 1516-1518 were dry particularly in Central and Western Europe. Droughts, interspersed with wet years marked even by significant floods and other weather-related extremes, and frequent hard winters were mainly responsible for the reduced or poor crop and hay harvests in multiple years. These circumstances, in combination with other socio-economic factors, contributed to the increased social tension of the period, manifesting itself in major peasant uprisings, and might have acted as a catalyst in the timing and rapid spread of the Reformation.

The first part of the presentation is concentrated on the reconstruction and spatial-temporal analysis of the droughts (and hard winters) using documentary evidence – in comparison with the tree-ring based hydroclimate reconstruction (OWDA: Cook et al. 2015) and the multiproxy-based reconstruction of Central European precipitation (Pauling et al. 2006).

The most significant groups of socio-economic consequences are analysed in the second part of the presentation, with special emphasis on discussing the possible cumulative effects of the anomalous weather conditions during the period on the ongoing transformation of the late-medieval society and economy and the Reformation itself.

How to cite: Kiss, A., Barriendos, M., Brázdil, R., Camenisch, C., Enzi, S., Olinski, P., Pribyl, K., and Retsö, D.: Climate of the Reformation: droughts and anomalous weather in the 1500s-1510s in Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10147, https://doi.org/10.5194/egusphere-egu2020-10147, 2020.

EGU2020-17698 | Displays | CL1.20

Rescue of Ukrainian early historical climatological data

Dmytro Boichuk, Jürg Luterbacher, Rob Allan, Olesya Skrynyk, Vladyslav Sidenko, Angelika Palarz, Dmytro Oshurok, Elena Xoplaki, Oleg Skrynyk, and Volodymyr Osadchyi

Modern climate applications and climate services are seeing the need for more data and information (including its historical part) on climate variability at high temporal and spatial resolution. Therefore, daily or even sub-daily meteorological data are required increasingly to feel this gap and provide the basis for climate research, extreme events analysis and impact studies.

The main objective of our work is to present information on results of data rescue (DARE) activity conducted recently in the Ukrainian Hydrometeorological Institute (UHMI, Kyiv, Ukraine) in close collaboration with several national and international partners. Our DARE activity was concentrated mainly on the original sub-daily, pre-1850 meteorological observations conducted at eight meteorological stations located in the territory of modern Ukraine, namely Kyiv, Kharkiv, Poltava, Kamyanets-Podilsky, Lugansk, Dnipro, Kherson and Odesa. These eight stations are the only ones, whose pre-1850 data have been found in an archive of the Central Geophysical Observatory (CGO), an observation institution of the Ukrainian Weather Service.

The data are contained in 38 special hard copy books. Before digitization, the book pages were photocopied to create a database of the images of all the paper sources. Its two copy versions are now stored at the UHMI and CGO, respectively. After the creation of the images database, the data were digitized manually by the authors. In total 291 103 values were digitized. These include 165 980 air temperature records (~57% of the total), 124 376 atmospheric pressure measurements (~42.7%) and 747 precipitation totals (~0.3%).

Quality control of the digitized data was conducted, including intercomparisons between the stations as well as comparisons with monthly temperature data that were digitized previously from other sources. The quality control procedures revealed a fairly good agreement among the rescued time series on the monthly time scale as well as a good accordance with the monthly data from other sources. However, several periods at some stations should be used with caution, due to relatively large discrepancies revealed. The rescued digital dataset can be used for different meteorological and climatological purposes, including the analysis of extreme events for the pre-1850 period in comparison with today’s climate, regional climatological studies, etc. The dataset is an important supplement to existing digitized archives of meteorological measurements that were performed in the first half of the 19th century.

How to cite: Boichuk, D., Luterbacher, J., Allan, R., Skrynyk, O., Sidenko, V., Palarz, A., Oshurok, D., Xoplaki, E., Skrynyk, O., and Osadchyi, V.: Rescue of Ukrainian early historical climatological data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17698, https://doi.org/10.5194/egusphere-egu2020-17698, 2020.

EGU2020-19767 | Displays | CL1.20

The October 1940 extreme flood in the Pyrenees revisited: validation of some hypotheses based on hydraulic simulations

Eric Gaume, Maryse Charpentier-Noyer, and Olivier Payrastre

One of the most impressive flash floods of the last century in France, as in Spain, occurred in the Eastern part of the Pyrenees on the 17th and 18th of October 1940. 47 people died in France during this extraordinary event and more than 100 in Catalunia. This flood caused considerable damages to buildings and, in particular, destroyed the center of the thermal town of Vernet-les-Bains on the slopes of the mount Canigou. The maximum observed 24-hour rainfall amount was close to one meter and remains until now one of the French record values. This flooding has already been widely documented both by the state technical services and by scientists of the time. Much of this documentation, which has been archived and is still available, makes it possible to propose new evaluations in the light of the recent advancements in flash floods studies. The conclusions of this work of flood reanalysis are presented, and are supplemented here by hydraulic simulations in order to test different hypotheses concerning the timing and magnitude (i.e. discharge values) of the flood. The Basilisk software (finite volume method for shallow water equations with adaptive mesh refinement) is used to conduct the 2D-hydraulic simulations. The initial reanalysis of the flood revealed that (1) the peak discharge values estimated in 1940, on which local risk assessment studies are based, had probably been largely over-estimated; (2) a sudden increase of local water levels, described by eye-witnesses in the town of Elne, was due to the breach of a railway embankment in the floodplain upstream the town. The hydraulic simulations, carried out both with the peak discharge estimated in 1940 and with the re-evaluated one, show that the former values are not compatible with the flood witnesses’ accounts - which retrace the chronology of the episode - or with the surveyed water levels. The revised and reduced peak discharge appears to be more realistic according to the data retracing the event. Moreover, the presence of the breach in the railway line embankment appears to explain the maximum water levels observed in the town of Elne. This work illustrates that major past-flood events may be re-interpreted at the light of our increased scientific knowledge provided that they have been well documented at the time of their occurrence, which is often the case for major devastating floods.

How to cite: Gaume, E., Charpentier-Noyer, M., and Payrastre, O.: The October 1940 extreme flood in the Pyrenees revisited: validation of some hypotheses based on hydraulic simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19767, https://doi.org/10.5194/egusphere-egu2020-19767, 2020.

EGU2020-613 | Displays | CL1.20

A Quantitative Hydroclimatic Context for the European Great Famine of 1315-1317

Seung Hun Baek, Jason Smerdon, George-Costin Dobrin, Jacob Naimark, Edward Cook, Benjamin Cook, Richard Seager, and Mark Cane

One of the most severe floods that has ever been registered in the catchment of the Upper Danube River in Central Europe is the one that took place in June/July 1572. This flood was caused by a prolonged precipitation event related to a so-called Vb cyclone. Such cyclones develop either over the Bay of Biscay or the Mediterranean (Genoa region), move eastward via Italy and the Adriatic Sea, and subsequently turn northeast. Vb cyclones bring extreme weather conditions with sustained precipitation over the northern side of the European Alps and Central Europe.

The impacts of the Vb cyclone in 1572 severely affected transport routes and local economies as indicated for instance by salt transport data from the Salzach River, one tributary stream (via the Inn River) of the Danube River. Different means of remembrance as historical flood level markers or memorial stones at several cities in Central Europe suggest that contemporaries considered the outcome of the cyclone as catastrophic. The modern quantification of the effects of such an extreme meteorological event helps to increase the understanding of the human-nature relationship in a period when manmade, modern changes of riverbeds and protection structures against floods or debris flows did not exist or did so only to a very limited extent. However, quantifying the effects of a historical regional-scale flood event in terms of degree of devastation at local-sale is normally outright impossible due to lack of detailed data.

In the Styrian Provincial Archive in Graz, Austria, a detailed damage inventory referring to the cyclone of 1572 exists. The purpose of the inventory was to reduce taxes for the Benedictine Abbey of Admont. The interdisciplinary analysis (historian, geographer) of the source enabled a local-scale insight into the effects of the cyclone at Admont. The inventory contains a list of 355 subjects of the abbey distributed over 12 administrative units that suffered minor to severe (complete destruction) damage related to flooding (main river or tributary creeks), debris-flows or landslides.

Further historical sources and geographical data such as land registers and cadastres allowed the localization of 150 damaged buildings at cadastral scale in the valley surrounding the abbey. Our analyses show that most of the properties were located near watercourses at alluvial fans or at slopes above the Enns valley bottom. A significantly greater amount of damage was revealed for properties, which would be nowadays located in moderate- and high-risk hazard zones (according to the Austrian Federal Service for Torrent and Avalanche Control). However, only 18.7% of the properties damaged in 1572 are located inside modern hazard zones. Modern hazard zone maps are commonly based on runoff modelling using design flood events. Our analysis suggests, nevertheless, that previously undetected or unconsidered sources might contribute substantially to the understanding of the spatial pattern of potential damage in an entire valley region during an exceptional cyclone at a local and even cadastre scale. This achievement is possible despite obvious changes in geomorphological, hydrographical, building structure and protective measure conditions since 1572. 

How to cite: Eulenstein, J. and Kellerer-Pirklbauer, A.: 448 years after the event: quantifying the local-scale effects of a Vb cyclone hitting Central Europe in 1572 using a detailed historical damage inventory, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6961, https://doi.org/10.5194/egusphere-egu2020-6961, 2020.

Flood historical records are important to place current flooding events into a long-term perspective. With these data sets it is possible to identify patterns in past recent floods and use these to characterize and model future floods. In what concerns to Portugal, some studies had already used some documentary evidence in order to reconstruct flood events, in particular centered in the year 1786 that was the rainiest in Portugal, triggering floods in northwestern and central Portugal, followed by a extremely wet and rainfall 1788 year that caused floods along the largest Iberian rivers: Douro, Mondego and Tagus. However, very little is known about the characteristics of these events prior to the beginning of regular meteorological/hydrological observations (late 19th century in Portugal).

Within this framework, we aim to reconstruct a high-resolution history of floods occurred on the estuary of the Douro River (near the city of Porto, Portugal, Iberian’ Northwest) during the 19th century. The Douro River is the third-longest river in the Iberian Peninsula (after the Tagus and the Ebro rivers) and it drains an area of 97.600 square kilometers (the most largely in the Iberian Peninsula). To achieve our main aim, early instrumental observations and documentary evidence from multiple archival sources were collected. Further, the flooding archive was used to make a serial analysis of the years of floods, their chronological distribution, frequency, duration and intensity, associated with meteorological phenomena and their impacts.

How to cite: Amorim, I., Sousa Silva, L., and Garcia, J. C.: High-resolution reconstruction of extreme hydrological events occurred in the Douro River estuary (Portugal, Iberian Northwest) during the 19th century, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18752, https://doi.org/10.5194/egusphere-egu2020-18752, 2020.

EGU2020-17284 | Displays | CL1.20

Validation of reconstructed hydroclimate variables for past drought assessment

Martin Hanel, Sadaf Nasreen, Mijael Vargas, Ujjwal Singh, Petr Máca, Oldřich Rakovec, Rohini Kumar, and Yannis Markonis

In present paper we compare the reconstructed gridded seasonal precipitation (P) and temperature (T) for Europe [1,2] to the available station data from the GHCN [3,4] network going back to 1800. The basic statistical properties at various time-scales ranging from 1/4 to 30 years are examined. It is shown, that there are significant biases in the reconstructed P and T and the bias in mean and variability considerably vary over the time-scales. The same applies for considered drought indices. We further investigate how the simulation of hydrological model driven by reconstructed data compares to that based on station data and runoff from GRDC database. In addition, a set of data-driven methods is used to link the reconstructed and observed P and T data to observed runoff, the results are validated and a reconstruction back to 1500 is provided. Finally, we check to what extent the raw proxy data can be used for drought reconstruction.

[1] https://doi.org/10.1007/s00382-005-0090-8
[2] https://doi.org/10.1126/science.1093877
[3] https://doi.org/10.1175/JCLI-D-18-0094.1
[4] doi:10.7289/V5X34VDR

How to cite: Hanel, M., Nasreen, S., Vargas, M., Singh, U., Máca, P., Rakovec, O., Kumar, R., and Markonis, Y.: Validation of reconstructed hydroclimate variables for past drought assessment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17284, https://doi.org/10.5194/egusphere-egu2020-17284, 2020.

In China, historical documents record a large quantity of information related to climate change and grain harvest. This information can help to explore the impacts of extreme drought or flood on crop production, which can provide implications for the adaptation of agriculture to higher-probability extreme climate in the context of global warming. In this paper, reported extreme drought/flood chronologies and reconstructed grain harvest series derived from historical documents were adopted in order to investigate the association between the reported frequency of extreme drought/flood in eastern China and reconstructed poor harvests during 801–1910. The results show that extreme droughts were reported more often in 801–870, 1031–1230, 1481–1530, and 1581–1650 over the whole of eastern China. On a regional scale, extreme droughts were reported more often in 1031–1100, 1441–1490, 1601–1650, and 1831–1880 in the North China Plain, 801–870, 1031–1120, 1161–1220, and 1471–1530 in Jianghuai, and 991–1040, 1091–1150, 1171–1230, 1411–1470, and 1481–1530 in Jiangnan. The grain harvest was reconstructed to be generally poor in 801–940, 1251–1650, and 1841–1910, but the reconstructed harvests were bumper in 951–1250 and 1651–1840, approximately. During the entire period from 801 to 1910, the frequency of reporting of extreme droughts in any subregion of eastern China was significantly associated over the long term with lower reconstructed harvests. The association between reported frequency of extreme floods and reconstructed low harvests appeared to be much weaker, while reconstructed harvest was much worse when extreme drought and extreme flood in different subregions were reported in the same year. The association between reconstructed poor harvests and reported frequency of regional extreme droughts was weak during the warm epoch of 920–1300 but strong during the cold epoch of 1310–1880, which could imply that a warm climate could weaken the impact of extreme drought on poor harvests; yet other historical factors may also contribute to these different patterns extracted from the two datasets.

How to cite: Hao, Z.: Patterns in data of extreme droughts/floods and harvest grades derived from historical documents in eastern China during 801–1910, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12820, https://doi.org/10.5194/egusphere-egu2020-12820, 2020.

EGU2020-8394 | Displays | CL1.20

Validating the French hYdrometeorological REanalysis (FYRE) with documentary evidence

Jean-Philippe Vidal, Alexandre Devers, Claire Lauvernet, Olivier Vannier, Laurie Caillouet, Eric Sauquet, and Benjamin Graff

The recently developed French hYdrometerological Reanalysis (FYRE) covers the period 1871-2012 and provide high-resolution ensemble reconstructions of both climate and hydrology over France. FYRE Climate combines a statistical downscaling of the global Twentieth Century reanalysis (Caillouet et al., 2019) with in-situ station observations through Ensemble Kalman filter (EnKF) data assimilation (Devers et al., 2020). FYRE Climate is composed of 25 members of daily temperature and precipitation fields on a 8~km grid over France. It served as forcings for a conceptual hydrological model over 661 near-natural catchments to build streamflow reconstructions spanning 142 years. These reconstructions have then been combined with historical streamflow observations, again through EnKF data assimilation, to build the FYRE Hydro 25-member daily hydrological reanalysis over the 661 catchments.

FYRE Hydro is here validated with various types of documentary evidence (poem, complaint letter, and photograph), focusing on extreme low-flow events and their spatial and temporal fingerprint. They serve as examples of naturally extreme hydrological events that are exacerbated through human interventions, the magnitude of which has yet to be consistently quantified over the course of the Anthropocene.

 

References

Caillouet, L., Vidal, J.-P., Sauquet, E., Graff, B., Soubeyroux, J.-M. (2019) SCOPE Climate: a 142-year daily high-resolution ensemble meteorological reconstruction dataset over France. Earth System Science Data, 11, 241-260. https://doi.org./10.5194/essd-11-241-2019

Devers, A., Vidal, J.-P., Lauvernet, C., Graff, B., Vannier, O. (2020) A framework for high-resolution meteorological surface reanalysis through offline data assimilation in an ensemble of downscaled reconstructions. Quarterly Journal of the Royal Meteorological Society. https://doi.org./10.1002/qj.3663

How to cite: Vidal, J.-P., Devers, A., Lauvernet, C., Vannier, O., Caillouet, L., Sauquet, E., and Graff, B.: Validating the French hYdrometeorological REanalysis (FYRE) with documentary evidence, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8394, https://doi.org/10.5194/egusphere-egu2020-8394, 2020.

EGU2020-6864 | Displays | CL1.20

The summers of 1531–1540 in Central Europe: The driest decade of the past five centuries?

Rudolf Brázdil, Petr Dobrovolný, Andrea Kiss, Piotr Oliński, and Ladislava Řezníčková

The summers of 15311540 in the Czech Lands were, according to three drought indices (SPI, SPEI, Z-index) reconstructed from the Czech documentary evidence and instrumental records (Brázdil et al., Clim. Res., 2016), the driest decade during the past five centuries. Based on documentary data, dry patterns of different intensity (represented e.g. by dry spells, low number of precipitation days, drying rivers and lack of water sources, frequent fires) for central Europe (Germany, Switzerland, Austria, Czech Republic, Poland, Slovakia and Hungary) were well expressed for summers in 1532, 1534–1536, 1538 and particularly in 1540. Summer droughts derived from documentary data in central Europe were confronted with gridded summer precipitation totals reconstructed from instrumental, documentary and selected natural proxies (Pauling et al., Clim. Dyn., 2006) and further with summer scPDSI reconstructed from tree-ring widths in the Old World Drought Atlas – OWDA (Cook et al., Sci. Adv., 2015). While in precipitation reconstruction summers of 1531–1540 represented the driest decade of the past 500 years in central Europe, according to scPDSI from OWDA it was the ninth driest decade, despite quite important spatial differences in the occurrence of drier and wetter areas between both reconstructions. From the analysis it follows that particularly the summers of 1534, 1536, 1538 and 1540 were dry not only in central Europe, but also over greater parts of western Europe.

How to cite: Brázdil, R., Dobrovolný, P., Kiss, A., Oliński, P., and Řezníčková, L.: The summers of 1531–1540 in Central Europe: The driest decade of the past five centuries?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6864, https://doi.org/10.5194/egusphere-egu2020-6864, 2020.

CL1.23 – Novel and quantitative methods for reconstructing continental palaeoenvironments and palaeohydrology

EGU2020-12712 | Displays | CL1.23

Changes in biogeochemistry recorded in the Lisan formation and the Dead Sea Basin

Alexandra Turchyn, Harold Bradbury, and Adi Torfstein

Terrestrial climate archives provide a rich array of information on regional climate dynamics that often can link to global climate change.  A range of new metal and coupled isotope proxies is helping to unlock the most information from terrestrial archives and this paleoclimate information. The Jordon-Arava valley, tectonically active since the early Neogene, is one of the world’s largest pull-apart basins.  Throughout the Pleistocene to the Holocene, the valley contained a series of lacustrine water bodies.  As the valley is located on the boundary between the African-Arabian deserts and the Mediterranean regional climatic zone, studies of past conditions in these lacustrine bodies allows the reconstruction of changes in the regional hydrological cycle.  Lacustrine sediments, such as those found in the Jordon-Arava valley, record paleoclimatic information similar to that found within marine sedimentary archives and often at much higher resolution, from millennial to even annual timescales. The Lisan Formation is a 40-80m thick Pleistocene marl, which was deposited in Lake Lisan, which existed over the last glacial cycle in the Jordan-Arava Valley. The Lisan Formation contains a significant quantity of annually-precipitated primary aragonite, which has not recrystallised to calcite, allowing for direct U-Th dating, which has led to an exceptional age model for the Lisan Formation.

Here we discuss the measurement of the sulfur and oxygen isotopic composition of gypsum in the Lisan formation, as well as the generation of sulfur nodules within the formation that are not found in the sediment cores of the Dead Sea. We use this data to explore how sediment diagenesis, relating to changes in biogeochemistry, changes as a function of climate change over the last glacial cycle. We then present the calcium isotopic composition of the gypsum and interbedded aragonite, and show how the aragonite calcium isotopic composition covaries with lake level, and thus offers profound insight into the regional hydrological cycle in the Jordon-Arava Valley.

How to cite: Turchyn, A., Bradbury, H., and Torfstein, A.: Changes in biogeochemistry recorded in the Lisan formation and the Dead Sea Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12712, https://doi.org/10.5194/egusphere-egu2020-12712, 2020.

EGU2020-12189 | Displays | CL1.23

New palaeoclimate record from ancient river channels in the eastern Sahara: Implications for climate impact on human dispersals during the late Quaternary

Abdallah S. Zaki, Georgina E. King, Negar Haghipour, Frédéric Herman, Robert Giegengack, Mathieu Schuster, Sanjeev Gupta, Stephen E. Watkins, Hossam Khairy, Salah Ahmed, Saleh A. Eltayeb, Mostafa El-wakil, and Sébastien Castelltort

Throughout the last 65,000 years, there have been several brief periods of increased temperatures and precipitation over the eastern Sahara.  These periods have been constrained by numerous proxies including: palaeodischarge and sediment-load estimates of the Nile River, cave speleothems, dust fluxes, fossil groundwater, marine sediments, and reconstructed palaeolake level fluctuations. These climate disturbances are widely considered to have affected both the migration patterns of anatomically modern humans and Holocene human settlements.

However, these proxies can not be directly translated into precipitation intensity which would have had a profound impact on human activities, as intense precipitation events would make settlements next to rivers hazardous places to live. Here we reconstruct the paleoenvironmental conditions of six palaeoriver channel systems preserved over a ca 40’000 km2 area in southern Egypt using geochronological, palaeohydrological and sedimentological techniques. These palaeorivers deposits are currently topographically inverted due to wind deflation. Despite previous attempts at dating these river channels using Acheulean artifacts and pottery shards collected from within the channel bodies, their age remains contentious between the middle Pleistocene to Holocene. Here we provide refined age constraints using Optically Stimulated Luminescence (OSL) coupled with Carbon-14 dating. Our results show that these rivers record at least 8 episodes of fluvial deposition distributed between 53 ± 7 ka and 1 ± 0.25 ka ago.

In addition, we estimate, using channel geometry (width and height) and median grain size (D50), the palaeoslope, palaeovelocity, and palaeodischarge of these ancient inverted channels. Combining these parameters with estimates of palaeodrainage areas (based on digital elevation models (derived from ALOS PALSAR data) and Hack’s law) allows us to assess palaeoprecipitation rates in the range of 50 ± 10 mm/h during the incision of these palaeorivers. These rates indicate relatively intense periods of precipitation and important sediment transport periods during the early to mid-Holocene pluvial period in the Sahara compared with previous pluvial periods. Our results show that during these warmer and wetter periods the precipitation occurred in intense periods, which we suggest created hazardous environments close to the rivers and thus causing forcing human migration away from the rivers into the West and North. This, therefore, gives a plausible mechanism for the dispersal of human settlements from the South of Egyptian Sahara to the North-West 8,500 to 5,300 years ago.

How to cite: Zaki, A. S., King, G. E., Haghipour, N., Herman, F., Giegengack, R., Schuster, M., Gupta, S., Watkins, S. E., Khairy, H., Ahmed, S., Eltayeb, S. A., El-wakil, M., and Castelltort, S.: New palaeoclimate record from ancient river channels in the eastern Sahara: Implications for climate impact on human dispersals during the late Quaternary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12189, https://doi.org/10.5194/egusphere-egu2020-12189, 2020.

EGU2020-18100 | Displays | CL1.23 | Highlight

A 1,600 year record of paleoseasonality from the neotropics of Central America and its implications for rainfall predictability in agricultural societies

Keith Prufer, Sebastian Breitenbach, James Baldini, Tobias Braun, Erin Ray, Lisa Baldini, Victor Polyak, Franziska Lechleitner, Norbert Marwan, Douglas Kennett, and Yemane Asmerom

For millions of people living in the humid neotropics seasonally predictable rainfall is crucial for agricultural success and food security.  Understanding long-term stability and volatility of seasonal rainfall distributions should be of concern to researchers and policy makers. However, reconstructions of paleorainfall seasonality in the neotropics have been constrained by a lack of precisely dated and sub-annually resolved records. We present a 1,600-year rainfall paleoseasonality reconstruction from speleothem sample Yok G, from Yok Balum Cave located in southern Belize, Central America. Yok G grew continuously from 400 C.E. to 2,006 C.E. and its age is constrained by 52 U-series dates with a mean error of ~7 years. The isotope record consists of 7,151 δ18O and δ13C measurements at ~0.22-year resolution allowing us to detect the presence and amplitude of annual wet-dry cycles. In Belize rainfall distribution and seasonality controls are currently dominated by the annual migration of the intertropical convergence zone (ITCZ) with marked meridional contrast.  The Yok G record suggest distinct changes in seasonality at multi-centennial intervals.  The earliest portion of the record (400-~850 C.E.) shows little intra-annual seasonal variation, the period from ~850-1400 C.E. has highly variable annual oscillations and periods of low seasonality, while the period from 1,400-2,006 C.E. shows well developed seasonal signals.  Element ratios (Mg/Ca, Sr/Ca, and U/Ca) are used to assess Prior Carbonate Precipitation in the epikarst system.  We review these changes and the isotopic record from Yok G and discuss tools for interpreting the stability and volatility in seasonal rainfall distributions and possible implications for past and modern agricultural societies. 

How to cite: Prufer, K., Breitenbach, S., Baldini, J., Braun, T., Ray, E., Baldini, L., Polyak, V., Lechleitner, F., Marwan, N., Kennett, D., and Asmerom, Y.: A 1,600 year record of paleoseasonality from the neotropics of Central America and its implications for rainfall predictability in agricultural societies, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18100, https://doi.org/10.5194/egusphere-egu2020-18100, 2020.

EGU2020-12049 | Displays | CL1.23 | Highlight

Changing winter conditions in the Alps during the Younger Dryas cold period

Gabriella Koltai, Christoph Spötl, and Hai Cheng

The Younger Dryas (YD, GS-1) is the latest of the canonical millennial-scale stadials of the last glacial period. Proxy data from terrestrial archives point to a climate dominated by extreme seasonality and continentality across Europe. YD summers were characterised by large meridional temperature gradients and remained quite warm despite the prominent slowdown of the Atlantic Meridional Overturning Circulation. The few available winter proxy records point to cold and dry winters.

In the Alps, the YD was characterised by the last major glacier advance and the development of rock glaciers. Dating these cryogenic geomorphological features, however, is associated with substantial uncertainties. A new type of secondary carbonate archive (coarsely crystalline cryogenic cave carbonates, or CCCcoarse) has received increasing attention as a promising quantitative cryogenic indicator for the shallow subsurface environment. CCCcoarse are found in karst caves and their formation is directly linked to thawing of perennial cave ice and U-series disequilibrium methods allow to date these events at high precision.

CCCcoarse formed during the YD were found in three caves covering an approximately 170 km-long SW-NE transect. The entrance of Cioccherloch cave is located at 2245 m in the Dolomites; Frauenofen opens in the Tennengebirge at 1635 m, while the third cave, Großes Almbergloch, is situated in Totes Gebirge at an elevation of 1475 m. The thermal regime in Cioccherloch reflects the ambient mean annual air temperature, while the cave microclimate of Frauenofen and Großes Almbergloch is partially influenced by cold air intrusions in winter.

230Th dating of twenty-two CCCcoarse samples demonstrates that perennial ice was present in these caves during the first part of the YD, and Großes Almbergloch, Cioccherloch and Frauenofen warmed to 0°C at 12.32 ±0.09, 12.20 ±0.09, and 12.01 ±0.04 ka BP (weighted means), respectively, initiating slow thawing of cave ice bodies. Due to the partial cold trap behaviour of Frauenofen and Großes Almbergloch, a delay in cave ice demise and thus CCCcoarse formation is likely. This and the higher elevation could explain the centennial lag observed in CCCcoarse deposition in Frauenofen compared to Großes Almbergloch.

The change in the thermal condition of these caves commencing at ~12.3 ±0.1 ka BP is attributed to a change in the winter climate in the Alps, from dry to snow-rich and/or from extremely cold to milder winters. A snowpack could effectively insulate the shallow subsurface from the YD winter coldness, allowing the subsurface to slowly warm. The timing of this warming of the subsurface coincides with the mid-YD transition recorded in other archives across Europe (e.g., Meerfelder Maar, central Germany; El Soplao cave, northern Spain) and corroborates the hypothesis of a northward movement of the Westerlies during the mid-YD, bringing warmer air and moisture to the Alps. Our study also demonstrates that the interpretation of CCCcoarse data requires a sound understanding of the cave geometry and the resulting mode of air exchange, since both the onset of perennial ice build-up and the eventual thawing may lag the atmospheric forcing outside the cave.

How to cite: Koltai, G., Spötl, C., and Cheng, H.: Changing winter conditions in the Alps during the Younger Dryas cold period, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12049, https://doi.org/10.5194/egusphere-egu2020-12049, 2020.

EGU2020-21994 | Displays | CL1.23

Holocene climate in Northern Urals (Komi Republic, Russia): a multi-proxy approach based on pollen and brGDGTs

Chéïma Barhoumi, Sébastien Joannin, Adam A. Ali, Guillemette Ménot, Yulia Golubeva, Dmitri Subetto, Alexander Kryshen, Igor Drobyshev, and Odile Peyron

The Holocene climate and its thermal optimum (HTM) are poorly studied in the boreal forests of the northwestern Urals region, particularly in the Republic of Komi. The objective of this study is to provide robust reconstructions of the Holocene climate (temperatures and precipitation) of the Vychegda River basin. The temperature reconstruction is based on pollen assemblages and GDGTs (Glycerol Dialkyl Glycerol Tetraethers). This first study of GDGTs in this area corresponds to a preliminary step for the calibration of this proxy in peats. Higher temperatures and precipitation are recorded between 7000 and 4000 cal. yr BP (mean annual temperatures around 3°C and precipitation between 600 and 700 mm per year. This climatic optimum is in agreement with previous pollen-based climate reconstructions, and climate patterns in the neighboring Russian and Fennoscandia (Komi Republic - previous study-, Arctic Russia, Siberia and Northern Europe, Andreev and Klimanov, 2000; Golubeva, 2008; Seppä et al., 2009a; Novenko et al., 2019). These results, in conjunction with the reconstruction of fire activity and vegetation dynamics in this region, led to a better understanding of the crossed influences of these factors. In particular, vegetation is mainly controlled by climate during the first part of the Holocene, while a threshold is reached on fire frequency after 3500 cal. yr BP and this parameter has a greater impact on vegetation than climate. Over the past 600 years, the intensification of human activities led to overexploitation of the forest and an increase in its fire activity.

How to cite: Barhoumi, C., Joannin, S., Ali, A. A., Ménot, G., Golubeva, Y., Subetto, D., Kryshen, A., Drobyshev, I., and Peyron, O.: Holocene climate in Northern Urals (Komi Republic, Russia): a multi-proxy approach based on pollen and brGDGTs, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21994, https://doi.org/10.5194/egusphere-egu2020-21994, 2020.

EGU2020-1150 | Displays | CL1.23

Primary production in a kettle lake (Canada) was not driven by effective moisture over the last ~900 years

Rebecca Doyle, Zijun Liu, Jacob Walker, Ryan Hladyniuk, Katrina Moser, and Fred Longstaffe

Globally, lakes and reservoirs are vital sources of fresh water. In temperate zones like the Great Lakes region, Canada, it is not known if climate warming will increase or decrease effective moisture, or affect water availability. The links between effective moisture and primary production are also unclear. To test for possible linkages, we have reconstructed the ~900-year history of effective moisture and primary production in a small, kettle lake (Barry Lake, Ontario, Canada). To reconstruct the history of effective moisture at Barry Lake, we measured the carbon (δ13C) and oxygen (δ18O) isotope ratios of marl and shelly fauna in two ~900-year sediment core records, tightly constrained by radiocarbon and lead-210 dates. To reconstruct primary production, we analyzed the carbon (δ13CTOC) and nitrogen (δ15NTN) isotope ratios, total organic carbon to total nitrogen (TOC:TN) ratios and chlorophyll-a concentrations of the sediments. Analyses of n-alkane relative abundances further refined our understanding of the history of primary production in Barry Lake and confirmed the predominately autochthonous origin of the sediment organic matter.  

Relative to present conditions, we determined that effective moisture was lower during the Medieval Warm Period (MWP: AD 1000- 1300) and higher during the Little Ice Age (LIA: AD 1450- 1650). Despite these differences, primary production remained unchanged until AD ~1917. After AD ~1917, primary production accelerated, reaching levels unprecedented across the entire record. A 4 ‰ increase in δ15NTN is coincident with this rise in primary production. This change may be related to the introduction of organic fertilizer from nearby agricultural fields. A rise in the relative abundance of nC17 at AD ~1917 suggests that the proliferation of algae was responsible for the increase in primary production. Our findings suggest that primary production was insensitive to climate change on the scale of the LIA and MWP, but highly sensitive to nutrient loading. The fact that modern indicators of effective moisture are within the natural range of variation observed over the last ~900 years suggests that modern climate warming has not altered the hydrologic regime of Barry Lake beyond baseline conditions. Comparisons of our hydroclimatic record with similar records from the region confirm this finding. In short, our research demonstrates that, in small lakes like Barry Lake, primary production is primarily driven by nutrient loading rather than changes in effective moisture related to moderate oscillations in hydroclimate.  

 

How to cite: Doyle, R., Liu, Z., Walker, J., Hladyniuk, R., Moser, K., and Longstaffe, F.: Primary production in a kettle lake (Canada) was not driven by effective moisture over the last ~900 years , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1150, https://doi.org/10.5194/egusphere-egu2020-1150, 2020.

EGU2020-19247 | Displays | CL1.23

Global hydroclimate of the Last Interglacial: precipitation, river discharge, floods

Paolo Scussolini and the Last Interglacial Floods

Reconstructing precipitation, hydrology and flooding under different climatic states has multiple benefits: it informs us on the history of the climate system and its subcomponents; it allows assessing the capacity of current modeling tools to capture key features of climate and the hydrological cycle under a set of different forcings; in the case of warmer past periods, it can offer a perspective of possible changes in a future warmer climate. We present our study of the hydroclimate of the Last Interglacial (LIG; ca. 125,000 years ago), a period that was slightly warmer than the present. We show that an ensemble of climate models of the latest generation (PMIP4/CMIP6) is broadly able to reproduce a wetter LIG climate (compared to the pre-industrial) in vast areas of the boreal hemisphere, as reconstructed from existing proxies from different types of archive. Based on the results of those climate simulations, we forced a global hydrological model (PCR-GLOBWB), and therefore a global river routing model (CaMa-Flood), to reconstruct the hydrology and river hydrodynamics of the Last Interglacial. We show that runoff and river discharge anomalies of the LIG are generally larger where precipitation is higher, but that in many regions the warmer temperatures imply decreased runoff and discharge also where precipitation is higher. Many main river basins show changes in the seasonality of discharge, and a slight anticipation in the day of the year when half of the water mass is discharged. Unfortunately, comparison to geological evidence of discharge is limited by the low availabilty of proxy data. Finally, we report changes in the global patterns of flooding for several return periods, and suggest mechanisms by which the LIG climate impacted those patterns.

How to cite: Scussolini, P. and the Last Interglacial Floods: Global hydroclimate of the Last Interglacial: precipitation, river discharge, floods, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19247, https://doi.org/10.5194/egusphere-egu2020-19247, 2020.

EGU2020-495 | Displays | CL1.23

A great response from small ecosystem – the last 500 years of history of a kettle hole mire in W Russia

Agnieszka Mroczkowska, Piotr Kittel, Katarzyna Marcisz, Ekaterina Dolbunova, Emilie Gauthier, Yuri A. Kublitsky, Mariusz Lamentowicz, Andrey Mazurkevich, Mateusz Płóciennik, Rik Tjallingii, Mateusz Kramkowski, Dominika Łuców, and Michał Słowiński

Peatlands are natural geoarchives which record within organic deposits a picture of the past environmental changes. Depending on the preserved proxy, we are able to reconstruct various aspects of palaeoenvironmental changes, e.g. using pollen (vegetation composition), plant macrofossils (local vegetation changes), testate amoebae and zoological remains (hydrological changes) or XRF scanning (geochemical changes). Here, we investigated changes in land use and climate of western Russia using a range of biotic and abiotic proxies. This part of Europe is characterized by a continental climate, which makes this region very sensitive to climate change, in particular to precipitation fluctuations. Furthermore, in the last two centuries strong human impact in that area has been noticed.  

The Serteya kettle hole mire (55°40'N 31°30'E) is situated in the Smolensk Oblast in Western Dvina Lakeland. Study site is located close to the range of plant communities belonging to the hemiboreal zone, making it an ideal position to trace the plant succession of Eastern Europe. Preliminary dating of the material proves that the average rate of biogenic deposits in the reservoir was approx. 1 m per 600 years. The majority of the European peatlands was in some sense transformed as a result of drainage and land use practices in their basins. Serteya kettle hole mire allowed us to accurately track how a small ecosystem responds to palaeoenvironmental changes. Preliminary results will show the major fluctuations of the mire hydrology accompanied by the changes in the land use in the region. Our goal is also to determine the resistance and resilience of peat bogs to disturbances.

How to cite: Mroczkowska, A., Kittel, P., Marcisz, K., Dolbunova, E., Gauthier, E., Kublitsky, Y. A., Lamentowicz, M., Mazurkevich, A., Płóciennik, M., Tjallingii, R., Kramkowski, M., Łuców, D., and Słowiński, M.: A great response from small ecosystem – the last 500 years of history of a kettle hole mire in W Russia , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-495, https://doi.org/10.5194/egusphere-egu2020-495, 2020.

EGU2020-5311 | Displays | CL1.23

Paleoclimatic reconstruction studies in lake sediments: major proxies, technical evolution and database

Paula Bianchini, Elder Yokoyama, and Luciana Prado

Paleoclimate studies in different temporal and spatial scales provide important information on long-term statistics required to test hypotheses about climate changes. Comprehensive high-quality data sets and a solid understanding of dynamic climate processes in different temporal variations are essential to evaluate the sensitivity of the climatic system. Moreover, these data sets and dynamic analyses can help to distinguish the variability of natural and anthropogenic factors, reducing uncertainties about the magnitude and impact of future global climate changes. A common way to conduct paleoclimatic studies is through high resolution multiproxy lake sediments. Lake environments have been increasingly used in recent years to infer past fluctuations in climate, and many studies that comprise different locations and timescales demonstrate the great value of lakes as paleoclimatic archives. Because lake sediments are continental indicators sensitive to environmental changes, they can be used to reconstruct climate parameters, such as past rainfall, area management and environmental or limnological lake conditions. Changes of rainfall quantity can be recorded in lake archives by the variation of sedimentary input, which is related to changes in drainage basin and erosion rate. Beside of sedimentary input, lake sediments also exhibit physical and chemical changes in water bodies which, in turn, induce transformation in geochemical composition caused by changes in runoff or other allocated components. Thus, there is a variation in the proxies used in the studies, both in relation to the type of proxy used and the relationship used. In this context, we made a compilation of paleoclimatic studies on lake sediments (about 350 lakes), focusing on the main proxies used. Our study shows that there has been a change in the major proxies used along decades and with the emergence of new analysis techniques. In addition, we notice that lake characteristics (e.g., shape, geomorphological context, formation, etc.) have directly influence the proxies used and the quality of the information obtained. This compilation provides a database with an analysis of several lakes around the world, which can help future works and enable the identification of commonly used proxies according to the different variables that should be used, promoting more objective analyzes.

How to cite: Bianchini, P., Yokoyama, E., and Prado, L.: Paleoclimatic reconstruction studies in lake sediments: major proxies, technical evolution and database, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5311, https://doi.org/10.5194/egusphere-egu2020-5311, 2020.

EGU2020-11938 | Displays | CL1.23

Calibration of multiple paleotemperature proxies in modern lacustrine carbonate and lipids, Green Lake, New York, USA

Micah Wiesner, Greg Hoke, Tripti Bhattacharya, Chris Junium, Katharine Huntington, and Andrew Schauer

The application of novel paleotemperature proxies such as the carbonate clumped isotope (∆47) paleothermometer and GDGT-derived TEX86 temperature index offer insight into the continental record of ancient temperatures. While standardizing laboratory protocols has enhanced each methodology, the modern calibrations necessary to fully exploit their application in ancient environments lag. As the application of clumped isotopes and GDGTs in ancient lacustrine deposits expands, it is essential to describe the limitations and utility of each technique in modern environments. 

This study employs biweekly monitoring and water sampling of a temperate lake, Green Lake, Fayetteville, NY, USA, for water, lipids, and calcite, to explore how isotope- and GDGT-based proxies record seasonal changes in temperature. In addition to monitoring water temperature, we analyzed samples collected at depths between 0.5 and 15 m below the lake surface from May to October 2019 for carbon and oxygen isotopes, clumped isotopes, and GDGTs. Water samples were analyzed for hydrogen, oxygen isotopes, and ionic chemistry. The results allow for a comparison of the water column-derived lacustrine record of the clumped isotope paleothermometer of calcite, oxygen isotope paleothermometer of calcite, and GDGT-derived temperature indices. 

Previous work shows the majority of calcite precipitated annually in the water column grows rapidly during summer warming, so we expected proxy temperatures to reflect summer water temperatures at the depth of sampling. Over the May to October sampling period surface water temperatures were 14 to 25 °C, with the highest temperatures measured July 11. At 15 m below the surface water temperature ranged from 10 to 13°C. Temperatures calculated using the fractionation relation from Kim and O’Neil (1997), and preliminary calcite and water ẟ18O values from various depths are within uncertainty but 0 to 5°C cooler than measured water column temperatures at the time and depth of sampling. Carbonate ∆47 proxy temperatures, though the majority fall within uncertainty, suggest systemic temperature offset 6 to 19 °C hotter than the water column. It is currently unclear if calcite sampled from a given depth is locally formed or if it settles from higher in the water column, where temperatures are higher. Additional data are needed to test the hypothesis that higher ẟ18O and lower ∆47 values for carbonate reflect disequilibrium effects. 

Future work will extend the dataset and make proxy temperature comparisons to sediment cores to create an empirical temperature transfer function between seasonal information and recorded core temperatures.  A suite of soxhlet extracted lipid samples await HPLC analysis to confirm the existence of GDGTs in these samples. With the ensemble of data, we will clarify: 1) how seasonality of the proxy record relates to mean annual air temperature; 2) the correspondence between T(∆47) values and observed water column temperatures; and 3) which GDGT-temperature indices, TEX86, TEX86’, along with the BIT index, accurately describe temperature within the water column. The results of this study will provide constraints on how to interpret temperature signals recovered from the lacustrine record, and the utility of a multi-proxy approach.

How to cite: Wiesner, M., Hoke, G., Bhattacharya, T., Junium, C., Huntington, K., and Schauer, A.: Calibration of multiple paleotemperature proxies in modern lacustrine carbonate and lipids, Green Lake, New York, USA, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11938, https://doi.org/10.5194/egusphere-egu2020-11938, 2020.

EGU2020-13592 | Displays | CL1.23

Multi-proxy approach to reconstruct Middle and Late Holocene paleoenvironment and climate in the eastern Carpathians.

Maria J. Ramos-Roman, Heikki Seppä, Eniko Magyari, Cindy De Jonge, Daniel Veres, Volker Heyd, Timothy I. Eglinton, and Anne-Lise Develle

Sediments from lakes are a useful climate archive that provides information about past climate changes and human impact. It is well-known that abrupt climate change can be the trigger of the collapse or migrations of past civilizations. To have a better understanding of the migration of the Yamnaya civilization, located west of the Black Sea at ~5.5-5 cal kyr BP, we hypothesize that past climate changes acts as a driver of this migration. To test this we focus on a sedimentary record retrieved from the Mocearu lake that is located at 780 m a.s.l. in the Buzau mountains (eastern Carpathians, Romania). The record has a length of 7 m and covers the last ~6.5 cal kyr BP based on AMS radiocarbon dates. To reconstruct vegetation, environment and climate during the Middle and Late Holocene, we use complementary techniques: pollen, inorganic (XRF-analysis) and organic geochemistry based on lipid biomarkers (brGDGTs). The reconstruction has been carried out with higher resolution during the Middle Holocene, with the objective of finding evidence of the climatic changes that may have occurred around 5 cal kyr BP. Based on preliminary radiocarbon dating, the climatic reconstruction (based on brGDGTs) shows an increase in temperature from ~6 to 5.5 cal kyr BP, followed by a prominent decrease ~5.3-5 cal kyr BP.

How to cite: Ramos-Roman, M. J., Seppä, H., Magyari, E., De Jonge, C., Veres, D., Heyd, V., Eglinton, T. I., and Develle, A.-L.: Multi-proxy approach to reconstruct Middle and Late Holocene paleoenvironment and climate in the eastern Carpathians., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13592, https://doi.org/10.5194/egusphere-egu2020-13592, 2020.

3-hydroxy or beta-hydroxy fatty acids produced by Gram-negative bacteria are a novel proxy for assessment of the environmental changes. These compounds composed of lipopolysaccharide (LPS) of Lipid A, a core polysaccharide region, and an O-antigen polysaccharide chain. The improved method for the 3-hydroxy fatty acids extraction was proposed in this study. The 12 soil samples collected from the eastern US border along the coastline from Maine to Florida were generally processed by acid hydrolysis, methylation, total lipid extraction, and solid-phase chromatography, respectively. Fatty acids eventually can be separated from the main part of LPS and combined with a methyl group. However, in the stage of acid hydrolysis, the temperature was decreased to 55 °C, and heating time was extended in order to prevent the broken of volatile compounds and diminish the relative abundance of 3-OH fatty acids. The higher abundance of interested 3-OH fatty acids for the environmental reconstruction can potentially be extracted by this improvement than the classical protocol. This research will be further compared in terms of cost, experimental time and completeness of data between these two methods.

How to cite: Panbut, C.: An improved extraction method of 3-oh fatty acids for environmental reconstruction, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4018, https://doi.org/10.5194/egusphere-egu2020-4018, 2020.

EGU2020-12592 | Displays | CL1.23

Biomarker (brGDGT) degradation and production in lacustrine surface sediments: Implications for paleoclimate reconstructions.

Cindy De Jonge, Annika Fiskal, Xingguo Han, and Mark Lever

Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are a class of biomarker lipids that can be conserved over long timescales in lake sediments. Produced throughout the lake water column before settling and incorporation in the sedimentary archive, they are used to reconstruct lake water temperature changes through time. However, it is not clear how degradation and/or production of these compounds in the surface sediments influences the brGDGT signal and the reconstructed temperature record.

Here we present the core lipid (“fossil”) and intact polar lipid (“recently produced”) signal of brGDGT lipids in 8 short cores collected in 4 Swiss lakes, covering a eutrophic gradient. In eutrophic conditions (Lake Baldegg), a clear subsurface (20-35 cm blf) maximum in intact polar lipids is observed (15-20%), whereas the most surficial sediments (0-2 cm blf) show the lowest percentage of IPL lipids (<5%). Our data indicates that tetramethylated brGDGT lipids are produced in the subsurface. As the bacterial community has been reconstructed in all cores, using 16S rRNA gene distribution, we observe that this production is coeval with an increase in the relative abundance of OTUs in the phyla Acetothermia, Aminicenantes, Caldiserica and Spirochaetes. Hexamethylated brGDGTs are encountered in increased amounts in most surficial sediments (0-2 cm bsf), but are degraded further downcore. Both degradation and in-situ production cause the reconstructed temperatures based on the surface sediments to be 2 ℃ colder than those from the subsurface.

In sediments where degradation and subsurface production of brGDGT lipids occurs, this has the potential to impact paleoclimate reconstructions. A colder MBT’5ME signal in surface sediments has indeed been observed in several studies (i.e. Tierney et al., 2012; Miller et al., 2018, Martin et al., 2020). Furthermore, a distinct brGDGT signal in surface sediments has a possible impact on existing lacustrine calibration datasets, as these are based on surface sediments.

References:

Tierney et al. (2012), GCA 77, p561-581. Miller et al. (2018), CoP 14 (11), p1653-1667. Martin et al. (2020), QSR 228, 106109.

How to cite: De Jonge, C., Fiskal, A., Han, X., and Lever, M.: Biomarker (brGDGT) degradation and production in lacustrine surface sediments: Implications for paleoclimate reconstructions. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12592, https://doi.org/10.5194/egusphere-egu2020-12592, 2020.

EGU2020-12894 | Displays | CL1.23

Organic geochemical characteristics of coal deposits in Mae Than coal mine, Lampang Province, Thailand

Patthapong Chaiseanwang and Piyaphong Chenrai

Fifteen samples were collected from coal mines Mae Than basins located in Lampang Province, Northern Thailand to investigate organic geochemical characterization which can provide organic matter input, thermal maturity and depositional environment. The total organic carbon (TOC) content of the coal samples ranges from 30.12 to 73.71 wt. %, while shales and mudstones value between 5.98 – 24.87 wt. %. The extractable organic matter (EOM) content of all samples, which is yielded from bitumen extraction, values in the range of 1,256 and 16,421 ppm indicating good to excellent hydrocarbon generation potential. The organic geochemical data were studied by using Gas-chromatography Mass-spectrometry (GC-MS) providincg biomarker and non-biomarker data. The thermal maturity of studied samples is represented as immature stage due to ratio of Ts/(Ts+Tm) and homohopane isomerization. The distribution of normal alkanes is predominantly long-chain normal alkanes with odd-numbered carbon. The high Carbon Preference Index (CPI) value of samples indicates terrestrial organic matter input. The depositional environment of the study area can be interpreted that the coal formation is occurred within an oxidizing condition with the majority of higher plant input, whereas shale and mudstone is slightly more anoxic-aquatic environment.

How to cite: Chaiseanwang, P. and Chenrai, P.: Organic geochemical characteristics of coal deposits in Mae Than coal mine, Lampang Province, Thailand, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12894, https://doi.org/10.5194/egusphere-egu2020-12894, 2020.

EGU2020-16577 | Displays | CL1.23

Calibration and paleohydrological application of compound-specific isotope analyses (δ13Cwax, δ2Hwax and δ18Osugar) in semi-arid/arid Mongolia

Julian Struck, Marcel Bliedtner, Paul Strobel, Gerhard Daut, Jens Schumacher, Lucas Bittner, Birgit Plessen, Bruno Glaser, Björn Klaes, Enkhtuja Bazarradnaa, Gary Salazar, Sönke Szidat, Michael Zech, and Roland Zech

Several lake sediment studies have investigated the Holocene climate history in Mongolia using pollen, organic and inorganic elemental analyses. However, these studies come to very different conclusions. Isotope analyses, particularly compound-specific carbon, hydrogen and oxygen isotopic composition of leaf wax n-alkanes (δ13Cwax, δ2Hwax) and hemicellulose sugars (δ18Osugar) are increasingly used for paleoenvironmental and -hydrological reconstructions and might have great potential to address the controversies in Mongolia.

Here we present a regional calibration of δ13Cwax, δ2Hwax and δ18Osugar on topsoils along a distinct climate gradient in semi-arid/arid Mongolia. δ13Cwax significantly correlates with aridity indicating variations in water use efficiency. The apparent fractionation (Ɛapp) of δ2Hwax and δ18Osugar is nearly constant at -131 ± 13‰ for Ɛn-C29/p, -148 ± 11‰ for Ɛn-C31/p and 40.8 ± 1.9‰ for Ɛsugar/p, respectively. δ2Hwax (n-C29 and n-C31) and δ18Osugar thus, reflect the isotopic composition of precipitation, which in turn is controlled by atmospheric circulation systems bringing moisture to continental Mongolia, i.e. the interaction between the Westerlies and the Asian Summer Monsoon. Therefore, we applied regionally calibrated δ13Cwax, δ2Hwax and δ18Osugar isotopes, as well as well-established sedimentological and geochemical proxies and δ13Corg, δ13Ccarb, δ18Ocarb on a 160 cm long gravity core from Lake Telmen (Central Mongolia) that covers 4,110 +350/‑340 cal. a BP.

Low terrestrial input (e.g. low Al, Fe, K, Sr) suggests decreased runoff and points to overall dryer conditions in the area around Lake Telmen between 4,110 +350/‑340 and 3,040 +610/‑400 cal. a BP. Those findings are in line with positive δ2Hn-C23, δ18Osugar and δ18Ocarb, which indicate enhanced lake water evaporation. From 3,040 +610/‑400 to 1,360 +230/‑220 cal. a BP, high terrestrial input and more negative δ2Hn-C23, δ18Osugar and δ18Ocarb values indicating more humid conditions. This is in line with seismic results which reveal distinct subaqueous cliffs and an extreme lake level rise beginning at ~ 2,000 cal. a BP. Drier conditions and low lake levels occurred between 1,360 +230/‑220 and 700 +210/‑180 cal. a BP and are indicated by low Ca/Mg ratios and a distinct enrichment in 13Cwax, 2Hwax,18Osugar and 18Ocarb. From 700 +210/‑180 cal. a BP onwards, drier conditions continue but the terrestrial input increases possibly reflecting anthropogenic impact.

How to cite: Struck, J., Bliedtner, M., Strobel, P., Daut, G., Schumacher, J., Bittner, L., Plessen, B., Glaser, B., Klaes, B., Bazarradnaa, E., Salazar, G., Szidat, S., Zech, M., and Zech, R.: Calibration and paleohydrological application of compound-specific isotope analyses (δ13Cwax, δ2Hwax and δ18Osugar) in semi-arid/arid Mongolia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16577, https://doi.org/10.5194/egusphere-egu2020-16577, 2020.

EGU2020-18370 | Displays | CL1.23

Quantification of past temperature variability during the last 36 kyr using organic-derived proxies in the Padul wetland, southern Iberia

Marta Rodrigo-Gámiz, Antonio García-Alix, Gonzalo Jiménez-Moreno, Jon Camuera, María J. Ramos-Román, Jaime L. Torney, Dirk Sachse, and R. Scott Anderson

The study of climate variability in especially sensitive areas is crucial for a better understanding of the response of Earth’s different components to abrupt changes and envisage future climate responses. In this regard, the southern Iberian and western Mediterranean regions have demonstrated hemispheric-scale teleconnections during the last glacial period. Long-records from continental sedimentary archives are scarce, and the Padul wetland represents one of the longest and most continuous continental record in this area, detecting climate variability at centennial to millennial-scale from the Pleistocene to the Holocene. The applicability of organic-based proxies in this organic rich continental archive is a promising tool because the variations in different biomarkers are closely related to biological sources and environmental factors such as temperature. Particularly interesting from a paleoclimatic point of view are glycerol dialkyl glycerol tetraethers (GDGTs), which are membrane lipids from Bacteria and Archaea, ubiquitous in a range of natural archives, including wetlands. Previous works have demonstrated their applicability as a significant past continental air temperature proxy, where the distribution of bacterial branched GDGTs (brGDGTs) is correlated with mean annual air temperature (MAAT) and soil pH. Here we present a first quantification of past temperatures using brGDGTs in the Padul sedimentary record. Preliminary results have evidenced substantial variations in derived-MAAT and distribution of the different brGDGTs during the last 36 kyr that are consistent with abrupt climate periods, such as Henrich Stadial 1 and the Holocene onset. Nevertheless, different absolute MAAT values using the peat-specific calibration and the mineral soil calibration have been obtained and they need to be evaluated.

How to cite: Rodrigo-Gámiz, M., García-Alix, A., Jiménez-Moreno, G., Camuera, J., Ramos-Román, M. J., Torney, J. L., Sachse, D., and Anderson, R. S.: Quantification of past temperature variability during the last 36 kyr using organic-derived proxies in the Padul wetland, southern Iberia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18370, https://doi.org/10.5194/egusphere-egu2020-18370, 2020.

EGU2020-19361 | Displays | CL1.23

Drought does not affect hydrogen isotope fractionation during lipid biosynthesis by the tropical plant Pachira aquatica

S. Nemiah Ladd, Daniel B. Nelson, Ines Bamberger, Erik Daber, Ansgar Kahmen, Carsten J. Schubert, and Christiane Werner

Hydrogen isotope ratios (2H/1H) of plant waxes and other lipids preserved in sediments are increasingly used as a paleohydrologic proxy for past water isotopes. The relationship between precipitation 2H/1H ratios and those of plant waxes in surface sediments is linearly correlated at a global scale. However, there are large residuals in this relationship, and the offsets in 2H/1H ratios for the same compound produced by different species growing at the same site, as well as for different compounds produced within the same plant, can approach the magnitude of continental scale variability in precipitation isotopes. This indicates that lipid 2H/1H ratios are influenced by significant factors besides the 2H/1H ratios of local precipitation. One possibility is that plant metabolic responses to stresses such as drought cause changes in 2H/1H fractionation during lipid synthesis.

 

In order to assess the effects of drought on 2H/1H fractionation during plant lipid synthesis, we grew Pachira aquatica seedlings in controlled growth chamber conditions, with half of the individual plants experiencing drought conditions (soil moisture content reduced to ~10%) and half serving as well-watered controls (soil moisture content ~25%). We used position-specific 13C-pyruvate labeling to assess if there were changes in lipid production under drought, and focused on a diverse range of compounds including palmitic acid, n-C29 and n-C31-alkanes, phytol, squalene, and sitosterol. We also measured natural abundance 2H/1H ratios from the same compounds and from cryogenically extracted leaf water to quantify biosynthetic H isotope fractionation (εBio).

 

Biosynthetic 2H/1H fractionation spanned a 150‰ range among compounds, with palmitic acid being the least 2H-depleted compound (εBio = -140 ± 10‰) and phytol being the most 2H-depleted compound (εBio = -317 ± 7‰). These fractionation factors did not change under drought, although 13C-pyruvate labeling indicated that the compounds were being actively produced. There was no change in the production rate of any compound under drought, however. Differential incorporation of 13C depending on whether the 1st or 2nd carbon in pyruvate was labeled showed clear distinctions among compound classes, with the acetogenic compounds only becoming enriched from the C2 label, and isoprenoids using roughly equal proportions of carbon from each position. These results suggest that under this level of drought stress, Pachira aquatica did not make any changes to its lipid metabolism, and lipid 2H/1H ratios were therefore unperturbed. If replicated in additional plants types and under more severe drought, this result is encouraging for the use of plant lipid 2H/1H ratios as robust paleohydroclimate tracers.  

How to cite: Ladd, S. N., Nelson, D. B., Bamberger, I., Daber, E., Kahmen, A., Schubert, C. J., and Werner, C.: Drought does not affect hydrogen isotope fractionation during lipid biosynthesis by the tropical plant Pachira aquatica, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19361, https://doi.org/10.5194/egusphere-egu2020-19361, 2020.

EGU2020-992 | Displays | CL1.23

Structural ecosystem change in Holocene chironomid assemblages

Roseanna Mayfield, Peter Langdon, John Dearing, Patrick Doncaster, and Rong Wang

There is a growing trend in using structural analyses to investigate temporal changes in ecosystem system architecture. System architecture defines the organisation of taxa within a system and how this may affect system response to stress. Over the Holocene, in areas with little/no human impact, the climate has been a key driver of ecosystem change, including post-glacial to early/mid-Holocene warming, subsequent neoglacial cooling, and rapid climate change events such as the 8.2 kyr event. This study aims to investigate whether Holocene climate change is a driver for structural change in temperature-sensitive organisms, such as chironomids, in high latitude lakes. These areas are at risk from rapidly rising global temperatures, with warmer temperatures already recorded and predicted to continue rising in high latitude areas. Increased temperatures can create stress on ecologically sensitive environments where many organisms are adapted to cooler temperatures. Three sets of analyses - beta diversity, compositional disorder, and network skewness - are applied to Norwegian chironomid sequences to investigate ecosystem structural change during the Holocene.

How to cite: Mayfield, R., Langdon, P., Dearing, J., Doncaster, P., and Wang, R.: Structural ecosystem change in Holocene chironomid assemblages, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-992, https://doi.org/10.5194/egusphere-egu2020-992, 2020.

EGU2020-8457 | Displays | CL1.23

A theory of palaeoclimate reconstruction

Mengmeng Liu, Iain Colin Prentice, Cajo ter Braak, and Sandy Harrison

Past climate states can be used to test climate models for present-day changes and future responses. Past states can be reconstructed from fossil assemblages, and WA-PLS (weighted averaging–partial least squares) is one of the most widely used statistical methods to do this. However, WA-PLS has a marked bias. Whatever biotic indicator is being used, reconstructed climate values are artificially compressed and biased towards the centre of the range used for calibration.

Here we developed an improvement of the method, derived rigorously from theory. It makes three assumptions:

a) the theoretical abundance of each taxon follows a Gaussian (unimodal) curve with respect to each climate variable considered;

b) the abundances of taxa are compositional data, so they sum to unity and follow a multinomial distribution;

c) the best estimate of the climate value at the site to be reconstructed maximizes the log-likelihood function – in other words, it minimizes the difference between theoretical and actual abundances as assessed by the likelihood criterion.

The best estimate of the climate value is approximated by a tolerance-weighted version of the weighted average in which the abundances of taxa are weighted by the inverse square of their tolerances (a measure of the range of environments in which a taxon is found). WA-PLS thus corresponds to the special case when all taxon tolerances are equal. The fact that this special case is far from reality generally is part of the the cause of the “compression and bias”. The new method can be applied using the existing functions for WA-PLS in the R package rioja. We show that it greatly reduces the compression bias in reconstructions based on a large modern pollen data set from Europe, northern Eurasia and the Middle East.

How to cite: Liu, M., Prentice, I. C., Braak, C. T., and Harrison, S.: A theory of palaeoclimate reconstruction, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8457, https://doi.org/10.5194/egusphere-egu2020-8457, 2020.

EGU2020-20282 | Displays | CL1.23

Switches of Holocene temperature-precipitation correlations in northern Hemisphere extra-tropics comparing proxy and model data

Ulrike Herzschuh, Thomas Boehmer, Raphael Herbert, Thomas Laepple, Richard Telford, Xianyong Cao, Anne Dallmeyer, and Stefan Kruse

Switches of temperature-precipitation correlation in northern Hemisphere extra-tropics

Future precipitation response to warming remains uncertain because climate models poorly reproduce observed changes of temperature-precipitation correlations. However, restricting model validations to the observational period may yield to misleading conclusions due to the complexity of the involved processes. Our analyses of Holocene proxy-based temperature-precipitation correlations from 1500 northern Hemisphere extratropic pollen records portrayed significant latitudinal dependance, temporal changes from the early to late Holocene as well as differences between short and long time-scales. These observed variations were found to be mostly consistent with patterns simulated by Holocene transient climate simulations. Our results suggest that the strength of positive temperature-precipitation correlations in high-latitudes is sensitive to the background temperature while monsoonal subtropics reflect spatial shifts of circulation systems; and correlation sign switches in mid-latitudes relate to changes of westerlies strength. We conclude that regional and continental climate change on land is more complex than the expected “wetter climate in a warmer world” assumption which holds well at the global scale. On the other hand, long-term projections of precipitation may be better than previously thought as major processes seem to be already implemented correctly in general circulation models.

How to cite: Herzschuh, U., Boehmer, T., Herbert, R., Laepple, T., Telford, R., Cao, X., Dallmeyer, A., and Kruse, S.: Switches of Holocene temperature-precipitation correlations in northern Hemisphere extra-tropics comparing proxy and model data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20282, https://doi.org/10.5194/egusphere-egu2020-20282, 2020.

Speleothems are secondary mineral deposits found in caves. They can grow continuously over 1,000-10,000 years and the 230Th/U method allows accurate dating back to 500,000 years.[1] Stable conditions in caves preserve organic matter, making speleothems highly valuable climate archives. The high interest in expanding the range of organic proxies in speleothems requires highly sensitive analytical techniques. Novel trace analysis methods for lignin and levoglucosan in speleothems were established according to principles of "Green Chemistry" [2] and applied to flowstone samples from different caves in New Zealand during the Holocene.

Lignin is the second most abundant biopolymer after cellulose. It consists of three monomers, which are included into the polymer in different ratios, depending on the type of vegetation. It is found in speleothems and quantification in timely consecutive layers allows drawing conclusions on changing types and amount of vegetations above the caves, which are influenced by climate conditions like temperature and rainfall.[3] To analyse the monomeric composition, lignin has to be degraded by an alkaline oxidation. Thereby the monomers are oxidized into lignin oxidation products which are then analysed by uHPLC-ESI-HRMS. To date, lignin degradation was conducted using Cu(II)O as a catalyst, which was replaced by CuSO4, eliminating the solid, toxic Cu(II)O waste, and highly reducing the amount of artefacts and used chemicals during sample preparation. The new method was successfully applied to the flowstone samples but posed further questions on the transport of lignin through the soil into the speleothem.[4],[5]   

The other proxy of interest was levoglucosan, an anhydrosugar formed by cellulose combustion. For temperature studies in speleothems carbon isotopes are used which can be influenced by e.g. fire events. Therefore, it is necessary to introduce a proxy, which prevents falsely positive or negative temperature trends. Extraction of levoglucosan was conducted using graphitized carbon black and chromatographic separation by a hydrophilic interaction liquid chromatography, using a post-column flow to increase the ionization efficiency in the ESI ion source. Levoglucosan analysis was introduced into the existing workflow, without interfering with lignin analysis, and thereby a multi-proxy approach was developed. This work showed that levoglucosan is present in speleothems in quantifiable amounts. It was detected in two of the study sites, showing no correlation to lignin. A plant-based origin of levoglucosan was ruled out, suggesting a fire-related entry into the speleothem.

 

[1] Baker, A., et al. (2008). International Journal of Speleology, 37 (3), 193-206; [2] Anastas, P., Eghbali, N. (2010), Chemical Society Reviews, 39, 301-312; [3] Hedges, J., Mann, D. (1979). Geochimica et Cosmochimica Acta, 43 (11), 1803-1807; [4] Heidke, I., Scholz, D., Hoffmann, T. (2018). Biogeosciences, 15 (19), 5831-5845; [5] Yan, G., Kaiser, K. (2018). Analytical Chemistry , 90 (15), 9289-9295

How to cite: Beschnitt, A. and Hoffmann, T.: Application of novel trace analysis methods for lignin and levoglucosan in flowstone samples from New Zealand during the Holocene, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2397, https://doi.org/10.5194/egusphere-egu2020-2397, 2020.

EGU2020-2413 | Displays | CL1.23

Trace analysis of levoglucosan and lignin-phenols in speleothems by HILIC-UHPLC-ESI-HRMS: A new method

Julia Homann, Anja Beschnitt, and Thorsten Hoffmann

Secondary mineral deposits in caves like stalagmites, stalactites, or flowstones are valuable paleoclimate archives. Advantages of organic trace analysis in such deposits are stable conditions in a cave, protecting compounds from external influences, as well as the possibility to precisely date samples up to 600,000 years using the uranium/thorium method.[1]

Lignin, a biopolymer, is one of the main constituents of higher plants and consists of three monomeric units: sinapyl-, coniferyl-, and coumaryl alcohol. Lignin can be degraded into its monomeric units by alkaline CuSO4-oxidation. The oxidized monomer units can be analysed by UHPLC-ESI-HRMS with limits of quantification in the ng/g range. By determination of the ratios among different oxidation products in a speleothem, conclusions can be drawn on the type of vegetation above the cave. [2,3]

Levoglucosan, an anhydrosugar, naturally only originates from the combustion of cellulose and can thus be used as a biomass burning marker. Analysis of levoglucosan in sediments shows good correlation with traditional burning markers like black charcoal. [4] Mannosan and galactosan, stereoisomers of levoglucosan, are formed during the combustion of hemicellulose. Literature suggests that the ratio of levoglucosan to its isomers rather than absolute levoglucosan concentrations should be considered when characterizing burning events. [5] To date, no data on levoglucosan or its isomers in speleothems is published.

As the anhydrosugars are highly polar molecules, extraction and analysis with traditional reversed phase systems proved difficult. An optimized sample preparation to access both lignin and levoglucosan in speleothems is presented. Furthermore, a HILIC-UHPLC-ESI-HRMS method was developed to analyze the lignin oxidation products (LOPs) and anhydrosugars.

The methods were applied to a flowstone from a cave of the Dolomites in Southern Tyrol.

[1] D. Scholz, D. Hoffmann, Quat. Sci. J. 57 (2008) 52–76 [2] C.N. Jex et al. Quat. Sci. Rev. 87 (2014) 46–59. [3] G. Yan, K. Kaiser, Anal. Chem. 90 (2018) 9289–9295. [4] V. O. Elias et al. Geochim. et Cosmochim. Acta 65 (2001) 267-272. [5] D. Fabbri et al. Atmos. Env. 43 (2009) 2286–2295

How to cite: Homann, J., Beschnitt, A., and Hoffmann, T.: Trace analysis of levoglucosan and lignin-phenols in speleothems by HILIC-UHPLC-ESI-HRMS: A new method, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2413, https://doi.org/10.5194/egusphere-egu2020-2413, 2020.

EGU2020-11105 | Displays | CL1.23

Speleothem record from Pentadactylos cave (Cyprus): high-resolution insight into climatic variations during MIS 6 and MIS 5

Carole Nehme, Sophie Verheyden, Tobias Kluge, Therese Weissbach, Fadi Nader, Salih Gucel, Iris Charalambidou, Hai Cheng, Lawrence Edwards, and Philippe Claeys

An improved understanding of medium and short-term changes in temperature and rainfall in the East Mediterranean is necessary for a comprehensive description of the regional climate regime. In particular, it can help advancing current climate models and predictions. A new paleoclimate record from Cyprus gives new insights into climatic variations during MIS 6 and 5 for this region. A 66 cm long speleothem from Pentadactylos cave in the Kyrenia range (800 m asl) was extensively dated with the U/Th method and investigated for petrography, fluid inclusions, stable and clumped isotopes. The stalagmite grew from 174.6 ± 0.7 to 112.2 ± 0.5 ka BP. The growth rate varies from 31 to 5 mm/ka during the early-MIS6 and evolving from 123 to 18 mm/ka at the end-MIS6. The onset of MIS5e is marked by a high growth rate (125 mm/ka) until growth decreased drastically after 122 ka. Growth rate and stalagmite diameter as well as δ18O and δ13C curves are positively correlated. We interpret the δ18Oc signal as being controlled by effective infiltration and thus rainfall amount. Climate conditions during early-MIS6 were highly variable (δ18Oc) on a millennial-scale with several short-lived wet episodes during sapropel 6. From 141 to 132 ka, δ18Oc suggests general dry/cold conditions with low bio-pedological activity, followed by a growth stop during H11. The δ18O values during the Eemian wet period in Cyprus are driven by the source effect (sapropel 5). Stable conditions during MIS 5e were rather short: ~2 ka, as shown in the δ13C signal. After 122 ka, a slow deterioration of the soil cover coupled with low rainfall amounts during the glacial inception period show rather a regional decoupling phase. Fluid inclusions show a clear shift (4-5‰) in δ18Ow between end-MIS 6 and MIS 5e. Clumped isotopes measurements indicate kinetic effects between calcite and water of up to ~1‰. After correction for kinetics using Δ47, an estimate for the MIS6-5 temperature shift in the East-Mediterranean is >10°C.

How to cite: Nehme, C., Verheyden, S., Kluge, T., Weissbach, T., Nader, F., Gucel, S., Charalambidou, I., Cheng, H., Edwards, L., and Claeys, P.: Speleothem record from Pentadactylos cave (Cyprus): high-resolution insight into climatic variations during MIS 6 and MIS 5, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11105, https://doi.org/10.5194/egusphere-egu2020-11105, 2020.

EGU2020-16898 | Displays | CL1.23

Rainfall seasonality changes in northern India across the 4.2 ka event

Alena Giesche, Sebastian F.M. Breitenbach, Norbert Marwan, Adam Hartland, Birgit Plessen, Jess F. Adkins, Gerald H. Haug, Amanda French, Cameron A. Petrie, and David A. Hodell

Despite intensive research efforts by archaeologists, geomorphologists, and palaeoclimatologists, the climatic and environmental changes accompanying the societal changes in the wider Indus/Thar region c. 4000 years ago remain puzzling. In particular, rainfall seasonality might be an important determinant for societal well-being. A major hurdle to a more detailed understanding of climate-human interaction is the relative scarcity of well-dated and highly resolved proxy records.

We present a multi-proxy record from aragonitic stalagmite DHAR-1 collected in Dharamjali Cave, Uttarakhand, India, that spans c. 1600 years between c. 4.25 and 2.6 ka BP.  The stalagmite has been dated with 13 U/Th dates with average uncertainties of <18 years (2σ). In addition to c. 1600 oxygen and carbon isotope samples, element ratios (X/Ca) were measured using high resolution μXRF and laser ablation ICPMS at 25 μm resolution.  

The DHAR-1 record represents the most precisely dated speleothem record to date from northern India, covering the mid-Holocene 4.2 ka BP event and the millennium thereafter. The attained sub-decadal to seasonal resolution allows robust assessment of both regional and local hydrological changes, and changes in amount and temporal distribution of summer and winter rainfall. 

The speleothem record reveals decadal-scale trends that can be related to changes in seasonality. The δ18O record reveals a 220-year period of weakened ISM from 4.2 to 3.98 ka BP. A contemporaneous increase in δ13C, and decrease in U/Ca, Ba/Ca, and Sr/Ca point to increased prior aragonite precipitation (PAP) resulting from increased aridity above the cave extending throughout the dry season. The ISM intensified after c. 3.7 ka BP while dry seasons remained dry, with a resultant increase in seasonality. Lower PAP after c. 3.4 ka BP can be interpreted as sign of reduced rainfall seasonality.

We compare the results with available records from the wider region, and discuss potential implications of the suggested changes in seasonality for agriculture-based societies.

How to cite: Giesche, A., Breitenbach, S. F. M., Marwan, N., Hartland, A., Plessen, B., Adkins, J. F., Haug, G. H., French, A., Petrie, C. A., and Hodell, D. A.: Rainfall seasonality changes in northern India across the 4.2 ka event, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16898, https://doi.org/10.5194/egusphere-egu2020-16898, 2020.

EGU2020-3527 | Displays | CL1.23

Controls of Li incorporation in aragonite

Vasileios Mavromatis, Jean-Michel Brazier, and Katja Goetschl

The cation-to-Ca ratio in natural carbonate minerals is routinely used by the geoscientific community in order to reveal information about the conditions occurred during mineral formation in the geological past. Environmental reconstruction, however, relies on our understanding on the mechanisms controlling mineral growth but also on the physico-chemical properties of cations. In this respect experimental studies and laboratory calibrations of elemental ratios in synthetic carbonates provide important insights on the interpretation of the chemical signatures in natural samples. This holds especially truth for the chemical and isotopic signals of carbonates forming in continental environments that are characterized by the absence of bio-induced precipitation, low concentration of solutes in the forming fluid and slow growth rates (e.g. speleothems). In this study, we examine the incorporation of Li in aragonite, owing to its use as a temperature proxy and its importance in paleo-weathering reconstruction. Our preliminary results suggest that aragonite growth rate is likely the most important parameter controlling Li content in the forming phase. This finding comes in excellent agreement with the recent study by Füger et al. (2019). In addition, the experimental work suggest that temperature is also affecting the distribution of Li in aragonite but to a lesser extent than growth rate. It is anticipated that once completed this work will provide the fundamental knowledge needed for adequate interpretation of Li partitioning in aragonite and significantly improve our ability to interpret Li signatures in natural carbonates.

 

References: Füger et al. 2019. Effect of growth rate and pH on lithium incorporation in calcite, Geochim. Cosmochim. Acta., 248, 14-24.

How to cite: Mavromatis, V., Brazier, J.-M., and Goetschl, K.: Controls of Li incorporation in aragonite, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3527, https://doi.org/10.5194/egusphere-egu2020-3527, 2020.

EGU2020-3603 | Displays | CL1.23

Parameters controlling the incorporation of Cu in calcite

Jean-Michel Brazier, Katja Götschl, Martin Dietzel, and Vasileios Mavromatis

Carbonate minerals record, through their chemical and isotopic composition, the environmental conditions occurring at the time of their formation. Thus, the incorporation of traces/impurities in CaCO3 minerals calcite and aragonite, have been widely studied over the last five decades in order to provide the fundamental knowledge needed for the use of these traces in paleoenvironmental reconstructions. The processes controlling the uptake of traces in natural samples, however, are manifold and hard to distinguish from each other. Thus, experimental co-precipitation studies on synthetic material under strictly controlled abiotic conditions can provide fundamental understanding on the effect of each process involved in the chemical signatures of natural carbonates. In this study, we explore the incorporation of Cu in calcite and its potential as proxy of reactive fluid composition. This transition metal commonly occurs complexed with organic ligands in natural waters, however, it exhibits very high affinity for calcite. Our experiments were performed at pH 6.3 and 8.3, with varying growth rate ranging between 10-8.5 and 10-7.6 (mol/m2/s). Our first results highlight that the partitioning coefficient of Cu is positively correlated to the calcite growth rate at both pH conditions, indicating an increase of Cu entrapment at higher growth rate. These new preliminary findings could bring fundamental understanding of Cu incorporation in calcite and highlight the potential of Cu partitioning coefficient as a proxy of mineral growth rate.

How to cite: Brazier, J.-M., Götschl, K., Dietzel, M., and Mavromatis, V.: Parameters controlling the incorporation of Cu in calcite, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3603, https://doi.org/10.5194/egusphere-egu2020-3603, 2020.

EGU2020-4240 | Displays | CL1.23

What we talk about when we talk about seasonality?

Ola Kwiecien

The concept of seasonal changes is traditionally understood as a consecutive follow-up of four seasons, spring, summer, autumn, and winter (in the mid-latitudes); or wet/ dry season alteration (in low latitudes). Intuitively, the term ‘seasonality’ usually refers to temperature or moisture gradients throughout a year. These gradients determine the composition and dynamics of natural ecosystems and agricultural strategies; as such seasonality is a key parameter when describing modern and past climatic and environmental conditions. Consequently, changes in seasonality are often called for as the ultimate driving force of observed changes, but there is more to them than meets the eye. Most importantly there is an essential and often overlooked aspect of external, orbitally-driven seasonality, and internal, regional-to-local responses to these changes.

What does ‘increased’ or ‘decreased’ seasonality actually mean? Can we quantify this change? And is the amplitude all that matters? What about temporal distribution? Does temperature and precipitation always respond symmetrically and harmonically? My contribution is aimed at raising awareness, caution and precision when referring to seasonality changes. Come to my poster and let’s discuss it!

How to cite: Kwiecien, O.: What we talk about when we talk about seasonality? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4240, https://doi.org/10.5194/egusphere-egu2020-4240, 2020.

EGU2020-5177 | Displays | CL1.23

Groundwater modelling for time periods of up to hundreds of thousands of years.

Gerrit H. de Rooij and Thomas Mueller

Occasionally, there is an interest in groundwater flows over many millennia. The input parameter requirement of numerical groundwater flow models and their calculation times limit their usefulness for such studies.

Analytical models require considerable simplifications of the properties and geometry of aquifers and of the forcings. On the other hand, they do not appear to have an inherent limitation on the duration of the simulated period. The simplest models have explicit solutions, meaning that the hydraulic head at a given time and location can be calculated directly, without the need to incrementally iterate through the entire preceding time period like their numerical counterparts.

We developed an analytical solution for a simple aquifer geometry: a strip aquifer between a no flow boundary and a body of surface water with a prescribed water level. This simplicity permitted flexible forcings: The non-uniform initial hydraulic head in the aquifer is arbitrary and the surface water level can vary arbitrarily with time. Aquifer recharge must be uniform in space but can also vary arbitrarily with time.

We also developed a modification that verifies after prescribed and constant time intervals if the hydraulic head is such that the land surface is covered with water. This excess water then infiltrates in areas where the groundwater level is below the surface and the remainder is discharged into the surface water. The hydraulic head across the aquifer is modified accordingly and used as the initial condition for the next time interval. This modification models the development of a river network during dry periods. The increased flexibility of the model comes at the price of the need to go through the entire simulation period one time step at a time. For very long time records, these intervals will typically be one year.

Given the uncertainty of the aquifer parameters and the forcings, the models are expected to be used in a stochastic framework. We are therefore working on a shell that accepts multiple values for each parameter as well as multiple scenarios of surface water levels and groundwater recharge rates, along with an estimate of their probabilities. The shell will generate all possible resulting combinations, the number of which can easily exceed 10000, then runs the model for each combination, and computes statistics of the average hydraulic head and the aquifer discharge into the surface water at user-specified times.

A case study will tell if this endeavor is viable. We will model the aquifer below the mountain range north of Salalah in Oman, which separates the desert of the Arabian Peninsula from the coastal plain at its southern shore. Rainfall estimates from the isotopic composition of stalactites in the area indicate distinct dry and wet periods in the past 300 000 years. In combination with estimated sea level fluctuations over that period, this provides an interesting combination of forcings. We examine the dynamics of the total amount of water stored in the aquifer, and of the outflow of water from the aquifer into the coastal plain.

How to cite: de Rooij, G. H. and Mueller, T.: Groundwater modelling for time periods of up to hundreds of thousands of years., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5177, https://doi.org/10.5194/egusphere-egu2020-5177, 2020.

EGU2020-18227 | Displays | CL1.23

Reconstructing past hydrology from drift sand archives: possibilities and limitations

Koen Beerten, Wouter van der Meer, Koen Hebinck, Miel Schurmans, and Jan Bastiaens

Palaeohydrological studies usually focus on extreme events and long-term changes as observed from floodplain archives. As a consequence, the information that is obtained inheritely reflects palaeohydrological conditions from a specific compartment of the hydrological system only, namely the discharge area which acts as a drain for runoff and groundwater. In contrast, palaeohydrological conditions in recharge areas, outside the floodplains, are less well understood and documented.

Aeolian drift sands are a typical feature in the European sand belt, and reflect phases of human induced and climatically modulated Holocene landscape instability. As the European sand belt is characterised by shallow phreatic groundwater tables in climates with a precipitation surplus, we might theoretically expect aeolian activity to interfere with a fluctuating groundwater table and/or precipitation events. The aim of this presentation is to explore the possibilities and limitations of four types of palaeohydrological proxy that were retrieved from a variety of different sites in drift sand landscapes in NE Belgium (Campine area): (1) soil horizon morphology of buried podzols, (2) deflation surfaces, (3) drift sand depositional facies and (4) palaeobotanical remains in organic-rich sediment.

The palaeohydrological information that these proxies contain will be discussed according to various characteristics. These include the continuity of the archive (continuous or discontinuous), the resolution (high resolution or integrated proxy), and whether the proxy is indicative for outcropping groundwater or precipitation events.

Podzol soil horizon morphology is an indicator of the average highest groundwater table position over a time period of several thousands of years prior to landscape instability and sand drifting, and can thus be qualified as an integrated proxy. Overblown deflation surfaces can only be used as an upper limit of the highest palaeo-groundwater table in between podzolisation and drift sand deposition, and can be qualified as a discontinuous low-resolution proxy. Drift sand depositional facies is a highly discontinuous proxy but can be used to verify whether deposition took place in dry, wet or standing water environments, with or without the influence of significant precipitation events and/or running water. Undoubtedly, palaeobotanical remains (macrobotanical and pollen) in overblown peat and peaty sand from the deepest parts of the drift sand landscape offer the highest resolution in terms of chronology (century to decades) and highest reliability in terms of water source tracing (outcropping groundwater vs precipitation).

Proxy verification mainly relies on fragmentary historical information derived from maps covering the last 250 years. Most importantly, when different proxies are available at the same site, they usually show strong internal consistency. A good example is the presence of peat with aquatic palaeobotanical remains in the deepest parts of the landscape where the underlying podzol soil also shows hydromorphic features and the overlying drift sand contains elements that are typical for deposition in wet environments.

We conclude that the above outlined complementary set of palaeohydrological proxies is a promising tool to reconstruct past hydrology in drift sand landscapes from the European sand belt.

How to cite: Beerten, K., van der Meer, W., Hebinck, K., Schurmans, M., and Bastiaens, J.: Reconstructing past hydrology from drift sand archives: possibilities and limitations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18227, https://doi.org/10.5194/egusphere-egu2020-18227, 2020.

EGU2020-4887 | Displays | CL1.23

Reconstructions of past sediment and water discharges from fluvial-fill terraces in the southern Central Andes of NW Argentina

Stefanie Tofelde, Taylor Schildgen, Andrew Wickert, Manfred Strecker, and Ricardo Alonso

Alluvial river long profiles continually adjust to their water discharge (Qw) and sediment supply (Qs). Qw and Qs are in turn functions of local climatic and tectonic conditions. Hence, changes in the prevailing tectonic or climatic conditions will trigger adjustments to channel long profiles, either by channel incision into previously deposited sediments or by sediment deposition. Because fluvial terraces are abandoned floodplains that preserve ancient river elevation profiles formed from past Qs and Qw, they store information on past climatic or tectonic conditions. 

In NW Argentina, reconstructions of Pleistocene climate are sparse due to the limited availability of paleo-climatic records, such as stable isotope data from speleothems or lake cores. However, many intermontane basins within the Southern Central Andes of NW Argentina are characterized by multiple generations of fluvial-fill terraces, some of which date back several tens to hundreds of thousands of years. Here, we show that these geomorphic units provide an opportunity to extract information about paleo-climatic conditions. 

A combination of several geochronological techniques has revealed the history of a >200-m-thick fluvial-fill terrace sequence within the Quebrada del Toro. The terrace sequence experienced alternating episodes of incision and aggradation since at least 500 ka. Subsequent terrace surfaces appear to have formed following a cyclicity of ca. 100 kyr. From detrital sediment within those fill terraces, past Qs could be reconstructed for times of sediment aggradation based on cosmogenic 10Be concentrations. The analyses revealed that over the last ~500 kyr Qs has varied at most by a factor of 4, but overall has been relatively constant. As the slope of a river channel (and likewise, the slope of a well preserved terrace surface) is a function of incoming Qs and Qw, combining data of terrace slope and past Qs allowed us to reconstruct past Qw for the times represented by the ages of the terrace surfaces, which mark the onset of river incision. The analyses revealed that during these times, Qw was 10 to 80% higher than today. The results are in line with the few existing quantitative estimates of past precipitation changes in the Central Andes, but have the advantage of extending further back in time. Moreover, the widespread occurrence of fluvial-fill terraces throughout the Central Andes offers the opportunity to reconstruct past Qw with high spatial resolution, offering a new perspective regarding the impact of past climate changes on the sediment-routing system through space and time.

How to cite: Tofelde, S., Schildgen, T., Wickert, A., Strecker, M., and Alonso, R.: Reconstructions of past sediment and water discharges from fluvial-fill terraces in the southern Central Andes of NW Argentina, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4887, https://doi.org/10.5194/egusphere-egu2020-4887, 2020.

CL1.24 – Interdisciplinary Tree-ring research

As a consequence of recent climatic changes, many studies have reported an increase in tree growth, forest ecosystem net primary productivity, and terrestrial biosphere carbon up-take, making forests one of the largest carbon sink on Earth. Direct and remote observations, as well as eco-physiological models, have suggested that it is mainly the rise in temperature and the resulting extended period of growth that is responsible for forest enhanced productivity. However, up to now, there is no comprehensive observation-based study deciphering the respective roles of the length of the growing season versus its intensity, to confirm this interpretation. Based on a large wood-formation-monitoring dataset, encompassing numerous sites from Mediterranean to Boreal conifer forests, we tested the hypothesis that the length of the growing period is more important than the rate of growth to explain tree-ring width. Moreover, we explored the influence of the environmental conditions on the variation in both timings and rates of xylem cell production.

We collected data from more than 50 sites spread at various altitudes and latitudes, on three continents (America, Europe, Asia), in the extra tropical parts of the Northern Hemisphere (Boreal, Temperate and Mediterranean bioclimatic zones). Wood formation was monitored at a weekly time-step using histological sections of forming xylem collected from the stems of more than 15 conifer species. The critical dates of xylem phenology were assessed at tree level using logistic regressions, while the rates of cell production were computed using Gompertz models. A basic physical model was developed relating the total number of xylem cells with the rate and duration of its production. A sensitivity analyses was performed to reveal the global ecological patterns of tree-ring formation, while mixed effect models were used to quantify the influences of the environmental factors.

The basic physical model of xylem cell production was applied successfully to the whole dataset (including Mediterranean sites) explaining more than 80 % of the observed variability. The sensitivity analysis showed that the rate of xylem cell production contributed a bit more than the duration to the variation in the final number of cells. Trees presented contrasted strategies according to the bioclimatic zone they belong to: while Boreal trees grew at a high speed during a short time; Mediterranean trees proceeded slowly, but for an extended period of time. Nevertheless, even for Mediterranean trees, the rate of growth remained the first driver of the final number of cells. Moreover, we showed that xylem phenology was consistently explained by the change in thermal conditions occurring with altitude or latitude, while growth rate was more related to species effect and site conditions.

Our results confirm that recent global warming may have resulted in extended period of growth explaining the recent increase in forest productivity. However, we also showed that the rate of xylem cell production is indeed the first driver of tree radial growth, therefore species behavior and site conditions should be considered in vegetation models to assess the impact of climate changes on forest productivity.

How to cite: Rathgeber, C.: Global ecological trends in wood cell production of coniferous trees, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22283, https://doi.org/10.5194/egusphere-egu2020-22283, 2020.

EGU2020-5572 | Displays | CL1.24

Multi-Century Spring Flood Reconstruction in Eastern Boreal Canada from Novel Application of Wood-Cell Anatomy

Alexandre Florent Nolin, Jacques C. Tardif, France Conciatori, David M. Meko, and Yves Bergeron

The streamflow regimes of eastern boreal Canada are snow-melt and ice-melt driven with the highest flows occurring in spring. Over the last few decades, a positive streamflow trend has been observed, with increasing severity and frequency of spring flooding. Further changes in flood dynamics are projected as a consequence of global climate change. The validity of projections is restricted by the lack of long and spatially well-replicated observations. High-resolution proxy records are needed to better understand the natural range of variability in spring runoff and associated atmospheric controls.

Recent research has shown that riparian black ash trees (Fraxinus nigra Marsh.) exposed to periodic submersion produce “flood rings” whose earlywood cross-sectional vessel area is linearly associated with the severity of flooding. Twelve continuous chronologies of ring width and earlywood vessel anatomy were developed for Lake Duparquet to extend the record of Harricana River mean spring flow. A visually determined index of flood rings was also developed to determine i) the spatial coherency of the spring flood signal and ii) the coherency of the flood signal among natural, regulated and unflooded rivers.

The reconstruction spans the period 1770-2016 and captures more than 65% of the variance of Harricana river spring flow. Trend analysis indicates an increase in both magnitude and frequency of the major floods starting at the end of the Little Ice Age (LIA, 1850-1890), with highest peaks after 1950. Time-frequency analysis shows non-stationarity: a stable 30-year periodicity during the LIA is replaced by a decadal pattern starting around 1850, and evolves into a more high-frequency pattern after 1930. The signal is strongly coherent between watersheds for natural rivers and weaker for regulated basins. Field correlations with gridded climate data indicate the broad spatially coherent pattern of spring high flows across much of central/eastern north Canada is positively associated with April-May precipitation and snow cover, and negatively associated with March-April maximum temperature.

These large-scale associations support atmospheric forcing of inter-annual hydroclimatic variability. While the Artic and North Atlantic Oscillations have previously been found to influence winter and spring climate conditions in eastern Quebec, our results contrast with a significant negative association with El-Niño Southern Oscillation from January to May, and the Pacific Decadal Oscillation from December to February. In Lake Duparquet, warm and wet air from Pacific-South Ocean (El-Niño) are associated with early spring and small floods, while cold and dry air masses (La-Niña) correlate to late thaw and high floods in spring. The association with sea surface temperature and 200mb geopotential field heights reveal a clear atmospheric connection between eastern north boreal Canada and the tropical Pacific Ocean.

The novel application of wood-cell anatomy to hydroclimatology underscores an increase in flood frequency and severity since the end of the 18th century in northeastern Canada. More broadly, the application highlights how analysis of tree rings from riparian trees can be used to extend the flood history of boreal rivers.

How to cite: Nolin, A. F., Tardif, J. C., Conciatori, F., Meko, D. M., and Bergeron, Y.: Multi-Century Spring Flood Reconstruction in Eastern Boreal Canada from Novel Application of Wood-Cell Anatomy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5572, https://doi.org/10.5194/egusphere-egu2020-5572, 2020.

EGU2020-21137 | Displays | CL1.24

Comparison between Blue Intensity (BI) and Maximum Latewood Density (MXD) tree-ring chronologies from the North American Boreal forests

Laia Andreu-Hayles, Rosanne D'Arrigo, Rose Oelkers, Kevin Anchukaitis, Greg Wiles, Rob Wilson, David Frank, and Nicole Davi

Tree ring-width (TRW) and Maximum Latewood Density (MXD) series have been largely used to develop high-resolution temperature reconstructions for the Northern Hemisphere. The divergence phenomenon, a weakening of the positive relationship between TRW and summer temperatures, has been observed particularly in northwestern North America chronologies. In contrast, MXD datasets have shown a more stable relationship with summer temperatures, but it is costly and labor-intensive to produce. Recently, methodological advances in image analyses have led to development of a less expensive and labor-intensive MXD proxy known as Blue Intensity (BI). Here, we compare 6 newly developed BI tree-ring chronologies of white spruce (Picea glauca [Moench] Voss) from high-latitude boreal forests in North America (Alaska in USA; Yukon and the Northwestern Territory in Canada), with MXD chronologies developed at the same sites. We assessed the quality of BI in relation to MXD based on mean correlation between trees, chronology reliability based on the Expressed Population Signal (EPS), spectral properties, and the strength and spatial extent of the temperature signal. Individual BI chronologies established significant correlations with summer temperatures showing a similar strength and spatial cover than MXD chronologies. Overall, the BI tree-ring data is emerging as a valuable proxy for generating high-resolution temperature spatial reconstructions over northwestern America.

How to cite: Andreu-Hayles, L., D'Arrigo, R., Oelkers, R., Anchukaitis, K., Wiles, G., Wilson, R., Frank, D., and Davi, N.: Comparison between Blue Intensity (BI) and Maximum Latewood Density (MXD) tree-ring chronologies from the North American Boreal forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21137, https://doi.org/10.5194/egusphere-egu2020-21137, 2020.

EGU2020-21434 | Displays | CL1.24

Does permafrost matter? Permafrost related studies of conifer tree-ring growth in northern Siberia

Alexander Kirdyanov, Anatoly Prokushkin, Anastasia Knorre, Olga Churakova (Sidorova), Marina Fonti, Matthias Saurer, Rolf Siegwolf, Frederick Reinig, Anatoly Nikolaev, Alexey Kolmogorov, Vladimir Shishov, Alma Piermattei, Paul Krusic, and Ulf Büntgen

The world’s largest terrestrial biome, Boreal forest, is prone to the greatest rates of recent and predicted warming. Much of this circumpolar vegetation belt is underlain by permafrost, which further challenges our understanding of the direct and indirect consequences of increasing temperature on the functioning and productivity of these northern latitudinal forests.

Here, we present the results of an on-going study of tree-ring growth of conifers in Russia’s continuous permafrost zone in northern Siberia, from 61-72°N and 90-148°E. Tree-ring data from a variety of habitats between 20 and 600 m asl with different climate and thermo-hydrological regimes of soils are analyzed. While in some cases up to 60-70% of the year-to-year tree-ring width and maximum latewood density variability can be explained by summer temperature variations alone, we find that the seasonal dynamics of permafrost also plays an important role in defining the overall rate of radial tree growth. Wider rings are generally formed on sites with a deeper active soil layer, which itself depends on the geographical location of a site, as well as its ground vegetation, stand parameters and fire history. Waterlogged permafrost may further act as a source of water for trees under exceptionally dry summer seasons.

Our study indicates that the growth response of conifers to temperature and precipitation across the continuous permafrost zone of Siberia is both, site- and species-specific. This implies a range of possible scenarios of further development of northern forests under projected climate change. Seasonal dynamics of the active soil layer and possible permafrost degradation must be taken into account when modelling tree growth variability and forest productivity.

How to cite: Kirdyanov, A., Prokushkin, A., Knorre, A., Churakova (Sidorova), O., Fonti, M., Saurer, M., Siegwolf, R., Reinig, F., Nikolaev, A., Kolmogorov, A., Shishov, V., Piermattei, A., Krusic, P., and Büntgen, U.: Does permafrost matter? Permafrost related studies of conifer tree-ring growth in northern Siberia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21434, https://doi.org/10.5194/egusphere-egu2020-21434, 2020.

EGU2020-8783 | Displays | CL1.24

Disentangling the effects of micro-site ecology on Fennoscandian tree growth

Claudia Hartl, Elisabeth Düthorn, Ernesto Tejedor Vargas, Andreas Kirchhefer, Mauri Timonen, Steffen Holzkämper, Ulf Büntgen, and Jan Esper

The long tradition in dendroclimatological studies across Fennoscandia is mainly due to the exceptional strong temperature sensitivity of tree growth, as well as the existence of well-preserved subfossil wood in shallow lakes and extent peat bogs. Although some of the world’s advanced multi-millennial-long ring width and density based climate reconstructions have been developed in northern Fennoscandia, it is still unclear if differences in micro-site ecology have been considered sufficiently in previous studies. In order to assess the effects of moist lakeshores versus drier inlands on forest productivity, we present a Fennoscandia-wide network of 44 Scots pine ring width chronologies from 22 locations between 59°-70°N and 16°-31°E. Clustering into coastal settings in northern Norway, continental sites in the lee of the Scands north of the polar circle, and locations south of the polar circle, our network reveals a general dependency of pine growth rates on latitude and July temperature. Differences between moist and dry sites are likely caused by associated effects on soil temperature. While trees at moist micro-sites at western locations exhibit higher growth rates, this pattern inverses under the more continental conditions of the east, where increased ring widths are found at drier sites. In addition to the latitudinal increase in growth sensitivity to July temperature, pines at moist sites tend to show a higher dependency to summer warmth. The highest temperature sensitivity and growth coherency is found in those regions where July temperatures range between 11.5 and 13.5°C and May precipitation totals fall below 100mm. This study not only emphasizes the effects of micro-site ecology on Fennoscandian tree growth, but also provides guidance for the selection of sampling sites for climate reconstructions.

How to cite: Hartl, C., Düthorn, E., Tejedor Vargas, E., Kirchhefer, A., Timonen, M., Holzkämper, S., Büntgen, U., and Esper, J.: Disentangling the effects of micro-site ecology on Fennoscandian tree growth, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8783, https://doi.org/10.5194/egusphere-egu2020-8783, 2020.

EGU2020-7641 | Displays | CL1.24

Parameterization of multidimensional process-based tree-ring models: Why it is important?

Vladimir Shishov, Victor Il'in, Ivan Tychkov, Margarita Popkova, and Daria Belousova

Improvement of our understanding of tree-growth processes and accurate interpretations of climatic signals in tree rings have recently become possible through the application of process-based models, e.g., Biome3, MAIDEN,  ASTANEA, CAMBIUM, PRYSM, VS-lite and others, which simulate tree growth based on non-linear effects of environmental conditions. The process-based Vaganov–Shashkin model (VS-model) is one such model which describes tree-ring formation as a result of multivariate affects of local climate (temperature, soil moisture and solar irradiance). As with most of the process-based models, the VS-model is a complex tool that requires a considerable number of model parameters that should be reasonably estimated for each forest stand. This leads to problem of accurate model parameterization, namely estimations of optimal values of the model parameters necessary to guarantee: (1) the best fit to the observed tree-ring measurements; (2) identification of the specific seasonal cell production and enlargement; (3) reasonable ecological interpretation in terms of processes involved in the model.

Based on differential evolution (DE) approach adopted to the model parameterization using the supercomputer facilities it was shown:

(1) a significant spatial variability of adjusted VS-parameter values (with corresponded ecological interpretation) that provide the best fit to the actual tree-ring chronologies from climatically contrasted sites distributed in the vast territories of Eurasia and as a result, the models ability to capture a significant diversity in non-linear tree-ring growth responses that are climatically induced,

(2) the high sensitivity of the models even for forest stands where mixed climatic signal affects on tree-ring growth during growing season,

(3) the high probability to obtain a "correct" model parameterization which explains up to 60% tree-ring variance by the climate forcing even for randomly generated "chronologies"  in case of incorrect usage of the calibration-verification strategy for multidimensional models.

How to cite: Shishov, V., Il'in, V., Tychkov, I., Popkova, M., and Belousova, D.: Parameterization of multidimensional process-based tree-ring models: Why it is important?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7641, https://doi.org/10.5194/egusphere-egu2020-7641, 2020.

Trees are one of the main archives to reconstruct the climate of the last millennium at high resolution. The links between tree-ring proxies and climate have usually been estimated on the basis of statistical approaches, assuming linear and stationary relationships. Both assumptions can be inadequate and this issue can be overcome by ecophysiological models such as MAIDEN (Modeling and Analysis In DENdroecology), which simulates tree-ring growth starting from temperature and precipitation daily inputs. A protocol for the application of MAIDEN to potentially any site with tree-ring width data in the extratropical region has been developed in Rezsöhazy et al. (2019) (in review). In this study, the applicability of the model has been tested over the twentieth century using as a test case tree-ring observations from twenty-one Eastern Canadian taiga sites and three European sites. The paper highlights the potential of MAIDEN as a complex mechanistic proxy system model to analyse the links between tree growth and climatic conditions in paleoclimatic applications. Following on from this recent work, MAIDEN is here applied to the PAGES2k tree-ring width database over the last century using the protocol developed in Rezsöhazy et al. (2019) (in review). We show how this larger network allows refining our protocol. We identify the regions and sites where MAIDEN can be successfully applied, as well as estimate the uncertainty associated with the use of MAIDEN for a wide range of sites.

 

Rezsöhazy, J., Goosse, H., Guiot, J., Gennaretti, F., Boucher, E., André, F., and Jonard, M.: Application and evaluation of the dendroclimatic process-based model MAIDEN during the last century in Canada and Europe, Clim. Past Discuss., https://doi.org/10.5194/cp-2019-140, in review, 2019.

How to cite: Rezsöhazy, J., Goosse, H., and Guiot, J.: Evaluation of a dendroclimatic process-based model (MAIDEN) over the last century using the PAGES2k tree-ring width database, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8247, https://doi.org/10.5194/egusphere-egu2020-8247, 2020.

EGU2020-12400 | Displays | CL1.24 | Highlight

Eight Hundred Years of North Atlantic Jet Stream Variability and its Influence on European Climate Extremes

Valerie Trouet, Matthew Meko, Lara Klippel, Flurin Babst, Jan Esper, Paul Krusic, Momchil Panayotov, and Rob Wilson

A recent increase in mid-latitude extreme weather events has been linked to anomalies in the position, strength, and waviness of the Northern Hemisphere polar jet stream. The latitudinal position of the North Atlantic Jet (NAJ) in particular drives climatic extremes over Europe, by controlling the location of the Atlantic storm track and by influencing the occurrence and duration of atmospheric blocking. To put recent NAJ trends in a historical perspective and to investigate non-linear relationships between jet stream position, mid-latitude extreme weather events, and anthropogenic climate change, long-term records of NAJ variability are needed. Here, we combine two tree-ring based summer temperature reconstructions from Scotland and from the Balkan Peninsula to reconstruct inter-annual variability in the latitudinal position of the summer NAJ back to 1200 CE. We find that over the past centuries, a northward summer NAJ position has resulted in heatwaves in northwestern Europe, whereas a southward position has promoted wildfires in southeastern Europe and floods in northwestern Europe. The great famine of 1315-1317 in northwestern Europe, for instance, was associated with prolonged flooding and cold summers that resulted in failed grain harvest and were related to a southern NAJ position. We further find an unprecedented increase in NAJ anomalies since the 1960s, which supports more sinuous jet stream patterns and quasi-resonant amplification as potential dynamic pathways for Arctic warming to influence midlatitude weather.

How to cite: Trouet, V., Meko, M., Klippel, L., Babst, F., Esper, J., Krusic, P., Panayotov, M., and Wilson, R.: Eight Hundred Years of North Atlantic Jet Stream Variability and its Influence on European Climate Extremes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12400, https://doi.org/10.5194/egusphere-egu2020-12400, 2020.

EGU2020-19951 | Displays | CL1.24

North Atlantic Jet position induces latitudinal decouplings in forest productivity in Europe

Isabel Dorado-Liñán and Valerie Trouet and the European Beech Tree-ring Network

Dynamically-driven extreme weather events have large ecological, social and economic consequences including large tree-growth reductions and forest mortality. These events are likely to become globally more frequent and intense in the near future with increased anthropogenic forcing and associated changes in couple atmosphere-ocean circulation. The European continent is under the control of different atmospheric circulation patterns leading to geographical climatic gradients caused by their eventual position and strength, being the North Atlantic Oscillation (NAO) and the East Atlantic Pattern (EA) the main modes of North Atlantic climate variability (Barnston and Levezey 1987; Folland et al. 2009). Both, NAO and EA reflect jet stream changes as a consequence of variations in the eddy forcing, being the North Atlantic Jet (NAJ) the pattern connecting the large-scale atmospheric variability over the North Atlantic basin (Woollings, Hannachi, and Hoskins 2010). Thus, the identification and characterization of the links between forest productivity and the precursors of large-scale dynamics inducing extreme events may boost our capacity of assessing their predictability and enhancing forecasting skills.
Here, we scale forest response to climate to higher atmospheric levels by establishing the connection between extreme positive and negative anomalies in productivity of European forests to the latitudinal position of the NAJ. For that, we use a network of 344 European beech tree-ring chronologies extending from the Iberian Peninsula to the Carpathians and from Greece to northern UK.
Our results show a geographical gradient on tree growth across Europe explained either by the asymmetric forest response to homogeneous summer climate over Europe or to a distinct summer climate dipole leading to diverging climatic conditions in northeaster and southwestern Europe. In both cases, the continental-scale European-beech growth patterns are linked to the NAJ latitudinal position and its determinant influence on summer climate over Europe. The projected increase in the frequency of northward migrations of the NAJ for the next century may enhance the differences in forest productivity across Europe by inducing subcontinental-wide beech forest growth reduction.


Barnston, Anthony Gaston, and Robert E. Levezey. 1987. "Classification, seasonality and persistence of low-frequency atmospheric circulation patterns" Mon. Weather Rev. 115: 1083-1126.
Folland, Chris K, Jeff Knight, Hans W Linderholm, David Fereday, Sarah Ineson, and James W Hurrell. 2009. “The Summer North Atlantic Oscillation: Past, Present, and Future.” Journal of Climate 22 (5): 1082–1103. https://doi.org/10.1175/2008JCLI2459.1.
Woollings, Tim, Abdel Hannachi, and Brian Hoskins. 2010. “Variability of the North Atlantic Eddy-Driven Jet Stream.” Quarterly Journal of the Royal Meteorological Society 136 (649): 856–68. https://doi.org/10.1002/qj.625.

 

How to cite: Dorado-Liñán, I. and Trouet, V. and the European Beech Tree-ring Network: North Atlantic Jet position induces latitudinal decouplings in forest productivity in Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19951, https://doi.org/10.5194/egusphere-egu2020-19951, 2020.

Affecting a multitude of ecological and agricultural systems, the Asia summer monsoon (ASM) is essential for biodiversity and the food security of billions of people. Understanding past changes of the ASM is important for the detection and attribution of its recent evolution and future projection in the context of global warming. However, proxy-based, high-resolution reconstructions of the ASM prior to the period of instrumental measurements that started in the 1950s in China are still missing. Here, we use an ensemble of ten tree-ring width chronologies from the northern margin of the ASM to estimate ASM strength back to 1566 AD. The reconstruction not only reveals severe large-scale droughts in 1586/87 and 1759, but also negative anomalies during persistent locus plagues in the 1860s. The record also shows an unprecedented decrease in ASM since the mid-20th century. Simulations from a coupled climate model suggest that the recent ASM decline could have been induced by increased anthropogenic aerosol emissions over the Northern Hemisphere.

How to cite: Liu, Y. and Cai, W.: Recent pronounced weakening of Asia summer monsoon over the past 450 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6332, https://doi.org/10.5194/egusphere-egu2020-6332, 2020.

EGU2020-11768 | Displays | CL1.24

The use of multiple dendrochronological techniques to develop a 200-year drought record for subtropical Southeast Queensland, Australia

Heather A Haines, Jonathan G Palmer, Nathan B English, Quan Hua, Patricia S Gadd, Justine Kemp, and Jon M Olley

In Australia the majority of tropical and subtropical regions lack any long-term (multi-decadal to centennial scale) instrumental climate records highlighting a need for alternatives such as proxy climate reconstructions. Despite this need, only a limited number of terrestrial proxy sources are available. Tree-rings provide one of the few options for climate reconstructions yet very little dendrochronological investigation has been undertaken as early assessments of tropical Australian species in the 1970s and 1980s indicated most species had short life-spans, poorly preserved timbers, or were compromised by having many ring anomalies. There has also been limited effort into understanding the growth-climate relationships of these trees with only a few studies undertaken targeting specific species that have unfortunately been heavily cleared from the region (eg. Toona ciliata). One exception noted in the early species assessment suggested that trees in the Araucariaceae family, a common tree family along the tropical Australian east coast, is longer lived than many other species in the region, contains growth rings which are annual in nature, and grows in response to climatic conditions.

Here we describe the results from a stand of Araucaria cunninghamii trees located in Lamington National Park, a World Heritage listed rainforest in subtropical Southeast Queensland, Australia (a region known for experiencing extreme hydroclimatic events). Our assessment discovered the presence of false, faint, locally absent, and pinching rings. By combining traditional dendrochronological analysis (eg. crossdating) with more recent techniques such as age validation by bomb-pulse radiocarbon dating and tree-ring density analysis, a robust ring-width chronology from 1805-2014 was developed. Dendrometers installed on four trees at the Lamington site confirmed that tree growth was annual and that moisture sensitivity was driving growth. Further growth-climate analysis indicated that the strongest correlation to the tree-ring chronology was specifically related to drought conditions in the region. The strength of this response was compared to both local and regional spatial areas and to drought indices such as the self-calibrating Palmer Drought Severity Index (scPDSI), the Standardized Precipitation Evaporation Index (SPEI), and the long-term drought conditions shown by the Australian and New Zealand Drought Atlas (ANZDA). The combined analysis led to the development of a 200-year drought reconstruction for the region and demonstrates influences from both the El Niño Southern Oscillation (ENSO) and the Interdecadal Pacific Oscillation (IPO).

How to cite: Haines, H. A., Palmer, J. G., English, N. B., Hua, Q., Gadd, P. S., Kemp, J., and Olley, J. M.: The use of multiple dendrochronological techniques to develop a 200-year drought record for subtropical Southeast Queensland, Australia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11768, https://doi.org/10.5194/egusphere-egu2020-11768, 2020.

EGU2020-12240 | Displays | CL1.24

Global trends of tree-ring carbon isotope discrimination under rising atmospheric CO2 and changing climate

Soumaya Belmecheri, Paul szejner, David Frank, Steve Voelker, and Alienor Lavergne

Rising atmospheric CO2 concentrations are expected to stimulate plant carbon uptake (A) while also reducing transpiration via a decrease in stomatal conductance (gs), resulting in an increase in the intrinsic water use efficiency (iWUE, i.e. the ratio of A to gs). While there is overwhelming evidence of a secular iWUE increase in response to rising CO2 over the 20th-21st century, the magnitude of changes in iWUE reported so far in the literature strongly varies across climatic regions and biomes. Moreover, increasing iWUE has not systematically been translated into tree growth increment at many forested ecosystems, challenging the CO2 fertilization theory. There is thus a need to track down the key physiological and environmental mechanisms driving changes in iWUE.

Here we estimate the carbon isotopic discrimination (Δ13C) - defined as the difference between the stable carbon isotopic compositions (δ13C) measured in atmospheric CO2 and in tree rings – from 147 tree-ring δ13C chronologies to: 1) investigate the physiological responses of woody C3 plants to increasing atmospheric CO2 and, 2) disentangle climate vs CO2 effects on A and gs. We specifically study deviations of tree-ring Δ13C from the predicted Δ13C response to CO2 as reconstructed from a recent meta-analysis of paleo and elevated CO2 data. We identify the following: 1) negative deviations from the expected Δ13C for most records; 2) no apparent deviation from expected Δ13C or; 3) positive deviations, both in a small minority of records ; and 4) an apparent non-linear response with a switch from a more negative Δ13C deviations to a Δ13C-response consistent with predicted CO2-effects. The widespread negative Δ13C  deviations are consistent with gs having been reduced or A having not increased as much as expected for a given CO2-driven stimulation of A. The presented global tree-ring data analyses suggest that a warmer and often drier climate have had a stronger effect on Δ13C compared to that of rising CO2, and a substantial modulation of recent rises in iWUE by climate effects across the globe.

How to cite: Belmecheri, S., szejner, P., Frank, D., Voelker, S., and Lavergne, A.: Global trends of tree-ring carbon isotope discrimination under rising atmospheric CO2 and changing climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12240, https://doi.org/10.5194/egusphere-egu2020-12240, 2020.

EGU2020-8104 | Displays | CL1.24

High frequency stable isotope signals as proxy for physiological responses to climate - Dual isotope approach at a European scale

Valentina Vitali, Rosemarie Weigt, Stefan Klesse, Kerstin Treydte, Rolf Siegwolf, and Matthias Saurer

Picea abies and Fagus sylvatica, are two of the most important tree species in Europe, and their responses to climate are being extensively investigated, especially at the limits of their distribution. However, their physiology at temperate sites is not yet fully understood. In a European tree-ring network, 10 sites along a climate gradient were sampled throughout Central Europe, and tree-ring width and stable isotope chronologies (C and O) were measured. The year-to-year variability of the isotopes time series for the last 100 years was analyzed in relation to tree-ring growth, spatial distribution, and seasonal climate.

Climate sensitivity of radial growth of both species was rather variable and site-dependent, and was strongest at the driest sites. On the contrary, variability in the isotopic ratios consistently responded to summer climate, particularly to vapor pressure deficit. The high δ18O coherence of the short-term variability between sites and species highlights the strength of the environmental signal in the O chronology also across long distances. On the contrary, δ13C shows lower correlations between sites and species, showing a stronger site-dependency, and a lower intra-annual variability. The generally positive correlation between the year-to-year differences in δ13C and δ18O across most sites demonstrates the strong role of stomatal conductance in controlling leaf gas exchange for these species. However, in the last decades, sites showed a dissimilar shift in the isotopes relationships, with the warmer sites showing an increase of either or both δ13C and δ18O and consequent decrease of photosynthetic rates and stomatal conductance, highlighting their dependency to atmospheric moisture demand and soil water availability.

Understanding the underlying physiological mechanisms controlling the short-term variation in tree-ring records will help with defining the performance of these ecologically and economically important tree species under future climate conditions.

How to cite: Vitali, V., Weigt, R., Klesse, S., Treydte, K., Siegwolf, R., and Saurer, M.: High frequency stable isotope signals as proxy for physiological responses to climate - Dual isotope approach at a European scale, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8104, https://doi.org/10.5194/egusphere-egu2020-8104, 2020.

EGU2020-16223 | Displays | CL1.24

A new conceptual framework for the use of hydrogen isotopes in tree rings

Marco M. Lehmann, Velentina Vitali, Philipp Schuler, and Matthias Saurer

Carbon and oxygen stable isotopes in tree-rings are successfully used in climate and environmental research, for instance for the reconstruction of past climatic conditions and corresponding physiological responses of trees to local climate. In contrast, hydrogen isotope ratios (δ2H), available also in the cellulose molecule of tree-rings, have been largely neglected. Mostly due to methodological reasons, but also because various studies found a rather poor climate information in the δ2H of tree rings. Recent studies show that the latter might be caused by isotope fractionation mechanisms that are related to plant physiological and biochemical processes rather than to climate or hydrological changes. These results also suggest that a relative use of carbon reserves and photosynthetic assimilates may explain δ2H variations in tree-rings. We therefore investigated the literature and observed strong relationships between δ2H and tree growth chronologies across various species in Switzerland, Germany, Norway, China, and India. The relationships between tree-ring growth and δ2H show a dependence to site-specific factors, climatic conditions (e.g. temperature, precipitation), and competition/light effects. Based on our findings we set up a novel conceptual framework that may allow the reconstruction of physiological responses such as carbon use strategies under varying environmental conditions. This new tool may find widespread application to identify and date, with high resolution, stressful conditions or stress-release phases that a tree or a forest ecosystem has experienced in the past.

How to cite: Lehmann, M. M., Vitali, V., Schuler, P., and Saurer, M.: A new conceptual framework for the use of hydrogen isotopes in tree rings, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16223, https://doi.org/10.5194/egusphere-egu2020-16223, 2020.

EGU2020-22325 | Displays | CL1.24

Hotspots of change in major tree species under climate warming

Flurin Babst, Richard L. Peters, Rafel O. Wüest, Margaret E.K. Evans, Ulf Büntgen, Andrew J. Hacket-Pain, Christoforos Pappas, Alexander V. Kirdyanov, Stefan Klesse, Volodymyr Trotsiuk, Jesper Björklund, Jodi Axelson, Jill Harvey, Dan Smith, Christian Zang, Dirk N. Karger, and Niklaus E. Zimmermann

Warming alters the variability and trajectories of tree growth around the world by intensifying or alleviating energy and water limitation. This insight from regional to global-scale research emphasizes the susceptibility of forest ecosystems and resources to climate change. However, globally-derived trends are not necessarily meaningful for local nature conservation or management considerations, if they lack specific information on present or prospective tree species. This is particularly the case towards the edge of their distribution, where shifts in growth trajectories may be imminent or already occurring.

Importantly, the geographic and bioclimatic space (or “niche”) occupied by a tree species is not only constrained by climate, but often reflects biotic pressure such as competition for resources with other species. This aspect is underrepresented in many species distribution models that define the niche as a climatic envelope, which is then allowed to shift in response to changes in ambient conditions. Hence, distinguishing climatic from competitive niche boundaries becomes a central challenge to identifying areas where tree species are most susceptible to climate change.

Here we employ a novel concept to characterize each position within a species’ bioclimatic niche based on two criteria: a climate sensitivity index (CSI) and a habitat suitability index (HSI). The CSI is derived from step-wise multiple linear regression models that explain variability in annual radial tree growth as a function of monthly climate anomalies. The HSI is based on an ensemble of five species distribution models calculated from a combination of observed species occurrences and twenty-five bioclimatic variables. We calculated these two indices for 11 major tree species across the Northern Hemisphere.

The combination of climate sensitivity and habitat suitability indicated hotspots of change, where tree growth is mainly limited by competition (low HSI and low CSI), as well as areas that are particularly sensitive to climate variability (low HSI and high CSI). In the former, we expect that forest management geared towards adjusting the competitive balance between several candidate species will be most effective under changing environmental conditions. In the latter areas, selecting particularly drought-tolerant accessions of a given species may reduce forest susceptibility to the predicted warming and drying.

How to cite: Babst, F., Peters, R. L., Wüest, R. O., Evans, M. E. K., Büntgen, U., Hacket-Pain, A. J., Pappas, C., Kirdyanov, A. V., Klesse, S., Trotsiuk, V., Björklund, J., Axelson, J., Harvey, J., Smith, D., Zang, C., Karger, D. N., and Zimmermann, N. E.: Hotspots of change in major tree species under climate warming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22325, https://doi.org/10.5194/egusphere-egu2020-22325, 2020.

Anthropogenic land use and landscape change has dramatically decreased the presence of hardwood floodplain forests (HFF) globally. In Germany, it is estimated that only 1% of the former HFFs still exist today. Natural HFFs provide an abundance of ecosystem services such as the mitigation of climate change through the sequestration of atmospheric carbon. In order to confidently quantify global carbon fluxes, local in-situ investigations are required. This research aims to quantify and compare carbon sequestration rates (CSRs) of temperate HFFs at a local scale. Traditional dendrochronological methods are applied to tree cores collected from oak (Quercus robur) and elm (Ulmus laevis) trees located within 35 HFF plots differing in age classes and hydrological situations along 100 km of the Middle Elbe river. Tree ring widths (TRW) from both tree species are measured and used to estimate basal area increments (BAI) and CSRs. Preliminary results show that CSRs are higher in oaks than in elms. While CSRs seem not to differ between hydrological situations in trees with ages between 60 and 150 years, we found pronounced effects of hydrological conditions on CSRs in the oldest trees (> 180 years). Interestingly, highest mean CSRs were found for old trees in regularly flooded HFF with a dense canopy cover. These results are in agreement with recent research that have overturned the old paradigm that old forests are less productive than young forests. We conclude that HFFs remain active carbon sinks as they age and that the preservation or even expansion of HFFs can contribute to other global strategies for climate change mitigation.

How to cite: Shupe, H., Jensen, K., and Ludewig, K.: Using tree rings to estimate the annual carbon sequestration of hardwood floodplain forests along the Middle Elbe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10554, https://doi.org/10.5194/egusphere-egu2020-10554, 2020.

EGU2020-20535 | Displays | CL1.24

MAIDENiso: a mechanistic approach to the reconstruction of past climate from tree chronologies

Etienne Boucher, Ignacio Hermoso de Mendoza, and Fabio Gennaretti

The ecophysiological forest model MAIDENiso (Modeling and Analysis In + isotopes) uses a set of mechanistic rules to simulate the production, allocation and growth of virtual trees. MAIDENiso is adapted to the boreal tree species Picea mariana Mill. (Black spruce), but lacks a hydrological module adapted for boreal meteorological conditions. With the recent addition of a snow/ice module, MAIDENiso is now capable of realistically simulating snow cover and discharge in high latitude regions, while at the same time capturing climate-sensitive processes such as the enrichment of heavy water isotopes due to snow sublimation. The more realistic outputs of the model can be compared to tree ring records (ring widths and stable isotopes). This allows us to use an inversion algorithm (based on a Metropolis Hastings random walk) to estimate past hydroclimate conditions that are in line with physiological and hydrological processes of high boreal regions. We apply this methodology to a millennial chronology of tree ring width and cellulose isotopes from sub-fossil tree remains in North-Quebec, and produce an updated hydroclimate reconstruction of the last 1000 years in this region.

 

How to cite: Boucher, E., Hermoso de Mendoza, I., and Gennaretti, F.: MAIDENiso: a mechanistic approach to the reconstruction of past climate from tree chronologies, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20535, https://doi.org/10.5194/egusphere-egu2020-20535, 2020.

EGU2020-19868 | Displays | CL1.24

Maximum latewood density records of the oldest trees in the world: Great Basin Bristlecone pine (Pinus Longaeva)

Tom De Mil, Matthew Salzer, Charlotte Pearson, Valerie Trouet, and Jan Van den Bulcke

Great Basin Bristlecone pine (Pinus longaeva) is known for its trees that attain old age. The longest chronology is more than 9000 years long, and the temperature-sensitive upper treeline chronology extends back to 5000 years. The ring width pattern of upper treeline bristlecone pine trees are strongly influenced by temperature variability at decadal to centennial scales. To infer a climate signal on annual scales, MXD is shown to be a better temperature proxy. Here, we present a preliminary Maximum Latewood Density (MXD) chronology of bristlecone pine to investigate the temperature signal in upper treeline and below. Maximum latewood density (MXD) from 24 dated cores (from various sites ranging from the upper treeline and below, oldest sample dates back to 776 AD) was determined with an X-ray CT toolchain. Ring and fibre angles were corrected and a MXD chronology was constructed. The resulting MXD chronology will be correlated to summer temperature. Future scanning will allow constructing a + 5000 year MXD chronology and could reveal the cooling effect of volcanic eruptions through this period.

How to cite: De Mil, T., Salzer, M., Pearson, C., Trouet, V., and Van den Bulcke, J.: Maximum latewood density records of the oldest trees in the world: Great Basin Bristlecone pine (Pinus Longaeva), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19868, https://doi.org/10.5194/egusphere-egu2020-19868, 2020.

EGU2020-3927 | Displays | CL1.24

A millennium-length temperature reconstruction for the eastern Mediterranean

Jan Esper, Lara Klippel, Paul J. Krusic, Oliver Konter, Christoph Raible, Elena Xoplaki, Jürg Luterbacher, and Ulf Büntgen

The Mediterranean has been identified as particularly vulnerable to climate change, yet a high-resolution temperature reconstruction extending back into the Medieval Warm Period is still lacking. Here we present such a record from a high-elevation site on Mt. Smolikas in northern Greece, where some of Europe’s oldest trees provide evidence of warm season temperature variability back to 730 CE. The reconstruction is derived from 192 annually resolved, latewood density series from ancient living and relict Pinus heldreichii trees calibrating at r1911-2015 = 0.73 against regional July-September (JAS) temperatures. Although the recent 1985-2014 period was the warmest 30-year interval (JAS Twrt.1961-90 = +0.71°C) since the 11th century, temperatures during the 9-10th centuries were even warmer, including the warmest reconstructed 30-year period from 876-905 (+0.78°C). These differences between warm periods are statistically insignificant though. Several distinct cold episodes punctuate the Little Ice Age, albeit the coldest 30-year period is centered during high medieval times from 997-1026 (-1.63°C). Comparison with reconstructions from the Alps and Scandinavia shows that a similar cold episode occurred in central Europe but was absent at northern latitudes. The reconstructions also reveal different millennial-scale temperature trends (NEur = -0.73°C/1000 years, CEur = -0.13 °C, SEur = +0.23°C) potentially triggered by latitudinal changes in summer insolation due to orbital forcing. These features, the opposing millennial-scale temperature trends and the medieval multi-decadal cooling recorded in Central Europe and the Mediterranean, are not well captured in state-of-the-art climate model simulations.

How to cite: Esper, J., Klippel, L., Krusic, P. J., Konter, O., Raible, C., Xoplaki, E., Luterbacher, J., and Büntgen, U.: A millennium-length temperature reconstruction for the eastern Mediterranean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3927, https://doi.org/10.5194/egusphere-egu2020-3927, 2020.

EGU2020-20524 | Displays | CL1.24

Different climate response of three tree ring proxies of Pinus sylvestris from the Eastern Carpathians, Romania

Viorica Nagavciuc, Cătălin-Constantin Roibu, Monica Ionita, Andrei Mursa, Mihai-Gabriel Cotos, and Ionel Popa

The aim of this study was to compare the climatic responses of three tree rings proxies: tree ring width (TRW),
maximum latewood density (MXD), and blue intensity (BI). For this study, 20 cores of Pinus sylvestris covering
the period 1886–2015 were extracted from living non-damaged trees from the Eastern Carpathian Mountains
(Romania). Each chronology was compared to monthly and daily climate data. All tree ring proxies had a
stronger correlation with the daily climate data compared to monthly data. The highest correlation coefficient
was obtained between the MXD chronology and daily maximum temperature over the period beginning with the
end of July and ending in the middle of September (r=0.64). The optimal intervals for the temperature signature
were 01 Aug – 24 Sept for the MXD chronology, 05 Aug – 25 Aug for the BI chronology, and both 16 Nov
of the previous year – 16 March of the current year and 15 Apr – 05 May for the TRW chronology. The results
from our study indicate that MXD can be used as a proxy indicator for summer maximum temperature, while
TRW can be used as a proxy indicator for just March maximum temperature. The weak and unstable relationship
between BI and maximum temperature indicates that BI is not a good proxy indicator for climate reconstructions
over the analysed region.

How to cite: Nagavciuc, V., Roibu, C.-C., Ionita, M., Mursa, A., Cotos, M.-G., and Popa, I.: Different climate response of three tree ring proxies of Pinus sylvestris from the Eastern Carpathians, Romania, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20524, https://doi.org/10.5194/egusphere-egu2020-20524, 2020.

EGU2020-21983 | Displays | CL1.24 | Highlight

Integrating tree-ring and wine data from the Palatinate (Germany)

Oliver Konter and Jan Esper

Tree-ring growth of conifer trees originating from central European low mountain ranges often reveal indistinct growth-climate relationships. Temperature variations can play a crucial role, whereas water availability can also control the annual growth and become the main dominating factor. The low mountain range Pfälzerwald in the Palatinate region represents the largest contiguous forested area in Germany and features at its most eastern limitation a unique ecological setting due to its sandy soils and reduced water availability. In addition, its north-south orientation and associated lee-effects due to predominating westerlies together with altitudinal differences of more than 300 m lead to higher temperatures, lower precipitation amounts, and, as a forest management consequence, to a proportion of up to 80 % of pine trees. Despite these exceptional ecological and climatological prerequisites, calibrating tree-ring width data from 487 Pinus sylvestris core samples against regional meteorological stations (1950-2011) and gridded data (1901-2011) confirm alternating climate control mechanisms. Comparison with drought-related indices (scPDSI), combining precipitation and temperature, unfolds highest correlations with May-July conditions (r1901-2011=0.34, p<0.05), however, lacking temporal robustness in the early 20th century.

The vegetation outside the forested areas in the plain can be characterized as agricultural croplands with vineyards, representing one of the largest wine-growing regions in Germany. We collected and analyzed a 24 datasets of 57 consecutive years (1959-2015) of must sugar content, acidity, alcohol content, and sugar-free extracts in Riesling, Pinot Gris, Pinot Blanc, and Silvaner wines, originating from 15 wineries adjoining the forested area into the plain. Correlation of Riesling must sugar content against regional April-August temperature data reveals a highly significant signal (r1981-2015=0.73, p<0.01; high-pass filtered r=0.49, p<0.01). Sugar-free extract variations of Pinot Gris are significantly controlled by March-September precipitation (r2004-2014=0.76, p<0.01; high-pass filtered r=0.77, p<0.01).

In this low mountain range, tree-ring growth from conifers is not solely controlled by one climatic variable, though it is that combining tree-rings with must sugar content and sugar-free extract data from Riesling and Pinot Gris wine can further elucidate our understanding of longer-term climate variability in the Palatinate region.

How to cite: Konter, O. and Esper, J.: Integrating tree-ring and wine data from the Palatinate (Germany), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21983, https://doi.org/10.5194/egusphere-egu2020-21983, 2020.

EGU2020-11379 | Displays | CL1.24

First Amburana cearensis (Fabaceae) tree-ring chronology in Brazil in a dry forest shows great potential for climate reconstruction

Milena Godoy-Veiga, Giuliano Locosselli, Lior Regev, Elisabetta Boaretto, and Gregório Ceccantini

Tree-ring chronologies are an excellent climate archive for their spatial and temporal resolution. While networks of chronologies have been built outside the tropics helping to understand past regional climate trends, tropical regions still lag behind in terms of spatial coverage. Dendrochronological studies, however, may succeed in seasonally dry tropical forests where the growing season is well defined. Amburana cearensis, found in both dry and wet forests in South America, is poorly explored for dendrochronological purposes, with no previous study in Brazil. Therefore, we sampled trees growing in a seasonally dry forest in a karstic area in Central-Eastern Brazil, under the South American Monsoon domain, in order to explore this species potential for dendroclimatological studies in the region. We build a tree-ring width chronology using 26 trees. We found a strong common growth signal among trees, with an r-bar of 0.51 and an average mean sensitivity of 0.50. The standard tree-ring width chronology showed a significant negative correlation with Vapor-Pressure Deficit during the entire wet season (0.54), negative correlation with temperature at the end of the wet season (0.45), and a positive correlation with the sum of precipitation during the wet season (0.46). Further stable isotopic analysis will provide additional records of climate variability in the region. Since Amburana cearensis occurs across most of the seasonally dry forests and savannas from South America, it has a great potential to be used to develop climate reconstructions and verify the effects of climate change currently affecting the region.

How to cite: Godoy-Veiga, M., Locosselli, G., Regev, L., Boaretto, E., and Ceccantini, G.: First Amburana cearensis (Fabaceae) tree-ring chronology in Brazil in a dry forest shows great potential for climate reconstruction, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11379, https://doi.org/10.5194/egusphere-egu2020-11379, 2020.

The tree-ring densitometric studies conducted in the semiarid regions are rare, among them, minimum earlywood density (MND) records the strongest climate signals than other density parameters. In contrast, maximum density of latewood (MXD) in cold and humid regions usually shows the most significant association with summer temperatures. Density parameters of Purplecone Spruce (Picea purpurea Mast.) in Mt. Shouyang, northwestern China, a typical semiarid region were obtained to test the density-climate relationships. It is showed that MXD has strong positive correlations with temperatures and a negative correlation with precipitation in the late growing season from July to September. MND is significantly positively correlated with temperature and positively correlated with precipitation during the early growing season. During early growing season, spring droughts always occur due to low precipitation. A narrow ring is built under moisture stress, since tree growth is inhibited by decreasing cell division and cell enlargement. With the intensification of monsoon, more precipitation is available, which can basically meet the needs of tree growth. During strong monsoon season with humid conditions, trees are less affected by moisture stress. In this case, high temperature could increase cell wall thickness in the latewood which strongly affects the tree-ring maximum density. It could explain why there is a significant positive correlation between MXD and summer-fall temperature.

How to cite: Song, H. and Liu, Y.: Climatic response of tree-ring densitometric records in a semiarid site of China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6384, https://doi.org/10.5194/egusphere-egu2020-6384, 2020.

Tree ring plays an important role in deciphering the paleoclimatic signals over the past 100-10000 years. However, tree-ring studies from tropical to subtropical regions are rarer than that from extratropical regions, which greatly limit our understanding of some critical climate change issues. Based on tree-ring-width chronologies in different area of Subtropical China (SC), seasonal temperature history of different seasons over the past 200 years were reconstructed. In addition to the warm and cold fluctuations in the reconstructed temperature series, main conclusions are drawn in the following two aspects: 1) Winter-half year temperature had good agreement with summer-time temperature variation in SC at decadal scale, while the winter-half year warming in recent decades was more evident than summer-time. 2) Comparison of the tree-ring based temperature series indicated that the start time of the recent warming in eastern China was regional different. It delayed gradually from north to south, starting at least around 1940 AD in the north part, around 1970 AD in the central part and around 1980s in the south part.

How to cite: Cai, Q. and Liu, Y.: Seasonal and regional temperature differences in subtropical China during the past 200 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12603, https://doi.org/10.5194/egusphere-egu2020-12603, 2020.

EGU2020-22409 | Displays | CL1.24

Growth, isotope records and quantitative wood anatomy reveal species-specific couplings in three Mexican conifers inhabiting drought-prone areas

Giovanna Battipaglia, Arturo Pacheco, Julio Camarero, Marin Pompa-Garcia, Jordi Voltas, and Marco Carrer

An improvement of our understanding of how tree species will respond to warmer conditions and longer droughts requires comparing their responses across different environmental settings and considering a multi-proxy approach. We used different xylem traits (tree-ring width, formation of intra-annual density fluctuations –IADFs, wood anatomy, D13C and d18O records) to retrospectively quantify these responses in three conifers inhabiting two different drought-prone areas in northwestern Mexico. A fir species (Abies durangensis) was studied in a higher altitude and more humid site and two pine species were sampled in a nearby, drier site (Pinus engelmannii, Pinus cembroides). Tree-ring-width indices (TRWi) of all the species showed very similar year-to-year variability, likely indicating a common climatic signal throughout the whole region. Wood anatomy analyses, covering over 3.5 million measured cells, showed that P. cembroides lumen area was much smaller than in the other two species and it remained constant along all the studied period (over 64 years). Alternately, cell wall was ticker in P. engelmannii which also presented the highest amount of intra-annual density fluctuations. Climate and wood anatomy correlations pointed out that lumen area was positively affected by winter precipitation for all the species, while cell-wall thickness was negatively affected by current season precipitation in all species but P. cembroides, suggesting this taxon may be better adapted to withstand drought than its coexisting conifer with thinner cell walls resulting from wet winters. Stable isotope analysis showed in P. cembroides some of the lowest cellulose-Δ13C mean values ever reported in the literature for a forest tree species, although there were no particular trend differences between the studied species. As well, no significant δ18O differences where found between the three species, but they shared a common decreasing trend. With very distinct wood anatomical traits (smaller cells, compact morphology), P. cembroides stood out as the better-adapted species in its current environment and could be less affected by future drier climate. P. engelmannii and A. durangensis showed high plasticity at wood anatomical level, allowing them to promptly respond to seasonal water availability, however this feature may provide few advantages on future climate scenarios with longer and more frequent drought spells. Further research, including xylogenesis analysis and monitoring of different populations of these tree species, would be still necessary to reach a clearer understanding of their future responses to weather patterns. Our multi-proxy approach could be used in other forests to characterize the in situ functioning of trees, e.g. growth, water use, and development of strategies for forest management under the current climate change scenarios.

How to cite: Battipaglia, G., Pacheco, A., Camarero, J., Pompa-Garcia, M., Voltas, J., and Carrer, M.: Growth, isotope records and quantitative wood anatomy reveal species-specific couplings in three Mexican conifers inhabiting drought-prone areas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22409, https://doi.org/10.5194/egusphere-egu2020-22409, 2020.

The Qinling Mountain is the most important mountain range in eastern China, and is the geographical boundary and the climatic boundary. We investigated tree-ring d18O variations in South and North Slope of the Qinling Mountain, and found that the variations of tree-ring  d18O were significantly correlated over the past two and a half centuries (r=0.641, n=247, p<0.001). And they are negatively correlated with relative humidity and precipitation, and positively correlated with temperature. Compared with the various hydroclimate-related time series in the surrounding area, it is found that both can represent the region's long-term hydroclimate change. The consistent changes in the interannual time scale may be due to the common modulation of ENSO. However, on the decadal time scale, there have been significant divergence between the two tree-ring  d18O series since 1981 and the divergence may be caused by changes in relative humidity at the sampling site, suggesting that in the context of global warming, although the warming range is the same, but the triggered relative humidity changes are not consistent. In addition, changes in PDO may be another cause of low-frequency difference.

How to cite: Li, Q., Liu, Y., and Song, H.: Low-frequency divergence of tree-ring d18O variations on both sides of climatic boundary mountain of eastern China since 1980s, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6467, https://doi.org/10.5194/egusphere-egu2020-6467, 2020.

EGU2020-7730 | Displays | CL1.24

Impact of cloud coverage on growth dynamics of Cedrela nebulosa from an Amazonian pre-montane forest in Central Ecuador

Danny Vargas, Darwin Pucha-Cofrep, Angélica Burneo, Lisseth Carlosama, Madison Herrera, Sheila Serrano, Marco Cerna, A.J. Timothy Jull, Mihály Molnár, István Futó, Anikó Horváth, Marjan Temovski, and László Palcsu

The neotropical tree genus Cedrela (Meliaceae) had originated in dry forest under seasonal climates in North America, then spread to South America during the Oligocene/Early Miocene and finally adapted to deciduous forest in the Pliocene Epoch. At present, Cedrela comprises 17 species distributed in the Neotropics (24N-27S) and in Ecuador; the species Cedrela nebulosa (T.D.Penn. & Daza) generally develops in the altitudinal range of 1100-2400 m a.s.l. The town of Mera, Pastaza in Central Ecuador was the first lowland Amazonian site from which paleoecological data were acquired. It brought about the hypothesis of a 4.5 oC temperature depression during glacial times recently supported by a paleolimnological record in the area. However, despite the dry events during glacial periods there was not a loss of forest structure owing to the importance of cloud cover formation enhanced by the lower temperatures (Montoya et al., 2018).

Our research aims to study the role that cloud cover plays in the pre-montane forest of Mera, located at the Andean eastern flank (1º24'25 S, 78º03'10 W, 1200 m a.s.l) and its coupling with modern climate variations. It is expected that cloud cover will continue moving upwards and narrowing as temperature rises overriding its buffering effect against changes in precipitation, a scenario that threatens the forest stability achieved even during glacial periods. Dendroclimatological methods will be applied with trees of Cedrela nebulosa which receive moisture and constant temperature throughout the year. Interpretations of the phenomenon are expected to be drawn using oxygen isotopes in tree-ring cellulose (δ18OTR) and precipitation (δ18OW), as well as air temperature (T), for which monitoring has been established in the study area. The formation of annual rings in the species has been preliminary validated by radiocarbon dating (14C) using the bomb peak.

The research was supported by the European Union and the State of Hungary, co-financed by the European Regional Development Fund in the project of GINOP-2.3.2-15-2016-00009 ‘ICER’.

Reference: Montoya et al., 2018. Front. Plant Sci., 9, 196; doi: 10.3389/fpls.2018.00196

How to cite: Vargas, D., Pucha-Cofrep, D., Burneo, A., Carlosama, L., Herrera, M., Serrano, S., Cerna, M., Jull, A. J. T., Molnár, M., Futó, I., Horváth, A., Temovski, M., and Palcsu, L.: Impact of cloud coverage on growth dynamics of Cedrela nebulosa from an Amazonian pre-montane forest in Central Ecuador, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7730, https://doi.org/10.5194/egusphere-egu2020-7730, 2020.

EGU2020-3975 | Displays | CL1.24

Linking tree rings with satellite observations of soil moisture: toward the reconstruction of water availability in the Mediterranean Andes region

Alvaro Gonzalez-Reyes, Duncan Christie, Carlos LeQuesne, Moises Rojas-Badilla, Tomas Muñoz, and Ariel Muñoz

Soil moisture is a key variable into the earth surface dynamics, however long-term in situ measurements are globally scarce. In the Mediterranean Andes of Chile (30° - 37°S) grow the long-lived conifer “Ciprés de la Cordillera” (Austrocedrus chilensis), which is a demonstrated hydroclimatic proxy capable to cover the last millennium. Previous paleoclimatic studies have documented a high sensitivity between tree species and several hydroclimatic variables such as precipitation, streamflow, snowpack and aridity indexes, but the lack of in situ soil moisture observations has precluded an assessment of the spatial growth responses to high-resolution soil moisture variability. Here, we use three A. chilensis chronologies to determine linkages with the satellite-based surface soil moisture product v04.5 generated by ESA. We found significant relationships between tree-growth an a soil moisture field across the 32° - 34°S spatial domain of western South America from January to September during 1985 – 2013 period (r = 0.65; P < 0.001). Temporal relationships between tree-growth and soil moisture satellite observations exhibit a significant spectral coherence associated to cycles around 7 years (P < 0.10) and a clear decadal variability. Based on our preliminary results and the present extensive network of A. chilensis tree-ring chronologies, this species appears as a promising proxy to reconstruct surface soil moisture variability derived from remote sensing over the last millennium in a topographically complex Andean region of South America.

Acknowledgements

Alvaro Gonzalez-Reyes wish to thank: CONICYT+PAI+CONVOCATORIA NACIONAL SUBVENCIÓN A INSTALACIÓN EN LA ACADEMIA CONVOCATORIA AÑO 2019 + PAI77190101

How to cite: Gonzalez-Reyes, A., Christie, D., LeQuesne, C., Rojas-Badilla, M., Muñoz, T., and Muñoz, A.: Linking tree rings with satellite observations of soil moisture: toward the reconstruction of water availability in the Mediterranean Andes region , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3975, https://doi.org/10.5194/egusphere-egu2020-3975, 2020.

EGU2020-9173 | Displays | CL1.24

Compression wood has a minor effect on the climate signal in tree-ring stable isotopes of montane Norway spruce

Karolina Janecka, Ryszard Kaczka, Holger Gärtner, Jill E. Harvey, and Kerstin Treydte

Compression wood is a common tissue present in the trunk, branches and roots of mechanically stressed coniferous trees. Its main role is to increase the mechanical strength and regain the vertical orientation of a leaning stem. Compression wood is thought to influence the climate signal in different tree-ring measures. Hence trees containing compression wood are mostly excluded from tree-ring studies reconstructing past climate variability. There is a large gap of systematic work testing the potential effect of compression wood on the strength of the climate signal in different tree-ring parameters, and especially stable isotope records.

Here we test for the first time the effect of compression wood contained in montane Norway spruce (Picea abies L. Karst) on both δ13C and δ18O tree-ring cellulose records by analyzing compression and opposite wood radii from several disturbed trees together with samples from undisturbed reference trees. We selected four trees tilted by geomorphic processes that were felled by wind, and four undisturbed reference trees in the Tatra Mountains, Poland. We qualitatively classified the strength of compression wood using wood cell anatomical characteristics (tracheid shape, cell wall thickness and presence of intercellular spaces). Then we developed tree-ring width, δ13C and δ18O chronologies from the compression wood radii and the opposite radii of the tilted trees, and from the radii of the reference trees. We tested the effect of compression wood on tree-ring cellulose δ13C and δ18O variability and on the climate signal strength. Only minor differences were found in the means of δ13C and δ18O compression, opposite and reference radii. The statistical relationships between climate variables, δ13C and δ18O remained consistent among all chronologies. Our findings suggest that moderately tilted trees containing compression wood can be used to both reconstruct past geomorphic activity, and stable-isotope based dendroclimatological research.

How to cite: Janecka, K., Kaczka, R., Gärtner, H., Harvey, J. E., and Treydte, K.: Compression wood has a minor effect on the climate signal in tree-ring stable isotopes of montane Norway spruce, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9173, https://doi.org/10.5194/egusphere-egu2020-9173, 2020.

EGU2020-18994 | Displays | CL1.24

Soil water uptake of larch and spruce recorded by stable isotope tracing in the Swiss Alps

Kerstin Treydte, Lukas Bächli, Daniel Nievergelt, Christopher Sargeant, Marina Fonti, Matthias Saurer, Marco M. Lehmann, Arthur Gessler, and Katrin Meusburger

Tree species differ in their ability to utilize existing soil water pools due to their root architecture, but also due to their capacity to react on spatiotemporal variations of the supply. The interplay between variations of water availability and species-specific utilization plays a crucial role in determining the water balance and cycle of ecosystems. Despite a large number of studies on the various aspects of ecosystem water relations, there exists still uncertainty regarding the plasticity of tree roots to take up water from different soil depths in relation to the mechanisms and patterns of water infiltration into the root zone.

We will present results from a holistic tracer irrigation experiment in the Lötschental, Swiss Alps. A subalpine forest plot (150 m2) of Larix decidua and Picea abies was irrigated with, relative to natural soil abundance 18O and 2H depleted glacier water during 10 subsequent days in summer 2019. Water was taken from a nearby glacier river. Irrigation was conducted through a dripping system installed on the ground to increase and keep soil water content at field capacity during the experiment. Throughout the irrigation, soil moisture at three locations in the experimental as well as in a control plot was monitored in 15-minutes intervals in two soil depths. Four larch and four spruce trees per plot were selected and equipped with continuously measuring sapflow sensors. Sampling of soil and tree tissues took place on a daily basis always before noon: Soil samples were taken in close distance to the soil moisture sensors from at least three soil depths, needles and twigs from all experimental trees were sampled in the canopy of the sun-exposed crowns. Every third day xylem samples were taken from the tree stems with a 5mm increment corer. All samples were immediately cooled until the isotopic analysis. In parallel to the soil and tree sampling, physiological measurements were performed on the same trees with a Licor. In addition, also pre-dawn leaf water potentials were measured every third day. Finally, also micro cores were taken several times before, during and after the experiment for monitoring of xylem cell growth as a basis for high-resolution tree-ring isotope analysis at a later project phase. From all soil, needle, twig and stem core samples water was extracted by cryogenic vacuum distillation and d18O and d2H measured.

The data of this experiment together with mechanistic modelling will elucidate the spatiotemporal pattern of soil water dynamics, water uptake by roots and tree-water relations of two species that have ecologically different life forms but are both highly representative for subalpine regions. Understanding their ability to react and capitalize on soil rewetting after dry periods will be crucial for the estimation of their survival potential and competitiveness under future dry and wet extreme events.

How to cite: Treydte, K., Bächli, L., Nievergelt, D., Sargeant, C., Fonti, M., Saurer, M., Lehmann, M. M., Gessler, A., and Meusburger, K.: Soil water uptake of larch and spruce recorded by stable isotope tracing in the Swiss Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18994, https://doi.org/10.5194/egusphere-egu2020-18994, 2020.

Despite a long-standing interest in retrieving intra-annual environmental information from tree-ring features, none of the approaches developed so far for accurately dating intra-ring sector has been validated on observations. Here, we investigated space-for-time association across regular intra-ring sectors for which we estimated the timing of formation. For this purpose, a unique dataset containing quantitative wood anatomy measurements and kinetics of tracheid differentiation was compiled for 45 trees grown in North-East France (three years of wood formation monitoring, for five trees, from three different conifer species). Tracheid dimensions were measured directly on the best anatomical sections at the end of the growing season, while the kinetics of xylem cell differentiation were provided at tree-level by an empirical model of wood formation dynamics. Our results confirmed that the time taken to form sectors of the same width increased from earlywood (composed of wide thin-walled tracheids) to latewood (composed of narrow thick-walled tracheids). This mainly reflected the increase of the duration of cell wall deposition through the growing season, and, to a lesser extent, the augmentation of the number of tracheids per sectors. However, our results also show that regular intra-ring sectors, which were well separated in space, overlapped in time. The overlapping culminated during the summer period, reaching 40 % for 10 sectors. It could be reduced to approx. 30 % by increasing the number of sectors (from 10 to 25, for example), but it cannot be removed. Therefore, successive intra-ring sectors could not be attributed to a succession of separated time intervals by simply using their relative position along the ring. However, the formation of sectors of equivalent ranks were noticeably synchronous between the different trees and years, reaching 80 % of synchronicity for the process of wall thickening. This suggest that data from regular intra-ring sectors could be reliably used to build mean chronologies expressing the common signal of tree populations. Our results show the limits that the xylogenesis process itself imposes on the dating of intra-ring features. They also argue for an in-depth understanding of the association between cell differentiation processes (enlargement, wall thickening and lignification) and wood characteristics (density, anatomy, stable isotope composition).

How to cite: Peres-De-Lis, G., Rathgeber, C., and Ponton, S.: Cutting time slices of tree rings —How intra-annual dynamics of wood formation help to decipher space for time conversion in tree-ring sciences, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22286, https://doi.org/10.5194/egusphere-egu2020-22286, 2020.

EGU2020-10372 | Displays | CL1.24

Using X-ray densitometry of carbonized wood to refine the date of past volcanic eruptions

Frederick Reinig, Giulia Guidobaldi, Daniel Nievergelt, Anne Verstege, Fritz Schweingruber, Alan Crivellaro, Lukas Wacker, Jan Esper, and Ulf Büntgen

Trees that were killed and buried by volcanic eruptions can be used to date an eruption with annual or even sub-annual resolution. The detection and measurement of subfossil tree-ring widths (TRW), however, often remains challenging if the material was carbonized during the eruption. Here, we show that the application of X-ray densitometry can improve the assessment of charcoal. Measuring the wood density of carbonized trees killed by the Laacher See Eruption ~13,000 years ago, facilitates the identification of the outermost rings that were formed just before the eruption. Our results suggest that anatomical techniques should be routinely applied in the assessment of historical, archaeological and subfossil wood.

How to cite: Reinig, F., Guidobaldi, G., Nievergelt, D., Verstege, A., Schweingruber, F., Crivellaro, A., Wacker, L., Esper, J., and Büntgen, U.: Using X-ray densitometry of carbonized wood to refine the date of past volcanic eruptions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10372, https://doi.org/10.5194/egusphere-egu2020-10372, 2020.

Despite its importance for the study of past climates, as well as its significance for carbon sequestration, we lack a mechanistic explanation for how temperature controls wood anatomy. A model of xylogenesis is presented and used to analyse observed tree ring anatomy-temperature relationships in Scots pine (Pinus sylvestris). The model treats the daily proliferation of new cells in the cambium and their subequent differentiation through expansion and secondary wall thickening phases. Control on size at division in the cambium follows recent work on the Arabidopsis shoot apical meristem, and cell enlargement rates in the cambium and enlargement zone are controlled by temperature. The duration of post-cambial enlargement is partially controlled by the rate at which cells pass through the enlargement zone, and partially by the size of this zone, which is controlled by daylength. This set of assumptions is sufficient to generate observed profiles of cell sizes across radial files, with characteristic transitions from earlywood to latewood. After they leave the enlarging zone, cells enter the wall thickening zone, the width of which is also dependent on daylength. A temperature-dependent rate of wall material deposition is insufficient to reproduce the observed gradient in mass density across the radial file, and fails to fully capture the observed seasonality of the correlation between maximum latewood density and temperature. Inclusion of a control on the rate of wall deposition from substrate (sugar) supply, diffusing from the phloem across the radial file, corrects these deficiencies. The resulting model provides a mechanistic explanation of temperature-tree ring relationships, and has the potential to underpin understanding of how climate and CO2 interact in determining the amount of carbon sequestered in trees.

How to cite: Friend, A.: Mechanistic modelling of the influence of temperature on the wood anatomy of Scots pine, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9455, https://doi.org/10.5194/egusphere-egu2020-9455, 2020.

EGU2020-5326 | Displays | CL1.24

Are periodic tangential band of vessels a new anatomical marker of floods in diffuse-porous tree rings?

Jacques C. Tardif, Heather Dickson, France Conciatori, Alexandre Florent Nolin, and Yves Bergeron

Flood rings (FR) in ring-porous species have been widely used to identify flood events in boreal and temperate regions. Flood rings also have been experimentally reproduced in both Quercus and Fraxinus species. More recently, continuous measurement of earlywood cross-sectional vessel area in riparian black ash trees (Fraxinus nigra Marsh.) have shown that not only were FR associated with flood events but that the year-to-year variation in chronologies derived from earlywood cross-sectional vessel area also reflected that in mean spring flow data. These findings led to the reconstruction of the Harricana river spring flow for the period 1770-2016 with more than 65% of the variance in the gauge streamflow data captured (See Nolin et al. presentation at EGU2020). Compared to ring-porous species, anatomical variations in diffuse-porous species in relation to flood events has been little studied.

In this study, both ring-porous black ash and diffuse-porous [trembling aspen (Populus tremuloides Michx.) and balsam poplar (Populus balsamifera L.)] trees were sampled in three floodplain sites located on the shore of Lake Duparquet, northern Quebec. Within each floodplain site, trees were selected so to represent a gradient of exposure to spring flooding. Given that the response of black ash to flooding is well documented (FR), paired sampling was used so each Populus tree was paired with a nearby black ash tree. When feasible, cross-sections from dead trees were also collected. For each tree, the elevation of the tree base to lake water level and the height of extracted cores were noted.  The main objective of the study was to assess if diffuse-porous trembling aspen and balsam poplar growing on floodplains responded like ring-porous black ash to annual spring flooding.

All wood samples were prepared following standard dendrochronological procedures with visual crossdating validated using program COFECHA. In addition to ring-width measurements, a visual determination of the intensity of FR was done for each black ash tree. In diffuse-porous species, a newly observed tree-ring anomaly referred to as tree ring with “periodic tangential band of vessels” (PTBV) were systematically compiled using a two-part numerical code; the first digit corresponding to the start position of the banding sequence within a tree ring and the second digit referring to the number of consecutive bands within a sequence. Two observers independently compiled their observations. The main hypotheses were that years recording PTBV will correspond to FR years and that they will also be associated with those hydroclimatic variables leading to major spring floods. Preliminary analyses indicated that FR and PTBV years display synchronicity. Both anomalies are also associated with hydroclimatic conditions leading to major spring flooding. The absence of a perfect match between ring-porous and diffuse-porous species however as well as the observed variability in the banding patterns still need to be analyzed in relation to flood exposure and core height. The discovery of a new potential flood marker in diffuse-porous tree species opens the door for the novel application of wood-cell anatomy in dendrohydrology and especially when ring-porous species are absent.  

How to cite: Tardif, J. C., Dickson, H., Conciatori, F., Nolin, A. F., and Bergeron, Y.: Are periodic tangential band of vessels a new anatomical marker of floods in diffuse-porous tree rings?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5326, https://doi.org/10.5194/egusphere-egu2020-5326, 2020.

EGU2020-22520 | Displays | CL1.24

Growth and wood anatomical adjustments of Fraxinus excelsior to the infestation of the invasive fungus Hymenoscyphus fraxineus

Stefan Klesse, Georg von Arx, Martin Gossner, Christian Hug, Andreas Rigling, and Valentin Queloz

Since the 1990s the invasive fungus Hymenoscyphus fraxineus has led to severe crown dieback and high mortality rates in Fraxinus excelsior in Europe. In addition to a strong genetic control of tolerance to the fungus, previous studies have found high landscape variability in the severity of dieback symptoms. However, apart from heat and humidity-related climate conditions favoring fungal development the mechanistic understanding of why smaller or slower growing trees are more susceptible to dieback remains less well understood.

Here, we analyzed three stands in Switzerland with a unique setting of eight years of intra-annual diameter growth and annual crown health assessments, together with ring-width and quantitative wood anatomical measurements preceding the monitoring, to investigate if wood anatomical adjustments can help better explaining the size-related dieback phenomenon.

We found that slower growing trees or trees with smaller crowns already before the arrival of the fungus were more susceptible to dieback and mortality. We show that defoliation directly reduces growth as well as maximum earlywood vessel size, and that the positive relationship between vessel size and growth rate causes a positive feedback amplifying crown dieback. Because leaf necrosis happens during late summer when ring formation has already finished, photosynthesis is heavily reduced during a time when non-structural carbohydrates (NSCs, sugars and starch) are stored. Thus, we hypothesize that a lack of NSCs (mainly sugars) leads to lower turgor pressure and smaller earlywood vessels in the next year impeding efficient water transport and photosynthesis, and is responsible why smaller and slower growing trees show stronger symptoms of dieback and higher mortality rates.

How to cite: Klesse, S., von Arx, G., Gossner, M., Hug, C., Rigling, A., and Queloz, V.: Growth and wood anatomical adjustments of Fraxinus excelsior to the infestation of the invasive fungus Hymenoscyphus fraxineus, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22520, https://doi.org/10.5194/egusphere-egu2020-22520, 2020.

EGU2020-7395 | Displays | CL1.24 | Highlight

An integrated approach for monitoring the post-fire responses of Pinus pinaster Aiton

Francesco Niccoli, Veronica De Micco, Simona Castaldi, Riccardo Valentini, and Giovanna Battipaglia

In the Mediterranean Basin, fire incidence has increased dramatically during the past decades and fire is expected to become more severe in the future due to climate change. The effects of fires on forest ecosystems can last several years: the survival of fire-injured trees depend not only on the adaptive traits of individual species, but also on the ability of trees to tolerate post-fire environmental constraints.

Several trees, although initially resisting the strong heat injury caused by the high temperatures of the flames, can reduce their vigor and finally die after a few years after fire, due to serious damage at the canopy level or due to the difficult conditions arising in the surrounding stands. The study of long-term trends of the eco-physiological processes in plants subjected to fire are of fundamental importance in planning management actions and restoration strategies of burned areas.

In this context, our research aims to identify and understand the impacts that post-fire conditions can have on the growth and eco-physiology of Pinus pinaster Aiton, through the study of a forest stand hit by a devastating fire that affected the Vesuvius National Park, in Southern Italy, in July 2017. This study combines the dendrochronological analyses with the monitoring of xylogenesis, supported by the measurements in continuum of the eco-physiological parameters of the individual plants through the use of the innovative TreeTalker device.

The results of the dendrochronological analyses showed that, at the end of 2018, despite the strong stress suffered and a significant decrease in growth, the plants showed a very limited mortality rate: only 2-10% of the individuals reduced their vigor. However, preliminary data on xyologenesis, collected from spring 2019 to nowadays, suggest how, after two years, the fire of 2017 is still influencing the cambium activity of individual plants: the productivity and the differentiation kinetics of xylem cells are strongly influenced by the damages suffered at the canopy level.

The monitoring activities will continue for the next few years in order to identify the recovery times of the plant to return to normal vital functions, as well as, eventually, understand the eco-physiological processes that lead to a reduction in productivity or even to death.

How to cite: Niccoli, F., De Micco, V., Castaldi, S., Valentini, R., and Battipaglia, G.: An integrated approach for monitoring the post-fire responses of Pinus pinaster Aiton, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7395, https://doi.org/10.5194/egusphere-egu2020-7395, 2020.

EGU2020-11598 | Displays | CL1.24

Forty years of growth-climate relationships in a progeny test of Pinus pinaster in Sardinia

Elio Fierravanti, Serena Antonucci, Giovanni Santopuoli, Roberto Tognetti, and Marco Marchetti

The area of the Mediterranean basin is expected to be threatened by more severe and prolonged droughts and heat waves. Therefore, a more exhaustive knowledge about growth-climate responses in forest trees is necessary in order to adopt mitigation and adaptation strategies in forest management and planning. Climate change will cause shifts of the climate envelope for tree species, potentially leading to migration of species distribution. Under these circumstances, investigations on growth-climate relationships in trees of different provenances of the same species are important for the success of climate-smart forestry. Provenance trials are useful for understanding the response of this species to drought stress. We studied growth-climate relationships in 40-year-old trees of maritime pine (Pinus pinaster Ait.) from five provenances (Corsica, Portugal, Tuscany, and two native ones: Telti and Limbara) grown on four different sites in Sardinia island (Montes, Montarbu, Uatzo and Usinavà), Italy. In details, for all trees in each site, measurements of stem diameter at breast height (DBH) and plant height (H) were collected. For each site-provenance combination, two incremental cores were collected for each tree; successively, samples were cross-dated and standardized. Weather data (temperature and precipitation) were collected from CRU data online (http://www.cru.uea.ac.uk/). Differences in DBH and H were found among sites. In particular, the highest values for DBH and H were found in Montes and Uatzo, respectively. Instead, Montarbu showed the lowest mean values for both parameters. Differences among provenances were also observed. Specifically, in Montarbu, the greatest H were found for Tuscany and the lowest for Corsica (p<0.0001). The same pattern was also found for DBH, but without statistical significance (p>0.5). In Uatzo, Corsica showed the highest mean values for both H and DBH, while the lowest DBH was observed for Tuscany (p=0.0008), and the lowest H was found for Limbara (p<0.0001) provenance, respectively. No significant differences were found for both H and DBH in Montes. Finally, in Usinavà, Limbara showed significant higher values, for both H and DBH, compared to the other provenances (p<0.001). Temperature had a greater influence on growth traits in Montarbu, especially for spring-summer period, with Telti and Tuscany having the most significant correlation. Precipitation, instead, mostly affected Usinavà. On the other hand, in Montes and Uatzo, no significant correlations between climate and growth were observed. However, different climate-growth relationships were observed among provenances. In conclusion, our results suggest that, after 40 years of growth, greater H and DBH were found in the sites with lower temperature and higher precipitation (Uatzo and Montes). Interestingly, in Uatzo, Corsica showed the highest values of both DBH and H, while Limbara presented the lowest growth. Noteworthy, Limbara showed greater H in Usinavà (the warmest and driest site), whereas in the previous survey, Limbara had the lowest H. These results represent a further step in identifying potential genetic variation in tree growth and drought tolerance of maritime pine in Mediterranean conditions. Data collected in long-term experimental plots and repeated measurements are confirmed of fundamental importance to estimate the resilience of forest species to climatic changes.

How to cite: Fierravanti, E., Antonucci, S., Santopuoli, G., Tognetti, R., and Marchetti, M.: Forty years of growth-climate relationships in a progeny test of Pinus pinaster in Sardinia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11598, https://doi.org/10.5194/egusphere-egu2020-11598, 2020.

EGU2020-2713 | Displays | CL1.24

Combining tree-ring and stable isotope analyses to differentiate between the effects of weather and edaphic factors on tree growth

Frank Thomas

EGU2020-8232 | Displays | CL1.24

Climate warming does not adequately translate to increased radial stem growth of coniferous species along the Alpine treeline ecotone

Walter Oberhuber, Ursula Bendler, Vanessa Gamper, Jacob Geier, Anna Hölzl, Werner Kofler, Hanna Krismer, Barbara Waldboth, and Gerhard Wieser

It is well established, that tree growth at high elevations is mainly limited by low temperature during the growing season and climate warming was frequently found to lead to more growth and expansion of trees into alpine tundra. However, dendroclimatological studies revealed contradictory growth response to recent climate warming at the upper elevational limit of tree growth, and transplant experiments unveiled that high elevation tree provenances are not adequately benefiting from higher temperatures when planted at lower elevation. We therefore re-evaluated growth response of trees to recent climate warming by developing tree ring series of co-occurring conifers (Swiss stone pine (Pinus cembra), European larch (Larix decidua), and Norway spruce (Picea abies)) along several altitudinal transects stretching from the subalpine zone to the krummholz-limit (1630–2290 m asl; n=503 trees) in the Central European Alps (CEA). We evaluated whether trends in basal area increment (BAI) are in line with two phases of climate warming which occurred from 1915–1953 and from mid-1970s until 2015. We expected that BAI of all species shows an increasing trend consistent with distinct climate warming during the study period (1915–2015) amounting to >2 °C. Although enhanced tree growth was detected in all species in response to climate warming, results revealed that at subalpine sites (i) intensified climate warming since mid-1970s did not lead to corresponding increase in BAI, and (ii) increase in summer temperature primarily favored growth of Norway spruce, although Swiss stone pine dominates at high altitude in the CEA and therefore was expected to mainly benefit from climate warming. At treeline BAI increase was above the determined age trend in all species, whereas at the krummholz-limit only deciduous larch showed minor growth increase. We explain missing adequate growth response to recent climate warming (i) by strengthened competition for resources (primarily nutrients and light) in increasingly denser stands at subalpine sites leading to changes in carbon allocation among tree organs, and (ii) by frost desiccation injuries of evergreen tree species at the krummholz-limit. Our findings indicate that tree growth response to climate warming at high elevation is possibly nonlinear, and that increasing competition for resources and the influence of climate factors beyond the growing season impair stem growth. 

How to cite: Oberhuber, W., Bendler, U., Gamper, V., Geier, J., Hölzl, A., Kofler, W., Krismer, H., Waldboth, B., and Wieser, G.: Climate warming does not adequately translate to increased radial stem growth of coniferous species along the Alpine treeline ecotone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8232, https://doi.org/10.5194/egusphere-egu2020-8232, 2020.

EGU2020-3680 | Displays | CL1.24

Stable Isotopes in Tree Rings: Inferring Physiological, Climatic and Environmental Responses

Rolf Siegwolf, Renée Brooks, John Roden, and Matthias Saurer

We are editing a new book in the Springer Tree Physiology Series entitled “Stable Isotopes in Tree Rings: Inferring Physiological, Climatic and Environmental Responses” due out in 2020. Because trees produce annual growth increments that can be precisely dated, annual and interannual variations in tree ring width and stable carbon, oxygen and hydrogen isotopes provide detailed records of past physiological responses to biotic and abiotic impacts over many decades and centuries. In contrast to non-living chronologies (ice cores, stalagmites etc.), trees modify base physical inputs in response to local microclimates through their physiological response to light, temperature, humidity, water availability, CO2 and nutrients. Although this can make interpretation of isotopic variation in organic matter more complicated, it also means that these proxies can provide a wealth of additional information. Thus, an understanding of the combined physical and biological drivers of isotope fractionation in tree rings is crucial for paleoclimate interpretation. In addition, tree rings and stable isotopes contained therein integrate dynamic environmental, phenological and developmental variation that can be used to study present organism function and recent anthropogenic influences apart from their use as proxies for conditions in the distant past. The last few decades have seen tremendous progress in understanding the mechanisms by which tree physiology modifies stable isotope fractionation in organic matter.

This book will be the first to comprehensively cover the field of tree ring stable isotopes. This volume highlights how tree ring stable isotopes have been used to address a range of environmental issues from paleoclimatology to forest management, and anthropogenic impacts on forest growth. It evaluates strengths and weaknesses of isotope applications in tree rings. This book focuses on physiological mechanisms that influence isotopic signals and reflect environmental impacts. Each of the 25 chapters has been authored by leading experts providing the most recent developments in the area.

How to cite: Siegwolf, R., Brooks, R., Roden, J., and Saurer, M.: Stable Isotopes in Tree Rings: Inferring Physiological, Climatic and Environmental Responses, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3680, https://doi.org/10.5194/egusphere-egu2020-3680, 2020.

CL1.26 – Speleothem and Continental Carbonate Archives of Modern and Palaeoenvironmental Change

EGU2020-1686 | Displays | CL1.26

Insights into recharge processes and speleothem proxy archives from long-term monitoring networks of cave drip water hydrology

Andy Baker, Pauline Treble, Andreas Hartmann, Mark Cuthbert, Monika Markowska, Romane Berthelin, Carol Tadros, Matthias Leopold, and Stuart Hankin

Since 2010 we have established cave drip water hydrological monitoring networks in four contrasting climate zones (Mediterranean, montane, semi-arid and sub-tropical) across continental Australia. Deploying over one hundred automated drip loggers, we combine these long-term monitoring datasets with climate and water isotope data, lidar mapping, electrical resistivity imaging and karst hydrological modelling to provide insights into recharge processes and the impact of hydrological variability on speleothem proxy archives.

We identify increases in drip discharge and compare the timing of those events to antecedent climate conditions (rainfall, evapotranspiration). We find rainfall recharge thresholds vary with climate. At our montane site, recharge occurs after 13 to 31 mm rainfall events, depending on antecedent conditions. At the semi-arid site, recharge occurs after 40 mm rainfall events, and at our sub-tropical sites, recharge occurs following all instances where > 93 mm / week of precipitation occurs, with lower precipitation thresholds (down to 33 mm / week) possible depending on antecedent conditions and at sites with limited vegetation cover. We use these recharge thresholds to constrain simple soil moisture balance models to better understand soil and karst storage volumes. Combined with electrical resistivity imaging, we can relate recharge to the caves to subsurface water flow paths and karst water stores.

At our montane and Mediterranean climate sites, relatively consistent drip water isotopic composition confirms the presence of well-mixed water stores. This allows us to quantify the extent of speleothem oxygen isotope variability due to fractionation associated with changes in drip rate. We identify significant differences in long-term mean drip rates between different drip sites within a cave, and significant differences in event-based drip rate responses within a cave. Drip hydrological variability helps explain the within-cave variability of speleothem oxygen isotope composition observed at both sites, and helps identify the primary drip water oxygen isotope signal.

At our semi-arid site, drip water isotopic composition is dominated by epikarst evaporation and our drip water monitoring demonstrates that recharge events are infrequent (~1.6 per year). Using both observational and modelling data, we quantify the relative importance of evaporative fractionation in the epikarst and fractionation during calcite precipitation. Using modern speleothem samples, we demonstrate that the oxygen isotope signal in this water limited environment reflects the balance between the oxygen isotope composition of recharge and its subsequent fractionation in the soil, epikarst and cave.

How to cite: Baker, A., Treble, P., Hartmann, A., Cuthbert, M., Markowska, M., Berthelin, R., Tadros, C., Leopold, M., and Hankin, S.: Insights into recharge processes and speleothem proxy archives from long-term monitoring networks of cave drip water hydrology , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1686, https://doi.org/10.5194/egusphere-egu2020-1686, 2020.

EGU2020-895 | Displays | CL1.26

Hydroclimate variability of western Thailand during the last 1400 years

sakonvan chawchai, Guangxin Liu, Raphael Bissen, Denis Scholz, Dana F.C. Riechelmann, Hubert Vonhof, Regina Mertz-Krause, Liangcheng Tan, Hong-Wei Chiang, and Xianfeng Wang

Mainland Southeast Asia is located on the route of moisture transport of the Indian summer monsoon where hydroclimate records from speleothems have rarely been investigated. Here we present a new multi-proxy data set (δ18O, δ13C, trace elements and grayscale values) of stalagmite KPC1 from Khao Prae cave in western Thailand spanning from approximately 500 CE to 1900 CE. Our multi-proxy data reveal high variability between wet and dry periods during 500-850 CE and 1150-1350 CE, a stable condition between 850-1150 CE, and an overall trend towards dry conditions since 1350 CE. The δ13C, trace elements and grayscale values suggest centennial-scale fluctuations driven by local hydrological process at the cave site. In contrast, variations in stalagmite δ18O reflect integrated changes in rainfall amount from the Indian summer monsoon, supported by two-year monitoring rainfall data. In comparison with other Asian Monsoon records for the last millennia, the KPC1 record shows similarity with speleothem δ18O records from India, as well as lakes and tree-ring data from mainland Southeast Asia but diverges from records from equatorial regions and the western Pacific. We conclude that hydroclimate variability in the western side of Mainland Southeast Asia is mainly driven by changes in moisture transport from the Indian summer monsoon and modulated by expansion and contraction of the Intertropical convergent zone (ITCZ). However, Pacific Walker circulation (PWC) may have been the overriding control on precipitation on the eastern sides of Mainland Southeast Asia located closely to the western Pacific.

How to cite: chawchai, S., Liu, G., Bissen, R., Scholz, D., Riechelmann, D. F. C., Vonhof, H., Mertz-Krause, R., Tan, L., Chiang, H.-W., and Wang, X.: Hydroclimate variability of western Thailand during the last 1400 years , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-895, https://doi.org/10.5194/egusphere-egu2020-895, 2020.

EGU2020-140 | Displays | CL1.26

A long continuous palaeoclimate-palaeoenvironmental record of the last glacial period from southern Italy and implications for the coexistence of Anatomically Modern Humans and Neanderthals

Andrea Columbu, Veronica Chiarini, Christoph Spötl, Jo De Waele, Stefano Benazzi, John Hellstrom, and Hai Cheng

Western Mediterranean speleothem palaeoclimate records covering the entire Last Glacial period are extremely rare and discontinuous, because the progressive aridity and temperature decrease inhibited continuous carbonate deposition (Budsky et al., 2019; Perez-Mejias et al., 2019). This lack of high-resolution archives impedes a better understanding of key issues regarding the Late Quaternary, such as: 1) The spatio-temporal teleconnection between the northern latitudes and the Western Mediterranean area during the expansion/contraction of ice sheets related to DO cyclicity and AMOC changes; and 2) the palaeoclimate and palaeoenvironmental conditions during the scarcely known MIS 3, when the first Anatomically Modern Humans arrived on the Italian peninsula about 45.5 ka (Benazzi et al., 2011), sharing the territory with the already settled Neanderthals until the disappearance of the latter around 42 ka.

We present a well-dated continuous stalagmite record from Pozzo Cucù cave (southern Italy, Apulia) spanning from 106.0 +2.8/-2.7 to 26.6 +0.8/-0.9 ka, with an average uncertainty of less than 1 ka. The age model is based on 27 U-Th dates and about 2600 δ18O and δ13C analyses were performed at an average resolution of about 40 years. δ18O and δ13C are interpreted as rainfall and soil bioproductivity indicators, respectively, although moisture source possibly had a role in modulating δ18O. The δ18O-δ13C timeseries is the first western Mediterranean speleothem record duplicating the Greenland ice core record (NGRIP) for MIS 5 to 3, and showing a striking resemblance for most of the DO cycles, especially from DO 22 to DO 16 and from DO 11 to DO 4. Discrepancies exist too, especially during the early MIS 3. Interestingly, the speleothem does not show evidence of many of the most severe climate events affecting the northern latitudes (e.g. Heinrich events). This calls for a re-evaluation of the role of the northern high latitudes in triggering major cooling/drying events across the Mediterranean region.

The oldest remains of Anatomically Modern Humans in Europe were found in Apulia (about 45.5 ka), and Neanderthals are known to have existed there at least until 42 ka. Thus, our new record provides a palaeoclimate-palaeoenvironmental background for the arrival of Anatomically Modern Humans in southern Europe, their coexistence with the Neanderthals, and the disappearance of the latter, which marks one of the most important biocultural transitions in human history (Wolf et al., 2018).

 

References

 

Benazzi S et al., 2011. Early dispersal of modern humans in Europe and implications for Neanderthal behavior. Nature

 

Budsky A et al., 2019. Western Mediterranean climate response to Dansgaard/Oeschger Events: New Insights From Speleothem Records. GRL

 

Pérez-Mejías C et al., 2019. Orbital-to-millennial scale climate variability during Marine Isotope Stages 5 to 3 in northeast Iberia. QSR

 

Wolf D et al., 2018. Climate deteriorations and Neanderthal demise in interior Iberia. SR

How to cite: Columbu, A., Chiarini, V., Spötl, C., De Waele, J., Benazzi, S., Hellstrom, J., and Cheng, H.: A long continuous palaeoclimate-palaeoenvironmental record of the last glacial period from southern Italy and implications for the coexistence of Anatomically Modern Humans and Neanderthals, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-140, https://doi.org/10.5194/egusphere-egu2020-140, 2020.

EGU2020-4800 | Displays | CL1.26

History of Late Pleistocene Permafrost in Southern Ural revealed by studies of speleothems and cave sediments

Yuri Dublyansky, Gabriella Koltai, Denis Scholz, Michael Meyer, Luke Gliganic, Olga Kadebskaya, Hai Cheng, and Christoph Spötl

In the area of the European-Asian border, in the Ural Mountains, the southern boundary of permafrost has moved in meridional direction by more than 1000 km in response to Quaternary climate variations. During cold climate states, permafrost extended as far south as the Southern Ural (53°N). We studied three independent archives in three caves in the Southern Ural (Shulgan-Tash, Victoria and Grandioznaya) in order to gain insights into the long-term dynamics of permafrost in the region.

Common speleothems (e.g., stalagmites and flowstone) require liquid water to form, and are therefore restricted to permafrost-free periods. Cryogenic cave carbonates (CCC) form when the temperature in the cave is close to or slightly below 0°C (permafrost conditions). These two types of speleothems were dated using the 230Th-U method in order to determine the timing of permafrost and permafrost-free conditions. As a novel indicator of freezing conditions in caves we identified frost wedges in silty cave sediments filled by sand. These sands were dated using OSL to constrain the timing of sub-zero rock temperatures (required to form frost wedges) in caves.

Stalagmites, abundant in in South Uralian caves, exhibit two prominent growth phases, associated with interglacials – MIS 5e and Holocene. In addition, mm-thin layers of flowstone formed in one chamber of Shulgan-Tash cave in association with smaller-scale warming episodes during MIS 3 (Greenland interstadials GI-9 and GI-8) and MIS 2 (GI-1; Bølling-Allerød). All CCC in Shulgan-Tash and Victora caves yielded MIS 3 ages, typically lagging cooling events (Greenland stadials) GS-16.1, GS-15.1, GS-13, GS-12, GS-10, and GS-7 by several hundred years up to one 1 ka. CCC from Grandioznaya cave formed during a single episode following GS-1 (Younger Dryas). Sand filling frost wedges in Victoria cave was washed into the cave during MIS 2, ca. 24-25 ka BP. Apparently, during this time the karst massif hosting the cave was engulfed by permafrost (to a depth of at least 90 m) and flow of water through the cave was severely restricted, which led to back-flooding of the cave passage and the accumulation of several m-thick silt deposits, interspersed with thin sand layers.

How to cite: Dublyansky, Y., Koltai, G., Scholz, D., Meyer, M., Gliganic, L., Kadebskaya, O., Cheng, H., and Spötl, C.: History of Late Pleistocene Permafrost in Southern Ural revealed by studies of speleothems and cave sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4800, https://doi.org/10.5194/egusphere-egu2020-4800, 2020.

EGU2020-16623 | Displays | CL1.26

Boron isotope systematics of lacustrine carbonates: a new approach for tracing the palaeo-hydroclimatic evolution of the Dead Sea

Hana Jurikova, Ina Neugebauer, Birgit Plessen, Michael Henehan, Rik Tjallingii, Markus J. Schwab, Achim Brauer, and Cécile Blanchet

Sedimentary sequences of the Dead Sea provide a unique high-resolution archive of past climatic changes in the Mediterranean-Levant, a key region for human migration out of Africa at the boundary of hemispheric climate belts. The well-preserved record of the Holocene Dead Sea and its Last Glacial precursor Lake Lisan is characterised by annual laminations – varves – composed of alternate layers of aragonite and detritus. Past lake level reconstructions suggest large fluctuations in the regional hydrological balance driven by abrupt climatic events, including a pronounced transition from lake level high-stand during the Last Glacial Maximum (LGM) to a low-stand at the onset of the Holocene [1]. On millennial timescales these changes have been associated with temperature variations recorded in the Greenland ice core, underscoring the potential of the Dead Sea to offer both regional and global perspectives on high-amplitude climatic events in the past. However, our ability to fully read the Dead Sea record critically depends on reliable extraction of palaeo-climatic and palaeo-environmental data from lacustrine carbonates, and an improved understanding of their formation. Here we present carbon, oxygen, boron isotope and trace element composition of hand-picked authigenic aragonite from a Dead Sea deep-drilling core (ICDP 5017-1; [2]) and shore outcrops. While traditionally used as a pH-proxy [3], we examine the possibility of applying boron geochemistry for reconstructing the source water and brine composition [4]. Using our innovative combined approach, we elucidate the palaeo-hydroclimatic evolution of the Dead Sea during intervals of major environmental changes since the end of the LGM.

[1] Torfstein A., et al. (2013) Quat. Sci. Rev. 69, 1–7.
[2] Neugebauer I., et al. (2014) Quat. Sci. Rev. 102, 149–165.
[3] Jurikova H., et al. (2019) Geochim. Cosmochim. Acta 248, 370–386.
[4] Vengosh A., et al. (1991) Geochim. Cosmochim. Acta 55, 1689–1695.

How to cite: Jurikova, H., Neugebauer, I., Plessen, B., Henehan, M., Tjallingii, R., Schwab, M. J., Brauer, A., and Blanchet, C.: Boron isotope systematics of lacustrine carbonates: a new approach for tracing the palaeo-hydroclimatic evolution of the Dead Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16623, https://doi.org/10.5194/egusphere-egu2020-16623, 2020.

EGU2020-18849 | Displays | CL1.26

Speleothem water content as a proxy for past moisture variability in stalagmites from Milandre Cave, Switzerland

Stéphane Affolter, Dominik Fleitmann, Anamaria Häuselmann, and Markus Leuenberger

Speleothems are powerful archives able to gain relevant paleoclimate information on temperature, moisture source or rainfall. Specifically, there is a need for new proxy related to past moisture availability, which would allow reconstruction especially in Europe, where such records are lacking. Among speleothem-based records, quantitative estimation of the water content (hereafter WC) remains rare as it is generally a collateral result of more challenging analyses such as isotope determinations of fluid inclusions or noble gases. Using a recently developed method to analyse speleothem fluid inclusion water isotopes (Affolter et al., 2014), we obtained a record of more than 250 WC data covering the Younger Dryas and Holocene intervals with a decadal to multi-decadal resolution measured on two Swiss stalagmites from Milandre Cave, NW Switzerland. The crushing of samples in the measuring line resulted in a mean WC of 1.9 microlitre of water per gram of crushed calcite from both stalagmites. The comparison with other paleohumidity-related indicators from central Europe suggests that the WC is related to past moisture variability. In addition, trace elements strontium (Sr) and magnesium (Mg) measurements as proxies for the water residence time and growth rate respectively are ongoing at the Department of Environmental Sciences at the University of Basel, which will further help with the interpretation of the WC. New reconstruction of past moisture variability together with speleothem fluid inclusion temperature estimates (Affolter et al., 2019) would allow a better understanding of the central European climate variability during the Holocene.

Affolter, S., Häuselmann, A., Fleitmann, D., Edwards, R. L., Cheng, H., and Leuenberger, M.: Central Europe temperature constrained by speleothem fluid inclusion water isotopes over the past 14,000 years, Sci Adv, 5, eaav3809, 10.1126/sciadv.aav3809, 2019.

Affolter, S., Fleitmann, D., and Leuenberger, M.: New online method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS), Clim Past, 10, 1291-1304, DOI 10.5194/cp-10-1291-2014, 2014.

How to cite: Affolter, S., Fleitmann, D., Häuselmann, A., and Leuenberger, M.: Speleothem water content as a proxy for past moisture variability in stalagmites from Milandre Cave, Switzerland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18849, https://doi.org/10.5194/egusphere-egu2020-18849, 2020.

Climate- and environmental-proxy time series obtained from different archives, such as speleothems, allowed for major leaps in the understanding of past climate and environmental dynamics. However, age uncertainties that arise from the applied dating techniques and from the proxy sampling methodologies, respectively, are often neglected. These age uncertainties are important when leads and lags between different proxy time series are examined or if the relationship to climate-forcing is investigated. This is most pronounced when examining data that detail events of sub-centennial down sub-annual resolution, where noise is not smoothed by a low resolution sampling (e.g. conventional dental drill), or in records karst systems where the noise is inherently high (e.g. water-limited environments).

We explore the use of dynamic time warping with a hierarchical aggregation layer (or HDTW) on multiple trajectories to generate an indexing table for the input samples. We hypothesize that this aggregation process results a temporally aligned references table (of the original trajectories) and allows for an analytical space to investigate and distinguish between local and non-local phenomena. We aim to compare sample derived features, such as peaks in trace element, organic fluorescence analyses and potentially δ18O (not tested here), on the derived analytical space, for the purpose of enabling a robust and simplified approach to multi-sample age modelling.

We show HDTW compatibility to existing peak-counting methodologies applied on laser-ablation trace element analysis and confocal fluoresce laser microscopy. As a case study, we use HDTW on three published micron-scale elemental measurements of samples from Mediterranean climates with strong dry summer – wet winter seasonality - two from south-western Australia (Nagra et al., 2017) and one from the Soreq Cave in the Eastern Mediterranean (Orland et al., 2014). The HDTW continuous space for these samples yields results that are within the published age constraints, without the need to stack multiple traverses and manually account for double or missing peaks.

HDTW is an important new tool for locating and identifying local and non-local phenomena in micron scale measurements (e.g. parallel laser ablation trace element traverses) by automatically aligning several coeval time axes of similar proxies. In the future HDTW could be applied for regional scale investigation (e.g. a coeval speleothems from a single cave or the same region, multiple cores from a single lake) allowing the unbiased fine-tuning between different environmental archives registering similar forcing mechanisms.

Nagra, G., Treble, P.C., Andersen, M.S., Bajo, P., Hellstrom, J.C., Baker, A., 2017. Dating stalagmites in Mediterranean climates using annual trace element cycles. Sci. Rep. 7, 621.

Orland, I.J., Burstyn, Y., Bar-Matthews, M., Kozdon, R., Ayalon, A., Matthews, A., Valley, J.W., 2014. Seasonal climate signals (1990–2008) in a modern Soreq Cave stalagmite as revealed by high-resolution geochemical analysis. Chem. Geol. 363, 322–333.

How to cite: Burstyn, Y. and Gazit, A.: Using hierarchical dynamic time warping to synchronize age-uncertain (proxy) time series, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1054, https://doi.org/10.5194/egusphere-egu2020-1054, 2020.

Stalagmites can provide long, accurate, and continuous palaeoenvironmental records of the Earth’s surface. However, insufficient or biased information on stalagmites has also been derived from some observed data, such as fluorescent annual-layer patterns and cave-climate monitoring data, which indicate sub-annual stalagmite growth rates can change with seasonal cave environments. Observations of stalagmite growth processes compared with cave-climate monitoring data provide an estimate of changes in growth rate. However, this method is considered unreliable as growth rates of normal stalagmites (~ 0.001 – 0.1 mm yr-1) cannot provide sufficient data for validation. Many caves developed in uplifted Quaternary coral-limestones of subtropical islands in the Northeastern Pacific region.

The Gyokusen-do Cave in the southern part of Okinawa Island, southwest Japan, is famous for frequent and massive speleothems and as a tourist destination. This cave has stalagmites with a high growth rate (~ 1 mm yr-1) along a pathway laid in 1987. The cave climate (temperature, carbon dioxide concentration, drop rates, and water chemistry) has been monitored since the summer of 2017. Distinctive seasonal changes in the cave environment are apparent in the data. In this study, we sampled sub-annual layer patterns collected in January 2019 from a stalagmite (~ 20 mm in length) on a stone wall in the cave and compared them with the cave-climate monitoring data and climate records near the study site, thus verifying the formation of annual layers. About 31 or 32 years are reflected in the (0.63 – 0.65 mm yr-1) in the stalagmite record, because the stone wall was constructed in 1987. From base to top, the stalagmite has about 30 couplets of a transparent layer and a coarsely crystalline zone. The uppermost 5 mm has continuous layers without any hiatus, whereas concave points such as the drop position have thick layers of large crystals still in development. The stalagmite surface is covered with relatively large crystals that developed in the winter of 2018, which suggests that the winter climate produces coarse-grained layers precipitated during the winter season. The cave-climate monitoring data, collected about 150 m from the stalagmite, shows calcium ion concentrations of around 1 – 1.5 mol m-3, temperature around 24 – 25 °C, and drastically different carbon dioxide concentrations in summer and winter seasons (around 400 – 500 ppm from the end of October to the beginning of May and around 2500 ppm from the middle of May to the middle of October). Precipitation and drop rates are highest in summer as compared to other seasons. Stalagmite growth simulations based on the monitoring data showed that the growth rate during the summer season was about five times that in winter. These results suggest that alternation between the transparent layer precipitated in summer and the coarse-grained layer precipitated in winter make annual layers that were strongly affected by drop rates and carbon dioxide concentrations. As some seasonal layers have significantly different thicknesses, more precise comparisons with cave-climate data are required to fully understand on the processes that occur in cave environments.

How to cite: Ishihara, Y., Ooka, S., Sasaki, H., and Yoshimura, K.: Comparison of annual-layer formation pattern and climate monitoring data: an example of a stalagmite from Gyokusen-do Cave, Okinawa Island, southwest Japan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2536, https://doi.org/10.5194/egusphere-egu2020-2536, 2020.

EGU2020-11089 | Displays | CL1.26

Monitoring activities in several caves along a transect stretching from the Adriatic Sea to the Aggtelek Karst (NE-Hungary): trace element and stable isotopic compositions of drip waters and cave carbonates

György Czuppon, Attila Demény, Neven Bocic, Nenad Buzjak, Krisztina Kármán, Zsófia Kovács, Szabolcs Leél-Össy, Szilárd John, Mihály Óvári, and Emese Bottyán

Several caves have been monitored along a transect stretching from the Adriatic Sea to the Aggtelek Karst (NE-Hungary) including two caves in Croatia and three caves in Hungary:  1) Cerovacke cave (~25 km far from the sea, Velebit Mt.), 2) Baraceve cave (~70 km far from the sea), 3) Csodabogyós Cave (~320 km far from the sea, Keszthely Mt.), 4) Béke and Baradla Caves (~700 km far from the sea, Aggtelek Karst). The monitoring activities in each caves included microclimate measurements, analyses of the elemental and stable isotope compositions of drip water and precipitation, as well as stable isotope measurements of modern calcite precipitates formed on light bulbs or glass plates.

The stable isotope compositions of the drip waters in all cases (except one) show systematically lower values than those found in amount-weighted annual precipitation suggesting that the source of the infiltrating water dominantly derives from winter precipitation. Moreover, the relative contribution of winter precipitation can vary even within same cave system reflecting also the local morphology of the karst above the cave. The d-excess values of the drip waters show an increasing trend from the Aggtelek Karst towards to Adriatic Sea, showing higher values than 10‰ (Béke-C.: 10.3‰; Csodabogyós-C.: 11‰, Baraceve-C.: 12‰, Cerovacke: 15‰). These observations indicate significant contribution from moisture originated from the Mediterranean Basin to the infiltrating water. The monitoring of the precipitation support these findings as among the marine moisture source the Mediterranean is the most dominant even relative far from the sea.

The trace element systematics in drip waters indicate that PCP likely took place during relatively dry periods. In some caves the change of the hydrological condition affected both the trace element composition of the drip water and the stable isotope composition of the modern calcite precipitates. Although the calcite-water isotope fractionations show significant scatter even within individual caves, the majority of the data fall close to the Coplen (2007) and the Tremaine et al. (2011) fractionation values in both Croatian and Hungarian caves.

The research was supported by the Ministry for Innovation and Technology, the National Research, Development and Innovation Office (project No. PD 121387).

How to cite: Czuppon, G., Demény, A., Bocic, N., Buzjak, N., Kármán, K., Kovács, Z., Leél-Össy, S., John, S., Óvári, M., and Bottyán, E.: Monitoring activities in several caves along a transect stretching from the Adriatic Sea to the Aggtelek Karst (NE-Hungary): trace element and stable isotopic compositions of drip waters and cave carbonates, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11089, https://doi.org/10.5194/egusphere-egu2020-11089, 2020.

EGU2020-18124 | Displays | CL1.26

High-precision dating of MIS 7 using Austrian Alp stalagmites

Kathleen Wendt, Xianglei Li, Hai Cheng, R. Lawrence Edwards, and Christoph Spötl

We present a high-precision record of the Penultimate Interglacial (MIS 7) and the Penultimate Glacial inception (MIS 7–6 transition) from Spannagel Cave in the central European Alps (southern Austria). Drip waters in this high-elevation cave are largely sourced from the overlying low-permeability gneiss, giving rise to unusually high uranium concentrations in secondary calcite deposits (up to 200 ppm). The large quantities of 234U and 230Th incorporated in samples can be measured using high-precision spectrometry, resulting in relative age uncertainties as low as 1‰ (2σ) during our study period (~250 to 197 thousand years ago [ka]). Using this unprecedented age control, we revisit Spannagel stalagmite SPA121 that grew continuously throughout MIS 7 and the MIS 7–6 transition. Previous work by Spötl et al. (EPSL 2008) revealed that SPA 121 δ18O displays similar timing and structure to global benthic marine δ18O during MIS 7, including distinct sub-stages. New dating allows us to constrain the exact timing and duration of MIS 7 sub-stages in the European Alps, including the timing of Terminations (T) III and IIIa. Preliminary results show the onset of MIS 7e at 241.4 ± 0.3 ka, the δ18O minima during MIS 7b at 224.5 ± 0.3 ka, and the mid point of TIIIa at ~216.2 ± 0.3 ka. The onset of decreasing δ18O associated with the MIS 7a–6e transition occurred no later than 193.0 ± 0.2 ka. Two newly collected stalagmites from this cave (SPA146 & 183) provide two high-resolution replications of the MIS 7a–6e transition. The resulting multi-stalagmite record will provide important chronological constraints on climate shifts in the European Alps during the Penultimate Interglacial and subsequent glacial inception.

How to cite: Wendt, K., Li, X., Cheng, H., Edwards, R. L., and Spötl, C.: High-precision dating of MIS 7 using Austrian Alp stalagmites, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18124, https://doi.org/10.5194/egusphere-egu2020-18124, 2020.

Fluorescent annual layers with thicknesses of 0.01–0.1 mm occur frequently in stalagmites around the world. Aggradational variations of fluorescence intensity expressing those annual layers have been postulated as being caused by seasonal fluctuations of the supply of fulvic acid from the surface. The variation patterns of fluorescence intensity in annual layers can be classified into symmetric, gradually increasing, and gradually decreasing types. Numerical simulation of fluorescent annual-layer patterns based on the stalagmite-formation model suggests that various patterns of fluorescence intensity in annual layers can form by time lags between a growth season and the fulvic acid supply peak on a stalagmite. However, verification of those fluorescence patterns requires long-term cave climate monitoringin caves. In this study, we simulated fluorescence intensity variations in a modeled stalagmite based on cave climate monitoring data from a cave in a humid-temperature climate and validated annual layer formations.

Cave climate monitoring was performed at point A (40 m inside the entrance), point B (90 m inside the entrance), and other points in Koumori-ana Cave, Mine City, Yamaguchi Prefecture, southwest Japan, from the end of 2016. The monitoring data included cave air temperatures, CO2 concentrations, and drip rates. Ca2+ concentrations and relative fluorescence intensities to quantify fulvic-acid concentrations were measured monthly from drip-water samples.

The monitoring data showed that cave temperatures decrease in winter near the entrance and increase in summer near the upper vent. Drip rates at point A corresponded to rainfall amounts at the meteorological station in Akiyoshi-dai, whereas drip rates at point B were constant throughout the years monitored. CO2 concentrations in the cave, closed to outside air values from November to March, became greater from April and reached maximum values in September. Ca2+ concentration had gradual seasonal variations, showing a maximum in October and a minimum in March. The relative fluorescence intensities, showing fulvic acid concentration, at both points revealed a change range of about four times the minimum.

The stalagmite-growth simulations based on the monitoring data showed different growth patterns at the two monitored points: continuous growth at one and hiatus at the other. The calculated fluorescent annual layer at point A was the symmetric or gradually increasing type, with high concentration of fulvic acid in August. The growth rate varied in the range of 0.45 (Jan–Apr) to 6.2 (May–Oct) µm/month. Because the relative fluorescence intensity of fulvic acid had small variations throughout the years, the simulated fluorescent annual layer at point A is suggested to be affected by the growth rate of stalagmite. At point B, decreased saturation indices of calcite from April to June and September to October suggest no precipitation of calcite. Although the simulated annual thickness of precipitation at point B is around 28 µm, half of the thickness is precipitated in July. Point B stalagmite growth is stopped by a high concentration of CO2, low Ca2+ concentration, and low drip rate. This study suggests that specific seasonal paleoenvironmental changes recorded in stalagmites can be estimated by using fluorescence patterns of annual layers.

How to cite: Sasaki, H., Onishi, Y., Ishihara, Y., Murakami, T., and Yoshimura, K.: Simulation of fluorescent annual-layer patterns in stalagmites based on cave climate monitoring data: an example from Komori-ana Cave, Akiyoshi-dai Plateau, southwest Japan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2575, https://doi.org/10.5194/egusphere-egu2020-2575, 2020.

EGU2020-7466 | Displays | CL1.26

Understanding the deglacial relationship between carbon isotopes and temperature in stalagmites from Western Europe

Franziska A. Lechleitner, Christopher C. Day, Micah Wilhelm, Negar Haghipour, Oliver Kost, Gideon M. Henderson, and Heather M. Stoll

The last deglaciation was a period of rapid and profound climatic change in Western Europe. Speleothem carbon isotope (δ13C) records from mid-latitude Western Europe have consistently shown large and reproducible excursions over this time period, strikingly similar to available temperature reconstructions from other archives. The mechanism behind the temperature sensitivity of speleothem δ13C, however, remains poorly constrained, due to the complex interplay of multiple processes affecting this proxy.

Here we use a multi-proxy approach and forward modelling of karst processes to investigate what drives the response of speleothem δ13C to the last deglaciation in Western Europe. We present new proxy data (14C and δ44Ca) from speleothem Candela from El Pindal Cave, northern Spain, which covers the period from the Last Glacial Maximum (25 ka BP) to the Early Holocene (8 ka BP). Previously published stable isotope data (Moreno et al., 2010) revealed a pronounced decrease in δ13C over the deglaciation (~8‰ VPDB) which closely tracks regional temperature records from the Iberian Margin. We make use of the different sensitivities of ancillary proxies (14C, Mg/Ca, and δ44Ca) to processes in soil and karst to quantify their relative importance on the δ13C shift. For this, we use the forward modelling software CaveCalc (Owen et al., 2018) to generate a large ensemble of possible solutions, from which the ones closest matching the data are chosen and evaluated.

Our preliminary results suggest that in-cave and karst processes (carbonate host rock dissolution and reprecipitation) cannot explain the full amplitude of the δ13C shift over the deglaciation, and that changes in soil δ13C are to some extent translated to the speleothem carbonate δ13C. The possibility of quantitatively disentangling processes in the soil from other karst processes could allow the reconstruction of past soil activity from speleothems.

 

References:

Moreno, A., Stoll, H., Jiménez-Sánchez, M., Cacho, I., Valero-Garcés, B., Ito, E., Edwards, R.L., 2010. A speleothem record of glacial (25-11.6 kyr BP) rapid climatic changes from northern Iberian Peninsula. Glob. Planet. Change 71, 218–231. doi:10.1016/j.gloplacha.2009.10.002

Owen, R.A., Day, C.C., Henderson, G.M., 2018. CaveCalc: A new model for speleothem chemistry & isotopes. Comput. Geosci. doi:10.1016/J.CAGEO.2018.06.011

How to cite: Lechleitner, F. A., Day, C. C., Wilhelm, M., Haghipour, N., Kost, O., Henderson, G. M., and Stoll, H. M.: Understanding the deglacial relationship between carbon isotopes and temperature in stalagmites from Western Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7466, https://doi.org/10.5194/egusphere-egu2020-7466, 2020.

EGU2020-22391 | Displays | CL1.26

Speleothem record of enhanced hydroclimate during MIS15a in Northeast Greenland

Gina Moseley, R. Lawrence Edwards, Christoph Spötl, and Hai Cheng

The Arctic region is predicted to be one of the most sensitive areas of the world to future anthropogenically-forced climate change, the consequences of which will affect vast numbers of people worldwide, for instance through changes to mid-latitude weather systems and rising eustatic sea levels. Recent changes in temperature and precipitation, and those projected for the future, indicate that some of the greatest changes will occur in Northeast Greenland. Essential knowledge on the climate history of this region, which can be used to validate models and understand forcing mechanisms and teleconnections, is however absent. Here, we present a speleothem palaeoclimate record for Northeast Greenland (80 °N) that formed during Marine Isotopes Stage 15a  between 588 ka to 537 ka. The record indicates that at that time, Northeast Greenland was warmer and wetter than at present associated with a reduction in Arctic sea ice, thawing of permafrost in eastern Siberia (55 °N and 60 °N), and elevated warm conditions at Lake El’gygytgyn (67.5 °N), Russia.

How to cite: Moseley, G., Edwards, R. L., Spötl, C., and Cheng, H.: Speleothem record of enhanced hydroclimate during MIS15a in Northeast Greenland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22391, https://doi.org/10.5194/egusphere-egu2020-22391, 2020.

EGU2020-13062 | Displays | CL1.26

Green Sahara periods and climate-human interactions during the Last Glacial Period: Evidence from Northwest African speleothems

Yassine Ait Brahim, Lijuan Sha, Jasper A. Wassenburg, Francisco W. Cruz, and Hai Cheng

North Africa is a key region to study the interactions between low-latitude African monsoon systems and high-latitude millennial-scale climate change. Here, we present new high‐resolution δ18O records and preliminary Δ17O data (deviation of triple oxygen isotope data between δ17O and δ18O) from four Southwest Moroccan speleothems (⁓31°N) spanning the last glacial period. Our δ18O records provide evidence of humid conditions during the Marine Isotope Stage (MIS) 5 and the early to mid‐Holocene. The apparent increase in moisture during these Green Sahara periods is linked to the increase of summer insolation and the resulting expansion of the West African monsoon fringe, which could reach 31°N in NW Africa. Furthermore, the preliminary Δ17O results support our interpretation of δ18O data and reveal substantial changes in moisture sources and climate regimes between glacial and interglacial cycles.

Additionally, the Green Sahara periods are good examples to illustrate how dramatic climate change could shape human life in Africa – the original home of anatomically modern humans (AMH). Archaeological evidence shows that the human populations in North Africa during MIS5 were geographically well placed to disperse after the “Green Sahara” faded. Our climate record shows an abrupt deterioration of climate conditions during the MIS5-MIS4 transition, which has been proposed as one of the main factors that pushed AMH to move into Eurasia. Interestingly, the MIS5-MIS4 transition is characterized by a decrease of summer insolation and the occurrence of the Heinrich events 7a and 7b, which possibly induced a southern shift of the Intertropical Convergence Zone (ITCZ) and, therefore, a retreat of the African monsoon during this period.

How to cite: Ait Brahim, Y., Sha, L., Wassenburg, J. A., Cruz, F. W., and Cheng, H.: Green Sahara periods and climate-human interactions during the Last Glacial Period: Evidence from Northwest African speleothems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13062, https://doi.org/10.5194/egusphere-egu2020-13062, 2020.

EGU2020-19466 | Displays | CL1.26

Last interglacial speleothem records from the western and southeastern side of the Alps

Charlotte Honiat, Christoph Spötl, Stéphane Jaillet, Paul Wilcox, Tanguy Racine, R.Larry Edwards, and Hai Cheng

The Last Interglacial (LIG, ~130–116 ka) was one of the warmest interglacials of the past 800,000 years. Although the orbital configuration was different, the LIG is a useful test bed for the future of the Holocene, because LIG archives have a higher preservation potential and can be dated at much higher precision than older interglacials, e.g. Marine Isotope Stage 11. Speleothems are among the most important terrestrial archives to study the climate of the LIG. Only few well-dated such studies, however, have been published for Europe and there are significant uncertainties regarding the timing of the onset and the magnitude of the peak warmth between some of these reconstructions.

The European Alps have shown to be a climatically highly sensitive region with a warming trend twice the average of the Northern Hemisphere. We therefore examined Alpine caves and studied stalagmite records of the LIG to gain insights into how this mountain range was affected by a warmer climate than today. We present a new, replicated and precisely dated speleothem stable isotope stack from two caves in the Western Alps and two caves in the southeastern Alps. Modern and paleodata show that the O isotopic composition of meteoric precipitation is a function of the mean air temperature in most parts of the Alps. Western stalagmites record an initial warming at 129.6 ± 0.4 ka and reach a first O isotope plateau at 129.0 ± 0.4 ka. An early optimum is identified after the first warming until 127.4 ± 0.5 ka, followed by a cooling until 126.6 ± 0.5 ka. The warming continued but the growth rate slowed down from 126.2 ±0.4 ka to 123.7 ±0.8 ka. Toward the end of the record (123.7 ±0.8 ka) the carbon isotopes slightly rise toward less negative values, possibly indicating climate cooling. The southeastern Alpine stalagmites started growing after Termination II (between 129.1±1.1 ka and 128.5±0.5 ka) and the oxygen isotope values slightly increase from 129 to 120 ka. At the onset of the LIG the carbon isotope values show a stepwise decrease as the oxygen isotope values become less negative, documenting the expansion of vegetation and the gradual soil development during the early part of the LIG. Vegetation and soil bioproductivity peaked around 126 ka in the west and at 125 ka in the southeast. Growth in the west was interrupted soon after 125 ka while in the southeast the carbon isotope signal stayed stable until 123 ka. The final decrease in vegetation density towards the end of the LIG was less synchronous among the southeastern speleothems and was characterized by abrupt shifts. Most stalagmites stopped growing after 119 ka when the carbon isotope values reached their highest values indicating a decrease in soil activity and/or vegetation density, possibly associated with deforestation. 

How to cite: Honiat, C., Spötl, C., Jaillet, S., Wilcox, P., Racine, T., Edwards, R. L., and Cheng, H.: Last interglacial speleothem records from the western and southeastern side of the Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19466, https://doi.org/10.5194/egusphere-egu2020-19466, 2020.

EGU2020-6972 | Displays | CL1.26

Uranium isotope systematics in the Melchsee-Frutt cave region (Central Swiss Alps)

Andrea Schröder-Ritzrau, Jens Fohlmeister, Martin Trüssel, Julius Förstel, Norbert Frank, Christoph Spötl, and Marc Luetscher

We investigated the uranium isotope systematics in an alpine cave environment (central Switzerland). We measured the U concentration and the 234U/238U activity ratio of the two main host rock formations in which the cave developed and the 234U/238U activity ratio of drip water. We further investigated the U characteristics of young carbonate precipitates (< 500 a old) at these drip sites. In addition, we analysed several speleothems between 1 and ~200 ka old. We observe variable U concentrations (between 0.1 – 5 ppm) and a significant spread in the initial activity ratio of 234U/238U (between ~1 and 5) between individual drips and individual stalagmites. In general, high U concentrations are accompanied by low initial 234U/238U ratios and vice versa. However, these data do not follow a binary mixing line between the two host rock endmembers (both show low U concentrations of about 1 ppm). Instead, we argue that redox processes within the karst might govern the U systematics of cave drip water and speleothems, as high and variable SO42- concentrations in drip water are observed, which point to at least locally constrained anoxic conditions in the host rock. The dependence of the initial 234U/238U activity ratio and U concentration of the stalagmites from this cave in concert with the partly large absolute value in their initial activity ratio open the perspective for dating speleothems from this karst region back to ~1 Ma.

How to cite: Schröder-Ritzrau, A., Fohlmeister, J., Trüssel, M., Förstel, J., Frank, N., Spötl, C., and Luetscher, M.: Uranium isotope systematics in the Melchsee-Frutt cave region (Central Swiss Alps), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6972, https://doi.org/10.5194/egusphere-egu2020-6972, 2020.

EGU2020-17760 | Displays | CL1.26

Atmospheric and Soil Signals in a Climate Dependent Stalagmite Radiocarbon Record from Northern Turkey

Steffen Therre, Jens Fohlmeister, Dominik Fleitmann, Ronny Friedrich, Marleen Lausecker, Andrea Schröder-Ritzrau, and Norbert Frank

The climatic controls of stalagmite radiocarbon (14C) remain one focus of modern paleoclimatology due to recent efforts and achievements in 14C calibration. The Hulu cave 14C record (Cheng et al., 2018) has proven the potential of stalagmites from temperate climate zones for atmospheric 14C reconstruction. However, a constant dead carbon fraction (DCF) in stalagmites over long periods is rather exceptional. In our study, a high-resolution 14C record (N=111) of a precisely U-Series dated stalagmite from Sofular Cave (Northern Turkey) with elemental Mg/Ca ratio data is presented. A phase of low and constant DCF (12.5% ± 1.6%, N=20) between 10 and 14 kyr BP, together with relatively stable Mg/Ca ratios suggest stable hydrological soil/karst conditions above the cave. However, we observe unstable soil conditions for the period before 14 kyr BP where DCF is strongly variable between a lower threshold of approximately 5% and an upper limit of 25%. Near a phase of slow growth at ~17 kyr BP DCF as high as 38% is observed on sub-centennial timescales.  The combination of stable isotopes, element ratios, radiocarbon and U-series data allows for multi-proxy analysis of the impact of rapid climate changes like D/O events on the incorporation of 14C into stalagmites. Between 15 and 27 kyr BP, hydrological changes have a large impact on limestone dissolution systematics which is reflected in fast DCF variations on sub-centennial timescales. A growth stop between 21 and 23 kyr BP is resolved. Although a comprehensive reconstruction of atmospheric 14C variations is not possible for the entire growth period, the stalagmite reproduces the deviation from the IntCal13 record (Reimer et al. 2013) seen in the Hulu 14C data at ~40 kyr BP during the Laschamp geomagnetic reversal and provides further inside on the climate dependency of 14C incorporation in stalagmites.

References

Cheng, H., Lawrence Edwards, R., Southon, J., et al.: Atmospheric 14C/12C changes during the last glacial period from Hulu cave, Science, 362(6420), 1293–1297, doi:10.1126/science.aau0747, 2018.

Reimer, P. J., Bard, E., Bayliss, A., et al.: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP, Radiocarbon, 55(4), 1869–1887, doi:10.2458/azu_js_rc.55.16947, 2013.

How to cite: Therre, S., Fohlmeister, J., Fleitmann, D., Friedrich, R., Lausecker, M., Schröder-Ritzrau, A., and Frank, N.: Atmospheric and Soil Signals in a Climate Dependent Stalagmite Radiocarbon Record from Northern Turkey, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17760, https://doi.org/10.5194/egusphere-egu2020-17760, 2020.

EGU2020-10485 | Displays | CL1.26

Pleistocene carbonates from Dobrogea (E Romania) and their relationship with Black Sea level fluctuations

Virgil Dragusin, Silviu Constantin, Vasile Ersek, Dirk L. Hoffmann, and Alex Hotchkies

The eastern part of Romania, bordering on the Black Sea, is generally poor in speleothems and only Piatra Cave has important speleothem occurrences. This cave is positioned close to the present-day shoreline, forcing the local aquifer to completely flood it when it rose synchronously with sea level. The flooding of the cave prevented speleothem formation. Conversely, sub-aerial carbonate deposition took place when the sea level was lower than today and the cave was dry. The study of speleothems from Piatra Cave could bring more insight on past Black Sea level fluctuations, as well as on the isotopic composition of percolating water.

Some 50 km to the south of Piatra Cave, around the town of Mangalia, botryoidal calcite has been deposited inside small voids formed between Sarmatian limestone beds. Such calcite formations are considered to form close to the water table, at the contact with the underground atmosphere. If so, they could be used to track the position of past water tables, as well as the isotopic composition of those waters. Moreover, as these samples are found only close to the present-day shoreline, they might have been deposited from underground water whose level was directly controlled by the sea.

Here we present the results of δ18O and δ13C measurements on 75 samples and sub-samples of botryoidal calcite. We explore the implications of their isotopic variability, by comparison with speleothems from Piatra Cave as well as to other speleothems from Romania. Moreover, we explore their isotopic variability across the sampling area, in order to better assess their possible use as sea level markers.

How to cite: Dragusin, V., Constantin, S., Ersek, V., Hoffmann, D. L., and Hotchkies, A.: Pleistocene carbonates from Dobrogea (E Romania) and their relationship with Black Sea level fluctuations , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10485, https://doi.org/10.5194/egusphere-egu2020-10485, 2020.

EGU2020-19608 | Displays | CL1.26

Climate driven mobility of the early humans in SW Asia: Preliminary evidence from Iranian Stalagmites

Arash Sharifi, Ali Pourmand, Mehterian Sevag, Peter Swart, Larry Peterson, and Hamid A. K. Lahijani

The dynamic interaction between synoptic systems across the Iranian Plateau in West Asia has made this region highly sensitive to climate change.   Early human migration routes in the region from Africa to Eurasia are marked by Paleolithic sites and provide a unique opportunity to study the impact of climate variability on early human mobility and settlement. Preliminary results are based on δ18O and elemental time series from three stalagmites in central-northwest Iran with robust U-Th chronology over the last 450,00 years The data raise the possibility that the Iranian Plateau experienced several episodes of wet conditions during the Paleolithic period. This is in line with findings from a compilation of independent proxy records of lake sediment in northwest Iran and loess deposits in northeast Iran. The fluctuation of Mn abundance and δ18O values in these stalagmites correlate with the Greenland ice core record (NGRIP) and coincide with periods of high solar intensity in the northern hemisphere. These early results indicate wet conditions may have prevailed over the Iranian Plateau during marine isotope stages MIS5a,b, MIS5c, MIS5e, MIS6b, MIS6d-e and most likely also during stages MIS3-4 and MIS7a. Early human occupation of the Southern Caucasus, Zagros, and the Near East regions coincides with the upper Pleistocene wet periods. The co-variability between the proxy data from these speleothems and solar insolation at 30°N suggests that early human settlements/occupations may have been more prevalent along coastal regions of the Near East during dry climate episodes.

How to cite: Sharifi, A., Pourmand, A., Sevag, M., Swart, P., Peterson, L., and A. K. Lahijani, H.: Climate driven mobility of the early humans in SW Asia: Preliminary evidence from Iranian Stalagmites, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19608, https://doi.org/10.5194/egusphere-egu2020-19608, 2020.

EGU2020-18326 | Displays | CL1.26

The Maya Terminal Classic Drought replicated in two stalagmites from Columnas Cave, NW Yucatán

Daniel James, Sebastian Breitenbach, Hai Cheng, Adam Hartland, Ian Orland, Mark Brenner, Jason Curtis, Christina Gallup, Soenke Szidat, John Nicolson, James Rolfe, Andrew Mason, Gideon Henderson, and David Hodell

During the Terminal Classic Period (c.800-1000CE) most major Maya centres in the lowlands of the southern Yucatán Peninsula declined and were then abandoned, in what would come to be known as the Classic Maya Collapse. The causes of this societal transformation remain open for debate in modern archaeology. Over the past 25 years, palaeoclimatic records from lake sediments and speleothems have prompted discussion about the role abrupt climate change may have played in the decline. These records largely indicate the existence of a Terminal Classic Drought, a period of increased drought frequency that is approximately contemporaneous with the Collapse.

The high temporal resolution of speleothem archives makes them an important tool in assessing the validity of these records. Previous work has demonstrated the prevalence of drought in the lowlands of both northern and southern Yucatán during the Terminal Classic and Early Postclassic Periods. However, it has been difficult to build a detailed understanding of regional rainfall changes owing to the large spatial and temporal variability of precipitation over the Peninsula, as observed in the modern day.

Here we report a high-resolution (100µm), absolutely-dated, replicated record of δ18O and δ13C variations in two stalagmites from Columnas Cave (Rancho Hobonil) near the Puuc Hills, a dominant region of Maya settlement in north-western Yucatán during the Terminal Classic. The oxygen and carbon isotopic records of the speleothems (designated Hobo-5 and Hobo-6), located <10m apart in the farthest reaches of the cave, can be correlated with one another in great detail. The highest δ18O values in both speleothems occur during the Terminal Classic Period, coupled with the onset of an extended period of consistently high δ13C values. These are interpreted as representing a period of increased drought frequency; as documented from sediment cores in nearby Lake Chichancanab, located ≈30km from Columnas Cave. These replicated records provide strong evidence for highly variable climatic conditions in the Terminal Classic, when the Puuc Maya underwent several boom-bust cycles. Ultrahigh-resolution (10µm) SIMS isotope and synchrotron µXRF analyses during this critical period have been undertaken to test if an annual record of climatic changes can be developed.

Radiocarbon data across the Terminal Classic also displays a single abrupt increase in 14C content around 1000CE, indicating a decrease in the dead carbon fraction. This event occurs close in time to the 994CE solar proton event documented in tree rings. If these events are indeed synchronous, it would constitute the first instance of the cosmogenic radiocarbon event being recorded in a speleothem, which would provide a valuable absolute correlation horizon.

How to cite: James, D., Breitenbach, S., Cheng, H., Hartland, A., Orland, I., Brenner, M., Curtis, J., Gallup, C., Szidat, S., Nicolson, J., Rolfe, J., Mason, A., Henderson, G., and Hodell, D.: The Maya Terminal Classic Drought replicated in two stalagmites from Columnas Cave, NW Yucatán, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18326, https://doi.org/10.5194/egusphere-egu2020-18326, 2020.

EGU2020-10343 | Displays | CL1.26

Holocene hydroclimate of the Volga Basin recorded in speleothems from the Central and Southern Ural Mountains, Russia

Jonathan Baker, Yuri Dublyansky, Olga Kadebskaya, Denis Scholz, Gabriella Koltai, Hanying Li, Jingyao Zhao, Christoph Spötl, and Hai Cheng

Hydroclimatic variability over the Volga River watershed (western Russia) strongly influences agricultural production, forest and grassland ecology, Caspian Sea level, and associated economic stability. Climate model forecasts of these variables suggest long-term increases in crop shortfalls and over-basin evaporation in the Volga and Caspian regions, respectively, but these projections currently lack validation from high-quality paleoclimate data. We present decadal-scale geochemical proxy data (δ13C, Mg/Ca, Sr/Ca) from 230Th-dated stalagmites retrieved from four caves along a 640-km north-south gradient in the Ural Mountains, which collectively cover the entire Holocene (11.7 ka to present). Orbital trends in δ13C and Mg/Ca are broadly coherent between Ural speleothems and suggest that following Early Holocene aridity, warm-season precipitation was paced by summer insolation and has gradually declined since ~8 ka, consistent with model hindcasting. Centennial-scale variability, which is exceptionally well replicated between the Southern (Kinderlinskaya Cave) and Central (Geologov-3 Cave) Ural sites, supports a dynamic link between Volga hydroclimate and sea-surface temperature in the northeastern North Atlantic and Barents Sea. Important discrepancies exist, however, with data from the southernmost cave sites, which may be related to past migration of a strong latitudinal precipitation gradient that characterizes the modern basin and approximates the limit of North Atlantic influence. Finally, we conduct model-data comparisons and review our composite dataset in light of pollen- and soil-based proxies from across the Volga region, as well as reconstructions of Caspian Sea level. Our results provide a temporally well-constrained and spatially coherent portrait of Holocene hydroclimate for the Volga River watershed, thus constituting an important metric for future modeling studies.

How to cite: Baker, J., Dublyansky, Y., Kadebskaya, O., Scholz, D., Koltai, G., Li, H., Zhao, J., Spötl, C., and Cheng, H.: Holocene hydroclimate of the Volga Basin recorded in speleothems from the Central and Southern Ural Mountains, Russia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10343, https://doi.org/10.5194/egusphere-egu2020-10343, 2020.

CL1.27 – Tracers in the Paleo Sea

EGU2020-290 | Displays | CL1.27

Modelling the impact of biogenic particle flux intensity and composition on sedimentary Pa/Th

Lise Missiaen, Laurie Menviel, Katrin J. Meissner, Nathaelle Bouttes, Didier M. Roche, Jean-Claude Dutay, Aurélien Quiquet, Fanny Lhardy, Claire Waelbroeck, and Sylvain Pichat

There is compelling evidence of a strong relation between the Atlantic Meridional Overturning Circulation (AMOC) and millennial scale climate variability during the last glacial period. Part of the advances in understanding the underlying mechanisms rely on the analysis of the sedimentary Pa/Th ratio, which can be used to qualitatively infer past flow rates in the Atlantic. The compilation of existing North Atlantic records indicates repeated, consistent and significant Pa/Th increases across millennial-scale events, indicating significant reductions of deep-water formation in the Northwest Atlantic. However, the use of sedimentary Pa/Th as a pure kinematic circulation proxy is challenging because Pa and Th are also highly sensitive to changes in particulate flux intensity and composition that have probably occurred across these millennial scale events. A primary control of particles on the available Pa/Th records has been ruled out ensuring the absence of correlation between the reconstructed particle fluxes (e.g. Th-normalized opal fluxes) and the sedimentary Pa/Th. However, quantitative estimates of the impact of particles on the available paleo Pa/Th are still missing.

In this study, we use the Pa/Th enabled iLOVECLIM Earth System Model of Intermediate Complexity to decipher the impact of particles on the sedimentary Pa/Th. We evaluate the impact of imposed changes in biogenic particle flux intensity and composition on the Atlantic Pa/Th in a 3-D geographical perspective. We find that up to 30% of the observed Pa/Th increase across Heinrich Stadial 1 could be explained by changes in particle fluxes and composition. Besides, changes in the Particulate Organic Carbon (POC) most efficiently affects the sedimentary Pa/Th, followed by biogenic opal. Last but not least, the global Atlantic sedimentary Pa/Th response is very sensitive to shifts in the geographical distribution of particles and high scavenging areas. In our simulations, a decrease of the opal production in the Northwest Atlantic can induce a far field Pa/Th increase in a large part of the North Atlantic basin, suggesting that a local monitoring of the particle fluxes might not be enough to rule out any influence of the particles on paleo sedimentary Pa/Th records.

How to cite: Missiaen, L., Menviel, L., Meissner, K. J., Bouttes, N., Roche, D. M., Dutay, J.-C., Quiquet, A., Lhardy, F., Waelbroeck, C., and Pichat, S.: Modelling the impact of biogenic particle flux intensity and composition on sedimentary Pa/Th, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-290, https://doi.org/10.5194/egusphere-egu2020-290, 2020.

EGU2020-2186 | Displays | CL1.27

230Th normalization: New insights on an essential tool for quantifying sedimentary fluxes in the modern and Quaternary ocean

Kassandra Costa and the GEOTRACES Working Group 3: Particle Fluxes

230Th-normalization is a valuable paleoceanographic tool for reconstructing high-resolution sediment fluxes during the late Pleistocene (last ~500,000 years). As its application has expanded to ever more complex marine environments, the nuances of 230Th systematics, with regards to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of 230Th from across the global ocean at two time slices, the Late Holocene (0-5000 years ago, or 0-5 ka) and the Last Glacial Maximum (18.5-23.5 ka), and investigated the spatial structure of 230Th-normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79-2.17 g/cm2kyr, 95% confidence) relative to the Holocene (1.48-1.68 g/cm2kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size dependent sediment fractionation, and carbonate dissolution on the efficacy of 230Th as a constant flux proxy. Anomalous 230Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that 230Th-normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic (> 1000 m) marine settings.

How to cite: Costa, K. and the GEOTRACES Working Group 3: Particle Fluxes: 230Th normalization: New insights on an essential tool for quantifying sedimentary fluxes in the modern and Quaternary ocean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2186, https://doi.org/10.5194/egusphere-egu2020-2186, 2020.

EGU2020-13297 | Displays | CL1.27

The Atlantic Meridional Overturning Circulation Over Time From Nd Isotopes

Maayan Yehudai, Steve Goldstein, Leo D. Pena, Joohee Kim, Maria Jaume-Segui, Chandranath Basak, Karla Knudson, Allison E. Hartman, and Rachel Lupien

The Atlantic Meridional Overturning Circulation (AMOC) brings heat from the tropics to the high latitudes, and its temporal variability has major impacts on climatic cycles. We have constructed north-south profiles using deep sea cores from the North Atlantic to the Southern Ocean, covering the past ~1.5 Ma or so, including the interval prior to and including the Mid-Pleistocene Transition (MPT), the interval of ‘lukewarm interglacials’ following the MPT, and to the present-day, using Nd isotopes in Fe-Mn oxide encrusted foraminifera and fish debris. Some important observations show that our Nd isotope records indeed reflect the AMOC variability, rather than regional Nd sources or alteration effects. Firstly, throughout the time interval and at all sites, the εNd-values show glacial-interglacial ‘zig-zags’, indicating stronger AMOC during interglacials and weaker AMOC during glacials. Secondly, going from north to south the data show increasingly weaker NADW signals at all points in time. Thirdly, all of the εNd-values are those expected from seawater Nd sources. The εNd-values at North Atlantic DSDP Site 607 during interglacials are almost always between -13 and -14.5, similar to present-day NADW both before and after the AMOC-crisis, thus indicating that the normal NADW range during interglacials has remained similar since the middle Pleistocene. Fourthly, at all times, the εNd-values throughout the transect remain sandwiched by the global North Atlantic and North Pacific end-member values. These observations are what are required if the data reflect the glacial-interglacial waxing and waning of the AMOC, but are unexpected for virtually any other scenario.

How to cite: Yehudai, M., Goldstein, S., Pena, L. D., Kim, J., Jaume-Segui, M., Basak, C., Knudson, K., Hartman, A. E., and Lupien, R.: The Atlantic Meridional Overturning Circulation Over Time From Nd Isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13297, https://doi.org/10.5194/egusphere-egu2020-13297, 2020.

EGU2020-11092 | Displays | CL1.27

North Atlantic deep water sources and export since MIS3: implications from Nd isotopes

Patrick Blaser, Frerk Pöppelmeier, Martin Frank, Marcus Gutjahr, and Jörg Lippold

Deep water formation in the North Atlantic represents an integral link between the atmosphere, cryosphere, and the deep ocean: heat loss from warm surface waters supplies moisture to the high latitudes and their subsequent sinking ventilates the deep ocean and sequesters greenhouse gases from the atmosphere. This moisture supply supported the formation of immense ice sheets in the region during the last glacial, which in turn affected climate. While many studies have improved our understanding of these processes for past glacials, a comprehensive picture including the significance and variation of deep water export from the Nordic Seas is still missing. Furthermore, recent observations suggested the export of a previously unknown bottom water mass from the glacial subpolar North Atlantic.

In this study we investigate the distribution and sourcing of water masses in the subpolar North Atlantic since MIS3 with the help of authigenic Nd isotopes. This method benefits from the large heterogeneity in Nd isotopic compositions of source rocks in this region, but the post-depositional dissolution of detritus within the sediments can also impede interpretations of individual records. We thus compare several Nd isotope records from the subpolar North Atlantic and Nordic Seas in order to define distinct deep water mass end members and estimate their prevalence and mixing in the subpolar North Atlantic during the last 30 ka. Our observations suggest that Nordic Seas deep water overflowing the Greenland-Scotland Ridge during MIS2 reached into the deep subpolar North Atlantic. Furthermore, its spatial distribution implies that overflow across Denmark Strait into the Irminger Basin was more pronounced than overflow into the Iceland Basin further south. The hydrographic configuration during the Last Glacial Maximum thus appears to have been more complex and more similar to today than previously thought.

How to cite: Blaser, P., Pöppelmeier, F., Frank, M., Gutjahr, M., and Lippold, J.: North Atlantic deep water sources and export since MIS3: implications from Nd isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11092, https://doi.org/10.5194/egusphere-egu2020-11092, 2020.

EGU2020-9988 | Displays | CL1.27

The novel hydroxylated tetraether index RI-OH′ as a sea surface temperature proxy for the period 160–50 ka BP off the Iberian Margin

Nina Davtian, Edouard Bard, Frauke Rostek, Guillemette Ménot, and Sophie Darfeuil

The stable oxygen isotope ratio (δ18O) of planktic foraminifers, the C37 ketone unsaturation ratio (UK′37) and the TetraEther indeX of tetraethers consisting of 86 carbon atoms (TEX86) are three well-known examples of paleothermometric proxies. These established proxies are in the realism phase of the Elderfield proxy curve (2002 Geochim. Cosmochim. Acta 66 Suppl. 1, 213, DOI: 10.1016/S0016-7037(02)01009-8), which means that their advantages and shortcomings are relatively well evidenced, though not fully understood. By contrast, the Ring Index of hydroxylated tetraethers (RI-OH′) is an example of novel paleothermometer. RI-OH′ is still in the optimism phase, so its potential in paleothermometry remains to be further explored.

Here, we present new high-resolution temperature records over the interval 160–50 ka BP using four organic proxies (RI-OH′, RI-OH, TEX86 and UK′37) from three deep-sea sediment cores located in a north-south transect along the Iberian Margin. RI-OH′, RI-OH and TEX86 are based on LC-MS analyses of individual tetraethers with a two-column HPLC and improved mass spectrometric method. We analyzed all organic proxies in the same organic extracts to optimize proxy-proxy comparisons and phase relationship studies.

Our main results strengthen the optimism concerning the novel RI-OH′ proxy for five reasons. 1/, the only existing global core-top calibration to date allows to reconstruct realistic sea surface temperature (SST) from RI-OH′ in comparison to those derived from UK′37 and TEX86. 2/, RI-OH′ allows to establish plausible latitudinal temperature gradients, which are reasonably coherent with those based on UK′37 and TEX86. 3/, RI-OH′ records resemble those from established paleothermometers, especially UK′37 and δ18O of planktic foraminifers that better reflect SST than does TEX86. 4/, RI-OH′ responds to Dansgaard-Oeschger and Heinrich events as expected for North Atlantic SST proxies, which supports a direct relationship with Greenland temperature records. 5/, the outputs of a bipolar seesaw model forced with the RI-OH′ record are well correlated with Antarctic paleotemperatures as expected from theoretical considerations.

Overall, our main findings support a continued interest on the novel hydroxylated tetraether paleothermometer RI-OH′ so that it can progress along the Elderfield proxy curve. This work complements our first promising attempt based on a RI-OH record for a shallow core from the western Mediterranean Sea, located in a complex sedimentary setting much less favorable than the Iberian Margin (Davtian et al., 2019 Paleoceanography and Paleoclimatology 34, 616–634, DOI: 10.1029/2018PA003452).

How to cite: Davtian, N., Bard, E., Rostek, F., Ménot, G., and Darfeuil, S.: The novel hydroxylated tetraether index RI-OH′ as a sea surface temperature proxy for the period 160–50 ka BP off the Iberian Margin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9988, https://doi.org/10.5194/egusphere-egu2020-9988, 2020.

EGU2020-19481 | Displays | CL1.27

Deciphering the Signal of Arctic Climate Change

Audrey Morley, Markus Raitzsch, Jelle Bijma, Szabina Karancz, and Michal Kucera

Whether or not Arctic regions remain(ed) a carbon sink or source to the atmosphere during rapidly warming climates (in the past) is a fundamental question with regards to future global warming and ocean acidification. The boron isotopic composition of planktonic foraminiferal shell calcite (δ11BCc) can potentially provide valuable information of past seawater pH if information on a second carbonate system parameter, temperature, and salinity is available. However, most applications of palaeoceanographic proxies to the cold polar oceans are limited due to a paucity of calibration data, limited information on the calcification habitat, and secondary effects of the carbonate system on the temperature recorded by Mg/Ca values measured in the dominant Arctic species Neogloboquadrina pachyderma sinistral (NPS). Here we present a new Multi-Collector Inductively Coupled Mass Spectrometry (MC-ICPMS) δ11B dataset measured on live NPS collected via plankton tows from the Labrador Sea and Baffin Bay. We compare our results with δ11Bborate derived from pH measurements, δ13C DIC seawater values, temperature and salinity collected at the time and depth the foraminifera calcified. To quantify the control of low carbonate ion concentration on Mg/Ca derived temperatures we measured B/Ca alongside Mg/Ca in the calibration dataset. We are thus able to present a new geochemical correction scheme that can isolate non-thermal controls on the Mg/Ca-temperature relationship for NPS, allowing us for the first time the reconstruction of carbonate system parameters in the Arctic Ocean.

How to cite: Morley, A., Raitzsch, M., Bijma, J., Karancz, S., and Kucera, M.: Deciphering the Signal of Arctic Climate Change , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19481, https://doi.org/10.5194/egusphere-egu2020-19481, 2020.

Ocean circulation plays an essential role in Earth’s climate and the global carbon cycle. A prerequisite for improving confidence in future climate projections is the accurate numerical modeling of past deep ocean circulation changes. Unfortunately our understanding of such changes is impeded by ambiguities in the data-based reconstructions which heavily rely on radiocarbon dating of marine samples. Central to this method is the knowledge of the reservoir age (the age difference between the surface ocean and the atmosphere). Concomitant changes in atmospheric levels, air-sea exchange rates, and ocean circulation have the potential to drive large temporal and spatial changes of this reservoir age over the deglaciation. However these changes are not well constrained by field evidence. In consequence large uncertainties affect the dating of main climate events. Model studies allow complementing field data while also providing the means of assessing the sensitivity to different processes.

Here, we investigate the sensitivity of the radiocarbon reservoir ages and reconstructed calendar ages over the last termination. For this purpose we take advantage of a set of transient simulations performed with the Max Planck Institute Earth System Model (MPI-ESM) with interactive calculation of river runoff and automatic adjustment of model topography. The experiments, starting at 26 ka BP, are constrained with prescribed time varying ice sheets and topography in addition to variations of the Earth orbital parameters and reconstructed atmospheric greenhouse gases concentrations. Changes in ice sheet volume naturally result in freshwater surges which affect the global circulation and water masses distribution. Ocean radiocarbon is included in the model. The atmospheric 14C follows the INTCAL13 reconstruction while the impacts of varying wind speed, sea-ice cover, and atmospheric CO2 on air-sea exchange rates are explicitly included.

Different ice-sheets reconstructions (ICE-6G_C and GLAC-1D) and model configurations (addressing vertical mixing, bathymetry and land-sea mask) provide a range of ocean responses. The impact on reservoir ages of uncertainties related to planktonic foraminifer species-specific habitat is also considered. Together with the suite of model states this provides a range of reservoir ages over time. A calibration step allows then obtaining an estimate of the temporal evolution over the deglaciation of the time resolution of the radiocarbon dating method. Regional and global evolutions are examined and discussed.

How to cite: Mouchet, A., Mikolajewicz, U., and Voelker, A.: The ocean radiocarbon reservoir age over the last termination and the calendar age uncertainty of marine samples: a sensitivity study with a coupled climate model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19759, https://doi.org/10.5194/egusphere-egu2020-19759, 2020.

EGU2020-3037 | Displays | CL1.27

Foraminiferal tracers of Indian-Atlantic interocean exchange during the last 600 kyr

José N. Pérez-Asensio, Kazuyo Tachikawa, Thibault de Garidel-Thoron, Laurence Vidal, Corinne Sonzogni, Abel Guihou, and Min-Te Chen

The Indian-Atlantic interocean exchange (IAIE), occurring through Agulhas current and its leakage around the southern tip of Africa, is one of the return flows of global thermohaline circulation that contributes to the temperate climate in Europe. The IAIE affects the transport of heat and salt to the zone of deep-water formation in the N Atlantic, influencing the variability of Atlantic Meridional Overturning Circulation (AMOC). During the last 600 kyr, significant climatic events took place such as the Mid-Bruhnes event (MBE) (~430 ka) that marks a transition towards more intense interglacial periods.

The main objective of our study is to assess the impact of climate forcing on the strength of both surface and deep water IAIE during the last 600 kyr. For this purpose, we examined the variability of a group of warm-water planktonic foraminiferal species for tracing surface water circulation. We combined published and unpublished data from 3 cores along an Indian-Atlantic transect: two cores in the Indian Ocean, core MD96-2048 (26°10’S, 34°01’E, 660 m) in the source of the Agulhas current and our study core MD96-2077 (33º10’S, 31º14’E, 3781 m) in the middle of the Agulhas current; and one core in the Atlantic Ocean, core ODP1087 (31°27’S, 15°18’E 1372 m) recording the Agulhas leakage.

Since Globorotalia menardii and Globorotalia tumida are frequently used to trace Agulhas leakage, their variability in Agulhas current in the Indian Ocean is of our interest. Therefore, we compared the relative abundances of the warm-water planktonic G. menardii and G. tumida species with a group of warm-water planktonic foraminiferal species to record the strength of Agulhas current in core MD96-2077. Our results show that the group of warm-water planktonic species reflects increased Agulhas current strength at glacial terminations coinciding with stronger Agulhas leakage (Atlantic core ODP1087) as observed in previous studies. However, in core MD96-2077, both G. menardii and G. tumida relative abundances increase during interglacial periods. This indicates that production of these species in the Agulhas current source region is unlikely to trace Agulhas leakage in the Atlantic Ocean. The analyses of deep-water circulation proxies (Nd isotopes, benthic O and C stable isotopes) are in progress, and they will allow us to assess the response of deep circulation to changes in Agulhas current and leakage over the last 600 kyr.

How to cite: Pérez-Asensio, J. N., Tachikawa, K., de Garidel-Thoron, T., Vidal, L., Sonzogni, C., Guihou, A., and Chen, M.-T.: Foraminiferal tracers of Indian-Atlantic interocean exchange during the last 600 kyr, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3037, https://doi.org/10.5194/egusphere-egu2020-3037, 2020.

Over the past two decades, an impressive amount of radiocarbon age measurements on samples of fossil benthic foraminifera and deep-sea corals have been published in the literature. These measurements are commonly used to draw inferences about changes in the ventilation of deep oceanic basins during the last deglacial period. Lacking in most previous studies, however, are quantitative estimates of deep-ocean paleo-ventilation rates and quantitative estimates of their errors, leading to potential over-interpretation and sterile debate. Moreover, most previous studies were concerned with the interpretation of individual records with low or no regard for other records available for the same time interval.

Here we present an effort to go beyond the qualitative interpretation of single radiocarbon records by analyzing an updated compilation of 14C age data using recursive least-squares (RLS) methods (a Kalman filter and a related smoother). In stark contrast with other methods of data analysis, RLS methods can provide an estimate of the history of the state of the physical system of interest and an estimate of the error in this history, which are consistent (in the least-squares sense) with times series of data and with a dynamical model, given estimates of the statistics of the errors in the data and in the model. Our current compilation includes 1,698 deep water 14C age data for the past 40 kyr based on fossil samples of benthic foraminifera, deep‐sea corals, deep‐dwelling planktonic foraminifera, bivalves, and spiral shells. The geographic distribution of the samples is very irregular, with most of them originating from near the margins and with large regions devoid of any data. The depths of the samples vary from about 250 m to about 5,000 m. In our study, the potential of RLS methods to estimate the history of deep-ocean ventilation rates and their errors from deep water 14C age data is explored for a number of abyssal layers in the Atlantic Ocean during the deglacial interval from 20 to 10 kyr BP. The approach used to apply the powerful but computationally expensive RLS methods to the analysis of geologic time series is described, the least-squares estimates of ventilation rate history in different layers are reported, and their significance in the light of their error estimates is discussed.

How to cite: Marchal, O., Zhao, N., and Duffy, F.: Can Radiocarbon Records lead to Quantitative Estimates of Deep-Ocean Ventilation Rates with Error Estimates in the Geologic Past? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3642, https://doi.org/10.5194/egusphere-egu2020-3642, 2020.

EGU2020-4247 | Displays | CL1.27

On the influence of sediment resuspension on deep-ocean Pa-231 and Th-230 cycling: Roles of turbulent mixing and differential scavenging

Siyuan-Sean Chen, Olivier Marchal, Paul Lerner, Dan McCorkle, and Michiel Rutgers van der Loeff

The naturally-occurring particle-reactive radionuclides protactinium-231 (231Pa) and thorium-230 (230Th) are used as tracers of a variety of oceanic processes, both at present and in the past. Most notably, the sediment 231Pa/230Th ratio has been used to infer changes in the Atlantic Meridional Overturning Circulation over the last (de)glaciation. However, recent measurements along the U.S. GEOTRACES North Atlantic transect (GA03) revealed two features which are at odds with current understanding about 231Pa and 230Th behaviour in the ocean: (i) a sharp decrease in dissolved 231Pa and 230Th activities with depth below 2000-4000 m and (ii) very large particulate 231Pa and 230Th activities near the bottom, at a number of stations between the New England continental shelf and Bermuda. Concomitant measurements of particulate matter concentration and potential temperature showed that both features are associated with the benthic nepheloid layer (BNL) and the bottom mixed layer (BML) that are present at these stations.

Here we develop and apply a simplified model of the exchange of particles, 231Pa, and 230Th between the BNL and the upper sediment, to explore the extent to which the radionuclide anomalies observed near the bottom at a number of GA03 stations can be explained by local sediment resuspension. We find that the model can broadly reproduce the observed anomalies at two stations where samples for radionuclide analyses were collected near the seafloor. Sensitivity tests with the model show that the 231Pa/230Th ratio of particles in the BML and the sediment varies by a factor of 3 as the sediment resuspension rate fluctuates within a range consistent with observational estimates. The modelled variability is comparable to the spatial variability of 231Pa/230Th of suspended particles in the modern North Atlantic and to the variability of Atlantic sediment 231Pa/230Th records across the last (de)glacial period. Two factors are found to contribute to the modelled sensitivity of the sediment 231Pa/230Th to sediment resuspension rate: the vertical turbulent mixing in the BML and the differential scavenging intensity of Pa and Th due to variation in particle concentration. Overall, our study indicates that the exchange of material between the BNL and the upper sediment can affect the particulate 231Pa/230Th ratio in the bottom water and the sediment, which may complicate the use of sediment 231Pa/230Th as a palaeoceanographic tracer.

How to cite: Chen, S.-S., Marchal, O., Lerner, P., McCorkle, D., and Rutgers van der Loeff, M.: On the influence of sediment resuspension on deep-ocean Pa-231 and Th-230 cycling: Roles of turbulent mixing and differential scavenging, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4247, https://doi.org/10.5194/egusphere-egu2020-4247, 2020.

         Cold-water corals represent an intriguing paleoceanographic archive with a great potential to reconstruct high-resolution paleoenvironmental changes. Compared to those of shallow-water corals, proxies derived from cold-water corals have been complicated by biologically mediated vital effects. The oxygen and carbon stable isotope compositions of cold-water coral skeletons are more depleted than the expected carbonate-seawater equilibrium values by ~4–6‰ and ~10‰, respectively. Therefore, it is necessary to correct for the vital effect before using δ18O as a temperature proxy. δ18O and δ13C of cold-water corals exhibit strong linear correlations after adjusting for ambient seawater δ18O and δ13C values. The δ18O intercepts of this linear regression were found to be correlated with water temperatures. This so-called ‘intercept method’ can therefore be used to reconstruct temperatures variations of intermediate and deep oceans. Moreover, sampling along the growing bands of cold-water corals can provide samples to generate temperature sequences. After that, three geochemical models have been proposed to explain the δ18O and δ13C depletion of cold-water corals. However, none of them can explain the behavior of all geochemical parameters. In future, more analyses and experiments at micro-scales are required to adjust these geochemical models or propose new ones.

How to cite: Kong, L.: Oxygen and Carbon Isotopes of Cold-water Corals——Reconstructing Paleotemperature changes and Calcification Mechanism, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6500, https://doi.org/10.5194/egusphere-egu2020-6500, 2020.

EGU2020-6725 | Displays | CL1.27

231Pa/230Th in the northwestern Atlantic: circulation versus particles?

Finn Süfke, Frerk Pöppelmeier, Patrick Blaser, and Jörg Lippold

In 2004 McManus et al. published their famous 231Pa/230Th record from the Bermuda Rise revealing millennial-scale changes in circulation strength back to the Last Glacial Maximum. This record marks the boost of this proxy as a kinematic circulation change proxy for the Atlantic Ocean and the initial rising slope on the ‘Elderfield-Curve’. However, the up-to-date data base of Atlantic sedimentary 231Pa/230Th records gives a rather inconsistent picture of changes in the circulation strength in the Atlantic throughout the past 25 ka (Ng et al., 2018). Since both radioisotopes are strongly particle reactive it is obvious that scavenging processes may play a major role in their cycling as well. At ocean margins such processes do have a major impact on 231Pa/230Th, leading to increased values and thus potentially overprinting the circulation signal. In contrast, records from open ocean sites are assumed to show a less biased circulation signal. In addition, the GEOTRACES program (Schlitzer et al., 2018) provided valuable seawater data allowing for examining the cycling of both radioisotopes under today’s circulation regime in more detail. A transect across the North Atlantic by Hayes et al. (2015) revealed that nepheloid layers contribute to strong bottom scavenging of 231Pa and 230Th in the northwestern Atlantic basin. Surprisingly, sedimentary core-top values do not mirror predominant scavenging effects but rather indicate a strong export of 231Pa and therefore a circulation signal. With our modern proxy toolbox, it is impossible to reconstruct the occurrence and intensity of past nepheloid layers and hence their potential effect on recorded 231Pa/230Th variations. Therefore, isotope-enabled models may help to better decipher the interwoven processes controlling 231Pa/230Th (Rempfer et al., 2017; Lerner et al., 2019). Here an up-to-date compilation of northwestern Atlantic 231Pa/230Th data will be presented. Our findings base on records covering the last 25 ka and will be interpreted in the context of recent model simulations as well as compared to seawater data. Thus, we aim for a deeper understanding of 231Pa and 230Th cycling in the northwestern Atlantic.

References:

Hayes, C., et al. (2015), Deep-Sea Res. Pt. II, 116, 29-41.
Lerner et al. (2020), Deep Sea. Res. Pt. I, 155, 1-41.
McManus, J. F., et al. (2004), Nature, 428, 834-837.
Ng, H., et al. (2018), Nat. Comm., 9, 1-10.
Rempfer et al. (2017), EPSL, 468, 27-37.
Schlitzer, R., et al. (2018), Chem. Geol., 493, 210-223.

 

How to cite: Süfke, F., Pöppelmeier, F., Blaser, P., and Lippold, J.: 231Pa/230Th in the northwestern Atlantic: circulation versus particles?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6725, https://doi.org/10.5194/egusphere-egu2020-6725, 2020.

EGU2020-9634 | Displays | CL1.27

Planktic foraminiferal I/Ca from Holocene sediments of the Pacific and Indian Ocean

Helge Arne Winkelbauer, Simon Chenery, Elliott Montagu Hamilton, Melanie Leng, and Babette Hoogakker

Current climatic trends are expected to lead to expansion of oxygen minimum zones and an overall decrease in oxygen concentration [O2] in the oceans. In order to improve predictions of future trends we need to create a better understanding of the natural oxygen cycle. The iodine to calcium ratio (I/Ca) of planktonic foraminifera is an increasingly popular proxy to assess upper water column oxygenation. Recent studies suggest that this ratio is mainly controlled by subsurface water dissolved oxygen concentrations. A thorough assessment of the proxy has been carried out for the South Atlantic, but is currently lacking for the Indian and Pacific Oceans, which contain the worlds’ most intense and large oxygen minimum zones. Here we present results of recent (Holocene) planktonic foraminifera (mixed layer and deep dwelling species) I/Ca measurements across a range of oceanographic conditions ([O2] varies between < 10 µmol/kg to > 200 µmol/kg) from the Indian and Pacific Ocean to further refine the proxy, using sample material provided by Lamont-Doherty Core Repository.

How to cite: Winkelbauer, H. A., Chenery, S., Hamilton, E. M., Leng, M., and Hoogakker, B.: Planktic foraminiferal I/Ca from Holocene sediments of the Pacific and Indian Ocean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9634, https://doi.org/10.5194/egusphere-egu2020-9634, 2020.

EGU2020-12134 | Displays | CL1.27

Isotopic evidence for changes in the origin and cycling of nitrogen in the Labrador Sea during the last 8,000 years

Markus Kienast, Sam Davin, Kristin Doering, Dierk Hebbeln, Stephanie Kienast, Nadine Lehmann, Ralph Schneider, Owen Sherwood, and Jens Weiser

Subsurface nitrate in the Labrador Sea (NW Atlantic) and Baffin Bay is provided by North Pacific water flowing through Bering Strait and the Canadian Arctic as well as by advection from the North Atlantic. Both these nitrate sources are distinct in their isotopic signature (δ15N), owing to benthic denitrification on the Bering, Chukchi and east Siberian shelves and nitrogen fixation in the North Atlantic, respectively. Accordingly, water column profiles of δ15N(nitrate) collected off Greenland in the eastern Labrador Sea show low δ15N(nitrate), which mixes with more 15N-enriched nitrate flowing through Baffin Bay into the northern Labrador Sea. The Labrador Current carries this mixture southward along the western Labrador Sea, toward Newfoundland. The δ15N of surface sediments in the Labrador Sea closely mirrors these water column signals, suggesting that sediments can be used to trace changes in both the source signature of Atlantic versus Pacific-derived nitrate as well as in the admixture of the two source waters.

Two downcore sedimentary δ15N records from the NE and NW Labrador Sea coast both show high δ15N values of ca. 7‰ during the early Holocene (9-7 kyrs BP). In the NE Labrador Sea, this is followed by a long-term decrease toward δ15N of ca. 4.5‰ at the core top, in contrast to a much more subtle decrease in the NW Labrador Sea (surface sediment δ15N of ca. 6.5‰). The decreasing δ15N values along the eastern Labrador Sea are consistent with a Holocene increase in nitrogen fixation in the North Atlantic or an increasing advection of isotopically light nitrate. In turn, an increasing admixture of North-Pacific-derived nitrate, or intensified denitrification on the Bering Shelf would be required to explain the much subdued Holocene δ15N decrease in the NW Labrador Sea.

How to cite: Kienast, M., Davin, S., Doering, K., Hebbeln, D., Kienast, S., Lehmann, N., Schneider, R., Sherwood, O., and Weiser, J.: Isotopic evidence for changes in the origin and cycling of nitrogen in the Labrador Sea during the last 8,000 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12134, https://doi.org/10.5194/egusphere-egu2020-12134, 2020.

EGU2020-17827 | Displays | CL1.27

Equatorial Atlantic ventilation over the last century revealed by deep-sea bamboo coral radiocarbon records

Qian Liu, Laura F. Robinson, Joseph A. Stewart, Timothy Knowles, Erica Hendy, Tao Li, and Ana Samperiz Vizcaino

Despite growing interest in ocean-climate interactions in response to recent anthropogenic warming, historical hydrographic data with which to assess changes in the deep ocean over the last century are limited. With their robust calcium carbonate skeletons, deep-sea corals, especially long-lived bamboo corals, serve as a potential archive for reconstructing continuous high-resolution paleoceanographic records extending back hundreds to even thousands of years.

Here we use deep-sea bamboo corals collected between 800 and 2000 m water depth in the eastern equatorial Atlantic to reconstruct the ventilation history over the last century. Deep-sea bamboo corals have a jointed axis consisting of organic nodes and internodes composed of calcium carbonate. The radiocarbon content of the organic nodes documents the radiocarbon of surface water and likely records the distinctive bomb 14C signal that can be used to generate a chronology for each coral specimen. By contrast, the radiocarbon content of calcite internodes records the radiocarbon signature of deep water over the lifetime of the coral. The reconstructed calcite radiocarbon record shows a quasi-periodic cycle of about two-decades, which is likely linked to multidecadal fluctuations in North Atlantic climate influencing the ventilation state of the water mass. In addition to radiocarbon records, we show that trace metal compositions of bamboo coral also provides key information with regard to both biomineralization processes, past environmental conditions, and chemistry of seawater. By combining radiocarbon and elemental composition of bamboo coral, we are building a set of tools with which to reconstruct deep ocean dynamics over the last century.

How to cite: Liu, Q., Robinson, L. F., Stewart, J. A., Knowles, T., Hendy, E., Li, T., and Samperiz Vizcaino, A.: Equatorial Atlantic ventilation over the last century revealed by deep-sea bamboo coral radiocarbon records, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17827, https://doi.org/10.5194/egusphere-egu2020-17827, 2020.

Most paleoceanographic studies using planktic foraminifera focus on annual means, but seasonal signals buried by the analyses of lumped specimens could be very valuable. Surface ocean feedbacks on climate change may be more significant in the seasonal realm than annual mean in the northern South China Sea, a region being strongly affected by Asian monsoons and tropical cyclones. Here we use oxygen isotope measurements on individual specimens of surface and subsurface planktic foraminiferal species to reconstruct surface seasonality and seasonal upper ocean stratification in this region. Many studies have shown that the thermocline was deeper in the tropical Pacific during the Pliocene than the Pleistocene, but the mechanism remains unclear. Several processes could lead to changes in the upper ocean stratification, such as changes in sea surface temperature and upper ocean mixing by tropical cyclones. Our results show that the upper ocean stratification was weaker during the Late Pliocene than the Early Pleistocene, with the change more significant in summer than winter, while no systematic offset is observed in the surface seasonality. The observations suggest that enhanced mixing by tropical cyclones might be the major cause of the deeper thermocline during the Pliocene.

How to cite: Zhao, N., Vonhof, H., Giosan, L., Schiebel, R., and Haug, G.: Oxygen isotopes of individual planktic foraminifers reveal Pliocene-Pleistocene change of seasonal upper ocean stratification in the northern South China Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20172, https://doi.org/10.5194/egusphere-egu2020-20172, 2020.

The silicon isotopic composition of sedimentary biogenic opal can be used to track shifts in the balance between silicon inputs to the ocean and outputs by burial. In addition to biosilicification and opal burial, the global cycles of climate (hydrology, weathering, glaciation, etc.), tectonics (volcanoes, LIPs, mountain building, etc.) and geochemistry (reverse weathering, inorganic Si precipitation, etc.) have driven variations in the global Si cycle over geologic time. Prior to the start of the Phanerozoic it is thought that burial in the global oceans was controlled inorganically through chert formation. The evolution of the Si depositing organisms, radiolarians and sponges, reduced oceanic dissolved Si, but the largest reductions occurred with the evolution of the diatoms bringing dissolved Si to the low concentrations (relative to saturating concentrations) observed today. However, the timing of the depletion of dissolved Si by diatoms is currently under debate.
 
Our understanding of the biological components of the Si cycle has grown enormously. In the last decade, silicon isotope ratios (expressed as δ30Si) in marine microfossils are becoming increasingly recognised for their ability to provide insight into silicon cycling. In particular, the δ30Si of deep-sea sponge spicules has been demonstrated to be a useful proxy for past dissolved Si concentrations. However, more recent studies find anomalies in the isotopic fractionation of sponge spicules that relate to skeletal morphology: reliable reconstructions of past dissolved Si can only be obtained using silicon isotope ratios derived from sponges with certain spicule types. We are applying δ30Si proxies from biosiliceous material contained in sediments to generate robust estimates of the timing and magnitude of dissolved Si drawdown. We will provide fundamental new insights into the drawdown of dissolved Si and other key events, which reorganized the distribution of carbon and nutrients in seawater, with implications for productivity of the biological communities within the ancient oceans. 

How to cite: Conley, D. and Hendry, K.: Using the silica isotope composition of biogenic materials in marine sediments to reconstruct ocean chemistry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22504, https://doi.org/10.5194/egusphere-egu2020-22504, 2020.

CL2.1 – Earth radiation budget, radiative forcing and climate change

EGU2020-2025 | Displays | CL2.1

Best practices for surface radiation observations from long-term moored buoys

Robert Weller, J. Thomas Farrar, Sebastien Bigorre, Jason Smith, James Potemra, and Fernando Santiago-Mandujano

The Upper Ocean Process Group of the Woods Hole Oceanographic Institution deploys moorings with surface buoys instrumented with incoming shortwave and longwave radiometers at locations around the world.  The procedures used to calibrate the radiometers in the laboratory and to assess their performance at sea are discussed.  Some mooring deployments are done during collaborative field experiments and are months to a year in length.  Three other sites are being maintained as long-term Ocean Reference Stations (ORS), with sequential one-year deployments being used to collect ongoing time series.  The Stratus ORS, located under the marine stratus clouds off northern Chile, has been collecting surface radiation observations since 2000.  The NTAS ORS in the western tropical Atlantic has collected surface radiation data since 2001; and the WHOTS ORS north of island of Oahu, Hawaii has collected surface radiation data since 2004.  Challenges encountered in making the surface radiation observations are discussed, and the best estimates of observational uncertainties are presented.  With this understanding of the accuracies of the observations, comparisons between the buoy observations and surface radiation values from models and reanalyses are shown.  Work underway on further improvements to the approaches taken to make surface radiation observations from moored buoy are discussed, and a suggestion for field intercomparisons with other oceanic and land-based surface radiation observing platforms is put forward.

How to cite: Weller, R., Farrar, J. T., Bigorre, S., Smith, J., Potemra, J., and Santiago-Mandujano, F.: Best practices for surface radiation observations from long-term moored buoys, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2025, https://doi.org/10.5194/egusphere-egu2020-2025, 2020.

EGU2020-2453 | Displays | CL2.1

An update on brightening and dimming in the United States

John Augustine

Brightening and dimming of solar irradiance at Earth’s surface is a multidecadal phenomenon that occurs globally. Generally, over the past century, there have been two brightening periods (1920s to 1950s, 1980s to the early 2000s) and one dimming period (1950s to mid-1980s). Exceptions are the evolving industrial regions of India and parts of China that have only experienced dimming owing to aerosol effects. The two most recent dimming and brightening periods in Europe were attributed to both aerosol and cloud variability. In the U.S., especially since the 1990s, the systematic variation of cloud cover has been the dominant influence on brightening and dimming.

From 1996 through 2011 downwelling surface solar irradiance over the U.S. increased by +6.6 Wm-2/decade in an environment of decreasing cloud cover and decreasing aerosol optical depth (AOD) [Augustine and Dutton 2013]. Results presented here extend the brightening/dimming trend for the U.S. through 2018 and show that brightening continued for only one more year after 2011. Following 2012, solar irradiance at the surface abruptly retreated to the long-term mean (±1 Wm-2) and stabilized at that level through 2017. In 2018 there was a slight decrease of solar irradiance at the surface resulting in a slight dimming trend of -1.7 Wm-2/decade from 2013 through 2018. During that period AOD continued to decrease but mean cloud cover increased by about 1%, thus cloud variability continued to be the dominant influence on brightening/dimming in the U.S.

It has been shown that the direct effect of aerosols cannot account for the magnitudes of observed trends of surface solar irradiance over the U.S. [Augustine and Dutton 2013]. Here, we show that the second indirect effect of aerosols is consistent with the magnitudes of cloud and AOD reduction from 1996 through 2011. However, over the latest 6-year period analyzed, trends in cloud cover and AOD are not consistent with the stabilization (or small reduction) of solar irradiance at the surface with respect to both the direct and second indirect effect of aerosols. Therefore, systematic changes in circulation and weather must be considered to explain the observed variability, especially with regard to clouds. In this presentation we present evidence for a mechanism that could possibly have been a major contributor to brightening and dimming in the U.S. and western Europe over the past century.

 

Augustine, J. A., and E. G. Dutton (2013), Variability of the surface radiation budget over the United States from 1996 through 2011 from high-quality measurements, J. Geophys. Res.,118, doi:10.1029/2012JD018551.

How to cite: Augustine, J.: An update on brightening and dimming in the United States, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2453, https://doi.org/10.5194/egusphere-egu2020-2453, 2020.

EGU2020-6930 | Displays | CL2.1

Solar radiation in the Arctic during the Early Twentieth Century Warming period (1921–50)

Rajmund Przybylak, Pavel Sviashchennikov, Joanna Uscka-Kowalkowska, and Przemysław Wyszyński

The Early Twentieth Century Warming (ETCW) period includes a time when a clear increase in actinometric observations was noted in the Arctic, which is defined for the purpose of the present paper after Atlas Arktiki (Treshnikov ed., 1985). Nevertheless, available information about energy balance, and its components, for the Arctic for the study period is still very limited, and therefore solar forcing cannot be reliably determined. As a result, the literature contains large discrepancies between estimates of solar forcing. For example, reconstructions of the increase of terrestrial solar irradiance (TSI) during the ETCW period range from 0.6 Wm-2 (CMIP5, Wang et al., 2005), through 1.8 Wm-2 (Crowley et al., 2003), to 3.6 Wm-2 (Shapiro et al., 2011). Suo et al. (2013) concluded that the collection and processing of solar data is of paramount and central importance to the ability to take solar forcing into account, especially in modelling work.

            Having in mind the weaknesses of our knowledge described above, we decided to present in the paper a summary of our research concerning the availability of solar data in the Arctic (including measurements taken during land and marine expeditions). A detailed inventory of data series for the ETCW period (1921–50) also containing all available metadata will be an important part of this work. Based on the gathered data, a preliminary analysis will be presented of the general solar conditions in the Arctic in this time in terms of global, diffuse and direct solar radiation, and their changes from the ETCW period to present times (mainly 1981–2010).

            The research work in this paper was supported by a grant entitled “Causes of the Early 20th Century Arctic Warming”, funded by the National Science Centre, Poland (grant no. 2015/19/B/ST10/02933).

References:

Crowley T.J., Baum S.K., Kim K., Hegerl G.C. and Hyde W.T., 2003. Modeling ocean heat content changes during the last millennium. Geophys. Res. Lett. 30, 1932

Shapiro A.I., Schmutz W., Rozanov E., Schoell M., Haberreiter M. and co-authors, 2011. A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astron. Astrophys. 529, A67.

Suo L., Ottera O.H., Bentsen M., Gao Y. and Johannessen O.M., 2013. External forcing of the early 20th century Arctic warming, Tellus A 2013, 65, 20578, http://dx.doi.org/10.3402/tellusa.v65i0.20578

Treshnikov A.F. (ed.), 1985. Atlas Arktiki. Glavnoye Upravlenye Geodeziy i Kartografiy: Moscow.

Wang Y.M., Lean J.L. and Sheeley Jr. N.R., 2005. Modeling the sun’s magnetic field and irradiance since 1713. Astroph. J. 625, 522.

How to cite: Przybylak, R., Sviashchennikov, P., Uscka-Kowalkowska, J., and Wyszyński, P.: Solar radiation in the Arctic during the Early Twentieth Century Warming period (1921–50), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6930, https://doi.org/10.5194/egusphere-egu2020-6930, 2020.

EGU2020-7499 | Displays | CL2.1

Temporal variability of inferred surface energy fluxes derived from the ERA5 energy budget

Johannes Mayer, Michael Mayer, and Leopold Haimberger

We use the new Copernicus ERA5 reanalysis dataset to evaluate the global atmospheric energy budget using a consistent diagnostic framework and  improved numerical methods. A main outcome of this work are mass consistent divergences of moist static plus kinetic energy fluxes. These divergences are combined with top-of-the-atmosphere fluxes based on satellite observations and reconstructions back to 1985 to obtain net surface energy fluxes (FS) with unprecedented accuracy. The global mean of these FS fields is unbiased by construction. Hence, this product is well-suited for climate studies and model evaluations.  Here, the temporal variability and stability of inferred FS, the land-ocean energy transport and the corresponding water cycle are presented and compared with previous evaluations, which used ERA-Interim. 

The inferred FS fields exhibit a much smaller noise level, and sampling errors are drastically reduced due to the high temporal resolution (hourly) of the ERA5 dataset. Energy budget residuals over land are on the order of 17.0 Wm-2, which represents a 63 % reduction compared to ERA-Interim. We also present time series of FS averaged over the global ocean. Its global mean is 2.0 Wm-2, which is in much better agreement with ocean heat uptake than widely used satellite-derived surface flux products. Moreover, it exhibits reasonable temporal stability at least from 2000 onwards. We compare the annual cycles of FS over the ocean and ocean heat content variations derived from ocean reanalysis products and find good agreement. Overall, our results demonstrate clear improvements over earlier evaluations, but more work is needed to optimally use the available data and further reduce uncertainties.

How to cite: Mayer, J., Mayer, M., and Haimberger, L.: Temporal variability of inferred surface energy fluxes derived from the ERA5 energy budget , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7499, https://doi.org/10.5194/egusphere-egu2020-7499, 2020.

EGU2020-1351 | Displays | CL2.1

Decadal variations in retrieved aerosol optical depth from sunshine duration measurements over Europe since the late 19th century

William Wandji, Antti Lipponen, Else van den Besselaar, Arturo Sanchez–Lorenzo, Martin Wild, and Antti Arola

A better knowledge of the present–day aerosol forcing requires an accurate estimation of the historical evolution of aerosol optical depth (AOD), which is also crucial to better understand the role played by atmospheric aerosols in the dimming/brightening phenomena that have occurred since the mid-20th century. A physically-based approach using daily sunshine duration and cloud cover measurements is applied over Europe for retrieving AOD (Wandji Nyamsi et al., 2019). Both European Climate Assessment & Dataset (ECA&D) and national meteorological offices/institutes provide suitable measurements, from ~ 1000 ground-based stations, to carry out our study.

The retrieved long-term AOD shows reasonable seasonal and annual variabilities including signals induced by major volcanic eruptions. The trends of atmospheric aerosols and associated increase and decrease of AOD over the periods 1960–1984 and 1985–2010, respectively, are in good agreement with the dimming/brightening periods reported before. In addition, a more dominant decrease in AOD including high variability from the early-1900s to the 1950s is observed, which agrees with some earlier studies reporting “early brightening” for this period. The high inter-annual AOD variability during that period may be partly due to the transition from coal to gas in some European countries and also due to the possible influence of the Word Wars I & II.

References

Wandji Nyamsi, W.; Lipponen, A.; Sanchez–Lorenzo, A.; Wild, M. and Arola, A. (2019), A hybrid method for reconstructing the historical evolution of aerosol optical depth from sunshine duration measurements, submitted.

How to cite: Wandji, W., Lipponen, A., van den Besselaar, E., Sanchez–Lorenzo, A., Wild, M., and Arola, A.: Decadal variations in retrieved aerosol optical depth from sunshine duration measurements over Europe since the late 19th century, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1351, https://doi.org/10.5194/egusphere-egu2020-1351, 2020.

EGU2020-17654 | Displays | CL2.1

Atmospheric observations of the water vapour continuum in the near-infrared windows

Jon Elsey, Marc Coleman, Tom Gardiner, Kaah Menang, and Keith Shine
 
The water vapour continuum is an important additional component to the total absorption of atmospheric radiation by water vapour. However, while it has been studied extensively in the far and mid-infrared, there are significant uncertainties in its absorption strength in the near-infrared, since the relatively few laboratory measurements in this region disagree by a factor of ~50. Compounding this uncertainty is the lack of observations in atmospheric conditions; measurements are typically made at room-temperature or above, but the continuum has significant (and uncertain) temperature dependence. We aim to reduce this uncertainty by presenting observations of the near-infrared water vapour continuum from Camborne, UK at sea level using a sun-pointing, radiometrically-calibrated Fourier transform spectrometer in the window regions between 2000–10000 cm−1. When extrapolated to atmospheric temperatures, we show good agreement with various laboratory studies in the 4 µm window.  Our results show that the widely-used MT_CKD continuum is too weak by a factor of ~5 in the in the centre of the 2.1 µm window in line with laboratory analyses, with implications for energy balance studies and remote sensing. Our results at 1.6 µm show significantly stronger absorption than MT_CKD. This may be in part due to the influence of atmospheric aerosol, which forms a rather significant part of the uncertainty in our measurements at higher wavenumbers. We demonstrate the difficulties in making such field observations, and highlight the need for future observations both from the laboratory and the field, with the aim of including the water vapour continuum in the HITRAN spectroscopic database.

How to cite: Elsey, J., Coleman, M., Gardiner, T., Menang, K., and Shine, K.: Atmospheric observations of the water vapour continuum in the near-infrared windows, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17654, https://doi.org/10.5194/egusphere-egu2020-17654, 2020.

EGU2020-11489 | Displays | CL2.1 | Highlight

Changing of the Guard for the Total Solar Irradiance Record

Greg Kopp, David Harber, Karl Heuerman, and Brandon Stone

The uninterrupted, 41-year-long, spaceborne total solar irradiance (TSI) record has recently undergone several changes in the instruments contributing to these measurements of the net incoming radiant energy providing nearly all the power driving the Earth’s climate system. Two long-term instruments, NASA’s SORCE/TIM and TCTE/TIM, have recently been powered off. This ends the 17-year record from the SORCE/TIM, which established the currently-accepted TSI value of 1361 W m‑2 after its launch in 2003. ESA’s SoHO/VIRGO continues to acquire measurements that extend its 24-year record, but data availability has been on hold as a new processing methodology is implemented. NASA’s recently-launched TSIS‑1/TIM is presently continuing the measurements of these stalwart legacy instruments. This new TSI instrument is demonstrating higher on-orbit accuracy than any prior such instrument has achieved, with daily measurement updates that are available to the community for climate- and solar-research purposes. I will discuss the many recent changes to the spaceborne TSI measurement record, the current measurement-accuracy improvements and stabilities achieved and their implications for Earth energy-balance studies, and the future plans to maintain measurement continuity.

How to cite: Kopp, G., Harber, D., Heuerman, K., and Stone, B.: Changing of the Guard for the Total Solar Irradiance Record, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11489, https://doi.org/10.5194/egusphere-egu2020-11489, 2020.

EGU2020-10294 | Displays | CL2.1

Effective Radiative Forcing and Adjustments in CMIP6

Christopher Smith, Ryan Kramer, Gunnar Myhre, Kari Alterskjær, Bill Collins, Robert Pincus, and Piers Forster and the RFMIP modelling groups

The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmsophere and surface, as emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and atmospheric adjustments in 13 contemporary climate models that are participating in CMIP6 and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global mean anthropogenic forcing relative to pre-industrial (1850) from climate models stands at 1.97 (± 0.26) W m-2, comprised of 1.80 (± 0.11) W m-2 from CO2, 1.07 (± 0.21) W m-2 from other well-mixed greenhouse gases, -1.04 (± 0.23) W m-2 from aerosols and -0.08 (± 0.14) W m-2 from land use change. Quoted ranges are one standard deviation across model best estimates, and 90% confidence in the reported forcings, due to internal variability, is typically within 0.1 W m-2. The majority of the remaining 0.17 W m-2 is likely to be from ozone. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the "traditional" stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing, but not for aerosols, and consequentially, not for the anthropogenic total forcing. The spread of present-day aerosol forcing has narrowed compared to CMIP5 models to the range of -0.63 to -1.37 W m-2, with a less negative mean. The spread in CO2 forcing has also narrowed in CMIP6 compared to CMIP5, which may be a consequence of improving radiative transfer parameterisations. We also find that present-day aerosol forcing is uncorrelated with equilibrium climate sensitivity. Therefore, there is no evidence to suggest that the higher climate sensitivity in many CMIP6 models is a consequence of stronger negative present-day aerosol forcing.

How to cite: Smith, C., Kramer, R., Myhre, G., Alterskjær, K., Collins, B., Pincus, R., and Forster, P. and the RFMIP modelling groups: Effective Radiative Forcing and Adjustments in CMIP6, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10294, https://doi.org/10.5194/egusphere-egu2020-10294, 2020.

EGU2020-1780 | Displays | CL2.1 | Highlight

The end of the anthropogenic aerosol era?

Susanne E. Bauer and Kostas Tsigaridis

The Earth’s climate is rapidly changing. Over the past century, aerosols, via their ability to absorb or scatter solar radiation and alter clouds, played an important role in counterbalancing some of the greenhouse gas (GHG) caused global warming. This, over a century-long anthropogenic aerosol cooling effect, prevented present day climate to have yet reached even higher surface air temperatures and subsequent more dramatic climate change impacts. Trends in aerosol concentrations and optical depth show that in many formerly highly polluted regions such as Europe and the United States of America aerosol precursor emissions have already decreased back to pollution levels of the 1950s. More recent polluting countries such as China may have reached a turning point in recent years as well, while India keeps still following an upward trend. Here we study aerosol trends in the CMIP6 simulations of the GISS ModelE climate model using a fully coupled atmosphere composition configuration, including interactive gas phase chemistry, and either an aerosol microphysical (MATRIX) or a mass based (OMA) aerosol module. Results show that the question if we are already at a period where aerosol radiative forcing continuously declines globally depends on the aerosol scheme used. Using the aerosol microphysical scheme, where the aerosol system reacts stronger to the trend in sulfur dioxide (SO2) emissions, global peak direct aerosol forcing was reached in the 1980’s, whereas the mass-based scheme simulates peak direct aerosol forcing around 2010. The models are tested again ice core records, satellite and surface network datasets. An evaluation with satellite data between 2001 and 2014 demonstrates that the model that better reproduces the satellite retrieved trends has reached maximal aerosol direct forcing in the 1980s, and is since on a decreasing global forcing trajectory. As a consequence, we expect that the recently observed global warming which is primarily driven by greenhouse gases has been augmented by the effect of a decreasing aerosol cooling effect on the global scale.

How to cite: Bauer, S. E. and Tsigaridis, K.: The end of the anthropogenic aerosol era?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1780, https://doi.org/10.5194/egusphere-egu2020-1780, 2020.

EGU2020-19472 | Displays | CL2.1

Observation-constrained Radiative Forcing from historical land-cover changes in CMIP5 models

Quentin Lejeune, Edouard Davin, Grégory Duveiller, Bas Crezee, Ronny Meier, Alessandro Cescatti, and Sonia Seneviratne

The albedo of trees is lower than the one of crops and grasses, especially in the presence of snow. It is therefore understood that the replacement of forests by croplands and grasslands used for agricultural purposes that has occurred since pre-industrial times led to large-scale albedo increases. This is reflected by the estimate of the Radiative Forcing (RF) from historical Land-Cover Changes (LCC) of the Fifth Assessment Report (AR5) of the IPCC, which amounts to -0.15 +/- 0.10 W/m2. However, this expert judgment was intended to both account for a few studies using single climate models which put forward values close to 0.2W/m2, and the finding that climate models usually overestimate the albedo difference between natural vegetation and croplands in comparison to satellite-derived observational evidence. Further uncertainties around this number have also been suggested by studies revealing a substantial model spread in the albedo response to historical LCC. This points at the need to revisit the IPCC AR5 conclusions in light of recent model intercomparison efforts and observational data.

In this study, we reconstructed the local albedo changes induced by conversions between trees and crops/grasses since 1860 for 15 CMIP5 models. We evaluated the employed methodology using factorial experiments isolating the historical LCC forcing in four models for which the required simulations are available, and obtained very similar results. Using an empirical parameterisation of the radiative kernel, we then derived estimates of the associated RF ranging between 0 and -0.22 W/m2, with a multi-model mean value of -0.07 W/m2.

Furthermore, we constrained the RF estimates with observations by replacing the albedo response to the transition between trees and crops/grasses from the models by that provided by satellite-derived data. This led to an unexpected increase in the range between the models, due to two models having unrealistic conversion rates from trees to crops/grasses. Excluding these two models, we obtain a revised multi-model mean estimate of -0.11 W/m2 (with individual model results between -0.04 and -0.16 W/m2). We were also able to link the differences between the unconstrained and constrained RF estimates to some of the model biases in the albedo sensitivity to deforestation.

Since the conversions between trees and crops/grasses are responsible for almost the totality of historical albedo changes in CMIP5 models, our findings are comparable to previous estimates of the RF from all LCC. They point at values that are at the lower end of the range provided by the IPCC AR5. The approach described in this study can be applied on other model simulations, such as those from CMIP6.

How to cite: Lejeune, Q., Davin, E., Duveiller, G., Crezee, B., Meier, R., Cescatti, A., and Seneviratne, S.: Observation-constrained Radiative Forcing from historical land-cover changes in CMIP5 models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19472, https://doi.org/10.5194/egusphere-egu2020-19472, 2020.

EGU2020-19702 | Displays | CL2.1

Climate forcing and committed global warming: GHGs, aerosols and ozone 1970-2010

Alcide Zhao, David Stevenson, and Massimi Bollasina

It is crucial to reduce uncertainties in our understanding of the climate impacts of short‐lived climate forcers, in the context that their emissions/concentrations are anticipated to decrease significantly in the coming decades worldwide. Using the Community Earth System Model (CESM1), we performed time‐slice experiments to investigate the effective radiative forcing (ERF) and climate respons to 1970–2010 changes in well‐mixed greenhouse gases (GHGs), anthropogenic aerosols, and tropospheric and stratospheric ozone. Once the present‐day climate has fully responded to 1970–2010 changes in all forcings, both the global mean temperature and precipitation responses are twice as large as the transient ones, with wet regions getting wetter and dry regions drier. The temperature response per unit ERF for short‐lived species varies considerably across many factors including forcing agents and the magnitudes and locations of emission changes. This suggests that the ERF should be used carefully to interpret the climate impacts of short‐lived climate forcers. Changes in both the mean and the probability distribution of global mean daily precipitation are driven mainly by GHG increases. However, changes in the frequency distributions of regional mean daily precipitation are more strongly influenced by changes in aerosols, rather than GHGs. This is particularly true over Asia and Europe where aerosol changes have significant impacts on the frequency of heavy‐to‐extreme precipitation. Our results may help guide more reliable near‐future climate projections and allow us to manage climate risks more effectively.

How to cite: Zhao, A., Stevenson, D., and Bollasina, M.: Climate forcing and committed global warming: GHGs, aerosols and ozone 1970-2010, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19702, https://doi.org/10.5194/egusphere-egu2020-19702, 2020.

EGU2020-15422 | Displays | CL2.1

Radiative feedbacks in a 1D radiative-convective equilibrium model

Lukas Kluft, Sally Dacie, Stefan A. Buehler, Hauke Schmidt, and Bjorn Stevens

Equilibrium climate sensitivity (ECS), the change in surface temperature in response to a doubling of atmospheric CO2, is arguably one of the most important quantities when discussing climate change. Despite major improvements in climate modelling over the last decades, ECS estimates lie within a rather constant range between 1.5-4 K. The cause of this spread is not obvious as the comparison of comprehensive climate models is difficult due to the complexity of their formulations.

 

We are revisiting one of the simplest climate models, one-dimensional radiative-convective equilibrium (RCE). Despite their simple and concise model formulation, RCE models include the most dominant clear-sky radiative feedbacks. In our study, we quantify the strength of the Planck, water-vapor, and lapse-rate feedback by turning them on or off using different model configurations. This method allows us to compare the effect of different model assumptions, e.g. the vertical distribution of water vapor, on the decomposed radiative feedbacks. We find that the interplay of the water-vapor and the lapse-rate feedback is especially affected by the relative humidity in the upper troposphere.

 

The RCE model is run with a state-of-the-art radiation scheme, that is also used in comprehensive  Earth system models. A line-by-line radiative transfer model is used to both verify the performance of the fast radiation scheme, and to attribute changes in the radiative feedbacks to specific regions in the electromagnetic spectrum.

 

In a further step, conceptual rectangular clouds are added to investigate possible cloud masking effects on both the radiative forcing and feedback. A large Monte Carlo ensemble is used to tune the cloud optical parameters in a way that the resulting cloud radiative effect matches satellite observations. Preliminary results suggest a near zero long-wave feedback, in contrast to previous studies.

How to cite: Kluft, L., Dacie, S., Buehler, S. A., Schmidt, H., and Stevens, B.: Radiative feedbacks in a 1D radiative-convective equilibrium model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15422, https://doi.org/10.5194/egusphere-egu2020-15422, 2020.

EGU2020-8050 | Displays | CL2.1

Representing transient precipitation change of Solar Radiation Management and Carbon Dioxide Removal with fast and slow precipitation components

Anton Laakso, Peter Snyder, Stefan Liess, Antti-Ilari Partanen, and Dylan Millet

Solar Radiation Management (SRM) and Carbon Dioxide Removal (CDR) have been proposed to mitigate global warming in the event of insufficient greenhouse gas emission reductions. We have studied temperature and precipitation responses to CDR and SRM with the RCP4.5 scenario using the MPI-ESM and CESM Earth System Models (ESMs). The two SRM scenarios were designed to meet different climate targets to keep either global mean 1) surface temperature or 2) precipitation at the 2010-2020 level via stratospheric sulfur injections. This was done in two-fold method, where global aerosol fields were first simulated with aerosol-climate model ECHAM-HAMMOZ, which were then used as prescribed fields in ESM simulations. In the CDR scenario the annual CO2 increase based on RCP4.5 was counteracted by a 1% annual removal of the atmospheric CO2 concentration which decreased the global mean temperature back to the 2010-2020 level at the end of this century. 

Results showed that applying SRM to offset 21st century climate warming in the RCP4.5 scenario led to a 1.42%  (MPI-ESM) or 0.73% (CESM) reduction in global mean precipitation, whereas CDR increased global precipitation by 0.5% in both ESMs for 2080-2100 relative to 2010-2020. To study this further we separated global precipitation responses to a temperature-dependent and a fast temperature-independent components. These were quantified by a regression method. In this method the climate variable (e.g. precipitation) is regressed against the temperature change due to the instantaneous forcing. Temperature-dependent slow response and temperature independent fast response are given by the fitted regression line. We showed that in all simulated geoengineering scenarios, the simulated global mean precipitation change can be represented as the sum of these response components. This component analysis shows that the fast temperature-independent component of atmospheric CO2 concentration explains the global mean precipitation change in both SRM and CDR scenarios. Results showed relatively large differences in the individual precipitation components between two ESMs. This component analysis method can be generalized to evaluate and analyze precipitation, or other climate responses, basically in any emission scenario and in any ESM in a conceptually easy way. 

Based on the SRM simulations, a total of or 292-318 Tg(S) (MPI-ESM) or 163-199 Tg(S) (CESM) of injected sulfur from 2020 to 2100 was required to offset global mean warming based on the RCP4.5 scenario. The distinct effects of SRM in the two ESM simulations mainly reflected differing shortwave absorption responses to water vapor. To prevent a global mean precipitation increase, only 95-114 Tg(S) was needed. Simultaneously this prevent the global mean climate warming from exceeding 2 degrees above preindustrial temperatures in both models. 

How to cite: Laakso, A., Snyder, P., Liess, S., Partanen, A.-I., and Millet, D.: Representing transient precipitation change of Solar Radiation Management and Carbon Dioxide Removal with fast and slow precipitation components, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8050, https://doi.org/10.5194/egusphere-egu2020-8050, 2020.

EGU2020-18875 | Displays | CL2.1

Global heat uptake by inland waters

Inne Vanderkelen, Nicole P.M. van Lipzig, Dave Lawrence, Bram Droppers, Malgorzata Golub, Simon N. Gosling, Annette B. G. Janssen, Rafael Marcé, Hannes Müller Schmied, Martorie Perroud, Don Pierson, Yadu Pokhrel, Yusuke Satoh, Jacob Schewe, Sonia I. Seneviratne, Victor M. Stepanenko, Richard I. Woolway, and Wim Thiery

Heat uptake is a key variable for understanding Earth system response to greenhouse gas forcing. Recent assessments highlighted that most of the excess energy is stored in the oceans, whereas the land, atmosphere and ice melt take up smaller amounts. However, despite the importance of this heat budget, heat uptake by inland waters has so far not been quantified. Here we use a unique combination of global-scale lake models, global hydrological models and Earth system models to, for the first time, quantify global heat uptake by lakes, reservoirs and rivers over the industrial period (1900-2020).

We use a total of 16 different simulations of global-scale lake models and global hydrological models driven by the same bias-corrected climate forcing from four different global climate models, conducted within the framework of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). The model output is combined with reservoir and lake data from the Global Reservoir and Dam (GRanD) database and HydroLAKES.

Total inland water heat uptake in the industrial period amounts to 2.8 ± 4.3x1020 J by the end of the period, with the largest uptake realised after 1990. The overall uptake is dominated by warming of natural lakes (2.9 ± 2.0x1020 J, the multi-model mean and standard deviation; 103% of total inland water heat uptake), followed by reservoir warming (5.9 ± 2.7x1018 J; 2.1%). The multi-model mean heat uptake by rivers contributes negatively to the total heat uptake (-0.15 ± 4.3x1020 J; -5.3%), but encompasses a large uncertainty originating from the river storage term, simulated by the global hydrological models. The global picture of positive heat uptake by natural lakes is confirmed at the regional scale in the major lake regions by all global-scale lake model and global climate model combinations. The heat uptake by inland waters makes up ~3.2% of continental heat uptake reported in the IPCC AR5 (2013). The rapid increase in dam construction and resulting reservoir expansion in the second half of the 20th century causes a heat redistribution from ocean to land by storing extra water on land. Remarkably, this heat redistribution exceeds the anthropogenic heat uptake by inland waters by a factor of ~ 9.6, adding up to 27 ± 2.1x1020 J.

Our results overall underline the importance of inland waters for buffering atmospheric warming through enhanced anthropogenic greenhouse gas concentrations. 

How to cite: Vanderkelen, I., van Lipzig, N. P. M., Lawrence, D., Droppers, B., Golub, M., Gosling, S. N., Janssen, A. B. G., Marcé, R., Müller Schmied, H., Perroud, M., Pierson, D., Pokhrel, Y., Satoh, Y., Schewe, J., Seneviratne, S. I., Stepanenko, V. M., Woolway, R. I., and Thiery, W.: Global heat uptake by inland waters, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18875, https://doi.org/10.5194/egusphere-egu2020-18875, 2020.

EGU2020-6018 | Displays | CL2.1

Developing Best Practices for Observing Global Surface Shortwave and Longwave Radiation across the Land and Ocean

Robert Weller, Christian Lanconelli, Martin Wild, and Joerg Trenmann

In-situ shortwave or solar radiation and longwave or thermal radiation are observed at the earth’s surface on both the land and the ocean.  In addition, satellites are used to develop fields of surface radiation balance.  Planning for the Global Ocean Observing System (GOOS) and the Global Climate Observing System (GCOS) has identified surface heat flux, including the radiative fluxes, as an Essential Ocean Variable (EOV) and Essential Climate Variable (ECV), respectively.  The GOOS and GCOS requirements for surface radiative fluxes (spatial and temporal sampling, accuracies) are summarized here.  Surface radiation sites will continue to be sparse in the future, especially in the ocean; and satellite-derived products developed in concert with in-situ observing system will be important.  To make better progress towards meeting those requirements, we propose the goal of establishing dialog across the different methods of in-situ observing surface radiation and with the remote sensing community.  Objectives of the effort would include sharing knowledge and experience of how to make the observations, documentation of calibration methods, and assessment of the uncertainties to be associated with the different observing methods.  The resulting metadata and quantitative understanding of the different approaches would support improved combination of surface radiation observations across land and sea into homogeneous products at global scale.  At the same time, improved in-situ sampling would help assess and validate climate models and contribute to our understanding of the earth’s energy balance.  We review here the different observing methods now in use on land and at sea and discuss the challenges faced in making the observations.  We also propose future field inter-comparison and standardization of calibration methods to better establish the accuracy and comparability of surface radiation observations on land and at sea.

How to cite: Weller, R., Lanconelli, C., Wild, M., and Trenmann, J.: Developing Best Practices for Observing Global Surface Shortwave and Longwave Radiation across the Land and Ocean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6018, https://doi.org/10.5194/egusphere-egu2020-6018, 2020.

EGU2020-933 | Displays | CL2.1

Systematic and Random error correction of ship based marine meteorological parameters observed across Tropical Indian ocean

Kameshwari Nunna, Udaya Bhaskar Tata Venkata Sai, Pattabhi Rama Rao Eluri, and Venkata Jampana

In this study, ship based observations obtained from Indian Meteorological Department (IMD) and Naval Operations Data Processing and Analysis Centre (NODPAC) observed across Tropical Indian ocean (TIO) are combined with International Comprehensive Ocean-Atmosphere Dataset (ICOADS R3.0) and several climatology are generated for TIO. The ship observations from the Voluntary Observing Ships (VOS) have been found to contain both random and systematic errors. An attempt is made to apply a systematic correction upon wind speed (WS) and random error correction upon sea level pressure (SLP), dry bulb temperature (DBT), sea surface temperature (SST), dew point temperature (DPT). The systematic error correction upon WS is actually a correction applied to the old World Meteorological Organization (WMO) 1100 scale, i.e. the Beaufort estimated wind speeds are corrected as the old WMO 1100 scale was found to have errors. The new July scale derived exclusively for TIO rightly reduces the over estimation of high WS and increases the under estimation of lower WS as given by the old WMO 1100 scale. The systematic bias between anemometer measured wind speeds and Beaufort estimated wind speeds reduced from 0.52 m/s (obtained after the correction done by previous scale) to 0.08 m/s with the new scale. The random errors are calculated based on a technique called semi-variogram analysis technique. The fluxes derived from the observation error corrected variables are analyzed and the net heat flux across TIO was observed to reduce by 14 W/m2.

How to cite: Nunna, K., Tata Venkata Sai, U. B., Eluri, P. R. R., and Jampana, V.: Systematic and Random error correction of ship based marine meteorological parameters observed across Tropical Indian ocean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-933, https://doi.org/10.5194/egusphere-egu2020-933, 2020.

EGU2020-17981 | Displays | CL2.1

Equilibrium Climate Sensitivity in AWI-ESM: Mechanisms and Effects

Christopher Danek, Paul Gierz, Christian Stepanek, and Gerrit Lohmann

The global-mean surface air temperature change due to a doubled carbon dioxide concentration in the atmosphere (equilibrium climate sensitivity, ECS) is an important measure to quantify the impact of predicted anthropogenic climate change. The latest climate modeling intercomparison project (CMIP6) exhibits a higher ECS compared to the previous climate model generation (1.8 to 5.6 K for CMIP6 versus 1.5 to 4.5 K for CMIP5). The increase in ECS is likely due to decreases in extratropical low cloud coverage and albedo, caused by improvements in the numerical aerosol schemes. Our state-of-the-art Earth system model AWI-ESM, developed at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, yields an ECS of 3.59-3.62 K, which is close to the CMIP5 mean. Using a set of varying model configurations, we identify dynamic vegetation and model resolution as the primary driving factors which influence the modeled global response to an increased greenhouse gas forcing.

How to cite: Danek, C., Gierz, P., Stepanek, C., and Lohmann, G.: Equilibrium Climate Sensitivity in AWI-ESM: Mechanisms and Effects, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17981, https://doi.org/10.5194/egusphere-egu2020-17981, 2020.

EGU2020-884 | Displays | CL2.1

High resolution Aerosol Radiative Effects over Europe using detailed optical properties from the Chemical Transport Model PMCAMx

Marios Bruno Korras Carraca, Dimitris Manetas, David Patoulias, Spyros Pandis, Nikolaos Hatzianastassiou, Ilias Vardavas, and Christos Matsoukas

Natural and anthropogenic aerosol particles are major drivers of the Earth’s radiation budget, which they affect directly (through scattering and absorption) and indirectly (through modification of cloud scattering and precipitation properties), while they semi-directly influence atmospheric stability and convection, mainly through modification of solar radiation absorption by the atmosphere. Despite the important climatic role of aerosols, large uncertainties in their radiative effects remain due to limited knowledge of the aerosol spatio-temporal distribution and physico-chemical properties. The interaction of aerosols with radiation is strongly dependent on their optical properties, which in turn are controlled by the particles’ size distribution, shape, chemical composition and mixing state. In order to accurately estimate the magnitude of the aerosol direct radiative effect (DRE), detailed knowledge of their optical properties with high spatial and temporal resolution is required.

The European continent is a region of particular interest for studying atmospheric aerosol effects, because of the presence of  numerous and varying sources of particles and their precursors, such as industries, large urban centers and biomass burning, especially when combined with high levels of solar insolation during summer. In this study, the aerosol DRE over Europe is examined using the FORTH deterministic spectral radiative transfer model (RTM) and aerosol data from the chemical transport model PMCAMx. Chemically and size resolved aerosol concentrations predicted by PMCAMx are combined with a Mie model to calculate key aerosol optical properties (i.e. vertically resolved aerosol optical depth, single scattering albedo and asymmetry parameter) that are necessary to compute aerosol DRE using the RTM. The Mie model takes into account concentrations of organics, black carbon, sulfate, nitrate, ammonium, chlorine, sodium, water, and crustal material, and calculates aerosol optical properties assuming that the aerosol particles of the same size are internally mixed. The DRE is estimated at the Earth’s surface, within the atmospheric column and at the top of the atmosphere (TOA), at high spatial and temporal resolution (36 × 36 km grids, 27 vertical layers, hourly), during June and July 2012.

Initial modelling results reveal that DREs exhibit significant spatio-temporal variability, due to the heterogeneity of source emissions rates, mostly with regard to wildfires, and the varying synoptic conditions. Emphasis is thus given to biomass burning aerosols, which are among the most significant radiative forcing agents in Europe during summer. Their relative forcing is computed by performing model computations with and without biomass burning emissions.

How to cite: Korras Carraca, M. B., Manetas, D., Patoulias, D., Pandis, S., Hatzianastassiou, N., Vardavas, I., and Matsoukas, C.: High resolution Aerosol Radiative Effects over Europe using detailed optical properties from the Chemical Transport Model PMCAMx, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-884, https://doi.org/10.5194/egusphere-egu2020-884, 2020.

EGU2020-9976 | Displays | CL2.1

The Effects of Anthropogenic Aerosol Emissions from Chile and Mexico in ECHAM-HAMMOZ

Tuuli Miinalainen, Harri Kokkola, Kari E. J. Lehtinen, and Thomas Kühn

In this research project we studied the climatic effects of anthropogenic aerosol emissions originating from Chile and Mexico. In particular, we studied black carbon (BC), organic carbon (OC) and sulfur dioxide (SO2).

By using aerosol-climate model ECHAM6.3.0-HAM2.3-MOZ1.0, we analyzed how each aerosol species affects the local cloud properties and radiative balance in the atmosphere. As we here are interested in the maximum impact, we simulated each aerosol species with separate model runs. The reference scenario (BASE) was simulated with the full representation of anthropogenic aerosol emissions from the ECLIPSEV6a emission inventory for the year 2015.Then, we constructed otherwise identical scenarios but the anthropogenic aerosol emissions from Chile and Mexico for each aerosol type were removed (NO_BC, NO_OC and NO_SO2). 

The results indicate that for Chile the sulfur emissions seem to have the greatest impact on both cloud condensation nuclei (CCN) and cloud droplet number concentration. This result is plausible since there the SO2 emissions are much higher than BC and OC emissions. For Mexico, the OC emissions had the most notable effect on CCN, but the cloud droplets are more affected by the SO2 emissions. When looking at the radiative properties, we found out that the direct effects were rather minor compared to semi-direct and indirect effects. This indicates that aerosol-cloud interactions have much larger regional effect on radiation than the aerosol direct effect.

How to cite: Miinalainen, T., Kokkola, H., Lehtinen, K. E. J., and Kühn, T.: The Effects of Anthropogenic Aerosol Emissions from Chile and Mexico in ECHAM-HAMMOZ, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9976, https://doi.org/10.5194/egusphere-egu2020-9976, 2020.

EGU2020-10202 | Displays | CL2.1

Exploring the impact of aerosol radiative forcing uncertainty on shifts in ITCZ position and tropical rainfall in the near-term future

Amy Peace, Ben Booth, Ken Carslaw, Leighton Regayre, Lindsay Lee, David Sexton, and John Rostron

Anthropogenic aerosol emissions over the industrial period have caused a negative but highly uncertain radiative forcing. This negative radiative forcing has had a cooling effect mainly over the northern hemisphere, affecting the atmospheric interhemispheric energy balance. Consequently aerosols have been linked to observed dynamical responses over the industrial period that depend on the atmospheric interhemispheric energy balance, such as changes in the position of the Intertropical Convergence Zone (ITCZ) and resultant tropical precipitation shifts. However, over the course of the 21st century anthropogenic aerosol emissions are predicted to decline. The reduction in anthropogenic aerosol emissions will cause a positive radiative forcing relative to present day, creating a warming effect in the northern hemisphere. Hence, if the strength of aerosol radiative forcing modulates the magnitude of shifts in the ITCZ, then the large uncertainty in aerosol radiative forcing will limit our understanding of how tropical precipitation will shift in the near-term future.

We use a perturbed parameter ensemble (PPE) of a global coupled climate model to investigate the link between aerosol radiative forcing and ITCZ and tropical rainfall shifts in the near-term future. The PPE consists of 20 simulations of the UK Met Office’s GC3.05 model with parameters perturbed from a range of model schemes. The ensemble was designed to sample uncertainties in future changes, and as a result spans a range of aerosol radiative forcings.

The PPE reveals both northward and southwards shifts in the ITCZ position across the ensemble in the latter half of the 20th century and first half of the 21st century, as well as changes in width and intensity of the ITCZ. We find a correlation between the shift in the ITCZ position and the magnitude of aerosol radiative forcing and AOD trends. However, the correlations in our ensemble are not as strong as those cited in previous studies that use multi-model ensembles. The potential causes of this difference are investigated. We also compare our model output to aerosol, cloud and radiation observations in attempt to identify the most plausible future aerosol-driven climate responses.

How to cite: Peace, A., Booth, B., Carslaw, K., Regayre, L., Lee, L., Sexton, D., and Rostron, J.: Exploring the impact of aerosol radiative forcing uncertainty on shifts in ITCZ position and tropical rainfall in the near-term future , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10202, https://doi.org/10.5194/egusphere-egu2020-10202, 2020.

Aerosols offset poorly quantified fraction of anthropogenic greenhouse gas warming, whereas the aerosol impact on clouds is the most uncertain mechanism of anthropogenic climate forcing. In this research, we extend satellite observations of polluted cloud tracks from Toll et al. (2019, Nature, https://doi.org/10.1038/s41586-019-1423-9) with analysis of larger scale polluted cloud areas detected in MODerate-resolution Imaging Spectroradiometer satellite images. We demonstrate that large-scale anthropogenic aerosol-induced cloud perturbations exist at various major industrial aerosol source regions. The areal extent of the polluted cloud areas detected in MODIS satellite images extended to hundreds by hundreds of kilometres. Polluted clouds detected in satellite images in the global anthropogenic air pollution hot spot of Norilsk, Russia, and in other regions show close compensation between aerosol-induced cloud water increases and decreases. On average, there is relatively weak decrease in cloud water in the large areas with strong decreases in cloud droplet radii. This is in very good agreement with previous results based on small-scale polluted cloud tracks (Toll et al., 2019) and strongly disagrees with unidirectionally increased liquid water path in global climate models.

How to cite: Trofimov, H. and Toll, V.: Large-scale industrial cloud perturbations confirm bidirectional cloud water responses to anthropogenic aerosols, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8909, https://doi.org/10.5194/egusphere-egu2020-8909, 2020.

EGU2020-885 | Displays | CL2.1

Changes in radiative forcing due to clear-cutting in Sweden

Iris Mužić, Patrik Vestin, Anders Lindroth, Meelis Mölder, Tobias Biermann, Michal Heliasz, and Janne Rinne

Land cover conversion affects climate by imposing perturbations in the surface properties and greenhouse gas fluxes. Forest management systems often disregard that modification in surface albedo influences the exchange of energy and greenhouse gases. In this study, we examine the net climatic effect of clear-cutting in high-latitude regions by comparing the importance of biogeophysical (albedo) and biogeochemical (carbon dioxide release) changes in Sweden. The hypothesis is that the albedo effect of high-latitude clear-cutting can reduce climate warming.

Data on incoming and reflected shortwave radiation was obtained from four-component net radiometers installed in the forest and neighbouring clear-cut sites, in southern (56°N), central (60°N) and northern (64°N) Sweden. The study site pairs along a latitudinal gradient were chosen to account for different climatic conditions. Data at these station pairs covered a continuous period of three (2016-2018), five (2014-2018) and one year (2014), respectively. Due to lack of clear-cut measurement stations in close vicinity to the northernmost forest site, the shortwave radiation data was retrieved from an open mire, where albedo and its temporal dynamics are similar to a clear-cut. All the forest stations and the mire station are part of ICOS Sweden network. Data on carbon dioxide release from clear-cutting was estimated as a difference in the aboveground carbon stock of the standing biomass between forest and clear-cut sites. The estimated carbon dioxide release was translated into an equivalent change in absorbed shortwave radiation and compared to the radiative forcing by albedo difference between forest and clear-cut sites.

Our results underline results from previous studies showing that the magnitude of the net radiative forcing by clear-cutting varies considerably depending on the latitudinal position of the examined sites. Based on available data, clear-cutting in southern and central Sweden had a warming effect on the climate while in northern Sweden clear-cutting had a net cooling effect. However, large inter-annual variability (central Sweden) and lack of available continuous data (northern Sweden) resulted in high uncertainty of the climatic effects of changes in net radiative forcing due to clear-cutting. Our study indicates that the albedo effect has an essential role in the estimation of the climatic effect of clear-cutting and should thus be incorporated in future forest management strategies.

How to cite: Mužić, I., Vestin, P., Lindroth, A., Mölder, M., Biermann, T., Heliasz, M., and Rinne, J.: Changes in radiative forcing due to clear-cutting in Sweden, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-885, https://doi.org/10.5194/egusphere-egu2020-885, 2020.

EGU2020-1 | Displays | CL2.1

Challenging CMIP6 model predictions

Miklos Zagoni

The WCRP Coupled Model Intercomparison Project (CMIP) simulations expect increasing downward longwave radiation (DLR, surface LW down) from a human-enhanced greenhouse effect during the 21st century in the range of 10 – 40 Wm-2. We announce a public challenge to these predictions based on a long known but rarely referred theoretical constraint. Following the logic of original radiative transfer equations of Schwarzschild (1906, Eq. 11), a relationship connects surface net radiation to the effective emission, independent of the optical depth. This relationship is reproduced by several textbooks on atmospheric radiation like Goody (1964, Eq. 2.115), Goody and Yung (1989, Eq. 2.146), Houghton (2002, Eq. 2.13), Pierrehumbert (2010, Eq. 4.44-4.45). In CERES notation: Surface [shortwave (SW) + longwave (LW)] net = OLR/2. A specific “gross” version is: Surface (SW net + LW down) = 2OLR. These are for the cloudless case. Their all-sky form includes longwave cloud radiative effect (LWCRE): Surface SW+LW net = (OLR – LWCRE)/2 and Surface (SW net + LW down) = 2OLR + LWCRE. Controlling these four equations on CERES EBAF Edition 4.1, 18 years of data, and on EBAF Ed4.1 Data Quality Summary Table 2-1 and Table 4-1, each of them is valid within 3 Wm-2. The all-sky versions are satisfied by the IPCC-AR5 (2013) global energy budget (Fig. 2.11) and a water cycle assessment (Stephens and L'Ecuyer 2015) within 2 Wm-2. We couldn't find any reference to these equalities in the literature on general circulation models or climate sensitivity. Applying known definitions, the equations can be solved for LWCRE, resulting in a set of small integers (Zagoni, EGU2019). All-sky fluxes: Surface SW net = 6; Surface LW net = –2; DLR = 13; OLR = 9. Clear-sky fluxes: Surface SW net = 8; Surface LW net = –3; DLR = 12; OLR = 10; Surface LW up (ULW) = 15 (both for all-sky and clear-sky); LWCRE (surface and TOA) = 1. From this solution it comes for all-sky: DLR = (13/9)OLR, ULW = (15/9)OLR, and for clear-sky ULW = (15/10)OLR. Since the physical principles and conditions behind these equations are solid and justified by observations, we expect them to remain valid in the forthcoming decades as well. CMIP6 models might represent regional distribution changes and cloud feedbacks correctly, in lack of global constraints they may lead to profoundly different outcomes in the long run. This is a testable difference. To check the robustness and stationarity of our equations, we challenge published CMIP5 predictions. We predict for the 21st century: all-sky DLR = (13/9)OLR ± 3.0 Wm-2; ULW = (15/9)OLR ± 3.0 Wm-2 and clear-sky ULW = (15/10)OLR ± 3.0 Wm-2. Initial status (CERES EBAF Edition 4.1 annual global means for 2018): all-sky OLR = 240.14, DLR = 344.82, ULW = 399.37, hence all-sky DLR = (13/9)OLR – 2.05 and ULW = (15/9)OLR – 0.86 (Wm-2); clear-sky ULW = 399.05, OLR = 265.80, hence ULW = (15/10)OLR + 0.35 Wm-2. Greenhouse effect: g(theory) = G/ULW = (ULW–OLR)/ULW = (15 9)/15 = 0.4, g(observed) = 0.399.

How to cite: Zagoni, M.: Challenging CMIP6 model predictions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1, https://doi.org/10.5194/egusphere-egu2020-1, 2020.

EGU2020-12307 | Displays | CL2.1

Counteracting global warming by using a locally variable Solar Radiation Management

Davide Marchegiani and Dietmar Dommenget

Solar Radiation Management (SRM) is regarded as a tool which could potentially mitigate or completely offset global warming by increasing planetary albedo. However, this approach could potentially reduce precipitation as well, as shown in the latest Intergovernmental Panel on Climate Change (ICPP) 5th report. Thus, although SRM might weaken global climate risks, it may enhance those in some regions. Here, using the Globally Resolved Energy Balance (GREB) model, we present experiments designed to completely offset the temperature and precipitation response due to a CO2-doubling experiment (abrupt2×CO2). The main idea around which our study is built upon is to employ a localized and seasonally varying SRM, as opposed to the most recent Geo-Engineering experiments which just apply a global and homogeneous one. In order to achieve such condition, we carry out the computation by using an “artificial cloud cover”. The usage of this localized approach allows us to globally cut down temperature warming in the abrupt2×CO2 scenario by 99.8% (which corresponds to an increase of 0.07 °C on a global average basis), while at the same time only having minor changes in precipitation (0.003 mm/day on a global average basis). To achieve this the cloud cover is increased by about 8% on a global average. Moreover, neither temperature nor precipitation response are exacerbated when averaged over any IPCC Special Report on Extremes (SREX) region. Indeed, for temperatures, 90% of SREX regions averages fall within 0.3 °C change, with all regional mean anomalies being under 0.38 °C. Whereas, as far as precipitation is concerned, changes go up to 0.01 mm/day for 90% of SREX regions, with all of them changing by less than 0.02 mm/day. Similar results are achieved for seasonal variations, with Seasonal Cycle (DJF-JJA) having no major changes in both surface temperature and precipitation.

How to cite: Marchegiani, D. and Dommenget, D.: Counteracting global warming by using a locally variable Solar Radiation Management, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12307, https://doi.org/10.5194/egusphere-egu2020-12307, 2020.

EGU2020-3241 | Displays | CL2.1

Climatic Effects of Hygroscopic Growth of Sulfate Aerosols in the Stratosphere

Krishna-Pillai Sukumara-Pillai Krishnamohan, Govindasamy Bala, Long Cao, Lei Duan, and Ken Caldeira

Deliberate climate intervention by injection of sulfate aerosols in the stratosphere is a method proposed to counter anthropogenic climate warming. In such an injection scenario, an improved understanding of the microphysical and optical properties of the injected aerosols is important as these properties alter the radiative forcing and resulting climate. Here we analyze the effect of a specific microphysical property of sulfate aerosols in the stratosphere: hygroscopic growth – the tendency of aerosol particles to grow by accumulating water. In the NCAR CESM model, using idealized climate simulations, we find that, for a given mass, stratospheric sulfate aerosols cause more cooling when prescribed at the lower levels of the stratosphere because of increased hygroscopic growth of the aerosols due to larger relative humidity. The relative humidity in the stratosphere typically decreases rapidly with the increasing altitude. The larger relative humidity in the lower stratosphere causes an increase in the aerosol size through hygroscopic growth, which leads to a larger scattering efficiency. The increase in shortwave back-scattering due to the size change is found to be the primary factor contributing to the additional surface cooling as the aerosols are prescribed in the lower levels of the stratosphere. In our simulations, hygroscopic growth provides an additional cooling of 23% (0.7 K) when 20 Mt-SO4 of sulfate aerosols are prescribed at 100 hPa, relative to a non-hygroscopic simulation where hygroscopic growth is not allowed in the stratosphere. This additional cooling due to hygroscopic effect becomes weaker higher in the stratosphere where relative humidity is lower. Hygroscopic growth also leads to additional warming in the layers where the aerosols are prescribed due to an increase in near-IR shortwave absorption. This warming causes secondary effects such as a decrease in high clouds and an increase in stratospheric water vapor, which affects the effective radiative forcing. This altitude dependence of the cooling effects of hygroscopic growth is opposite to the altitude dependence of sedimentation effects;  while the hygroscopic effect produces larger cooling when aerosols reside in the lower stratosphere, the sedimentation effect produces less cooling when aerosols are injected into the lower stratosphere as the residence time becomes shorter.

How to cite: Krishnamohan, K.-P. S.-P., Bala, G., Cao, L., Duan, L., and Caldeira, K.: Climatic Effects of Hygroscopic Growth of Sulfate Aerosols in the Stratosphere, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3241, https://doi.org/10.5194/egusphere-egu2020-3241, 2020.

EGU2020-7017 | Displays | CL2.1

Hemispheric TOA SW radiation budgets under changed atmospheric radiation conditions

Traute Crueger, Hauke Schmidt, and Bjorn Stevens

Under present day conditions the observations approximately show a hemispheric symmetry of the top of atmosphere (TOA)  short wave (SW) reflection despite the asymmetry of surface SW reflection. This has been confirmed by climate models. With models in an aqua planet setup, Voigt et al. (2014) found that tropical clouds largely compensate surface SW hemispheric asymmetries, however to a different degree in dependence on the convection scheme.

In this study, we question, whether there is also a hemispheric symmetry of TOA SW radiation under changed atmospheric radiation conditions. For that reason, we analyze experiments performed with a set of fully coupled general circulation models. The experiments were performed with either a) hemispheric asymmetric incoming radiation, b) increased atmospheric CO2 concentrations, c) increased atmospheric CO2 concentrations combined with increased stratospheric aerosol burden, or d) increased atmospheric CO2 concentration in conjunction with increased ocean albedo.

We show that generally, a hemispheric symmetry of TOA SW radiation does not occur. Overall, among the group of models, the hemispheric TOA SW radiation budgets are roughly similar for the distinct experiments, although the models utilyze different convection schemes.  We discuss the role of surface and atmospheric feedbacks in the different experiments, especially of tropical and extratropical clouds.

Reference:
Voigt, A., B. Stevens, J. Bader, and T. Mauritsen, 2014: Compensation of Hemispheric Albedo Asymmetries by Shifts of the ITCZ and Tropical Clouds. J. Climate, 27, 1029–1045, https://doi.org/10.1175/JCLI-D-13-00205.1.

How to cite: Crueger, T., Schmidt, H., and Stevens, B.: Hemispheric TOA SW radiation budgets under changed atmospheric radiation conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7017, https://doi.org/10.5194/egusphere-egu2020-7017, 2020.

EGU2020-13239 | Displays | CL2.1

Climate Monitoring SAF: Sustained Generation of Satellite based climate data records

Marc Schröder, Rainer Hollmann, and Jörg Trentmann

In recent decades climate variability and change have caused impacts on natural and human systems on all continents. Observations are needed to understand and document these interactions. These observations are increasingly based on remote sensing from satellites which offer global scale and continuous coverage. Only long-term and consistent observations of the Earth system allow us to quantify impacts of climate variability and change on the natural and human dimension. From this understanding one can estimate and eventually predict future states of the Earth system and quantify its vulnerability and resilience to continuing anthropogenic forcing.

Since nearly 20 years, the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Climate Monitoring (CM SAF, www.cmsaf.eu) develops capabilities for a sustained generation and provision of Climate Data Records (CDRs) derived from operational meteorological satellites. The ultimate aim is to make the resulting data records suitable for the analysis of climate variability and the detection of climate trends. The product portfolio of the CM SAF comprises long time series of Essential Climate Variables (ECVs) related to the energy and water cycle as defined by the Global Climate Observing System (GCOS). Several data records have been released to the public by CM SAF and new editions of CDRs will be published in the coming years which will extend the time-range and the portfolio. In particular, existing products include, among others, surface and top of the atmosphere radiative fluxes, surface albedo, cloud products, as well as latent heat flux and freshwater flux over the global ice-free oceans. New products related to the following topics are currently developed and provided in near future: global precipitation (ocean and land) and global high clouds. All products are well-documented, carefully validated and were externally reviewed prior to product release.

This presentation will highlight results from the currently available CDRs from CM SAF. A focus will be on uncertainty characterisation and results from validation as well as exemplary applications. Finally, the presentation will present an overview of the upcoming new editions of CDRs.

 

How to cite: Schröder, M., Hollmann, R., and Trentmann, J.: Climate Monitoring SAF: Sustained Generation of Satellite based climate data records, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13239, https://doi.org/10.5194/egusphere-egu2020-13239, 2020.

The surface radiation budget is defined by the difference between the downward and upward components of shortwave and thermal infrared longwave radiation at the surface. The instability of the surface radiation budget plays a significant role in climate change and variability through the modulation of temperature, precipitation, atmospheric circulation, etc. Clouds are believed to be a key factor to regulate such energy imbalance at the surface, as they generally reflect shortwave radiation from the sun and emit infrared radiation. Specifically, we are going to focus on the continental United States and answer the following questions: How is the surface radiation budget varied with time and space in the observations? How do clouds impact variations of surface radiation budget? How do state-of-the-art global climate models capture these observed features? What can they tell us about future changes in the surface radiation budget?

To investigate these questions, the NASA Clouds and the Earth's Radiant Energy System (CERES) observations will be used, along with model simulations from Phase 6 of the Coupled Model Intercomparison Project (CMIP6). We will first focus on the surface radiation budget from CERES observations in the 21st century, and examine their seasonal cycles, spatial patterns, long-term trends, and interannual variations over the continental United States. More importantly, we are going to investigate how cloud variability, including cloud types, cloud amount and cloud water content, influences the surface radiation budget. Then the CMIP6 historical simulations will be compared with CERES observations over the same time period. In addition, the CMIP6 future scenario simulations will be used to investigate how the surface radiation budget changes from the middle and late 21st century to the early 21st century. Overall, this study will help us to better understand the cloud and radiation variations in the past, as well as build credibility in the hindcast and future projections of surface energy budget over the continental United States.

How to cite: Fu, D.: Linking Cloud Variability with Surface Radiation Budget over the Continental United States Using NASA CERES Satellite Observations and CMIP6 Model Simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6165, https://doi.org/10.5194/egusphere-egu2020-6165, 2020.

The NASA/GEWEX Surface Radiation Budget (SRB) project is finalizing a 3-hourly shortwave and longwave surface and top-of-atmosphere radiative fluxes for a 34-year period from July 1983 through June 2017. The new Release 4 Integrated Product (IP) uses the newly recalibrated and processed ISCCP HXS product as its primary input for cloud and radiance data, replacing ISCCP DX with a ninefold increase in pixel count (10 km instead of 30 km).  This first version retains a 1°x1° resolution for intercomparison against previous versions and other data sets such as CERES. ISCCP also provides an atmospheric temperature and moisture dataset known as nnHIRS which we use and discuss radiative flux sensitivities to in this presentation.  In addition to the input data improvements, several important algorithm improvements have been made since Release 3. These include recalculated SW atmospheric transmissivities and reflectivities yielding a somewhat less transmissive atmosphere. Ocean albedo and snow/ice albedo are also improved from Release 3. Total solar irradiance is now variable consistent with SORCE measurements. The LW code has been updated to improve the optical property treatment for clouds, particularly ice clouds, and aerosols are included in this version.  The variable aerosol composition are specified using a detailed aerosol history from the Max Planck Institute Aerosol Climatology (MAC).  Seasonally dependent spectral surface emissivity maps are now also included.  In this presentation, we analyze the new SW and LW SRB datasets, comparing them to the previous Release 3, BSRN, GEBA and PMEL surface measurements, and ERBE and CERES satellite datasets.  For surface flux validation besides ensemble comparisons, we show the variability of SRB vs surface measurements from BSRN beginning in 1992 and GEBA from 1983.  For the early period, comparison of top-of-atmosphere flux variability is made to latest version of ERBE fluxes.  For the latter period, we provide comparisons to CERES SYN1Deg and EBAF datasets for a benchmark.  Long-term changes in the surface radiation budget components and cloud radiative effects are shown and discussed relative to CERES and surface measurements.   An assessment of long-term changes are made including an assessment of uncertainties due to satellite artifacts.

How to cite: Stackhouse, P., Cox, S., Mikovitz, J. C., and Zhang, T.: A 34 Year Assessment of Surface and Top-of-Atmosphere Radiative Fluxes from the NASA’s GEWEX Surface Radiation Budget Release 4 Integrated Product, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10403, https://doi.org/10.5194/egusphere-egu2020-10403, 2020.

EGU2020-1303 | Displays | CL2.1

Global validation of satellite-based and reanalysis surface solar radiation data sets

Jörg Trentmann, Uwe Pfeifroth, Roswitha Cremer, and Martin Stengel

The solar radiation reaching the Earth’s surface determines our climate and is therefore important to be monitored as consistent and complete as possible. Even though surface reference measurements of surface solar radiation are available (e.g. from the Baseline Surface Radiation Network (BSRN)), their density remains low and large areas, like the oceans, remain poorly covered. To fill the gaps in space and time, satellite-based data records (like CLARA-A2 and SARAH-2.1 from the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF)) or model-based reanalysis data records (like ERA-5) are used. They provide surface solar radiation data with regional and global coverage, which are needed to understand its distribution and variability from the regional to the global scale.

Here we present a validation and analysis of monthly mean surface solar irradiance from multiple satellite-based and reanalysis data sets on the regional and global scale with reference to a data base of hundreds of surface measurements over land and ocean, collected from different sources (incl. BSRN, GEBA, WRDC, and buoy networks). This study provides new insights about the quality and uncertainty of available state-of-the-art satellite-based and reanalysis data records for climate studies. Regions of agreement as well as areas where the gridded data records exhibit larger differences are identified, providing important information on our current knowledge of the surface solar radiation climatology and possible improvements for future developments.

How to cite: Trentmann, J., Pfeifroth, U., Cremer, R., and Stengel, M.: Global validation of satellite-based and reanalysis surface solar radiation data sets, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1303, https://doi.org/10.5194/egusphere-egu2020-1303, 2020.

The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates satellite-based  high-quality climate data records, with a focus on the global energy and water cycle. The new concept of Interim Climate Data Records (ICDRs) that extent the fixed-length Climate Data Records (CDRs) into 'near-realtime' in a consistent way, enables climate monitoring at a higher level of accuracy.

It has been found in recent studies based on surface and satellite data that on average SSR has been increasing in the last 3 decades in Europe (e.g. Sanchez-Lorenzo et al. 2017, Pfeifroth et al. 2018) - especially in spring and summer. Here we use the latest SARAH-2.1 TCDR (1983-2017), potentially together with its corresponding ICDR (2018 onwards), to analyze if the found positve trends in SSR are about to continue. In this respect, the satellite-based data record will be compared and validated with surface measurements given by the Baseline Surface Radiation Network (BSRN), the  World Radiation Data Center (WRDC) and the Global Energy Balance Archive (GEBA). A reasonable line of potential reasons for the found spring and summertime brightening in Europe is discussed.

How to cite: Pfeifroth, U. and Trentmann, J.: Variability and Trends of Surface Solar Radiation in Europe based on satellite- and surface-based data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-241, https://doi.org/10.5194/egusphere-egu2020-241, 2020.

The main advantage of remote sensing products is that they are reasonably good in terms of temporal and special coverage, and they are available in a near real time. Therefore, an understanding of the strengths and weaknesses of satellite data is useful to choose it as an alternative source of information with acceptable accuracy.  On the first hand, this study assesses an Inter-comparison between CMSAF Sunshine Duration (SD) data records and ground observations of 30 data sets from 1983 to 2015. the correlation is very significant and the satellite data fits very closely to in situ observations. On the other hand, trend analysis is applied to SD and Solar Incoming Direct radiation (SID) data, a number of stations show a statistically significant decreasing trend in SD and also SID shows a decreasing trend over Morocco in most of regions especially in summer. The results indicate a general tendency of decrease in incoming solar radiation mostly during summer which could be of some concern for solar energy.

How to cite: Moutia, S.: Spatial variation and temporal trends of solar radiation over Morocco based on ground observations and CMSAF data records., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20470, https://doi.org/10.5194/egusphere-egu2020-20470, 2020.

EGU2020-2036 | Displays | CL2.1

Validation of Clear-Sky Global LAnd Surface Satellite (GLASS) Longwave Radiation Product

Qi Zeng, Jie Cheng, and Feng Yang

Surface longwave (LW) radiation plays an important rolein global climatic change, which is consist of surface longwave upward radiation (LWUP), surface longwave downward radiation (LWDN) and surface longwave net radiation (LWNR). Numerous studies have been carried out to estimate LWUP or LWDN from remote sensing data, and several satellite LW radiation products have been released, such as the International Satellite Cloud Climatology Project‐Flux Data (ISCCP‐FD), the Global Energy and Water cycle Experiment‐Surface Radiation Budget (GEWEX‐SRB) and the Clouds and the Earth’s Radiant Energy System‐Gridded Radiative Fluxes and Clouds (CERES‐FSW). But these products share the common features of coarse spatial resolutions (100-280 km) and lower validation accuracy.

Under such circumstance, we developed the methods of estimating long-term high spatial resolution all sky  instantaneous LW radiation, and produced the corresponding products from MODIS data from 2000 through 2018 (Terra and Aqua), named as Global LAnd Surface Satellite (GLASS) Longwave Radiation product, which can be free freely downloaded from the website (http://glass.umd.edu/Download.html).

In this article, ground measurements collected from 141 sites in six independent networks (AmerciFlux, AsiaFlux, BSRN, CEOP, HiWATER-MUSOEXE and TIPEX-III) are used to evaluate the clear-sky GLASS LW radiation products at global scale. The bias and RMSE is -4.33 W/m2 and 18.15 W/m2 for LWUP, -3.77 W/m2 and 26.94 W/m2 for LWDN, and 0.70 W/m2 and 26.70 W/m2 for LWNR, respectively. Compared with validation results of the above mentioned three LW radiation products, the overall accuracy of GLASS LW radiation product is much better. We will continue to improve the retrieval algorithms and update the products accordingly.

How to cite: Zeng, Q., Cheng, J., and Yang, F.: Validation of Clear-Sky Global LAnd Surface Satellite (GLASS) Longwave Radiation Product, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2036, https://doi.org/10.5194/egusphere-egu2020-2036, 2020.

EGU2020-1630 | Displays | CL2.1

The versatile Heliosat-V method for estimating downwelling surface solar irradiance from satellite imagery

Benoit Tournadre, Benoit Gschwind, Yves-Marie Saint-Drenan, and Philippe Blanc

Downwelling surface solar irradiance (DSSI) is one of the Essential Climate Variables defined by the Global Climate Observing System. The knowledge of its space and time variabilities is of primary importance for different applications, including Earth sciences, agriculture and renewable solar energies. To characterize such variabilities, the retrieval of long time series and of a dense kilometric global spatial coverage is required. The Heliosat methods are developed by Mines ParisTech since the mid-1980’s to estimate DSSI from the imagery produced by geostationary meteorological satellites. A challenge today is to use imagery from different satellites, including non-geostationary. This raises a number of issues, related among others to the different viewing geometries and spectral sensitivities of the sensors. These issues motivate the evolution of the Heliosat methods toward a more flexible version: the versatile Heliosat-V method. Other difficulties, mainly of operational types, such as massive data retrieval/processing, geometric correction, radiometric cross-calibration, missing data, seamless mosaicking, etc. are out of the scope of this communication.

Heliosat-V is designed to produce estimates of DSSI that can cover a wide variety of satellite optical sensors that have at least one radiometric channel with sensitivity in the 400-1000-nm part of the electromagnetic spectrum. The method is capable of using calibrated imagery from geostationary and also non-geostationary satellites. External remote-sensed data of surface reflectance anisotropy (Ross-Li model parameters derived from the imagery of the Moderate-Resolution Imaging Spectroradiometer (MODIS)) and atmospheric composition (ozone, water vapour and aerosol types and optical depths) from coupled meteorological and chemical transport models (Copernicus Atmospheric Monitoring Services) are used to produce fast radiative transfer simulations. Typical reflectances of cloudy scenes at the top of the atmosphere are produced via look-up tables derived from a radiative transfer model (libRadtran). They can adapt to the spectral sensitivity of the satellite channel, and to the solar and viewing geometries. This algorithm setup allows its use without past data, which were necessary for previous Heliosat methods. This is a real asset for its implementation to non-geostationary satellites.

We test the validity of the method, by comparing DSSI estimates derived from one year of Meteosat Second Generation 0° imagery, with ground-based pyranometer measurements from 10 stations of the Baseline Surface Radiation Network, on different continents and environments. Our results show root-mean square errors of 15-min averaged DSSI between 12% and 35% (71 and 133 W m-2 in absolute value), similarly to existing surface irradiance products based on Heliosat-2 or Heliosat-4.

How to cite: Tournadre, B., Gschwind, B., Saint-Drenan, Y.-M., and Blanc, P.: The versatile Heliosat-V method for estimating downwelling surface solar irradiance from satellite imagery, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1630, https://doi.org/10.5194/egusphere-egu2020-1630, 2020.

EGU2020-14878 | Displays | CL2.1

Spectrally resolved OLR from IASI measurements

Simon Whitburn, Lieven Clarisse, Sophie Bauduin, Steven Dewitte, Maya George, Sarah Safieddine, Daniel Hurtmans, Pierre-François Coheur, and Cathy Clerbaux

The Earth’s Outgoing Longwave Radiation (OLR) is a key component in the study of climate feedbacks and processes. As part of the Earth’s radiation budget, it reflects how the Earth-atmosphere system compensates the incoming solar radiation at the top of the atmosphere. It can be retrieved from the radiance intensities measured by satellite sounders and integrated over all the zenith angles of observation. Since satellite instruments generally acquire the radiance at a limited number of viewing angle directions and because the radiance field is not isotropic, the conversion is however not straightforward. This problem is usually overcome by the use of empirical angular distribution models (ADMs) developed for different scene types that directly link the directional radiance measurement to the corresponding OLR.

OLR estimates from dedicated broadband instruments are available since the mid-1970s; however, such instruments only provide an integrated OLR estimate over a broad spectral range. They are therefore not well suited for tracking separately the impact of the different parameters affecting the OLR (including greenhouse gases), making it difficult to track down deficiencies in climate models. Currently, several hyperspectral instruments in space acquire radiances in the thermal infrared spectral range, and in principle, these should allow to better constrain the OLR. However, as these instruments were not specifically designed to measure the OLR, there are several challenges to overcome. Here we propose a new retrieval algorithm for the estimation of the spectrally resolved OLR from measurements made by the IASI sounder on board the Metop satellites. It is based on a set of spectrally resolved ADMs developed from synthetic spectra for a large selection of scene types associated with different states of the atmosphere and the surface. Atmospheric and surface parameters are derived from the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis dataset and selected using a dissimilarity-based subset selection algorithm. These spectral ADMs are then used to convert the measured IASI radiances into spectral OLR.

We then evaluate how the IASI OLR compare with the CERES and the AIRS integrated and spectral OLR. We analyze the interannual variations in OLR over 10 years of IASI measurements for selected spectral channels using EOF analysis and we connect them with well-known climate phenomena such as El Niño-Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), the Atlantic Multidecadal Oscillation (AMO).

How to cite: Whitburn, S., Clarisse, L., Bauduin, S., Dewitte, S., George, M., Safieddine, S., Hurtmans, D., Coheur, P.-F., and Clerbaux, C.: Spectrally resolved OLR from IASI measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14878, https://doi.org/10.5194/egusphere-egu2020-14878, 2020.

EGU2020-3777 | Displays | CL2.1

Temperature Annual Cycle Variation and Response to Solar Radiation during 1960 to 2016 in China

Runze Zhao, Kaicun Wang, Guocan Wu, and Chunlue Zhou

The change of its annual cycle is extremely important due to global warming. A widely used method to analyze the changes of temperature annual cycle is based on the decomposition to phase, amplitude and baseline terms. Solar radiation as the leading energy source of temperature changes can directly influence temperature annual cycle. In this study, we investigate the phase, amplitude and baseline of temperature and solar radiation annual cycle after Fourier transform during 1960-2016 in China. The results show that annual cycle of maximum, minimum and mean surface air temperature are advancing in time (-0.08, -0.27 and -0.33 days per ten years), decreasing in range (-0.07, -0.25 and -0.18 degrees per ten years) and rising in baseline (0.20, 0.34 and 0.25 degrees per ten years). To further quantify the effect of surface solar radiation to temperature, we remove the effect from its original time series of maximum and mean temperature, based on a linear regression. The compare of raw and adjusted temperature shows that surface solar radiation advancing the time by 0.19 and 0.19 days per ten years, reduces the range by 0.14 and 0.13 degrees per ten years, and reduces the baseline by 0.08 and 0.04 degrees per ten years, for surface maximum and mean daily air temperature. The result can explain parts of seasonal temperature variation. Effect of surface solar radiation is most obvious Yunnan-Guizhou Plateau for maximum phase. The low phase value in this area is corrected and well-match with other same latitude area after adjusted.

How to cite: Zhao, R., Wang, K., Wu, G., and Zhou, C.: Temperature Annual Cycle Variation and Response to Solar Radiation during 1960 to 2016 in China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3777, https://doi.org/10.5194/egusphere-egu2020-3777, 2020.

Previous studies have documented that the surface solar radiation (SSR) over most regions of China has shifted from the ‘global dimming’ since the 1950s to the ‘global brightening’ after 2005. In this paper, the potential factors that affect the annual trends of SSR over East China from 2005 to 2018 based on different satellite-derived products are analyzed. Then, due to the lack of long-term various aerosol species from observation data, the focus of this study is to calculate the contributions from direct effects of different types of cloud fraction on SSR relative to the effects of total cloud fraction over East China during the same period using a BCC_RAD radiative transfer model. The results show that clouds and aerosols are the primary factors that affect the SSR over East China from 2005 to 2018, followed by water vapor and ozone.

The annual mean all-sky SSR from 2005 to 2018 is significantly increased over the North China Plain, Northeast China, Yunnan, and Eastern Sichuan provinces, with the increases up to 0.6 W m-2 yr-1. This is probably due to the combined reductions of aerosols and clouds during this period, but clouds even play a more important role over Shanxi and northern Shaanxi. Changes in aerosols dominate the increase of SSR over Hunan, Jiangxi, and Fujian provinces, whereas clouds contribute more to the decreases of SSR over Guangdong, Guangxi, Guizhou, and Zhejiang provinces. Meanwhile, the simulations indicate that the marked annual mean decreases in high cloud fraction, especially for low cloud fraction, are the main causes of simulated increases in SSR due to total cloud fraction over most regions of East China, while the increases in high, medium-high, especially for medium-low cloud fraction, play more important roles in reductions of SSR over southern China. Moreover, the direct effects of various types of cloud fraction on changes in SSR for each season are also examined. It seems that the direct effects of low cloud fraction on SSR are likely the strongest among all kinds of clouds. Take southern China as an example, the direct effects of medium-low and low cloud fraction are stronger for spring and autumn, while contributions from low cloud fraction are largest in winter. However, the combined increases in high, medium-high, medium-low cloud fraction exceed decreases in low cloud fraction, thus causing the reduction in SSR in summer. This study highlights that different types of clouds may have different impacts on SSR not only on the annual mean scale but also on seasonal scales.

Keywords: surface solar radiation, aerosols, different types of cloud fraction

How to cite: Wang, Q., Zhang, H., and Wild, M.: Effects of potential factors on changes in surface solar radiation in East China over recent decade, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5699, https://doi.org/10.5194/egusphere-egu2020-5699, 2020.

EGU2020-14932 | Displays | CL2.1

Contribution of clouds radiative forcing to the local surface temperature variability

Oscar Rojas, Marjolaine Chiriaco, Sophie Bastin, and Justine Ringard

The local contribution of clouds to the surface energy balance and temperature variability is an important topic in order to apprehend how this intake affects local climate variability and extreme events, how this contribution varies from one place to another, and how it evolves in a warming climate. The scope of this study is to understand how clouds impact temperature variability, to quantify their contribution, and to compare their effects to other surface processes. To do so, we develop a method to estimate the different terms that control temperature variability at the surface (∂T2m /∂t) by using this equation: ∂T2m /∂t=R+HA+HG+Adv where R is the radiation that is separated into the cloud term (Rcloud) and the clear sky one (RCS), HA the atmospheric heat exchange, HG the ground heat exchange, and Adv the advection. These terms are estimated hourly, almost only using direct measurements from SIRTA-ReOBS dataset (an hourly long-term multi-variables dataset retrieved from SIRTA, an observatory located in a semi-urban area 20-km South-West of Paris; Chiriaco et al., 2019) for a five-years period. The method gives good results for the hourly temperature variability, with a 0.8 correlation coefficient and a weak residual term between left part (directly measured) and right part of the equation.

A bagged decision trees analysis of this equation shows that RCS dominates temperature variability during daytime and is mainly modulated by cloud radiative effect (Rcloud). During nighttime, the bagged decision trees analysis determines that Rcloud is the term controlling temperature changes. When a diurnal cycle analysis (split into seasons) is performed for each term, HA becomes an important negative modulator in the late afternoon, chiefly in spring and summer, when evaporation and thermal conduction are increased. In contrast, HG and Adv terms do not play an essential role on temperature variability at this temporal scale and their contribution is barely considerable in the one-hour variability, but still they remain necessary in order to obtain the best coefficient estimator between the directly measured observations and the method estimated. All terms except advection have a marked monthly-hourly cycle.

Next steps consist in characterize the types of clouds and study their physical properties corresponding to the cases where Rcloud is significant, using the Lidar profiles also available in the SIRTA-ReOBS dataset.

How to cite: Rojas, O., Chiriaco, M., Bastin, S., and Ringard, J.: Contribution of clouds radiative forcing to the local surface temperature variability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14932, https://doi.org/10.5194/egusphere-egu2020-14932, 2020.

As the use of chlorofluorocarbons (CFC) gas was completely banned in 2010, hydrofluorocarbon (HFC) and perfluorocarbon (PFC) gases are replacing its place. HFC and PFC demands are consistently increasing due to their use in extinguishing agent, refrigerant for cooling and also in semiconductor and display manufacturing process for etching, deposition, cleaning and more. However, most HFCs and PFCs currently in use have a very high GWP, which adversely affect the greenhouse gas reduction policies that each country is working on.

To this aspect, countries and relating companies are conducting research to replace from high GWP rated HFCs and PFCs to low GWP rated HFCs and PFCs or to new gases. However, the proper study has not yet been made because of unknown information about GWP, in the case of using or developing a gas which has not been clarified its GWP in IPCC, WMO, and related papers.

Therefore, here, we propose a determination method of global warming potential based on various literature studies as following.

  1. Calculating absorbed cross-sectional area by measuring infrared adsorption spectra using Fourier-transform infrared spectroscopy (FT-IR) and applying to Lambert-Beers’ law using measured infrared absorption spectra.
  2. Applying original Pinnock curve (Pinnock et al., 1995) and final Pinnock curve using the Oslo LBL model (Myhre et al., 2006), to calculate the radiative forcing by integrating the calculated absorbed cross-sectional area from Step 1.
  3. Measuring the reactivity of the hydroxyl radical using PTR-Mass (V.Sinha et al., 2008) and based on measured OH radical, calculate the atmospheric life expectancy using the rate coefficient (Burkholder et al., 2014) and tropospheric lifetime (WMO, 2014) of CH3CCl3 (MCF), reference material proposed by WMO, 2014 .
  4. Following the IPCC AR5(2013), calculate GWP from the radiative forcing and the atmospheric life expectancy, determined by Step 2 and 3.

This work was supported by Korea Institute of Energy Technology Evaluation and Planing (No. 20172010106080)

How to cite: Lee, B. J. and Lee, J. I.: A study on the determination method of Global Warming Potential (GWP) by measuring the experiment-based infrared absorption spectra and the reactivity of the hydroxyl radical, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2310, https://doi.org/10.5194/egusphere-egu2020-2310, 2020.

CL2.3 – Phenology and seasonality in climate change

EGU2020-2945 | Displays | CL2.3

Increasing temperatures and fruit phenology – Comparing spatio-temporal trends for apple and pear in Belgium

Bianca Drepper, Anne Gobin, Wim Verjans, and Jos Van Orshoven

For several cultivars of Malus domestica (apple) and Pyrus communis (pear), records of seven decades (1950-2019) from the Research Centre for Fruit in north-east Belgium revealed that flowering occurred on average 9.5 (apple) and 11.5 (pear) days earlier following dormancy periods (October to April) that were warmer than the average (Drepper et al., 2020). However, the relationship between winter temperature and flowering date is not linear and relative delays of flowering following the warmest winters suggest that increasing temperatures before and after dormancy break (so-called chilling and forcing periods) have respectively delaying or advancing effects on the time of flowering of fruit trees in temperate regions (Drepper et al., 2020).

Well calibrated phenological models are potentially usable to support decision-making regarding (new) orchard locations, cultivar selection and frost mitigation measures. To this end a dynamic chill model was coupled to a growing degree day forcing model, calibrated and validated to the local cultivars for the Research Centre’s conditions. The combined model was applied for apple and pear on a 5km X 5km grid covering the region of Flanders in Belgium and run based on observed temperatures since 1950 from the Belgian Meteorological Institute on the one hand and regionally downscaled and adjusted temperature projections from the CORDEX project for the near future (up to 2060) on the other hand. This temporal horizon is farm practice driven and covers the lifespan of orchards planted in 2020.

The results (forthcoming) allow to investigate spatial patterns of (i) date of start of flowering, (ii) the occurrence of frost during sensitive stages around the flowering time, (iii) timing of dormancy break as well as (iv) its interaction with forcing completion.    

 

Drepper, Bianca, Anne Gobin, Serge Remy, and Jos Van Orshoven. “Comparing Apple and Pear Phenology and Model Performance: What Seven Decades of Observations Reveal.” Agronomy 10, no. 1 (January 4, 2020): 73. https://doi.org/10.3390/agronomy10010073.

 

How to cite: Drepper, B., Gobin, A., Verjans, W., and Van Orshoven, J.: Increasing temperatures and fruit phenology – Comparing spatio-temporal trends for apple and pear in Belgium, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2945, https://doi.org/10.5194/egusphere-egu2020-2945, 2020.

A phenological data set collected by volunteers` observers from the Latvia Phenological Observation Network covering period 1970 to 2018 has digitized from original paper based publications in Nature Calendars and analysed. The data set includes more than 40 thousand observations, 148 phenological phases across five different taxonomic groups: insects, amphibian, birds, fungi and plants as well as agrarian activities like sowing, harvesting date and some meteorological parameters like first and late frost, snow, ice regime.

The phenological changes or trends was analysed in two ways: 1. by combining data rows (station-phase-species) for one phase, such as leafing (BBCH11) for all trees and bushes; 2. by performing regression analyses for each phase and for each observation point separately.

More than 80% of spring data series shows negative tendency as reported in most scientific publications on European phenology. In our data set, overall, autumn phenologies are occurring later over time or the trends are neutral.

Regression analyses of phenology date versus year shows the disparities among species and among locations within a species: spring migrants’ return earlier, while staying longer in the fall with exceptions, for example the white stork in autumn leaves earlier than in the beginning of the period.

The commencement of the agricultural activities in spring such as sowing date have not changed significantly. However, such activities as livestock grazing and sowing of winter cereals takes place latter in the autumn.  These both appear to have affected by both technological changes and changes in meteorological parameters, for example, the trend of first autumn frost and first snow is positive – they have observed latter.

We have analysed trends and cross correlation with phenology in temperature regime, heat waves, precipitation, drought indexes, evapotranspiration, and soil temperature for the last 40 years.

Research is supported by the ERDF Project No. 1.1.1.2/VIAA/2/18/265 at the University of Latvia.

How to cite: Kalvane, G., Kalvans, A., and Briede, A.: Phenological data set of five taxonomic groups and agrarian activities in temperate climate: trends and influencing factors, Latvian case study , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4735, https://doi.org/10.5194/egusphere-egu2020-4735, 2020.

EGU2020-15171 | Displays | CL2.3

Using Sentinel-1 and -2 satellite time series to monitor crop phenology at the parcel level

Raphaël d'Andrimont, Guido Lemoine, and Marijn van der Velde

Phenology can contribute to many scientific disciplines from climate change, biodiversity, agriculture and forestry to human health. The knowledge of timing of phenological events and their variability can provide valuable data for agriculture. Accurate and timely information on the dates of specific stages of crop development is needed for various applications including crop yield forecasting. Despite the proven capabilities of Sentinel satellites for crop mapping and estimating phenology, they have not yet been applied effectively for tracking crop development across large areas. 

A methodology is proposed to systematically identify phenology phases from time series generated by the Copernicus Sentinel-1 (S1) and Sentinel-2 (S2) sensors. This is done by linking specific agricultural-parcel temporal S1 and S2 signatures to phenology observations representative for 5-km buffers around the 6573 Deutscher Wetterdienst (DWD) stations spatially distributed across Germany. First, a S1-based 10-m crop type classification was made around each DWD station trained with LUCAS (Land Cover and Land Use Area frame Survey) 2018 data which allowed identifying parcels as well as crop types. Second, the average crop specific S1 (VV and VH) and S2 (NDVI) temporal signal is extracted for each DWD station and the correlation between the DWD BBCH event and characteristic behaviour in the satellite signals such as dips or peaks is systematically assessed for each crop. 

This approach identified the unique and crop-specific temporal signatures of S1 and S2 associated with specific phenology events such as emergence, flowering or ripening. We further discuss the potential and limitations of S1 and S2 to extract this type of information. These temporal S1 and S2 signatures can contribute to a digital reference library that could be used to monitor crop phenology operationally for parcels across the globe. Moreover, it unveils the potential of S1 and S2 to study detailed spatial and temporal gradient of crop phenology in the light of climate change.

How to cite: d'Andrimont, R., Lemoine, G., and van der Velde, M.: Using Sentinel-1 and -2 satellite time series to monitor crop phenology at the parcel level, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15171, https://doi.org/10.5194/egusphere-egu2020-15171, 2020.

EGU2020-18012 | Displays | CL2.3

Exploring the control of phenological patterns of leaf function and tree growth in European tree species

Matthias Arend, Cedric Zahnd, and Günter Hoch

Trees in temperate climates show distinct seasonality of leaf photosynthetic function and tree growth, which has strong influence on the annual cycle of terrestrial carbon sequestration. Thus, there are intense efforts to explore phenological pattern of leaf photosynthetic function and tree growth in temperate tree species and understand their internal and external regulation. In this presentation, we summarize our past research in this field, combining results from different experimental studies and field observations on a large number of European tree species. We show not only the well-known dependency of the onset of spring bud burst and leaf development on temperature and photoperiod and their large inter- and intra-specific variability, but also refer to further, fairly unknown, environmental factors. We give examples how varying soil properties and drought stress may interact with temperature on the seasonal timing of bud burst, photosynthesis, shoot growth and autumnal leaf senescence. Finally, we give information on the temporal coordination of bud burst, canopy greening and tree growth, showing strong differences among European tree species. With the collected information, we identify potential sources of uncertainty in approaches predicting the seasonal timing of leaf photosynthetic activity and tree growth with climate warming.

 

How to cite: Arend, M., Zahnd, C., and Hoch, G.: Exploring the control of phenological patterns of leaf function and tree growth in European tree species, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18012, https://doi.org/10.5194/egusphere-egu2020-18012, 2020.

EGU2020-17923 | Displays | CL2.3

Monitoring Mediterranean grass phenology from digital terrestrial camera and Sentinel-2 vegetation indices in an oak-grass savanna ecosystem

Maria P. González-Dugo, Pedro J. Gómez-Giraldez, María J. Pérez-Palazón, and María J. Polo

Annual grasslands are an essential component of Mediterranean oak savannas, the most extensive agroforestry system in Europe, as the primary source of fodder for livestock and wildlife. Monitoring its phenology is key to adequately assess the impacts of global warming on different time scales and identify pre-critical states in the framework of early warning decision making systems. The natural variability of the climatic-hydrological regime in these areas and the usually complex spatial patterns of the vegetation, with sparse distribution and multiple layers, encourage the exploitation of available data from remote sensing sources. This work presents an assessment of vegetation indexes (VI) from Sentinel-2 validated against field data from terrestrial photography in an oak-grass system in southern Spain as a multi-approach method to monitor phenology in grass pastures. The analysis also has provided an insight into the links of the phenology dynamics with hydrological variables under these conditions.

From December 2017 to May 2019 a quantitative value of grassland greenness was computed using the Green Chromatic Coordinate (GCC) index. The phenological parameters of the start of the season (SOS), the peak of the season (POS) and end of the season (EOS) were extracted using the 50% amplitude method and confirmed using field photography. These values were compared with those provided by eight VI's derived from Sentinel-2 (NDVI, GNDVI, SAVI, EVI, EVI2, MTCI, IRECI and S2REP) and the difference in days between the key phenological dates were estimated. The results showed that for annual grasslands NDVI was the index providing estimations closest to those of ground GCC, with differences below 10 days for all phenological dates and the best correlation with GCC values (r = 0.83, p <0.001). None of the VIs using bands in the red-edge region have improved the NDVI results. Two of them, MTCI and S2REP, followed a different trend that the rest of explored indices, presenting a high temporal variability. The high diversity of species, typical of Mediterranean grasslands, might explain the high variability observed in these values. However, the third index using red-edge bands, IRECI, presented a high correlation with GCC. In this case, the index was designed to focus on the chlorophyll content of the canopy instead of the leaf scale addressed by S2REP. The influence of the vegetation ground coverage and foliage density is then higher and more similar to the broad-band indices. GNDVI also provided good general results. Soil moisture (SM) time-series were also used to estimate phenology and have presented a good agreement with GCC in SOS and EOS estimations, with SM reaching threshold values a few days before greenness ones, as measured by GCC. However, SM was not a good indicator of the POS, presenting significant biases with respect to GCC estimations.

How to cite: González-Dugo, M. P., Gómez-Giraldez, P. J., Pérez-Palazón, M. J., and Polo, M. J.: Monitoring Mediterranean grass phenology from digital terrestrial camera and Sentinel-2 vegetation indices in an oak-grass savanna ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17923, https://doi.org/10.5194/egusphere-egu2020-17923, 2020.

EGU2020-7261 | Displays | CL2.3

Multi-scale phenology from digital time-lapse camera to Sentinel-2 and MODIS over Australian pastures

Yuxia Liu, Alfredo Huete, Qiaoyun Xie, and Ha Nguyen

As a natural ecosystem dominated by grasses, phenological studies of pastures have attracted increased attention for their important roles in global carbon cycling, ecosystem biodiversity, and public health. To better understand pasture phenology from in-situ to regional scales, accurate monitoring of pasture greenness variations across different scales is critical. As an alternative approach to labor-intensive field surveys, digital time-lapse cameras (termed phenocams) can provide diurnal and long-term vegetation greenness observation at in-situ scale with less impact from atmospheric effects. Even so, monitoring of phenology at regional to global scales only can be obtained by satellite remote sensing. The data from satellite sensors whether medium-resolution (i.e. Moderate Resolution Imaging Spectrodiometer, MODIS, 250 m) or fine spatial resolution (i.e. Sentinel-2 mission, 10 m) is widely used for vegetation phenology monitoring. However, achieving accurate pasture greenness dynamics using satellite data remains challenging due to limitations resulting from heterogeneity in Australian pastures.   

Combining phenocam, Sentinel-2 data and MODIS land surface products, this study aimed to (1) compare differences in temporal profiles of pasture greenness derived from ground-based phenocam and satellite sensors with fine- and medium-spatial resolutions, respectively; (2) assess the capacity of Sentinel-2 pixels for representing the phenocam footprint for monitoring greenness dynamics; and (3) evaluate the potential of improving greenness upscaling from phenocam to MODIS by masking non-grass areas via Sentinel-2 data.

A set of RGB phenocams was deployed over sites located over eastern Australian pastures. Green chromatic coordinate (GCC) was calculated from phenocam images. Six spatial footprints centered at phenocam sites were defined (i.e. 10 m, 30 m, 90 m, 250 m, 750 m and 1250 m), in which the Enhanced Vegetation Index (EVI) was calculated from Sentinel-2 and MODIS. The correlations between phenocam GCC and Sentinel-2 EVI were analyzed at single and multiple sites within the phenocam footprint (< 100 m) across all phenophases. Similarly, the correlations between GCC and EVI derived from Sentinel-2 and MODIS were analyzed for larger scales (> 100 m). Finally, we analyzed the relationships between GCC and MODIS EVI derived after applying a Sentinel-2 grass mask.

First, generally consistent temporal patterns of GCC and EVI were found at all spatial scales and phenophases, though there were differences at larger scales. Second, relationships between GCC and Sentinel-2 EVI within the phenocam footprint (< 100 m) kept nearly consistent regression trends and significant correlations whether from single or multiple sites, but decreasing at scales beyond 100 m. Third, correlations between GCC and MODIS EVI were similar to Sentinel-2 EVI at the same scales (< 100 m). However, at > 250 m scale, EVI derived from Sentinel-2 non-grass filtered data improved the correlation with GCC compared with EVI from all Sentinel-2 pixels and MODIS pixels. Our results indicate that Sentinel-2 can enable retrieval of grass pasture phenology in heterogeneous landscapes with higher accuracy compared with MODIS, and demonstrated the potential of Sentinel-2 data as a land cover filter to improve phenocam upscaling to MODIS.  

How to cite: Liu, Y., Huete, A., Xie, Q., and Nguyen, H.: Multi-scale phenology from digital time-lapse camera to Sentinel-2 and MODIS over Australian pastures, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7261, https://doi.org/10.5194/egusphere-egu2020-7261, 2020.

The length of the period of vegetation activity is a significant driver of the global carbon cycle. Thus, the observation of plant phenology and seasonal vegetation dynamics has become an essential tool to quantify the impact of climate change on ecosystems. However, the accurate prediction of potential shifts of plant phenology in a warmer future requires a detailed spatio-temporal quantification of phenological patterns observed today. While phenological data derived from satellite-based remote sensing platforms often lack the spatial and/or temporal resolution to resolve the responses on the species level or to even reveal intraspecific patterns across the landscape, accurate visual observations by a human observer for thousands of trees are often not feasible due to time constraints. Therefore, we here present a novel near-surface remote sensing method that allowed the accurate tracking of tree phenology along an elevation- and urbanization gradient using a car-mounted camera. Using deep-learning-based image segmentation, we were able to track distinct patterns in the timing of leaf phenology of tens of thousands of trees along a nearly 100 km transect in New England throughout two growing seasons. The efficient collection of such high-resolution, multi-species, spatiotemporal data provides an excellent opportunity to quantify variation in tree phenology down to the level of individual organisms, across landscape and regional scales and for the fine-tuning of phenological models.

How to cite: Basler, D. and Richardson, A. D.: PhenoCar: Assessment of phenology of thousands of trees along an environmental gradient using car mounted cameras and deep-learning based image segmentation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18521, https://doi.org/10.5194/egusphere-egu2020-18521, 2020.

Direct in situ phenological observations of co-located trees and shrubs help characterize the phenological profile of ecosystems, such as, temperate deciduous forests. Accurate determination of the start and end of the growing season is necessary to define the active carbon uptake period for use in reliable carbon budget calculations. However, due to the resource intensive nature of recording in situ phenology the spatial coverage of sampling is often limited. In recent decades, the use of freely available satellite-derived phenology products to monitor ‘green-up’ at the landscape scale have become commonplace. Although these data sets are widely available they either have (i) high temporal resolution but low spatial resolution, such as, MODIS (daily return time; 250m) or (ii) low temporal resolution but high spatial resolution, such as, Landsat (16-day return time; 30m). However, the recently (2017) launched VENμS (Vegetation and Environment monitoring on a New Micro-Satellite) satellite combines both high temporal (two-day return time) and spatial (5-10m) resolution at a local scale thus providing an opportunity for small scale comparison of a range of phenometrics. The next challenge is to determine what in situ phenophase corresponds to the satellite-derived phenology. Our study site is a temperate deciduous woodlot on the campus of the University of Wisconsin-Milwaukee, USA, where we monitored in situ phenology on a range of (5) native (N) and (3) non-native invasive (NNI) shrub species, and (6) tree species for a 3-year period (2017-2019) to determine the timing and duration of key spring (bud-open, leaf-out, full-leaf unfolded) and autumn (leaf color, leaf fall) phenophases. The monitoring campaign coincided with the 2-day return time of VENμS to enable direct comparison with the satellite data. The shrubs leafed out before the trees and the NNIs, in particular, remained green well into the autumn season when the trees were leafless. The next step will be to determine what exact in situ phenophses correspond to NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) derived start, peak and end of season from MODIS and VENμS data. In addition, we will determine if VENμS can detect differences in phenological profile between N and NNI shrubs at seasonal extremes. We anticipate that the high resolution VENμS data will increase the accuracy of phenological determination which could help improve carbon budget determination and inform forest management and conservation plans.

How to cite: Donnelly, A. and Yu, R.: Combining in situ observations and high resolution VENμS data to monitor temperate deciduous shrub and tree phenology, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3719, https://doi.org/10.5194/egusphere-egu2020-3719, 2020.

EGU2020-15030 | Displays | CL2.3

Digital repeat photography as a tool for assessing crop phenology, CO2 and water vapor exchange from a legume grassland in eastern Finland

Narasinha J. Shurpali, Yuan Li, Dan Kou, Perttu Virkajärvi, Mikko Peltoniemi, Cemal M. Tanis, and Ali N. Arslan

EGU2020-5871 | Displays | CL2.3

Climate change reshapes the drivers of false spring risk across European trees

Catherine Chamberlain, Benjamin Cook, Ignacio Morales-Castilla, and Elizabeth Wolkovich

Temperate and boreal forests are shaped by late spring freezing events after budburst, which are also known as false springs. Research has generated conflicting results on whether or not these events will change with climate change, potentially because---to date---no study has compared the myriad climatic and geographic factors that contribute to a plant's risk of a false spring. We assessed and compared the strength of the effects of mean spring temperature, distance from the coast, elevation and the North Atlantic Oscillation (NAO) using PEP725 leafout data for six temperate, decidious tree species across 11,648 sites in Central Europe and how these predictors shifted with climate change. Across species before recent warming, mean spring temperature and distance from the coast were the strongest predictors, with higher mean spring temperatures associated with decreased risk in false springs (–7.64% per 2°C increase) and sites further from the coast experiencing an increased risk (5.32% per 150km from the coast). Elevation (2.23% per 200m increase in elevation) and NAO index (1.91% per 0.3 increase) also increased false spring risk. 

With climate change, elevation and distance from coast---i.e., the geographic factors---remain relatively stable, while climatic factors shifted in magnitude for mean spring temperature (down to -2.84% in risk per 2°C), and in direction, with positive NAO phases leading to lower risk (-9.15% per 0.3). The residual effects of climate change---unexplained by the climatic and geographic factors already included in the model---magnified the species-level variation in risk, with risk increasing among early-leafout species (i.e., Aesculus hippocastanum, Alnus glutinosa and Betula pendula) but a decline or no change in risk among late-leafout species (i.e., Fagus sylvatica, Fraxinus excelsior and Quercus robur). Our results show that climate change has reshaped the major drivers of false spring risk and highlight how considering multiple factors can yield a better understanding of the complexities of climate change.

How to cite: Chamberlain, C., Cook, B., Morales-Castilla, I., and Wolkovich, E.: Climate change reshapes the drivers of false spring risk across European trees, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5871, https://doi.org/10.5194/egusphere-egu2020-5871, 2020.

EGU2020-18671 | Displays | CL2.3

Climatic Drivers of Greening Trends in the Alps

Edoardo Cremonese, Gianluca Filippa, Marta Galvagno, Umberto Morra di Cella, and Mirco Migliavacca

Since the 1980s, vegetated lands have experienced widespread greening at the global scale. Spatial patterns and mechanisms of this phenomenon were extensively investigated, especially in the Arctic and sub-Arctic regions. Greening trends in the European Alps have received less attention, although this region has experienced strong climate and land-use changes during recent decades. We investigated the rates and spatial patterns of greening in an inner-alpine region of the Western Alps. We used MODIS-derived normalized difference vegetation index (NDVI) at 8-day temporal and 250 m spatial resolution, for the period 2000–2018, and removed areas with disturbances in order to consider the trends of undisturbed vegetation. We had two objectives :

(i) quantify trends of greening in a representative area of the Western Alps; and (ii) examine mechanisms and causes of spatial patterns of greening across different plant types.

Sixty-three percent of vegetated areas experienced significant trends during the 2000–2018 period, of which only 8% were negative. We identify (i) a climatic control on spring and autumn phenology with contrasting effects depending on plant type and elevation, and (ii) land-use change dynamics, such as shrub encroachment on abandoned pastures and colonization of new surfaces at high elevation.

Below 1500 m, warming temperatures promote incremental greening in the transition from spring to summer, but not in fall, suggesting either photoperiod or water limitation. In the alpine and sub-alpine belts ( > 1800 m asl), snow prevents vegetation development until late spring, despite favorable temperatures. Instead, at high elevation greening acts both in summer and autumn. However, photoperiod limitation likely prevents forested ecosystems from fully exploiting warmer autumn conditions. We furthermore illustrate two emblematic cases of prominent greening: recent colonization of previously glaciated/non vegetated areas, as well as shrub/tree encroachment due to the abandonment of agricultural practices. Our results demonstrate the interplay of climate and land-use change in controlling greening dynamics in the Western Alps.

How to cite: Cremonese, E., Filippa, G., Galvagno, M., Morra di Cella, U., and Migliavacca, M.: Climatic Drivers of Greening Trends in the Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18671, https://doi.org/10.5194/egusphere-egu2020-18671, 2020.

EGU2020-17837 | Displays | CL2.3

Gross Primary Production and False Spring: a spatio-temporal analysis

Emma Izquierdo-Verdiguier, Raúl Zurita-Milla, Álvaro Moreno-Martinez, Gustau Camps-Valls, Anja Klisch, Clement Atzberger, and Steven W. Running

Phenological information can be obtained from different sources of data. For instance, from remote sensing data or products and from models driven by weather variables. The former typically allows analyzing land surface phenology whereas the latter provide plant phenological information. Analyzing relationships between both sources of data allows us to understand the impact of climate change on vegetation over space and time. For example, the onset of spring is advanced or delayed by changes in the climate. These alterations affect plant productivity and animal migrations.

Spring onset monitoring is supported by the Extended Spring Index (SI-x), which are a suite of regression-based models for key indicator plant species. These models (Schwartz et al. in 2013) are based on daily maximum and minimum temperature from the first day of the year (January 1st). The primary products of these models are the timing of first leaf and first bloom, but they also provide derivative products such as the timing of last freeze day and the risk of frost damage day (damage index) for each year. This information helps to understand if vegetation could have suffered from environmental stressors such as droughts or a late frost events. The effects of environmental stressors in vegetation could be captured by the false spring index, which relates the first leaf day and the last freeze day. Moreover, this information could be used to understand plant productivity as well as to evaluate the economic impact of climate change.

Previous works studied the relationship between remote sensing and plant level products by means of spatial-temporal analysis between Gross Primary Production (GPP) and a spring onset index. However, they did not consider the possible impact of false spring effect in these relationships. Here, we present a spatial-temporal analysis between GPP and the damage index to better understand the effect of false springs (in annual gross photosynthesis data). The analysis is done for the period 2000 to 2015 over the contiguous US and at spatial resolution of 1 km. We used the MODIS annual sum of GPP and the damage and false spring indices derived from the SI-x models.

How to cite: Izquierdo-Verdiguier, E., Zurita-Milla, R., Moreno-Martinez, Á., Camps-Valls, G., Klisch, A., Atzberger, C., and Running, S. W.: Gross Primary Production and False Spring: a spatio-temporal analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17837, https://doi.org/10.5194/egusphere-egu2020-17837, 2020.

EGU2020-21586 | Displays | CL2.3

No risk - no fun: The tradeoff between avoiding frost and maximizing growth

Frederik Baumgarten, Yann Vitasse, and Arthur Gessler

Abstract

Leaf-out timing is crucial for the fitness of deciduous trees inhabiting temperate and higher latitudes. Optimal leaf-out allows minimizing freezing damages and herbivory pressure while maximizing growing season length and resource uptake in order to increase their competitiveness. However only a few attempts have been made to classify species according to their strategy along this trade-off.

Using climate chambers, we artificially provoked 5 different flushing dates that span the maximum possible range of natural occurring flushing dates of 4 tree species (Prunus avium, Carpinus betulus, Fagus sylvatica and Quercus robur). Shortly after each of the five leaf-out timings, 12 saplings per species were exposed to a frost treatment that is expected to either kill all leaves (LT100, i.e. lethal temperature killing 100% of the leaves) or to partially damage them. These temperature thresholds have been adapted to each species according to their freezing resistance found in the literature. A subset of 12 indviduals per species served as a control and were not subjected to a frost treatment. Shortly after the frost treatment, all saplings were planted outside in the ground under a shading net (~-60% of light transmission) simulating below canopy conditions at the WSL research facility near Zürich.

Growth parameters (diameter, height) and recovery state (percentage of greenness compared to the control) were regularly measured during the consecutive growing season as well as the leaf coloring in autumn 2019. Preliminary results suggest that cherry and oak have recovered more than 80% by the end of the growing season, whereas beech and hornbeam only recovered about 50%. Oak was the fastest species to recover, already reaching 80% three weeks after the frost treatment. Our results allow to better quantify to what extend damaging spring frost reduces competitiveness for resources (light, nutrients) among species.

How to cite: Baumgarten, F., Vitasse, Y., and Gessler, A.: No risk - no fun: The tradeoff between avoiding frost and maximizing growth, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21586, https://doi.org/10.5194/egusphere-egu2020-21586, 2020.

EGU2020-22453 | Displays | CL2.3

An interactive analysis of users, use and usability of phenological information

Raul Zurita-Milla, Iñaki Garcia de Cortazar-Atauri, and Emma Izquierdo-Verdiguier

Phenology is the science that studies the timing of periodic plant and animal life cycle events, as well as their causes, interrelations, and variations in space and time. Phenological information has a plethora of use and hence of users. For example, this information is often used to study climate change because phenological timings respond to changes in environmental conditions. Besides this, phenological information helps to model the water, carbon and energy cycles, is necessary to monitor and manage natural and artificial man-made ecosystems and even supports nature lovers and public health practitioners. The well-established EGU session on “Phenology and seasonality in climate change” shows the diversity of phenological research and products and brings together multiple research communities: ecologists, agronomists, foresters, climatologists, geo-information and remote sensing scientists, and of course, citizen science experts. We believe that this diversity deserves attention and propose carrying out a first analysis of users, use and usability of phenological products by interacting with the participants of this EGU session. For this we will use a presentation software that allows posing questions to the audience and collecting their views in real-time. This presentation will then provide a better view of the phenological community, including their most commonly used data sources, tools, and needs. Special attention will be paid to identify major achievements and research and/or operational gaps that can help to define a phenological agenda for this new decade.

How to cite: Zurita-Milla, R., Garcia de Cortazar-Atauri, I., and Izquierdo-Verdiguier, E.: An interactive analysis of users, use and usability of phenological information, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22453, https://doi.org/10.5194/egusphere-egu2020-22453, 2020.

The exceptional warmth of spring and early summer of 2018 caused the earliest beginning of fruit ripening dates in Austria since 1946 of black elder and red currant, the second earliest of apricot, as well as the shortest period between the beginning of flowering and fruit ripening for all three species (same as 1956 for red currant). These phenological extremities of the 2018 spring correspond with the highest Austrian preseason (temperatures before the phenological event) April/May/June average since 1768.

In order to put the spring of 2018 into a long term perspective, the above mentioned phenological time series were extended back to 1768 by the much longer homogenised HISTALP temperature time series. This was achieved by multiple regression driven by preseason mean monthly temperatures. In order to accommodate for the uncertainty of the regression model, the lower (5%) and upper (95%) bounds of the confidence intervals were added to the reconstructed time series. Even when considering the lower bounds, the 2018 entry date of black elder beginning of fruit ripening remains the earliest since 1768. The 2018 entry date of apricot comes fourth (after 1811, 1794, 1797 and same as 1822) and that of red currant third (after 1811 and 1794). In order to evaluate the phenological variability since 1970 a 11 year moving average and a 41 year moving trend were calculated for the combined time series consisting of the modelled (from 1768 to 1945) and observed (from 1946 – 2018) sections. Neither the level of the 11 year averages nor the level of the 41 year trend values since 1970 have occurred during any other period since 1768.

These results contribute to the discussion of the temperature sensitivity of phenological phases. In spite of the unprecedented spring and early summer temperature level our phenological data do not indicate that lower bounds of the time period between flowering and fruit ripening have yet been reached. The fruit ripening phenology of the mid latitudes is still sensitive enough to faithfully record temperature trends and extreme events supplementing the instrumental record.

How to cite: Scheifinger, H.: The extreme warmth of the Central European spring in 2018 and its effects on fruit ripening phenology in Austria – a 251 year perspective, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2968, https://doi.org/10.5194/egusphere-egu2020-2968, 2020.

Spring leaf unfolding is a spectacular recurring event at the mid- and high latitudes that is associated with deciduous vegetation. Several lines of evidence indicate that the timing of spring green-up (i.e. the start of the season, SOS) changed in the past decades resulting in an earlier leaf unfolding - a phenomenon which is considered to be a major indicator of the effects of global warming. Contrary to the timing of the SOS, considerably less attention was paid to studying the dynamics of vegetation green-up, characterized by the leaf unfolding speed or the duration of spring green-up. The importance of studying the spring green-up dynamics lies in the fact that the duration of leaf development and timing of the onset of growth jointly determine the annual cycle of vegetation activity including carbon and energy balance, canopy conductance and evapotranspiration.

The aim of our research was to characterize the dynamics of leaf unfolding of deciduous broadleaf forests in the wider Carpathian Basin, located in Central Europe, using satellite remote sensing. The study was based on the Normalized Difference Vegetation Index (NDVI) time-series derived from the MOD09A1 official MODIS products during 2000–2019, the IGBP land cover classification dataset of the MCD12Q1 products, the CORINE 2012 (CLC2012) land cover dataset, the SRTM elevation dataset, and the FORESEE meteorological database. Our results clearly show that there is considerable interannual variability in the green-up duration of the deciduous broadleaf forest during 2000–2019. The last three years had, on average, the shortest (2018) and the two longest (2017 and 2019) recorded green-up durations in the region. Observed variability was partially attributed to the meteorological conditions, namely the extreme weather events occurring during the spring. We demonstrate that the meteorological conditions during the green-up period have a strong effect on the duration. The relationship between the SOS and the green-up duration reveals that the SOS also played an important role as a driver. Our results also reveal considerable elevation dependency both in the green-up duration and also in its correlation with SOS. Multiple linear regression models based on the SOS and the meteorological variables were also created to explain and predict the green-up duration.

How to cite: Kern, A., Marjanović, H., and Barcza, Z.: Variability of green-up duration of deciduous broadleaf forests in Central Europe during 2000-2019 based on MODIS NDVI, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-840, https://doi.org/10.5194/egusphere-egu2020-840, 2020.

EGU2020-2551 | Displays | CL2.3

Sensitivity of phenology models to the selection of driving meteorological datasets
not presented

Réka Ágnes Dávid, Anikó Kern, and Zoltán Barcza

Plant phenology focuses on the annual repetitive development phases of the terrestrial vegetation. Since the date of the onset and the cessation of vegetation growth define the possible time period for photosynthesis, plant phenology strongly affects the carbon cycle of the ecosystems. Phenology has a serious impact on the climate system through the carbon-, water- and energy cycle. Observations indicate changes in the phenological cycle of the vegetation worldwide that are clear indicators of climate change. Warming climate can be associated with more intense carbon uptake, but it can also negatively affect production. Current studies clearly indicated that the phenological cycle is not properly represented in the Earth System Models which means that further research is needed.

Meteorological variables affecting the state of the environment, such as temperature and precipitation, also play a key role in the development of vegetation. Phenology models of different complexity were developed to quantify the timing of the onset of vegetation growth based on meteorological data. The sensitivity of the models to the source meteorological datasets is rarely studied. The aim of the present study is to quantify the sensitivity of widely used phenology models to the selection of the driving meteorological dataset.

Two phenology models were used to evaluate the different databases. One is the so-called Growing Degree Day (GDD) method, which calculates the onset date based on the degree day logic. The GDD model is further divided into simple thermal forcing model and thermal model, where the latter includes chilling requirement as well. The second method uses minimum temperature, photoperiod and vapor pressure deficit and calculates a so-called Growing Season Index (GSI) which is used to estimate onset date

Considering the meteorological data, three different datasets were used. The ERA5 is a reanalysis database, which is the product of the European Centre for Medium-Range Weather Forecasts (ECMWF). The CarpatClim and the FORESEE (Open Database FOR ClimatE Change-Related Impact Sudies in CEntral Europe) are observation based, gridded datasets for the larger Carpathian Region (Central Europe).  

In any modelling exercise aiming at simulating the stages of phenology, observations are essential. In the present study the phenological observation data is originating from satellite data and field observations. The first means the third generation Normalized Vegetation Index (NDVI3g) disseminated by GIMMS (Global Inventory Modeling and Mapping Studies), and the latter means the PEP725 phenology dataset and field observations from the botanical garden of Eötvös Loránd University, located in Budapest.

How to cite: Dávid, R. Á., Kern, A., and Barcza, Z.: Sensitivity of phenology models to the selection of driving meteorological datasets, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2551, https://doi.org/10.5194/egusphere-egu2020-2551, 2020.

EGU2020-9545 | Displays | CL2.3

Climatic change caused larger variation of spring phenology in temperate semi-dry grasslands in China

Xuancheng Zhou, Yongshuo Fu, and Yaru Zhang

Vegetation phenology is highly sensitive to climate change. Previous studies focusing on the trends of phenological events have found that temperature and precipitation primarily regulate the dates of spring phenology in temperate grasslands. However, the variation of spring phenology and its controlling factors are still unclear. In this study, we investigated the start of the growing season (SOS) in temperate semi-dry grasslands in China using five methods, and determined the variation of SOS and its primary factor over the study period 1982-2015. We found that, in line with previous studies, the SOS date did not change significantly during the entire study period 1982-2015, but its variation increased significantly from the first subperiod (1982-1998, Std: 8.8±1.1 day) to the second (1999-2015, Std: 10.3±1.1 days), the latter of which coincides with fast warming. The larger variation in SOS may be caused by the different climatic drivers on phenology in different areas. The fluctuation of temperature was significantly increased over the study area and subsequently may result in a larger variation of SOS. Furthermore, precipitation and soil moisture has increased until the mid-1990s, which may lead to the removal of water as a limiting factor and increase the response of semi-dry grassland spring phenology to temperature, and finally result in larger variation in SOS.

How to cite: Zhou, X., Fu, Y., and Zhang, Y.: Climatic change caused larger variation of spring phenology in temperate semi-dry grasslands in China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9545, https://doi.org/10.5194/egusphere-egu2020-9545, 2020.

EGU2020-10582 | Displays | CL2.3

Analysis of radar and thermal satellite data time-series for understanding the long-term impact of land surface temperature changes on forests

Maria Prodromou, Anastasia Yfantidou, Christos Theocharidis, Milto Miltiadou, and Chris Danezis

Forests are globally an important environmental and ecological resource since they retrain water through their routes and therefore limit flooding events and soil erosion from moderate rainfall. They also act as carbon sinks, provide food, clean water and natural habitat for humans and other species, including threatened ones. Recent reports stressed the vulnerability of EU forest ecosystem to climate change impacts (EEA, 2012) (IPPC, et al., 2014). Climate change is a significant factor in the increasing forest fires and tree species being unable to adapt to the severity and frequency of drought during the summer period. Consequently, the possibility of increased insect pests and tree diseases is high as trees have been weakened by the extreme weather conditions. In Cyprus, there are two types of pine trees that exists on Troodos mountains, Pinus Nigra and Pinus Brutia, that may have been influenced by the reduced snowfall and extended summer droughts during the last decades.

 

The overarching aim of this project is to research the impact of Land Surface Temperature on Cypriot forests on Troodos mountains by analysing time-series of radar and thermal satellite data. Impacts may include forest decline that does not relate to fire events, decreased forest density and alternations to timing of forest blooming initiation, duration and termination. Radar systems emitted pulses that can penetrate forest canopy due to the size of its wavelength and, therefore, collect information between tree branches without being affected by clouds. This presentation will focus on radar analysis conducted; testing of various methods, and how the processing pipeline has been automated.

 

The project ‘ASTARTE’ (EXCELLENCE/0918/0341) is co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Innovation Foundation.

How to cite: Prodromou, M., Yfantidou, A., Theocharidis, C., Miltiadou, M., and Danezis, C.: Analysis of radar and thermal satellite data time-series for understanding the long-term impact of land surface temperature changes on forests , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10582, https://doi.org/10.5194/egusphere-egu2020-10582, 2020.

EGU2020-12393 | Displays | CL2.3

Influence of spring phenology on seasonal net primary productivity in the alpine grassland on the Tibetan Plateau

Zhoutao Zheng, Wenquan Zhu, Yangjian Zhang, Ke Huang, and Nan Cong

Vegetation phenology is recognized to exert crucial influences on carbon sequestration and the role of vegetation phenology in mediating carbon cycle varies with ecosystem type. However, the relationship between vegetation phenology and productivity has not been fully understood in the alpine ecosystem due to a lack of field observations, poor model performances and their complex mechanisms. In this study, we examined the spatio-temporal variation in beginning of growing season (BGS) and net primary productivity (NPP) for the alpine grassland on the Tibetan Plateau (TP) and the regulation effects of spring phenology on seasonal NPP by integrating field observations, remote sensing monitoring and ecosystem model simulation. The ecosystem model performances were improved by optimizing ecosystem parameters from field observations. The results indicated a significant advance in BGS with a rate of 0.31 days/yr (P < 0.1) in the alpine grassland during 2001-2015 while the annual NPP increased significantly at a rate of 1.25 gC/m2/yr (P < 0.01). With regard to the relationship between BGS and NPP, large spatial heterogeneities were identified. Overall, a negative but non-significant correlation (R = -0.34, P > 0.1) was observed between BGS and annual NPP for the entire grassland ecosystem on the TP. But responses of NPP to BGS varied with seasons. Specifically, BGS showed significant negative correlation with spring NPP (R = -0.73, P < 0.01), and advanced spring led to increased spring NPP. The positive effects of advanced BGS on NPP tended to weaken in summer. Moreover, BGS was significantly and positively correlated with autumn NPP in some relatively arid zones of the southwestern TP, suggesting the suppressing effects of earlier spring on carbon assimilation during the later growing season in water limited areas. This study improved our understanding on the impacts of biotic factors on carbon cycles of the alpine ecosystem and implies that the effects of phenology can’t be concluded simply for an annual sum, and their relationships for each separate season are also critical.

How to cite: Zheng, Z., Zhu, W., Zhang, Y., Huang, K., and Cong, N.: Influence of spring phenology on seasonal net primary productivity in the alpine grassland on the Tibetan Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12393, https://doi.org/10.5194/egusphere-egu2020-12393, 2020.

Using RGB camera data (e.g. webcams, wildlife cameras) has great potential to measure forest phenology over climate gradients, because of its very high temporal resolution, while at the same time being more objective and less time consuming than in situ observations. To make images useful for the purpose of measuring phenological events, such as Start of Season (SOS) and End of Season (EOS), there is need to derive Regions of Interest (ROI) objectively and (semi-)automatically. In order to answer this need, Bothmann et al. (2017) proposed a method which randomly sets a number of pinpricks in the image and calculates how greenness over time from all other pixels correlates to these different pinpricks. Subsequently, ROIs are created by discarding the pixels with low correlation, using multiple thresholds. Despite its advantage of being automated and more objective compared to prevailing expert-based ROIs, and therefore its potential applicability for phenological research using a large amount of cameras, the method has not been reproduced for this purpose so far. Therefore, we assess here how well this method is able to separate foliage of different deciduous species from evergreens and phenologically irrelevant components in time-lapse wildlife camera data and in that way how suitable it is in explaining variation in phenology over a temperature gradient. We used 73 Cuddleback wildlife cameras troughout Bavaria which were installed within nine quadrants of 6*6 kilometers spanning a temperature gradient of 2.5°C. Hourly taken images of deciduous forests in spring, summer and autumn 2019 were analysed. Half of them were facing canopy, and half of them were facing understory. We applied the principles of the method from Bothmann et al. (2017) and assigned the best matching ROI to foliage of Fagus sylvatica or other deciduous species. Within this ROI, mean Green Chromatic Coordinate (GCC), a greenness index, over all pixels within the ROI, was derived per time-stamp. Afterwards, a time-series was calculated on these GCC values and with a suitable combination of curve-fitting techniques, SOS and EOS were derived, expressed in Day of Year (DOY). We compared these SOS and EOS dates with weekly in situ observations of spring and autumn phenology, which were taken in the same quadrants. Despite that Bothmann's method was developed on a single tower-mounted scientific webcam which viewed on canopy from above, while we made use of wildlife cameras at 73 different locations facing either understory perpendicular or canopy from below, it was able to distinguish F. sylvatica and other deciduous foliage from phenologically less relevant information. Time-series derived from these ROIs were able to explain variability in phenology between understory and canopy and over the temperature gradient similarly and supplementary to in situ observations. 

How to cite: Uphus, L. and Menzel, A.: Time-series within automatically generated ROIs from wildlife cameras are well able to explain variability in forest phenology on a temperature gradient, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16006, https://doi.org/10.5194/egusphere-egu2020-16006, 2020.

EGU2020-16521 | Displays | CL2.3

Students learning phenology for becoming citizen scientists: an example of Italian High School students and CNR researchers teamwork experience

Carla Cesaraccio, Annalisa Canu, Grazia Pellizzaro, Pierpaolo Masia, and Maria Leonarda Fadda

Citizen science is the scientific research that involves the participation of the public assisting professional scientists. This typically occurs in helping to data collection and/or data analysis, and an increasingly popular use of citizen science is the collection of phenological data, like wildflowers blooming in summer or leaves changing color in fall. Studying the life cycles of plants (phenology) reveals some consequences of climate change.

The PCTO (Percorsi per le Competenze Trasversali e per l'Orientamento) is a school-work alternation program and represent an innovative teaching method, introduced in 2015 by the Italian Ministry of Education, University and Research. This program, through practical experience, helps to consolidate the knowledge acquired at school and to enrich the student training. The school-work alternation is compulsory for all the students of the last three years of high school (13-17 years age). This program is a cultural change that incorporates good European practices, aimed at creating a synergy between school and work in order to encourage students to follow program learning inside of a public/private company.

The National Research Council of Italy is a partner of this program and each year students from high school are involved in technical and research activities. During the years 2015-2019, the Institute for the BioEconomy of Sassari, offered a School-Work learning program dedicated exclusively to Phenological and Pollen monitoring to groups of students of High School. While they employed their skills at work, they learnt to implement the specific protocols of a scientific project. These experiences increased their awareness of the essential role they can play by acquiring new knowledge of the environment and skills through scientific tools of citizen science. In this paper, results of the Phenological and Pollen monitoring program held at IBE-CNR Sassari are illustrated.

In the future, citizen scientists can provide reliable observations when following scientific methods and standardized protocols. Phenological monitoring programs based on volunteers support will become increasingly important in providing open‐access, standardized data sets capable of supporting the process of answering ecological and global change questions.

How to cite: Cesaraccio, C., Canu, A., Pellizzaro, G., Masia, P., and Fadda, M. L.: Students learning phenology for becoming citizen scientists: an example of Italian High School students and CNR researchers teamwork experience, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16521, https://doi.org/10.5194/egusphere-egu2020-16521, 2020.

EGU2020-16922 | Displays | CL2.3

Microclimatic effects on spring budburst and autumn leaf coloration of four temperate tree species

Yann Vitasse, Rungnapa Kaewthongrach, and Frederik Baumgarten

Recent study highlighted large microclimatic variation occurring within forests, especially concerning light and temperature. In this study we aimed to quantify to what extent variation in light, soil humidity, nutrient availability and bud temperature alter the phenology of four tree species (Fagus sylvatica, Quercus robur, Prunus avium and Fraxinus excelsior). Various treatments were applied to seedlings grown in large wooden boxes in situ conditions near Zurich. The different treatments included shade (~60% of light transmission), reduced precipitation using rain shelters, fertilizer, additional watering during summer, as well as painting buds in black or white to alter bud temperature via albedo change. Budburst timing and leaf coloration were observed twice a week during the spring and autumn 2019.

Preliminary results show that the time of budburst was delayed when seedlings were grown under shade conditions (from +3 to +11 days for Quercus and Fagus respectively) or when buds are painted in white compared to black (from +4 to +11 days from Quercus and Prunus respectively), whereas no significant effect was found under reduced precipitation for any species. For the timing of leaf coloring, a very significant effect of light was found with a delay of +22, +39 and +42 days observed under shade conditions for Fraxinus, Prunus and Fagus. Preliminary results based on the temperature recorded within the buds or close to the plants suggest that bud temperature explain the differences observed in the time of bud burst among the different treatments, though light intensity may have also directly influenced bud development of Fagus in spring. Regarding leaf coloration, our results suggest that light intensity has a strong influence on most of temperate trees whereas soil water and nutrient content has only a minor species-specific effect. Overall, our results underline the importance of microclimatic variation to explain phenological variation among trees within or among nearby sites, especially in topographically complex regions as in mountains or in forests with varying vertical structure.

How to cite: Vitasse, Y., Kaewthongrach, R., and Baumgarten, F.: Microclimatic effects on spring budburst and autumn leaf coloration of four temperate tree species, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16922, https://doi.org/10.5194/egusphere-egu2020-16922, 2020.

EGU2020-18786 | Displays | CL2.3

New station-specific limits in phenology to improve data quality during online-data-entry

Barbara Pietragalla and Linda Füzér

The Swiss phenology network operated by MeteoSwiss counts approximately 160 stations where up to 69 phenological events are observed by private persons. Currently, 68% of the observer transmit their data online by a recently developed tool called Phenotool. In order to reduce typing errors during the entry of the data, the values are instantly checked by Phenotool. The observer receives a visual warning if the data exceeds defined limits of an expected time-period giving him the opportunity to verify the date entered. The defined limits need to be as suitable as possible for each station and phenological event as numerous false warnings reduce the sensitivity of the observers and cause them to ignore the warning. 
Until June 2019, limits had been used for five altitudinal layers and for each phenological event resulting from the mean ± 2 SD (standard deviation) rounded to the nearest 10. However, for some stations these limits were not appropriate, therefore, we decided to calculate station specific limits as follows: The median and SD was calculated for each phenological series consisting of at least 10 observations. In a second step, the mean of all SDs < 20 days was calculated and 2.5 times SD added/subtracted from the median. This approach leads to the same range of the limits for each phenological event, while the start of the limits is specific for each stations depending on the previously calculated median. If we would have used a station-specific standard deviation, stations with high variability and often less accurate data, would have been “awarded” with a large range. 
For new stations, data-series consisting of less than 10 observations or deviant data-series, we calculated the limits with the mean standard deviations as described above and a predicted median from a linear regression model showing the relationship between the medians of a specific phenological event and the station heights. Deviant data-series were recognized by a difference larger than 30 days between modelled and calculated median.
The comparison of the old and new limits revealed that the newly calculated limits have an average range which is 8.52 days smaller. 55 out of the 69 phenological events have a smaller range, two has the same, and the remaining 12 have a larger range. Using the previous limits, in average 8.12% of the data from 1985-2019 was outside the defined ranges, however, applying the new limits results in 3.98% of the observations not fitting the limits. Considering the fact that the new limits have in average a smaller range, this improvement becomes even more significant. To conclude, we can say that the new limits produce clearly less warnings and more appropriate warnings in Phenotool enhancing data quality.

How to cite: Pietragalla, B. and Füzér, L.: New station-specific limits in phenology to improve data quality during online-data-entry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18786, https://doi.org/10.5194/egusphere-egu2020-18786, 2020.

EGU2020-19787 | Displays | CL2.3

Climate Change and its impact on Poaceae and Fagaceae pollen season in Northern Sardinia, Italy

Annalisa Canu, Arnoldo Vargiu, and Grazia Pellizzaro

Airborne pollen data are an important source of information on flowering phenology, because they record the response of plants surrounding the sampling station, rather than the responses of individual plants, as with direct phenological observation. Plant phenology represents a good indicator of vegetation responses to long-term variation to temperatures. Furthermore, several studies have evidenced that aerobiological data series and pollen season are often strongly correlated to climate change.

This research aims to analyze airborne pollen data of Poaceae and Fagaceae measured from 1986 to 2008 in a urban area of northern Sardinia (Italy) and to investigate the trends in these data and their relationship with meteorological parameters using time series analysis. The aerobiological monitoring station was located in the center of the city very close to a public garden, and it is part of both the Italian and the European - A.I.A. Aeroallergen monitoring Network. Meteorological data were recorded during the same period by an automatic weather station.

The following parameters were calculated for each pollen: start, end and duration of pollen season, date of peak pollen concentration, number of days from the beginning of the season to the peak, annual pollen index (API), percentage distribution of API and maximum daily concentration.

The correlation between meteorological variables and the different characteristics of pollen seasons was analyzed using Spearman’s correlation tests.

A linear regression model was used for the trend analysis of the API of airborne pollen spread of the two family from 1986 to 2008.

How to cite: Canu, A., Vargiu, A., and Pellizzaro, G.: Climate Change and its impact on Poaceae and Fagaceae pollen season in Northern Sardinia, Italy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19787, https://doi.org/10.5194/egusphere-egu2020-19787, 2020.

EGU2020-19894 | Displays | CL2.3

Improving cropping management and yield prediction with satellite derived crop phenology

Peng Zhu, Philippe Ciais, and David Makowski

Spatiotemporal information about crop phenology and physiology during the growing season is critical for estimates and forecasts of productivity and yield. Further, knowledge of phenology during the season provides information for applying efficient irrigation, scheduling fertilization, pest management and harvesting at optimal times.. Yield loss from climatic stress, like drought or heat, is critically dependent on both phenology and physiology. Yet, current yield forecasting models do not fully use all the potential of phenology and physiology related variables that can be retrieved from satellites. We attempt to address this research gap, focusing on the major winter crops grown in northern France, wheat and rapeseed. The yields of these crops are inaccurately predicted, in this region (and elsewhere) despite their economic importance. We will derive key crop phenological stages and physiological parameters at high spatial resolution with validation at site level, and using those data together with climate fields to develop statistical models of seasonal crop yield forecast. The proposed approach has potential to be applied to other crop types and areas.


 

 

 

How to cite: Zhu, P., Ciais, P., and Makowski, D.: Improving cropping management and yield prediction with satellite derived crop phenology, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19894, https://doi.org/10.5194/egusphere-egu2020-19894, 2020.

EGU2020-20804 | Displays | CL2.3

Estimation of corn harvest date in South Korea based on the accumulated temperature

Jina Hur, Kyo-Moon Shim, Yongseok Kim, and Sera Jo

This study was estimated harvest date of corn in South Korea based on the temperature index called the accumulated temperature. The accumulated temperature was calculated using observed daily mean temperature. We assumed a unified seeding date, 5 April, across the South Korea. The daily mean temperatures from 61 weather stations provided by the Korean Meteorological Administration were obtained for the period 2009-2018 (10 years). We used 1,650℃ as the criterion of the accumulated temperature to identify harvest date of corn for early-cultivated variety. The accumulated temperature over the most areas generally meted the criterion (1,650℃) in early July. In case of 2018, 66% area of Gang-won province, major corn producer, become suitable to harvest corn in July, peaking in the middle July (51%). The harvest date has been accelerating due to increase in daily mean temperature during the recent 10 years. This study infers that changes in farming activities are needed through reflecting the environmental change.        

 

Acknowledgements

: This study was carried out with the support of “Research Program for Agricultural Science & Technology Development (Project No. PJ014882)”, National Institute of Agricultural Sciences, Rural Development Administration, Republic of Korea.

 

How to cite: Hur, J., Shim, K.-M., Kim, Y., and Jo, S.: Estimation of corn harvest date in South Korea based on the accumulated temperature, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20804, https://doi.org/10.5194/egusphere-egu2020-20804, 2020.

EGU2020-21952 | Displays | CL2.3

A machine learning software framework for extraction of phenology indicators from multi-temporal sentinel-2 images

Dounia arezki, Hadria Fizazi, Santiago Belda, Charlotte De Grave, Luca Pipia, and Jochem Verrelst

Optical Earth observation satellites provide spatially-explicit data that are necessary to study trends in vegetation dynamics. However, more of often than not optical data are discontinuous in time, due to persistent cloud cover and instrumental noises. Hence, the operating constraints of these data require several essential pre-processing steps, especially when aiming to reach towards monitoring of vegetation seasonal trends.  To facilitate this task, here we present an end-to-end processing software framework applied to Sentinel-2 images.

To do so, first biophysical retrieval models were generated by means of a trained machine learning regression algorithm (MLRA) using simulated data coming from radiative transfer models. Among various tested MLRAs, the variational heteroscedastic Gaussian process regression (VHGPR) was evaluated as best performing. to train the retrieval model.  The training and retrieval were conducted in the Automated Radiative Transfer Models Operator (ARTMO) software framework.

Subsequently, in view of retrieving the phenological parameters from the obtained vegetation products, a novel times series toolbox as part of the ARTMO framework was used, called:  Decomposition and Analysis of Time Series software (DATimeS). DATimeS provides temporal interpolation among other functionalities with several advanced MLRAs for gap filling, smoothing functions and subsequent calculation of phenology indicators. Various MLRAs were tested for gap filling to reconstruct cloud-free maps of biophysical variables at a step of 10 days.

A demonstration case is presented involving the retrieval of Leaf area index (LAI), fraction of Absorbed Photosynthetically Active Radiation (FAPAR) from sentinel-2 time series.  A large agricultural Algerian site of 143, 75 km² including Oued Rhiou, Ouarizane, Djidioua (1,345,075 pixels) was chosen for this study.  A reference image was excluded from the time series in order to evaluate the reconstruction accuracy over a 40-day artificial gap.

  The reference vs.  Reconstructed maps produced by the gap-filling methods were compared with statistical goodness-of-fit metrics.  Considering both accuracy and processing speed, the fitting algorithms Gaussian process regression (GPR) and Next neighbour interpolation (R²= 0.90 / 0.081 sec per pixel and R²=0.88 / 0.001 sec per pixel respectively) interpolations proved to reconstruct the vegetation products the most efficient, with GPR as more accurate but Next faster by a factor of 70.

Finally, we evaluated of the phenology indicators such as start-of-season and end-of-season based on LAI and FAPAR. The obtained maps provide valid information of the vegetation dynamics.  Altogether, the ARTMO-DATimeS software framework enabled seamless processing of all essential steps:  (1) from L2A sentinel-2 images converted to vegetation products, (2) to cloud-free composite products, and finally (3) converted into vegetation phenology indicators.

 

How to cite: arezki, D., Fizazi, H., Belda, S., De Grave, C., Pipia, L., and Verrelst, J.: A machine learning software framework for extraction of phenology indicators from multi-temporal sentinel-2 images, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21952, https://doi.org/10.5194/egusphere-egu2020-21952, 2020.

EGU2020-21960 | Displays | CL2.3

Is bud burst of temperate trees promoted by a critical daylength?

Nora Pohl, Frederik Baumgarten, and Yann Vitasse

Is bud burst of temperate trees promoted by a critical daylength?

 

Bud burst of temperate trees is mainly controlled by cool temperatures during winter-dormancy (chilling), warm temperatures in spring (forcing) and daylength (photoperiod). Some tree species may rely more on one of these drivers than others (e.g. temperature driven species) but recent studies emphasize complex interactions among them for most species. As one of these factors, photoperiod can act by preventing trees from flushing too early, minimizing the risk of damaging spring frost. Yet it is unclear whether stimulating and/or inhibiting effects of photoperiod on spring phenology act (i) gradually (i.e. increasing daylength progressively accelerates bud development response to temperature) or (ii) whether photoperiod slows down bud development until reaching a critical threshold.

In this study we tested the second hypothesis by exposing twig cuttings of 5 species (Acer pseudoplatanus, Carpinus betulus, Fagus sylvatica, Quercus petraea, Tilia cordata) to different constant photoperiods that occur before leaf-out in the latitudes of Zurich (10h, 11h, 12h, 13h). Two additional photoperiods of 8h and 16h served as a control to simulate shortest and longest natural occurring daylengths. The experiment was repeated on three occasions (from October 2019 to January 2020) to account for different dormancy depths.  Bud development was monitored twice a week.

The experiment is still running. We expect that temperature-sensitive species would leaf-out regardless of the photoperiod, while photoperiod sensitive species such as beech may wait until a critical threshold has passed. Furthermore, longer photoperiods might substitute for insufficient chilling by decreasing the required amount of forcing to bud burst. The results could serve to better implement photoperiod into phenological models.

How to cite: Pohl, N., Baumgarten, F., and Vitasse, Y.: Is bud burst of temperate trees promoted by a critical daylength?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21960, https://doi.org/10.5194/egusphere-egu2020-21960, 2020.

EGU2020-7053 | Displays | CL2.3

Extreme summer heat and drought acts as an environmental veto for fruit production in European beech

Anita Nussbaumer, Katrin Meusburger, Maria Schmitt, Peter Waldner, Regula Gehrig, Matthias Haeni, Andreas Rigling, Ivano Brunner, and Anne Thimonier

European beech is known to be a masting species, i.e. fruit production does not occur every year. It is thought to be a species which is flowering controlled, i.e. that after successful pollination, fruits and seeds would be produced. In the last two decades, years with high fruit production occurred every two to three years in Middle Europe, which may be indication for an inherent biennial cycle. However, successful fruit production can be hampered by disadvantageous weather conditions, such as frost events, during the pollination season.

In Switzerland, after high beech pollen concentration was measured in spring of 2018, high fruit production was expected. However, during the extremely hot and dry European summer of 2018, beech produced no, or only small amounts of beechnuts in two of three long-term monitoring beech stands in Switzerland, which are part of the Swiss Long-Term Forest Ecosystem Research Programme. We observed that beechnuts were aborted in early summer already. Over the last decades, we found similar examples of mast failure and fruit abortion in years with hot and dry summer conditions. These extreme conditions can thus act as an “environmental veto”, similar to frost events during flowering. In years with fruit abortion, summer mean temperatures were 1.2°C higher, and precipitation sums were 45% lower than the long-term average. Our findings are evidence for a biennial masting cycle in European beech, which can be interrupted by extreme weather conditions such as extreme summer heat and drought or frost during flowering.

How to cite: Nussbaumer, A., Meusburger, K., Schmitt, M., Waldner, P., Gehrig, R., Haeni, M., Rigling, A., Brunner, I., and Thimonier, A.: Extreme summer heat and drought acts as an environmental veto for fruit production in European beech, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7053, https://doi.org/10.5194/egusphere-egu2020-7053, 2020.

Will warmer winters induce more forest and crop pests in Switzerland?

Léonard Schneider*,**

*Institute of Geography, University of Neuchatel, Espace Tilo-Frey 1, 2000 Neuchatel (leonard.schneider@unine.ch)

**Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf

 

With current global warming, recent winters have often been milder in Switzerland than they were in previous decades and should still become more so in the coming decades. Some insect species sensitive to winter extreme cold events could increase their survival rates during the cold season. Forest pests, such as pine processionary moth (Thaumetopoea pityocampa), green spruce aphid (Elatobium abietinum), and some crop pests, such as southern green stink bug (Nezara viridula), could overwinter more easily in Switzerland. These species are affected by temperatures below -12°C (Thaumetopoea pityocampa, Elatobium abietinum) to below -8°C (Nezara viridula).

This research aims to determine to what extent the evolution of winter minimum temperatures could increase the winter survival rate of some pest species in various places in Switzerland. We examine the trends for winter temperatures, with a special focus on cold events (days with minimal air temperature below -8°C and -12°C). We first analyse daily air temperature between 1980 and 2019 using 67 meteorological stations located all over Switzerland. Then, we use available data from CH2018 climatic scenarios to estimate possible trends along the coming century.

Preliminary results showed that the frequency of cold days has been decreasing in Switzerland over the last 40 years even though winter minimum temperatures have been increasing less than yearly minimum temperatures. By the end of the 21st Century, occurrences of temperatures below -12°C could become irregular up to 1700 m and winters with temperatures below -8°C could become rare at lower elevations in Switzerland. As a consequence, some crop pests such as southern green stin bug could overwinter more easily on the Swiss Plateau, and some forest pests such as green spruce aphid and pine processionary moth could reach higher elevations in mountain areas by the end of the century.

How to cite: Schneider, L.: Will warmer winters induce more forest and crop pests in Switzerland?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10450, https://doi.org/10.5194/egusphere-egu2020-10450, 2020.

EGU2020-20606 | Displays | CL2.3

Plant phenology evaluation of CRESCENDO land surface models

Deborah Hemming, Daniele Peano, Stefano Materia, Taejin Park, David Warlind, Yuanchao Fan, Hanna Lee, Andy Wiltshire, and Chris D Jones

A new generation of land surface models (LSMs) have been developed in the framework of the EU-funded CRESCENDO project aiming to improve understanding of the Earth system as part of the community CMIP6 effort. 
These new LSMs explicitly represent key processes in the carbon and nitrogen cycles, enabling more realistic vegetation-climate interactions to be simulated. For instance, vegetation phenology, the seasonality of vegetation, is explicitly represented in all these new LSMs. Intra- and inter-annual variations in vegetation phenology can substantially influence land-atmosphere exchanges of energy, moisture and carbon. Changes in phenological events also provide clear indicators of climate impacts on ecosystems. 
Results are presented on the evaluation of phenological variability from offline runs of this new generation of LSMs. In particular, the timing of growing season onset and offset at global scale, and the Leaf Area Index (LAI) peak timing are investigated using monthly mean outputs. Three satellite-derived LAI datasets are used as benchmark observations for this evaluation.
In general, LSMs exhibit high skill in reproducing the observed phenology cycle in the North hemisphere mid- and high-latitudes, while lower skill is obtained in the South hemisphere. All LSMs simulate an offset in the timing of the active vegetative season characterized by later onset and LAI peak. Offset timings are slightly better captured by the LSMs. For these reasons, further development of the representation of phenology is required in LSMs, especially in the South hemisphere, where more complex vegetation and reduced in-situ observations are available.

How to cite: Hemming, D., Peano, D., Materia, S., Park, T., Warlind, D., Fan, Y., Lee, H., Wiltshire, A., and Jones, C. D.: Plant phenology evaluation of CRESCENDO land surface models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20606, https://doi.org/10.5194/egusphere-egu2020-20606, 2020.

Studying grassland phenology and its relationships to climate would deepen our understanding of vegetation-air interactions under global climate change. To date, however, our knowledge of the responses of grassland phenology to climatic factors is still limited at the continental scale. In this study, we retrieved the start (SOS) and end (EOS) of the growing season for mid-latitude (30°N~55°N) grasslands of the Northern Hemisphere during 1981-2014, and investigated their relations with previous temperature, rainfall, and snowfall (only for SOS) through trends analysis and time window analysis. Results illustrated a predominant significant advancing/delaying trend of SOS/EOS in 23.2%/20.5% of the study region. They jointly resulted in a primarily significant prolongation trend of growing season length in 22.7% of the study region. Next, a dominated negative correlation between air temperature/rainfall and SOS was found in 62.4%/57.6% of areas. Snowfall showed converse effects (positive/negative) among different grasslands. The time window opening date for air temperature to start to affect SOS was identified as the day 1-90 before the multi-year average SOS in 76.1% of areas, while the time window opening date for the effect of rainfall/snowfall on SOS was relatively evenly distributed between the 1st and 180th day before the multi-year average SOS. EOS was found to be significantly negatively/positively correlated with air temperature/precipitation in 74.8%/83.7% of areas. The time window opening date for the effect of air temperature on EOS was identified as the 90-180th day before the multi-year average EOS in 66.9% of areas, while the time window opening date for the effect of precipitation on EOS was mainly concentrated on the 60-120th day before the multi-year average EOS in 51.5% of areas. Overall, this study highlights the distinctly different time windows for the thermal-moisture effects on grassland vegetation phenology and this should be considered when establishing process-based phenological models.

How to cite: Ren, S., Li, Y., and Peichl, M.: Diverse effects of climate at different times on grassland phenology in mid-latitude of the Northern Hemisphere, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3992, https://doi.org/10.5194/egusphere-egu2020-3992, 2020.

EGU2020-6053 | Displays | CL2.3

Effects of winter chilling vs. spring forcing on the spring phenology of trees in a cold region and a warmer reference region

Yue Yang, Mai-He Li, Zhengfang Wu, Hong S. He, Haibo Du, and Shengwei Zong

Regions at high latitudes and high altitudes are undergoing a more pronounced winter warming than spring warming, and such asymmetric warming will affect chilling and forcing processes and thus the spring phenology of plants. We analyzed winter chilling and spring forcing accumulation in relation to the spring phenology of three tree species (Ulmus pumila, Populus simonii, and Syringa oblata) growing in a cold region (CR) compared with trees in a warmer reference region (WR, using the Dynamic Model and the Growing Degree Hour (GDH) model. We tested that forcing rather than chilling affects the spring phenology of trees in CR (hypothesis I), and that trees in CR have both lower chilling and lower forcing temperatures and thus longer accumulation periods than trees in WR (hypothesis II). In line with our hypotheses, forcing played a crucial role in spring phenology in CR, but chilling and forcing combined to determine spring phenology in WR. The temperatures during the chilling and forcing periods were lower and the accumulation period started earlier and ended later in CR than in WR. Moreover, the chilling accumulation was broken into two periods by the low deep winter temperature in CR. We conclude that asymmetric warming, with a stronger temperature increase in winter than in spring, could decrease the forcing accumulation effects and increase the chilling effects on the spring phenology of plants in CR. This change in the balance between chilling and forcing will lead to a shift in plant phenology, which will further have major impacts on biogeochemical cycles and on ecosystem functioning and services.

How to cite: Yang, Y., Li, M.-H., Wu, Z., He, H. S., Du, H., and Zong, S.: Effects of winter chilling vs. spring forcing on the spring phenology of trees in a cold region and a warmer reference region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6053, https://doi.org/10.5194/egusphere-egu2020-6053, 2020.

Changes in winter soil freeze-thaw (F-T) phenology not only affect nature, but also affect social-economy in permafrost regions. However, a lack of understanding of its response to global warming is a critical gap in knowledge to preclude adaptation to climate change. Here we explored effects of warming gradient (0, 1, 2 and 4oC) combined with precipitation addition on it by which further on CO2 emission on the Tibetan Plateau. We find that only warming delays start and end dates of soil F-T cycle during autumn-winter season, but advances them during winter-spring season, thus shortens the durations of completely freezing (14.9 days oC-1) and total duration of soil F-T period from autumn to spring (11.7 days oC-1). Thus, asynchronic shifts of the soil F-T cycle induced by warming significantly decreased total CO2 emission by 31-47% relative to T0 treatment during the whole F-T period from autumn to spring.

How to cite: wang, S., wang, Q., lv, W., zhou, Y., and jiang, L.: Asynchrony of winter soil freeze-thaw phenology induced by warming reduces ecosystem respiration of alpine meadow during the freeze-thaw period, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12031, https://doi.org/10.5194/egusphere-egu2020-12031, 2020.

EGU2020-18551 | Displays | CL2.3

Phenological changes in Europe are still attributable to climate change induced warming

Annette Menzel, Ye Yuan, Michael Matiu, Tim H Sparks, Helfried Scheifinger, Regula Gehrig, and Nicole Estrella

During 1971-2000 phenological responses of wild species in spring and summer matched the warming pattern in Europe, whereas timing of farming activities as well as autumnal leaf colouring did not mirror climate change to the same extent (Menzel et al. GCB 2006). These findings were a backbone of the corresponding global attribution study of the IPCC AR4 (Rosenzweig et al. 2007, 2008). Two decades of warming later, however, new phenological findings suggest that especially a lack of chilling and / or increasing influence of photoperiod may have lowered the phenological temperature response and that adaptation in agricultural management is taking place. We therefore updated the GCB 2006 study by asking three questions: What drives the inherent variation of trends? Can we now detect a warming signal in “false” agricultural (i.e. those being directly or indirectly determined by farmers’ management) and autumn phases? Is there still an attributable warming signal in phenology?

The complete phenological dataset of Germany, Austria and Switzerland (1951-2018, ~97.000 times series, corresponding to 96.3% of PEP725 data) was analysed. We determined linear trends, studied their variation by plant traits / phenogroups, across season and time, and followed IPCC methodology for attributing phenological changes to warming patterns.

For spring and summer phases of wild plants we found more (significantly) advancing trends (~90% and ~60% sign.) which were stronger in early spring, at higher elevations, but smaller for non-woody insect-pollinated species. Although mean trend strength decreased, changes in spring were strongly attributable to warming in spring and winter. We had similar but less strong findings for agricultural crops in these seasons. In contrast only ~75% of phenological phases set by farmers’ decisions were advancing, however this was the only phenological group for which the mean advance increased, indicating adaptation. Equally trends in farming phases in spring and summer were attributable to warming in winter and summer, respectively. Leaf coloring and fall was now predominantly delayed (57%) which was attributable to winter and spring warming, too.

Thus, this update of the GCB2006 study demonstrates that there is still a significant and attributable phenological change pattern in Europe, in which number of (significant) trends pointing into the direction of warming increased, but mean trend strength mostly decreased, probably due to a lack of chilling and smaller forcing trends. More attention should be paid to the inherent variability of trends with traits / species groups, season and time triggering divers (e.g. ecological) consequences of these phenological shifts. Still existing differences between the generative period of crops and wild species as well as between the farming season and the general growing season call for more research in this area.

How to cite: Menzel, A., Yuan, Y., Matiu, M., Sparks, T. H., Scheifinger, H., Gehrig, R., and Estrella, N.: Phenological changes in Europe are still attributable to climate change induced warming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18551, https://doi.org/10.5194/egusphere-egu2020-18551, 2020.

CL2.4 – Synoptic climatology - methods and application

EGU2020-349 | Displays | CL2.4

Revisiting the Identification of Wintertime Atmospheric Circulation Regimes in the Euro-Atlantic Sector

Swinda Falkena, Jana de Wiljes, Antje Weisheimer, and Theodore G. Shepherd

A number of methods exist for the identification of atmospheric circulation regimes. The most commonly-used method is k-means clustering. Often the clustering algorithm is applied to the first several principal components, instead of the full field data. In addition, many studies use a time-filter to get rid of high frequency oscillations before the clustering is executed. We discuss the consequences of these filtering techniques on the identified circulation regimes for the Euro-Atlantic sector in winter. Most studies identify four regimes: the Atlantic Ridge, the Scandinavian Blocking, and the two phases of the North Atlantic Oscillation. However, when k-means clustering is applied to the full field data of a reanalysis dataset, the optimal number of regimes is not found to be four, but six. This optimal number is based on the use of an information criterion, together with consistency arguments. The two additional regimes can be identified as the opposite phases of the Atlantic Ridge and Scandinavian Blocking, since they have a low-pressure area where the original regimes have a high-pressure area. Furthermore, the incorporation of a persistence constraint within the clustering algorithm is found to preserve the occurrence rates of the regimes, and thus maintains the consistency of the results. In contrast, applying a time-filter to enforce persistence of the regimes changes the occurrence rates. We conclude that care must be taken when filtering the data before the clustering algorithm is applied, since this can lead to biases in the identified circulation regimes and their occurrence rates.

How to cite: Falkena, S., de Wiljes, J., Weisheimer, A., and Shepherd, T. G.: Revisiting the Identification of Wintertime Atmospheric Circulation Regimes in the Euro-Atlantic Sector, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-349, https://doi.org/10.5194/egusphere-egu2020-349, 2020.

EGU2020-1454 | Displays | CL2.4

Synoptic Circulation Patterns and Climate Regionalization of East Africa

Markos Ware, Paolo Mori, Kisten Warrach -Sagi, Mark Jury, Thomas Schiwtalla, and Volker Wulfmeyer

Abstract. Climate regionalization is crucial for climate studies, especially in the case of heterogeneous regions like East Africa. This paper focuses on categorizing Ethiopia into homogeneous climatic sub-regions by applying a classification of circulation patterns on precipitation. The sub-regions obtained will be applied on the verification of WRF-NOAHMP seasonal simulations performed over the Horn of Africa. We analyzed the occurrence of each circulation type per month and per year over the whole country. Then, trend analysis of temperature and precipitation over the respective sub-regions were performed. Principal Component Analysis (PCA) were applied to group daily mean Sea Level Pressure (SLP) into Circulation Types (CTs). Then, PCA coupled with k-means clustering employed to regionalize precipitation fields (distributed spatially) following CTs into homogeneous climatic sub-regions. Observational data were obtained from the National Center for Environmental Prediction (NCEP) reanalysis, Climate Hazards Group Infrared Precipitation with Stations (CHIRPS version 2), and National Meteorology Agency (NMA) of Ethiopia (gauge 1st and 2nd classes). Five principal components, which explain 98% of the total variance, were maintained using the Scree test technique. Ten CTs were obtained using positive and negative phases of each principal component scores following the extreme score values (> 2 and < −2) procedure. From ten CTs, we found that three (CT1, CT3, and CT8) were characterized by low pressure over the southwest corner of the domain, which consequently brings rainfall over the Ethiopian highlands. The number of days classified under different CTs shows different trends. CTs seasonal distribution agreed with the regional seasons. Long-term monthly mean rainfall ranges from 0-600 mm over the region. Ethiopia is clustered into four homogeneous sub-regions based on the spatial distribution of precipitation following CTs. Rainfall from CHIRPS and gauge did not have any specific trend over the sub-regions, however high standardized anomalies were observed compared to the long term mean. The temperature showed a 2 °C change for the past three decades. There was a negligible difference in the shape, size, and location of regions using data from different sources. The final decision on the optimal number of homogeneous climatic sub-regions depends upon the research objective, geographical domain size, and topographic features of the domain. This study provides an assessment and decision pathway.

 

Keywords: climatology, regionalization, Ethiopia, precipitation, k-means, circulation types

How to cite: Ware, M., Mori, P., Warrach -Sagi, K., Jury, M., Schiwtalla, T., and Wulfmeyer, V.: Synoptic Circulation Patterns and Climate Regionalization of East Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1454, https://doi.org/10.5194/egusphere-egu2020-1454, 2020.

EGU2020-3438 | Displays | CL2.4

Assessment of future heat events for the city of Augsburg by means of a normal vector based analog approach

Christian Merkenschlager, Christoph Beck, and Elke Hertig

Under enhanced anthropogenic greenhouse gas forcing heat waves are only one example of climatic risks mankind has to deal with. Especially in urban areas where most of the people will live until the end of the 21st century heat waves are a serious risk factor since the urban heat island will reinforce such events. For the city of Augsburg, new analog methods are utilized for assessing the development and impacts of heat waves taking into account the varying urban structure.

For model calibration the temperature data from the Augsburg-Mühlhausen weather station operated by the German Weather Service (DWD) and atmospheric circulation variables of the ERA5 reanalysis data set were used to analyze the recent temperature development. For this purpose, the least deviation of the normal vector was used to determine a subsample of analogs corresponding to the day of interest. The normal vector was derived from the regression plane of the prevailing circulation on the respective day. Subsequently, the temperature patterns were used to define the analog day from the subsample. For future periods, the same method was applied to model data for two representative concentration pathways (RCP4.5, RCP8.5) of different general circulation models (GCM: ACCESS1-0, CNRM-CM5, MPI-ESM-LR). Thus, we derive future time series of analogs corresponding to events prevailing in the observational period. To account for projected trends of the GCMs, the trends of all time-series were first removed and, after the analog selection process, added again according to the trends of the GCMs.

Temperature extremes are defined as days with temperatures exceeding the 90th quantile (Q90) and heat days are defined as days where at least two temperature indices (TMIN, TMEAN, TMAX) exceed Q90. When at least three consecutive days are defined as heat day a heat wave is proclaimed. Analysis have shown that under consideration of RCP8.5 (RCP4.5) and all model runs the number of heat days in the end of the 21st century will be nine (five) times higher than within the reference period 1970-2000. Furthermore, the mean duration of heatwaves will extend by factor four (two), whereby heat waves of more than 30 (15) consecutive days are possible.

How to cite: Merkenschlager, C., Beck, C., and Hertig, E.: Assessment of future heat events for the city of Augsburg by means of a normal vector based analog approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3438, https://doi.org/10.5194/egusphere-egu2020-3438, 2020.

EGU2020-4375 | Displays | CL2.4

Archetypal analysis of Southern Hemisphere extreme circulation events

James Risbey and Didier Monselesan

EGU2020-5449 | Displays | CL2.4

Seasonal weather regimes in the North Atlantic region: towards new seasonality?

Florentin Breton, Mathieu Vrac, Yiou Pascal, Pradeebane Vaittinada Ayar, and Aglaé Jézéquel

European climate variability is shaped by atmospheric dynamics and local physical processes over the North Atlantic region. Both have strong seasonal features. So, a better understanding of their future seasonality is essential to anticipate changes in weather conditions for human and natural systems. We revisit the notion of seasons over the North Atlantic region through the concept of seasonal weather regimes (SWRs), by classifying daily fields of geopotential height at 500 hPa (Z500) without a priori separation of seasons. We use data from the ERA-Interim reanalysis, and from 12 climate models of the fifth phase of the Coupled Model Intercomparison Project. The spatial and temporal variability of SWR structures is investigated, as well as associated patterns of surface air temperatures. Although the climate models have biases, they reproduce structures and evolutions of SWRs similar to the reanalysis over 1979-2017: decreasing frequency of winter conditions, which start later and end earlier, and increasing frequency of summer conditions starting earlier and ending later in the year. These changes are stronger over 1979-2100 than over 1979-2017. By the end of the 21st century, the typical past winter conditions (e.g. 1979-2017) have almost disappeared and correspond to future extreme cold conditions. A new cluster related to summer that was almost absent in 1979-2017 (corresponding to past extreme warm conditions in the past) becomes dominant. To understand whether these changes are linked to uniform Z500 increase or changes in Z500 spatial patterns, we detrend the data (but impose a stationary seasonality) by removing the trend in the seasonal Z500 regional average to define detrended seasonal weather regimes (d-SWRs). The temporal properties of d-SWRs appear almost constant, whereas spatial patterns show evolution. Our results indicate that the evolutions of the SWR temporal features are caused by the regional Z500 trend and that changing spatial patterns in d-SWRs account for the heterogeneity of this trend. Previous research has shown that this large-scale Z500 trend is linked to human influence, suggesting that it drives the changes in seasonality that we find.

How to cite: Breton, F., Vrac, M., Pascal, Y., Vaittinada Ayar, P., and Jézéquel, A.: Seasonal weather regimes in the North Atlantic region: towards new seasonality?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5449, https://doi.org/10.5194/egusphere-egu2020-5449, 2020.

EGU2020-5965 | Displays | CL2.4

Climatology and variability of jets in the upper troposphere

Clemens Spensberger and Thomas Spengler

Jets in the upper troposphere constitute a cornerstone of both synoptic meteorology and climate dynamics, thus providing a direct link between weather and mid-latitude climate variability. Conventionally, jet variability is mostly inferred indirectly through the variability of geopotential or sea-level pressure. Here we use a feature-based jet detection and present a global climatology of upper tropospheric jets as well as their variability for ocean sectors in both Hemispheres. The jet streams on both hemispheres are found to spiral poleward, featuring a continuous transition from subtropical to eddy-driven jets. Most intrinsic patterns of jet variability represent a changeover from a meridional shifting type variability to a pulsing-type variability, or vice-versa, across each ocean basin.

For the Southern Hemisphere, we find considerable discrepancies between geopotential and jet-based variability. Specifically, we show that SAM cannot be interpreted in terms of mid-latitude variability, as SAM merely modulates the most poleward part of the cyclone tracks and only marginally influences the distribution of other weather-related features of the storm track (e.g., position of jet axes and Rossby wave breaking). Instead, SAM emerges as the leading pattern of geopotential variability due to strong correlations of sea-level pressure around the Antarctic continent. Considering sector-specific variability pattern, we identify modes of consistent geopotential and jet variability in the South Pacific, and, to a lesser extent, the South Indian Ocean. In the South Pacific the leading mode of variability points towards NAO-like variability.

How to cite: Spensberger, C. and Spengler, T.: Climatology and variability of jets in the upper troposphere, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5965, https://doi.org/10.5194/egusphere-egu2020-5965, 2020.

EGU2020-8549 | Displays | CL2.4

Torrential rainfall prediction: WeMOTool

Laia Arbiol-Roca

The Western Mediterranean Oscillation index (WeMOi) presents a statistically significant relationship with the pluviometric totals of the eastern façade of the Iberian Peninsula. Use of the WeMOi at daily resolution has proven to constitute a useful tool for helping to predict torrential rainfall episodes in the east of the peninsula. The present research attempts to determinate which atmospherics circulations defines the WeMOi phases. Also, the WeMOi research has focused on the prediction of it in order to configure itself as a predictive tool, the WeMOTool, for torrential rains associated, especially during the autumn months. The calculation of this index is made using the surface pressure data of the GFS model and is updated with the model outputs at 00h and 12h and up to 144h.

How to cite: Arbiol-Roca, L.: Torrential rainfall prediction: WeMOTool, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8549, https://doi.org/10.5194/egusphere-egu2020-8549, 2020.

EGU2020-8877 | Displays | CL2.4

Drought occurrence in key regions of soil moisture-atmosphere interaction in temperate Eurasia

Alla Yurova, Daniil Kozlov, and Yali Zhu

In an atmospheric general circulation drought-forming anomaly the nonlinear relationship between soil moisture and evapotranspiration play an important role in transitional (sub-humid and semi-dry) moisture regime. In this study the preceding soil moisture deficit was linked to the following low standardized precipitation index (SPI) indicating atmospheric drought in two major land-atmosphere coupling regions over Eurasia – Northern Eurasian Plains (NEP) and Plains and Uplands of Northeastern China (PUNEC).  Spring season was under consideration as the most significant for crop development failure due to lack of moisture and the most predictable due to prolonged soil memory after major hydrological event of the year – the snowmelt. The Global Energy and Water Exchanges (GEWEX) project deliverables and Climate Prediction Center (CPC) soil moisture data were used after validation with agrometeorological station data. It was shown that May droughts in NEP and PUNEC occur after regional negative soil moisture anomaly in early spring in significantly high proportion of cases for the study period 1985-2019. The soil moisture anomaly is leading to drought when the specific circulation pattern is formed as shown by the composite analysis. Importantly, the circulation pattern is Eurasia-broad with upstream blocking ridge centered in NEP and anticyclone formation in PUNEC. Both ridge and anticyclone are persistent and characterized by low cloudiness, reduced moist static energy (also due to reduction in evapotranspiration by low soil moisture) and low large scale and convective precipitation. That is why low SPI events often co-occur in two study regions. Atmospheric models tend to agree that atmospheric processes do respond to negative anomalies in surface moisture conditions in NEP and PUNEC and positive feedback of soil drought on the atmosphere is largely responsible for enabling atmospheric aridity extremes. The reasons for the simultaneous early spring moisture deficits in two regions are to be searched in the features of winter general circulation which lead to reduced snow accumulation and/or snowmelt regime with lower than average water infiltration to the soil. European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble seasonal forecast skill was also explored. SPI skill scores in April are indicating better forecast in NEP than in PUNEC but skill decreases sharply in May in NEP while remaining high till June in PUNEC. Further prospects for improving meteorological, hydrological and agricultural drought forecasting and forecast post-processing methodology for the regions of study are discussed.

This study was supported by the Russian Federal Targeted Program 1.2. Grant Number RFMEFI60419X0222 “Global climate and agrolandscapes of Russia: development of assessment and risk management system of Russian chernozems degradation” and National Key Research and Development Program of China, Grant Number 2016YFA0600701 “The variation and mechanism of extreme climate in northern China at interannual timescale”

How to cite: Yurova, A., Kozlov, D., and Zhu, Y.: Drought occurrence in key regions of soil moisture-atmosphere interaction in temperate Eurasia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8877, https://doi.org/10.5194/egusphere-egu2020-8877, 2020.

  To know the detailed seasonal cycle in various regions, confined only to the middle and higher latitudes, is the common basis for deeper understanding of the seasonal backgrounds of (1) extreme meteorological or climatological events and (2) cultural generation through the “seasonal feeling” leading to cultural understanding education. For example, our previous studies (e.g., Kato et al. 2017) pointed out that the “seasonal feeling” on the severe winter relating to the traditional event for driving the winter away (“Fasnacht”) around Germany might be due to the intermittent appearance of the extremely low temperature events, although the winter mean temperature there is lower only by about 3~5℃ than in southern Japan. Hamaki et al.(2018) suggested the appearance of such events to be controlled greatly by the intraseasonal behaviors of the Icelandic low. Furthermore, Kuwana et al. (EGU2018 and 2019) pointed out the asymmetric seasonal progression of the behaviors of the Icelandic low including its intraseasonal variation from the autumn to the next spring. However, it has not been clarified yet what kind of seasonal transition of the dominant large-scale daily fields was related to the increase in appearance frequency of such extremely low temperature events after mid-December. Thus the present study will further examine the detailed features on the above processes, mainly for the 2000/2001 winter based on the NCEP/NCAR reanalysis data.

  Appearance frequency of extremely low temperature events (e.g., below -5℃) rapidly increased around mid-December of 2000 with the large amplitude of its intraseasonal variation although the seasonal mean the Icelandic low appeared from mid-October. It is interesting that the daily mean temperature decreased gradually with shorter-period fluctuation until mid-December, even after the seasonal formation of the Icelandic low.

  As for the seasonal mean fields from mid-December to the next March, the northeastern portion of the Icelandic low area extended more closely to the northwestern Europe and the baroclinicity was enhanced especially to the south of ~55°N. Composite analyses suggest that the extremely low temperature events after mid-December around Germany was related not only to the weakening and westward retreat of the Icelandic low but also to the cold air advection by the low-level easterly wind along the southeastern edge of the intraseasonal-scale surface high to the north of Germany.

How to cite: Miyake, C. and Kato, K.: Synoptic climatological analysis on the rather abrupt seasonal transition to mid-winter situation around Germany with intermittent appearance of extremely low temperature events., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13096, https://doi.org/10.5194/egusphere-egu2020-13096, 2020.

The self-organizing maps (SOMs) have become a widespread tool for studying atmospheric circulation and its links to weather elements. The SOMs do not only produce a classification, but also a topology-preserving representation of the input data—a 2D array of circulation types (CTs). Consequently, one can analyse not only CT frequencies, persistence, and their conditioning of weather elements, but also visualise these parameters in a “continuum” of representative patterns. This latter characteristic makes it in theory plausible to define a (considerably) larger number of CTs compared to other classification approaches, and thus better represent extremes of circulation variability, without necessarily compromising the utility of the output by making it unintelligible.

Here, we investigate whether increasing the number of CTs (enlarging the SOM) leads to a classification better suitable to study synoptic forcing of extreme weather, and, in particular, what the effect is of various SOM parameters, which have to be chosen a priori more or less subjectively—such as array shape and size, radius and function of neighbourhood, learning rate, and initialization—on the utility of the resulting classification. Furthermore, we present the Sammon mapping, typically used to evaluate the topological structure of SOMs, as a standalone classification tool that shares some of the advantages with SOMs while potentially circumventing some of their weaknesses.

How to cite: Stryhal, J. and Plavcová, E.: On the use of circulation classifications by self-organizing maps toward studying extreme weather, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17802, https://doi.org/10.5194/egusphere-egu2020-17802, 2020.

EGU2020-21274 | Displays | CL2.4

Persistence and frequency of drought-relevant circulation types during temperature extremes in southern Central Europe

Selina Thanheiser, Markus Homann, Andreas Philipp, Christoph Beck, and Jucundus Jacobeit

The German weather service reports a new record mean June temperature for Germany and intensive heat waves during 2018 and 2019. Between January 2018 and June 2019, three new monthly top extremes were recorded (April 2018, May 2018 and June 2019).

In this study the relationships between the persistence and frequency of atmospheric circulation patterns related to drought and surface air temperature anomalies are investigated. The study area is in southern Central Europe, including parts of Germany and Switzerland as well as Austria and Czech Republic.

Large-scale atmospheric circulation types (relevant to drought) have been derived by using the COST733 classification software. Atmospheric variables from gridded daily JRA55 reanalysis data (Japanese Meteorological Agency 2018) and gridded precipitation data for the study area (6x6km, based on timeseries of 1756 weather stations from Zentralanstalt für Meteorologie und Geodynamik 2018) were used for the classification. All input variables were specifically weighted in the classification process. Daily maximum temperature data from ECA&D (2019) for different stations within the study area are used to evaluate the relationship between a circulation type and heat (cold) waves.

The drought-relevant circulation types are determined according to relative frequencies of circulation type days under a particular percentile of precipitation: If at least 20 percent of the circulation type days are below the 20th percentile of precipitation, the circulation type is defined as drought relevant.

For the derived drought-relevant circulation types, the mean seasonal frequencies [in %] (April-September, October-March) and the mean persistence [in days] (1961-2017) are calculated. To evaluate the relationship between a circulation type and heat (cold) waves, an efficiency coefficient is calculated. The efficiency coefficient is defined as ratio between the frequency of the circulation type in heat (cold) waves and its mean seasonal frequency.

For the study area, those circulation types relevant to drought with a high proportion of seasonal temperature anomalies could be identified. The circulation type with a dominant Azores high with ridges of high-pressure towards Central/Eastern Europe has the highest proportion of positive temperature anomalies in summer.

How to cite: Thanheiser, S., Homann, M., Philipp, A., Beck, C., and Jacobeit, J.: Persistence and frequency of drought-relevant circulation types during temperature extremes in southern Central Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21274, https://doi.org/10.5194/egusphere-egu2020-21274, 2020.

CL2.5 – Urban climate, urban biometeorology, and science tools for cities

EGU2020-4157 | Displays | CL2.5

ACROSS: An Observational Campaign to Improve Understanding of Photochemistry of Mixed Urban and Biogenic Air Masses

Christopher Cantrell, Vincent Michoud, Paola Formenti, Jean-Francois Doussin, Aline Gratien, and Sebastien Dusanter and the ACROSS team

In recent decades, significant progress has been made in understanding the causes and impacts of urban air pollution, generally leading to improved air quality through enhanced knowledge and regulatory action. While a significant number of people still die prematurely each year from air pollution, progress continues to be made. Scientific investigation has exposed the processes by which primary pollutants, such as oxides of nitrogen and volatile organic compounds, are processed in the atmosphere, leading to their oxidation and ultimate removal, while at the same time producing secondary species such as ozone and organic aerosols.

Research has uncovered the complex chemistry of natural organic compounds released from trees and other plants. Because of the chemical structures of these compounds, they react somewhat differently than organic substances typically found in urban environments. The ACROSS (Atmospheric ChemistRy Of the Suburban foreSt) project focuses on scientific research to understand the detailed chemistry and physics of urban air mixed with biogenic emissions with the goals to increase detailed understanding of the chemical processes and to use this knowledge to improve the performance of air quality models. Enhanced knowledge and improved models will allow society to develop better strategies to improve air quality and save lives.

The central component of ACROSS is a comprehensive summertime field study with many instruments for the measurement of primary and secondary constituents. Measurements will be made from research aircraft, a tower located in a forest, tethered balloons and/or drones, and mobile platforms. Observations from the field study will be analyzed in a variety of ways involving statistical approaches and comparisons with different types of numerical models.

This presentation describes activities in preparation of the ACROSS measurement campaign and provides information for interested parties to become involved.

How to cite: Cantrell, C., Michoud, V., Formenti, P., Doussin, J.-F., Gratien, A., and Dusanter, S. and the ACROSS team: ACROSS: An Observational Campaign to Improve Understanding of Photochemistry of Mixed Urban and Biogenic Air Masses, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4157, https://doi.org/10.5194/egusphere-egu2020-4157, 2020.

EGU2020-8837 | Displays | CL2.5

From Urban Air Quality Forecasting and Information Systems to Integrated Urban Hydrometeorology, Climate and Environment Systems and Services for Smart Cities

Alexander Baklanov and the EU FP FUMAPEX, MEGAPOLI, EuMetChem and MarcoPolo projects and international WMO GURME and IUS teams

This presentation is analysing a modern evolution in research and development from specific urban air quality systems to multi-hazard and integrated urban weather, environment and climate systems and services and provides an overview of joint results of large EU FP FUMAPEX, MEGAPOLI, EuMetChem and MarcoPolo projects and international WMO GURME and IUS teams. 

Urban air pollution is still one of the key environmental issues for many cities around the world. A number of recent and previous international studies have been initiated to explore these issues. In particular relevant experience from several European projects will be demonstrated. MEGAPOLI studies aimed to assess the impacts of megacities and large air-pollution hotspots on local, regional and global air quality; to quantify feedback mechanisms linking megacity air quality, local and regional climates, and global climate change; and to develop improved tools for predicting air pollution levels in megacities (doi:10.5194/asr-4-115-2010). FUMAPEX developed for the first time an integrated system encompassing emissions, urban meteorology and population exposure for urban air pollution episode forecasting, the assessment of urban air quality and health effects, and for emergency preparedness issues for urban areas (UAQIFS: Urban Air Quality Forecasting and Information System; doi.org/10.5194/acp-6-2005-2006; doi.org/10.5194/acp-7-855-2007).

While important advances have been made, new interdisciplinary research studies are needed to increase our understanding of the interactions between emissions, air quality, and regional and global climates. Studies need to address both basic and applied research and bridge the spatial and temporal scales connecting local emissions, air quality and weather with climate and global atmospheric chemistry. WMO has established the Global Atmosphere Watch (GAW) Urban Research Meteorology and Environment (GURME) project which provides an important research contribution to the integrated urban services.

Most of the disasters affecting urban areas are of a hydro-meteorological nature and these have increased due to climate change. Cities are also responsible not only for air pollution emissions, but also for generating up to 70% of GHG emissions that drive large scale climate change. Thus, there is a strong feedback between contributions of cities to environmental health, climate change and the impacts of climate change on cities and these phases of the problem should not be considered separately. There is a critical need to consider the problem in a complex manner with interactions of climate change and disaster risk reduction for urban areas (doi:10.1016/j.atmosenv.2015.11.059, doi.org/10.1016/j.uclim.2017.05.004).

WMO is promoting safe, healthy and resilient cities through the development of Integrated Urban Weather, Environment and Climate Services (IUS). The aim is to build urban services that meet the special needs of cities through a combination of dense observation networks, high-resolution forecasts, multi-hazard early warning systems, disaster management plans and climate services. This approach gives cities the tools they need to reduce emissions, build thriving and resilient communities and implement the UN Sustainable Development Goals. The Guidance on IUS, developed by a WMO inter-programme working group, documents and shares the good practices that will allow countries and cities to improve the resilience of urban areas to a great variety of natural and other hazards (https://library.wmo.int/doc_num.php?explnum_id=9903).

How to cite: Baklanov, A. and the EU FP FUMAPEX, MEGAPOLI, EuMetChem and MarcoPolo projects and international WMO GURME and IUS teams: From Urban Air Quality Forecasting and Information Systems to Integrated Urban Hydrometeorology, Climate and Environment Systems and Services for Smart Cities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8837, https://doi.org/10.5194/egusphere-egu2020-8837, 2020.

EGU2020-5879 | Displays | CL2.5 | Highlight

Copernicus for Urban Resilience in Europe: the CURE Project

Nektarios Chrysoulakis, Zina Mitraka, Mattia Marconcini, David Ludlow, Zaheer Khan, Brigitte Holt Andersen, Tomas Soukup, Mario Dohr, Alessandra Gandini, Jürgen Kropp, Dirk Lauwaet, and Christian Feigenwinter

Resilience has become an important necessity for cities, particularly in the face of climate change. Mitigation and adaptation actions that enhance the resilience of cities need to be based on a sound understanding and quantification of the drivers of urban transformation and settlement structures, human and urban vulnerability, and of local and global climate change. Copernicus, as the means for the establishment of a European capacity for Earth Observation (EO), is based on continuously evolving Core Services. A major challenge for the EO community is the innovative exploitation of the Copernicus products in dealing with urban sustainability towards increasing urban resilience. Due to the multidimensional nature of urban resilience, to meet this challenge, information from more than one Copernicus Core Services, namely the Land Monitoring Service (CLMS), the Atmosphere Monitoring Service (CAMS), the Climate Change Service (C3S) and the Emergency Management Service (EMS), is needed. Furthermore, to address urban resilience, the urban planning community needs spatially disaggregated environmental information at local (neighbourhood) scale. Such information, for all parameters needed, is not yet directly available from the Copernicus Core Services mentioned above, while several elements - data and products - from contemporary satellite missions consist valuable tools for retrieving urban environmental parameters at local scale. The H2020-Space project CURE (Copernicus for Urban Resilience in Europe) is a joint effort of 10 partners from 9 countries that synergistically exploits the above Copernicus Core Services to develop an umbrella cross-cutting application for urban resilience, consisting of individual cross-cutting applications for climate change adaptation/mitigation, energy and economy, as well as healthy cities and social environments, at several European cities. These cross-cutting applications cope with the required scale and granularity by also integrating or exploiting third-party data, in-situ observations and modelling. CURE uses DIAS (Data and Information Access Services) to develop a system capable of supporting operational applications and downstream services across Europe. The CURE system hosts the developed cross-cutting applications, enabling its incorporation into operational services in the future. CURE is expected to increase the value of Copernicus Core Services for future emerging applications in the domain of urban resilience, exploiting also the improved data quality, coverage and revisit times of the future satellite missions. Thus, CURE will lead to more efficient routine urban planning activities with obvious socioeconomic impact, as well as to more efficient resilience planning activities related to climate change mitigation and adaptation, resulting in improved thermal comfort and air quality, as well as in enhanced energy efficiency. Specific CURE outcomes could be integrated into the operational Copernicus service portfolio. The added value and benefit expected to emerge from CURE is related to transformed urban governance and quality of life, because it is expected to provide improved and integrated information to city administrators, hence effectively supporting strategies for resilience planning at local and city scales, towards the implementation of the Sustainable Development Goals and the New Urban Agenda for Europe.

How to cite: Chrysoulakis, N., Mitraka, Z., Marconcini, M., Ludlow, D., Khan, Z., Holt Andersen, B., Soukup, T., Dohr, M., Gandini, A., Kropp, J., Lauwaet, D., and Feigenwinter, C.: Copernicus for Urban Resilience in Europe: the CURE Project, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5879, https://doi.org/10.5194/egusphere-egu2020-5879, 2020.

EGU2020-5840 | Displays | CL2.5 | Highlight

An Integrated Model of Urban Water-Wastewater-Stormwater-Energy Systems

Arpad Horvath, Aysegul Petek Gursel, Camille Chaudron, and Ioanna Kavvada

The urban water system is complex, comprised of water treatment and distribution, wastewater collection and treatment, and stormwater management (to avoid combined sewer overflow, flooding, and water quality permit violations). These components are often managed by separate agencies and companies, with their respective goals and budgets. In fact, they should all be working together towards the same overarching objective of urban water systems: to provide water to people and the economy for both indoor and outdoor uses at the lowest economic and energy costs and at the lowest achievable level of pollution.

We present an integrated model of urban water systems that accounts for changes in population, water consumption patterns, water saving technologies, raw water sources, water and wastewater treatment technologies, decentralization of wastewater treatment plants, water reuse demand, stormwater control measures, economic activities, electricity and other energy supply, landscape, weather, and climate. The methodological basis includes environmental life-cycle assessment (LCA) and life-cycle cost analysis (LCCA). The model is globally applicable. For effective decision making, we have created a decision making tool with an extensive, very detailed database to allow for specific, holistic analyses of the unique demographic, economic, and physical characteristics of urban areas.

The target audience for our model, tool, and results includes the government planners and regulators of the urban water system, water and wastewater agencies and companies, urban users of water (both individuals and companies), and real estate developers.

Through case studies of cities in different regions and climates over time, we show that water consumption does not have to follow population growth, in fact, it has dropped in many cities where the average per-person water consumption has been reduced due to water conservation measures. Water withdrawal and potable water production in some cities are more than four times more energy intensive than in others, and the energy intensity is expected to increase in many parts of the world due to droughts and overwhelmed water sources. Due to differing electricity mixes and corresponding greenhouse gas emissions, the average per-person water consumption in some cities is more than four times more impactful than in others, but reductions are feasible. Tailoring water quality to an application is a key to lowering energy and emissions. We show how we can diversify irrigation sources for agricultural production in and around cities, including the potential energy and emissions implications of wastewater recycling. Using the integrated decision support tool (i-DST), which allows for the comprehensive life-cycle cost and environmental assessment of gray, green, and hybrid stormwater control measures, we can estimate the needed investments in the gray and green infrastructure, and find that in areas with water scarcity, stromwater is a viable source of water.

How to cite: Horvath, A., Gursel, A. P., Chaudron, C., and Kavvada, I.: An Integrated Model of Urban Water-Wastewater-Stormwater-Energy Systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5840, https://doi.org/10.5194/egusphere-egu2020-5840, 2020.

EGU2020-10868 | Displays | CL2.5 | Highlight

Opportunistic weather sensors: an Amsterdam case study of private weather stations, commercial microwave links and smartphones

Lotte de Vos, Arjan Droste, Marjanne Zander, Aart Overeem, Hidde Leijnse, Bert Heusinkveld, Gert-Jan Steeneveld, and Remko Uijlenhoet

Several opportunistic sensors (private weather stations, commercial microwave links and smartphones) are employed to obtain weather information and successfully monitor urban weather events. The ongoing urbanisation and climate change urges further understanding and monitoring of weather in cities. Two case studies during a 17-day period over the Amsterdam metropolitan area, the Netherlands, are used to illustrate the potential and limitations of hydrometeorological monitoring using non-traditional and opportunistic sensors. We employ three types of opportunistic sensing networks to monitor six important environmental variables: (1) air temperature estimates from smartphone batteries and personal weather stations; (2) rainfall from commercial microwave links and personal weather stations; (3) solar radiation from smartphones; (4) wind speed from personal weather stations; (5) air pressure from smartphones and personal weather stations; (6) humidity from personal weather stations. These observations are compared to dedicated, traditional observations where possible, although such networks are typically sparse in urban areas. First we show that the passage of a front can be successfully monitored using data from several types of non-traditional sensors in a complementary fashion. Also we demonstrate the added value of opportunistic measurements in quantifying the Urban Heat Island (UHI) effect during a hot episode. The UHI can be clearly determined from personal weather stations, though UHI values tend to be high compared to records from a traditional network. Overall, this study illustrates the enormous potential for hydrometeorological monitoring in urban areas using non-traditional and opportunistic sensing networks.

How to cite: de Vos, L., Droste, A., Zander, M., Overeem, A., Leijnse, H., Heusinkveld, B., Steeneveld, G.-J., and Uijlenhoet, R.: Opportunistic weather sensors: an Amsterdam case study of private weather stations, commercial microwave links and smartphones, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10868, https://doi.org/10.5194/egusphere-egu2020-10868, 2020.

EGU2020-7470 | Displays | CL2.5

The WRF-SUEWS coupled system: development and evaluation in two UK cities

Hamidreza Omidvar, Ting Sun, Zhenkun Li, Ning Zhang, Wenjuan Huang, Simone Kotthaus, Helen Ward, Zhiwen Luo, and Sue Grimmond

To capture complex physical processes in cities with high degree of heterogeneity, sophisticated urban land surface models (ULSMs) are used with various anthropogenic activities considered. These ULSMs can be used either offline, using atmospheric measurements as forcing inputs, or online, coupled with large-scale climate models. One downside of using ULSMs in offline mode is that most of atmospheric measurements in cities are spatially limited (e.g. a few points or sites) preventing the physical processes across extremely diverse or heterogeneous conditions in cities from being studied in their entire complexity. Coupling ULSMs with meso-scale models helps us study two-way interactions between the urban surface and atmosphere, and provides spatio-temporal information about the effect of urban climate on various city-related environmental issues such as the urban heat island and urban stormwater.

Here we couple and evaluate state-of-the-art surface urban energy and water scheme (SUEWS) with the weather research and forecasting (WRF) model. The coupled system (WRF-SUEWS) is evaluated in two UK cities: London (dense urban) and Swindon (suburban) for four two-week periods in each season. In general, WRF-SUEWS models the surface energy balance fluxes well in both cities across all periods. One strength of the coupled system is the ability to model the spatial and temporal distribution of anthropogenic heat in urban areas. We study how the difference between the anthropogenic heat flux of residential and commercial areas affects the energy balance as well as atmospheric variables over these areas.

How to cite: Omidvar, H., Sun, T., Li, Z., Zhang, N., Huang, W., Kotthaus, S., Ward, H., Luo, Z., and Grimmond, S.: The WRF-SUEWS coupled system: development and evaluation in two UK cities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7470, https://doi.org/10.5194/egusphere-egu2020-7470, 2020.

EGU2020-7150 | Displays | CL2.5

Comparison of surface temperature over different natural and artificial urban surfaces

Zsuzsanna Dezső, Rita Pongrácz, and Judit Bartholy

It is a well-known fact that in urban areas, human activities result in special climatic conditions. Urban climate studies nowadays are becoming more and more important as their results can be directly used by urban planners, architects and municipal decision-makers. In the framework of a long-term cooperation between the Urban Climate Research Group of the Department of Meteorology at the Eötvös Loránd University (Budapest) and the Department of Environment at the Municipality of Újbuda (district XI of Budapest), regular urban climate measurements are carried out in the district XI of Budapest to detect the urban heat island (UHI) effect on different spatial scales.

Measuring campaigns were conducted in summer 2018 and later, in spring, summer and autumn 2019 to determine the surface temperature of various urban materials using a Voltcraft IR-280 infrared thermometer. The purpose of these measurements was to obtain information about the thermal properties of different urban surfaces, objects in order to analyse which surfaces are suitable for decreasing and hence mitigating the UHI effect. The impact of the colour of different surfaces and the role of shading are analysed as well. The measurements were carried out at two measuring sites: (i) in the largest public park of the district, called Bikás Park (with 37 measuring points), (ii) in the commercial and public transportation centre of the district, called Móricz Zsigmond Square (with 17 measuring points). Based on the compiled database, a detailed statistical analysis was performed to investigate the thermal properties of various urban surfaces, e.g. pavements, walls, street furniture, sport facilities, water and plant surfaces.

The results show that the coolest surfaces are natural covers (water, vegetation), while the hottest surfaces are concrete pavements, asphalt and rubber paving when exposed to direct solar radiation. In summer, extremely high surface temperatures can occur, the average surface temperature around noon exceeds 40 °C in the case of dark painted wood objects, asphalt and rubber-paved surfaces with sunny conditions. The analysis focusing on the concrete paving blocks with different colours shows that the average surface temperature of light grey surfaces is 5-7 °C lower than the average temperature of darker colours. During the measurement series, the highest temperatures (over 50 °C) were measured at rubber paving-covered sport facilities and playgrounds, in sunny conditions. This material is very popular because its use has many benefits. Our study shows that the extensive use of these surfaces has a negative impact on the urban climate. These surfaces warm up so much during sunny summer days that the facilities covered with this material become practically unusable due to their extremely hot surface. In the case of this surface material, shading plays an important role as it can effectively control and reduce the warming of rubber paving-covered surfaces.

How to cite: Dezső, Z., Pongrácz, R., and Bartholy, J.: Comparison of surface temperature over different natural and artificial urban surfaces, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7150, https://doi.org/10.5194/egusphere-egu2020-7150, 2020.

EGU2020-5781 | Displays | CL2.5 | Highlight

Ruminations of the Urban Climate Field and Hopes for the Future

anthony brazel

In the recent book entitled Urban Climates (2017) by T. Oke, G. Mills, A. Christen and J. A. Voogt, there is an Epilogue section on the History of Urban Climatology (pp 454-459) which states its scientific study dates from the early 19th century (as we know, from Luke Howard’s famous works) and can be divided into four periods of activity: (a) before 1930, pioneering climatographies of selected cities and weather elements, (b) 1930-1965, the growth of micro- and local climatology of climate differentiation and new field techniques, (c) 1965 to ca. 2000, explosive increase in research interest, closer links to meteorology and emergence of physically-based models of the urban atmosphere, and (d) 2000 and beyond, a maturing of the science into a predictive science, a period called one of consolidation and prediction.   With a proliferation of interests, new entities were formed during (d) – e.g., the International Association for Urban Climate and the Board on the Urban Environment of the AMS. They are dedicated to furthering scientific work in the urban climate and meteorology field and fostering cooperation between all interested scientists and practitioners. Through experiencing period (c) and now (d) with colleagues, students, administrators, practitioners, and the public (although now as an emeritus faculty in geography and urban planning) and being exposed to these organizations, it is this latter mission of the urban climate community I would like to highlight. It is a hope that the cooperative spirit of world  scientists and practitioners is further intensified (e.g, through CitiesIPCC and other academic and applied entities) in order to achieve major global-to-local solutions for our world cities. Technologies are exploding; the hope is that there is a concomitant explosion of practice.

How to cite: brazel, A.: Ruminations of the Urban Climate Field and Hopes for the Future, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5781, https://doi.org/10.5194/egusphere-egu2020-5781, 2020.

The impact of local climate change induced by urbanization or changes in the Land Use and Land Cover (LULC) has been contributing as much as ~50% of the total rise in surface air temperature over the Eastern Indian state of Odisha. While analysing the physical mechanism of such rise, it is found that the changes in the specific heat capacity of the surface regulates the changes in the surface energy budget of the region. A slight change in the energy budget may significantly disturb the regional/local climate balance thereby simulating the primary meteorological parameters such as the temperature and surface heat fluxes. LULC which characterises the surface properties can contribute immensely to the energy budget cycle through biophysical and biochemical processes like evaporation, evapotranspiration, shortwave and long wave radiation, absorption and reflection. In this study, we used observational and modeling techniques to quantify the ramifications of LULC changes on the climate of Odisha during the period 2004-2015. A significant change in the spatial pattern of temperature has been observed towards the eastern part of the region.  We try to find out whether this shift in temperature pattern is because of LULC or global climate forcing. Significant diversification in the agricultural practices have also been noticed in the region in the recent times.  To evaluate such effects, Weather Research and Forecasting (WRF) mesoscale modeling system has been enforced to visualize how significantly changes in LULC have impacted parameters like surface temperature, heat fluxes, humidity etc. However, the modeling results also follow consistency with that of the observational signatures and a rise of ~0.5-1.0 oC has been observed. Along with the spatial analysis, vertical profiles are also studied where we found significant impact of changed LULC on specific humidity and temperature. This study discusses the dynamics of land-atmosphere interactions instigated by local LULC effects.

Keywords: LULC, urbanization, remote sensing, numerical modeling, climate change 

How to cite: Gogoi, P. P. and Vinoj, V.: Signature of LULC induced Regional Climate Change over Eastern India: A Modeling and Observational Approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-940, https://doi.org/10.5194/egusphere-egu2020-940, 2020.

EGU2020-4339 | Displays | CL2.5

Radiation, evapotranspiration, and roughness effects of urban trees on local microclimate: A modelling study

Naika Meili, Paolo Burlando, Jan Carmeliet, Winston T.L. Chow, Andrew M. Coutts, Gabriele Manoli, Matthias Roth, Erik Velasco, Enrique R. Vivoni, and Simone Fatichi

The increase in urban air temperature caused by urban heat and climate change can have negative effects on the outdoor thermal comfort (OTC) as well as on the energy demand for air-conditioning. Nature-based solutions, such as the increase in urban biomass, are often proposed to mitigate excessive urban heat. Trees are expected to decrease temperatures due to shade provision on surfaces and evapotranspiration but their canopy blocks wind flow, thus potentially induce warming by reduction of heat removal. Several studies have shown that trees have a varying potential for air temperature reduction throughout the diurnal cycle as well as in different climates. Studies that partition and attribute the temperature reduction to the aforementioned effects are still lacking though, thus making the explanation of the observed differences difficult.

To address this knowledge gap, we use the mechanistic urban ecohydrological model, Urban Tethys-Chloris (UT&C, Meili et al. 2019), which accounts for radiation, evapotranspiration and roughness effects of trees in the urban canyon. Turning these components on and off by means of virtual experiments allows us to quantify their contribution to the air and surface temperature modification caused by the tree cover. The results are analysed for compact low-rise residential areas (LCZ3) in four different climates (Phoenix, Singapore, Melbourne, Zurich).

We find that tree evapotranspiration is able to lower 2 m air temperature at maximum by 3-4°C in all four climates as stomatal closure due to high vapour pressure deficits in dry and hot cities limit the transpirative cooling effect during mid-day. Counterintuitively, tree-radiation interaction increases the 2 m air temperature up to 2°C at noon time even though a decrease in surface temperatures is observed. While the surfaces underneath the tree canopy receive less radiation due to shading, the overall absorbed solar radiation within the canyon increases due to radiation trapping. In the analysed scenarios, the presence of trees leads to a decrease in the city roughness hindering turbulent energy exchange and thus, increasing the 2 m air temperature in all climates during daytime. The tree-radiation and tree-roughness effects on 2 m air temperature during night vary in different climates due to atmospheric stability effects.

Combining the different tree effects as in the real world, leads to a distinct diurnal pattern of air temperature reduction which is consistent with the observations in the literature. The numerical experiment allows reconciling differences in temperature changes induced by trees across the diurnal cycle and in various climates. The results could be used to guide green cover and tree type selection in cities and inform future studies aimed at optimizing the role of urban greening for improving local microclimatic conditions.

 

Meili, N., Manoli, G., Burlando, P., Bou-Zeid, E., Chow, W. T. L., Coutts, A. M., Daly, E., Nice, K. A., Roth, M., Tapper, N. J., Velasco, E., Vivoni, E. R., and Fatichi, S.: An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1.0), Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-225, accepted, 2019

How to cite: Meili, N., Burlando, P., Carmeliet, J., Chow, W. T. L., Coutts, A. M., Manoli, G., Roth, M., Velasco, E., Vivoni, E. R., and Fatichi, S.: Radiation, evapotranspiration, and roughness effects of urban trees on local microclimate: A modelling study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4339, https://doi.org/10.5194/egusphere-egu2020-4339, 2020.

EGU2020-5728 | Displays | CL2.5

Assessing the impact of the urban landscape on heat wave episodes: a case study of the Metropolitan Area of Barcelona.

Gara Villalba, Sergi Ventura, Joan Gilabert, Alberto Martilli, and Alba Badia

Currently, around 54% of the world's population is living in urban areas and this number is projected to increase by 66% by 2050. In the past years, cities have been experiencing heat wave episodes that affect the population. As the modern urban landscape is continually evolving, with green spaces and parks becoming a more integral component and with suburbs expanding outward from city centres into previously rural, agricultural, and natural areas, we need tools to learn how to best implement planning strategies that minimize heat waves.  In this study we use the Weather and Research Forecasting model (WRF) with a multi-layer layer scheme, the Building Effect Parameterization (BEP) coupled with the Building Energy Model (BEP+BEM, Salamanca and Martilli, 2010) to take into account the energy consumption of buildings and anthropogenic heat generated by air conditioning systems. The urban canopy scheme takes into account city morphology (e.g. building and street canyon geometry) and surface characteristics (e.g. albedo, heat capacity, emissivity, urban/vegetation fraction). The Community Land Surface Model (CLM) is used in WRF that uses 16 different plant functional types (PFTs) as the basis for land-use differentiation.  Furthermore, we use the Local Climate Zones (LCZ) classification which has 11 urban land use categories with specific thermal, radiative and geometric parameters of the buildings and ground to compute the heat and momentum fluxes in the urban areas.  The objective is to validate the model and establish relationships between urban morphology and land use with temperature, so that the model can be used to simulate land use scenarios to investigate the effectiveness of different mitigation strategies to lower urban temperatures during the summer months.

 

We test the methods with the Metropolitan Area of Barcelona (AMB) as a case study. The AMB is representative of the Mediterranean climate, with mild winters and hot summers. With a heterogeneous urban landscape, the AMB covers 636 km2 (34% built, 23% agricultural, and 31% vegetation) and has more than five million habitants. We simulate the heat wave that occurred in August 2018, during which temperatures stayed between 30 and 40ºC for five consecutive days and compare results with observed data from five different weather stations. We then simulate a potential scenario changing land surface from built to vegetation, in accordance with Barcelona´s strategic climate plan, and the potential impact the land use change has on reducing heat wave episodes.

How to cite: Villalba, G., Ventura, S., Gilabert, J., Martilli, A., and Badia, A.: Assessing the impact of the urban landscape on heat wave episodes: a case study of the Metropolitan Area of Barcelona., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5728, https://doi.org/10.5194/egusphere-egu2020-5728, 2020.

EGU2020-9087 | Displays | CL2.5 | Highlight

Finding the right tree for future urban planning – Meso- to microscale model coupling in urban areas

Joachim Fallmann, Helge Simon, Tim Sinsel, Marc Barra, and Holger Tost

It has been long understood that green infrastructure helps to mitigate urban heat island formation and therefore should be a key strategy in future urban planning practices. Due to its high level of heat resilience, the sycamore tree (Platanus) dominates the appearance of urban landscapes in central Europe. Under extreme climate conditions however, these species tend to emit high levels of biogenic volatile organic compounds (BVOCs) which in turn can act as precursors for tropospheric ozone, especially in highly NOx polluted environments such as urban areas.

Assessing the ozone air quality of a large urban area in Germany we use the state-of-the art regional chemical transport model MECO(n), with chemistry coming from the Modular Earth Submodel System (MESSy) and meteorology being calculated by COSMO. Including the latest version of TERRA_URB, the model is configured for the Rhine-Main urban area. In a second step, we implement parts of the regional atmospheric chemistry mechanism in the ENVI-met model framework in order to investigate the impact of isoprene emissions on ozone concentration at street level for the urban area of Mainz, Germany.

Whereas mesoscale model results only show moderate mean ozone pollution over the model area, at micro-scale level on selected hot spots we find a clear relationship between urban layout, proximity to NOx emitters, tree-species-dependent isoprene emission capacity and increase in ozone concentration. The ENVI-met study reveals, that next to tree species, its location is a key factor for its micro-climatic UHI and air pollution mitigation potential. We could show, that isoprene related ozone concentration is highly sensitive to leaf temperature, photosynthetic active radiation as well as to the proximity to NO2 pollution sources. In a street canyon with high traffic load we find significant correlations between diurnal boundary layer dynamics, morning and evening rush hour and ambient ozone levels. For a hot summer day in particular, we simulate ozone concentrations rising up to 500% within a weakly ventilated street canyon with a high amount of strong isoprene emitters being present.

We summarize that combining findings from meso- and microscale model systems can be an important asset for science tools for cities in the framework of climate change adaption and mitigation and air pollution abatement strategies.

How to cite: Fallmann, J., Simon, H., Sinsel, T., Barra, M., and Tost, H.: Finding the right tree for future urban planning – Meso- to microscale model coupling in urban areas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9087, https://doi.org/10.5194/egusphere-egu2020-9087, 2020.

Mean flow and turbulence in roughness sublayers (RSLs) over urban areas are complicated because of the diversified building configurations (such as size, shape and orientation, etc.). This study investigates the RSL flows over (part of) the real urban morphology of Hong Kong downtown by wind tunnel measurements. The urban models are fabricated by 3D printing using high-resolution digital maps of building morphology and topography. Vertical profiles of mean and turbulent components in three parallel transects are measured by a constant-temperature hot-wire anemometer (CTA). The wind tunnel results reveal that individual (vertical) profiles of streamwise fluctuating velocity u’’, vertical fluctuating velocity w’’ and vertical momentum flux u’’w’’ show noticeable variations in the RSL. It is largely attributed to the wakes and recirculations after the upstream high-rise buildings. A new analytical solution is proposed to predict the mean wind profiles in the RSL as well as the inertial sublayer (ISL) that is more accurate than the conventional logarithmic law of the wall (log-law). The turbulence in the RSL and ISL are examined in terms of quadrant analysis. The ejection Q2 and the sweep Q4 are stronger in the RSL than those in the ISL, collectively improving street-level air entrainment and pollutant removal.

How to cite: Mo, Z., Liu, C.-H., and Ho, Y.-K.: Flow and Turbulence Characteristics in the Roughness Sublayer over Real Urban Morphology of Hong Kong , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9854, https://doi.org/10.5194/egusphere-egu2020-9854, 2020.

Strategies for urban heat mitigation often make broad and non-specific recommendations (i.e. plant more trees) without accounting for local context. As a result, resources might be allocated to areas of lesser need over those where more urgent interventions are needed. Also, these interventions might return less than optimal results if local conditions are not considered. This project aims to assist with these interventions by providing a method to examine the urban heat profile of a city through an automated systematic approach. Using urban morphology information from databases such as WUDAPT, areas of cities are clustered into representative local climate zones (LCZs) and modelled at a micro-scale using localised features and properties. This bottom up modelling approach, using the VTUF-3D, UMEP, and TARGET models, allows these areas to be assessed in detail for their human thermal comfort performance and provide a city-wide heat map of thermal comfort. It also allows mitigation scenarios to be tested and targeted for each cluster type. A case study performed using this method for Melbourne is presented.

How to cite: Nice, K. and Broadbent, A.: Targeted urban heat mitigation strategies using urban morphology databases and micro-climate modelling to examine the urban heat profile, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12795, https://doi.org/10.5194/egusphere-egu2020-12795, 2020.

EGU2020-8439 | Displays | CL2.5

Exploring pedestrian thermal comfort in hot climates

Yuliya Dzyuban, Charles Redman, David Hondula, Paul Coseo, Ariane Middel, and Jennifer Vanos

Designing cities for thermal comfort should be a priority in the warming and urbanizing world. As cities continue to break extreme heat records, it is necessary to develop new sensing approaches capable of tracking thermal sensations of actual users of urban spaces. The Influence of built infrastructure on the microclimate at a human scale and residents’ thermal sensations is not well explored, but combining sensing techniques with simultaneous collection of user experiences is a promising research direction to shorten the gap.

We explored the relationships between the built environment, heat perception, and behavioral coping mechanisms in one of the most heat vulnerable Phoenix neighborhoods. Using Phoenix as an example, where extreme summer temperatures are a norm, can help to address heat challenges of other cities that have started facing temperature extremes in the recent years.

This study is an experimental citizen science project in which participants helped to create a “heat map” of the neighborhood. Participants were engaged in a 1-hour walk around the neighborhood and recorded their experience in a field guide. A smaller group participated in walking interviews and wore GPS devices and UV meters to gain deeper insights on subjective heat perception and physical body heat accumulation during the walk. Results revealed the differences in heat perception across a variety of urban landscapes. Participants identified preferred and most challenging locations, and gave ideas on what could improve their experience. Combined heart rate, UV exposure and microclimate data mapped in GIS visualized dependencies between the streetscape and physiological conditions of the study participants.

This project is one of the first to examine the impact of urban environment on dynamic psychological and physiological responses to heat. Using sensing techniques and qualitative research instruments, this research will inform the design changes in the neighborhood that will undergo redevelopment. It can serve as an example for other cities striving to adapt urban microclimates to new extremes.

How to cite: Dzyuban, Y., Redman, C., Hondula, D., Coseo, P., Middel, A., and Vanos, J.: Exploring pedestrian thermal comfort in hot climates, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8439, https://doi.org/10.5194/egusphere-egu2020-8439, 2020.

Extreme temperatures during heat and cold waves are severe health hazards for humans. Residents’ exposure controls the susceptibility of the urban population to these hazards, yet the spatiotemporal population dynamics has been long overlooked in assessing the risk. In this study, we conducted comparative analysis over 16 major urban habitats under three massive heat waves and one cold wave across the contiguous United States. Incorporating WRF weather simulations with commute-adjusted population profiles, we found that the interaction between population dynamics and urban heat islands makes residents exposed to higher temperatures under extreme weather. After accounting for diurnal population movement, urban residents’ exposure to heat waves is intensified by 2.0 ± 0.8 oC (mean ± standard deviation among cities), and their exposure to cold wave is attenuated by 0.4 ± 0.8 oC. The aggravated exposure to extreme heat is more than half of the heat wave hazard (temperature anomaly 3.7 ± 1.5 oC). The underestimated exposure to extreme heat needs to be taken into serious consideration, especially in nighttime given the evident trend of observed nocturnal warming. Results suggest that the major driver for modified exposure to heat waves is the spatial temperature variability, i.e., residents’ exposure is more likely to be underestimated in a spread-out city. The current release of warnings for hazardous extreme weather is usually at the weather forecast zone level, and our analysis demonstrates that such service can be improved through considering spatiotemporal population dynamics. The essential role of population dynamics should also be emphasized in temperature-related climate adaptation strategies for effective and successful interventions.

How to cite: Yang, J. and Hu, L.: Refined assessment of urban residents' exposure to extreme temperatures across the United States, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-86, https://doi.org/10.5194/egusphere-egu2020-86, 2020.

EGU2020-19013 | Displays | CL2.5

Modelling the cooling potential of street trees at city-scale with COSMO-BEP-Tree

Gianluca Mussetti, Dominik Brunner, Stephan Henne, Scott Krayenhoff, and Jan Carmeliet

Street trees are more and more regarded as a potential measure to mitigate the excessive heat in urban areas resulting from climate change and the urban heat island. However, the current knowledge of the cooling effect of street trees relies on studies at the micro-scale while potential interactions at the city-scale are yet to be understood. In fact, the vast majority of large-scale modelling studies only represent street trees outside the street canyon, neglecting important effects such as the shading and sheltering.

In order to explicitly represent street trees in coupled urban climate simulation, the multi-layer urban canopy model BEP-Tree was coupled with the regional weather and climate model COSMO-CLM. The coupled model, named COSMO-BEP-Tree, enabled simulating the radiative, flow and energy interactions between street trees, canyon surfaces and the atmosphere during weather and climate simulations.

In this study, COSMO-BEP-Tree is used to model the cooling potential of street trees during a heatwave event in Basel, Switzerland. The impact of street trees is explored in terms of near-surface air temperature and thermal comfort. The impact of greening scenarios is simulated and compared with other heat mitigation strategies.

The results highlight contrasting urban climate effects of street trees during daytime and night-time, where different processes become dominant. The daytime cooling was primarily a local effect and proportional to the local density of street trees.  In contrast, the impact was more widespread at night, where city-scale interactions become important. Beside air temperature, the model results suggest a significant impact of street trees on wind speed and canyon surface temperature. Owing to these effects, street trees produced a larger impact on thermal comfort than on air temperature. Finally, the need for further model development with respect to urban hydrology is outlined.

How to cite: Mussetti, G., Brunner, D., Henne, S., Krayenhoff, S., and Carmeliet, J.: Modelling the cooling potential of street trees at city-scale with COSMO-BEP-Tree, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19013, https://doi.org/10.5194/egusphere-egu2020-19013, 2020.

EGU2020-21100 | Displays | CL2.5

Wind-thermal environment in idealized 2D street canyon with different aspect ratios and thermal conditions

Hong Ling, Lan Chen, Yuanyuan Lin, and Jian Hang

Environmental problems such as low wind speed, poor air quality and urban heat island effect are deteriorating in cities due to the rapid urbanization. Optimizing the ventilation condition in the urban canopy is an effective way to improve the urban air quality and thermal environment. To study the impact of building structure and thermal condition on local flow regime and micro thermal environment, wind tunnel experiments and CFD simulations were conducted with scale-model of idealized 2D street canyons. A series of street canyon models with aspect ratios of 1.1, 2.4, 4 and 5.67 were set up for both wind tunnel experiments and CFD simulations, with the scaled ration of 1:200. Laser Doppler Anemometer was deployed in the working section of the wind tunnel to monitor the velocity components. CFD simulations using ANSYS Fluent 15.0 were performed to study the turbulence characteristics under wind driven force and thermal buoyancy force. A solar ray tracing model and radiation models in Fluent was employed to simulate the heat effect of solar radiation in street canyons. The wind tunnel experiments and modelling revealed that a clockwise vortex existed in regular and deep street canyon while two counter-rotating vortexes appeared in extremely deep canyon. Moreover, different turbulence structures and significant spatial variation of air temperature existed in canyons with different solar elevation.

How to cite: Ling, H., Chen, L., Lin, Y., and Hang, J.: Wind-thermal environment in idealized 2D street canyon with different aspect ratios and thermal conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21100, https://doi.org/10.5194/egusphere-egu2020-21100, 2020.

EGU2020-10461 | Displays | CL2.5

Distributed LES-based drag parameterisation for heterogeneous urban neighbourhoods

Birgit Sützl, Maarten van Reeuwijk, and Gabriel Rooney

The form and density of buildings modify the air flow and momentum exchange within cities, and therefore strongly affect local wind, temperature, humidity and pollution. Numerical weather prediction (NWP) models currently do not account for heterogeneity in their surface layer parameterisation. Regional models represent buildings, if at all, based on quantities such as plan and frontal area indices, and parameterise their impact at the lowest grid level, even though buildings can protrude a significant height into the atmospheric boundary layer.

To investigate how to parameterise urban roughness in NWP, we analysed high-resolution building-resolving large eddy simulations (LES) with the uDALES model over a range of heterogeneous urban neighbourhoods. The simulation setups have a similar building density and frontal aspect ratio, but vary in complexity with different building heights, plan areas and street geometries. Using the LES data we developed a parameterisation model that describes the vertical distribution of building drag inside a heterogeneous urban canopy. The drag force exerted on the atmosphere represents the momentum loss in the urban canopy due to buildings and can be incorporated as additional stress term in the momentum equations. The parameterisation represents the spatial heterogeneity effects in a one-dimensional vertical function, and links the building drag force to the heterogeneity of building layouts. A characterisation of the vertical and horizontal heterogeneity of built-up neighbourhoods is used as model input.

How to cite: Sützl, B., van Reeuwijk, M., and Rooney, G.: Distributed LES-based drag parameterisation for heterogeneous urban neighbourhoods, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10461, https://doi.org/10.5194/egusphere-egu2020-10461, 2020.

With ever-increasing urban populations, cities face a serious of climatic and environmental issues such as urban heat islands (UHIs), air pollution and extreme weather. Urban morphological parameters can improve the performance of WRF model in urban areas. A 3-D urban canopy parameters (UCPs) are calculated for the 62 major cities in China.Chinese cities could be divided into two types (single_peak and double_peak) based on the distribution of building height, and the two peaks are located at level 2 (about 5m) and level 6 (about 20m). The mean number of buildings in single_peak city is much larger than that of double_peak.The building height of double_peak cities is larger than that of single_peak cities, but the building plan area fraction, building surface area to plan area ratio and frontal area index are opposite. The WRF default setting underestimates the street width but overestimates the building width of Chinese cities. The UCPs improve the simulation of nocturnal 2-m surface air temperature and 10-m wind speed in the testing cases.

How to cite: Zhang, N.: Statistical characteristics of the morphological parameters of Chinese cities and the application in WRF model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4326, https://doi.org/10.5194/egusphere-egu2020-4326, 2020.

EGU2020-21219 | Displays | CL2.5

Large-eddy Simulation of Plume Dispersion over Hypothetical Urban Areas

Zhangquan Wu and Chun-Ho Liu

More than 80% of people living in urban areas that exposed to air quality levels that exceed WHO guideline limits both indoors and outdoors. Road transport has been found to be one of major anthropogenic sources of aerosol particles and many gaseous pollutants in urban areas. Dispersion of pollutants emitted from vehicles over urban areas largely affects pedestrian-level air quality. A good understanding of pollutant transport, mixing process and removal mechanism is crucial to effectuate air quality management. In this study, turbulent dispersion of reactive pollutants in the atmospheric boundary layer (ABL) over hypothetical urban area in the form of an array of idealised street canyons is investigated using large-eddy simulation (LES). The irreversible ozone O3 titration oxidizes nitric oxide NO to nitrogen dioxide NO2, representing the typical anthropogenic air pollution chemistry. Nitric oxide (NO) is emitted from the ground level of the first street canyon into the urban ABL doped with ozone (O3). From the LES results, negative vertical NO flux is found at the roof level of the street canyons.  By looking into the different plume behavior and vertical flux between the inert pollutant and chemically reactive pollutant, a fundamental understanding of exchange processes of anthropogenic chemicals between an urban surface and the atmosphere is developed. 

How to cite: Wu, Z. and Liu, C.-H.: Large-eddy Simulation of Plume Dispersion over Hypothetical Urban Areas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21219, https://doi.org/10.5194/egusphere-egu2020-21219, 2020.

EGU2020-19577 | Displays | CL2.5

Measuring night-time urban heat island. Still a pending issue

Josep Roca and Blanca Arellano

The study of urban heat island (UHI) is of great relevance in the context of climate change (CC) and global warming. Cities accumulate heat in urban land covers as well as in built infrastructures, representing true islands of heat in relation to their rural environment, less urbanized. The literature on urban climate has highlighted the singular importance of night UHI phenomenon. It is during the night that the effects of UHI become more apparent, due to the low cooling capacity of urban construction materials and is during nighttime that temperatures can cause higher health risks, leading to the aggravation of negative impacts on people’s health and comfort in extreme events such as heat waves becoming more and more frequent and lasting longer. However, the study of nocturnal UHIs is still poorly developed, due to the structural problems regarding the availability of land surface and air temperature data for night time.

Traditional methods for obtaining nocturnal UHI have been directed either to extrapolation of data from weather stations, or obtaining air temperatures through urban transects. In the first case, the lack of weather stations in urban landscapes makes it extremely difficult to obtain data to extrapolate and propose models at a detailed resolution scale. In the second case, there is a manifest difficulty in obtaining data simultaneously and significantly representative of urban and rural zones. Another used methodology for measuring the nocturnal UHI is remote sensing from MODIS images, but the greatest limitation about this method is the low resolution, therefore it is clear the need for open source databases with better or higher resolution to quantify the night surface temperature.

This paper aims to develop a model for nocturnal UHI analysing several areas of Alta and Baja California as well as in the Mediterranean Coast, using data from the Landsat thermal bands (with an spatial resolution of 30 square meters per pixel) and contrasting Landsat's very limited nighttime images with daytime ones. The contrast allows the construction of “cooling” models of the LST based on geographical characteristics (longitude, latitude, distance to the sea, DTM, slope, orientation, etc.) and urban-spatial parameters (land uses and land covers), which are likely to be extrapolated to different time periods.

How to cite: Roca, J. and Arellano, B.: Measuring night-time urban heat island. Still a pending issue, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19577, https://doi.org/10.5194/egusphere-egu2020-19577, 2020.

EGU2020-17692 | Displays | CL2.5

Are detailed urban canopy parameters necessary for modelling the urban climate in Africa?

Oscar Brousse, Jonas Van de Walle, Lien Arnalsteen, Matthias Demuzere, Wim Thiery, Hendrik Wouters, and Nicole P.M. van Lipzig

Local Climate Zones (LCZ) have now been widely accepted and used by the urban climate community (Ching et al., 2018). However, their use over Sub-Saharan Africa has still been limited because of data scarcity in the region. Brousse et al. (2019, 2020) demonstrated the added value of applying spatially variant urban canyon parameters derived from LCZ in the urban climate model TERRA_URB – embedded in the COSMO-CLM model. Despite its promising results, thermal and morphological parameters extracted out of the ranges proposed by Stewart and Oke (2012) are mostly derived from Western cities. Hence, uncertainties related to the use of unascertained urban forms and functions of African cities for urban climate modelling have not yet been evaluated.

To quantify the sensitivity of the model to more representative urban canopy parameters of African cities, this study sets up a methodology for: (i) obtaining from in situ measurements archetypal parameters of LCZ classes for Kampala (Uganda); and (ii) simulating the potential effect of the newly defined urban structure on the local climate.

In situ data were obtained during field work held in the summer months of 2018. A representative sample of 1300 measurement points was selected throughout the city of Kampala, for which both quantitative (road width, distance between houses, heights of buildings) and qualitatively estimated (vegetation fraction, road-wall-roof material) variables were collected.  These variables enabled the development of an updated LCZ map of the city of Kampala.

To evaluate the model’s sensitivity to the new spatially explicit urban morphological and thermal parameters, this new information was fed into the TERRA_URB scheme at a horizontal resolution of 1 km for a 3-months period (December 2017 – February 2018). The run was nested within a 12 km simulation forced by ERA-Interim reanalysis data. Results show tangible effects of the updated parameters on the 2-meter air temperature, land surface temperature and surface energy balance components. Still, no major improvements in model skill compared to the default LCZ framework proposed by Brousse et al. (2020) were found. [1] [WT2] This study is among the first studies to test the sensitivity of an urban climate model to more realistic urban parameters in Africa and aims at triggering more research to be done in the area with a variety of urban climate models.

How to cite: Brousse, O., Van de Walle, J., Arnalsteen, L., Demuzere, M., Thiery, W., Wouters, H., and van Lipzig, N. P. M.: Are detailed urban canopy parameters necessary for modelling the urban climate in Africa?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17692, https://doi.org/10.5194/egusphere-egu2020-17692, 2020.

EGU2020-15827 | Displays | CL2.5

A study on the spatial patterns of the Moscow megacity urban heat island based on the dense official and crowdsourcing observations

Mikhail Varentsov, Timofey Samsonov, Pavel Konstantinov, Pavel Kargashin, Daniel Fenner, and Fred Meier

The presented study is devoted to the investigation of the spatial patterns of the urban-induced air temperature anomaly, known as the urban heat island (UHI) effect, based on the example of Moscow megacity. The numerous previous studies have already shown that Moscow exhibits urban-induced climatic effects (Varentsov e al., 2018) and could serve as a good test-bed for urban climate studies. In the presented study, we have further analyzed the UHI using high-quality observations from the official meteorological networks in Moscow region as well as the uncertified crowdsourcing observations from Netatmo network. The official meteorological networks include more than 70 observational sites in the city and surroundings, while the Netatmo network additionally provides the data from more than 1500 citizen weather stations (CWSs) in Moscow region. Previous studies have shown that CWS observations could be used for urban climate studies after application of the special quality control and filtering routines (Meier et al., 2017).

The analysis performed for a number of summer and winter seasons has revealed the seasonal variations of the UHI spatial patterns. In order to investigate the driving factors of the observed spatial heterogeneity of the air temperature within the city, we have analyzed its linkages with different qualitative and quantitative parameters of the urban environment, including the Local Climate Zone (LCZ) type, the impervious area fraction, building density, vegetation area fraction, etc. These parameters were obtained using the Landsat and Sentinel satellite images, Copernicus Global Land Cover data and OpenStreetMap data. We have shown that the UHI spatial patterns are shaped both by local and non-local driving factors. The factors such as LCZ type represent the local features of the urban environment, while the non-local drivers represent the influence of remote parts of the megacity, transformed by the atmospheric diffusion and advection. The non-local effects are reflected e.g. in the dependence between the UHI intensity and the distance from the city center; in the differences between similar LCZs, located in the different parts of the city; in the heat advection to the leeward side of the city. The findings of the study clearly illustrate the importance of taking the non-local effects into consideration in urban planning applications, biometeorological assessments and when applying the LCZ approach for big cities.

Acknowledges: The processing and analysis of the official and crowdsourcing observations were supported by Russian Foundation for Basic Research (project no. 19-35-70009). The analysis of the impervious surface area fraction data was supported by Russian Foundation for Basic Research (project no. 18-35-20052). The analysis of the impacts of urban vegetation on the urban heat island was supported by Russian Science Foundation (project no. 19-77-30012).

References:

Meier F., Fenner D., Grassmann T., Otto M., & Scherer D. (2017). Crowdsourcing air temperature from citizen weather stations for urban climate research. Urban Climate, 19, 170–191.

Varentsov M., Wouters H., Platonov V., & Konstantinov P. (2018). Megacity-Induced Mesoclimatic Effects in the Lower Atmosphere: A Modeling Study for Multiple Summers over Moscow, Russia. Atmosphere, 9(2), 50.

How to cite: Varentsov, M., Samsonov, T., Konstantinov, P., Kargashin, P., Fenner, D., and Meier, F.: A study on the spatial patterns of the Moscow megacity urban heat island based on the dense official and crowdsourcing observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15827, https://doi.org/10.5194/egusphere-egu2020-15827, 2020.

EGU2020-11498 | Displays | CL2.5

Does “Alpine Pumping” have an effect on the ventilation of Munich?

Katrin Sedlmeier, Meinolf Koßmann, Kristina Winderlich, Maximilian Graf, and Gudrun Mühlbacher

Alpine Pumping refers to a thermally driven circulation between the Alps and the Alpine foreland in southeastern Germany, which occurs regularly under clear and calm weather conditions (e.g. Lugauer and Winkler (2005)). Earlier studies suggest, that the ventilation of the city of Munich, and thus the urban temperature distribution, could be influenced by this regional wind system.

The present work was conducted in a cooperation framework between the city of Munich and the German Meteorological Service. The occurrence of Alpine Pumping and its effect on the temperature distribution in the city of Munich were investigated by temporary and operational wind measurements as well as numerical simulations. The thermal wind system was simulated with the regional climate model COSMO-CLM and the characteristics of Alpine Pumping deduced from this simulation used as input for the high-resolution urban climate model MUKLIMO_3.

Using a radiation-based criterion, Alpine Pumping occurs on about 60 days per year, mostly in the summer months when the heat load is highest. The wind fields of temporary measurements in the rural areas south of Munich show the expected daily cycle of the wind system, especially the southerly flow during the night, which transports cold air from the mountains into the city. An influence of the regional circulation pattern on the temperature in the city area was found in a case study with the urban climate model MUKLIMO_3. Especially at night and in the morning hours, the cooler air from the surroundings ventilates the city area. Furthermore, the model results show a spatial shift of the maximum heat island in Munich during the course of the day.

The findings show, that Alpine Pumping is a rather frequent phenomenon in the study area and represents an important contribution to the natural ventilation of different areas within the city.

 

References:

LUGAUER, M., WINKLER, P., 2005: Thermal circulation in South Bavaria - climatology and synoptic aspects. Meteorologische Zeitschrift. 14, 15-13.

How to cite: Sedlmeier, K., Koßmann, M., Winderlich, K., Graf, M., and Mühlbacher, G.: Does “Alpine Pumping” have an effect on the ventilation of Munich? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11498, https://doi.org/10.5194/egusphere-egu2020-11498, 2020.

EGU2020-12656 | Displays | CL2.5

The effect of sky conditions and urban morphology on urban heat island in Seoul city

Soo Joeng Joen, Jin woo oh, Jack Ngarambe, Patrick Nzivugira Duhirwe, Mi Aye Su, and Geun Young Yun

The urban heat island (UHI) is a serious climatological phenomenon that is likely to exacerbate the effects of climate change. It has adverse effects on the thermal comfort of urban dwellers, building energy consumption and the general health of vulnerable demographics (i.e. older people). To understand the effects of UHI and therefore devise efficient methods to mitigate it, it is important that we understand the many factors affecting UHI and the magnitude of their contribution on the manifestation of UHI, especially in urban areas. Consequently, in the current study, we study the effect of sky conditions and urban geometry on UHI in Seoul city, South Korea. The climatic data detailing diverse sky conditions, categorized by the amount of cloud cover, was collected from 28 Automatic Weather Stations (AWS) located in Seoul city. Information on urban geometry such as building density, gross floor area ration and building area ratio was obtained from satellite imagery. Our results indicate that the levels of UHI, quantified using urban heat island intensity (UHII), are dependent on the prevailing sky conditions. We found that, UHII was highest under cloudy sky conditions (r = 0.71) and lowest under clear sky conditions (r = 0.66). Furthermore, we found that UHII was correlated with building area ratio and gross area ratio; areas with high building area ratios and gross area ratios tended to also experience high UHII levels. The results presented in the current study are useful to policy makers or urban designers that wish to curb the increasing effects of UHI in urban areas and consequently improve thermal comfort in urban areas, reduce building energy consumption for space cooling purposes and prevent heat-related mortalities in old and vulnerable populations.

 

 

How to cite: Joen, S. J., oh, J. W., Ngarambe, J., Nzivugira Duhirwe, P., Aye Su, M., and Yun, G. Y.: The effect of sky conditions and urban morphology on urban heat island in Seoul city, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12656, https://doi.org/10.5194/egusphere-egu2020-12656, 2020.

EGU2020-3514 | Displays | CL2.5

Effects of Urbanization on Regional Extreme-Temperature Change in China,1960-2016

Junliang Qiu, Xiankun Yang, Bowen Cao, Zhilong Chen, and Yuxuan Li

Fast urbanization is one of the aggrandizement factors to global warming, but the effects of urbanization on extreme temperature change is still not quantitatively assessed. Based on high-resolution land cover map, this study classified 613 meteorological stations in China into three classes, namely, urban station, suburban station and rural station to simulate the trends of extreme minimum temperature (TNN), mean temperature (Tavg) and extreme maximum temperature (TXX) of each meteorological station. The roles of urbanization in temperature change in the period 1960-2016 were then assessed. The results indicated that annual temperature increased significantly, but seasonal temperature increased with varied degrees. Temperature in high latitudes increased faster than that in low latitudes. Temperature in summer increased slower than that in other seasons. The effects of urbanization on TNN, Tavg and TXX were all statistically significant, but the effects on TNN and Tavg were more noticeable than TXX. The aggrandizement effects of urbanization presented by low-altitude meteorological stations are significant in South China and East China for all temperature indices, despite no statistical significance presented by high-altitude meteorological stations in Southwest China. This paper can provide a reference for understanding the regional temperature changes and the effects of urbanization on its changes in China.

How to cite: Qiu, J., Yang, X., Cao, B., Chen, Z., and Li, Y.: Effects of Urbanization on Regional Extreme-Temperature Change in China,1960-2016, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3514, https://doi.org/10.5194/egusphere-egu2020-3514, 2020.

Urban expansion encroaches on natural habitat, which seriously affects carbon storage which plays an important role in global climate change. The projection of future effects of urban expansion on carbon storage have been the subject of attention, previous studies explored its direct impacts but ignored indirect effects: cropland loss caused by urban expansion needs to compensation from natural habitat for food security, which also affects carbon storage. China, as a populated country, is at an important stage of cropland conservation policies reform, rapid urbanization, and constructing of eco-civilization. In this case, it’s vital to figure out the change of carbon storage due to the direct and indirect impacts of urban expansion in the future. Taking Hubei as the study area, the aim of this study is to project both direct impacts (DI) and indirect impacts (II) of urban expansion on carbon storage during 2010–2030. Three scenarios are developed by integrating the current situation and policies: the scenarios where urban continues to expand and the cropland conservation policies are implemented with the priority to cropland in quantity (S1), with the priority to cropland in quantity and quality (S2), with the priority to cropland in quantity and quality, and ecological protection is also concerned (S3). Results show that, the total loss of carbon storage caused by urban expansion will be 1.83Tg•C (DI: 0.95Tg•C; II:0.88Tg•C) under the S1 scenario, will be 2.15Tg•C (DI: 1.46Tg•C; II:0.69Tg•C) under the S2 scenario, and will be 1.49Tg•C (DI: 0.94Tg•C; II: 0.55Tg•C) under the S3 scenario. This indicates that ignoring the indirect impacts of urban expansion on carbon storage will lead to the underestimation of real impacts of urban expansion with 48%, 32%, and 63%, respectively. This study highlights the importance of taking the carbon storage loss caused by the indirect impacts of urban expansion into consideration.

How to cite: Tang, L. and Ke, X.: Projection of future direct and indirect impacts of urban expansion on carbon storage: A case study in Hubei, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21945, https://doi.org/10.5194/egusphere-egu2020-21945, 2020.

EGU2020-744 | Displays | CL2.5

Changes in the urban climate parameters due to the anthropic factors. Case study: Suceava metropolitan area from Romania

Alin Prisacariu, Vasilică-Dănuț Horodnic, Dumitru Mihăilă, and Petruț-Ionel Bistricean

City of Suceava, located in the NE Region of Romania, is an attraction pole for the regional inhabitants through its commercial, academic and tourist functions. The city population increased from 114462 in 1992 to 122654 in 2018. The urban area suffered major modifications between 1990 and 2018 which transposed themselves in the values of the climatic elements.

The general objective of the study consists in the evaluation of the climatogen impact of the mutations occurred in the city’s demography, in the features of the active surface between 1990 (the period which followed immediately to the communist system) and 2018.

The working algorithm adopted consisted of: i) identification of modifications in the active surface structure, ii) identification of the land cover flows which determine the evolution of the artificial surfaces, iii) intersection of CORINE Land Cover sets, for the years 1990 and 2018, in ArcGis through the overlay technique, iv) obtaining a matrix of land cover categories, v) identification of the land cover flows according to the working technology implemented by the European Environment Agency, vi) highlighting the correlations between the modification of the artificial areas surfaces and the evolution of the climatic elements of Suceava’s atmosphere.

Results. There were identified three types of land cover flows specific to the artificial surfaces, caused by six types of processes. The biggest share is held by LCF2 (urban residential sprawl) represented by a single type of land cover flows, urban diffuse residential sprawl (lcf22) which cumulated an area of 861.74ha (2.12% of study area total). The second category shows the intraurban space conversion, defined LCF1 (urban land management) with the presence of two types of specific processes: urban development/infilling (lcf11) with a surface of 75.82ha (0.19% of the study area) and recycling of developed urban land (lcf12) with an area of 376.88ha (0.93% of study area). In the end, there was identified a small share of conversions which show the third category LCF3 (sprawl of economic sites and infrastructures) with a total of 284.66ha (0.70% of study area) and which contains three types of processes: sprawl of industrial and commercial sites (lcf31) with 129.09ha (0.32%), sprawl of airports (lcf34) with 10.27ha (0.03%) and construction (lcf37) with 145.3ha (0.36%). In total, the anthropic space from the study area was affected by conversions on a surface of 1599.1ha (3.93% of the total study area of 40685.73ha) for period 1990-2018. Meteorological data obtained from Suceava Weather Station (1961-2018) and from the urban meteorological stations SV1 and SV2 for the interval 2009-2019 were correlated by the statistics of conversions.

Conclusions. At Suceava suburban weather station temperature increased with 0,4°C in the decade 1991-2000, with 0,5°C in decade 2001-2010 and with 0,9°C more in decade 2011-2019. Only in the interval 2009-2019 with hourly data from all 3 stations, the urban-suburban thermal difference was of +1,7°C in the city's favour. If the increase of temperature from suburban is allocated to the regional heating, the urban-suburban thermal difference was attributed to the amplification of the city’s topoclimatic role per se.

How to cite: Prisacariu, A., Horodnic, V.-D., Mihăilă, D., and Bistricean, P.-I.: Changes in the urban climate parameters due to the anthropic factors. Case study: Suceava metropolitan area from Romania, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-744, https://doi.org/10.5194/egusphere-egu2020-744, 2020.

EGU2020-783 | Displays | CL2.5

Relationship between heating/cooling period and changing temperature conditions in the urban areas of Hungary

Csenge Dian, Attila Talamon, Rita Pongrácz, and Judit Bartholy

Climate change, extreme weather conditions, and local scale urban heat island (UHI) effect altogether have substantial impacts on people’s health and comfort. The urban population spends most of its time in buildings, therefore, it is important to examine the relationship between weather/climate conditions and indoor environment. The role of buildings is complex in this context. On the one hand UHI effect is mostly created by buildings and artificial surfaces. On the other hand they account for about 40% of energy consumption on European average. Since environmental protection requires increased energy efficiency, the ultimate goal from this perspective is to achieve nearly zero-energy buildings. When estimating energy consumption, daily average temperatures are taken into account. The design parameters (e.g. for heating systems) are determined using temperature-based criteria. However, due to climate change, these critical values are likely to change as well. Therefore, it is important to examine the temperature time series affecting the energy consumption of buildings. For the analysis focusing on the Carpathian region within central/eastern Europe, we used the daily average, minimum and maximum temperature time series of five Hungarian cities (i.e. Budapest, Debrecen, Szeged, Pécs and Szombathely). The main aim of this study is to investigate the effect of changing daily average temperatures and the rising extreme values on building design parameters, especially heating and cooling periods (including the length and average temperatures of such periods).

How to cite: Dian, C., Talamon, A., Pongrácz, R., and Bartholy, J.: Relationship between heating/cooling period and changing temperature conditions in the urban areas of Hungary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-783, https://doi.org/10.5194/egusphere-egu2020-783, 2020.

ABSTRACT

Cities around the world develop energy balances that are different to their surroundings. This study examines the application of allometric scaling to the thermal emission of cities in temperate and tropical regions. Overpasses of UK and Nigeria of the Moderate Resolution Imaging Spectroradiometer (MODIS), covering the period between 2000 and 2017 were sampled to examine the seasonal variability in night-time clear-sky upwelling long-wave energy for selected cities of the two countries. Total (area-integrated) emitted energy was calculated per city and interpreted by looking for ‘allometric’ (power law) scaling against the total population of the urban areas. Both sets of cities produce strong correlations (R³ 0.8 and R2≥0.7) of log (total emission) against log (population). Total night-time emitted energy is found to scale sub-linearly (i.e. with power law index < 1) with population on both countries. However, the slope derived from UK allometry (0.85 ± 0.03) is quite different from that derived for cities in Nigeria (0.4 ± 0.05). When scaled against log (city area), both sets of cities produce linear scalings, demonstrating that the total area of built surface is a more general predictor of thermal emissions than total population, a surprising result given the differences in built form in the two sets of cities. These results are robust to the method chosen to delineate the city boundary. We further investigate the factors underlying these allometric relationships using Local Climate Zone (LCZ) classifications.    

How to cite: Abdulrasheed, M.: The allometric scaling of thermal emissions from temperate and tropical cities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1152, https://doi.org/10.5194/egusphere-egu2020-1152, 2020.

Extreme heat and associated health risks are increasingly becoming threats to urban populations, especially in developing countries of the tropics. Although human thermal exposure in cities has been studied across the globe, biometeorological conditions in mixed-used spaces, informal economic activity settings, and informal settlements have received little attention. We present a comparative analysis of outdoor thermal comfort for informal micro-entrepreneurial communities in Kolkata and Mumbai. Both cities belong to the Aw Köppen Climate Classification, which signifies tropical hot and dry or Savannah climate. Due to excessive humidity, uncomfortable thermal conditions persist year-round in both cities.

An extensive thermal comfort perception survey was conducted between November 2018 and August 2019 in three similar neighborhoods in each city with over 650 valid samples. The microentrepreneurial locations included two pottery markets (Kumbhadwada in Mumbai,  Kumartuli in Kolkata); two flower markets that are linear stretches of informal activity areas along very important transportation networks (Dadar in Mumbai, Mallickghat in Kolkata); a book selling and book binding market (Boipara in Kolkata); and an informal commercial area with apparel shops (Fashion Street in Mumbai).

Results show that outdoor thermal comfort varied by city, micro-enterprise, and season. Overall, Kolkata respondents reported warmer sensations compared to Mumbai respondents. During the winter, neutral Physiologically Equivalent Temperature (PET) was 27.50oC in Kolkata and 23.75oC in Mumbai. Annual neutral PET was 22.7°C and 26.5°C in Mallickghat and Boipara, respectively. Respondents in Boipara were more sensitive towards warmer sensation than in Mallickghat. Even during the winter, people reported warmer sensation votes. PET was a better predictor of the mean Thermal Sensation Vote (mTSV) compared to air temperature. In Mumbai, we report higher neutral PET for activities at the clothing market compared to other microentrepreneurial activities. Acclimatization significantly improved comfort in the summer, while evaporative cooling was beneficial in the winter. We further employed an ANCOVA to analyze the impact of various non-climatic variables on thermal comfort. Results reveal that behavioral and physiological attributes (presence in the location, expectation, beverage intake) impact the overall sensation in both cities. Availability of shading was a significant parameter in Kolkata, while shading had a negligible effect on outdoor thermal sensation in Mumbai neighborhoods.

This is the first study to assess outdoor thermal comfort conditions and perceptions of populations involved in various outdoor informal economic activities in India. Findings of this study help understand the heat health risks of informal communities and inform the design and revitalization of such spaces to improve thermal comfort.

How to cite: Banerjee, S., Middel, A., and Chattopadhyay, S.: Bio-meteorological assessment of outdoor micro-entrepreneurial informal communities in extreme heat- A case of two tropical Indian megacities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1160, https://doi.org/10.5194/egusphere-egu2020-1160, 2020.

EGU2020-1793 | Displays | CL2.5

Application of GEM-Surface to high resolution modelling - A case study for Warsaw

Anahita Sattari, Jacek W. Kaminski, Joanna Struzewska, and Lech Gawuc

The world’s population is becoming increasingly urbanized. Urbanization development significantly modifies the moisture, radiation balance, thermal stability, and aerodynamic properties at the surface level. Urban areas often are several degrees warmer than the surrounding countryside. Overall, a warmer climate will lead to increased energy consumption, air pollution and a higher risk of human mortality.

This study focuses on examining the ability of the GEM-Surface model to reproduce the diurnal cycle of the meteorological parameter, including fluxes over Warsaw as well as the thermal and turbulent structure of the atmosphere downwind from Warsaw with the resolution of 1 km. The  Town Energy Balance (TEB) module was run on-line in an interactive mode, where it contributed to the energy balance of the host meteorological model. Urban effects in the GEM model are described with the TEB parameterization.

The impact of the modified atmospheric stability over Warsaw on the distribution of the pollutants will be studied using the GEM-AQ model.

How to cite: Sattari, A., W. Kaminski, J., Struzewska, J., and Gawuc, L.: Application of GEM-Surface to high resolution modelling - A case study for Warsaw, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1793, https://doi.org/10.5194/egusphere-egu2020-1793, 2020.

EGU2020-2734 | Displays | CL2.5

Indoor and outdoor ambient air temperatures during summer 2019 in Augsburg, Germany

Christoph Beck, Marisa Fritsch, Marco Linder, Johanna Völkel, Sabrina Beckmann, Michael Hiete, Klaus Martin, Andreas Repper, and Michael Schneider

The summer of 2019 featured significantly too warm conditions in Germany during all summer months. This included several distinct warm episodes and heat waves, the most pronounced of these appearing around end of July.

Within the framework of the interdisciplinary research project Abc (Augsburg bleibt cool – Augsburg stays cool) – funded by the German Federal Ministry for Environment, Nature Conservation and Nuclear Safety – it is intended to detect and quantify urban thermal hot-spots with respect to outdoor and as well indoor air temperatures in the city of Augsburg (Bavaria, SE Germany). The knowledge of such spatiotemporal patterns of thermal and especially heat-stress exposure are an indispensable basis for any further aspired local climate modeling and adaptation studies.

To this end, in June 2019 around 500 low-cost thermometers and around 50 thermo-hygrometers have been distributed among residents of the central city parts of Augsburg to record ambient indoor temperatures during summer. As high indoor air temperatures are suspected to be health relevant in particular during night, participants placed the thermometers in their bedrooms.

Outdoor temperature and humidity have been recorded simultaneously by an already existing comprehensive urban climate measuring network.

In this contribution we present main features of the data set of indoor temperatures and show and discuss first analyses concerning temporal and spatial variability of indoor air temperatures during summer 2019. This includes a comparison of indoor and outdoor temperatures, analyses of the influence of urban structures (e.g. in terms of local climate zones) and as well the influence of building characteristics (e.g. age, building material, ...) on indoor air temperatures.

How to cite: Beck, C., Fritsch, M., Linder, M., Völkel, J., Beckmann, S., Hiete, M., Martin, K., Repper, A., and Schneider, M.: Indoor and outdoor ambient air temperatures during summer 2019 in Augsburg, Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2734, https://doi.org/10.5194/egusphere-egu2020-2734, 2020.

EGU2020-6250 | Displays | CL2.5

Impact of mass human migration during Chinese New Year on Beijing urban heat island

Jingjing Dou and Shiguang Miao

The Chinese New Year (CNY, also called Spring Festival), which officially lasts for 7 days, is the most important holiday in China. Chinese people in large cities usually return to their hometowns for family reunions before the CNY holiday and return afterward. Nearly half of Beijing’s population has been reported to leave the city for family reunions before the CNY holidays in the past several years. Hourly automatic weather station (AWS) data during CNY 2010-2015 were used to analyze the changes in the temporal and spatial distribution of the Beijing urban heat island intensity (UHII) and the impact of mass human migration on urban temperature. Soil moisture, 10-m wind speed, and cloud cover were considered and indicated nearly no change during the pre-CNY period (2 to 4 weeks before CNY) and CNY week, which means that UHII variation was mainly affected by the mass human migration. Daily UHII during CNY week was lower than during pre-CNY period. UHII for daily maximum temperature decreased by 55% during CNY week than the pre-CNY period (0.6 °C during pre-CNY period vs. 0.27 °C during CNY week) due to mass human migration, which was much larger than the reduction in UHII for the daily maximum temperature (5%, 4.34 °C during the pre-CNY period vs. 4.11 °C during the CNY week). The spatial distribution of the UHII difference between CNY week and the pre-CNY period is closely related to the locations of functional population zones. UHII for daily maximum temperature decreases most (80%, 0.40 °C during the pre-CNY period vs. 0.08 °C during the CNY period) between the Third and Fourth Ring Roads (RRs), an area which experiences high human activity and has the highest floating population percentage. This study can provide suggestions for optimizing the layout of urban space and land-use structures.

How to cite: Dou, J. and Miao, S.: Impact of mass human migration during Chinese New Year on Beijing urban heat island, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6250, https://doi.org/10.5194/egusphere-egu2020-6250, 2020.

Urban areas will be subjected to temperature increases from a combination of global-scale climate change and local-scale urban heat island drivers. The resultant combined heat risk – urban overheating – will notably challenge cities in securing the resilience of public health to combined urban overheating. Although global climate change research is ubiquitous, the urban climate and biometeorological research literature of this century reveals a lag of (sub-) tropical Asian regional studies behind Europe and North America. Through a systematic research review of international urban-scale climate and biometeorological literature from 2000-2019, we propose to reflect the state of the art of the urban overheating issue in Asia alongside its penetration in the regional climate resilience discourses.

The review reveals (i.) a rise of the number of urban overheating studies throughout in the region in conjunction with rapid demographic and developmental change, except for the central Asia region; (ii.) a “metropolitisation” of the urban heat and biometeorological knowledge, meaning a spatial organization of the knowledge reinforcing the leading position of the Asian national and regional primate cities; (iii.) distinct themes of more research into: large focus on remote-sensed urban heat mapping of Chinese and Indian urban clusters, evaluation of heat mitigation strategies from modeling experiments in nations having economies in transition, compared to more focus on urban-wide heat mortality epidemiological studies in countries already facing aging issues.

Considering the lack of global climate change considerations in urban overheating and biometeorological studies, the review appeals for a more systematic vision of the urban heat issues where urban overheating consequences (i.e. thermal discomfort, heat morbidity, and mortality) are analyzed and discussed conjunctly with the geographical background of the cities, its urban fabric properties, and its socio-demographic dynamics.

How to cite: Kohler, M. and Chow, W. T. L.: A thematic review of recent urban overheating impacts research in Asia and its applications to climate resilience, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6346, https://doi.org/10.5194/egusphere-egu2020-6346, 2020.

Surface urban heat island (SUHI) is a major anthropogenic alteration of the urban environment, and its geospatial pattern remains poorly understand over a larger area. SUHI has been investigated in many regions of the world, but the complete understanding of its dynamics over a large area, across different climatic regime is missing, especially in India. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS), land surface temperature (LST) data from 2003 to 2018 is used to investigate the diurnal, seasonal, and interannual variations in the SUHI intensity, difference in urban and rural LST, across 150 major Indian cities situated over different climatic zones. The result shows the presence of surface urban heat/cool island depending upon climatic zones and seasons. The general sequence of mean SUHI intensity observed over different climatic zones is winter nighttime>summer nighttime>winter daytime>summer daytime. During the daytime, the cities situated in tropical monsoon (Am) (coastal cities), hot steppe (BSh), and hot desert (BWh) climatic zone shows a cool urban island, especially in summer. The nighttime SUHI intensity showed less obvious seasonal variations and always showed positive heat intensity. The cities situated in the humid subtropical (Cwa) zone, which is mainly Indo-Gangetic plain and a major hub of the Indian population, shows strong daytime as well as nighttime SUHI intensity. Mann-Kendall and Sen’s slope estimator test are used to detect the long-term trend of SUHI intensity in different climatic zones. The results show the presence of a decreasing trend in most of the cities during the daytime as compared to nighttime in both the summer/winter season.

How to cite: Mohammad, P. and Goswami, A.: Surface urban heat island variation over major Indian cities across different climatic zone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6444, https://doi.org/10.5194/egusphere-egu2020-6444, 2020.

EGU2020-7049 | Displays | CL2.5

Modeling summer heat load in Zagreb due to climate change effect

Irena Nimac, Ivana Herceg Bulić, and Maja Žuvela-Aloise

Changes in surface and atmosphere characteristics in urban areas can alter radiation, heat and water balance and generate excessive heat load in those areas. One of the associated consequences is higher temperatures in built-up areas compared to the rural surrounding, also known as urban heat island (UHI). Here, summer heat load in Zagreb, the largest city of Croatia, is investigated. Summer season is in the focus of the study, not only because it is shown that trend in summer temperatures in Zagreb is stronger compared to the winter one, but also as it is the season when intense and prolonged extreme weather events, like heat-weaves, are likely to occur.

In this work, urban climate model MUKLIMO_3 with 100 m horizontal resolution is applied for a broader area of Zagreb. To explore the effect of climate change on the heat load, two separate experiments with the same land-use (corresponding to the current state of the city), but for different climate conditions are made. Daily data measurements for the period 1951–1980 are used as past climate, while 1981–2010 period represents the current climate conditions. Heat load is here estimated by a number of days with the maximum air temperature above 25 °C, i.e. by summer days. Both simulations indicated the lowest values of heat load in mountainous forest area accompanied by increased values in densely built-up regions and old city center. However, lower number of summer days is also found for green and blue areas within the city. The spatial pattern of difference in the number of summer days between considered periods is mainly influenced by orography with a much lower increase in the mountain area of the domain than in the lowland city region.

How to cite: Nimac, I., Herceg Bulić, I., and Žuvela-Aloise, M.: Modeling summer heat load in Zagreb due to climate change effect , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7049, https://doi.org/10.5194/egusphere-egu2020-7049, 2020.

EGU2020-7741 | Displays | CL2.5

Human thermal comfort in Local climate zones of Berlin

Ines Langer, Alexander Pasternack, and Uwe Ulbrich

Urban areas show higher nocturnal temperature comparing to rural areas, which is denoted by urban heat island. This effect can intensify the impact of global warming in urban areas especially during heat waves, that leads to higher energy demand for cooling the building and higher thermal stress for residents.  

The aim of this study is to identify the Urban Heat Island (UHI) effect during the heat spell 2018 and 2019 in order to calculated human thermal comfort for Berlin. Berlin, the capital city of Germany covers an area of 892km2 and its population is growing, therefore more residential areas will be planned in future through higher building. The methodology of this research is to divide Berlin into Local Climate Zones (LCZ's) regarding the concept of Stewart & Oke (2012). Then to evaluate the accuracy of this concept using 30 microclimate stations. Estimating the magnitude of urban heat island and its seasonal changes in combination with human thermal perception in different LCZ during summer time is another objective of this research. 

Ten LCZ's for Berlin were selected, as class 1 (compact high rise), class 3 (compact low rise), class 7 (lightweight low-rise), class C (bush, scrub), class E (bare rock or paved) and class F (bare soil or sand) don't exist in Berlin. Class A (dense trees) is with a fraction of 18.6% in a good agreement with the percentage of dense trees reported from the city administration of Berlin (18.4%), class G (water) has a coverage of 5.1% through our classification instead of 6.7% reported by the city administration. In summary, the LCZ 1-10 cover 59.3% (more than half) of the city area.

Regarding temperature measurements, which represent a hot summer day with calm wind and clear sky the difference of Local Climate Zones will be calculated and the temperature variability in every LCZ's regarding sky view factor values show the hot spot of the city.

The vulnerability of LCZ's to heat stress will be ranked and discussed regarding ventilation and other factors.

 

Literature

Matzarakis, A. Mayer, H., Iziomon, M. (1999) Applications of a universal thermal index: Physiological equivalent temperature: Intern. J. of Biomet 43 (2), 76-84.

Stewart, I.D., Oke, T.R. (2012) Local climate zones for urban temperature studies. Bull. Amer. Meteor. Soc. 93 1879-1900. DOI: 10.1175/BAMS-D-11-00019.1.

 

How to cite: Langer, I., Pasternack, A., and Ulbrich, U.: Human thermal comfort in Local climate zones of Berlin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7741, https://doi.org/10.5194/egusphere-egu2020-7741, 2020.

EGU2020-8070 | Displays | CL2.5

The Single-column Urban Boundary Layer Intercomparison Modelling Experiment (SUBLIME): results of revised recipe

Gert-Jan Steeneveld and Aristofanis Tsiringakis and the SUBLIME

Models for weather and climate have been actively populated with urban canopy models in the last decade. Urban canopy models are available with different levels of complexity. In an earlier study several urban canopy models have been evaluated in offline mode (Grimmond et al. 2011). However, in reality these schemes operate within a numerical weather prediction model, and are coupled with the atmospheric boundary layer. Within the SUBLIME model intercomparison study, single-column models equipped with urban canopy models are evaluated against observations for a clear sky case over London. As such we aim to unravel whether model sensitivity for urban morphological parameters is similar in coupled and uncoupled model. Moreover, the SUBLIME project provides a benchmark for future model evaluation and further development. The SUBLIME experiment consists of a forecast task over a 54 hour period (23-25 July 2012), during which clear sky conditions persisted over London. It consists of two main stages, firstly an offline urban canopy model run, to determine how the surface scheme performs. This is followed by a run in which the urban canopy model is coupled to a single-column model to simulate the coupling to the urban boundary layer. Model forcing data were provided by flux tower, LIDAR and radiosonde observations. Additional external forcings for geostrophic wind speed and advection of heat, moisture and momentum which could not be directly observed were simulated using, 3-D WRF (Weather Research and Forecasting model) model runs. This presentation will discuss the modelling results using the new revised external forcings. We evaluate model outcomes against surface radiation and energy balance observations for both stages. For the second stage, modelled vertical profiles of wind, temperature and humidity as well as boundary-layer height are compared against observations and between models. Finally, differences in model results are identified and the physical processes responsible for these are explored using process diagrams.

How to cite: Steeneveld, G.-J. and Tsiringakis, A. and the SUBLIME: The Single-column Urban Boundary Layer Intercomparison Modelling Experiment (SUBLIME): results of revised recipe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8070, https://doi.org/10.5194/egusphere-egu2020-8070, 2020.

EGU2020-8513 | Displays | CL2.5

PALM-4U – A building-resolving microscale model to support future adaptation of cities in a changing urban climate

Sebastian Hettrich, Björn Maronga, and Siegfried Raasch

In a world with increasing extreme weather events, such as dry or extreme rain periods, due to climate change and an ever growing population specifically in urban areas, a forsighted planning and adaption of cities and their urban surroundings is becoming more and more important. Here, particularly health and comfort of the urban population, such as thermal comfort, air quality, ventilation or UV exposure, but also other aspects like safety and environmental sustainability play an important role. In order to create the cities of tomorrow that meet the real requirements to host healthy and firendly living conditions, city planners are relying on scientific models where they can simulate how changes in the urban environment can effect its climate. The PALM-4U (Parallelised Large-Eddy Simulation Model for Urban Applications) model was specifically developed to be able to simulate a large variety of parameters on short timescales and at the high resolution that is required to resolve single buildings or obstacles like trees within the city.

In September 2019, the second phase of the German research project MOSAIK (model-based city planning and application in climate change), a module within the large over-arching project [UC]² (Urban Climate Under Change) that focusses on the further development of the model, has started.

In this overview, we will present the PALM-4U‘s current capabilities and outline the planned future development in the coming years like windbreak modelling, coupling with traffic flow models, including biogenic volatile organic compounds in urban air quality modelling. Furthermore, our PALM-4U community model strategy will be explained.

How to cite: Hettrich, S., Maronga, B., and Raasch, S.: PALM-4U – A building-resolving microscale model to support future adaptation of cities in a changing urban climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8513, https://doi.org/10.5194/egusphere-egu2020-8513, 2020.

EGU2020-8611 | Displays | CL2.5

Examination and Projection of Urbanization Effect on Summertime Hot Extremes in China

Weilin Liao, Dan Li, and Xiaoping Liu

Extreme hot events have profound impacts on human health. Especially, consecutive hot days without heat relief during nighttime can significantly increase the rates of mortality and morbidity. Using an urbanized global earth system model and treating urban and rural land as subgrid units, the urbanization effect on long-term changes in three types of summertime hot extremes (i.e., independent hot days, independent hot nights, and compound events) is simulated under the present-day climate and two future scenarios in China. The model is first evaluated using a homogenized observational dataset drawn from over 2,000 meteorological stations. The results show that the model can well capture urban and rural temperature changes during the historical period from 1961 to 2000. The urban and rural temperatures are both increased under two future scenarios, but the urban heat island intensities (i.e., urban minus rural) do not show significant changes. However, urbanization has a significant impact on the frequencies of summertime hot extremes under two future scenarios. The increasing frequencies of independent hot days and independent hot nights in urban areas are less than that in rural areas, but more importantly, the increasing frequency of compound events in urban areas is larger than that in rural areas. This suggests that urbanization will aggravate the trend of the extreme hot events changing from independent hot days and independent hot nights to compound events, and seriously increase the health risks of urban residents in the future.

How to cite: Liao, W., Li, D., and Liu, X.: Examination and Projection of Urbanization Effect on Summertime Hot Extremes in China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8611, https://doi.org/10.5194/egusphere-egu2020-8611, 2020.

EGU2020-8847 | Displays | CL2.5

Patterns of urban cloud modifications

Julia Fuchs and Jan Cermak

Clouds in the urban boundary layer interact with the urban land surface via different linkages, resulting in prominent spatial and temporal patterns over or downwind of cities - called here patterns of urban cloud modifications. Depending on meteorological context, an enhancement of fair-weather cumulus clouds or a faster dissipation of fog and low stratus can be encountered. As the role of clouds in the climate system is among the largest remaining uncertainties in climate science, a more complete understanding of cloud systems is required and the dynamic urban setting may serve as a testbed. 

The aim of the study is the spatiotemporal quantification of urban cloud patterns and properties over Europe. Changes of low-cloud properties including cloud occurrence frequency and microphysical properties are spatially and seasonally mapped for the urban centres of Europe using satellite observations (MODIS, SEVIRI). The identification of spatial patterns of urban cloud modifications for specific cloud types and season will provide essential information on location, thermodynamic conditions and intensity of urban centres impacting low clouds. A systematic quantification of the overall spatial and temporal patterns of urban clouds would therefore set a basis for studying drivers of urban cloud modifications and their feedbacks on the urban climate.

How to cite: Fuchs, J. and Cermak, J.: Patterns of urban cloud modifications, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8847, https://doi.org/10.5194/egusphere-egu2020-8847, 2020.

Different roof materials are deployed for mitigating the urban heat, which significantly affects
our life. However, the performance of specific roof materials could be influenced by the
background climate. To evaluate the effectiveness of roof materials on temperature reductions in
a subtropical monsoon climate region, this study performs field experiments using four different
roof materials (gray and white surfaces, solar panel, and grass surface) from December 2017 to
July 2018. The results show that the white surface reduced the average daily surface temperature
by 3.37 °C. This cooling effect increased with the increase in surface albedo and incoming solar
radiation. However, the average cooling effect of the grass surface was much lower (0.43 °C).
This is attributable to the low soil moisture, which was influenced by the monsoon, thereby
indicating that irrigation is required to improve the thermal performance of grass roofs even in
humid regions. The solar panel reduced the daily surface temperature by 0.59 °C but exerted
strong warming (7.36 °C) during midday and cooling effects (4.03 °C) during midnight because
of its low albedo, low emissivity, and low heat capacity. Our results suggest that, for the roof
treatments explored here, white roofs are more effective for mitigating urban heat in a
subtropical monsoon climate under the present climatic conditions and especially for drier
climates predicted for the future, while grass roofs are not a sustainable method as they require
irrigation to achieve a cooling effect and solar panels may heat the urban atmosphere.

How to cite: Chen, X. and Jeong, S.: Mitigating the warming in urban areas: Experimental study of different roof materials in a subtropical monsoon climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9117, https://doi.org/10.5194/egusphere-egu2020-9117, 2020.

EGU2020-9613 | Displays | CL2.5

Effect of wall heating on street canyon ventilation

Pietro Salizzoni, Sofia Fellini, and Luca Ridolfi

Understanding the dynamics of mass and heat exchange between a street canyon and the overlying atmosphere is crucial to predict air quality and microclimatic conditions within dense urban areas. Previous studies have demonstrated that the bulk transfer between the street and the overlying flow is entirely governed by the intensity of turbulent fluctuations within the street. The aim of this experimental study is to evaluate how the geometry of the street canyon and the solar radiation on building façades influence the turbulent velocity field within a two-dimensional street canyon and thus the global street canyon ventilation. The study was carried in a wind tunnel. The boundary conditions inside the canyon were modified by heating its windward and leeward walls and by changing the cavity aspect-ratio. The flow field in a cross-section of the street canyon was measured with particle image velocimetry. Temperatures were measured by means of thermocouples. The velocity and vorticity fields are analysed and discussed.

How to cite: Salizzoni, P., Fellini, S., and Ridolfi, L.: Effect of wall heating on street canyon ventilation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9613, https://doi.org/10.5194/egusphere-egu2020-9613, 2020.

Energy consumption, such as building energy use and traffic, is one of the key sources of anthropogenic heat flux in cities (QF), which influences the urban climate. Different methods have been proposed to quantify QF, such as using the inventory data and satellite observations of the land surface temperature. In this study, we develop an analysis framework based on urban surface energy balance and inverse calculation of the expected change of thermodynamic state as a result of different sources of energy consumption. This framework enables us to link the energy consumption data with remotely sensed land surface temperature (LST). Thus, the contribution of different sources of anthropogenic energy consumption to the urban land surface temperature can be readily quantified. We apply this method to ECOSTRESS LST, traffic volume and building energy consumption for cities in the US. We show that the exhaust heat from traffic and building energy use contributes differently to the surface urban heat island effect: the contributions differ in cities with different background climates, urban morphologies and green area fractions. Overall, the combined model-observation framework demonstrates potential in quantifying the impact of two major anthropogenic heating sources on urban climate, in particular with increasingly available high-quality urban energy-use data and fine-resolution satellite observations.  

How to cite: Yu, Z., Li, Q., Sun, T., and Hu, L.: The Contribution of Anthropogenic Energy Use to Urban Heat Island: Combining Energy Consumption Data with Satellite Observation of Land Surface Temperature , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10645, https://doi.org/10.5194/egusphere-egu2020-10645, 2020.

EGU2020-10969 | Displays | CL2.5

Analysis of temperature trends and urban heat island in Madrid

Gregorio Maqueda, Carlos Yagüe, Carlos Román-Cascón, Encarna Serrano, and Jon Ander Arrillaga

The temperature in the cities is affected by both global climate change and local changes due to human activities and the different land use compared to rural surroundings. These local changes, which modify the surface energy budget in urban areas, include the replacement of the natural surfaces by buildings and pavements and the heat of anthropogenic origin (heating, air conditioning, traffic). Madrid city (Spain) has a current population of near 3.3 million people and a larger metropolitan area reaching around 6.5 million people. Hence, it is affected by the phenomenon called urban heat island (UHI), which indicates that a higher temperature is found in the city compared with the surrounding rural areas. UHI is defined as the temperature difference between the urban observatory and the rural one and especially affects the minimum temperatures since urban areas cool down to a lesser extent than the neighbouring rural sites. Moreover, the intensity of the UHI is modulated by the meteorological conditions (wind, cloudiness, surface pressure, precipitation), highly associated with different synoptic situations. In this work, we use the Madrid-Retiro meteorological station as the urban one, which has regular and homogeneous data from the beginning of XX century; and the station at Barajas airport (12 km from the city centre) as well as other stations out of Madrid city (but within a range of 20 km from the city centre) as the rural stations. They all have a common measuring period from 1961 until present. The main objectives of the work are: 1) to identify temperature trends in the meteorological stations (both urban and rural); 2) to evaluate the intensity of the UHI for the different rural stations; 3) to apply a systematic and objective algorithm to classify each day in different categories (related to synoptic situation) that produce a different degree of UHI intensity; and, 4) to evaluate possible trends in the UHI intensity.

How to cite: Maqueda, G., Yagüe, C., Román-Cascón, C., Serrano, E., and Arrillaga, J. A.: Analysis of temperature trends and urban heat island in Madrid, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10969, https://doi.org/10.5194/egusphere-egu2020-10969, 2020.

EGU2020-11560 | Displays | CL2.5

15 year re-analysis of the urban climate of Amsterdam using WRF

Sytse Koopmans, Gert-Jan Steeneveld, Ronald van Haren, and Albert Holtslag

15 year re-analysis of the urban climate of Amsterdam using WRF

 

Sytse Koopmans1 (Sytse.koopmans@wur.nl), Gert-Jan Steeneveld1, Ronald van Haren2, Albert A.M. Holtslag1.

 

1 Wageningen University and Research, the Netherlands:

2 Netherlands eScience Center, the Netherlands:

 

 

Ongoing world-wide climate change and urbanization illustrate the need to understand urban hydrometeorology and its implications for human thermal comfort and water management. Numerical weather prediction models can assist to understand these issues, as they progress increasingly towards finer scales. With high model resolutions (grid spacing of 100m), effective representation of cities becomes crucial. The complex structures of cities, configuration of buildings, streets and scattered vegetation, require a different modelling approach than the homogeneous rural surroundings. The current urban canopy-layer schemes account for these city specific characteristics, but differ substantially amongst each other due to uncertainty in land use parameters and incomplete physical understanding. Therefore, the hindcasting of the urban environment needs improvement.

In this study, we improve the WRF (Weather Research and Forecasting) mesoscale model performance by incorporating observations of a variety of sources using data assimilation (WRF-3DVAR) and nudging techniques on a resolution up to 167 meter. Data assimilation aims to accurately describe the most probable atmospheric state by steering the model fields in the direction of the observations. Specific to urban boundary layers, a novel approach has been developed to nudge modelled urban canyon temperatures with quality controlled urban weather observations. Adjusting the urban fabric accordingly is crucial, because of the large heat storage within urban canopies. The road and wall layers of the urban canopy are adjusted depending on the bulk heat transfer coefficient and urban geometry. Other data assimilation sources consists of WMO synoptic weather observations and volume radar data.

The results of the 15-year climatological urban re-analysis are here presented and it is subdivided in three key questions. First, we attempt to answer how large the trends are in human thermal comfort over the 15 year period. Second, we investigate if there are seasonality’s detected in maximum urban heat island intensities. Earlier found hysteresis-like curves were reproduced to a large extent for for pedestrian level air temperatures. Lastly, we analyse trends in extreme precipitation using simulated precipitation data on one second interval.

How to cite: Koopmans, S., Steeneveld, G.-J., van Haren, R., and Holtslag, A.: 15 year re-analysis of the urban climate of Amsterdam using WRF , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11560, https://doi.org/10.5194/egusphere-egu2020-11560, 2020.

Urban canopy layer (UCL) is generally considered in numerical study of urban meteorology. The weather research and forecasting Model (WRF) coupled with urban canopy layer scheme is used to simulate a heavy rainfall case in Beijing. Comparative analysis is applied for the case between coupled simulation and non coupled simulation and therefore exhibits the effect of the UCL on the rainfall. Sensitive experiments are performed to investigate anthropogenic heat source and urban area extension to affect the precipitation. The results show that the coupled UCL model has captured the rainfall characteristics at the regional scale. The coupled simulation has improved accuracy of the rainfall area, the peak value and the rainfall duration compared to the non coupled simulation. The main effect achieves as longer duriation of the ascending motions and enhancement of the layers unstabilities. Although the intensity of the vertical motion has a little reduction, the time of the motion has increased 2 hours in a day. Sensitive experiments present an obvious influence on precipitation intensity, precipitation centralization and heat island effect. The precipitation center moves toward the urban center, the accumulated rainfall increases 78.5 mm and the center moves by distance 13 km when anthropogenic heat source is perturbed to double. Urban area extension induces increase of the precipitation area and intensity due to high humidity and ascending motion. The experment also reveals shift of the island heat effect.

How to cite: ma, M.: Influence of Urban Canopy Layer on a heavy rainfall over Beijing, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12190, https://doi.org/10.5194/egusphere-egu2020-12190, 2020.

EGU2020-12480 | Displays | CL2.5

Impact of urban expansion and warming climate on sea-breeze circulations: A numerical study in the Greater Houston Metropolitan Area

Mukul Tewari, Jitendra Singh, Pallav Ray, Matei Georgescu, Francisco Salamanca, and Lloyd Treinish

The Building Effect Parameterization + Building Energy Model (BEP+BEM) with a detailed urban parameterization coupled with the Weather Research and Forecasting (WRF) model is used to simulate the summertime local circulation in the Houston, Texas metropolitan area. Six numerical model simulations at 3km horizontal resolutions (within the nested parent domain of 9km) are performed using land use data representative of 2010, and 2100.They include:

(a) Control Simulation (with 2010 land use with current and future climate)

(b) same as (a) but with less aggressive urban expansion

(c) same as (a) but with more aggressive urban expansion

For future climate simulation, CCSM4 data (RCP8.5 scenario) were used to generate the climate perturbation, which was then applied to the current forcing data (NCEP final analyses) used for the numerical model simulations. Validation is based on comparison between model simulations and observations and it shows reasonably good model performance. Numerical simulations show an important interaction between the sea breeze and the urban heat island (UHI) circulation. The UHI forms a strong convergence zone in the center of the city and accelerates the sea-breeze front toward it. This phenomenon raises several questions.  (1) With urban expansion, how is the sea breeze penetration modified?  What is its impact on energy consumption in the city during the summer season, (2) After the dissipation of the UHI, how does the penetration of sea breeze change?  (3) How is the speed of the sea breeze modified with climate change and/or urban expansion? We will discuss our approach and present our results that help answer these questions.

How to cite: Tewari, M., Singh, J., Ray, P., Georgescu, M., Salamanca, F., and Treinish, L.: Impact of urban expansion and warming climate on sea-breeze circulations: A numerical study in the Greater Houston Metropolitan Area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12480, https://doi.org/10.5194/egusphere-egu2020-12480, 2020.

EGU2020-12496 | Displays | CL2.5

Off-line urban building energy model reproducibility against ‘observed’ anthropogenic heat and electricity consumption

Yuya Takane, Ko Nakajima, Yukihiro Kikegawa, Hirofumi Sugawara, Shigeyuki Ishidoya, Yukio Terao, Kazuki Yamaguchi, Naoki Kaneyasu, and Masayuki Hara

Here we verify an off-line urban building energy model (CM-BEM) against ‘observed’ anthropogenic heat and electricity consumption at Tokyo (Yoyogi) residential area. Anthropogenic heat (QF) due to electricity air-conditioning (AC) use (QF, AC) is estimated by continuous simultaneous observations of atmospheric O2, CO2 and turbulent CO2 and heat fluxes. Here we explain the outline of how to estimate QF, AC. (1) The O2:CO2 exchange ratio (oxidation ratio, OR) is used for the partitioning of CO2 into emissions from gas fuels and gasoline (see detail in Ishidoya et al. 2020), which allow estimating QF from gas fuels and gasoline (QF, gas and QF, traffic), respectively. (2) Total QF is estimated by turbulent heat fluxes and net radiation observations using a heat balance equation within the constant flux layer. Finally (3) the QF, AC is estimated by ‘Total QF – (QF, gas + QF, traffic)’. This estimation allows verifying directly simulated QF, AC by the CM-BEM. Our aim is an improvement of the CM-BEM to develop more realistic QF and CO2 inventory data. Here we compare simulated QF, AC, electricity consumption, and turbulent heat fluxes against observations during winter (Jan-Feb 2017) and summer (July-Aug 2018) seasons at Tokyo. Our results will be reported at the conference.

Ref.

Ishidoya et al. 2020: Consumption of atmospheric O2 in an urban area of Tokyo, Japan derived from continuous observations of O2 and CO2 concentrations and CO2 flux. Atmospheric Chemistry and Physics Discussions. under review.

How to cite: Takane, Y., Nakajima, K., Kikegawa, Y., Sugawara, H., Ishidoya, S., Terao, Y., Yamaguchi, K., Kaneyasu, N., and Hara, M.: Off-line urban building energy model reproducibility against ‘observed’ anthropogenic heat and electricity consumption, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12496, https://doi.org/10.5194/egusphere-egu2020-12496, 2020.

EGU2020-12780 | Displays | CL2.5

Real-time modelling of dangerous wind speed gusts and thermal comfort conditions in campus of Moscow State University (Moscow, Russian Federation)

Pavel Konstantinov, Anastasia Perkhurova, Elizaveta Nikolaeva, Sergey Bukin, and Mikhail Varentsov

Wind speed modeling on microscale can be important not only for local authorities but also for citizens.  Due to the heterogeneity of urban development in the Moscow region, wind gusts geography and thermal comfort conditions at different points in the same territory will differ noticeably with the same meteorological parameters. Thus, it is necessary to study such parameters  at the microscale. Therefore, within the framework of this study, in order to inform the public about the negative impact of the weather, and further to minimize the consequences on the human body, an attempt was made to develop an operational system for predicting dangerous conditions  of wind gusts and  thermal comfort.

In order to collect climate statistics, climate data were calculated for comfort conditions for the MSU campus using the RayMan model. Wind gusts modeling was performed using ENVI-MET model.   Therefore, it is possible to analyze the changes in biometric conditions and wind speed in recent years and track trends in various locations.

Since the input parameters for the RayMan diagnostic model, which processes only text documents, serve as predictive data for the Canadian GEM global meteorological parameters in grib2 format, a program for converting files using Command.exe and Fortran-90 language allowed us to create an online module for predicting biometric indices (UTCI, PET and mPET).

For the convenience of perception of information, the results of calculations are visualized on the basis of Yandex maps.

Research was supported by the grant program of Russian Foundation of Basic Research (project no. 19-35-70009 mol_a_mos ). The work of Pavel Konstantinov, Elizaveta Nikolaeva and Sergey Bukin was supported by Russian Science Foundation (project no. 19-77-30012)

How to cite: Konstantinov, P., Perkhurova, A., Nikolaeva, E., Bukin, S., and Varentsov, M.: Real-time modelling of dangerous wind speed gusts and thermal comfort conditions in campus of Moscow State University (Moscow, Russian Federation), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12780, https://doi.org/10.5194/egusphere-egu2020-12780, 2020.

EGU2020-13117 | Displays | CL2.5

Exploring the effect of neighboring building on land surface temperature of central park

Dongrui Han, Xiaohuan Yang, Hongyan Cai, Xinliang Xu, Zhi Qiao, and Hongmin An

Urban parks can effectively mitigate the urban heat island (UHI) effect. Many studies have investigated the relationship between the shape, size, interior components and cooling effect of the park, little attention have been given to explore the relationship between land surface temperature (LST) of central park and buildings in the neighboring areas. This study has explored the effect of the neighboring building on LST of central park, taking Beijing as the study area. The results showed that the cold island footprint of the park in summer was larger than that in winter (with an average area of 0.15 km2 larger). The components of building in cold island footprint of the park were dominated by middle-rese building (MRB). LSI of MRB and AREA_SD of LMB were identified as the key explanatory variables in summer and winter, respectively, which could explained 16.8% and 13.9% of the variance in the park’s LST. This study could extend scientific understanding of the effect of building on park’s LST, and could provide guidance to urban planners on how to mitigate the UHI effects through the rational allocation of buildings.

How to cite: Han, D., Yang, X., Cai, H., Xu, X., Qiao, Z., and An, H.: Exploring the effect of neighboring building on land surface temperature of central park, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13117, https://doi.org/10.5194/egusphere-egu2020-13117, 2020.

EGU2020-13555 | Displays | CL2.5

High resolution LST climatology in an urban area using Landsat 8 thermal data

Sorin Cheval, Alexandru Dumitrescu, and Vlad Amihăesei

The Landsat 8 satellites retrieve land surface temperature (LST) values at 30-m spatial resolution since 2013, but the urban climate studies frequently use a limited number of images due to the problems related to missing data over the area of interest. This paper proposes a procedure for building a long-term LST data set in an urban area using the high-resolution Landsat 8 imagery. The methodology is demonstrated on 94 images available through 2013-2018 over Bucharest (Romania). The raw images contain between 1.1% and 58.4% missing data. Based on an Empirical Orthogonal Filling (EOF) procedure, the LST missing values were reconstructed by means of the function dineof implemented in sinkr R packages. The output was used for exploring the LST climatology in the area of interest. The gap filling procedure was validated by comparing artificial gaps created in the real data sets. At the best of our knowledge, this is the first study using full spatial coverage high resolution remote sensing data for investigating the urban climate. The validation pursued the comparison between LST and Ta at 3 WMO stations monitoring the climate of Bucharest, and returned strong correlation coefficients (R2 > 0.9). Further research may be envisaged aiming to update the data set with more recent LST information and to combine data from various sources in order to build a more robust urban LST climatology.

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CCCDI -
UEFISCDI, project number COFUND-SUSCROP-SUSCAP-2, within PNCDI III.

How to cite: Cheval, S., Dumitrescu, A., and Amihăesei, V.: High resolution LST climatology in an urban area using Landsat 8 thermal data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13555, https://doi.org/10.5194/egusphere-egu2020-13555, 2020.

Typical Meteorological Year (TMY) datasets are widely used in building energy design simulations to assess needs (cooling/heat). Currently, TMY data used are representative of the past climate (from observations) of the region and generally do not account for urban climate or building-city interactions. Here we use an urban land surface model, SUEWS (Surface Urban Energy and Water Balance Scheme) driven by ERA5 reanalysis data to bridge this gap.

Using 0.25 ° large-scale ERA5 reanalysis data (1979–2018) with SUEWS we generate an urbanised TMY (uTMY) dataset for Changsha, a city with more than 4.4 million residents in the hot-summer-cold-winter region of China, to demonstrate the proposed workflow. The SUEWS simulation are evaluated at the Leifeng site (WMO code 57687) for 2016.

Through comparison of DOE EnergyPlus simulations, we also assess the impact on design building energy consumption using uTMY and cTMY (conventional TMY) data. The building design energy needs evaluation is for a common Chinese apartment building. This should allow for more spatially explicit building design, and hence more sustainable.

How to cite: Sun, T., Tang, Y., Xiong, J., Omidvar, H., and Grimmond, S.: Urbanisation of weather data lead for more sustainable building design: urban land surface model used to generate Typical Meteorological Year (TMY) datasets, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15069, https://doi.org/10.5194/egusphere-egu2020-15069, 2020.

EGU2020-17934 | Displays | CL2.5

Utilization of fire brigade data in the impact analysis of extreme precipitation events over Berlin

Alexander Pasternack, Ines Langer, Henning Rust, and Uwe Ulbrich

Large cities and urban regions are highly sensitive to impacts caused by extreme events, e.g. heavy rainfall, since they cause fatalities and economic damages. Moreover, due to regional consequences of global climate change, problems caused by hazardous atmospheric events are expected to intensify in future. Thus adequate adaptation planning of urban infrastructure not only requires further research on potential impacts under changing precipitation patterns, but also practical feasibility for end users like insurances or fire brigades.

According to this we relate heavy precipitation events over Berlin to the available data on time and location of the respective fire brigade operations, within the research program “Urban Climate Under Change” ([UC]2) funded by the BMBF. For this purpose multiple data sets like station, radar and model  based data with a high temporal resolution will be used.  Thus an improved assessment of the spatial and temporal evolution of severe precipitation events can be made,  which is consequently also of aid in the investigation of a connection to related impacts in the urban area.

How to cite: Pasternack, A., Langer, I., Rust, H., and Ulbrich, U.: Utilization of fire brigade data in the impact analysis of extreme precipitation events over Berlin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17934, https://doi.org/10.5194/egusphere-egu2020-17934, 2020.

EGU2020-18702 | Displays | CL2.5

Quantifying the contribution of land use change to the surface urban heat island in China

Zhi Qiao, Luo Liu, Dongrui Han, Zongyao Sun, and Xinliang Xu

Urban Heat Island (UHI), a phenomenon characterized by significantly higher air and land surface temperatures (LSTs) in urban areas than in suburban areas, results in land use change from non-urban to urban land and is accompanied by increases in anthropogenic heat release. A variety of land use contribution indexes have been proposed to quantitatively calculate the impact of land use types on UHI. However, these indexes can only show the impact of specific land use types on UHI. In fact, the area and the intensity (which also can be considered as the average temperature) of land use change jointly determine the regional UHI. The purpose of this paper is to develop an algorithm to quantitatively reveal the influence of the area and the intensity of land use change on regional UHI. MODIS LST products and 1:1,000,000 land use data sets were used to quantitatively calculate the seasonal and interannual contributions of land use change on regional UHI between 2005 and 2018 in China. These results have theoretical and practical significance for further understanding the formation mechanism of urban thermal environment and its mitigation measures.

How to cite: Qiao, Z., Liu, L., Han, D., Sun, Z., and Xu, X.: Quantifying the contribution of land use change to the surface urban heat island in China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18702, https://doi.org/10.5194/egusphere-egu2020-18702, 2020.

EGU2020-18723 | Displays | CL2.5

Simulation of Critical Urban Climate Load Situations in Augsburg, Southern Germany, using PALM-4U

Annette Straub, Christoph Beck, and Andreas Philipp

As part of the research programme "Urban Climate Under Change” [UC²] the project “Strategies for Reduction of Critical Urban Climate Load Situations in Augsburg” (MIKA) focuses on the application of the LES model PALM-4U to the medium-sized city of Augsburg, Southern Germany. The main objectives of the project include the model evaluation with special emphasis on three-dimensional observations of the urban boundary layer with unmanned aircraft systems but also utilizing ground-based long-term observations of multiple meteorological and air-quality variables. Furthermore, factors and mechanisms influencing the spatio-temporal evolution of situations with critical thermal load as well as high particulate matter concentrations within the city are investigated. Finally, the development, simulation and evaluation of short- and long-term strategies for minimization of these critical situations is another aim, carried out in cooperation with the city administration of Augsburg. Possible side-effects of these measures, e.g. remote effects in the surroundings of the city, are studied.

First model runs with PALM-4U for a test domain within the city of Augsburg have been carried out and are presented and discussed.

How to cite: Straub, A., Beck, C., and Philipp, A.: Simulation of Critical Urban Climate Load Situations in Augsburg, Southern Germany, using PALM-4U, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18723, https://doi.org/10.5194/egusphere-egu2020-18723, 2020.

EGU2020-19457 | Displays | CL2.5

The urban wind island from a three-dimensional perspective

Arjan Droste, Gert-Jan Steeneveld, Bert Holtslag, and Hendrik Wouters

The Urban Wind Island (UWI), a small but persistent positive wind anomaly over the city as a whole, has previously been revealed using a simplified conceptual model of the convective atmospheric boundary layer. However, the urban boundary layer is strongly heterogeneous and complex, and many interactions with surrounding land-use are not taken into account with the conceptual model used. Additionally, the transition to a stable or neutral nocturnal boundary layer substantially influences wind speed, for instance leading to nocturnal jets, which could also lead to UWI formation. This study extends the UWI research into less idealised cases by using the 3D WRF mesoscale model for Amsterdam (the Netherlands) and its surroundings, at 500m resolution. Two summers of forecast results for in total 173 days are used to identify whether the UWI persists in a 3-dimensional modelling environment, and which conditions are optimal for its formation and persistence. In order to focus only on wind modified by surface processes, large-scale influences which modify wind speed, such as frontal passages, are identified and eliminated from the dataset. We find that a positive UWI is present roughly half the time, with an order of magnitude that is similar to the previous work (~ 0.5 m/s). In addition we find an evening UWI that is caused by the delayed onset of the transition from an unstable to a stable or a neutral boundary layer in the urban area, while the rural area is already stable and calm.

 

How to cite: Droste, A., Steeneveld, G.-J., Holtslag, B., and Wouters, H.: The urban wind island from a three-dimensional perspective, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19457, https://doi.org/10.5194/egusphere-egu2020-19457, 2020.

EGU2020-20987 | Displays | CL2.5

Urban-PLUMBER: A new evaluation and benchmarking project for land surface models in urban areas

Mathew J. Lipson, Sue Grimmond, Martin J. Best, Gab Abramowitz, Andrew J. Pitman, and Helen C. Ward

We welcome participants in the new project to evaluate land surface models (LSMs) in urban areas at multiple sites. Urban-PLUMBER will evaluate both specialised urban parameterisations and general LSMs typically used in weather/climate simulations. Assessment will be offline (uncoupled with an atmosphere model), with driving meteorology and general site characteristics provided at the neighbourhood scale.

The project builds upon the PLUMBER project (PALS Land sUrface Model Benchmarking Evaluation pRoject) by assessing models using simple benchmarks as well as error metrics. The PLUMBER experience indicates benchmarking can reveal where LSMs are not utilising available information effectively, helping focus future model development.

The project’s two phases are: 1) initial evaluation at one suburban site and 2) evaluation across multiple sites with varying degrees urbanised and vegetation/pervious fractions. The project will establish where on the urbanised/vegetated continuum models are more skilful, and assess the progress made in modelling urban areas over the last decade since the last major offline urban model comparison project (PILPS-Urban).

We expect the project to benefit both participating modelling groups and improve understanding of modelling urban areas as a whole. Contact us to get involved.

How to cite: Lipson, M. J., Grimmond, S., Best, M. J., Abramowitz, G., Pitman, A. J., and Ward, H. C.: Urban-PLUMBER: A new evaluation and benchmarking project for land surface models in urban areas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20987, https://doi.org/10.5194/egusphere-egu2020-20987, 2020.

EGU2020-20995 | Displays | CL2.5

Sensitivity study of urban energy balance to albedo, emissivity and heat capacity in Seoul Metropolitan Area

Byung-Kwon Moon, Seon-Ok Hong, Jae-Young Byon, Jong-Chul Ha, and Jieun Wie

As urban populations increase, urban heat island effect is enhanced and urban heat stress and air pollutant concentrations increase. Sensitivity experiments of changing the albedo, emissivity, and heat capacity of urban facets can provide information to mitigate the heat island effect and allow the model to study urban climate more accurately. Experiments on sensitivity of the surface energy balance of albedo, emissivity and heat capacity in the metropolitan area of ​​Seoul were conducted using Met-Office-Reading Urban Surface Exchange Scheme (MORUSES) of Unified Model Local Data Assimilation and Prediction (UM LDAPS) model. The analysis period is a heat wave period from July 15 to 21, 2018, which is a clear day without cloud and precipitation. Comparing 1.5-m temperature of AWS data, it overestimated about 0.5-2K in the model. If the albedo decreases, the net radiation, storage heat, sensible heat and ground heat fluxes increase after sunrise. Storage heat becomes negative in the afternoon, and sensible heat is positive during the night. When the albedo decreases, the air temperature increases. As the emission rate decreases, the air temperature increases as storage heat decreases and sensible, latent and geothermal heat increases, which is more intense at night than during the day. When heat capacity decreases, sensible and ground heat increase during the day, storage heat decreases, and vice versa at night. Air temperature increases during midday when solar radiation is strong and decreases elsewhere. Considering that the LDAPS-MORUSES model underestimates the air temperature, albedo and emission rates can be reduced to achieve more accuracy.

Acknowledgement: This research was supported by the Korea Meteorological Administration’s National Institute of Meteorological Sciences "Development of Biomechanical Meteorological Technology" (1365003004).

How to cite: Moon, B.-K., Hong, S.-O., Byon, J.-Y., Ha, J.-C., and Wie, J.: Sensitivity study of urban energy balance to albedo, emissivity and heat capacity in Seoul Metropolitan Area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20995, https://doi.org/10.5194/egusphere-egu2020-20995, 2020.

As citizens face increasing heat risk due to climate change with urban heat island effect, heat risk assessments in urban have been conducted focusing on thermal diseases related to heatwave of vulnerable people. Although they provided a basis to establish adaptation strategies such as cooling centers, they could not consider citizens’ daily thermal comfort of diverse groups. Thermal comfort could be a part of heat risk because associated with work performance such as productive capacity as well as health. In particular, pedestrians’ thermal comfort can represent daily heat risk of outdoor urban environment. The past studies of pedestrians’ thermal comfort were evaluated using PMV (Predicted Mean Vote), an index based on temperature, wind velocity, relative humidity and a fixed number of metabolic rate depending on the subject’s activity level. The PMV ranges from -3 to +3 and higher value indicates higher discomfortable. Including metabolic factor, PMV did not actually consider an individuals’ physiological response (IPR) such as heart rate, skin temperature, etc. To overcome PMV’s limitation, IPR should be considered together with climatic factors when assessing pedestrians’ thermal comfort. Therefore, we aim to develop a new function of thermal comfort by incorporating PMV and IPR, especially heart rate, with validation using personal perception of thermal comfort based on survey. We selected a route of 500m length in Suwon, South Korea and 9 volunteer pedestrians walked the selected route 8 times at 2-4 pm. The walk experiment was repeated for 4 days. During the experiment, air temperature, relative humidity, and wind velocity were monitored using portable meteorological sensors. The real-time heart rate of each pedestrian was recorded using wearable sensor (Mi-band3). After every day walk, we asked each pedestrian 10 questions regarding satisfaction of thermal environment, perceived temperature, etc. The average value of PMV was 2.99 belonging to very discomfort category. Although heart rate increased with the length of exposure time to heat, the heart rate over time did not consistently increase with air temperature. It was probably because our temperature range (31.9℃- 35.2℃) during the experiment was not large enough and heart rate was influenced by other factors such as wind velocity. In the survey, 50% of volunteer pedestrians responded ‘discomfort’ and the others answered ‘slightly discomfort’. Comparing the survey (discomfort and slightly discomfort) with PMV (very discomfort), PMV generally overestimated. thermal comfort. We will categorize thermal comfort level according to heart rate increase between walking activity in outdoor and indoor. Here, the higher heart rate increase than average increase level indicates worse individual thermal comfort condition. This individual thermal comfort effect can modify the existing calculation of thermal comfort using air temperature, wind velocity, and humidity by adding modification factor of individual heart rate response (Ex. Thermal comfort=weighting factor(0.189*air temperature-0.775*wind velocity+0.195*relative humidity)). The final thermal comfort will be calculated based on the function and examined the precision of function through comparative analysis with the personal thermal perception of survey. As heart rate is an individual variable, we expect our function can be a tool evaluating the personalized heat risk.

How to cite: Kim, A. and Yoo, G.: Urban heat risk assessment for pedestrians considering thermal environment and physiological change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21615, https://doi.org/10.5194/egusphere-egu2020-21615, 2020.

CL2.6 – Detecting and attributing climate change: trends, extreme events, and impacts

EGU2020-11715 | Displays | CL2.6

The Extreme Weather Event Real-time Attribution Machine (EWERAM) – An Overview

Jordis Tradowsky, Greg Bodeker, Leroy Bird, Stefanie Kremser, Peter Kreft, Iman Soltanzadeh, Johannes Rausch, Sapna Rana, Graham Rye, Andy Ziegler, Suzanne Rosier, Daithi Stone, Sam Dean, James Renwick, David Frame, and Adrian McDonald

As greenhouse gases continue to accumulate in Earth’s atmosphere, the nature of extreme weather events (EWEs) has been changing and is expected to change in the future. EWEs have contributions from anthropogenic climate change as well as from natural variability, which complicates attribution statements. EWERAM is a project that has been funded through the New Zealand Ministry of Business, Innovation and Employment Smart Ideas programme to develop the capability to provide, within days of an EWE having occurred over New Zealand, and while public interest is still high, scientifically defensible statements about the role of climate change in both the severity and frequency of that event. This is expected to raise public awareness and understanding of the effects of climate change on EWEs.

A team of researchers from five institutions across New Zealand are participating in EWERAM. EWE attribution is a multi-faceted problem and different approaches are required to address different research aims. Although robustly assessing the contribution of changes in the thermodynamic state to an observed event can be more tractable than including changes in the dynamics of weather systems, for New Zealand, changes in dynamics have had a large impact on the frequency and location of EWEs. As such, we have initiated several lines of research to deliver metrics on EWE attribution, tailored to meet the needs of various stakeholders, that encompass the effects of both dynamical and thermodynamical changes in the atmosphere. This presentation will give an overview of EWERAM and present the methodologies and tools used in the project.

How to cite: Tradowsky, J., Bodeker, G., Bird, L., Kremser, S., Kreft, P., Soltanzadeh, I., Rausch, J., Rana, S., Rye, G., Ziegler, A., Rosier, S., Stone, D., Dean, S., Renwick, J., Frame, D., and McDonald, A.: The Extreme Weather Event Real-time Attribution Machine (EWERAM) – An Overview, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11715, https://doi.org/10.5194/egusphere-egu2020-11715, 2020.

EGU2020-521 | Displays | CL2.6

UNSEEN trends: Towards detection of changes in 100-year precipitation events over the last 35 years

Timo Kelder, Malte Müller, Louise Slater, Rob Wilby, Patrik Bohlinger, Tim Marjoribanks, Christel Prudhomme, Anita Dyrrdal, Thomas Nipen, and Laura Ferranti

Constraining the non-stationarity of climate extremes is a topical area of research that is complicated by the brevity and sparsity of observational records. For regions with available data, analyses typically focus on detecting century-long changes in the annual maxima. However, these are not necessarily impact-relevant events and hence, a potentially more pressing research challenge is the detection of changes in the 1-in-100-year event. Furthermore, recent decades have seen abrupt temperature increases and therefore detecting decadal, rather than centurial, trends may be more important. An alternative approach to the traditional analysis based on observations is to pool ensemble members from seasonal prediction systems into an UNprecedented Simulated Extreme ENsemble (UNSEEN). This method creates numerous alternative pathways of reality, thus increasing the sample size. Previous studies have shown promising results that improve design value estimates by this method. Here, we use the hindcast of the ECMWF seasonal prediction system SEAS5 and pool together four lead times and 25 ensemble members, resulting in an ensemble of 100. We assess the robustness of this method in terms of the ensemble member independence, model stability and fidelity and then use the UNSEEN ensemble to detect non-stationarities in 100-year precipitation estimates over the period 1981-2016. We justify the pooling of ensemble members and lead times through a case study of autumn 3-day extreme precipitation events across Norway and Svalbard, which shows that the ensemble members are independent and that the model is stable over lead times. Despite previously reported model biases in the sea-ice extent and the sea-surface temperature in SEAS5, validation measures indicate that the model reliably reproduces ‘visible extremes’, i.e. the seasonal maxima. Using extreme value statistics, we then compare estimated return values from observations with the UNSEEN ensemble. Results indicate that the UNSEEN approach provides significantly different extreme values for return periods above 35 years. Additionally, while it is problematic to detect trends in the 100-year values from observations, the UNSEEN approach finds a significant positive trend over Svalbard. Validating UNSEEN events and trends is a complex task, but our approach reproduces ‘visible’ extremes well, building confidence in the modeled extremes. Both Norway and Svalbard have experienced severe floods from extreme precipitation events and our UNSEEN-trends approach is the first to provide an indication of the changes in these rare events. Further application of this approach can 1) help estimating design values, especially relevant for data-scarce regions 2) detect trends in rare climate extremes, including other variables than precipitation and 3) improve our physical understanding of the non-stationarity of climate extremes, through the possible attribution of detected trends.

How to cite: Kelder, T., Müller, M., Slater, L., Wilby, R., Bohlinger, P., Marjoribanks, T., Prudhomme, C., Dyrrdal, A., Nipen, T., and Ferranti, L.: UNSEEN trends: Towards detection of changes in 100-year precipitation events over the last 35 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-521, https://doi.org/10.5194/egusphere-egu2020-521, 2020.

EGU2020-14098 | Displays | CL2.6 | Highlight

A Multi-model Assessment of the Changing Risks of Extreme Rainfall Events in Bangladesh under 1.5 and 2.0 degrees’ warmer worlds

Ruksana Rimi, Karsten Haustein, Emily Barbour, Sarah Sparrow, Sihan Li, David Wallom, and Myles Allen

For public, scientists and policy-makers, it is important to know to what extent human-induced climate change played (or did not play) a role behind changing risks of extreme weather events. Probabilistic event attribution (PEA) can provide scientific information regarding this association and reveal whether and to what extent external drivers of climate change have influenced the probability of high-impact weather events. To date, most of the PEA-based studies have focused on extreme events of mid-latitudes and predominantly events that have occurred in the developed countries. Developing countries located at the tropical monsoon regions are underrepresented in this field of research, despite that fact that these countries are highly climate vulnerable, often experience extreme weather events that cause severe damages and have the least capacity to adapt. 

Bangladesh, a South Asian country with tropical monsoon climate, is a hotspot of climate change impacts as it is vulnerable to a combination of increasing challenges from record-breaking temperatures, extreme rainfall events, more intense river floods, tropical cyclones, and rising sea levels. The unique geographical location of this country particularly exposes it to high risks of flooding and landslides caused by heavy rainfall events. Observation based studies indicate that the frequency of high-intensity rainfall events may have already increased, with significant repercussions for agriculture, health, ecosystems and economic development.

Using high resolution regional climate model (RCM) simulations from weather@home, here we quantify the risks of extreme rainfall events in Bangladesh under pre-industrial, present-day and future climate scenarios of the Paris Agreement temperature targets of 1.5°C and 2°C warming. Additionally, we assess the risks under greenhouse gas (GHG)-only climate scenario where anthropogenic aerosols are reduced to pre-industrial levels. In order to test the robustness of the RCM results, available four atmosphere only global circulation model (AGCM) simulations from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project are analysed. This enabled for the first time, a multi-model assessment of the changing risks of extreme rainfall events in Bangladesh considering anthropogenic climate change drivers.

Findings suggest that both a 1.5°C and 2.0°C warmer world is poised to experience increased seasonal mean and, to a lesser extent, increased extreme rainfall events. The risk of a 1 in 100 year rainfall event under current climate condition has already increased significantly compared with pre-industrial levels. Substantial reduction in the impacts resulting from 1.5°C compared with 2°C warming is reported in this study; however the difference is spatially and temporally variable across Bangladesh. This paper highlights that reduction in the anthropogenic aerosols play an important role in determining the overall future climate change impacts; by exacerbating the effects of GHG induced global warming and thereby increasing the rainfall intensity. The policy-makers therefore need to take stronger climate actions to avoid impacts of 2°C warmer world and consider future changes in the risks of extreme rainfall events in the face of changeable GHG and aerosol impacts.

How to cite: Rimi, R., Haustein, K., Barbour, E., Sparrow, S., Li, S., Wallom, D., and Allen, M.: A Multi-model Assessment of the Changing Risks of Extreme Rainfall Events in Bangladesh under 1.5 and 2.0 degrees’ warmer worlds , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14098, https://doi.org/10.5194/egusphere-egu2020-14098, 2020.

EGU2020-19484 | Displays | CL2.6 | Highlight

Attributing Chinese Hydrological Extreme EventsAttributing Chinese Hydrological Extreme Events

Simon Tett and the The CSSP China Event Attribution Team

In 2018 & 2019 China was impacted by three extreme hydrological events. Heavy rainfall in Central China during summer 2018, heavy summer rainfall in south eastern China during 2019 and a severe drought in Yunnan in May/June of 2019. Using the Hadley Centre’s state-of-the-art attribution system the role of anthropogenic forcing in the changing risk of these events was studied. The modelling system uses two large ensembles of a 60 km resolution atmospheric model driven with sea-surface temperatures(SST), sea-ice and a package of different forcings. One ensemble  uses observed SSTs and natural and human forcings while the other uses pre-industrialised SSTs and natural forcings.  The studies were done in two week-long workshops held in China which aimed to train early career researchers to carry out event attribution studies. The methodologies used in all studies were similar. In all three cases, anthropogenic forcing reduced the risk of heavy rainfall and increased the risk of drought.  Changes in risk for the three events are surprisingly large with the probability of the  Yunnan drought increasing by a factor of 14, the probability of the summer 2019 heavy rainfall declining by a factor of four, and the probability of the summer 2018 rainfall event declining by a half.  Aerosol induced circulation changes in the model are the likely reason for these changes.

How to cite: Tett, S. and the The CSSP China Event Attribution Team: Attributing Chinese Hydrological Extreme EventsAttributing Chinese Hydrological Extreme Events, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19484, https://doi.org/10.5194/egusphere-egu2020-19484, 2020.

EGU2020-8005 | Displays | CL2.6 | Highlight

Potential impacts of anthropogenic forcing on the consecutive 2018-19 droughts in the central Europe

Vittal Hari, Oldrich Rakovec, Martin Hanel, Yannis Markonis, and Rohini Kumar

The damages caused by climate extremes to socio-economy and environment is unprecedented during the recent decades, and it causes even more damage when the climate extremes occur in consecutive years. Since the starting of this Century, Europe has witnessed a series of extreme droughts (2003, 2010, 2015, 2018-19) with substantial socioeconomic and ecological losses. This study, with the help of long term data inventory starting from 1766-present, evaluates the occurrence of consecutive two-year droughts using Standardized Precipitation Index (SPI) and Standard Precipitation-Evaporation Index (SPEI) during the vegetation period. Although, the 2018 drought is reported in many of the recent studies, 2019 also suffered a huge rainfall deficit together with rising atmospheric temperature. This indicates an increasing evapotranspiration rates, which may intensify the existing drought conditions that originally developed from rainfall deficits. These effects are further noticed in terms of widespread reduction in the overall vegetative development during 2018-2019.

Considering this impact, we evaluate 2018-19 droughts in terms of both SPI and SPEI and compare its extent with the extreme hot drought of 2003 to place these ongoing droughts within a climatological context. The average severity of the combined two-year drought event (2018-19) is comparable to that of the 2003 drought. However, for the 2003 event, the drought recovered during the proceeding year, which was not the case for the year 2018-19, which is evident from decline in vegetation development dynamics. Furthermore, the analysis with consecutive droughts during 2018-19 in Central Europe shows that it is a very rare event with a return period of over 200 years; and therefore can be considered as one of the most severe droughts in Europe since 1766. 

Using a suite of climate model simulations from CMIP-5 (N=12), we detected an important and potential role of human-induced climate change in increasing the risk of occurrence of the consecutive droughts over central Europe. Here, with the implementation of the fraction of attributable risk (FAR), we show the signifying role of human influence (or anthropogenic forcing) in modulating the consecutive year droughts. Furthermore, these events in the future projection of climate models suggest an increasing frequency in the latter part of 21st century.

How to cite: Hari, V., Rakovec, O., Hanel, M., Markonis, Y., and Kumar, R.: Potential impacts of anthropogenic forcing on the consecutive 2018-19 droughts in the central Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8005, https://doi.org/10.5194/egusphere-egu2020-8005, 2020.

EGU2020-11903 | Displays | CL2.6

Multi-method event attribution of 2015 OND drought in subtropical southern Africa

Neven Fuckar, Friederike Otto, Flavio Lehner, Piotr Wolski, Emma Howard, and Sarah Sparrow

The subtropical (south of 15deg.S) southern Africa experienced one of the most severe droughts in the record - accompanied with an exceptional heat wave – during the austral spring (October through December – the first half of the main rainy season) of 2015. The observed surface hydro-meteorological conditions led to substantial socio-economic impacts in the region - with mostly semi-arid climate and high spatial-temporal variability - where drought is the principal type of widespread natural disaster. More specifically, very low precipitation - compounded with very high surface air temperature (SAT) - caused low runoff, water shortages and restrictions, reduced electricity generation, and considerable loss of crops and livestock prompting Botswana, Namibia, Lesotho, Malawi, Swaziland and Zimbabwe to declare national drought emergencies. Every extreme event is the result of a combination of external drivers, natural (solar forcing and volcanos), and anthropogenic (carbon dioxide emissions, land use, etc.), and internal variability. The risk-based or probabilistic event attribution assesses to what extent anthropogenic forcing modifies the probability and magnitude, and hence the risk of an extreme event or a class of events to occur (i.e. to identify “the sharp edge” of climate change). This study utilises multiple long-term observations (CRU TS 4.03, GPCC v2018, NOAA PREC/L, etc.), and AGCM and CGCM historical simulations (12 models in total spread across CMIP3, CMIP5 and CMIP6 generations) to estimate risk indicators such as probability (risk) ratio (RR) and intensity change for the OND 2015 drought with respect to the beginning of the 20th century or pre-industrial conditions. Our multi-method approach indicates significant influence of climate change in total OND precipitation, e.g. RR = 1.48 (with 95% CI: 1.20, 1.85), and precipitation-temperature (mean OND SAT) ratio fields over the subtropical southern Africa, but uncertainty of risk indicators can be substantial. The crucial elements of atmospheric circulation and teleconnections (such as Angola Low and ENSO influence) associated with this extreme event are analysed and elaborated using the latest NOAA-CIRES-DOE 20th Century Reanalysis version 3.

How to cite: Fuckar, N., Otto, F., Lehner, F., Wolski, P., Howard, E., and Sparrow, S.: Multi-method event attribution of 2015 OND drought in subtropical southern Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11903, https://doi.org/10.5194/egusphere-egu2020-11903, 2020.

EGU2020-19302 | Displays | CL2.6 | Highlight

Emergence of heat stress hazards in the CMIP6 models

Natalie S. Lord and Dann M. Mitchell

Hazards associated with the combined effects of temperature and humidity can have a wide range of impacts, particularly on human health and agriculture. The human body removes metabolic heat through sweating and heat conduction, and the efficiency of these processes is reduced when ambient temperatures and humidity are high, resulting in heat stress. The effects of this range from general discomfort to increased morbidity and mortality rates, trends that have been observed during recent severe heatwaves such as those that occurred during the summer of 2019 in Europe. A number of factors may exacerbate heat stress, including intense physical activity and being located in an urban area as opposed to a rural area.

As global temperatures increase, the risk associated with heat stress hazards is expected to increase, and this signal is expected to emerge from natural variability over the coming decades, if not sooner. Here, simulations from the new CMIP6 models are analysed to investigate the timing of emergence of heat stress hazards, in order to identify regions of the globe that are particularly vulnerable to extreme heat stress and/or imminent emergence of these hazards. Event attribution techniques are also applied to estimate the impact of anthropogenic warming on the hazard risk.

How to cite: Lord, N. S. and Mitchell, D. M.: Emergence of heat stress hazards in the CMIP6 models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19302, https://doi.org/10.5194/egusphere-egu2020-19302, 2020.

EGU2020-13003 | Displays | CL2.6

Characterizing and detecting climate signals in observations and models using statistical learning

Sebastian Sippel, Nicolai Meinshausen, Erich Fischer, Eniko Szekely, and Reto Knutti

Internal atmospheric variability fundamentally limits short- and medium-term climate predictability and obscures evidence of climatic changes on regional scales. We discuss the suitability of incorporating statistical learning techniques to detect global climate signals from spatial patterns.

Our detection approach uses climate model simulations and a statistical learning algorithm to encapsulate the relationship between spatial patterns of daily temperature and humidity, and key climate change metrics such as annual global mean temperature or Earth’s energy imbalance. Observations are then projected onto this relationship to detect climatic changes. We show that fingerprints of changes in climate can be assessed and detected in the observed global climate record at time steps such as months or days by comparison against a historical baseline from CMIP5 simulations or reanalyses. Detection can be achieved also when ignoring the long-term global mean warming trend.

We further discuss how these approaches could be extended by using statistical techniques that would work well under variations of specific external forcings, e.g. solar or volcanic forcing, to predict only variations in a specific external forcing. Overall, we conclude that statistical learning techniques that characterize multivariate signals from high-dimensional climate data are a useful tool for the detection of climate signals at regional and global scales.

How to cite: Sippel, S., Meinshausen, N., Fischer, E., Szekely, E., and Knutti, R.: Characterizing and detecting climate signals in observations and models using statistical learning, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13003, https://doi.org/10.5194/egusphere-egu2020-13003, 2020.

EGU2020-3631 | Displays | CL2.6

The vertical profile of tropical temperature trends: Persistent model biases in the context of forced and internal variability

Dann Mitchell, Eunice Lo, William Seviour, and Lorenzo Polvani

Tropospheric and stratospheric tropical temperature trends in recent decades have been notoriously hard to simulate using climate models, notably in the upper troposphere.  Aside from the warming signal itself, this has broader implications, e.g. atmospheric circulation trends depend on latitudinal temperature gradients. In this study, tropical temperature trends in the CMIP6 models are examined, from 1979 to 2014, and contrasted with trends from the RICH/RAOBCORE radiosondes, and the ERA5/5.1 reanalysis.  Confirming previous studies, we find considerable warming biases in the CMIP6 modeled trends, and show that these biases are linked to biases in surface temperature (the models warm too much).  We also uncover previously undocumented biases in the lower-middle stratosphere: the CMIP6 models appear unable to capture the time evolution of stratospheric cooling, which is non-monotonic owing to the Montreal Protocol. This troposphere-warming, stratospheric-cooling fingerprint of climate change is therefore not well captured in CMIP6 models. Finally, we quantify the relative roles of individual climate forcings in tropspheric and stratospheric temperatures, including that of internal variability.

How to cite: Mitchell, D., Lo, E., Seviour, W., and Polvani, L.: The vertical profile of tropical temperature trends: Persistent model biases in the context of forced and internal variability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3631, https://doi.org/10.5194/egusphere-egu2020-3631, 2020.

EGU2020-11811 | Displays | CL2.6

The projected slow-down of mid-latitude temperature anomalies

Kai Kornhuber and Talia Tamarin-Brodsky

The impacts of temperature extremes are strongly amplified with the duration by which they persist over a specific region. In the mid-latitudes, surface-weather as characterized by warm and cold temperature anomalies generally propagates eastward, following the movement of cyclones and anti-cyclones that govern the weather conditions in those regions. It has been suggested that surface weather might become more persistent in the future as a response to changes in land-atmosphere feedbacks and changes to the large-scale circulation, such as a weakening of the zonal winds or a shift in the jet due to the Hadley cell expansion.

In this study, we employ a tracking algorithm to recover the tracks of warm and cold near surface temperature anomalies in comprehensive climate simulations of current and future climates. This enables us to quantify their properties statistically. We focus on their propagation speeds, and find that the eastward movement of both warm and cold temperature anomalies is projected to significantly decrease across the Northern hemisphere mid-latitudes by the end of the century, suggesting an amplified risk of longer lasting hot- and cold extremes under future climate scenarios.

We investigate to what extent this slow-down of mid-latitude temperature anomalies can be attributed to future atmospheric circulation changes on hemispheric and regional levels, and assess how the projected changes in each model are linked to respective trends in high-latitude and land warming.

How to cite: Kornhuber, K. and Tamarin-Brodsky, T.: The projected slow-down of mid-latitude temperature anomalies, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11811, https://doi.org/10.5194/egusphere-egu2020-11811, 2020.

EGU2020-19900 | Displays | CL2.6

Emergence of the projected trends in the tropical oceans from background climate noise in CMIP5 simulations

Gopika Suresh, Iyyappan Suresh, Takeshi Izumo, Jerome Vialard, and Matthieu Lengaigne

Anthropogenic forcing induces a Sea Surface Temperature (SST) warming and sea level rise. While these globally-averaged signals are clearly detectable, it is more difficult to detect regional deviations from these global trends, due to the strong aliasing by internal climate variability. Yet, changes in SST gradients are thought to influence the frequency of extreme IOD events and the impacts of extreme ENSO events, while regional sea level and rainfall changes have strong societal implications. Here, we investigate if such regional signals are already detectable in the tropics.

To that end, we apply the “emergence time” concept (i.e. when the climate change signal irreversibly emerges from the background climate “noise”) on historical simulations combined with RCP8.5 projections from the Coupled Model Intercomparison Project (CMIP5). By 2100, CMIP5 projections indicate a warming in relative SST (RSST), i.e. the SST change relative to its tropical mean, in the equatorial Atlantic, equatorial Pacific and Arabian Sea, and a RSST cooling (i.e. weaker warming than the tropical average) in the three subtropical gyres of the southern hemisphere. These models also project positive signals in relative Sea Level Anomalies (RSLA) in the Arabian Sea, 10°N-20°N band in the Pacific, and Benguela upwelling, and negative ones in the central Pacific, south-eastern Pacific and Indian Oceans. Rainfall increases over the equatorial Pacific and India, and decreases over Central America, the southern tropical Pacific and Atlantic. We define a regional trend as detectable when it emerges in more than 80% of the models in the CMIP5 database. With this choice, none of the RSST, RSLA and precipitation signals mentioned above are currently detectable in CMIP5. In the coming decade, the RSST warming in the Arabian Sea, cooling in the southeastern Pacific Ocean and rainfall reduction over central America become detectable, according to CMIP5. The equatorial Atlantic relative warming, Arabian Sea RSLA rise and equatorial Pacific precipitation increase would emerge before 2050. The equatorial Pacific RSST warming, southeastern Indian Ocean RSST cooling, and monsoon rainfall increase over India also become detectable before 2100. Our estimates of the emergence time could help planning a targeted observational strategy in regions, where CMIP5 indicate strong trends, and thus to verify CMIP5 projections in those regions.

How to cite: Suresh, G., Suresh, I., Izumo, T., Vialard, J., and Lengaigne, M.: Emergence of the projected trends in the tropical oceans from background climate noise in CMIP5 simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19900, https://doi.org/10.5194/egusphere-egu2020-19900, 2020.

EGU2020-16966 | Displays | CL2.6 | Highlight

Human influence strengthens the contrast between tropical wet and dry regions

Andrew Schurer, Gabriele Hegerl, Andrew Ballinger, and Andrew Friedman

Climate models predict a strengthening contrast between wet and dry regions in the tropics and subtropics (30°S-30°N), and data from the latest model intercomparison project (CMIP6) support this expectation. Rainfall in ascending regions increases, and in descending regions decreases in both climate model and reanalysis data. This strengthening contrast can be captured by tracking rainfall change each month in the wettest and driest third of the tropics and subtropics combined. Since wet and dry regions are selected individually for each model ensemble member, and the observations, and for each month, this analysis is largely unaffected by biases in location of precipitation features. Blended satellite and in situ data support the model-simulated tendency to sharpening contrasts between wet and dry regions, with rainfall in wet regions increasing substantially contrasted by a slight decrease in dry regions. These new datasets allow us to detect with more confidence the effect of external forcings on these changes, attribute them for the first time to the response to anthropogenic and natural forcings separately, and determine that the observed trends are statistically larger than the model responses. Our results show that the observed change is best explained by increasing greenhouse gases with natural forcing contributing some increase following the drop in wet region precipitation after Mount Pinatubo, while anthropogenic aerosol effects are expected to show a weak tropic-wide trend at the present time of flat global aerosol forcing. As expected from climate models, the observed signal strengthens further when focusing on the wet tail of spatial distributions in both models and data.

How to cite: Schurer, A., Hegerl, G., Ballinger, A., and Friedman, A.: Human influence strengthens the contrast between tropical wet and dry regions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16966, https://doi.org/10.5194/egusphere-egu2020-16966, 2020.

Victoria is the second-most populated and most densely populated state in Australia with a population of over 6.5 million. Over two thirds of the population live in greater Melbourne. It is also a major area for agriculture and tourism and is the second largest economy in Australia, accounting for a quarter of Australia's Gross Domestic Product. Any changes in Victoria's climate has huge impacts in these sectors. Rainfall over Victoria during the cool season (e.g. April to October) has been unusually low since the beginning of the Millennium Drought in 1997 (~12% below the 20th century average). Cool season rainfall contributes two-third to annual rainfall and is very important for many crops and for replenishing reservoirs across the state. Here we examine the extent to which this reduction in cool season rainfall is driven by external forcing, and the prospects for future multi-decadal rainfall, taking both external forcing and internal natural climate variability into account.

We analyse simulations from 40 global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) under preindustrial and historical forcing, as well as three scenarios for the 21st century: Representative Concentration Pathway (RCP)2.6, RCP4.5 and RCP8.5, which vary markedly in the amount of greenhouse gas emitted over the coming century. While the 1997-2018 average rainfall for cool season is below the preindustrial average in more than two-thirds of models under the three scenarios, the magnitude of the externally-forced drying is very small (median decline is around -2.5% in all three scenarios with an interquartile range around -5% to +1%). The model ensemble results suggest that external forcing contributed only 20% (interquartile range -41% to 4%) to the drying observed in 1997-2018, relative to 1900-1959. These results suggest that the observed drying was dominated by natural, internal rainfall variability. While the multi-model median is below average from 1997-2018 onwards, the externally-forced drying only becomes clear from 2010-2029, when the proportion of models exhibiting drying increases to over 90% under all three scenarios. This agreement reflects the increase in the magnitude of the externally-forced drying. We estimate that there is a 12% chance that internal rainfall variability will completely offset the externally-forced drying averaged over 2018-2037, regardless of scenario. By the late 21st century the externally forced change under RCP8.5 is so large that drying – even after taking internally variability into account - appears inevitable. 

Confidence in the modelled projections is lowered because models have difficulty in simulating the magnitude of the observed decline in rainfall. Some of this difficulty appears to arise because most models seem to underestimate multidecadal rainfall variability. Other candidates are: the observed drying may have been primarily due to the occurrence of an extreme, internally-driven event; the models underestimate the magnitude of the externally-forced drying in recent decades; or some combination of the two. If externally-forced drying is underestimated because the response to greenhouse gases is underestimated then the magnitude of projected changes might also be underestimated.

How to cite: Rauniyar, S. and Power, S.: Relative Contribution of Anthropogenic Forcing and Natural Processes to Rainfall Variability over Victoria, Australia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21262, https://doi.org/10.5194/egusphere-egu2020-21262, 2020.

EGU2020-12658 | Displays | CL2.6

Dry season water availability changes attributed to human-induced climate change

Ryan S. Padrón, Lukas Gudmundsson, Agnès Ducharne, David M. Lawrence, Jiafu Mao, Daniele Peano, Bertrand Decharme, Gerhard Krinner, Hyungjun Kim, and Sonia I. Seneviratne

Human-induced climate change poses potential impacts on the availability of water resources. Previous assessments of warming-induced changes in dryness, however, are influenced by short observational records and show conflicting results due to uncertainties in the response of evapotranspiration. In this study we use novel observation-based water availability reconstructions from data-driven and land surface models from 1902 to 2014; a period during which the Earth has warmed approximately 1°C relative to pre-industrial conditions. These reconstructions reveal consistent changes in average water availability of the driest month of the year during the last 30 years compared to the first half of the 20th century. We conduct a simple attribution approach based on a spatial correlation analysis between the reconstructions and different climate model simulations. Results indicate that the spatial pattern of changes is extremely likely influenced by human-induced greenhouse gas emissions as it is consistent with climate model estimates that include historical radiative forcing, whereas the pattern is not expected from natural climate variability given by climate simulations with greenhouse gas levels set to pre-industrial conditions. Changes in water availability are characterized by drier dry seasons predominantly in extratropical latitudes and including Europe, Western North America, Northern Asia, Southern South America, Australia, and Eastern Africa. Finally, we find that the intensification of the dry season is generally a consequence of increasing evapotranspiration rather than decreasing precipitation.

How to cite: Padrón, R. S., Gudmundsson, L., Ducharne, A., Lawrence, D. M., Mao, J., Peano, D., Decharme, B., Krinner, G., Kim, H., and Seneviratne, S. I.: Dry season water availability changes attributed to human-induced climate change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12658, https://doi.org/10.5194/egusphere-egu2020-12658, 2020.

EGU2020-963 | Displays | CL2.6

Analysis of Precipitation Patterns and Extremes in European Lowlands

Alexandra Berényi, Judit Bartholy, and Rita Pongrácz

It is well-known that climate change affects large scale weather patterns and local extremes all over the world as well as in Europe. These changes include the changes of precipitation occurences, amounts, and spatial patterns, which may require appropriate risk management actions. For this purpose, the first step is a thorough analysis of possible hazards associated to specific precipitation-related weather phenomena.

The primary goals of this study are (i) to examine the changes in precipitation patterns and extremes, and (ii) to explore the possible connections between changes in different lowlands across Europe. Precipitation time series are used from the E-OBS v.20 datasets on a 0.1° regular grid. Datasets are based on station measurements from Europe and are available from 1950 onward with daily temporal resolution. Altogether 14 plain regions are selected in this study to represent different parts within Europe. More specifically, five plain regions are parts of the East European Plain, two regions are located in the Scandinavian basin, five regions are located in Western Europe, and the Pannonian Plain (including mostly Hungary) is also selected. For choosing the plains and their spatial representations, objective criteria are used, namely, the elevation remains under 200 m throughout the defined area and difference between the neighbouring gridpoints within the plain region does not exceed 40 m. Daily precipitation times series are analyzed and compared for these plain regions using various statistical tools. The results represent annual and seasonal changes in average and extreme precipitation amount as well as in the frequency of precipitation occurences. Climate indices and the occurence of extreme weather conditions including wet and dry spells are also analyzed.

 

How to cite: Berényi, A., Bartholy, J., and Pongrácz, R.: Analysis of Precipitation Patterns and Extremes in European Lowlands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-963, https://doi.org/10.5194/egusphere-egu2020-963, 2020.

EGU2020-1024 | Displays | CL2.6

Decadal Variability of Precipitation Extremes over India

Shivanand Mandraha and Sujata Ray

The occurrence of extreme precipitation events is a severe concern to any nation due to its socio-economic impacts. In this study, spatiotemporal variability of precipitation extremes was analyzed over the Indian sub-continent using the quantile perturbation method (QPM). QPM is a non-parametric method that requires very few assumptions. The gridded data of precipitation with 0.5 × 0.5-degree resolution CRU (Climate Research Unit, University of East Anglia, UK) and 117 years (1901-2017) data set has been used. The result shows that the initial decade (1910s to 1940s) and the recent decade (1990s to 2000s) are the decades when significant anomalies found in most of India. The northeast part of India shows positive anomalies while the central region and northern region show negative anomalies in the 1910s. In the period of 1930-1940s central India shows positive anomalies, and the northern region shows negative anomalies. Significant positive anomalies found in the west part of southern India in the period of 1950-1960s. In the period of 1960-2000s, the northern region shows positive anomalies. Indo-Gangetic plain and central India have negative anomalies while the western part shows positive anomalies in the 2000s in most of the grid. To partially address the reason behind the perturbation correlation analysis has been applied between extreme precipitation anomaly and Indian Ocean Dipole. Results show a moderately negative correlation found in most of the eastern and north-eastern regions of India, while a positive correlation found in some northern and southern parts of India. Analysis suggests that Indian Ocean sea surface temperature might be the main driver for the decadal perturbations in precipitation extremes.

How to cite: Mandraha, S. and Ray, S.: Decadal Variability of Precipitation Extremes over India, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1024, https://doi.org/10.5194/egusphere-egu2020-1024, 2020.

EGU2020-1364 | Displays | CL2.6

Seasonal analysis of warm extreme events in Serbia from 1949 to 2017

Ivana Tosic, Suzana Putniković, and Milica Tošić

Worldwide studies revealed a general increase in frequency and severity of warm extreme temperature events. In this study, extreme temperature events including Heat waves (HWs) are examined. Extreme indices are calculated based on daily maximum temperature (Tx). The following definitions are employed: SU - number of days with Tx > 25 °C, umber of days with Tx > 90th percentile, and WSDI - number of days in intervals of at least six consecutive days for which Tx is higher than the calendar day 90th percentile. Daily values of air temperatures from 11 meteorological stations distributed across Serbia were used for the period 1949–2017.

Trends of extreme temperature events and their frequencies are examined. The period 1949–2017 are characterised by a warming of extreme temperature indices (SU, Tx90, HWs). It is found that maximum air temperatures increased at all stations, but statistically significant at 6 stations in winter, 4 stations in summer and two stations in spring. The average number of SU per station was between 63.1 in Novi Sad to 73.5 in Negotin during the summer season. Significant increase of SU is recorded in summer for 10 out of 11 stations. Positive trends of SU and Tx90 are observed for all stations and seasons, except in Novi Sad. The average number of Tx90 is about 9 for all stations in all seasons. The longest heat waves prevailed in 2012, but the most severe are recorded in 2007. Increasing of warm extreme events in Serbia are in agreement with studies for different regions of the world.

How to cite: Tosic, I., Putniković, S., and Tošić, M.: Seasonal analysis of warm extreme events in Serbia from 1949 to 2017, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1364, https://doi.org/10.5194/egusphere-egu2020-1364, 2020.

EGU2020-1703 | Displays | CL2.6

Stable Isotope Evidence for Recent Global Warming Hiatus

Rui Wang and Zhongfang Liu

Global mean surface air temperature (SAT) has remained relative stagnant since the late 1990s, a phenomenon known as global warming hiatus. Despite widespread concern and discussion, there is still an open question about whether this hiatus exists, partly due to the biases in observations. The stable isotopic composition of precipitation in mid- and high-latitude continents closely tracks change of the air temperature, providing an alternative to evaluate global warming hiatus. Here we use the long-term precipitation δ18O records available to investigate changes in SAT over the period 1970–2016. The results reveal slight decline in δ18O anomaly from 1998 to 2012, with a slope of -0.0004‰ decade-1 which is significantly different from that of pre-1998 interval. This downward δ18O anomaly trend suggests a slight cooling for about -0.001°C decade-1, corroborating the recent hiatus in global warming. Our work provides new evidence for recent global warming hiatus and highlights the potential of utilizing precipitation isotope for tracking climate changes.

How to cite: Wang, R. and Liu, Z.: Stable Isotope Evidence for Recent Global Warming Hiatus, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1703, https://doi.org/10.5194/egusphere-egu2020-1703, 2020.

EGU2020-3405 | Displays | CL2.6

Decadal changes in snow cover characteristics in Slovakia over the period 1921 – 2020

Pavel Fasko, Ladislav Markovič, Jozef Pecho, and Oliver Bochníček

Long-term changes in air temperature regime have significant consequences for the atmospheric precipitation regime in Slovakia. Moreover, the combination of air temperature increase, changes in annual precipitation regime, as well as increasing proportion of liquid and mixed precipitation on its annual total, have had a profound effect on the snow cover occurrence. In majority of territory of Slovakia, with the exception of high altitudes, the stability of snow cover incidence has decreased. In the last decade of the 20th century and in the first two decades of the 21st century, there was a significant increase in mean values of the air temperature characteristics in every individual decade over the period. Very clear decline of amount of snow cover in Slovakia was recorded especially in the second decade of the 21st century however significant regional differences of measurable long-term trends have been affected by very complex natural conditions of Slovakia. The paper we analyze selected snow cover characteristics, such as the sum of snow depths as well as the number of days with snow cover in the decadal time scale for the period 1921 – 2020. The analysis is performed using the time series of daily values of snow cover at selected weather stations in different regions of Slovakia.

How to cite: Fasko, P., Markovič, L., Pecho, J., and Bochníček, O.: Decadal changes in snow cover characteristics in Slovakia over the period 1921 – 2020, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3405, https://doi.org/10.5194/egusphere-egu2020-3405, 2020.

EGU2020-4065 | Displays | CL2.6

Assessment of the Running Slope Difference (RSD) t-Test, a new statistical method for detecting climate trend turning

Bin Zuo, Zhaolu Hou, Fei Zheng, Lifang Sheng, Yang Gao, and Jianping Li

Global mean surface air temperature (GMT) rose roughly 0.85 °C from 1880 to 2012 (IPCC 2013), attributing mainly to an increase in atmospheric greenhouse gases. For different decadal timescale periods in the past 100 years, the warming rate of different periods may significantly different. For example, IPCC AR1 (1990) point out that GMT between 1910-1940 and 1975-1990 are significantly warming, meanwhile GMT stay nearly constant between 1940 and early 1970. The phenomenon of two nearby periods showing significantly different trends is knowing as trend turning, this phenomenon is common in climate time series and crucial when climate change is investigated. However, the available detection methods for climate trend turnings are relatively few, especially for the methods which have the ability of detecting multiple trend turnings. We propose a new methodology named as the running slope difference (RSD) t-test to detect multiple trend turnings. This method employs a t-distributed statistic of slope difference to test the sub-series trends difference of the time series, thereby identify the turning-points. We compare the RSD t-test method with some other existing trend turning detection methods with an idealized time series case and several climate time series cases. And we also report the Monte Carlo simulation used to evaluate this method’s detection ability. Results show that the RSD t-test method is an effective tool for detecting trend turning in time series, and this method has three major advantages: ability to detect multiple turning-points, capacity to detect all three types of trend turning, and great performance of avoiding false alarm.

How to cite: Zuo, B., Hou, Z., Zheng, F., Sheng, L., Gao, Y., and Li, J.: Assessment of the Running Slope Difference (RSD) t-Test, a new statistical method for detecting climate trend turning, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4065, https://doi.org/10.5194/egusphere-egu2020-4065, 2020.

EGU2020-6704 | Displays | CL2.6 | Highlight

Changes in temperature and heat waves over Africa using observational and reanalysis datasets

Mastawesha Misganaw Engdaw, Gabriele C Hegerl, and Andrea K. Steiner

Aiming to provide comprehensive information for climate change at regional level, we assess temperature and heat waves and their spatiotemporal trend and time of emergence over different regions of the African continent.  We analyze observational data of Climate Research Unit Time Series version 4.03 (CRU TS) and the three state-of-the-art reanalysis datasets; European Center for Medium-Range Weather Forecasts Reanalysis 5 (ERA5), National Oceanic Atmospheric Administration’s Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) and the Japanese Meteorological Agency’s 55 years reanalysis (JRA-55). We assess changes in monthly mean temperature and the agreement between observations and reanalyses. Changes in heat waves are analyzed based on reanalysis datasets because of their high temporal resolution. Heat waves are defined using absolute and relative thresholds, the number of summer days, tropical nights, the percentage of days with maximum and mean temperature above the 90th percentile, the warm nights and the warm spell duration index.  The results show increasing trends in monthly mean temperature in all four regions of Africa with different rate of change. A statistically significant trends in heat waves is found in all the regions.  Years of highest heat wave occurrence are identified in 2010 for Northern and Western Africa and 2016 for Eastern and Southern Africa. Minimum-temperature based indices, tropical nights and warm nights, show the highest increase in decadal trends and earliest time of emergence, respectively.

Key words: climate change; temperature; heat waves; time of emergence; reanalysis; Africa

How to cite: Engdaw, M. M., Hegerl, G. C., and Steiner, A. K.: Changes in temperature and heat waves over Africa using observational and reanalysis datasets, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6704, https://doi.org/10.5194/egusphere-egu2020-6704, 2020.

EGU2020-10043 | Displays | CL2.6

Impact of parametric uncertainty on simulated climate extremes and attribution studies

Ben Timmermans, William Collins, Travis O'Brien, Dáithí Stone, and Mark Risser

The attribution of extreme weather events, such as heavy rainfall, to anthropogenic influence typically involves the analysis of their probability in simulations of climate, such as those conducted in the C20C+ Detection and Attribution Project. The climate models used however, such as the Community Atmosphere Model (CAM), employ approximate physics that gives rise to “parameter uncertainty”—uncertainty about the most accurate or optimal values of numerical parameters within the model. Parameterisations for convective processes, for example, are well known to be influential in the simulation of precipitation extremes.

In the context of extreme event attribution, we investigate the importance of components of parameterisations—through their associated tuning parameters—relating to deep and shallow convection, and cloud and aerosol microphysics in CAM. We present results from the analysis of a large perturbed physics ensemble experiment (~12,000 years of simulation, ~1 degree horizontal resolution) designed to explore extremes in both the observed world and pre-industrial conditions. Using surrogate models based upon Gaussian processes fitted marginally to both regional and grid cell output, we have computed sensitivity measures associated with the physics parameters, for precipitation and temperature extremes and their respective “risk ratios”.

Our results reveal the high geospatial variability in averages and extremes of output variables arising from physics perturbations, and how this contrasts with low variability in estimates of risk ratios based upon the same variables. We conclude that for CAM, variability induced by perturbed physics is typically consistent across warming scenarios, and unlikely to be a significant source of uncertainty in extreme event attribution studies. However, we caution that this may not be the case in regions where relevant parameterisations are strongly active.

How to cite: Timmermans, B., Collins, W., O'Brien, T., Stone, D., and Risser, M.: Impact of parametric uncertainty on simulated climate extremes and attribution studies, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10043, https://doi.org/10.5194/egusphere-egu2020-10043, 2020.

EGU2020-11025 | Displays | CL2.6 | Highlight

Increase in the frequency of heavy rainfall events over the UK in the light of climate change.

Daniel Cotterill, Peter Stott, and Elizabeth Kendon

We investigate the attribution of the flooding in Northern England that saw at least 500 homes flooded and over 1000 properties evacuated in flooded areas in 2019. This occurred during the wettest Autumn on record in some areas and also contained some very high daily rainfall totals. In the light of climate change, it is expected that intense rainfall events are to become more intense as a result of increased global average temperatures and the Clausius-Clapeyron relationship, but here we investigate quantitatively how much climate change has increased the risk of such an event to date.

We use results from the 2.2km convective permitting high resolution local UK Climate Projections (UKCP) and observations to show that more intense rainfall events may already be occurring in Autumn in the UK. This work shows using this high resolution UKCP data that a heavy rainfall event exceeding 50mm in one day in Autumn was 33-40% more likely to occur in 2019 than 1985. Further work that looks at the HadGEM3-A simulations shows that these heavy rainfall days are more likely to occur in a climate impacted by human activity than one with just natural climate forcings.

How to cite: Cotterill, D., Stott, P., and Kendon, E.: Increase in the frequency of heavy rainfall events over the UK in the light of climate change., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11025, https://doi.org/10.5194/egusphere-egu2020-11025, 2020.

EGU2020-17605 | Displays | CL2.6

No evidence for climate change in the unprecedented Summer 2018 flow over Europe

Carley Iles and Robert Vautard

The summer of 2018 was characterised by prolonged heatwaves over North-Eastern Europe, associated with persistent blocking over Scandinavia, and a jet stream that resided unusually far north on average over this sector. Whilst most event attribution studies tend to focus on the probability or intensity of extreme temperatures themselves, we instead examine whether anthropogenic climate change has affected the likelihood of the circulation pattern that lead to the 2018 hot summer. We examine trends and variability in jet latitude and blocking frequency over the Scandanavian sector in reanalyses, CMIP5 historical simulations, and in two large ensembles of HadGEM3-A simulations with and without anthropogenic forcing. Both the number of blocked days, and the average jet location for last summer were unprecedented in the observational record, and also very rare in climate model simulations. A number of the CMIP5 models examined were able to simulate realistic blocking frequency distributions. Last summer’s circulation did not appear to be part of any systematic increasing trends in blocking frequency or jet latitude in this sector. Instead, this circulation anomaly appears to be explained by a particularly large deviation of natural variability. We will then extend the analysis to examine the western European heatwaves of summer 2019 which were associated with a very different atmospheric circulation pattern –a high pressure ridge which transported warm air northwards from Northern Africa.

How to cite: Iles, C. and Vautard, R.: No evidence for climate change in the unprecedented Summer 2018 flow over Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17605, https://doi.org/10.5194/egusphere-egu2020-17605, 2020.

EGU2020-20734 | Displays | CL2.6 | Highlight

Towards multi-method and multi-scale attribution of global wildfire danger

Zhongwei Liu, Jonathan Eden, Bastien Dieppois, and Matthew Blackett

Wildfires constitute a major natural hazard and pose huge risk to many regions of the world. The series of large fires across both hemispheres in recent years have led to inevitable questions about how human-induced climate change may be altering the character of such events. Providing answers to these questions is a crucial step to increasing resilience to major wildfires.

Long-term projections produced by state-of-the-art climate models, even when reliable, are not always a suitable means of communicating risk. Methodologies to attribute trends in meteorological phenomena associated with high-impact events to anthropogenic influence have the potential to better communicate risk and guide adaptation strategies. While the link between a warming world and heat-related extremes (e.g. heatwaves and droughts) is reasonably well-understood, there is a lack of consensus on the most appropriate and effective methodological approach for many variables, potentially impacted by warming climate, such as wildfire attribution. The link with climate change remains poorly understood and wildfires have been largely ignored by attribution studies to date.

As a first step towards the development of a seamless, globally-applicable framework for assessing past, present and future risk in wildfire danger, we present a global attribution analysis of wildfire danger. With initial focus on observational records, we use both established and novel empirical-statistical methods to attribute historical trends in episodes of extreme weather and climate conducive to wildfire ignition and spread. Particular consideration is given to the sensitivity of attribution findings to the spatial scale upon which the analysis is conducted. We also draw attention to a series of important, often overlooked, conceptual and technical challenges in event attribution, including validation and bias-correction of climate models and discuss the value of linking attribution of recent wildfire events with future risk assessment.

How to cite: Liu, Z., Eden, J., Dieppois, B., and Blackett, M.: Towards multi-method and multi-scale attribution of global wildfire danger, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20734, https://doi.org/10.5194/egusphere-egu2020-20734, 2020.

EGU2020-20015 | Displays | CL2.6 | Highlight

Attributing coastal flood damages to sea level rise for recent flood events

Simon Treu, Matthias Mengel, and Katja Frieler

Sea level rise increases extreme water levels and thus the flood losses from storm surge events. While it is still difficult to estimate the influence of climate change on single storms, the influence of anthropogenic climate change on sea level rise is evident. We here aim to quantify the fraction of damages caused by sea level rise for a set of flood events of the last decade. Flood-extents and the spatial distribution of damages are reconstructed from openly available data-sources. We construct counterfactual flood extents for each event by a counterfactual sea level as it would have been in a world without climate change. As we are particularly interested in losses in poorer countries that often lack high resolution data such as LiDAR based elevation maps or tide-gauge records, our methodology is transferable between regions, building on global and open data. Depending on the study site, we detect a difference between observed and counterfactual damages though uncertainties remain high. Data availability and data detail remain a major restriction.

How to cite: Treu, S., Mengel, M., and Frieler, K.: Attributing coastal flood damages to sea level rise for recent flood events, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20015, https://doi.org/10.5194/egusphere-egu2020-20015, 2020.

EGU2020-19791 | Displays | CL2.6

PBL climatology using IGRA radiosounding data in Mediterranean Basin

Donato Summa, Fabio Madonna, Emanuele Tramutola, Fabrizio Marra, Benedetto De Rosa, and Paolo Di Girolamo

The planetary boundary layer height (PBL) is a critical variable in many applications such as NWP, air quality and climate models. The study of the PBL involves several process and parameters: exchange of momentum, heat, water vapour and tracers from the surface to the free atmosphere therefore,  PBL representation in numerical  models is difficult to achieve and observation are used to improve the quality of the implemented parameterizations.

This presentation will illustrate a climatology of the height of the PBL and its trend since 1978 to present at different in the Mediterranean Basin.

The height of the PBL is calculated using the maximum vertical gradient of potential temperature  (θ) obtained from radio Station belonging to the IGRA (Integrated Global Radiosonde) archive related in the Europe Region) and to GRUAN network (GCOS Reference Upper Air Network).  

The IGRA consists of quality-controlled radiosonde observations of temperature, humidity, and wind at stations across all continents. The earliest year of data is 1905, and the data are updated on a daily basis. Record length, vertical extent and resolution, and availability of variables varies among stations and over time. The GRUAN is an international reference observing network of sites measuring essential climate variables above Earth's surface, designed to fill an important gap in the current global observing system. GRUAN measurements are providing long-term, high-quality climate data records from the surface, through the troposphere, and into the stratosphere. 

An estimate of uncertainty will be also discussed and correlated with the recent climate changes at the global scale and in the Mediterranean Basin.

How to cite: Summa, D., Madonna, F., Tramutola, E., Marra, F., De Rosa, B., and Di Girolamo, P.: PBL climatology using IGRA radiosounding data in Mediterranean Basin , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19791, https://doi.org/10.5194/egusphere-egu2020-19791, 2020.

Decadal variation of spring (February–April) rainfall in Northern Taiwan and Southern China was significantly related to the Pacific Decadal Oscillation (PDO) during the twentieth century. However, this interdecadal relationship subsequently weakened, and the sea surface temperature (SST) associated with the central Pacific El Niño (CPEN) has determined the interdecadal variation of spring rainfall in Northern Taiwan and Southern China since the 1980s. In this study, the effect of CPEN-SST on the interdecadal variation of spring rainfall in Northern Taiwan and Southern China was investigated. We found that a CPEN-associated positive SST anomaly in the eastern North Pacific forced an east–west overturning circulation anomaly in the subtropical North Pacific, the descending motion of which may have generated an anticyclonic circulation anomaly in the Philippine Sea. Simultaneously, the anticyclone associated southerly winds anomaly may enhance the southwesterly in northwest of the anticyclone, which in term enhance the trough extending from Japan to Northern Taiwan. The anticyclone and trough associated with the respective southwesterly and northeasterly anomalies created a convergence environment in Northern Taiwan. In turn, this convergence environment contributed substantially to an interdecadal rainfall enhancement in Northern Taiwan and Southern China. Our results suggest that the effect of CPEN-SST on the interdecadal variation of spring rainfall in Northern Taiwan and Southern China has increased since 1980, especially during the transition period from the termination of a warm PDO phase to a cold phase in the late 1990s

How to cite: Kao, P., Hong, C.-C., and Hung, C.: Increasing Influence of Central Pacific El Niño on the Interdecadal Variation of Spring Rainfall in Northern Taiwan and Southern China Since 1980, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4565, https://doi.org/10.5194/egusphere-egu2020-4565, 2020.

EGU2020-7798 | Displays | CL2.6

Sensitivity of trends to estimation methods and quantification of subsampling effects in global radiosounding temperature and humidity time series

Souleymane Sy, Fabio Madonna, Emanuele Tramutola, Marco Rosoldi, Monica Proto, and Gelsomina Pappalardo

Inaccurate climate trend detections may lead to incorrect conclusions about the current state and future evolution of the climate. Trend estimation based on the use of radiosonde historical time series may be significantly affected by the choice of the estimation method. In addition, the dataset subsampling both in time (due to gaps in the data records) and in space (due to need of selecting the most reliable subset of stations for each specific application) can further increase the trend uncertainty. 

Uncertainties of trend estimations have been quantified in few past investigations, considering the difference between pairs of regression methods, although limited to datasets affected by several inhomogeneities and characterized by smaller trend rates than those observed over the last two decades.

This work, carried out in the frame of the Copernicus Climate Change Service (C3S), aims to examine the sensitivity of trend estimations to linear estimation methods and to subsampling effects. The analysis is carried out using about 600 historical radiosounding time series for the period 1978-2018 available within version 2 of the Integrated Global Radiosonde Archive (IGRA).

The sensitivity of linear trends to the choice regression methods and the subsampling effects have been quantified through the comparison of four regression methods (parametric and non-parametric). The uncertainties introduced by missing data in each time series has been also quantified using a new approach, selecting different samples of stations with different amounts of missing monthly data equivalent to 0, 5, 10 and 20 years from 1978 to present. Instead, the spatial subsampling effects are quantified artificially reducing the size of the IGRA stations.

The presented work will shortly discuss results obtained for temperature and relative humidity for both night and day times  (at 0000 and 1200 UTC, respectively) at different pressure levels and latitudes.

How to cite: Sy, S., Madonna, F., Tramutola, E., Rosoldi, M., Proto, M., and Pappalardo, G.: Sensitivity of trends to estimation methods and quantification of subsampling effects in global radiosounding temperature and humidity time series, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7798, https://doi.org/10.5194/egusphere-egu2020-7798, 2020.

EGU2020-16407 | Displays | CL2.6

Simulation of the observed climate extremes trends during 1901–2010 with INMCM5

Maria Tarasevich and Evgeny Volodin

Extreme climate and weather events have a great influence on society and natural systems. That’s why it is important to be able to precisely simulate these events with the climate models. To asses the quality of such simulations 27 climate extremes indices were defined by ETCCDI. In the present work these indices are calculated for the 1901–2010 in order to estimate their trends.
Climate extremes trends are studied on the basis of ten historical runs with the up-to-date INM RAS climate model (INMCM5) under the scenario proposed for the Coupled Model Intercomparison Project Phase 6 (CMIP6). Developed by ECMWF ERA-20C and CERA-20C reanalyses are taken as observational data.
Trends obtained from the reanalysis data are compared with the simulation results of the INMCM5. The comparison shows that the simulated land-averaged climate extremes trends are in good agreement with the reanalysis data, but their spatial distributions differ significantly even between the reanalyses themselves.

How to cite: Tarasevich, M. and Volodin, E.: Simulation of the observed climate extremes trends during 1901–2010 with INMCM5, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16407, https://doi.org/10.5194/egusphere-egu2020-16407, 2020.

EGU2020-19340 | Displays | CL2.6

Boosting climate change research with direct access to high performance computers

Maria Moreno de Castro, Stephan Kindermann, Sandro Fiore, Paola Nassisi, Guillaume Levavasseur, Martin Juckes, Ag Stephens, Karsten Peters, Sophie Morellon, and Sylvie Joussaume

Earth System observational and model data volumes are constantly increasing and it can be challenging to discover, download, and analyze data if scientists do not have the required computing and storage resources at hand. This is especially the case for detection and attribution studies in the field of climate change research since we need to perform multi-source and cross-disciplinary comparisons for datasets of high-spatial and large temporal coverage. Researchers and end-users are therefore looking for access to cloud solutions and high performance compute facilities. The Earth System Grid Federation (ESGF, https://esgf.llnl.gov/) maintains a global system of federated data centers that allow access to the largest archive of model climate data world-wide. ESGF portals provide free access to the output of the data contributing to the next assessment report of the Intergovernmental Panel on Climate Change through the Coupled Model Intercomparison Project. In order to support users to directly access to high performance computing facilities to perform analyses such as detection and attribution of climate change and its impacts, the EU Commission funded a new service within the infrastructure of the European Network for Earth System Modelling (ENES, https://portal.enes.org/data/data-metadata-service/analysis-platforms). This new service is designed to reduce data transfer issues, speed up the computational analysis, provide storage, and ensure the resources access and maintenance. Furthermore, the service is free of charge, only requires a lightweight application. We will present a demo on how flexible it is to calculate climate indices from different ESGF datasets covering a wide range of temporal and spatial scales using cdo (Climate Data Operators, https://code.mpimet.mpg.de/projects/cdo/) and Jupyter notebooks running directly on the ENES partners: the DKRZ (Germany), JASMIN (UK), CMCC(Italy), and IPSL (France) high performance computing centers.

How to cite: Moreno de Castro, M., Kindermann, S., Fiore, S., Nassisi, P., Levavasseur, G., Juckes, M., Stephens, A., Peters, K., Morellon, S., and Joussaume, S.: Boosting climate change research with direct access to high performance computers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19340, https://doi.org/10.5194/egusphere-egu2020-19340, 2020.

CL2.8 – Evaluating and improving precipitation in climate models

EGU2020-7708 | Displays | CL2.8

High sensitivity of seasonal tropical precipitation to local sea-surface temperature

Robin Chadwick, Peter Good, Christopher Holloway, John Kennedy, Jason Lowe, Romain Roehrig, and Stephanie Rushley

Seasonal mean tropical precipitation at any location is controlled by a tangle of local and remote effects, including influences from SSTs across the globe. This, along with uncertainty in precipitation observations, and extremely limited observations of atmospheric circulation, makes understanding the relevant physics challenging. Climate model precipitation biases persisting across multiple generations of models point towards stubborn gaps in understanding and reduce confidence in seasonal forecasts and climate projections.  This includes the 'double ITCZ problem': excessive rainfall in the southern tropical Pacific, first reported in 1995.  Model ITCZs also tend to be too wide.

Our study shows that in the real world, the sensitivity of tropical precipitation to local sea surface temperature is high, associated with strong shallow circulations.  This rests on a novel analysis of observations, unpicking local and remote controls on precipitation, and navigating a path through observational uncertainty.  Models with appropriate sensitivity to local sea surface temperature, perform well across many conditions.  Improvements in this sensitivity from the fifth to the sixth model intercomparison project are small, highlighting the need for new understanding.  By further linking model biases to shallow convection, our results highlight a target process for focused research: accelerating improvements in seasonal forecasts through to multi-decadal climate projections.

Wider Met Office work linking precipitation evaluation between climate, seasonal and weather timescales will also be summarised.

How to cite: Chadwick, R., Good, P., Holloway, C., Kennedy, J., Lowe, J., Roehrig, R., and Rushley, S.: High sensitivity of seasonal tropical precipitation to local sea-surface temperature, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7708, https://doi.org/10.5194/egusphere-egu2020-7708, 2020.

EGU2020-3579 | Displays | CL2.8 | Highlight

Did tropical precipitation improve in CMIP6 simulations?

Stephanie Fiedler, Traute Crueger, Roberta D’Agostino, Karsten Peters, Tobias Becker, David Leutwyler, and Laura Paccini and the project team

Climate models are known to have biases in tropical precipitation. We assessed to what extent simulations of tropical precipitation have improved in the new Coupled Model Intercomparison Project (CMIP) phase six, using state-of-the-art observational products and model results from the earlier CMIP phases three and five. We characterize tropical precipitation with different well-established metrics. Our assessment includes (1) general aspects of the mean climatology like precipitation associated with the Intertropical Convergence Zone and shallow cloud regimes in the tropics, (2) solar radiative effects including the summer monsoons and the time of occurrence of tropical precipitation in the course of the day, (3) modes of internal variability such as the Madden-Julian Oscillation and the El Niño Southern Oscillation, and (4) changes in the course of the 20th century. The results point to improvements of CMIP6 models for some metrics, e.g., the occurrence of drizzle events and consecutive dry days. However, no improvements of CMIP6 models are identified for other aspects of tropical precipitation. These include the area and intensity of the global summer monsoon as well as the diurnal cycle of the tropical precipitation amount, frequency and intensity.

All our metrics taken together, CMIP6 models show no systematic improvement of tropical precipitation across different temporal and spatial scales. The model biases in the spatial distribution of tropical precipitation are typically larger than the changes associated with anthropogenic warming. Given the pace of climate change as compared to the pace of climate model improvements, we suggest to use novel modeling approaches to understand the responseof tropical precipitation to changes in atmospheric composition.

How to cite: Fiedler, S., Crueger, T., D’Agostino, R., Peters, K., Becker, T., Leutwyler, D., and Paccini, L. and the project team: Did tropical precipitation improve in CMIP6 simulations?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3579, https://doi.org/10.5194/egusphere-egu2020-3579, 2020.

In order to understand the mechanisms determining precipitation variability and to evaluate model skill in simulating those mechanisms, it is important to partition the precipitation field into regimes that include distinct sets of processes. In the past, dynamic fields like omega and SLP have been used to define regimes and study cloud, radiation, and precipitation variability. More recently, cloud-defined weather states were derived and used for similar analyses. Here, we apply a new cloud-defined Weather State dataset derived from the higher-resolution ISCCP-H data to examine precipitation variability at global scales and evaluate CMIP6 model precipitation simulations . In addition, precipitation partitioning using mid-tropospheric vertical velocity is performed, and the differences between the results of the two compositing methodologies are discussed.

How to cite: Tselioudis, G. and Remillard, J.: Evaluation of CMIP6 Model Precipitation Variability Through Compositing in Cloud-defined Weather States, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19865, https://doi.org/10.5194/egusphere-egu2020-19865, 2020.

Precipitation is a highly complex, multiscale entity in the global weather and climate system. It is affected by both global and local circulations over a wide range of time scales from hours to weeks and beyond. It is also an important measure of the water and energy cycle in climate models. To better understand the physical processes controlling precipitation in climate models, we need to evaluate precipitation not only in in terms of its global climatological distribution but also multiscale variability in time and space.

This study presents a new set of metrics to quantify characteristics of global precipitation using 20-years the TRMM-GPM Multisatellite Precipitation Analysis (TMPA) data from June 1998 to May 2018 over the global tropics-midlatitudes (50°S – 50°N) with 3-hourly and 0.25-degree resolutions.  We developed a method to identify large-scale precipitation objects (LPOs) using a temporal-spatial filter and then track the LPOs in time, namely the Large-scale Precipitation Tracking systems (LPTs) as described in Kerns and Chen (2016, 2020, JGR-Atmos). The most unique feature of this method is that it can distinguish large-scale precipitation organized by, for example, monsoons and the Madden-Julian Oscillation (MJO), from that of mesoscale and synoptic scale weather systems, as well as those relatively stationary local topographically and diurnally forced precipitation. The new precipitation metrics based on the satellite observation are used to evaluate climate models.  Early results show that most models overproduce precipitation over land in non-LPTs and underestimate large-scale precipitation (LPTs) over the oceans compared with the observations. For example, the MJO contributes up to 40-50% of the observed annual precipitation over the Indio-Pacific warm pool region, which are usually much less in the models because of models’ inability to represent the MJO dynamics. Furthermore, the spatial variability of precipitation associated with ENSO is more pronounced in the observations than models.

How to cite: Chen, S. and Kerns, B.: New Metrics to Quantify Spatial and Temporal Characteristics of Precipitation Using 20-years TRMM-GPM Data for Evaluating Climate Models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21363, https://doi.org/10.5194/egusphere-egu2020-21363, 2020.

EGU2020-7846 | Displays | CL2.8

Comparing the diurnal cycle of precipitation in models and observations at different spatial scales over China

Mark Muetzelfeldt, Reinhard Schiemann, Andrew Turner, Nicholas Klingaman, and Pier Luigi Vidale

Climate models have a long-standing bias in the diurnal cycle of precipitation over land - they produce peak rainfall at local midday, when insolation is at its maximum. As part of the COnvective Scale Modelling In China (COSMIC) project, we investigate this bias over China using high-resolution (13 km) global simulations with the HadGEM3 model. We compare the diurnal cycle of summer precipitation with satellite observations of precipitation from CMORPH. The simulations are run with and without a convection parametrization scheme, as this scheme has been shown to be important for controlling the timing of precipitation. We analyse the amount, frequency and intensity of the precipitation, investigating their diurnal cycle and spatial distribution.

The analysis is performed on a grid-point scale, as well as at larger scales based on the catchment basins across the region. Catchment basins provide a natural way of linking the meteorological precipitation data to the underlying physical geography of the region, in a way which is useful for decision makers and could be used to provide information to hydrological models in the future. We present a simple Python tool for performing the analysis: BAsin-Scale Model Assessment ToolkIt (BASMATI).

In line with previous studies, we find that the simulation performed with parametrized convection produces precipitation over land which peaks too early in the day. The simulation performed with explicit convection generally produces peaks in precipitation which occur later in the day - closer in time to the observed peak. By comparing our results with published work, we find that the presence or absence of a convection parametrization scheme is more important for determining the spatial distribution of the time of peak precipitation than the resolution of the simulations. We present comparisons of precipitation in the simulations and observations performed at grid points and over catchment basins using BASMATI. The catchment basins are chosen based on their size, which allows for the comparison to be done as a function of spatial scale.

How to cite: Muetzelfeldt, M., Schiemann, R., Turner, A., Klingaman, N., and Vidale, P. L.: Comparing the diurnal cycle of precipitation in models and observations at different spatial scales over China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7846, https://doi.org/10.5194/egusphere-egu2020-7846, 2020.

EGU2020-3782 | Displays | CL2.8 | Highlight

Evaluation and projection of long period return values of extreme daily precipitation in the CMIP5 and CMIP6 models

Michael Wehner, Peter gleckler, and Jiwoo Lee

Using a non-stationary Generalized Extreme Value statistical method, we calculate selected extreme daily precipitation indices and their 20 year return values from the CMIP5 and CMIP6 climate models over the historical and future periods. We evaluate model performance of these indices and their return values in replicating similar quantities calculated from multiple gridded observational products. Difficulties in interpreting model quality in the context of observational uncertainties are discussed. Projections are framed in terms of specified global warming target temperatures rather than at specific times and under specific emissions scenarios. The change in framing shifts projection uncertainty due to differences in model climate sensitivity from the values of the projections to the timing of the global warming target. At their standard resolutions, we find there are no meaningful differences between the two generations of models in their quality or projections of simulated extreme daily precipitation.

How to cite: Wehner, M., gleckler, P., and Lee, J.: Evaluation and projection of long period return values of extreme daily precipitation in the CMIP5 and CMIP6 models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3782, https://doi.org/10.5194/egusphere-egu2020-3782, 2020.

EGU2020-20501 | Displays | CL2.8

A Quality-Controlled Global Sub-daily Precipitation Dataset and Sub-daily Precipitation Indices

Hayley Fowler, Liz Lewis, Stephen Blenkinsop, David Pritchard, Selma Guerreiro, Roberto Villalobos Herrera, and Andreas Becker

Extremes of precipitation can cause flooding and droughts which can lead to substantial damages to infrastructure and ecosystems and can result in loss of life. It is still uncertain how hydrological extremes will change with global warming as we do not fully understand the processes that cause extreme precipitation under current climate variability. Progress has been limited so far in this area due to the lack of data available to researchers. The INTENSE project, part of the with the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes', has used a novel and fully-integrated data-modelling approach to provide a step-change in our understanding of the nature and drivers of global sub-daily precipitation extremes and change on societally relevant timescales.

The first step towards achieving this was to construct a new global sub-daily precipitation dataset. The dataset contains hourly rainfall data from ~25,000 gauges across >200 territories from a wide range of sources. A rigorous, flexible quality-control algorithm has been developed to ensure that the data collected is as accurate as possible. The QC methodology combines a number of checks against neighbouring gauges, known biases and errors, and thresholds based on the Expert Team on Climate Change Detection and Indices (ETCCDI) Climate Change Indices.  An open source version of the QC software will set a new standard for verifying sub-daily precipitation data.

A set of global sub-daily precipitation indices have also been produced (and will be made freely available later this year) based upon stakeholder recommendations including indices that describe maximum rainfall totals and timing, the intensity, duration and frequency of storms, frequency of storms above specific thresholds and information about the diurnal cycle. The talk will discuss the major findings from the production of these new global sub-daily precipitation indices.

How to cite: Fowler, H., Lewis, L., Blenkinsop, S., Pritchard, D., Guerreiro, S., Villalobos Herrera, R., and Becker, A.: A Quality-Controlled Global Sub-daily Precipitation Dataset and Sub-daily Precipitation Indices, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20501, https://doi.org/10.5194/egusphere-egu2020-20501, 2020.

EGU2020-9371 | Displays | CL2.8

Evaluation of frontal precipitation in CMIP6 models

Jennifer Catto and Matthew Priestley

Process-based evaluation of precipitation is key to understanding climate model biases. It is vital to ensure that precipitation is produced in the model due to the correct mechanisms (or weather system). Atmospheric fronts have been shown to be responsible for a large proportion of total and extreme precipitation in the mid-latitudes. Therefore, representation of precipitation associated with fronts in climate models needs to be tested.

We applied objective front identification to the historical simulations from the CMIP6 archive and linked them with their 6-hourly precipitation accumulations. We compared the model outputs to the results from observationally constrained datasets. The fronts were identified from ERA5 and linked to precipitation estimates from sources including ERA5, and satellite products. This allows the precipitation errors to be decomposed into components associated with the frequency and intensity of frontal and non-frontal precipitation.

The diagnostics from the analysis have been made into metrics which could be used to evaluate model performance and aid in focussing future model development.

How to cite: Catto, J. and Priestley, M.: Evaluation of frontal precipitation in CMIP6 models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9371, https://doi.org/10.5194/egusphere-egu2020-9371, 2020.

EGU2020-330 | Displays | CL2.8

Evaluation of the regional climate model RegCM4.7 over the Carpathian region for very wet and average years

Tímea Kalmár, Ildikó Pieczka, and Rita Pongrácz

Precipitation is one of the most important climate variables in many aspects due to its key impact on agriculture, water management, etc. However, it remains a challenge for climate models to realistically simulate the regional patterns, temporal variations, and intensity of precipitation. The difficulty arises from the complexity of precipitation processes within the atmosphere stemming from cloud microphysics, cumulus convection, large-scale circulations, planetary boundary layer (PBL) processes, and many others. This is especially true for heterogeneous surfaces with complex orography such as the Carpathian region.  Thus, the Carpathian Basin, with its surrounding mountains, requires higher model resolution, along with different parameterizations, compared to more homogenous regions. The aim of the study is to reproduce the historical precipitation pattern through testing the parameterization of surface processes. The appropriate representations of land surface component in climate models are essential for the simulation of surface and subsurface runoff, soil moisture, and evapotranspiration. Furthermore, PBL strongly influences temperature, moisture, and wind through the turbulent transfer of air mass. The current study focuses on the newest model version of RegCM (RegCM4.7), with which we carry out simulations using different parameterization schemes over the Carpathian region. We investigate the effects of land-surface schemes (i.e. BATS - Biosphere-Atmosphere Transfer Scheme and CLM4.5 - Community Land Model version 4.5) in the regional climate model. Studies over different regions have shown that CLM offers improvements in terms of land–atmosphere exchanges of moisture and energy and associated surface climate feedbacks compared with BATS. Our aim includes evaluating whether this is the case for the Carpathian region.

Four 1-year-long experiments both for 1981 and 2010 (excluding the spin-up time) are completed using the same domain, initial and lateral atmospheric boundary data conditions (i.e. ERA-Interim), with a 10 km spatial resolution. These years were chosen because 1981 was a normal year in terms of precipitation, while 2010 was the wettest year in Hungary from the beginning of the 20th century. We carry out a detailed analysis of RegCM outputs focusing not only on standard climatological variables (precipitation and temperature), but also on additional meteorological variables, which have important roles in the water cycle (e.g. soil moisture, evapotranspiration). The simulations are compared with the CARPATCLIM observed, homogenised, gridded dataset and other databases (ESA CCI Soil Moisture Product New Version Release (v04.5) and Surface Solar Radiation Data Set - Heliosat (SARAH)). It is found that the simulated near-surface temperature and precipitation are better represented in the CLM scheme than in the BATS when compared with observations, both over the lowland and mountainous area. The model simulations also show that the precipitation is overestimated more over mountainous area in 2010 than in 1981.  

How to cite: Kalmár, T., Pieczka, I., and Pongrácz, R.: Evaluation of the regional climate model RegCM4.7 over the Carpathian region for very wet and average years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-330, https://doi.org/10.5194/egusphere-egu2020-330, 2020.

EGU2020-11114 | Displays | CL2.8

How well does climate model perform for southern Brazil?

Maria Fernanda R. Pereima, Pablo B. Amorim, Tassia M. Brighenti, Regina R. Rodrigues, and Pedro Luiz B. Chaffe

Southern Brazil is in a transitional zone between tropical and extratropical climates. The rainfall regime in such transitional zones can be rather sensitive to climate change and related expansion of the tropics in the Southern Hemisphere. It is expected that rainfall will increase up to 30% over this area in the next decades. It is important, however, to investigate if the mechanisms that generate rainfall are simulated correctly in the models to know when downscaling and bias correction methods should be applied. The objective of this study is to evaluate the performance of the CMIP5 climate models in terms of precipitation in southern Brazil. This study addresses fundamental aspects of model evaluation and aims to give guidance on the proper use of climate model outputs for southern Brazil. We use 41 historical climate simulations and 22 RCP8.5 future climate simulations for the periods of 1980-2005 and 2070-2100, respectively. We compare the historical simulations with an interpolated product database obtained from ground stations. To evaluate the model performance regarding its marginal distribution, we use the following metrics: annual rainfall, variance, skewness, dry day fraction, wet day fraction, high percentiles and similarity of distributions (trough Kolmogorov-Smirnov test). There is a negative bias in all of them except for wet day fraction. All metrics of temporal aspects such as Markham’s seasonality index, autocorrelation, time of the annual maxima, dry spell average and maximum lengths, wet spell average and maximum lengths show a positive bias, apart from the time of annual maxima. Overall, annual rainfall is expected to increase in southern Brazil. Spatial patterns of annual rainfall are similar in the RCP 8.5 future pathways to the ones found in the historical period, with wetter areas expanding toward the north. However, the spatial pattern of observed rainfall is not captured by climate models. They simulate smaller volumes of precipitation in the southern border. A similar pattern was found in extreme precipitation, with bias almost twice as large than the one found in annual rainfall. Furthermore, the models do not properly represent the seasonal cycle, the Markham’s seasonality index reached four times the observed in some areas. Given the poor performance in the area, the use of future simulations in impact studies should be done carefully once the direct use of climate model precipitation in hydrological studies could result in misleading conclusions.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001

How to cite: Pereima, M. F. R., Amorim, P. B., Brighenti, T. M., Rodrigues, R. R., and Chaffe, P. L. B.: How well does climate model perform for southern Brazil? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11114, https://doi.org/10.5194/egusphere-egu2020-11114, 2020.

EGU2020-1177 | Displays | CL2.8

Precipitation biases over southern Africa: examining the role of the Angola Low.

Maria Chara Karypidou and Eleni Katragkou

One of the main features controlling precipitation over southern Africa during the wet season is the Angola Low (AL) pressure system that appears as a heat low during October and November and as a tropical low during the climatological mean of December, January and February. The literature provides evidence that wet biases over southern Africa in the Coupled Model Intercomparison Project Phase 5 ensemble (CMIP5) are associated with a strongly simulated AL. In the current work, we examine the degree to which this observation holds for the CORDEX-Africa (Coordinated Regional Climate Downscaling Experiment - Africa) ensemble, using evaluation experiments forced with ERA-Interim at a spatial resolution of 0.44o. The analysis is performed using daily values for months October to March for the period 1990-2008. We characterize the precipitation bias over southern Africa using 10 satellite and gridded precipitation products. For the identification of the AL we use potential temperature at 850 hPa, specific humidity at 850 hPa and relative vorticity at 850 and 500 hPa. Our results highlight the fact that process-based evaluation of climate simulations are key in understanding structural model deficiencies. 

How to cite: Karypidou, M. C. and Katragkou, E.: Precipitation biases over southern Africa: examining the role of the Angola Low., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1177, https://doi.org/10.5194/egusphere-egu2020-1177, 2020.

EGU2020-2401 | Displays | CL2.8

Contrasting the role of regional and remote circulation in driving the Asian monsoon in HadGEM3-GA7

Zhen Liu, Massimo A. Bollasina, Laura J. Wilcox, José M. Rodríguez, and Leighton A. Regayre

Monsoon biases are long-standing and an important problem to solve because nearly half of the world’s population is affected by monsoon precipitation and circulation. The effect of local and remote circulation biases on Asian monsoon biases is studied with dynamical nudging using the latest version of the atmospheric component of the HadGEM3 model. Constraining the large-scale circulation substantially reduces oceanic biases in precipitation and circulation, particularly over the extra-tropics. Tropical wet biases may become even stronger because of unconstrained convection. By contrast, model biases over land are less sensitive to nudging due to the prominent role of local planetary boundary layer processes in modulating the low-level circulation. Nudging reduces the seasonal excess (deficit) precipitation over India in winter (summer) by reducing the local cyclonic (anti-cyclonic) biases. Constraining the circulation outside Asia demonstrates that the wet (dry) biases are mostly remotely (locally) controlled in winter (summer) over India. The monsoon biases over China show small changes with nudging, suggesting they are more thermodynamically driven. Monsoon variability is improved over India but not over China in nudged simulations. Despite the remaining errors in nudged simulations, our study suggests that nudging serves as a useful tool to disentangle the contribution of regional and remote circulation in generating the monsoon responses.

How to cite: Liu, Z., Bollasina, M. A., Wilcox, L. J., Rodríguez, J. M., and Regayre, L. A.: Contrasting the role of regional and remote circulation in driving the Asian monsoon in HadGEM3-GA7 , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2401, https://doi.org/10.5194/egusphere-egu2020-2401, 2020.

EGU2020-4942 | Displays | CL2.8

Investigating the factors affecting Monsoon precipitation under climate change

Harry Mutton, Mat Collins, Hugo Lambert, and Rob Chadwick

The Monsoons produce some of the largest levels of uncertainty in projected precipitation change across the globe, and addressing this uncertainty is a key issue that must be faced in order to allow correct adaptation policy to be put in place.

 

A set of CMIP6 GCM experiments, that allow the full effect of CO2 forcing to be decomposed into individual components, highlight the leading factors that produce changes in monsoon precipitation. The results reveal a high spatial variability in these factors, with changes in the Indian Monsoon dominated by the effect of sea surface temperatures and the direct radiative effect of increased CO2, and changes in the South American Monsoon governed by the plant physiological effect and the direct radiative effect of increased CO2. The processes behind these precipitation changes are also investigated by looking at variations in atmospheric circulation and surface temperature. Results of the patterned sea surface temperature experiment demonstrate a slow-down of the Indian Monsoon circulation possibly driven by an anomalously warm Indian Ocean.

 

This analysis has been performed for all land monsoon regions, decomposing the full CO2 forcing into; uniform and patterned sea surface temperature change, the plant physiological effect, the direct radiative effect and the impact of sea-ice melt. These results can help identify emergent constraints, as well as indicate which aspects of climate models need to be improved in order to reduce model uncertainty.

How to cite: Mutton, H., Collins, M., Lambert, H., and Chadwick, R.: Investigating the factors affecting Monsoon precipitation under climate change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4942, https://doi.org/10.5194/egusphere-egu2020-4942, 2020.

EGU2020-15523 | Displays | CL2.8

ESM-projected global change in indices of extreme precipitation using the TR3S method of bias-correction

Martin Gomez-Garcia, Akiko Matsumura, and Daikichi Ogawada

The post-processing of the Earth System Models (ESMs) outputs has become a routine step that is taken in climate change impact assessments with the aim of (i) reproducing the probability distribution of the corresponding observed data and (ii) correcting the biases in the probability distributions of projected future climate. To responsibly support the decision‐making processes, the climate‐modeling community has been discussing about the conceptual requirements that bias‐correction methods should fulfill to avoid altering the relevant information that is provided by ESMs, like the climate trends or the inter-variable physical dependence structure. Bearing in mind these discussions, a recently proposed method of bias-correction, based on TRend-preserving Synthetic Samples of Stable Distributions (TR3S), decomposes the atmospheric variables into three temporal elements that represent the climate mean state, the interannual variability, and the daily variability. This decomposition is aimed at correcting the biases at one time scale without affecting the projected climate trend or the distributional properties at other time scales. The novelty of this approach is, nevertheless, marked by the adjustment of interannual and daily variability that is made by replacing the ESM‐simulated variability with synthetic samples drawn from Stable Distributions (SDs) that were previously fitted to the observed variability. The replacement prevents the transfer of the sampling variability of the calibration period while giving the corrected data the distributional properties of the observed climate. The employment of SDs was motivated by the fact that the ESM-projected changes in the scale, the symmetry, and the frequency of extremes can be measured and applied to the SDs of the observed data. In this work, we correct the biases in the global precipitation datasets generated by several ESMs using the TR3S method and present the projected changes of a few indices of extremes using online interactive maps. Furthermore, the TR3S method allowed us to document the spatial distribution of the biases in the distributional properties (i.e., scale, symmetry, and frequency of extremes) of daily and interannual variability of each ESM. We hope that the bias-corrected information can be useful to end-users in impact assessments and the analytical framework of model biases can be used by modelers to identify ways in which the ESM parameterizations could be improved.

How to cite: Gomez-Garcia, M., Matsumura, A., and Ogawada, D.: ESM-projected global change in indices of extreme precipitation using the TR3S method of bias-correction, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15523, https://doi.org/10.5194/egusphere-egu2020-15523, 2020.

Changes in extreme precipitation are amongst the most impactful consequences of global warming, with potential effects ranging from increased flood risk and landslides to crop failures and impacts on ecosystems. Thus, understanding historical and future changes in extreme precipitation is not only important from a scientific perspective, but also has direct societal relevance.

However, while most current research has focused on annual precipitation extremes and their response to warming, it has recently been noted that climate model projections show a distinct seasonality to future changes in extreme precipitation. In particular, CMIP5 models suggest that over Northern Hemisphere (NH) land the summer response is weaker than the winter response in terms of percentage changes.

Here we investigate changes in seasonal precipitation extremes using observations and simulations with coupled climate models. First, we analyse observed trends from the Hadley Centre’s global climate extremes dataset (HadEX2) to investigate to what extent there is already a difference between summer and winter trends over NH land. Second, we use 40 ensemble members from the CESM Large Ensemble to characterize the role played by internal variability in trends over the historical period. Lastly, we use CMIP5 simulations to explore the possibility of a link between the seasonality of changes in precipitation extremes and decreases in surface relative humidity over land.

How to cite: Williams, A. and O'Gorman, P.: Investigating the seasonal response of precipitation extremes to global warming using observations and large-ensembles of coupled climate models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5989, https://doi.org/10.5194/egusphere-egu2020-5989, 2020.

EGU2020-6890 | Displays | CL2.8

Precipitation scaling in the tropics with a convection-permitting model

Daniel Argüeso, Alejandro Di Luca, Nicolas Jourdain, Romualdo Romero, and Victor Homar

The Maritime Continent is a major convective area and precipitation processes in the region pose great challenges to atmospheric models. A combination of large-scale drivers, such as the Madden-Julian Oscillation and ENSO, and fine-scale processes, such as orographically-forced precipitation, land-sea circulations and tropical convection, governs rainfall in the Maritime Continent. The use of convection-permitting models in the region has shown improved performance in the simulation of precipitation characteristics that are key for the region (i.e. diurnal cycle).

Most of the rainfall occurring over land is concentrated in the late afternoon and precipitation extremes often occur over short periods of time. The availability of water vapor in the lower troposphere and the high water-holding capacity of a warm atmosphere favors very intense precipitation events, according to the Clausius-Clapeyron relationship. In a warming climate, a full understanding of the so-called precipitation scaling with temperature is thus crucial. However, this potential generally requires the atmosphere be saturated and convection be initiated to become effective. Using a regional climate model operating at convection-permitting scales over 3 consecutive wet seasons, we investigate the response of intense precipitation to temperature.

In this presentation, we examine different approaches to relate precipitation extremes to near-surface temperature and dew-point temperature. We show that the relationship breaks at certain thresholds that are relatively uniform across islands. The region is well supplied with water vapor and the break is not explained by a deficit in water vapor, unlike previously proposed for other water-limited regions. We identify possible reasons for this behavior, such as the lack of environmental conditions that trigger convection. In this context, we explore the sensitivity of the modelling system to the convection representation (explicit vs. parameterized) and discuss the implications for future changes in intense precipitation events. Finally, we put forward the use of specific variables, such as temperature and equivalent potential temperature integrated in the vertical. These variables not only are coherent with the CC equation but also acknowledge the different warming rates near the surface and at higher tropospheric levels, where precipitating processes actually occur.

How to cite: Argüeso, D., Di Luca, A., Jourdain, N., Romero, R., and Homar, V.: Precipitation scaling in the tropics with a convection-permitting model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6890, https://doi.org/10.5194/egusphere-egu2020-6890, 2020.

EGU2020-8007 | Displays | CL2.8

Evaluating the small-scale space time structure of rainfall in the Convection Permitting Model of UKCP18

Yuting Chen, Athanasios Paschalis, and Christian Onof

Sub-daily precipitation at fine temporal resolution (~1 km2) is critical for a wide range of hydrological applications, such as flooding estimation, urban drainage design. In recent years, a step-change was given by Km-scale Convection-permitting models (CPMs), allowing for the first-time climate change projections at hydrologically relevant scales. CPMs have been now introduced in the operational climate change projections of the Met Office in the UK (UCKP18). The high-resolution hourly precipitation at a 2.2 km scales is currently available for the historical period (1980-2000) and future period (2020-2080) for the RCP8.5 scenario. It is perceived to provide a plausible tool for detailed climate impact studies. However, a question remains unanswered: is the local projection of precipitation from UKCP18 credible for hydrological use? 

To answer the question, simulated hourly precipitation from the UKCP18 for the historical period is compared statistically with the observed rainfall data. Observation rainfall was obtained from UK Met Office C-band Weather Radar network and Gridded estimates of daily areal rainfall (CEH-GEAR). These were used to assess the spatial-temporal structure of rainfall, including spatial spectra, distributions of rainfall cell sizes and intensities, and their temporal growth/decay dynamics, and rainfall extremes. The statistical evaluation was performed for all climatologically distinct regions of the UK on a seasonal basis.

The results show that hourly precipitation in UKCP18 has a realistic spatial correlation structure compared to observations. However, the extreme areal mean precipitation is overestimated, particularly at scales finer than 6.6 km. Significant differences between the size and temporal dynamics of observed and modelled rainfall cells were identified, with distinct differences amongst climate regimes, highlighting the limits of applicability of current generation CPMs for hydrological forecasting.

How to cite: Chen, Y., Paschalis, A., and Onof, C.: Evaluating the small-scale space time structure of rainfall in the Convection Permitting Model of UKCP18, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8007, https://doi.org/10.5194/egusphere-egu2020-8007, 2020.

EGU2020-12291 | Displays | CL2.8

Evaluating the precipitation regime of the Great Lakes Region in CMIP6 models

Samar Minallah and Allison Steiner

The Laurentian Great Lakes region has a distinct precipitation seasonality, with highest magnitudes in the summer months of June to September and drier conditions in the winter months (December to March). The region also exhibits a ‘mid-summer drying’ behaviour, where the precipitation magnitude drops from July to August by approximately 7% and recovers in September before declining again in the autumn season. The distinct precipitation seasonal cycle modulates the land hydrological budget and has significance for regional water resources. This study aims to understand the precipitation seasonality in 20 CMIP6 models for historical (1980 – 2014) and mid-century (2030 – 2060) SSP2-4.5 scenario. Seasonal wet/dry biases in historical data are computed using CRU TS4.03 precipitation data as baseline.

CMIP6 models show a myriad of different patterns, none of which conform to the observed precipitation seasonality. Some models show a singular skewed peak with the maxima in either June or July flowed by slow tapering off until December (e.g., MRI-ESM2.0, CanESM, GFDL-CM4). Various models show a spring and winter-time wet bias (NUIST-NESM3, ACCESS-ESM1-5) and/or underestimation of the summer-season magnitudes (FGOALS-f3-L, NCAR-CESM2, NorESM2-MM). In general, the precipitation seasonality exhibited by the CMIP6 models is not characteristic of the region. We also find that while some models are wet or dry throughout the year, others show only seasonal biases indicating that their convective parameterization and/or microphysics schemes fail to adequality capture precipitation patterns in these seasons. While most CMIP6 models and reanalysis datasets show a gaussian convective precipitation cycle with the annual maxima in July, some models (e.g., BCC-CSM2-MR, NCAR-CESM2) show strong biases in it, indicating issues with their convective schemes.

These biases and anomalous precipitation cycle can be propagated or even amplified in the future climate model simulations, significantly altering the projections. Therefore, identifying the models that best represent the regional precipitation spatiotemporal characteristics can assist in better assessment of the future changes in the region’s hydroclimate.

How to cite: Minallah, S. and Steiner, A.: Evaluating the precipitation regime of the Great Lakes Region in CMIP6 models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12291, https://doi.org/10.5194/egusphere-egu2020-12291, 2020.

EGU2020-13321 | Displays | CL2.8

Reconciling global projections of precipitation with CMIP6 and CMIP5 multi-model trends

Ralph Trancoso and Jozef Syktus

Changing precipitation patterns due to climate change is a critical concern affecting society and the environment. Projected changes in global seasonal precipitation are largely heterogeneous in space, time, magnitude and direction. Therefore, reconciling projected future precipitation is pivotal for climate change science and adaptation and mitigation schemes.

This research contributes to disentangle future precipitation uncertainty globally by exploring long-term trends in projected seasonal precipitation of 33 CMIP5 and 16 CMIP6 models for the period 1980-2100. We first estimate trend slopes and significance in long-term future seasonal precipitation using the Sen-Slope and Mann-Kendall tests and constrain trends with at least 10% of cumulative changes over the 120-year period. Then, we assess convergence in the direction of trends across seasons. We highlight the world’s jurisdictions with consistent drying and wetting patterns as well as the seasonal dominance of precipitation trends.

A consistent drying pattern – where at least 78% of GCMs have decreasing precipitation trends – was observed in Central America, South and North Africa, South Europe, Southern USA and Southern South America. Unlike, a strong convergence in projected long-term wetness – where at least 78% of GCMs have increasing precipitation trends – was observed across most of Asia, Central Africa, Northern Europe, Canada, Northern US and South Brazil and surrounds.

Results show convergence in direction of seasonal precipitation trends revealing the world’s jurisdictions more likely to experience changes in future precipitation patterns. The approach is promisor to summarize trends in seasonal time-series from multiple GCMs and better constrain wetting and drying precipitation patterns. This study provides meaningful insights to inform water resource management and climate change adaptation globally.

How to cite: Trancoso, R. and Syktus, J.: Reconciling global projections of precipitation with CMIP6 and CMIP5 multi-model trends, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13321, https://doi.org/10.5194/egusphere-egu2020-13321, 2020.

In the state-of-the-art CMIP5/6 models, there is an apparent excessive rainfall bias with a negative SST bias in the tropical Pacific intertropical convergence zone (ITCZ). The regime of the excessive ITCZ but negative SST bias is inconsistent with the common positive rainfall–SST correlation. Using a two-mode model, we decomposed the rainfall bias into two components, and found that the surface convergence (SC) bias is the key factor forming the excessive ITCZ bias in the historical runs of 25 CMIP5 models and 23 CMIP6 models. A mixed layer model was further applied to connect the formation of the SC bias with the SST pattern bias. The results suggest that the meridional pattern of the SST bias plays a key role in forming the SC bias. In the CMIP5/6 models, the overall negative SST bias has two apparent meridional troughs at around 10°S and 10°N, respectively. The two meridional troughs in the SST bias drive two convergence centers in the SC bias favoring the excessive ITCZ, even though the local SST bias is negative.

How to cite: Huang, P.: Excessive ITCZ but negative SST biases in the tropical Pacific simulated by CMIP5/6 models: The role of the meridional pattern of SST bias, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4421, https://doi.org/10.5194/egusphere-egu2020-4421, 2020.

EGU2020-21375 | Displays | CL2.8

The Double-ITCZ Bias in CMIP6 Models

Baijun Tian

The double-Intertropical Convergence Zone (ITCZ) bias is one of the most outstanding problems in climate models. This study seeks to examine the double-ITCZ bias in the latest state-of-the-art fully coupled global climate models that participated in Coupled Model Intercomparison Project (CMIP) Phase 6 (CMIP6) in comparison to their previous generations (CMIP3 and CMIP5 models). To that end, we have analyzed the long-term annual mean tropical precipitation distributions and several precipitation bias indices that quantify the double-ITCZ biases in 75 climate models including 24 CMIP3 models, 25 CMIP3 models, and 26 CMIP6 models. We find that the double-ITCZ bias and its big inter-model spread persist in CMIP6 models but the double-ITCZ bias is slightly reduced from CMIP3 or CMIP5 models to CMIP6 models.

How to cite: Tian, B.: The Double-ITCZ Bias in CMIP6 Models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21375, https://doi.org/10.5194/egusphere-egu2020-21375, 2020.

EGU2020-21884 | Displays | CL2.8

Understanding rainfall characteristics in climate models and observations

Gill Martin, Nicholas Klingaman, Segolene Berthou, Rob Chadwick, Elizabeth Kendon, and Aurel Moise

The need for improved understanding of how a warming climate may change precipitation variability and extremes has focused model developers' attention on the inability of convection parameterizations to represent the observed range of deep convective processes. Under particular scrutiny are the consequences of poorly simulated sub-daily, grid-point precipitation variability on rainfall distributions at longer (e.g., daily, seasonal, decadal) timescales and larger spatial scales. Lack of knowledge or understanding of the spatial and temporal variability in rainfall, in observations and models, hampers model development and can undermine our confidence in projections. A major challenge in advancing our understanding is a lack of comprehensive diagnostics and metrics for analysing the characteristics of both observed and modelled preciptitation across time and space scales. 

The ASoP diagnostic package (Analysing Scales of Precipitation; Klingaman et al. 2017; Martin et al., 2017) has been developed and applied to various model and observation datasets over the past few years. ASoP can be applied to data ranging from the gridscale and time-step to regional and sub-monthly averages, and measures the spectrum of precipitation intensity, temporal variability as a function of intensity, and spatial and temporal coherence. When applied to time-step, gridscale tropical precipitation from a range of models, the diagnostics reveal that, far from the "dreary" persistent light rainfall implied by daily mean data, most models produce a broad range of time step intensities that span 1-100 mm/day. Averaging precipitation to a common spatial (km) or temporal (3h) resolution substantially reduces variability among models, demonstrating that averaging hides a wealth of information about intrinsic model behaviour. 

ASoP analysis of tropical rainfall variability in MetUM simulations at a range of horizontal resolutions shows that the behaviour of the deep convection parametrization in this model on the native grid and time step is largely independent of the grid-box size and time step length over which it operates. There is also little difference in the rainfall variability on larger/longer spatial/temporal scales. Tropical convection in the model on the native grid/time step is spatially and temporally intermittent, producing very large rainfall amounts interspersed with grid boxes/time steps of little or no rain. Spatial and temporal averaging smoothes out this intermittency such that, on the km scale, for oceanic regions, the spectra of 3-hourly and daily mean rainfall in the MetUM agree fairly well with those from satellite-derived rainfall estimates, while at 10-day timescales the averages are overestimated, indicating a lack of intra-seasonal variability. Over tropical land the results are more varied, but the model often underestimates the daily mean rainfall (partly as a result of a poor diurnal cycle) but still lacks variability on intra-seasonal timescales. ASoP diagnostics have also been applied to European rainfall (Berthou et al., 2018) and in high-resolution rainfall projections for the United Kingdom (Kendon et al., 2020). Such work is shedding light on how uncertainties in modelling small-/short-scale processes relate to uncertainty in climate change projections of rainfall distribution and variability, with a view to reducing such uncertainty through improved modelling of small-/short-scale processes.

How to cite: Martin, G., Klingaman, N., Berthou, S., Chadwick, R., Kendon, E., and Moise, A.: Understanding rainfall characteristics in climate models and observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21884, https://doi.org/10.5194/egusphere-egu2020-21884, 2020.

In this presentation we discuss a community-based effort to establish the benchmarking of simulated precipitation in Earth System Models.   We first summarize the impetus and outcomes of a recent workshop dedicated to the topic.    This includes the identification of a tiered system of objective tests (metrics) for the following climatological characteristics:  the mean state, seasonal cycle, variability across time scales, intensity/frequency distributions, extremes and drought.   Preliminary results are shown gauging model performance changes across multiple generations of CMIP.   The performance tests we describe are part of an open-source analysis framework being made available to model developers to help them make judgements about the quality of simulated precipitation during the model development process.

How to cite: Gleckler, P. and Pendergrass, A.: Using objective comparisons of observed and simulated precipitation to help guide the improvement of Earth System Models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20472, https://doi.org/10.5194/egusphere-egu2020-20472, 2020.

CL2.10 – Recent progress in understanding the hydro-climate system of the Andes: Physical processes and resources for Andean populations

EGU2020-20665 | Displays | CL2.10

Environmental change effects on canopy water fluxes of a tropical mountain rain forest in the Andes of Ecuador

Jörg Bendix, Oliver Limberger, and Franz Pucha-Cofrep

The tropical mountain forest (TMF) in the Andes of SE-Ecuador is globally one of the hottest hotspots of biodiversity. However, biodiversity and ecosystem services are threatened by environmental changes (climate and land use changes). This particularly holds for the mountain rain forest in the river valley of the Rio San Francisco between Loja and Zamora (Ecuador), where ecosystem water and carbon regulation are important services, expected to be especially affected adversely. An interdisciplinary team of Geo-, Bioscientists and researchers from socio-economy have investigated environmental change impacts on ecosystem water services over the last two decades in this area. Particularly changes in canopy water fluxes due to environmental change are one major objective of the ongoing research unit RESPECT (Environmental changes in biodiversity hotspot ecosystems of South Ecuador: RESPonse and feedback effECTs). In the talk, a general overview on environmental change impacts on canopy water fluxes derived from field measurements such as Eddy Covariance and Remote Sensing are presented. To look into future developments, well-adopted Land Surface Models (LSM) are required including suitable plant functional types (PFTs) and focal ecological processes, properly adapted to the complexity of the TMF. In the second part of the talk, the concept and first results of a new way of LSM modelling will be presented. The integrated concept will be finally used to unveil the resistance of the two ecosystem services against future climate change under different land use scenarios.  

How to cite: Bendix, J., Limberger, O., and Pucha-Cofrep, F.: Environmental change effects on canopy water fluxes of a tropical mountain rain forest in the Andes of Ecuador, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20665, https://doi.org/10.5194/egusphere-egu2020-20665, 2020.

EGU2020-12664 | Displays | CL2.10

Laboratory of Atmospheric Microphysics and Radiation (LAMAR): a set of sensors for the study of extreme meteorological events in the Central Andes of Peru.

Daniel Martinez, Yamina Silva, Rene Estevan, Jose Luis Flores, Luis Suarez, Aldo Moya, Jairo Valdivia, and Miguel Saavedra

A set of instruments to measure several atmospheric physical, microphysical and radiative properties of the atmosphere and clouds is essential to understand the conditions of formation and development, and eventually, the effects of extreme meteorological events, like severe rainfall, hailstorms and frost events that occur with some regularity in the central Andes of Peru. With this purpose, the Geophysical Institute of Peru has installed a set of specialized sensors in the Huancayo observatory (12.04°S,75.32°W, 3313 m ASL)  including  sub-sets dedicated to the measurements of near-surface and low boundary layer turbulent flows (turbulence and gradients subset),  measurement of precipitation and its structure (precipitation subset)and the measurement of aerosols and their interaction with radiation in the atmosphere (radiation subset). Additionally, a proper open area is reserved for  upper air soundings.  The turbulence subset consists of a set of thermohygrometers (HMP60 probe of Campbell Scientific) placed in two towers, one of 1 m and another of 30 m high, two wind sentry sets (03002 of Campbell Scientific), five tensiometers (Decagon 5TM VWC) to measure soil temperatures and moistures and a soil heat flux plate (HFP01 of Campbell scientific). The radiation subset consists of three pyranometers (CMP10 of Kipp & Zonen), to measure short-wave solar irradiance components, for(global, diffuse and reflected) and a pyrheliometer (CHP1 of Kipp & Zonen) to measure direct solar irradiance. A small black sphere mounted on an articulated shading assembly in a two-axis automatic sun tracker (Kipp & Zonen 2AP) blocked direct solar irradiance and allows to measure diffuse solar irradiance. To measure long-wave terrestrial irradiance components, two pyrgeometers are used (CGR4 of Kipp & Zonen). All these radiative sensors are installed in a tower of 6 m high. The precipitation subset includes A Ka-band cloud profiler (MIRA-35c), a disdrometer (PARSIVEL2) and two rain gauges pluviometers. A UHF wind profiler (CLAIRE), and a VHF wind profiler (BLTR) complement the precipitation subset, as they can detect turbulent low-level wind turbulence, associated with precipitation events.  . The upper-air sounding system consists of two stations: Windsond, for  model S1H3) and Meteo-modem, for model M10 radiosondes. All these sensors have been used to study the surface-atmosphere interactions, including the behavior of surface boundary layer, the components of surface energy budget and the microphysics properties or rainfall during the occurrence of extreme meteorological events, and to validate numerical model simulations. To show practical applications of LAMAR instrumentation we present a detailed analysis of two events: a severe rainfall event occurred on 17 January 2018 and a frost event occurred on 08 July 2018.

How to cite: Martinez, D., Silva, Y., Estevan, R., Flores, J. L., Suarez, L., Moya, A., Valdivia, J., and Saavedra, M.: Laboratory of Atmospheric Microphysics and Radiation (LAMAR): a set of sensors for the study of extreme meteorological events in the Central Andes of Peru., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12664, https://doi.org/10.5194/egusphere-egu2020-12664, 2020.

EGU2020-19981 | Displays | CL2.10

Observed local drivers of rainfall variability and changes in the Rio Santa Basin, Tropical Andes of Peru

Cornelia Klein, Wolfgang Gurgiser, and Fabien Maussion

The climate in the Rio Santa basin (Peruvian Andes) is characterized by a strong seasonality, with a wet season reaching its maximum intensity from December to March. Understanding the characteristics and variability of rainfall during the wet season is fundamental for small-scale farmers based on rain-fed agriculture, and is one of the main objectives of the recently started AgroClim-Huaraz project (http://agroclima-huaraz.info). Based on a combination of rain gauge observations and ERA5 reanalysis data, we demonstrate that the occurrence of local wet and dry spells in the Rio Santa basin is strongly connected to large scale circulation patterns that are known to drive such rainfall variability in the wider tropical Andes. Changes in upper-tropospheric zonal wind and the location of the Bolivian High pressure system therefore crucially affect the local water availability. 

On large spatio-temporal scales, this connection was claimed to have already caused a decrease in precipitation in the Central Andes in response to global warming and could be associated with a projected four-fold increase of dry years by 2100. Consequently, it is of great importance to (i) evaluate the validity of this drying by trend analyses from different sources and (ii) understand the implications of a potential large-scale trend from a local perspective that takes into account the heterogeneity of rainfall distributions in complex terrain. 

We therefore use ERA5 to evaluate whether and how observed changes in this teleconnection affect local atmospheric conditions and convective environments. In addition, we infer associated potential trends in rainfall frequency and extremes, cloud cover and convective intensity for the Rio Santa Basin from CHIRPS rainfall estimates and GRIDSAT brightness temperatures down to a resolution of 4-7km for 1983-2019.

Based on observations, our results illustrate how large-scale climatic changes may translate into smaller scales. This will in further steps not only help to validate and constrain regional dynamical downscaling attempts but also inform about the representativeness of coarser-scale climate projections for local conditions in Andean valleys.

 

How to cite: Klein, C., Gurgiser, W., and Maussion, F.: Observed local drivers of rainfall variability and changes in the Rio Santa Basin, Tropical Andes of Peru, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19981, https://doi.org/10.5194/egusphere-egu2020-19981, 2020.

EGU2020-14820 | Displays | CL2.10

Long-term variability of central Andes precipitation in the IPSL-CM6A-LR model: origin and causes.

Julián Villamayor, Myriam Khodri, Beyrem Jebri, Juan A. Rivera, Elizabeth B. Naranjo, and Valérie Daux

The central Andes have undergone a drying trend over the last decades with adverse socioeconomic effects throughout the south of Argentina and Chile. The long-term precipitation variability in this region has been associated with modes of sea surface temperature (SST) and atmospheric circulation variability acting at decadal-to-multidecadal timescales, such as the Interdecadal Pacific Oscillation and the Southern Annular Mode. More recently, the drying long-term trend of precipitation in central Andes has also been linked to a poleward expansion of the Hadley Cell (HC) in the Southern Hemisphere over the last decades. In previous works several possible causes of the HC expansion have been proposed, involving both external forcing (e.g., greenhouse gases and ozone depletion effects) and internal climate variability (e.g., SST and atmospheric modes).

In this work the origin and the causes of the central Andes precipitation variability at decadal-to-longer time scales are studied. For this purpose, the main modes of climate variability that modulate the central Andes precipitation are first identified. Then the changes of these modes and their influence on precipitation are attributed to different factors of external forcing or to internal climate variability. For this analysis large ensembles of different climate simulations and detection-and-attribution experiments performed with the IPSL-CM6A-LR model are used.

How to cite: Villamayor, J., Khodri, M., Jebri, B., Rivera, J. A., Naranjo, E. B., and Daux, V.: Long-term variability of central Andes precipitation in the IPSL-CM6A-LR model: origin and causes., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14820, https://doi.org/10.5194/egusphere-egu2020-14820, 2020.

EGU2020-6534 | Displays | CL2.10

Atmospheric physics and microphysics research project in the Central Peruvian Andes. A multilateral approach.

Yamina Silva, Daniel Martínez-Castro, Aldo Moya-Álvarez, René Estevan, José Flores Rojas, and Shailendra Kumar

The Mantaro river basin is surrounded by the central Andes of Peru, with altitudes of up to 5300 m.a.s.l. The Mantaro valley, has great economic and social importance for its rich agriculture, as well as water resources, of considerable weight in the generation of power supply electricity and drinking water. This favors the presence of numerous urban centers in the region, highlighting the city of Huancayo with more 500,000 population. The incidence of convective precipitation systems, influenced by the local orographic circulation, in agriculture and social activities in the region is conspicuous, both from the point of view of water supply and as potential weather hazards, in the case of hailstorms and heavy rains, as well as frost event. The project “Strengthening the research line on Atmospheric Physics and Microphysics”  was conceived with the objective of developing a multilateral research on the conditions of formation of precipitation systems in the basin, the dynamical factors influencing their development and the microstructure and phase composition of clouds and precipitation over the valley. The project includes three main components: 1. Characterization of the structure and evolution clouds and precipitation; 2.  Study of the atmospheric aerosol s in the region and their relationship with solar radiation and 3: Development of customized numerical weather forecasting tools focused on different scales and forecast terms, based mainly on the WRF-ARW modeling system. The experimental base of the project was centered in the instrumental complex of the Atmospheric Microphysics and Radiation Laboratory (LAMAR), in the Huancayo Observatory (3300 m.a.s.l), located in the Mantaro Valley. As a result of the project, an atmospheric database with very complete characteristics has been developed, which serves as a test base for the verification of models in different meteorological conditions, including the occurrence of dangerous phenomena.  The project started in April, 2017 and  must finish in April 2020. To date, twelve papers have been published in peer-reviewed journals, on topics such as the study of convective cloud fields and precipitation over South America and Peru from remote satellite sensors, tuning of the configuration of numerical models for the conditions of the central Andes of Peru, numerical weather forecast, study of the structure of convective systems producing  rain in the valley, characteristics of atmospheric aerosols over the valley and the radiative balance. Because of these researches, new numerical modeling tools have been developed for the conditions of the central Peruvian Andes. In this paper we will present the main results from the project, that contributed to increase our understanding of the Andes climate.

How to cite: Silva, Y., Martínez-Castro, D., Moya-Álvarez, A., Estevan, R., Flores Rojas, J., and Kumar, S.: Atmospheric physics and microphysics research project in the Central Peruvian Andes. A multilateral approach., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6534, https://doi.org/10.5194/egusphere-egu2020-6534, 2020.

EGU2020-14175 | Displays | CL2.10

Spatio-temporal temperature and precipitation patterns in the southern Peruvian Andes - insights from the Climandes project

Christoph Spirig, Gubler Stefanie, Avalos Grinia, Huerta Adrian, Imfeld Noemi, Lavado Waldo, Oria Clara, Quevedo Karim, Rohrer Mario, Scherrer Simon C., Sedlmeier Katrin, and Schwierz Cornelia

In the southern Peruvian Andes, climatic threats such as water scarcity or frost pose major challenges for agriculture. Such events may result in severe yield losses threatening the livelihood of smallholder farmers due to missing adaptive and coping strategies. Knowledge on climate variability and change, on the current state of the climate, as well as short- to midrange predictions potentially improve the farmers’ risk management. However, such knowledge is only partly available and often does not reach rural communities. Climandes, a pilot project of the Global Framework for Climate Services, tackled these shortcomings through the enhancement of climatological observations, the production of gridded datasets using satellite and station observations, the verification of seasonal forecasts to determine their usefulness for small-scale applications, and through the establishment of communication channels and user engagement. This contribution highlights some of the insights from the Climandes project: climatological analyses of spatio-temporal patterns in the southern Peruvian Andes, past trends, as well as the performance of seasonal forecasts in the region. The work focuses on temperature and precipitation using the newly developed gridded datasets, quality controlled observational data, and seasonal forecasts of ECMWF SEAS5.

The results of the climatological analysis let us draw the conclusion that precipitation and minimum temperature patterns are likely related through increased / reduced cloud cover and increased / reduced incoming longwave radiation. Both variables show similar spatial patterns for example in austral spring (SON), namely a pronounced northeast / southwest gradient. Trends, which were derived from the enhanced climatological observation data available since 1964, show a strong increase in maximum temperature of around 0.2°C / decade, while minimum temperatures show only very moderate trends. In addition to the slight decrease of total precipitation in austral spring, i.e., the time of sowing, the strong increase of maximum temperatures further decreases soil water availability and enhances drought risk. With regard to seasonal predictions, we found that especially the performance of precipitation forecasts is only very limited in the southern Peruvian Andes, and mostly does not exceed information from climatology. We conclude that seasonal predictions are not applicable for small-scale applications in the region, whereas they may serve as a beneficial basis to assess climate variability and discuss decision-making based thereon.

 

How to cite: Spirig, C., Stefanie, G., Grinia, A., Adrian, H., Noemi, I., Waldo, L., Clara, O., Karim, Q., Mario, R., Simon C., S., Katrin, S., and Cornelia, S.: Spatio-temporal temperature and precipitation patterns in the southern Peruvian Andes - insights from the Climandes project, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14175, https://doi.org/10.5194/egusphere-egu2020-14175, 2020.

EGU2020-17775 | Displays | CL2.10

Functionning of the Katari-Lago Menor Basin aquifer, Lake Titicaca-Bolivia, inferred from geophysical, hydrogeological and geochemical data

Céline Duwig, Gabriela Flores, Marc Descloitres, Yvan Rossier, Lorenzo Spadini, Anatoly Legtchenko, Alvaro Soruco, Jaime Argollo, Mayra Pérez, and Waldo Medinacelli

The population of the semi-arid Bolivian Northern Altiplano depends greatly on groundwater resources, surface water being intermittent and often contaminated by human activities. The aim of this study is to provide a first insight into the hydrogeological structure and groundwater dynamics of the Katari-Lago Menor Basin aquifer located between the Eastern Cordillera and Lake Titicaca, Bolivia. Resistivity profiles combined with geology, borehole lithology, topography as well as additional groundwater level and geochemical measurements, were helpful in resolving the spatial limits of the aquifer, the vertical and lateral continuity of the Quaternary porous geologic media, the shape and position of the bottom of the aquifer (depth to the bedrock, i.e. Tertiary or Devonian Formations), and revealed a general overview of the natural dynamic behaviour of the aquifer at the scale of the Katari and Lago Menor Basin. The quaternary sediments are hydraulically connected and behave as a single regional basin-aquifer. The main groundwater flow system starts in the upper Piedmont (high mountain ranges of the Eastern Cordillera) and follows the topographic Piedmont gradient (NE to SW). Most groundwater recharge results from the infiltration of precipitation and runoff on the high mountain ranges. Indeed, groundwater circulating in the upper and lower Piedmont layers present primarily  facies. In the regions of the lower Piedmont urbanized areas, groundwater presenting  facies, show a noticeable enrichment of sulphate and chloride relating mainly anthropogenic contamination (mining and urban nature). A large portion of the aquifer presents an unconfined behaviour whereas it remains confined below the Ulloma Formation. The thickness of the unconfined portion varies from 50 to 150 meters and that of the confined from 100 to 150 meters. Values of hydraulic conductivity for the unconfined portion range from 1.1×10-4 m s-1 (alluvial fan deposit), 2.5×10-6 m s-1 (fluvioglacial deposits,) to 5.9×10-8 m s-1 (glacial deposits), while for the confined part transmissivity values range around 6.0×10-6  m2 s-1 (paleo-lacustrine deposits).

 This multidisciplinary approach proved to be an appropriate method to derive a consistent picture of the hydrogeological functioning of the Katari-Lago Menor Basin aquifer.

How to cite: Duwig, C., Flores, G., Descloitres, M., Rossier, Y., Spadini, L., Legtchenko, A., Soruco, A., Argollo, J., Pérez, M., and Medinacelli, W.: Functionning of the Katari-Lago Menor Basin aquifer, Lake Titicaca-Bolivia, inferred from geophysical, hydrogeological and geochemical data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17775, https://doi.org/10.5194/egusphere-egu2020-17775, 2020.

EGU2020-3769 | Displays | CL2.10

Monthly semi-distributed hydrological model at national scale in Peru

Harold Llauca, Waldo Lavado, Cristian Montesinos, and Pedro Rau

Surface water resources in Peru are heterogeneously distributed in three drainage areas (Pacific, Titicaca, and Atlantic), and their quantification is relevant for planning in economic activities such as water supply and agriculture. However, their continuous monitoring at national scale becomes difficult due to the low stream gauges density and short streamflow records. The aim of this work is to generate a database of simulated monthly streamflows at a national scale from January 1981 to December 2016, applying the parsimonious GR2M model in a semi-distributed approach, under a parameter regionalization scheme. For this, 3594 sub-basins (~300 km2) located in the three drainage areas were tested. These sub-basins were first grouped in 14 calibration regions based on a sensitivity analysis of the runoff ratio (RR) and runoff variability (RV) indexes derived from the GR2M outputs. The model was forced with monthly gridded-data of precipitation and potential evapotranspiration from the PISCO product (Peruvian Interpolated data of the SENAMHI’s Climatological and hydrological Observations) and was calibrated and validated with 38 stream gauges using the Kling-Gupta (KGE) metric. After the parameter regionalization processes, results showed KGE values from 0.5 to 0.8, and a good representation of the runoff seasonality. This is the first time that a monthly streamflow database (PISCO-HyM_GR2M) is developed at national scale in Peru in the 1981-2016 period. This new product will contribute to the hydrological droughts monitoring in Peru and understand water balance on ungauged basins.

How to cite: Llauca, H., Lavado, W., Montesinos, C., and Rau, P.: Monthly semi-distributed hydrological model at national scale in Peru, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3769, https://doi.org/10.5194/egusphere-egu2020-3769, 2020.

EGU2020-19824 | Displays | CL2.10

High Andean Wetlands, climate change and ecosystem services – What do we know?

Marco Otto, Mónica Maldonado Fonken, Jan Baiker, and Richard Gibbons

Research in high mountain regions has been intensified over the last decade due to e.g. increased concerns about how climate change might affect those regions containing fragile and often remote ecosystems. Wetlands in high mountain regions belong to a kind of vulnerable ecosystems, which have been studied also in the Andes. We systematically gathered information derived from literature on wetland types within the tropical part of high Andean grasslands and shrublands (above tree line) also known as Páramo (northern part) and Puna (southern part). We applied a keyword search on two major global citation database resulting in 230 records from 1979 until present. Here, we found over a hundred peer-reviewed publications focused on High Andean Wetlands providing information on wetland types and geographic references of their respective study sites. Most studies were conducted within the Puna and were related to peatlands. High Andean Wetlands are often seen as providers for certain ecosystem services (ES). Results indicate that current knowledge is mostly based on short-term studies at single-site scale. Thus, not all ES that are assumed to be related to High Andean Wetlands are sufficiently documented by scientific work. Therefore, we present preliminary results of currently conducted studies addressing ES provided by High Andean Wetlands fostering our knowledge and closing still existing knowledge gaps.

How to cite: Otto, M., Maldonado Fonken, M., Baiker, J., and Gibbons, R.: High Andean Wetlands, climate change and ecosystem services – What do we know?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19824, https://doi.org/10.5194/egusphere-egu2020-19824, 2020.

EGU2020-4869 | Displays | CL2.10

Future water supply and demand in the Peruvian Andes: assessment and implications

Andrew J. Wade, Harvey J.E. Rodda, Nicholas P. Branch, Marcos Bruzzone, Alex Herrera, Francisco Araujo-Feriera, Frank M. Meddens, Douglas A.H. Walsh, and Kevin Lane

The aim of the ACCESS project is to help assess the impact of climate change on socio-economic development in the Peruvian Andes, focused on the Ancash region, and to help identify adaptation strategies. As part of this larger effort, we are aiming to understand how climate change will impact: water availability and quality; farming, lives and livelihoods; and to work with local communities to plan adaptation strategies. The current water supply and demand in two catchments in the Cordillera Blanca and two in the Cordillera Negra is being assessed to understand the background water context in contrasting glaciated and non-glaciated landscapes. Based on detailed surveys of the ancient and modern waterscapes led by South American archaeologists, supplemented by more recent data from hydrological measurement and ethnographic surveys and discussions with local communities, a nuanced picture is emerging of how communities have adapted to past and current climate conditions, and potential solutions are being co-developed with the local communities to maintain and improve livelihoods in situations with low rainfall in the Negra and glacial retreat in the Blanca. Crop water demand during the dry season in the Rio Ancash (114 km2) catchment has been assessed using the CROPWAT model and local climate and crop survey data, and the present-day water supply assessed through the gauging of rivers and irrigation canal flows, and measurement of water quality and isotopes. Preliminary results, for the Rio Ancash, suggest the amount of water available for dry season irrigation on the mid-slopes is approximately 70 mm over the cropped area (57 km2) which appears to be less than the crop water demand, though this estimate may change as more data is processed. Initial climate projections suggestion an increase in water as the glaciers melt until around 2050. The dry season crop water demand and supply beyond 2050 is currently being estimated.

How to cite: Wade, A. J., Rodda, H. J. E., Branch, N. P., Bruzzone, M., Herrera, A., Araujo-Feriera, F., Meddens, F. M., Walsh, D. A. H., and Lane, K.: Future water supply and demand in the Peruvian Andes: assessment and implications, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4869, https://doi.org/10.5194/egusphere-egu2020-4869, 2020.

EGU2020-10304 | Displays | CL2.10 | Highlight

The GEWEX High Mountain Activities and Its Relevance to the Andean Region

Peter van Oevelen

The importance of high mountain regions for global energy and water exchanges research is paramount and yet at the same time they are one of the lesser understood and under-observed regions in the world. The Global Energy and Water Exchanges (GEWEX) Core Project  as part of the World Climate Research Programme has as one of its foci high mountain regions. In particular, it aims to develop a global network of researchers that work in these regions. The Andean region is of particular interest as it has specific climate and weather related challenges unique to this region. We will present how this new initiative for Regional Hydroclimate Project in the Andes fits in the overall suite of activities of GEWEX, how it relates in particular to other regional hydroclimate projects and how it can contribute to a better understanding of the geophysical processes in high mountain environments.

How to cite: van Oevelen, P.: The GEWEX High Mountain Activities and Its Relevance to the Andean Region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10304, https://doi.org/10.5194/egusphere-egu2020-10304, 2020.

EGU2020-1726 | Displays | CL2.10

Paleoclimatic reconstruction during the Little Ice Age in the Llanganuco basin, Cordillera Blanca (Peru)

Joshua Er Addi Iparraguirre Ayala, Jose Úbeda Palenque, Ronald Fernando Concha Niño de Guzmán, Ramón Pellitero Ondicol, Francisco Javier De Marcos García-Blanco, Luzmila Dávila Roller, Pool Vásquez Choque, Jesús Gómez Lopez, and Julia Elizabeth Araujo Reyes

The Equilibrium Line Altitude (ELA, m) is a good indicator for the impact of climate change on tropical glaciers , because it varies in time and space depending on changes in temperature and/or precipitation.The estimation of the ELA and paleoELA using the Area x Altitude Balance Ratio method (AABR; Osmaston, 2005) requires knowing the surface and hypsometry of glaciers or paleoglaciers (Benn et al. 2005) and the Balance Ratio (BR) correct (Rea, 2009).

In the Llanganuco basin (~ 9°3´S; 77°37´W) there are very well preserved moraines near the current glaciers front. These deposits provide information to reconstruct the extent of paleoglaciers since the Little Ice Age (LIA) and deduce some paleo-climatic variables.

The goal of this work has been to reconstruct the paleotemperature (°C) during LIA, deduced from the difference between ELA AABR2016 and paleoELA AABRLIA.

The paleoclimatic reconstruction was carried out in 6 phases: Phase 1) Development of a detailed geomorphological map (scale 1/10,000), in order to  identify glacial landforms (advance moraines and polished rocks) which, due to their geomorphological context, can be considered of LIA, so palaeoglaciers can be delimited. Current glacial extension was done using dry season, high resolution satellite images. Phase 2) Glacial bedrock Reconstruction from glacier surface following the GLABTOP methodology (Linsbauer et al 2009). Phase 3) 3D reconstruction of paleoglacial surface using GLARE tool, based on bed topography and flow lines for each defined paleoglacial (Pellitero et al., 2016). As perfect plasticity model does not reflect the tension generated by the side walls of the valley, form factors were calculated based on the glacier thickness, lateral moraines and the geometry of the valley following the equation proposed by Nye (1952), adjusting the thicknesses generated in the paleoglacial front. Phase 4) Calculation of BR in a reference glacier (Artesonraju; 8° 56’S; 77º38’W), near to the study area, using the product BR = b • z • s, where BR= Balance Ratio; b= mass balance measured in fieldwork 2004-2014 (m); z= average altitude (meters) and s= surface (m2) of each altitude band of the glacier (with intervals of 100 m altitude). A value BR = 2.3 was estimated. Phase 5) Automatic reconstruction of the ELA  AABR2016 and paleoELA AABRLIA using ELA Calculation tool (Pellitero et al. 2015) after 3D reconstruction of the glacial and paleoglacial surface in phases 2 and 3. Phase 6) Estimation of paleotemperature during LIA by solving the equation of Porter et al. (1995): ∆T (°C)= ∆ELA • ATLR, where ∆T= air temperature depression (ºC); ∆ELA = variation of ELA AABR 2016-LIA and ATLR = Air Temperature Lapse Rate, using the average global value of the Earth (0.0065 °C/m), considered valid for tropics.

The results obtained were: ELA AABR2016= 5260m, paleoELA AABRLIA= 5084m, and ∆T = 1.1 °C. The reconstruction of air paleotemperature is consistent with different studies that have estimated values between 1–2 °C colder than the present, with intense rainfall (Matthews & Briffa, 2005; Malone et al., 2015).

How to cite: Iparraguirre Ayala, J. E. A., Úbeda Palenque, J., Concha Niño de Guzmán, R. F., Pellitero Ondicol, R., De Marcos García-Blanco, F. J., Dávila Roller, L., Vásquez Choque, P., Gómez Lopez, J., and Araujo Reyes, J. E.: Paleoclimatic reconstruction during the Little Ice Age in the Llanganuco basin, Cordillera Blanca (Peru), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1726, https://doi.org/10.5194/egusphere-egu2020-1726, 2020.

EGU2020-3759 | Displays | CL2.10

ANDES: The first system for flash flood monitoring and forecasting in Peru

Lavado-Casimiro Waldo, Jimenez Juan Carlos, Llauca Harold, Leon Karen, Oria Clara, Llacza Alan, Huerta Adrian, Felipe Oscar, Acuña Julia, Rau Pedro, and Abad Jorge

Hydrological hazards related to flash floods (FF) in Peru have caused many economic and human life losses in recent years. In this context, developing complete early warning systems against FF is necessary to cope impacts. For this purpose, hydrological and hydraulic models coupled to numerical weather models (NWM) that provide forecasts are generally used.

In this sense, the National Meteorological and Hydrological Service of Peru (SENAMHI) has launched the ANDES initiative (Operational Forecasting System for Flash Floods of SENAMHI in English) to support FF events. 

The pilot region is the Vilcanota basin located in the southern Andes into Cusco department. For this purpose, 4 hydrological stations will be monitoring at hourly time resolution (km 105-Intihuatana, Chilca, Pisac and Sallca). More, 3 video cameras in real time will be employed to velocimetry and water levels monitoring. An exhaustive hydrometry analysis (rating curve) will be implemented to follow discharges day by day. The forcing for the hourly hydrological modelling will be the SENAMHI’s automatic stations (rainfall and temperature). For this purpose a merge spatial prediction methodology between satellite real time precipitation and gauge station precipitation will be develop: GPM (Imerg), GSMAP and Hydroestimator satellite products will be evaluated. Preliminary results of hourly hydrological model shown good results using pure satellite precipitation. In the next months an hydraulic model will be implemented in the channels with more flood vulnerability (Lisflood model) that together with an Numerical weather prediction (NWP) the WRF (The Weather Research and Forecasting) meteorological model will be implemented in the Vilcanota basin. The update will be done every six hours and to improve the output results a bias correction methodology  will be use. Finally using these forecasts will be assimilated in the hydrological and hydraulic models.

This research is part of the multidisciplinary collaboration between British and Peruvian scientists (NERC, CONCYTEC).

How to cite: Waldo, L.-C., Juan Carlos, J., Harold, L., Karen, L., Clara, O., Alan, L., Adrian, H., Oscar, F., Julia, A., Pedro, R., and Jorge, A.: ANDES: The first system for flash flood monitoring and forecasting in Peru, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3759, https://doi.org/10.5194/egusphere-egu2020-3759, 2020.

EGU2020-3766 | Displays | CL2.10

The vulnerability of water availability in Peru due to climate change: A probabilistic Budyko analysis

Adrian Huerta, Waldo Lavado, and Pedro Rau

This study provides for the-first-time a water availability analysis at drainage and basin-scale in Peru. Using new gridded datasets of precipitation and temperature, along with six global actual evapotranspiration estimations from remote sensing products, the vulnerability of water resources due to climate change is evaluated. This is addressed under a bottom-up approach and probabilistic Budyko framework that enables us to measure the associated uncertainty. First, to select an adequate estimation of long-term actual evapotranspiration, we compared at basin-scale the remote sensing products with long-term actual evapotranspiration inferred from a water-balance (precipitation minus discharge) and deterministic Budyko (aridity and evaporative index relationship). Later, the probabilistic Budyko is calibrated using the adequated remote-sensed actual evapotranspiration and is cross-validated at country, drainage, and basin-scale. Finally, the water availability vulnerability (measured as the relative change of precipitation minus actual evapotranspiration from historical estimates) and associated uncertainty is computed from the probabilistic Budyko along with climate spaces from variations of potential evapotranspiration (from temperature) and precipitation. The main results show that GLEAM, MEAN, and TerraClimate are the highest-ranked products in terms of estimation of long-term mean actual evapotranspiration across basins with low bias, RMSE, and high R. GLEAM and MEAN present lower bias and RMSE, and TerraClimate estimate very well the spatial distribution of actual evapotranspiration (highest-ranked R). On the contrary, Zhang, MODIS16, and SSEBop are less efficient based on most criteria evaluation. Therefore, as reference for actual evapotranspiration, we select MEAN which represents the linear averaging of remotely sensed products. From this perspective, we expect to minimize the negative bias and preserve the spatial resolution from individual actual evapotranspiration products. Achieved the three main long-term variables, we calibrate and cross-validate the probabilistic Budyko in terms of the evaporative index. The evidence suggests that the regional distribution of the Budyko parameter accomplishes errors of +-2% at the country and drainage-scale and +-9% as average at basin-scale. Thus, the probabilistic Budyko framework provides great performance. Based on this evaluation, we figure out that basins located in the Andes, especially in the southern, showed lower critical precipitation change (less than 10%) to increase the vulnerability of water availability by 25%.

This research is part of the multidisciplinary collaboration between British and Peruvian scientists (NERC, COCYTEC).

How to cite: Huerta, A., Lavado, W., and Rau, P.: The vulnerability of water availability in Peru due to climate change: A probabilistic Budyko analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3766, https://doi.org/10.5194/egusphere-egu2020-3766, 2020.

EGU2020-5306 | Displays | CL2.10

Present and future water security under socioeconomic and climate changes in the Vilcanota-Urubamba basin

Andres Goyburo, Pedro Rau, Waldo Lavado, Fabian Drenkhan, and Wouter Buytaert

This research assesses present (2009-2016) and future (until 2100) levels of water security taking into consideration socioeconomic and climate change scenarios using the WEAP (Water Evaluation and Planning) tool for semidistributed hydrological modeling. The study area covers the  Vilcanota-Urubamba basin in the southern Peruvian Andes and presents a complex water demand context as a glacier-fed system.

Current total water demand is estimated in 5.12E+9 m3/year and includes agriculture (6674.17 m3/year), domestic (7.79E+07m3/year), industrial (1.01E+06 m3/year) and energy (5.03e+9 m3/year) consumption. For assessing the current water supply, observed flow data is used to simulate and validate the model (also accounting for glacier melt contribution). The analysis of unmet water demand for the period 2016–2100 was computed using the soil moisture scheme of the WEAP model, which simulates the hydrological cycle and generates future scenarios for water demand. Different scenarios were generated for external driving factors (population growth and increasing agriculture area) and the impact of climate change to evaluate their effect on the current water supply system. 

These results will allow for the first time to evaluate the impact of changes in glacier melt contributions on water security taking into account also changes in water demand.

This study also further explores the importance of incorporating science and policy within a broader study of water security. As a result, it is expected to deliver high spatial resolution water demand maps and adaptation strategies for stakeholders. This research is part of the RAHU project as a new multidisciplinary collaboration between UK and Peruvian scientists.

How to cite: Goyburo, A., Rau, P., Lavado, W., Drenkhan, F., and Buytaert, W.: Present and future water security under socioeconomic and climate changes in the Vilcanota-Urubamba basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5306, https://doi.org/10.5194/egusphere-egu2020-5306, 2020.

EGU2020-5353 | Displays | CL2.10

Atmospheric mechanisms controlling extreme winter precipitation in the Altiplano

Hans Segura, Jhan Carlo Espinoza, Clementine Junquas, Thierry Lebel, Mathias Vuille, Jean-Emmanuel Sicart, and Thomas Condom

During the austral winter (June-August, JJA), precipitation events in the Altiplano (20°S-15°S, > 3000 m.a.s.l.) are uncommon. These events are responsible for damaging road infrastructure and devastating entire crop fields, loss of cattle, and even for the loss of human lives. Thus, an analysis of these events and the understanding of their precursory atmospheric mechanisms are of high importance to diminish their negative impacts. In this study, using 90 rain-gauge stations in the northern Altiplano, we identified days with a precipitation value above the percentile 90 (P90) for the 1979-2014 period. These days were considered as extreme precipitation events. If consecutive single events are separated by a gap of 5 days, we decided to consider those as a new single event. Thus, it was cataloged 129 extreme precipitation events over the northern Altiplano. Moreover, we found that 56 events lasted only for one day (EV1), 28 events for 2 days (EV2), and 45 events for at least 3 days and a maximum of 12 days (EV3). In order to understand the atmospheric mechanisms associated with these extreme events, we used the K-means cluster analysis in the geopotential height at 500 hPa (ERA-Interim) for days inside EV1, EV2 and EV3, respectively. Then, composite analyses of atmospheric circulation at 850, 500 and 200 hPa were done for each cluster group. We observe that two cluster groups in EV1, EV2, and EV3, respectively (98 events in total), are characterized by anomalies of winds, temperature and geopotential height resembling a cutoff low system over the eastern Pacific between 30°S-10°S at 200 and 500 hPa. Over South America, we observed that these events are also associated with southerly cold air intrusions arriving at 20°S and a moistened lower troposphere over the western Amazon. Indeed, the lower troposphere moistening over the western Amazon in previous days seems to be necessary to sustain long-lasting events. One cluster group in EV1 (8 events) and EV2 (6 events), respectively, is associated with southerly cold air intrusions to the east of the Andes originating at high latitudes, and arriving in equatorial regions. In addition, 17 events belonging to EV3 are associated with an anomalous South American Low-Level Jet at 850 hPa and atmospheric anomalies at 200, 500 and 850 hPa, resembling the cutoff low system over the eastern Pacific between 30°S and 10°S.

How to cite: Segura, H., Espinoza, J. C., Junquas, C., Lebel, T., Vuille, M., Sicart, J.-E., and Condom, T.: Atmospheric mechanisms controlling extreme winter precipitation in the Altiplano, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5353, https://doi.org/10.5194/egusphere-egu2020-5353, 2020.

EGU2020-6238 | Displays | CL2.10

A novel classification rainfall type using a clustering approach in the tropical Andes.

Gabriela Urgiles, Johanna Orellana-Alvear, Katja Trachte, Jörg Bendix, and Rolando Célleri

Information on the vertical profile of rainfall is important to improve our knowledge about microphysical processes that govern the formation of the hydrometeors. In addition, the vertical profile helps improving the quantitative precipitation estimation from scanning weather radars and may be useful to improve the parameterization of cloud microphysical processes in numerical models. Usually, rainfall types (e.g, stratiform and convective) are defined by using some rainfall characteristics of its vertical profile such as intensity and velocity. Furthermore, certain thresholds for these variables need to be defined to separate the rainfall classes. However, studies about the vertical profile of rainfall showed that the vertical variability of rainfall highly depends on the local climate and the study area. In consequence, these thresholds are a constraining factor for the rainfall class definitions because they cannot be generalized. Besides, the identification of thresholds can become too subjective and, thus, influence the identification of rainfall types. In regions of complex topography such as the Tropical Andes, rainfall vertical profile studies are very scarce and they show that rainfall classification has similar drawbacks such as the identification of thresholds. Thus, this study aims to develop a new methodology for rainfall events classification by using a data-driven clustering approach based on the k-means algorithm that allows accounting for the similarities of rainfall characteristics (e.g., duration, intensity, drop size distribution) of each rainfall type. The study was carried out using data retrieved from a K-band Doppler Micro Rain Radar (MRR) that records rainfall characteristics such as rainfall intensity, drop velocity, reflectivity profile, drop size distribution (DSD), and liquid water content (LWC). The MRR was located in the tropical Andes, at 2600 m a.s.l., in the city of Cuenca, Ecuador.  Three years of data were available for the study with a temporal resolution of 1 minute.  First, the rainfall events were identified by using three criteria: minimum inter-event, minimum total accumulation, and minimum duration. Then, by using the k-means approach, several iterations with different number of clusters each were evaluated and consequently, three representative rainfall classes were found. These classes showed certain transitions (e.g., for rainfall intensity, velocity and drop size distribution) that separated the rainfall classes. The distributions of these rainfall event characteristics were compared with those found in the literature. This novel classification provided new insights about the variability of the rainfall in this tropical mountain setting and how its characteristics revealed distinctive patterns of the rainfall processes. Finally, since the rain types were identified by a data-driven method, it ensured an objective separation of the rainfall events. Thus, the application of this method in other sites will allow contrasting previous findings regarding the suitability of the tailor-used thresholds for rainfall classification.

How to cite: Urgiles, G., Orellana-Alvear, J., Trachte, K., Bendix, J., and Célleri, R.: A novel classification rainfall type using a clustering approach in the tropical Andes., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6238, https://doi.org/10.5194/egusphere-egu2020-6238, 2020.

EGU2020-9129 | Displays | CL2.10

Precipitation diurnal cycle and associated valley wind circulations over an Andean glacier region (Antizana, Ecuador)

Clementine Junquas, Maria Belen Heredia, Thomas Condom, Jhan Carlo Espinoza, Jean Carlos Ruiz, and Antoine Rabatel

In the tropical Andes, the evolution of the mass balance of glaciers is strongly controlled by the variability of precipitation and humidity transport. It is therefore crucial to better understand the main patterns of precipitation in terms of spatio-temporal distribution at the local scale. In this study, we focus on the region of the Antizana ice cap, located in the Equatorial Andes about 50 km east of the city of Quito (Ecuador). In addition, the Antizana region is located in a very complex zonal climate gradient, with the Pacific Ocean to the west and the humid Amazonian plains to the east, including an area of ​​maximum precipitation on the Amazonian slope, also called "Precipitation hotspot".

In this study, we perform dynamical downscaling using a Regional Climate Model (RCM) to improve the understanding of the atmospheric processes controlling the spatio-temporal variability of precipitation. The WRF (Weather Research and Forecasting) model is used to perform a set of ten experiments with four one-way nesting domains (27km, 9km, 3km, 1km), with the highest resolution domain centered on the Antizana mountain, for the year 2005. For the model validation, we use the 3B42 satellite product of the Tropical Rainfall Measuring Mission (TRMM) at 3-hourly time step, the ORE Antizana meteorological station (SNO GLACIOCLIM, LMI GREATICE) at hourly time step, and 2 meteorological in-situ stations, installed by the Instituto Nacional de Metereología e Hidrologia (INAMHI) in the Antizana region, with a complete chronology of daily precipitation (mm/day) during the 2005 year.

We test different forcings of DEM (Digital Elevation Model), microphysic schemes, Cumulus schemes and convection-permitting simulation, and radiation/slope dependent options. The analysis focuses in particular on how the different representation of thermally driven valley wind circulation can affect the diurnal cycle of precipitation at the ORE Antizana in-situ station. The influence of the diurnal cycle of the regional humidity flux on the mountain precipitation is also analyzed.

How to cite: Junquas, C., Heredia, M. B., Condom, T., Espinoza, J. C., Ruiz, J. C., and Rabatel, A.: Precipitation diurnal cycle and associated valley wind circulations over an Andean glacier region (Antizana, Ecuador) , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9129, https://doi.org/10.5194/egusphere-egu2020-9129, 2020.

EGU2020-11037 | Displays | CL2.10

Spatio-temporal variability of droughts in Peruvian Andes and associated risks related to ENSO

Fiorella Vega-Jacome, Carlos Fernandez-Palomino, and Waldo Lavado-Casimiro

Droughts in Peru are one of the disasters with major losses in economic activities as agriculture or energy production, affecting livelihoods of the population. The occurrence of droughts can be explained by climatic variability of precipitation, where El Niño Southern Oscillation (ENSO) seems to have an important influence. For the first time, this study addresses the spatio-temporal variability, characteristics and trends of droughts in Peruvian Andes for the 1970-2018 period. The regionalization of droughts was performed combining Principal Component Analysis (PCA) and Cluster method, for which the Standardized Precipitation Index (SPI) was used. Finally, a characterization using a trend analysis, correlation with oceanic-atmospheric indices and a drought risk assessment during El Niño Southern Oscillation (ENSO) was performed.

 We found that the spatio-temporal variability of droughts could be best investigated by distinguishing eight homogeneous regions with different regional drought characteristics. Thus, the trend analysis indicates a reduced duration and severity of droughts in the northern Pacific divide and a lower intensity in the south. In addition, the depicted trends seem to indicate increasing droughts in the Altiplano (high plateau) divide. Additionally, considering a decadal analysis of droughts (1970-2010), the number of drought months in the last decade (2000-2010) has reduced in all regions compared to previous decades.

From the drought risk assessment during ENSO, only remarkable results were obtained using the Oceanic Niño Index (ONI). Thus, under positive anomalies of ONI, an increasing risk of droughts was identified in the southern part of the Pacific divide, in the divide of Titicaca and in the south and north of the Amazon divide.

How to cite: Vega-Jacome, F., Fernandez-Palomino, C., and Lavado-Casimiro, W.: Spatio-temporal variability of droughts in Peruvian Andes and associated risks related to ENSO, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11037, https://doi.org/10.5194/egusphere-egu2020-11037, 2020.

EGU2020-11040 | Displays | CL2.10

RAHU Project: Assessing water security and climate change adaptation strategies in the glaciated Vilcanota-Urubamba river basin

Pedro Rau, Wouter Buytaert, Fabian Drenkhan, Waldo Lavado, Juan Jimenez, Nilton Montoya, Vivien Bonnesoeur, Gustavo Valdivia, Walescka Cachay, Andres Goyburo, Eber Risco, Jorge Abad, Jon Mackay, David Hannah, Nicholas Barrand, Martin Siegert, Briggitte Macera, Marcelo Bueno, Carlos Baca, and Cecilia Gianella

The Peruvian Andes are a hotspot of vulnerabilities to impacts in water resources due to the propensity for water stress, the highly unpredictable weather, the sensitivity of glaciers, and the socio-economic vulnerability of its population. In this context, we selected the Vilcanota-Urubamba catchment in Southern Peru for addressing these challenges aiming at our objectives within a particular hydrological high-mountain context in the tropical Andes: a) Develop a fully-distributed, physically-based glacier surface energy balance model that allows for a realistic representation of glacier dynamics in glacier melt projections; b) Design and implement a glacio-hydrological monitoring and data collection approach to quantify non-glacial contributions to water resources and the impact of catchments interventions; c) Mapping of human water use at high spatiotemporal resolution and determining current and future levels of water (in)security; and d) Integrate last objectives in a glacier - water security assessment model and evaluate the tool's capacity to support locally embedded climate change adaptation strategies. 

The RAHU project intends to transform the scientific understanding of the impact of glacier shrinkage on water security and, at the same time, to connect to and inform policy practices in Peru. It follows a "source to tap" paradigm, in which is planned to deliver a comprehensive and fully integrated water resources vulnerability assessment framework for glacier-fed basins, comprising state-of-the-art glaciology, hydrology, water demand characterisation, and water security assessment. It includes glacio-hydrological and water resources monitoring campaigns, to complement existing monitoring efforts of our project partners and collaborators, and new remotely sensed data sets. Those campaigns will be implemented using the principles and tools of participatory monitoring and knowledge co-creation that our team has pioneered in the tropical Andes. The datasets produced by this approach, combined with existing monitoring implemented by our team and collaborators, will allow us to build an integrated water supply-demand-vulnerability assessment model for glacierized basins, and to use this to evaluate adaptation strategies at the local scale. 

This research is part of the multidisciplinary collaboration between British and Peruvian scientists (Newton Fund, Newton-Paulet).

How to cite: Rau, P., Buytaert, W., Drenkhan, F., Lavado, W., Jimenez, J., Montoya, N., Bonnesoeur, V., Valdivia, G., Cachay, W., Goyburo, A., Risco, E., Abad, J., Mackay, J., Hannah, D., Barrand, N., Siegert, M., Macera, B., Bueno, M., Baca, C., and Gianella, C.: RAHU Project: Assessing water security and climate change adaptation strategies in the glaciated Vilcanota-Urubamba river basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11040, https://doi.org/10.5194/egusphere-egu2020-11040, 2020.

EGU2020-11515 | Displays | CL2.10

Snow-Hydrological modeling using remote sensing data in Vilcanota basin, Peru

Eber Risco, Waldo Lavado, and Pedro Rau

Water resources availability in the southern Andes of Peru is being affected by glacier and snow retreat. This problem is already perceived in the Vilcanota river basin, where hydro-climatological information is scarce. In this particular mountain context, any water plan represents a great challenge. To cope with these limitations, we propose to assess the space-time consistency of 10 satellite-based precipitation products (CMORPH–CRT v.1, CMORPH–BLD v.1, CHIRP v.2, CHIRPS v.2, GSMaP v.6, GSMaP correction, MSWEP v.2.1, PERSIANN, PERSIANN–CDR, TRMM 3B42) with 25 rain gauge stations in order to select the best product that represents the variability in the Vilcanota basin. For this purpose, through a direct evaluation of sensitivity analysis via the GR4J parsimonious hydrological model over the basin. GSMap v.6, TRMM 3B42 and CHIRPS were selected to represent rainfall spatial variability according with different statistical criteria, such as correlation coefficient (CC), standard deviation (SD), percentage of bias (%B) and centered mean square error (CRMSE). To facilitate the interpretation of statistical results, Taylor's diagram was used to represent the CC statistics, normalized values of SD and CRMSE.

A distributed degree-day model was chosen to analyse the sensitivity of snow cover simulations and hydrological contribution. The GR4J rainfall-runoff model was calibrated (using global optimization) and applied to simulate the daily discharge and compared with the Distributed Hydrology and Vegetation Model with Glacier Dynamics (DHSVM-GDM) over the 2001-2018 period. Furthermore, the simulated streamflow was evaluated through comparisons with observations at the hydrological stations using Nash–Sutcliffe efficiency and Kling Gupta Efficiency (KGE). The results show that the snow-runoff have increased in recent years, so new water management and planning strategies should be developed in the basin. This research is part of the multidisciplinary collaboration between British and Peruvian scientists (Newton Fund, Newton-Paulet) through RAHU project.

How to cite: Risco, E., Lavado, W., and Rau, P.: Snow-Hydrological modeling using remote sensing data in Vilcanota basin, Peru, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11515, https://doi.org/10.5194/egusphere-egu2020-11515, 2020.

EGU2020-11687 | Displays | CL2.10

High Resolution WRF Regional Climate Modeling for the Andes-Amazon Transition Region: Model Validation Early Results

Juan Pablo Sierra, Clementine Junquas, Jhan Carlo Epinoza, Thierry Lebel, and Hans Segura

The western Amazon and eastern flank of the Andes form what is known as the Amazon-Andes transition region. This region is characterized by the presence of the rainiest area in the Amazon basin with an average precipitation ranging from 6000 to 7000 mm per year. This rainy zone is the result of interactions between large-scale circulation and local features. However, the physical mechanisms controlling this rainfall patterns in the transition region are poorly understood. On the other hand, high precipitation values in the area, along with erosion, sediment transport and the geological mountain uplift help to explain this region as one of the most species-rich terrestrial ecosystems. Nevertheless, accelerated deforestation rates reported both in tropical Andes and central-southern Amazon threat the biodiversity hotspots and can induce alterations in land surface energy and water balances. In this context, the use of regional climate models can shed light on the possible consequences of deforestation on rainfall in the transition region.

The early results presented here are the first step in a work that seeks to gain a better understanding in the mechanisms involved in precipitation generation over the Amazon-Andes transition region, as well as the assessment of deforestation impacts on spatial and temporal rainfall variability during austral summer. The Weather Research and Forecasting (WRF) regional climate model is used with three nested domains. High resolution simulations (1km horizontal grid size) are performed over the key regions of Cuzco and Bolivian slopes. As a perspective,  deforestation scenarios following the land use change trajectory observed during the last decade will be used in future works. The results of this work can help to dimension the consequences of deforestation on key ecosystems such as Andean hotspots.

How to cite: Sierra, J. P., Junquas, C., Epinoza, J. C., Lebel, T., and Segura, H.: High Resolution WRF Regional Climate Modeling for the Andes-Amazon Transition Region: Model Validation Early Results, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11687, https://doi.org/10.5194/egusphere-egu2020-11687, 2020.

EGU2020-12510 | Displays | CL2.10

Exploring nature-based adaptation options for improved water security in the deglaciating Andes of Peru

Fabian Drenkhan, Boris F. Ochoa-Tocachi, Pedro Rau, Walescka Cachay, Nilton Montoya, Waldo Lavado, Vivien Bonnesoeur, Javier Antiporta, Gustavo Valdivia, Francisco Román, and Wouter Buytaert

In the tropical Andes, mountain communities and coastal livelihoods downstream strongly depend on glaciers and Andean ecosystems for their water security. Year-round streamflow from glaciers, high-altitude peat bogs and hydraulic infrastructure buffer water scarcity and discharge variability in many areas. Nonetheless, climatic and non-climatic stressors are altering the hydrological regime and exacerbating human vulnerabilities. In the Vilcanota-Urubamba basin (VUB) in Southern Peru, the overall glacier area has substantially decreased by 37% between 1988 and 2016. At the same time, water demand from growing population, irrigated agriculture and hydropower is considerably increasing. This development bears threats to local water security and several challenges to long-term water management and governance in a context of data scarcity and social conflicts arising from socioenvironmental grievances, and highlights the need for interdisciplinary and interlinked water resource research and management.

In this context, the two projects Water security and climate change adaptation in Peruvian glacier-fed river basins (RAHU) and Natural Infrastructure for Water Security (NIWS) are collaborating at developing adaptation strategies to increase long-term water security in deglaciating basins in Peru. In the face of global environmental change, natural infrastructure – including forests, wetlands, and nature-based solutions – has been promoted as a buffer to attenuate the loss of hydrological ecosystem services caused by accelerated glacier shrinkage. Furthermore, natural infrastructure can provide a complement to man-made ‘grey’ infrastructure enhancing its performance, lifespan, and adaptability and provide multiple defense lines against natural disasters and other climate risks.

Here, we implemented hydrological data collection using participatory monitoring approaches and integrated ancestral and contemporary nature-based solutions. Conservation of natural grasslands can avoid streamflow variability and flashiness caused by common land-use activities such as cultivation and grazing. Flow duration curves show that median flows in cultivated catchments are approximately half those of natural catchments, whereas low flows are up to five times lower but high flows remain virtually the same. Despite being highly promoted, afforestation interventions reduce water yield significantly. High and mean daily flows in afforested catchments are approximately four times lower than in natural grasslands, whilst low flows are between seven to ten times lower. Most catchment management practices, however, are more complex, and involve a combination of interventions. An example of this are pre-Inca infiltration enhancement systems, which divert water from headwater streams onto mountain slopes to increase the yield and longevity of downslope natural springs. Tracer experiments in another study site reveal that water residence times range between 2 weeks and 8 months, with a mean of 45 days, which might be able to increase dry season flow downstream by up to 33%.

Currently, a first Water Management Plan is being implemented in the VUB and part of its headwaters have just been declared a Regional Conservation Area. This progress in local policy and headwater conservation offers new opportunities for the project consortium to provide scientific evidence to stakeholders. Our first findings have particular implications for the implementation of robust adaptation measures for future water management planning embedded into local-national policies in close collaboration with science and society.

How to cite: Drenkhan, F., Ochoa-Tocachi, B. F., Rau, P., Cachay, W., Montoya, N., Lavado, W., Bonnesoeur, V., Antiporta, J., Valdivia, G., Román, F., and Buytaert, W.: Exploring nature-based adaptation options for improved water security in the deglaciating Andes of Peru, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12510, https://doi.org/10.5194/egusphere-egu2020-12510, 2020.

EGU2020-12927 | Displays | CL2.10

Implementation of a flood forecasting system in a transboundary river basin, Peru – Ecuador

Karen Leon, Julia Acuña, Harold Llauca, Waldo Lavado, Wilson Suarez, Jorge Ordoñez, and Oscar Felipe

The Peruvian Service of Meteorology and Hydrology (SENAMHI) provides hydro-climatological hazard information to population and decision-makers about flood forecasting and warning on the whole territory of Peru. For flash floods monitoring, a sub-daily simulation is critical to properly address the response of the watershed and prepare timely flash flood warnings. Over the last years, the city of Tumbes has been affected by the overflowing of Puyango-Tumbes river, which is born in Ecuador and flows to northwestern Peru. For this reason, the aim of this work is to develop an operational sub-daily hydrological forecast service for Puyango-Tumbes river basin.

To establish this forecasting system, we performed a continuous hydrological modelling approach on an hourly time scale for the Puyango-Tumbes basin at El Tigre stream gauge (4710 km2) in a semi-distributed way. We used the Sacramento Soil Moisture Accounting (SAC-SMA) model to simulate rainfall-runoff process and Saint-Venant equations for flow routing. Gridded hourly precipitation (~10 Km) was obtained by merging satellite-based precipitation estimates (IMERG-Early Run and GSMaP Near-Real-Time products) with rain-gauge data applying a simple bias adjustment. The model was calibrated and validated for the 2014/15 - 2018/19 period. Results show good agreement between observed and simulated hydrographs with Nash-Sutcliffe efficiency (NSE) between 0.6 and 0.8, for both products. For the highest floods, the peak is reasonably reached although there is an underestimation of 22% and 38% for calibration and validation period. The best performance was obtained for the SAC-SMA-IMERG scheme; however, sometimes rainfall at the upper Puyango-Tumbes is not well represented.

The flood forecasting operation will be performed on a daily-basis using an hourly meteorological forecast from ETA-SENAMHI climate model, at ~10 Km resolution. During this austral summer, the system will be evaluated and distributed to stakeholders.

How to cite: Leon, K., Acuña, J., Llauca, H., Lavado, W., Suarez, W., Ordoñez, J., and Felipe, O.: Implementation of a flood forecasting system in a transboundary river basin, Peru – Ecuador , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12927, https://doi.org/10.5194/egusphere-egu2020-12927, 2020.

EGU2020-16454 | Displays | CL2.10

Integrating Climate and Socio-Economic Scenarios in a Hydrological Model for the Santa River Basin, Peru

Claudia Teutsch, Faizan Anwar, Jochen Seidel, András Bárdossy, Christian Huggel, Alina Motschmann, Christian D. León, and Fabian Drenkhan

High mountain regions, like the Andes, face various risks due to climate change. In the Santa River catchment in Peru which includes the glaciated Cordillera Blanca, water availability is threatened by many climatic and non-climatic impacts. The water resources in the catchment heavily rely on seasonal precipitation and during the dry season glacier melt water plays an important role. However, both, precipitation patterns and glacier extent are affected by climate change impacts. Additionally, socio-economic changes put further pressure on water resources and hence on water availability.

Within the AguaFuturo Project we established a conceptual integrated water balance model based on a semi-distributed HBV model for the data scarce Santa River catchment. The hydrological model processes are extended by feedback loops for agricultural and domestic water use. The model runs on daily time scale and includes two hydrological response units. One includes the irrigated agricultural areas which are predominately located in the valley of the catchment; the other includes non-irrigated areas and domestic water use.

To assess future water balance challenges we downscaled and disaggregated monthly CORDEX scenarios for 2020-2050 using information from the new Peruvian precipitation dataset PISCO (Peruvian Interpolated data of the SENAMHI’s Climatological and hydrological Observations) for simulations of future changes in hydro-climatology. In the model, these climate scenarios are combined with possible socio-economic scenarios which are translated into time series for domestic and agricultural water demand. The socio-economic scenarios are developed by using the Cross-Impact-Balance-Analysis (CIB), a method used for analyzing impact networks. Using CIB, the interrelations between 15 social, economic and policy descriptors were analyzed and as a result a total of 29 possible consistent scenarios were determined. For further analysis and validation of these scenarios a participatory process was included, involving local experts and stakeholders of the study region.

The climate and socio-economic scenarios are independent and can be combined randomly. The uncertainties of the climatic and socio-economic scenarios are quantified by Monte Carlo simulations.

The output of the model runs is an ensemble of possible future discharges of the Santa River, which can be further analyzed statistically to assess the range of the possible discharges. This evaluation provides an estimate of the probability of water shortages, especially with regard to conflict potential with hydropower production and the large scale irrigated agriculture areas in the adjacent coastal desert which also rely on water from the Santa River.

How to cite: Teutsch, C., Anwar, F., Seidel, J., Bárdossy, A., Huggel, C., Motschmann, A., León, C. D., and Drenkhan, F.: Integrating Climate and Socio-Economic Scenarios in a Hydrological Model for the Santa River Basin, Peru, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16454, https://doi.org/10.5194/egusphere-egu2020-16454, 2020.

EGU2020-17630 | Displays | CL2.10

Agro-climatic observations in Huaraz, Peru – first insights from water, energy and carbon dioxide flux measurements

Lorenz Hänchen, Georg Wohlfahrt, Wolfgang Gurgiser, Fabien Maussion, Pierluigi Calanca, Alejo Cochachín Rapre, Rolando Cruz Encarnación, and Fiorella Quiñonez Collas

Small-scale farming in the Tropical Andes has been increasingly challenged by recent economic growth due to globalization of agriculture and increasing mining activities. Furthermore, in Ancash and its capital Huaraz decreasing water availability and higher water demand are a great concern for sustainable development. Recent studies have investigated the situation of small-scale farmers in hydrological sub-catchments of the Rio Santa Basin around Huaraz between the Coordillera Negra and Blanca using interdisciplinary methods. Their results show a clear disagreement between the perception of climate (or precipitation) change by local farmers and the statistical analysis of meteorological data collected at nearby weather stations. In the framework of the project AgroClim Huaraz (www.agroclim-huaraz.info), our team tries to investigate the reasons of this disparity and to assess the potential vulnerabilities and risks in local small-scale agriculture in rural areas close to Huaraz.

Recently, we installed two automatic weather stations (AWS) and a network of rain gauges (5) representing a broad range of ecosystems and altitudes along a precipitation transect (East to West). In addition, one field site has been equipped with an eddy covariance system (EC) providing continuous energy (latent and sensible heat) and carbon dioxide fluxes, while in other locations, covering the most important crop types in the region, our mobile EcoBot system has been used for periodic observations of latent and sensible heat fluxes and crop development (biomass, vegetation height) since November 2019. To date, these measurements of climate-vegetation interaction are still regularly carried out by local partners in Huaraz.

In this contribution we will (i) report for the first time the EC data, (ii) validate the EcoBot against the EC measurements and (iii) analyse the variability in crop phenology and evapotranspiration (driven by spatial differences in rainfall).

In the future, we aim to use our novel in-situ data to 1) validate remote sensing and reanalysis data, 2) run and calibrate FAOs AquaCrop model and 3) add an open-source (OS) module to AquaCrop OS integrating NDVI data (acquired by EcoBot) to drive it on larger scales with remote sensing data.

How to cite: Hänchen, L., Wohlfahrt, G., Gurgiser, W., Maussion, F., Calanca, P., Cochachín Rapre, A., Cruz Encarnación, R., and Quiñonez Collas, F.: Agro-climatic observations in Huaraz, Peru – first insights from water, energy and carbon dioxide flux measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17630, https://doi.org/10.5194/egusphere-egu2020-17630, 2020.

EGU2020-17876 | Displays | CL2.10

Investigating the interactions between Forest Cover Change and Hydroclimatic patterns in the Bolivian Amazon basin over the last 30 years

Sly Wongchuig Correa, Jhan Carlo Espinoza, Hans Segura, Thomas Condom, and Clémentine Junquas

Large evidences support the strong impacts on rainfall amount and the increasing of dry-season length on the Amazonian forest. All of these effects are usually attributed to large scale atmospheric circulation and to land cover changes as part of anthropogenic effects. In this research we assess statistical and modeling approaches to investigate the interaction between changes in forest cover and hydroclimate processes on a regional and local scale.

Henceforth, the deforestation areas and climatic indexes for the southern Amazon basin (south of 14°S) were evaluated. The deforestation map was estimated for the 1992-2018 period, based on global land cover maps at 300 m of spatial resolution produced by the European Space Agency (ESA) Climate Change Initiative (CCI) by using several remote sensing datasets. The CHIRPS rainfall dataset (P) for the 1981-2018 period was used to estimate the dry day frequency (DDF, P<1mm) and the wet day frequency (WDF, P>10mm). In addition, the mean actual seasonal evapotranspiration (AET) was GLEAM and ET-Amazon evapotranspiration datasets for the 1980-2018 and 2003-2013 periods respectively. In order to determine the local and the regional climatic effect for each pixel of the climatic index (DDF, WDF and AET), the deforestation fraction was estimated considering different spatial radii of influence (20 to 50 km).

The first results indicate a particular pattern in the southern Bolivian Amazon where two groups of areas were identified, considering the common period of analysis (1992-2018). One of them shows a significant relationship between increasing trend of DDF and decreasing trend of WDF while deforestation fraction is high, what mainly occurs during the wet season. In addition, this region is clearly placed in areas with values of deforestation fraction above ~30%, a closest value to the usually estimated Amazon Tipping Point (~40%). Below this value, the second group is also located in regions with positive trends of DDF and negative trends of WDF. This region has probably a strongest link with the large-scale climate.

Considering these preliminary results, the statistical approaches developed in this research could give some insights about the interactions between forest change and the regional hydro climatology, which might improve the understanding of this interaction based on large-scale hydrological modeling.

How to cite: Wongchuig Correa, S., Espinoza, J. C., Segura, H., Condom, T., and Junquas, C.: Investigating the interactions between Forest Cover Change and Hydroclimatic patterns in the Bolivian Amazon basin over the last 30 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17876, https://doi.org/10.5194/egusphere-egu2020-17876, 2020.

EGU2020-18601 | Displays | CL2.10

Past climate and environmental changes in the Central Andes of NW Argentina recorded in Laguna Comedero sediments

Paula Vignoni, Rik Tjallingii, Francisco Córdoba, Birgit Plessen, Gonzalo Torres, Liliana Lupo, Norbert Nowaczyk, and Achim Brauer

Due to the meridional extension and prominent orography, the Central Andes of NW Argentina act as a topographic barrier to the moisture-bearing easterly winds. This result in contrasting climate conditions and a steep E-W rainfall gradient with high precipitation on the eastern flanks and increasing aridity westwards into the Puna plateau. Laguna Comedero is a shallow lake located in the subtropical forest of the Yungas in the eastern flank of the Argentine Eastern Cordillera (24°06'54.7" S - 65°29'7.2" W, 2,035 m a.s.l.). About 80% of the total annual precipitation (~1300 mm, Los Nogales station 1958-1989) occurs between November and March, controlled by the dynamics of the South American Monsoon System (SAMS). This region is considered sensitive to shifts in the SAMS, as well as the superposition of other large-scale phenomena (e.g. El Niño Southern Oscillation, Pacific Decadal Oscillation) but the timing and extent of precipitation changes prior to the instrumental period in this area are still largely unknown.
Here we present a combination of XRF core scanning, CN elemental analyses and stable isotopes of an 11 m-long sediment record from this lake for reconstructing the regional late Holocene climate history in this region of South America. Our results reveal a prominent shift in sedimentation, from detrital brown event-triggered silt and clay deposition and sandy intervals in the lower part of the core to an alternation of gray clastic and black organic-rich intervals in the upper 3.5 m. Below this shift in sedimentation, low TOC values (mean 0.34%) and high values of elements indicative of detrital sediments (e.g. Ti) suggest a dominance of catchment erosion processes. High TOC values of up to 20.5% in the organic-rich intervals in the uppermost 3.5 m likely reflect substantial terrestrial organic matter influx as suggestd by C/N atomic ratios around 17. δ13COM values in these intervals (-28.8 to -22.2‰) reflect the contribution of the Yungas forest (-27.9 to -27.2‰) surrounding the lake, dominated by Alnus acuminata, Polypepis australis, Podocarpus parlatorei, among other subtropical tree species. Alnus forest is related to >1000 mm/yr rainfalls. 
The pronounced alternation of organic-rich and detrital sediments in the upper 3.5 m suggest highly variable lake conditions that might be either influenced by climate and/or catchment changes and is the focus of further investigations. Preliminary dating suggests that the increase in organic matter deposition in the lake occurred at the beginning of the last millennium (ca. AD 1,000). A more detailed chronological framework is in progress including a paleomagnetic reconstruction for this area. 

How to cite: Vignoni, P., Tjallingii, R., Córdoba, F., Plessen, B., Torres, G., Lupo, L., Nowaczyk, N., and Brauer, A.: Past climate and environmental changes in the Central Andes of NW Argentina recorded in Laguna Comedero sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18601, https://doi.org/10.5194/egusphere-egu2020-18601, 2020.

EGU2020-19903 | Displays | CL2.10

The coastal El Niño-Event of 2017 in Ecuador and Peru - a weather Radar analysis

Rütger Rollenbeck, Andreas Fries, Jörg Bendix, Johanna Orellana-Alvear, Mario Guallpa, Franz Pucha, Rodolfo Rodriguez, and Rolando Celleri

The arid coastal region of Ecuador and Peru belong to the regions experiencing the strongest impact of the El-Niño-Phenomenon. In spite of neutral to cold conditions after the decaying 2015/16 El Niño, unexpected by internationl scientists and local authorities alike, in 2017 the region was hit by torrential rain falls causing floodings, erosion and landslides with many fatalities and significant damage to infrastructure.

RadarNetSur (www.radarnetsur.de), initiated in 2012 to 2015 forms the first weather radar network in that region and was capable of monitoring the development of the 2017 event up to its culmination, providing insight into rainfall distribution (resolution of 500 m) on a 5-minute time step. The network consists of 3 X-Band-scanning weather Radars with a range of 60 to 100 km, thus covering 80000 km² from 2° S to 4°S. In 2019 the network was extended far into Peru with a new system in Piura.

We present results of the analysis of the event and compare it to the conditions in the years 2014, 2015 and 2016, to point out spatial patterns and process dynamics, which led to this unusual coastal El-Niño during central Pacific La-Niña conditions. Apparently, the isolated warming of the Niño 1+2 regions off the coast was the main driver of these strong rainfalls, but the local expression of weather patterns is shaped by topographic conditions interacting with the synoptical situation (West wind bursts) and small-scale circulation systems like the sea-breeze and mountain-valley breeze. Most intense rainfall is associated with disturbances in the divergence field which are intensified by changes of the synoptical flow direction.   We assume, that either the conventional understanding of the ENSO-impact on the regional scale is insufficient, or, the ENSO-phenomenon is slowly transitioning into a more complex behavior.

How to cite: Rollenbeck, R., Fries, A., Bendix, J., Orellana-Alvear, J., Guallpa, M., Pucha, F., Rodriguez, R., and Celleri, R.: The coastal El Niño-Event of 2017 in Ecuador and Peru - a weather Radar analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19903, https://doi.org/10.5194/egusphere-egu2020-19903, 2020.

EGU2020-20371 | Displays | CL2.10

Characterising extreme rainfall over mountain regions with a network of tipping bucket rain gauges and GPM satellite data

Wouter Buytaert, Jonathan Paul, and Boris Ochoa-Tocachi and the iMHEA team

Mountain regions such as the Andes and the Himalayas are a hotspot of natural hazards. Many of them, in particular floods, landslides, and soil degradation, are related to extreme rainfall events. However, characterising rainfall is complicated by the extreme spatiotemporal gradients, and the scarcity of in situ observations. Characterising extreme rainfall events is particularly problematic because most existing rainfall records are only available at a low temporal resolution (daily or coarser). Here, we analyse records of a network of 77 tipping bucket rain gauges located in Ecuador, Peru, Bolivia and Nepal, with a data availability ranging between 1 and 10 years.

From the raw data we derive rainfall intensities at 5 and 10 minute intervals using composite cubic spline interpolation and smoothing. We then compare those intensities with instantaneous measurements from the Global Precipitation Measurement (GPM) satellite mission. Although correlations are generally low, it is possible to find significant trends that make it possible to interpolate the observed intensities in space, and to generate rainfall intensity quantile maps for the wider high Andean region.

How to cite: Buytaert, W., Paul, J., and Ochoa-Tocachi, B. and the iMHEA team: Characterising extreme rainfall over mountain regions with a network of tipping bucket rain gauges and GPM satellite data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20371, https://doi.org/10.5194/egusphere-egu2020-20371, 2020.

EGU2020-20432 | Displays | CL2.10

Climate change impacts on biomes and aridity in Peru

Jose Augusto Zevallos Ruiz, Adrian Huerta, Waldo Lavado, Evelin Sabino, Fiorella vega, and Oscar Felipe

In recent years, there has been an increasing interest in estimate future conditions on biomes and aridity due to climate change. Using a new observed-based gridded dataset and remote sensing products, we evaluate the future features in terms of potential biomes (PB) and aridity index (AI) over Peru. 

Ten PBs were established for the present conditions by grouping the ecosystems maps at the national scale. The map presents biomes within areas from 1.08 to 42.44% of total coverage. In order to handle imbalanced data, we designed a calibration and validation scheme for three machine learning algorithms (Random Forest, SVM, and KNN) as follow: first, we perform a gridded search for the best parameters of each model; second, we tested the robustness of each model with a cross validations, checking their f1 score, the confusion matrix and the weighted average precision-recall; finally, we performed a cost-sensitive learning to make more suitable the learning approach for very imbalanced data. The best model is going to be used to predict future conditions of PB. For AI, we evaluate the present trend and quantified the contributions of climate variables to Ai variations. Also, the relationship between AI and vegetative greening was explored. The future change of AI is seen by its spatial variation (migration) of the dryland subtypes.

The preliminary results showed that random forest worked best for the PB imbalanced data, having a 0.84 weighted average in precision and recall metric. The model reproduces 9 of the PB with low error 4.5% and overestimates 34.52 % one of them in the Amazon. Furthermore, there is an increasing slight trend (not significant) of AI at the drainage-scale, mainly in the Pacific. We hypothesize that there is a migration of dryland subtypes from dry to wet areas in the present time. 

This research is part of the project “Apoyo a la Gestión del Cambio Climatico 2da. Fase” financed by The Swiss Agency for Development and Cooperation (SDC).

How to cite: Zevallos Ruiz, J. A., Huerta, A., Lavado, W., Sabino, E., vega, F., and Felipe, O.: Climate change impacts on biomes and aridity in Peru, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20432, https://doi.org/10.5194/egusphere-egu2020-20432, 2020.

EGU2020-20625 | Displays | CL2.10

The annual and diurnal cycles of precipitation over an Equatorial Andean valley and its transition to the Amazon Basin: A case at the Antizana region

Jean Carlos Ruiz, Jhan Carlo Espinoza, Clementine Junquas, Thomas Condom, Marcos Villacís, Pierre Ribstein, Nicolas Le Moine, Lenin Campozano, Andrea Vera, Teresa Muñoz, and Luis Maisincho

The spatiotemporal variability of precipitation over the complex topography of the Andean equatorial regions has recently caught the attention of researchers thanks to improvements in monitoring networks, including high temporal resolution data. Using a set of 38 rain gauges at hourly time step spanning the 2014-2015 period, this work aims to characterize the annual and diurnal cycles over the upper parts of the Guayllabamba (Andean valley) and Napo (transition zone) basins (78.65°W-77.75°W and -0.8S-0°, land area of ~10000 km2). This region drains respectively to Pacific and Amazonian rivers and is of particular interest because the region provides over 30% of the domestic water demand of the city of Quito, and presents a high glacierized volcano, the Antizana.

The annual cycle is characterized through cluster analysis of monthly rainfall showing two groups of stations that respond to bimodal and unimodal seasonal regimes and corresponds to the local boundary between the Pacific and the Amazon basins. The bimodality presents higher rainfall occurring during March-April and October-November, on the other hand, the unimodality presents its maxima in June.

A careful analysis of the evolution of the diurnal cycle during the year is done and results show that stations with bimodal annual regime peaks around 13:00-17:00 LT and in some months a second peak appears around 22:00-06:00 LT. Regarding stations with unimodal annual regime, the diurnal cycle peaks around 10:00 LT-18:00 LT and in addition shifts to 00:00-06:00 LT during June-August.

In general, the annual and diurnal cycles are useful for water management in the study zone, especially with regards to Quito’s water supply. Furthermore, the annual cycle and its relationship with altitude provides new information related to strong and weak precipitation gradients that are useful for hydro-glaciological modelling exercises. And the information on the diurnal cycle can improve some water management practices.

How to cite: Ruiz, J. C., Espinoza, J. C., Junquas, C., Condom, T., Villacís, M., Ribstein, P., Le Moine, N., Campozano, L., Vera, A., Muñoz, T., and Maisincho, L.: The annual and diurnal cycles of precipitation over an Equatorial Andean valley and its transition to the Amazon Basin: A case at the Antizana region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20625, https://doi.org/10.5194/egusphere-egu2020-20625, 2020.

EGU2020-22603 | Displays | CL2.10

A relationship between repiquetes, rainfall and circulation low-level wind regimes over the Andean-Amazon river basin

Manuel Figueroa, Elisa Armijos, Jhan-Carlo Espinoza, Josyane Ronchail, and Pascal Fraizy

Riparian farmers along the Peruvian Amazon River face hydrological events and poor soil conditions that put their low-land crops on high risk of production loss during the flood recession period. One of those hydrological events is a sudden reversal on the river stage known as “repiquete”, which have been poorly studied in terms of its origins. This work analyzes the hydro-meteorological mechanisms over the Andes-Amazon river basins that could produce repiquetes near Iquitos city in Peru. Repiquetes were defined and characterized for the 1996-2018 period by using river stage data from three hydrological gauging stations at Amazon, Marañón and Ucayali rivers. Furthermore, daily rainfall from high spatial resolution CHIRPS (0.05° and 0.25) and TRMM (0.25) data, as well as, daily low-level winds at 850 hPa from ERA-Interim are used to characterize rainfall and large-scale atmospheric patterns associated with repiquetes. Considering that 73 significant repiquetes (reversal > 20cm) occurred in Amazon River, 64.4% of them are preceded by repiquetes only in the Marañón River, 5.5% are preceded by repiquetes only in the Ucayali River, 20.5% are preceded by repiquetes on both rivers and the rest only registered in Amazon River without precursor defined. These results show that the main precursor of repiquetes in Amazon River is the Marañón River. Most of repiquetes are associated with abundant rainfall over the Peruvian and Ecuadorian Andes-Amazon transition region with a remarkable change of northerly winds to southerly winds regime and an easterly flow during five to three days before the beginning of repiquete in Amazon River.

How to cite: Figueroa, M., Armijos, E., Espinoza, J.-C., Ronchail, J., and Fraizy, P.: A relationship between repiquetes, rainfall and circulation low-level wind regimes over the Andean-Amazon river basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22603, https://doi.org/10.5194/egusphere-egu2020-22603, 2020.

CL2.12 – Exploiting Polar Observations to Improve Weather and Climate Predictions

EGU2020-11272 | Displays | CL2.12 | Highlight

YOPPsiteMIP: Year of Polar Prediction site Model Inter-comparison Project

Gunilla Svensson

YOPPsiteMIP is a coordinated process-based model evaluation projects using based on high-frequency multi-variate observations at some selected Arctic and Antarctic supersites, during the Year of Polar Prediction (YOPP). The aim of YOPPsiteMIP is to deepen our understanding on the representation of environmental prediction systems of polar processes, both in the atmosphere, land, sea-ice or ocean components, and in the coupling at their interfaces. Both Arctic and Antarctic sites are selected at key location which host multiple multiple systems deployed for long-term monitoring and suites of instruments (such as lidars, radars, ceilometers, radiometers), that provide detailed measurements characterizing the vertical column of the atmosphere as well as the surface conditions and energy fluxes. These observations extend far beyond the traditional synoptic surface and upper-air observations, and offer the opportunity for deepening our understanding of the physical processes governing the polar environment weather and climate.

The unique open dataset of paired model -output and multi-variate observations enables detailed process-based diagnostics, where the target processes include: the vertical representation of cloud and hydrometeors microphysics, low level (mix-phase) clouds; the representation radiation, turbulence, energy and momentum fluxes; stable boundary layer; atmosphere-snow interaction and ocean-sea ice-atmosphere coupling; ocean mixing; etc.

Several numerical weather prediction and climate model centers participate in the activities and some multimodel evaluation results will be presented and common biases are identified. Activities ongoing and planned for the MOSAiC observational site will also be presented.

How to cite: Svensson, G.: YOPPsiteMIP: Year of Polar Prediction site Model Inter-comparison Project, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11272, https://doi.org/10.5194/egusphere-egu2020-11272, 2020.

EGU2020-5763 | Displays | CL2.12

Measuring model improvement using surface energy budget process relationships: the impact of a new snow model

Jonathan Day, Gabriele Arduini, Linus Magnusson, Irina Sandu, Anton Beljaars, and David Richardson

Energy exchange at the snow-atmosphere interface in winter governs the evolution of temperature at the surface and within the snow, preconditioning the snowpack for melt during spring. This study illustrates a set of diagnostic tools that are useful for evaluating the energy exchange at the Earth surface in a numerical weather prediction model from a process-based perspective using in-situ observations. In particular, a new way to measure model improvement using relationships between different terms in the surface energy budget (SEB) is presented. These process-oriented diagnostics provide a holistic view the realism of the balance of terms in the SEB, ensuring that improvements in headline skill scores, such as 2m temperature, are happening for the right reasons. Correctly capturing such process relationships is a necessary step to achieve reliable weather forecasts.

These diagnostic techniques are applied to assess the impact of a new multi-layer snow scheme in the ECMWF-Integrated Forecast System at two high-Arctic sites (Summit, Greenland and Sodankylä, Finland). The multi-layer scheme is expected to replace a single layer snow scheme enhancing the 2m temperature forecast accuracy and reliability across the northern hemisphere in boreal winter. 

How to cite: Day, J., Arduini, G., Magnusson, L., Sandu, I., Beljaars, A., and Richardson, D.: Measuring model improvement using surface energy budget process relationships: the impact of a new snow model , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5763, https://doi.org/10.5194/egusphere-egu2020-5763, 2020.

EGU2020-22220 | Displays | CL2.12

Characteristics of Cold Air Outbreaks and associated Polar Mesoscale Cyclones in the North-Atlantic region

Annick Terpstra, Ian Renfrew, and Denis Sergeev

Geographically confined, equatorward excursions of cold air masses into ice-free regions account for the majority of oceanic heat loss in key regions for deepwater formation in the North Atlantic. These cold-air outbreaks (CAO) are frequently accompanied by the development of severe mesoscale weather features, such as intense low-level jets and polar lows. Exchange of heat, moisture and momentum between the ocean and atmosphere in response to mesoscale features, either directly, or indirectly via modulating the longevity and intensity of the cold air mass modulates the wind-driven oceanic gyres. Yet, it remains unclear how often mesoscale cyclones accompany cold-air outbreaks, and how mesoscale features modify the air-sea interactions. 

Focusing on two key regions, the Labrador Sea and the Greenland/Norwegian Sea, we outline the temporal evolution of CAO events and associated mesoscale cyclogenesis. We apply objective detection to both CAO events and mesoscale cyclones and introduce an alternative metric to characterize the cold air mass. Despite the nearly 20 degrees difference in latitude, CAOs over both regions exhibit rather similar evolution, surface fluxes, and thermodynamic structure. The large scale configuration during CAO onset comprises a very cold upper level through over the CAO region and a surface cyclone downstream. As the CAO matures the cold air mass extends towards the south-east, accompanied by enhanced surface fluxes and destabilization of the CAO airmass. About 2/3 of the CAO events are accompanied by mesoscale cyclogenesis, with the majority of mesoscale cyclones originating inside the cold air masses. Neither the duration nor the maturity of the CAO event is relevant for the initiation of mesoscale cyclogenesis. Genesis conditions for mesoscale cyclogenesis during CAOs over the Labrador Sea are moister and exhibit stronger surface fluxes compared to their Norwegian Sea counterparts.

How to cite: Terpstra, A., Renfrew, I., and Sergeev, D.: Characteristics of Cold Air Outbreaks and associated Polar Mesoscale Cyclones in the North-Atlantic region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22220, https://doi.org/10.5194/egusphere-egu2020-22220, 2020.

EGU2020-7012 | Displays | CL2.12

Impact study of scatterometer observations with improved representation error in an Arctic data assimilation system

Máté Mile, Roger Randriamampianina, and Gert-Jan Marseille

Nowadays, satellite observations are providing primary information for initial conditions of state-of-the-art numerical weather prediction (NWP) systems and the amount of remote sensing data in the Global Observing System increases rapidly. However, the way such data are assimilated is usually conservative and sub-optimal especially in high resolution limited-area models. Our objective is to improve the use of scatterometer observations from polar-orbiting satellites by taking into account the observation footprint and reducing the observation representation error through the observation operator.

 

The variational assimilation system (including 3D- and 4D-Var) of HARMONIE-AROME is widely used for research and operational NWP purposes by many European countries. In most cases, the HARMONIE-AROME model and its data assimilation are run on higher resolution (corresponding to around 2.5km grid size or smaller) than the effective resolution of some satellite observations (e.g. the effective resolution of scatterometer instruments). The use of ASCAT scatterometer observations is studied in an Arctic data assimilation system (AROME-Arctic) and a new observation operator (called supermodding) is evaluated in terms of scatterometer representation error. The results are demonstrated through data assimilation diagnostics, observing system experiments and case studies focusing on the challenges of the Arctic weather forecasting as well.

How to cite: Mile, M., Randriamampianina, R., and Marseille, G.-J.: Impact study of scatterometer observations with improved representation error in an Arctic data assimilation system, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7012, https://doi.org/10.5194/egusphere-egu2020-7012, 2020.

EGU2020-2010 | Displays | CL2.12

Structure of weather prediction errors in stably-stratified atmospheric conditions

Igor Esau, Stephen Outten, and Mikhail Tolstykh

Stably-stratified atmospheric conditions still challenge numerical weather forecast, especially in high latitudes where they are frequently observed all year around. In stably-stratified atmosphere, surface is colder than air above. Such conditions suppress vertical turbulent mixing and may lead to surface layer decoupling in numerical models. Enhanced mixing could prevent decoupling but being implemented without sufficient care results in damped response of the surface layer meteorological variables on fluctuations of the weather conditions. In this study, we investigate weather prediction errors related to such a damped response. We run a group of operational prediction models (HIRLAM-HARMONIE, SL-AV) with a set of different turbulence parametrizations that includes HARATU, TOUCANS, and pTKE schemes. The results are compared with real weather observations and idealized GABLS setups proposed for a high latitude domain. We found that the systematic warm temperature bias in the models is caused by too slow response of the modelled temperature on the implied cooling. The largest (and quickly growing) errors are found over the first few hours of cooling, whereas in longer perspective the errors diminish as the model equilibrates with more stationary weather conditions. We develop a theory that may explain the observed structure of weather prediction errors. The explanation is based on the well-known coupling between the turbulent mixing intensity and the thickness of the mixed layer embedded into the parametrization of the mixing length scale. The required enhanced mixing could be provided by the energy-flux balance scheme by Zilitinkevich et al., but it does not reduce the warm bias as it makes the mixed deeper and less responsive. We propose more accurate limitations on the mixed layer thickness to improve the temporal structure of the surface layer temperature response in the weather prediction models.

How to cite: Esau, I., Outten, S., and Tolstykh, M.: Structure of weather prediction errors in stably-stratified atmospheric conditions , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2010, https://doi.org/10.5194/egusphere-egu2020-2010, 2020.

EGU2020-20313 | Displays | CL2.12

The vertical structure of atmospheric rivers and their impact in the Atlantic sector of Antarctica from the Year of Polar Prediction observations

Irina V. Gorodetskaya, Penny M. Rowe, Heike Kalesse, Tiago Silva, Naohiko Hirasawa, Holger Schmithüsen, Patric Seifert, Sang-Jong Park, Yonghan Choi, and Raul R. Cordero

The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH) had a special observing period (SOP) from November 16, 2018 to February 15, 2019, during which observational activity during austral summer in the Antarctic was greatly enhanced. More than 2000 additional radiosondes were launched during this 3-month period, roughly doubling the amount from routine programs. Further, several YOPP-endorsed projects contributed to enhanced data collection on various atmospheric and oceanic properties, including the Characterization of the Antarctic Atmosphere and Low Clouds (CAALC) project at King George Island (Antarctic Peninsula) and the Dynamics, Aerosol, Cloud And Precipitation Observations in the Pristine Environment of the Southern Ocean (DACAPO-PESO) field experiment in Punta Arenas (Sub-Antarctic Chile). Here we use the YOPP-SH-SOP observations to investigate the vertical structure of atmospheric rivers (ARs), along with their impact on cloud properties, radiative budgets, and precipitation in the Atlantic sector of Antarctica, including coastal areas of sub-Antarctic Chile, the Antarctic Peninsula and Dronning Maud Land (DML).

ARs can transport anomalous heat and moisture from subtropical regions to the Antarctic, with important impacts on Antarctic surface mass balance. On the Antarctic Peninsula, the surface mass balance can be especially sensitive to AR events during summer, when surface temperatures vary around zero and frequent transitions occur between snow and rainfall. The importance of ARs for the coastal DML is also linked to precipitation events during summer, but is more strongly linked to extreme snowfall events (rather than rainfall), and such events have resulted in anomalously high snow accumulation in DML in recent years.

We will present case studies that demonstrate how combining extensive ground-based observations and radiosoundings from stations in the sub-Antarctic and Antarctic allow for detailed characterization of the temporal evolution of AR events. Analysis of the observations and model sensitivity studies (using Polar-WRF) with additional radiosonde assimilation show the influence of ARs on the Antarctic atmospheric, cloud properties and surface precipitation, as well as the challenges in correctly forecasting conditions during such events. Further, we use SOP enhanced radiosonde programs at Neumayer and Syowa stations to investigate the AR signatures in the atmospheric vertical profiles in the DML coastal areas. The AR events observed during YOPP-SH are put in the context of the longer-term radiosonde observations using 10 years (from 2009 to 2019) of the Integrated Global Radiosonde Archive (IGRA) Version 2 data. The increased frequency of radiosonde observations during YOPP was crucial for elucidating the important contribution these rare events make to the moisture transport towards Antarctica. They also showed an added value in improving the forecast of weather conditions during AR events, which have important consequences for air, ship and station operations in Antarctica.

How to cite: Gorodetskaya, I. V., Rowe, P. M., Kalesse, H., Silva, T., Hirasawa, N., Schmithüsen, H., Seifert, P., Park, S.-J., Choi, Y., and Cordero, R. R.: The vertical structure of atmospheric rivers and their impact in the Atlantic sector of Antarctica from the Year of Polar Prediction observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20313, https://doi.org/10.5194/egusphere-egu2020-20313, 2020.

EGU2020-15418 | Displays | CL2.12

Long-term Arctic homogenized radiosondes

Michael Blaschek, Federico Ambrogi, and Leopold Haimberger

Radiosonde measurements are potentially valuable indicators of upper air climate change because of their unique long-term availability and their high vertical extent and resolution. The radiosonde network, however, is not a long-term stable measurement system, since it was designed for operational use. Changes in the observation system are frequent and surf the purpose of competitive daily weather prediction, but result in more or less clear breakpoints in the observed long-term time series. These artificial biases need to be removed. We apply a bias adjustment scheme for radiosonde temperatures and humidity based on departures from a recent reanalysis, ERA5 potentially back to 1950. Newly digitized and recovered radiosonde data have been used within ERA5 for the first time. We present long-term bias adjustments and trends as preliminary results. In particular, we focus on the water vapour transport into the Arctic as a result of polar amplification and meridional heat exchange.

How to cite: Blaschek, M., Ambrogi, F., and Haimberger, L.: Long-term Arctic homogenized radiosondes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15418, https://doi.org/10.5194/egusphere-egu2020-15418, 2020.

EGU2020-17902 | Displays | CL2.12

Recent Developments of the Year of Polar Prediction

Thomas Jung, Helge Goessling, Kirstin Werner, Sara Pasqualetto, and Katharina Kirchhoff

The Polar Prediction Project (PPP, www.polarprediction.net) is a 10-year (2013–2022) endeavour initiated by the World Meteorological Organization’s (WMO) World Weather Research Programme (WWRP). Aim of this wide international endeavour is to promote cooperative weather and sea-ice research enabling development of improved environmental prediction services for the polar regions, on time scales from hours to seasonal.

The PPP flagship activity, the Year of Polar Prediction (YOPP), has been launched in mid-2017 as a coordinated two-year period of intensive observing, modelling, verification, user-engagement and education activities. Since then, scientists and operational forecasting centers worldwide have closely worked together to observe, model, and improve forecasts of the Arctic and Antarctic weather and climate systems. During three Special Observing Periods in the Arctic and Antarctic, routine observations such as radiosonde launches and buoy deployments were enhanced (in the Arctic: 1 February ­– 31 March 2018 and 1 July – 30 September 2018, in the Antarctic: 16 November 2018 – 15 February 2019), aiming to close gaps in atmospheric and sea-ice observations and to enable significant progress in environmental prediction capabilities for the polar regions and beyond.

in mid-2019, PPP has moved into its Consolidation Phase which will be key for the success of the initiative. Central activities and projects such as the YOPPSiteMIP initiative or the EU-project APPLICATE will significantly contribute to improving forecasts of weather and sea-ice conditions in polar regions and to make them available to its user community. Data collected during YOPP are available for everyone through the YOPP Data Portal (https://yopp.met.no/) to feed into improved environmental forecasting systems.

In this presentation, an overview of the main achievements accomplished during the three YOPP Special Observing Periods, current activities including two more Special Targeted Observing Periods (TOPs) as well as prospects for future evaluations of PPP are provided.

How to cite: Jung, T., Goessling, H., Werner, K., Pasqualetto, S., and Kirchhoff, K.: Recent Developments of the Year of Polar Prediction , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17902, https://doi.org/10.5194/egusphere-egu2020-17902, 2020.

EGU2020-10333 | Displays | CL2.12 | Highlight

Prospects for the APPLICATE Project on advanced prediction in the Arctic and beyond

Dragana Bojovic and Luisa Cristini and the APPLICATE Consortium

The effects of a changing climate are manifesting rapidly, particularly in the Arctic region, and these changes are potentially influencing weather and climate in the mid-latitudes. To understand the scope of these changes and their impacts, it is fundamental to have a better understanding of these processes and work on enhancing weather and climate predictions. It is with this motivation that a European consortium of scientists set out to advance our capability to predict the weather and climate in the Arctic and beyond in the framework of the EU-funded H2020 project APPLICATE. The project started in 2016 with a budget of 8M€ with the objective of improving the representation of key processes in coupled atmosphere-sea ice-ocean models, delivering enhanced numerical weather forecasts, seasonal to interannual climate predictions and centennial climate projections. The project put particular emphasis on the linkages between the Arctic and mid-latitudes, which are explored through a coordinated multi-model approach using coupled atmosphere-ocean models. APPLICATE is contributing to the design of the future Arctic observing system to improve our capacity to reanalyse the climate system and enhance models’ predicting skills, establishing collaborations with other programmes (e.g., within the EU-Polar Cluster). The project has also strong stakeholder engagement and training components, which see the dissemination of the scientific results as a priority and aim to enhance the communication scope of the project and add to knowledge co-production. 

In this presentation, we will give an overview of APPLICATE activities as part of our effort to understand changes in the Arctic and their far-reaching impacts for both environment and communities. We will summarise the main achievements of the project since the start in November 2016 and outline the work of the various task teams until the end of the project. The results achieved so far demonstrate a vibrant engagement of young researchers in the field of climate science and the important role the project plays in developing these scientists.

How to cite: Bojovic, D. and Cristini, L. and the APPLICATE Consortium: Prospects for the APPLICATE Project on advanced prediction in the Arctic and beyond, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10333, https://doi.org/10.5194/egusphere-egu2020-10333, 2020.

EGU2020-13725 | Displays | CL2.12

Observations and simulations from an arctic fjord and valley environment in Svalbard

Marius Opsanger Jonassen, Siiri Wickström, John Cassano, Timo Vihma, Thomas Spengler, Stephan Kral, Lukas Frank, Joachim Reuder, Teresa Valkonen, Marvin Kähnert, and Jørn Kristiansen

We present results from a set of field campaigns conducted in an arctic valley and fjord environment in central Spitsbergen, Svalbard. These field campaigns, which are conducted as part of a graduate class at the University Centre in Svalbard (UNIS), address a range of phenomena typical for the arctic atmospheric boundary layer using both observational and numerical means. These phenomena include low-level jets, cold pools, drainage flows, and air-sea interactions, several of which typically are challenging to accurately model. On the observational side, we utilise a range of sensors and instrumentation platforms, such as portable weather stations, a tethersonde (anchored weather balloon), small temperature sensors (TinyTags), sonic anemometers, automatic weather stations, and drones. As of this year, the sensor suite will also constitute a wind lidar and a microwave temperature profiler. The resulting datasets represent a unique model-independent data set from a region where observations are otherwise sparse. On the numerical side, we utilise data from the high-resolution (2.5 km horizontal grid spacing) AROME-Arctic weather prediction model. AROME Arctic is run operationally by the Norwegian Meteorological Institute (MET Norway) for a domain covering Northern Fennoscandia, larger parts of the Barents Sea, and Svalbard. We use the model data both to plan our fieldwork and for interpreting our observations. In turn, we use the observations for improving our understanding of the mentioned phenomena and also for validating the model.

How to cite: Jonassen, M. O., Wickström, S., Cassano, J., Vihma, T., Spengler, T., Kral, S., Frank, L., Reuder, J., Valkonen, T., Kähnert, M., and Kristiansen, J.: Observations and simulations from an arctic fjord and valley environment in Svalbard, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13725, https://doi.org/10.5194/egusphere-egu2020-13725, 2020.

EGU2020-3560 | Displays | CL2.12

Validating snow surface radiative transfer models between 89 and 243GHz using airborne observations over Arctic tundra

Kirsty Wivell, Melody Sandells, Nick Rutter, Stuart Fox, Chawn Harlow, and Richard Essery

Satellite microwave radiances in atmospheric sounding bands, such as the 183GHz water vapour band, are an important source of data for Numerical Weather Prediction. However, these observations are frequently discarded in polar regions as they are also sensitive to the surface, and there is large uncertainty in the background surface emissivity which depends on the microphysical properties of the snowpack. We evaluate simulations of brightness temperature and emissivity from the Snow Microwave Radiative Transfer (SMRT) model for Arctic tundra snow at frequencies between 89 and 243GHz to assess the potential of being able to assimilate observations at key sounding frequencies, such as 183GHz. In-situ measurements of the surface snowpack were collected for 36 snow pits in Trail Valley Creek, near Inuvik, Canada during the March 2018 Measurements of Arctic Cloud, Snow, and Sea Ice nearby the Marginal Ice Zone (MACSSIMIZE) campaign, a collaboration between the Met Office, Northumbria University, Edinburgh University and the Universite de Sherbrooke. These snowpack measurements provide realistic microphysical snow properties as input to SMRT. We present the evaluation of SMRT simulations against surface-based radiometer observations and airborne observations taken with the Microwave Airborne Radiometer Scanning System (MARSS) and International Submillimetre Airborne Radiometer (ISMAR) on the Facility for Airborne Atmospheric Measurements (FAAM) BAe 146 research aircraft.

How to cite: Wivell, K., Sandells, M., Rutter, N., Fox, S., Harlow, C., and Essery, R.: Validating snow surface radiative transfer models between 89 and 243GHz using airborne observations over Arctic tundra, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3560, https://doi.org/10.5194/egusphere-egu2020-3560, 2020.

EGU2020-9047 | Displays | CL2.12

Arctic atmospheric surface layer in spring during expedition “Transarctica-2019”

Irina Makhotina, Alexander Makshtas, and Vasilii Kustov

Polar expedition “Transarctica-2019” worked in the northern part of the Barents Sea in April 2019. One of the main goals was to study the interaction processes in the system “atmosphere – sea ice – ocean upper layer”. Complex synchronous observations in atmosphere, snow-ice cover and ocean were performed. Present study describes characteristics of atmospheric surface layer and heat balance of snow-ice cover during drift of RV “Akademik Treshnikov” to the north of the Archipelagos Franz Josef Land and Svalbard, in the area 80 – 82N, 30 – 45E, in comparison with observations at drifting station “North Pole-35”, worked in the same area in April 2008, and Research station “Ice Base Cape Baranova” in April 2019.

The characteristics of the near-ice atmospheric layer and energy exchange processes during the drift of the expedition Transarctica-2019 were significantly affected by the presence of clouds and the state of the ice cover. The influence of these factors led to decrease of radiative cooling of the surface, formation of warmer and wetter atmospheric boundary layer and to a weakening of the turbulent exchange between the atmosphere and the snow-ice cover.

Comparison of energy exchange characteristics calculated for the Bolshevik Island (79° N) and area, where expedition “Transarctica 2019” worked, showed good agreement between the monthly averaged values and trends in heat fluxes, despite the fact that in the first case the underlying surface was land surface, and in the second - sea ice cover.

Significantly different conditions were observed in the area of the drifting station “North Pole-35”, drifted in April 2008 about 300 km to the north of the “Transarctica 2019” area. The older and thicker sea ice cover and frequent occurrence of cloudless days, characterized by negative long-wave balance, caused here cooling of the surface, formation of a stable boundary layer, and large values of the sensible heat flux compared to observed during the expedition 2019. Position of “Transarctica-2019” to the south of the massifs of old and thick ice, in an area, characterized by medium-thick ice and, as consequence, more intense heat flux through sea ice cover, as well as the presence of leads, determined higher air and surface temperatures and relative humidity.

The work supported by the Ministry of Science and Higher Education of the Russian Federation (project no. RFMEFI61619X0108).

How to cite: Makhotina, I., Makshtas, A., and Kustov, V.: Arctic atmospheric surface layer in spring during expedition “Transarctica-2019”, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9047, https://doi.org/10.5194/egusphere-egu2020-9047, 2020.

EGU2020-13771 | Displays | CL2.12

Sea ice and atmosphere interactions and predictability: preliminary results using HadGEM3

Daniela Flocco, Ed Hawkins, Leandro Ponsoni, Francois Massonnet, Daniel Feltham, and Thierry Fichefet

Arctic sea ice extent has steadily declined in the past 30 years. Aside from the global impact on climate change, regional information on the sea ice presence and on its impact on oceanic and atmospheric patterns has witnessed a growing interest. There is a growing need for seasonal-to-decadal timescale climate forecasts to help inform local communities and industry stakeholders.

Here we examine the influence of sea-ice thickness observations on the predictability of the sea-ice and atmospheric circulation. We perform paired sets of ensembles with the HadGEM3 GCM starting from different initial conditions in a present-day control run. One set of ensembles start with complete information about the sea-ice conditions, and one set have degraded information. We investigate how the pairs of ensembles predict the subsequent evolution of the sea-ice, sea level pressure and circulation within the Arctic and beyond with the aim of quantifying the value of sea-ice observations for improving predictions.

How to cite: Flocco, D., Hawkins, E., Ponsoni, L., Massonnet, F., Feltham, D., and Fichefet, T.: Sea ice and atmosphere interactions and predictability: preliminary results using HadGEM3, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13771, https://doi.org/10.5194/egusphere-egu2020-13771, 2020.

Sea ice models have become essential components of weather, climate and ocean models. The reliability of process studies, environmental forecasts and climate projections alike depend on a realistic representation of sea ice. Developing and evaluating sea ice models requires methods for both large scales and fine-scale geomorphological structures such as linear kinematic features (LKF). We introduce a Multiscale Directional Analysis (MDA) method that diagnoses distributions of LKF orientation and intersection angles. The MDA method is different from previous methods in that it (a)  takes into account the width of LKFs instead of estimating the orientation of centerlines; (b) separates curve-like features from point-like features providing the opportunity to reach a unified definition of LKF in both numerical and observational fields; (c) estimates scale-dependent intersection angles.

How to cite: Mohammadi Aragh, M., Losch, M., and Goessling, H.: Comparing Arctic Sea Ice Model Simulations to Satellite observations by Multiscale Directional Analysis of Sea Ice Deformation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18293, https://doi.org/10.5194/egusphere-egu2020-18293, 2020.

EGU2020-21647 | Displays | CL2.12

Present temperature, precipitation and rain-on-snow climate in Svalbard

Siiri Wickström, Marius O. Jonassen, John Cassano, Timo Vihma, and Jørn Kristiansen

Potentially high-impact warm and wet winter conditions have become increasingly common in recent decades in the arctic archipelago of Svalbard. In this study, we document present 2m temperature, precipitation and rain-on-snow (ROS) climate conditions in Svalbard and relate them to different atmospheric circulation (AC) types. For this purpose, we utilise a set of observations together with output from the high resolution numerical weather prediction model AROME-Arctic. We find that 2m median temperatures vary the most across AC types in winter and spring, and the least in summer. Southerly and southwesterly flow is associated with 10th percentile 2m temperatures above freezing in all seasons. In terms of precipitation, we find the highest amounts and intensities with onshore flow over open water. Sea ice appears to play a strong role in the local variability in both 2m temperature and precipitation. ROS is a frequent phenomenon in the study period, in particular below 250 m ASL. In winter, ROS only occurs with AC types from the southerly sector or during the passage of a low pressure centre or trough. Most of these events occur during southwesterly flow, with a low pressure center west of Svalbard.

 

How to cite: Wickström, S., Jonassen, M. O., Cassano, J., Vihma, T., and Kristiansen, J.: Present temperature, precipitation and rain-on-snow climate in Svalbard, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21647, https://doi.org/10.5194/egusphere-egu2020-21647, 2020.

EGU2020-21750 | Displays | CL2.12

Impact of assimilation of radiosonde and UAV observations on numerical weather prediction analyses and forecasts in the Arctic and Antarctic

Timo Vihma, Tuomas Naakka, Qizhen Sun, Tiina Nygård, Michael Tjernström, Marius Jonassen, Roberta Pirazzini, and Ian Brooks

Weather forecasting in the Arctic and Antarctic is a challenge above all due to rarity of observations to be assimilated in numerical weather prediction (NWP) models. As observations are expensive and logistically challenging, it is important to evaluate the benefit that additional observations could bring to NWP.

Considering the Arctic, in this study the effects of the spatial coverage of the network on numerical weather prediction were evaluated by comparing radiosonde observations from land station taken from Integrated Global Radiosonde Archive (IGRA) and radiosonde observations from expeditions in the Arctic Ocean with operational analyses and background fields (12‐hr forecasts) of the European Centre for Medium Range Weather Forecasts (ECMWF). The focus was on 850 hPa level temperature for the period January 2016 – September 2018. Comparison of the analyses and background fields showed that radiosoundings had a remarkable impact on improving operational analyses but the impact had a large geographical variation. In particular, radiosonde observations from islands (Jan Mayen and Bear Island) in the northern North Atlantic and from Arctic expeditions substantially improved analyses suggesting that those observations were critical for the quality of analyses and forecasts. Comparison of two cases with and without assimilation of radiosonde sounding data from expeditions of Icebreaker Oden in 2016 and 2018 in the central Artic Ocean showed that satellite observations were not able to compensate for the large spatial gap in the radiosounding network. In the areas where the network is reasonably dense, the density of the sounding network was not the most critical factor for the quality of background fields. Instead, the quality of background field was more related to how radiosonde observations were utilized in the assimilation and to the quality of those observations.

Considering the Antarctic, we applied radiosonde sounding and Unmanned Aerial Vehicles (UAV) observations from an RV Polarstern cruise in the ice-covered Weddell Sea in austral winter 2013 to evaluate the impact of their assimilation in the Polar version of the Weather Research and Forecasting (Polar WRF) model. Our experiments revealed small or moderate impacts of radiosonde and UAV data assimilation. In any case, the assimilation of sounding data from both radiosondes and UAVs improved the analyses of air temperature, wind speed, and humidity at the observation site for most of the time. Further, the impact on the results of 5-day long Polar WRF experiments was often felt over distances of at least 300 km from the observation site. All experiments succeeded in capturing the main features of the evolution of near-surface variables, but the effects of data assimilation varied between different cases. Due to the limited vertical extent of the UAV observations, the impact of their assimilation was limited to the lowermost 1-2 km layer, and assimilation of radiosonde data was more beneficial for modelled sea level pressure and near-surface wind speed. Considering the perspectives for technological advance, atmospheric soundings applying UAV have a large potential to supplement conventional radiosonde sounding observations.

The differences in the results obtained for the Arctic and Antarctic are discussed.

How to cite: Vihma, T., Naakka, T., Sun, Q., Nygård, T., Tjernström, M., Jonassen, M., Pirazzini, R., and Brooks, I.: Impact of assimilation of radiosonde and UAV observations on numerical weather prediction analyses and forecasts in the Arctic and Antarctic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21750, https://doi.org/10.5194/egusphere-egu2020-21750, 2020.

EGU2020-11160 | Displays | CL2.12

Impact of non-Arctic observations on the AROME-Arctic regional model

Rogerr Randriamampianina

In the framework of the Applicate project (https://applicate.eu), ECMWF (European Centre for Medium-Range Weather Forecasts) performed global (Bormann et al. 2019) and Arctic (Lawrence et al. 2019) observing system experiments. Use of the results of these experiments as lateral boundary conditions (LBC) for our regional model opens opportunity to study the following: 1) the impact of observations through regional data assimilation (DA); 2) the impact of observations that are assimilated in a global model through LBC in a regional model; 3) the impact of global loss of observations in a regional model; and 4) the impact of non-Arctic observations in an Arctic regional model.

In the framework of the Alertness project, we performed experiments for the two special observation periods (SOP) 1 and 2 and found considerable impact (significant for some cases) of both conventional and satellite observations through both regional DA and LBC. So far, the impact of non-Arctic observations on our Arctic regional model AROME-Arctic analyses and forecasts was checked during SOP1 with microwave radiance only. The impact was found to be positive, especially on day-2 forecasts.

In this presentation, the impact of other non-Arctic observations (conventional and satellite) on our regional model AROME-Arctic will be discussed through different forecast skill scores verification.

How to cite: Randriamampianina, R.: Impact of non-Arctic observations on the AROME-Arctic regional model , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11160, https://doi.org/10.5194/egusphere-egu2020-11160, 2020.

CL2.44 – Convection-permitting atmospheric modelling

EGU2020-2361 | Displays | CL2.44

Using a convection permitting model ensemble for projecting future change in high-impact events

Elizabeth Kendon, Giorgia Fosser, and Steven Chan

For the first time internationally a model at a resolution on par with operational weather forecast models has been used for national climate scenarios. As part of the UK Climate Projections (UKCP) project, an ensemble of 12 projections at 2.2km resolution have been carried out over the UK. These were launched in September 2019, with the aim of providing an improved simulation of extreme precipitation and also other high-impact events at local scales for the coming decades. At such high (2.2km) resolution, convection can be represented explicitly (‘permitted’) without the need for a parameterisation scheme, leading to a much more realistic representation of hourly precipitation characteristics, including extremes. In this talk initial results from the UKCP local (2.2km) projections will be presented. This includes new understanding of changes in winter mean precipitation, as well as projected changes in hourly precipitation extremes and the frequency of hot spells. I will also discuss remaining outstanding issues and the future outlook for convective-scale climate modelling.

How to cite: Kendon, E., Fosser, G., and Chan, S.: Using a convection permitting model ensemble for projecting future change in high-impact events, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2361, https://doi.org/10.5194/egusphere-egu2020-2361, 2020.

EGU2020-8435 | Displays | CL2.44

Using a dew point temperature scaling framework to interpret changes in hourly extremes from convection-permitting model simulations

Geert Lenderink, Erik van Meijgaard, Hylke de Vries, Bert van Ulft, Renaud Barbero, and Hayley Fowler

While summer rain storms are very intermittent, chaotic and influenced by multiple atmospheric drivers, some statistics of observed short duration precipitation actually display surprisingly simple, regular behaviour. As an example, 10-min rainfall extremes derived from Dutch climate data show a dependency of 13% per degree over an almost 20-degree dew point temperature range. Similar behaviour has also been found in hourly precipitation observations. Each degree of warming reflects 6-7% more moisture in the air,  following from the well-known Clausius-Clapeyron (CC) relation which is the cornerstone to understand and quantify the influence of climate change on precipitation extremes.  According to the above finding, however, precipitation intensities may be increasing with temperature at a rate twice the commonly expected CC rate. In this presentation we will use output from a number of 10-year simulations for present-day and future climate with the convection permitting model HCLIM-AROME to investigate how hourly extremes respond to warming in both a pseudo global warming (PGW) and a GCM driven setup. In particular, we use the scaling diagram -- different percentiles of the rainfall distribution, usually the 90, and 99th conditioned on the occurrence of rain, as a function of dew  point temperature -- as a analysis environment. Focus will be on how the scaling diagram is affected by climate change, and what information can be derived from these changes in scaling. While changes in the scaling diagram between present-day and future climate are in general consistent with a CC prediction, evidence of super CC behaviour, between 10 and 14 % per degree dew point, is also present. The same applies to changes in the most extreme events from the simulations, which show super CC behaviour in both PGW and GCM driven setups when scaled with the appropriate dew point temperature change. 

How to cite: Lenderink, G., van Meijgaard, E., de Vries, H., van Ulft, B., Barbero, R., and Fowler, H.: Using a dew point temperature scaling framework to interpret changes in hourly extremes from convection-permitting model simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8435, https://doi.org/10.5194/egusphere-egu2020-8435, 2020.

EGU2020-10506 | Displays | CL2.44

Evaluation of extreme precipitation over the Nordic region using a convection-permitting regional climate model

Erika Toivonen, Danijel Belušić, Emma Dybro Thomassen, Peter Berg, Ole Bøssing Christensen, Andreas Dobler, Anita Verpe Dyrrdal, Jan Erik Haugen, Kirsti Jylhä, Erik Kjellström, Oskar Landgren, Petter Lind, David Lindstedt, Dominic Matte, Antti Mäkelä, Jonas Olsson, Rasmus Anker Pedersen, Fuxing Wang, and Wei Yang

Extreme precipitation events have a major impact upon our society. Although many studies have indicated that it is likely that the frequency of such events will increase in a warmer climate, little has been done to assess changes in extreme precipitation at a sub-daily scale. Recently, there is more and more evidence that high-resolution convection-permitting models (CPMs) (grid-mesh typically < 4 km) can represent especially short-duration precipitation extremes more accurately when compared with coarser-resolution regional climate models (RCMs).

This study investigates sub-daily and daily precipitation characteristics based on hourly output data from the HARMONIE-Climate model at 3-km and 12-km grid-mesh resolution over the Nordic region between 1998 and 2018. The RCM modelling chain uses the ERA-Interim reanalysis to drive a 12-km grid-mesh simulation which is further downscaled to 3-km grid-mesh resolution using a non-hydrostatic model set-up.

The statistical properties of the modeled extreme precipitation are compared to several sub-daily and daily observational products, including gridded and in-situ gauge data, from April to September. We investigate the skill of the model to represent different aspects of the frequency and intensity of extreme precipitation as well as intensity–duration–frequency (IDF) curves that are commonly used to investigate short duration extremes from an urban planning perspective. The high grid resolution combined with the 20-year-long simulation period allows for a robust assessment at a climatological time scale and enables us to examine the added value of high-resolution CPM in reproducing precipitation extremes over the Nordic region. Based on the tentative results, the high-resolution CPM can realistically capture the characteristics of precipitation extremes, for instance, in terms of improved diurnal cycle and maximum intensities of sub-daily precipitation.

How to cite: Toivonen, E., Belušić, D., Thomassen, E. D., Berg, P., Christensen, O. B., Dobler, A., Dyrrdal, A. V., Haugen, J. E., Jylhä, K., Kjellström, E., Landgren, O., Lind, P., Lindstedt, D., Matte, D., Mäkelä, A., Olsson, J., Pedersen, R. A., Wang, F., and Yang, W.: Evaluation of extreme precipitation over the Nordic region using a convection-permitting regional climate model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10506, https://doi.org/10.5194/egusphere-egu2020-10506, 2020.

EGU2020-2687 | Displays | CL2.44

Precipitation projections of the first multi-model ensemble of regional climate simulations at convection permitting scale

Emanuela Pichelli, Erika Coppola, Nikolina Ban, Filippo Giorgi, Paolo Stocchi, Antoinette Alias, Danijel Belušić, Segolene Berthou, Cecile Caillaud, Rita M. Cardoso, Steven Chan, Ole Bøssing Christensen, Andreas Dobler, Hylke de Vries, Klaus Goergen, Elizabeth J. Kendon, Klaus Keuler, Geert Lenderink, Torge Lorenz, Aditya N. Mishra, Hans-Juergen Panitz, Christoph Schär, Pedro MM. Soares, Heimo Truhetz, and Jesus Vergara-Temprado

We present a multi-model ensemble of regional climate model scenario simulations run at scales allowing for explicit treatment of convective processes (2-3km) over historical and end of century time slices, providing an overview of future precipitation changes over the Alpine domain within the convection-permitting CORDEX-FPS initiative. The 12 simulations of the ensemble have been performed by different research groups around Europe. The simulations are compared with high resolution observations to assess the performance over the historical period and the ensemble of 12 to 25 km resolution driving models is used as a benchmark.

An improvement of the representation of fine scale details of the analyzed fields on a seasonal scale is found, as well as of the onset and peak of the summer diurnal convection. An enhancement of the projected patterns of change and modifications of its sign for the daily precipitation intensity and heavy precipitation over some regions are found with respect to coarse resolution ensemble. A change of the amplitude of the diurnal cycle for precipitation intensity and frequency is also shown, as well also a larger positive change for high to extreme events for daily and hourly precipitation distributions. The results  are challenging and promising for further assessment of the local impacts of climate change.

How to cite: Pichelli, E., Coppola, E., Ban, N., Giorgi, F., Stocchi, P., Alias, A., Belušić, D., Berthou, S., Caillaud, C., Cardoso, R. M., Chan, S., Christensen, O. B., Dobler, A., de Vries, H., Goergen, K., Kendon, E. J., Keuler, K., Lenderink, G., Lorenz, T., Mishra, A. N., Panitz, H.-J., Schär, C., Soares, P. MM., Truhetz, H., and Vergara-Temprado, J.: Precipitation projections of the first multi-model ensemble of regional climate simulations at convection permitting scale, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2687, https://doi.org/10.5194/egusphere-egu2020-2687, 2020.

EGU2020-1376 | Displays | CL2.44

Sensitivity of high-resolution precipitation to physics parameterization options in WRF over equatorial regions

Martina Messmer, Santos J. González-Rojí, Christoph C. Raible, and Thomas F. Stocker

Precipitation patterns and climate variability in East Africa and Western South America present high heterogeneity and complexity. This complexity is a result of large-scale and regional controls, such as surrounding oceans, lakes and topography. The combined effect of these controls has implications on precipitation and temperature, and hence, on water availability, biodiversity and ecosystem services. This study focuses on the impact of different physics parameterization in high-resolution experiments performed over equatorial regions with the Weather Research and Forecasting (WRF) model, and how these options affect the representation of precipitation in those regions.

As expected, weather and climate in equatorial regions are driven by physical processes different to those important in the mid-latitudes. Hence, it is necessary to test the parameterizations available in the WRF model. Several sensitivity simulations are performed over Kenya and Peru nesting the WRF model inside the state-of-the-art ERA5 reanalysis. A cascade of increasing grid resolutions is used in these simulations, reaching the spatial resolutions of 3 and 1 km in the innermost domains, and thus, convection permitting scales. Parameterization options of the planetary boundary layer (PBL), lake model, radiation, cumulus and microphysics schemes are changed, and their sensitivity to precipitation is tested. The year 2008 is simulated for each of the sensitivity simulations. This year is chosen as a good representative of precipitation dynamics and temperature, as it is neither abnormally wet or hot, nor dry or cold over Kenya and Peru. The simulated precipitation driven by the ERA5 reanalysis is compared against station data obtained from the WMO, and over Kenya additionally against observations from the Centre for Training and Integrated Research in ASAL Development (CETRAD).

Precipitation is strongly underestimated when adopting a typical parameterization setup for the mid-latitudes. However, results indicate that precipitation amounts and also patterns are substantially improved when changing the cumulus and PBL parameterisations. This strong increase in the simulated precipitation is obtained when using the Grell-Freitas ensemble, RRTM and the Yonsei University schemes for cumulus, long-wave radiation and planetary boundary layer, respectively. During some summer months, the accumulated precipitation is improved by up to 100 mm (80 %) compared to mid-latitudes configuration in several regions of the domains (near the Andes in Peru and over the flatlands in Kenya). Additionally, because the 1- and 2-way nesting options show a similar performance with respect to precipitation, the 1-way nesting option is preferred, as it does not overwrite the solutions in the parent domains. Hence, discontinuous solutions related to switching off the cumulus parameterization can be avoided.

How to cite: Messmer, M., González-Rojí, S. J., Raible, C. C., and Stocker, T. F.: Sensitivity of high-resolution precipitation to physics parameterization options in WRF over equatorial regions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1376, https://doi.org/10.5194/egusphere-egu2020-1376, 2020.

EGU2020-13559 | Displays | CL2.44

Surrogate climate change projections for the Lake Victoria region with a convection-permitting model.

Jonas Van de Walle, Oscar Brousse, Roman Brogli, Matthias Demuzere, Wim Thiery, and Nicole P.M. van Lipzig

Extreme weather is posing constant threat to more than 30 million people living near Lake Victoria or depending on its resources. Thousands of fishermen die every year by severe thunderstorms and associated water currents, while hazardous over-land thunderstorms largely affect people living inland, continuously facing flood risks. These risks call for better understanding of such climate extremes over the region. Climate models are a useful tool to gain insight in the complex behaviour of thunderstorms, especially when simulated at convection-permitting resolution. Such simulations, explicitly resolving deep convection at fine resolutions, have been shown to improve the representation of extreme events in many parts of the world, also in equatorial East-Africa (Finney et al., 2019; Kendon et al., 2019; Van de Walle et al., 2019). As a response, the CORDEX-Flagship Pilot Study “climate extremes in the Lake Victoria basin” (ELVIC) initiative is currently setting up an ensemble of convection-permitting simulations over the region.

At this stage, future climate projections are needed to assess the impact of anthropogenic climate change on extreme weather the region. Therefore, a surrogate global warming approach following Schär et al. (1996), Kröner et al. (2016), Liu et al. (2016) and Rasmussen et al. (2017) has been applied to a convection-permitting COSMO-CLM simulation. In this approach, the lateral boundary conditions from the ERA5 (~31 km resolution) reanalysis are perturbed in accordance with the recent CMIP6 ensemble-mean end-of-century SSP5 8.5 climate change scenario. This approach confers three major advantages over the more conventional methods. First, by perturbing with the ensemble-mean, it excludes uncertainties of GCMs without the need for a time and computational intensive high resolution ensemble approach. Second, it avoids including present-day circulation biases. Third, no intermediate nesting steps are necessary, as the perturbed ERA5 allows a direct downscaling to the convection-permitting climate projection.

Besides the methodology, results for the Lake Victoria basin will be presented. Although the occurrence of extreme over-lake precipitation in the present-day climate is mostly controlled by large- and mesoscale atmospheric dynamics (Van de Walle et al., 2019), its future intensification is mainly attributed to increased humidity (Thiery et al., 2016). Furthermore, the effect of changed large-scale dynamics is assessed, as not only temperature and humidity, but also wind forcing is modified.

How to cite: Van de Walle, J., Brousse, O., Brogli, R., Demuzere, M., Thiery, W., and P.M. van Lipzig, N.: Surrogate climate change projections for the Lake Victoria region with a convection-permitting model., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13559, https://doi.org/10.5194/egusphere-egu2020-13559, 2020.

EGU2020-15837 | Displays | CL2.44

Numerical modeling towards the sub-kilometer scale: The potential for regional reanalysis

Arianna Valmassoi, Jan Keller, Petra Friederichs, and Andreas Hense

In recent years convection-permitting models are increasingly often used for retrospective climate studies. Besides the better reproduction of atmospheric processes, the increase in resolution allows for a more accurate representation of land-surface heterogeneities and thus a more realistic depiction of smaller scale characteristics. The work presented here investigates the potential benefits of higher model resolutions on the atmospheric state estimates in possible future regional reanalysis data sets.

Specifically, we employ the ICOsahedral Non-hydrostatic model ICON (the current operational NWP model of the German Meteorological Service DWD) in its Limited Area Mode (ICON-LAM) with a LETKF data assimilation framework.
Simulations are conducted for a free run (dynamical downscaling) and a data assimilation (DA) one for various horizontal resolutions from the operational 2.1 kilometers towards finer resolutions of 1 kilometer and below. In addition, different land surface data sets are used as lower boundary conditions in order to explore their impact under the chosen horizontal resolutions. These experiments are conducted for Central Europe and Germany for the month of June 2019 which includes several extreme events, e.g., heatwave, heavy precipitation.

The presentation evaluates the simulations against non-assimilated observations for the free and DA experiments. The impact of the land-surface heterogeneity and resolution are quantified on both atmospheric and soil variables to account for possible feedback processes. Particular attention is given to the effects on the vertical atmospheric structure and precipitation generation.

How to cite: Valmassoi, A., Keller, J., Friederichs, P., and Hense, A.: Numerical modeling towards the sub-kilometer scale: The potential for regional reanalysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15837, https://doi.org/10.5194/egusphere-egu2020-15837, 2020.

EGU2020-432 | Displays | CL2.44

A Seasonally Varying Phenology for High Resolution Simulations with the COSMO-CLM Model

Eva Nowatzki, Jan-Peter Schulz, Jean-Marie Bettems, Jürg Luterbacher, and Merja Tölle

The energy and water cycle of the regional climate is influenced by the phenological development of the vegetation through albedo, sensible and latent heat flux changes. This influences near surface temperature, precipitation and ultimately the boundary layer structure. The phenological stages in turn depend on temperature, day length, water availability and net primary productivity variations. Therefore, vegetation should play an important role in climate simulations. The current implementation of the seasonal vegetation development in the regional climate model COSMO-CLM (CCLM, COSMO 5.0 clm15), represented in the model by the leaf area index (LAI), the root depth or plant coverage, assumes a static, annually recurring cycle. In reality, it varies from year to year depending on the environmental conditions. In particular, the phenology will change with climate change modifying the environment. In this study, we implement the approach of Knorr et al. (2010) to improve the representation of the phenology in CCLM with 3 km horizontal resolution by temperature, day length and water availability. Here, the tuning parameters of the growth rate for grass is adapted from Schulz et al. (2015). Convection-permitting single column simulations are performed over the Lindenberg Meteorological Observatory, the FACE measuring site at Linden close to Gießen, and the TR32 measuring site at Selhausen close to Jülich in Germany. Comparisons of LAI results with observations show significantly improved correlations compared to simulations with the standard phenology over the period from 1999 to 2015. The reaction of the LAI due to years with extreme warm winter and spring or years with extreme dry summer is improved as well. A warmer beginning of the year causes an earlier start of the growing season, whereas a drier summer reduces the LAI due to water limitation. It is also shown, that lower LAI values lead to decreases of latent heat fluxes in the model. The mean amount of strong precipitation events (> 20 mm) is closer to the observations with the new phenology compared to the standard phenology. Further seasonally varying phenology for different plant functional types and its net primary productivity will be implemented in future work.

 

Ackowledgement:

Computational resources were made available by the German Climate Computing Center (DKRZ) through support from the Federal Ministry of Education and Research in Germany (BMBF). We acknowledge the funding of the German Research Foundation (DFG) through grant nr. 401857120.

Literature:

Knorr, W. et al., 2010. Carbon cycle data assimilation with a generic phenology model. Journal of Geophysical Research: Biogeosciences, 115(G4).

Schulz, J.-P., Vogel, G. & Ahrens, B., 2015. A new leaf phenology for the land surface scheme TERRA of the COSMO atmospheric model. COSMO Newsletter No. 15, p.21-29.

How to cite: Nowatzki, E., Schulz, J.-P., Bettems, J.-M., Luterbacher, J., and Tölle, M.: A Seasonally Varying Phenology for High Resolution Simulations with the COSMO-CLM Model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-432, https://doi.org/10.5194/egusphere-egu2020-432, 2020.

Numerical weather prediction (NWP) models generally display comparatively low predictive skill in the Arctic. Particularly, the large impact of sub-grid scale, parameterised processes, such as surface fluxes, radiation or cloud microphysics during high-latitude weather events pose a substantial challenge for numerical modelling. Such processes are most influential during mesoscale weather events, such as polar lows, often embedded in cold air outbreaks (CAO), some of which cause high impact weather. Uncertainty in Arctic weather forecasts is thus critically dependent on parameterised processes. The strong influence from several parameterised processes also makes model forecasts particularly susceptible to compensation of errors from different parameterisations, which potentially limits model improvement.
Here we analyse model output of individual parameterised tendencies of wind, temperature and humidity during Arctic high-impact weather in AROME-Arctic, the operational NWP model used by the Norwegian Meteorological Institute Norway for the European Arctic. Individual tendencies describe the contribution of each applied physical parameterisation to a respective variable per model time step. We study a CAO-event taking place during 24 - 27 December 2015. This intense and widespread CAO event, reaching from the Fram Straight to Norway and affecting a particularly large portion of the Nordic seas at a time, was characterised by strong heat fluxes along the sea ice edge. 
Model intern definitions for boundary layer type become apparent as a decisive factor in tendency contributions. Especially the interplay between the dual mass flux and the turbulence scheme is of essence here. Furthermore, sensitivity experiments, featuring a run without shallow convection and a run with a new statistical cloud scheme, show how a physically similar result is obtained by substantially different tendencies in the model.

How to cite: Kähnert, M., Valkonen, T. M., and Sodemann, H.: Diagnosing factors in parameterised and resolved convection with physical tendency output in AROME-Arctic during a Cold-Air Outbreak event, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7610, https://doi.org/10.5194/egusphere-egu2020-7610, 2020.

EGU2020-9158 | Displays | CL2.44

Assessing Sting-Jets in Convection-Permitting Climate Simulations

Colin Manning, Elizabeth Kendon, Hayley Fowler, Nigel Roberts, and Ségolène Berthou

This study assesses the added-value offered by a regional convection-permitting climate model (CPM) in its representation of sting-jets (SJs); a mesoscale slanted core of strong winds within a Shapiro-Keyser type of cyclone that can lead to extremely damaging surface wind speeds close to southern side of a cyclone’s centre. Low-resolution climate models cannot resolve SJs, and so estimates of risk posed by extreme winds due to SJs are difficult to determine and will likely be underestimated in coarse-resolution climate simulations.

We analyse three 10-year simulations from the UK Met Office, run at a 2.2km resolution over a European domain. The simulations include a hindcast driven by the ERA-Interim reanalysis dataset (ERAI) for the period 2001-2010, as well as a present day (2001-2010) and future simulation (2100-2109) that follows the RCP8.5 scenario. Both climate simulations are driven by a 25km GCM. To diagnose potential SJ storms in each simulation, we firstly identify cyclone tracks with a cyclone tracking algorithm and apply an objective indicator that identifies the warm seclusion of a Shapiro-Keyser cyclone and the slanted core of strong winds of the sting-jet.

Within this presentation, we will present the objective indicator as well as results of the added value seen in the CPM. In order to identify any added value of the CPM, we analyse differences between the CPM and its respective driving data, in terms of storm severity metrics and their future projections.  An example metric used is the Storm Severity Index that quantifies the overall severity of a storm. In all simulations, the conditional PDF of SSI for sting-jet storms is shifted towards higher values compared to PDF of the SSI from all storms within the studied domain. However, we see little difference in the SSI derived from the CPM and its respective driving model/reanalysis when CPM wind speeds are upscaled to the respective driving reanalysis/GCM grid. In further analysis, we will look to explore the added value at a local scale on the native CPM grid.

How to cite: Manning, C., Kendon, E., Fowler, H., Roberts, N., and Berthou, S.: Assessing Sting-Jets in Convection-Permitting Climate Simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9158, https://doi.org/10.5194/egusphere-egu2020-9158, 2020.

EGU2020-9167 | Displays | CL2.44

Future response of precipitation extremes over the Nordic region in a convection-permitting regional climate model

Petter Lind, Danijel Belušić, Erik Kjellström, Fuxing Wang, Erika Toivonen, Rasmus A. Pedersen, Dominic Matte, and Andreas Dobler

There is an increased need for more detailed climate information from impact researchers, stakeholders and policy makers for regional-to-local climate change assessments. In order to design relevant and informative planning strategies on these scales it is important to have reliable climate data and information on high spatial O(1km) and temporal (daily to sub-daily) scales. Such high-resolution data is also beneficial for climate impact modellers as input to their models, e.g. hydrological or urban models that operate on regional to local scales. It has been established that regional climate models (RCMs) provide added value compared to coarser global climate models (GCMs) or re-analysis (e.g. ERA-Interim). However, RCMs with standard spatial resolution O(10 − 50km) still suffer from inadequacies in representing important regional-to-local climate phenomena and characteristics, both from the implied ”smoothening” effect within each grid cell which limits the representation of fine scale surface forcings, and the need to parameterize small-scale processes like atmospheric convection. The latter particularly invokes uncertainties in future climate responses of short-duration precipitation extremes such as flash-floods. Here, we compare 20-year simulations with a very high resolution (3 km grid spacing) convection permitting regional climate model (CPRCM) with a standard high-resolution (12 km grid spacing) convection parameterized RCM and their abilities to simulate the climate characteristics of the Nordic region in Europe, with particular focus on precipitation extremes. The study covers both recent past (with boundary data from ERA-Interim and the EC-Earth GCM) and the end of the 21st century (boundary data from EC-Earth using the RCP8.5 radiative forcing scenario). The high model grid resolution combined with the extensive simulated time period which enables assessment on climatological time scales makes this study one of very few for this region.

How to cite: Lind, P., Belušić, D., Kjellström, E., Wang, F., Toivonen, E., Pedersen, R. A., Matte, D., and Dobler, A.: Future response of precipitation extremes over the Nordic region in a convection-permitting regional climate model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9167, https://doi.org/10.5194/egusphere-egu2020-9167, 2020.

EGU2020-9898 | Displays | CL2.44

Sensitivity of the WRF – HAILCAST model to microphysics and PBL parameterization shemes

Barbara Malečić, Damjan Jelić, Kristian Horvath, Karmen Babić, Petra Mikuš Jurković, Nataša Strelec Mahović, and Maja Telišman Prtenjak

Hail is a significant convective storm hazard in Croatia, often causing property and crop damage. The existing analysis, based on hailpad network data, shows that western and central regions of Croatia have a significant frequency of high-intensity hail events.

Advances in computational power and recent developments in atmospheric modeling have enabled the use of convection-permitting models (CPM) that can partially resolve deep convective events such as thunderstorms and rain showers. However, hail remains a difficult phenomenon to model or forecast since CPMs are still not able to fully resolve processes involved in producing hail. One way to address this issue is by embedding a physically-based one-dimensional hail model called HAILCAST within a CPM. Here, the HAILCAST model is embedded within the Weather Research and Forecasting (WRF) model.

The selected hail event is analyzed using WRF-HAILCAST model simulations. HAILCAST forecasts the maximum expected hail diameter using a profile of the vertical updraft, temperature, liquid and ice water content from a given WRF timestep and grid columns. Here, a set of numerical convection-permitting experiments are performed to assess the sensitivity of the results to different microphysics and planetary boundary layer (PBL) parameterization schemes and to provide guidance for WRF-HAILCAST tuning. The results are verified by observational (hailpad, hail observations) data as well as with radar, lightning and satellite measurements where available.

How to cite: Malečić, B., Jelić, D., Horvath, K., Babić, K., Mikuš Jurković, P., Strelec Mahović, N., and Telišman Prtenjak, M.: Sensitivity of the WRF – HAILCAST model to microphysics and PBL parameterization shemes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9898, https://doi.org/10.5194/egusphere-egu2020-9898, 2020.

EGU2020-15911 | Displays | CL2.44

Simulated hailstorms over Switzerland in May 2018 in current and future climate conditions

Andrey Martynov, Timothy Raupach, and Olivia Martius

Several remarkable hailstorms have occurred on the territory of Switzerland during the month
of May, 2018.
This period has been simulated, using the WRF4.0 model at a convection-permitting
resolution (1.5 km), using different microphysical schemes (Thompson, Morrison, P3).
The surrogate climate change approach has been used for imitating the climate conditions,
corresponding to the end of the 21st century (CMIP5 model data, RCP8.5 scenario).
The HAILCAST-1D model output has been used as a measure of simulated hail size and 5-
minute 3-D radar reflectivity field has been used for cell identification and tracking.
Hailstorms produced in the current climate and in surrogate climate change simulations have
been examined using neighborhood methods and a storm-tracking algorithm. Current-climate
simulated hailstorms were compared with the ground observations and MeteoSwiss radar
data.
The influence of microphysical schemes to the characteristics of simulated hailstorms has
been studied. 

How to cite: Martynov, A., Raupach, T., and Martius, O.: Simulated hailstorms over Switzerland in May 2018 in current and future climate conditions , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15911, https://doi.org/10.5194/egusphere-egu2020-15911, 2020.

EGU2020-10550 | Displays | CL2.44

Extreme rainfall event in Crimea: Cloud-resolving modeling and radar observations

Anatolii Anisimov, Vladimir Efimov, Margarita Lvova, Viktor Popov, and Suleiman Mostamandi

We present a case study on extreme rainfall event in Crimea in September 2018. The event was caused by extratropical cyclone forming above the Black Sea. The cyclone approached the Crimean Mountains from the south, producing over 100 mm of rainfall in Yalta on September 6 and causing a flash flood. In the mountains, about 140 mm of rainfall was reported. 

To study this extreme event, we use the WRF model v.4.0.1 forced by the boundary conditions from ECMWF operational analysis with the spatial resolution of approximately 10 × 10 km. The model was run for 8 days of September 1 – 8, and 5 microphysical schemes were tested (WDM6, Morrison, Milbrandt, NSSL, and Thompson). Other model parameters were set identical to CONUS configuration suite. The simulations were done for two one-way nested convective-resolving domains with spatial resolution of 2.7× 2.7 km and 0.9 × 0.9 km. The simulations were verified using the meteorological radar observations in Simferopol airport and GPM measurements.

All of the microphysical schemes substantially underestimate the amount of rainfall reaching the ground compared to observations. However, several schemes (Milbrandt, Morrison, and WDM6) do add value to the forecasts, producing significantly larger amount of rainfall compared to the driving model that almost completely missed it on the local scale. WDM6 performs best to capture the proper location of the squall line and to reproduce the rainfall orographic enhancement in the mountains. The amount of rainfall in the child domain was also slightly larger compared to the parent one. Despite the rainfall underestimation, we also show that the simulated reflectivity patterns are in good agreement with observations, although the convective cores are wider and less intense compared to the observed by the radar.

How to cite: Anisimov, A., Efimov, V., Lvova, M., Popov, V., and Mostamandi, S.: Extreme rainfall event in Crimea: Cloud-resolving modeling and radar observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10550, https://doi.org/10.5194/egusphere-egu2020-10550, 2020.

EGU2020-13144 | Displays | CL2.44

Convection-permitting present-day climatological simulation with WRF over Bavaria

Emily Collier and Thomas Mölg

Climate impact assessments require information about climate change at regional and ideally local scales. Traditionally, this information has been obtained using statistical methods, precluding the linkage of local climate changes to large-scale drivers in a process-based way. As part of recent efforts to investigate the impact of climate change on forest ecosystems in Bavaria, Germany, within the BayTreeNet project, we developed a high-resolution atmospheric modelling dataset, BAYWRF, for the region of Bavaria over the thirty-year period of September 1987 to August 2018. The open-source community-developed atmospheric model employed in this study, WRF, was configured with two nested domains of 7.5- and 1.5-km grid spacing centered over Bavaria and forced at the outer lateral boundaries by ERA5 reanalysis data. Based on a shorter evaluation period of September 2017 to August 2018, we evaluate two aspects of the simulations: (i) we investigate the influence of using grid-analysis nudging; and (ii) we assess model biases compared with an extensive observational data at both two-hourly and daily mean temporal resolutions. Then, we present a brief overview of the full dataset, which will provide a unique and valuable tool for investigating climate change in Bavaria with high interdisciplinary relevance. Minimally subsetted data from the finest resolution WRF domain are available for download at daily temporal resolution from a public repository at the Open Science Foundation.

How to cite: Collier, E. and Mölg, T.: Convection-permitting present-day climatological simulation with WRF over Bavaria, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13144, https://doi.org/10.5194/egusphere-egu2020-13144, 2020.

EGU2020-21747 | Displays | CL2.44

On the urban effects in high resolution weather forecast and regional climate simulations

Tomas Halenka, Michal Belda, Peter Huszar, Jan Karlicky, and Tereza Novakova

When downscaling to higher resolution, which is common trend in operational weather forecast, air-quality prediction as well as regional climate modeling, capturing the urban effects properly becomes of primary importance to describe the impact of cities and urban structures on weather, climate and air-quality. This is necessary for proper assessment of not only impacts in the cities, but the effectiveness of adaptation and mitigation options applied within cities. It is valid not only for extreme heat waves impact prediction, but as well in air-quality prediction and in long term perspective in connection to climate change impacts. This provides the background for the project within Operational Program Prague - The Pole of Growth “Urbanization of weather forecast, air-quality and climate scenarios for Prague”, shortly URBI PRAGENSI.

In the comparison of different urban parameterizations in WRF and RegCM we demonstrate the importance of urban models in the high resolution simulations, especially under conditions of heat waves. There are differences in the impacts of such parameterizations in different models, but basically all are able to capture the effects of urban heat island in these simulations, which can be quite significant and achieve up to about 8-10 °C difference between the city and its vicinity for large cities during night time, but even in smaller cities like the City of Prague (about 1.5M), it can be more than 5°C. More detailed analysis of the effects in terms of energy balance in the city and remote areas in high resolution simulations will be presented, as well as the impacts on other parameters, especially those connected to air-quality like mixing layer height, stability, etc., where the proper choice of the parameterization really matters and simplistic option like bulk in WRF rather fails.

CORDE FPS on urbanization, which is under preparation, will be introduced with its aims and potential tasks.

How to cite: Halenka, T., Belda, M., Huszar, P., Karlicky, J., and Novakova, T.: On the urban effects in high resolution weather forecast and regional climate simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21747, https://doi.org/10.5194/egusphere-egu2020-21747, 2020.

There is actually no limitation of current high-resolution weather model for producing simulation and forecast of convection at kilometer and infra-kilometer horizontal resolutions. However, the disappointing results as well as the associated huge amount of computer resources required may lead to focus on Large Eddy Simulation model instead. However, the use of LES is not trivial and required a long and non-portable adjustment over the region of interest. Also, it is difficult to use in operational mode for daily forecast since they require specific inputs.

In the other side, pushing the current regional or Limited Area Model towards very high resolution is a convenient way to reach explicit resolution of convective process for instance. However, an explicit simulation is not a guarantee of a realistic result mainly due to the fact that initial condition is crucial as well as all other descriptions of the environment (soil, vegetation, sst, etc) and use of correct parameterization schemes.

For instance, within the WRF model framework, one can identify more than 4000 set of parameterizations plus all the scheme adjustments and threshold associated to.

However, a physically based analyze of what it is necessary for a realistic and explicit convection simulation may conduct a physicist user to define its “ideal” physics with what it already exists in the model. It may conduct to so-called unrealistic model requests in term of computation requirement regarding the radiative, the turbulence and the microphysics schemes but it does works with HPC systems. This kind of parameterization will be presented here and used with a very realistic vertical circulation into convective systems with convective updraft and downdraft modelling, from few meters up to several kilometers height.

How to cite: messager, C. and honnorat, M.: Non-reasonable but efficient use of schemes in current model to improve realistic explicit convection modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13855, https://doi.org/10.5194/egusphere-egu2020-13855, 2020.

EGU2020-17888 | Displays | CL2.44

The effect of horizontal diffusion parameterization in convection-permitting REMO-NH simulations over Germany

Thomas Frisius, Daniela Jacob, Armelle Reca Remedio, Kevin Sieck, and Claas Teichmann

Moving towards convection permitting simulations up to few kilometers scale are emerging solutions to the challenge and complexities in simulating different convective phenomena especially over mountainous regions. In this study we execute sensitivity experiments with the non-hydrostatic regional climate model REMO-NH at convection permitting resolution (~3km). We use this model in three setups where different parameterization schemes for horizontal diffusion are tested. In the first setup “DIFF2” we utilize the standard 2nd order diffusion while the second setup “DIFF4” applies 4th order diffusion. The higher order has a smaller impact on larger scales so that the atmospheric fields exhibit more details, especially in regions with high convective activity. In the third setup “TURB3D”, REMO-NH runs with a new 3D Smagorinsky-type turbulence scheme instead of the artificial diffusion schemes. Though turbulent horizontal diffusion is of second order in this setup, it incorporates a spatially and temporally varying exchange coefficient so that flows with little deformation remain unaffected. The domain of the simulations driven with EURO-CORDEX boundary data covers Germany and the time integration spans the year 2006.

Selected cases reveal a better representation of convective elements in DIFF4 and TURB3D when compared with DIFF2. We cannot compare these individual cases directly to observations since REMO-NH is not a reanalysis but a climate model. However, the spatial precipitation fields deduced from DWD radar data have characteristics which are more similar to DIFF4 and TURB3D than to DIFF2. More details are resolved in DIFF4 and TURB3D since the diffusion mainly act at the smallest spatial scales resolved by the model. DIFF2 smoothes convective activity drastically so that it appears in the form of unrealistically wide convective cells. On the other hand, the statistics of precipitation (seasonal average, standard deviation and 95th percentile) show a better agreement with observations in the simulation DIFF2 and TURB3D. TURB3D appears to be the best compromise regarding the simulation of precipitations fields. However, TURB3D exhibits a warm bias in the 2m temperature field in autumn and winter. Further model development may help to overcome this issue.

How to cite: Frisius, T., Jacob, D., Reca Remedio, A., Sieck, K., and Teichmann, C.: The effect of horizontal diffusion parameterization in convection-permitting REMO-NH simulations over Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17888, https://doi.org/10.5194/egusphere-egu2020-17888, 2020.

EGU2020-14870 | Displays | CL2.44

UKCP: Understanding uncertainty in future changes in precipitation extremes at convection-permitting scale

Giorgia Fosser, Elizabeth Kendon, Steven Chan, and David Stephenson

Convection-permitting models (CPMs) provide a better representation of sub-daily precipitation statistics and convective processes, both on climate and NWP time scales, mainly thanks to the possibility to switch off the parameterisation of convection. The improved realism of these models gives us greater confidence in their ability to project future changes in short-duration precipitation extremes.

The first 12-member ensemble of convection-permitting climate simulations over the UK was completed within the latest updates to the UK Climate Projections (UKCP). The 20-year long CPM simulations for present-day and end of century periods are nested in an ensemble of regional climate model (RCM) simulations over Europe driven by a global climate model ensemble. In the driving ensembles, uncertain parameters in the model physics are varied within plausible bounds to sample uncertainty. Although no perturbations are applied directly to the CPMs, this project allow us to provide a first-ever estimate of uncertainty at convection-permitting scale and thus provide UK risk assessment studies with more reliable climate change projections at local and hourly scales.

Here we will present results looking at the uncertainty in future changes in hourly precipitation extremes across the CPM ensemble, and how this differs from the driving RCM ensemble.

How to cite: Fosser, G., Kendon, E., Chan, S., and Stephenson, D.: UKCP: Understanding uncertainty in future changes in precipitation extremes at convection-permitting scale, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14870, https://doi.org/10.5194/egusphere-egu2020-14870, 2020.

EGU2020-17810 | Displays | CL2.44

Front related model evaluation of multi-year simulations from hydrostatic to convection-permitting scales in the greater Alpine region

Heimo Truhetz, Dom Heinzeller, Robert Ritter, and Laurin Herbsthofer

Atmospheric fronts play a major role in day-to-day life and are well known for sharp changes in local weather conditions. In mountainous regions, the interaction between fronts and the orography supports the development of characteristic precipitation patterns and may even cause specific weather phenomena, like thunderstorms, föhn events, and others. It is therefore an interesting question, how such fronts evolve in the next few days or how they will behave under changing climate conditions.

However, due to the complexity of fronts and limitations in numerical weather prediction or climate models, state-of-the-art automated front detection algorithms are largely restricted to the model they are applied onto. In particular, the outcome of these algorithms depends the discretization scheme of the underlying model (e.g. the grid spacing) and hence they may fail in model intercomparison or evaluation studies when data is given in various different grids.

In the present work, a diagnostic front detection algorithm, that is designed to overcome such model dependencies, is introduced and its applicability for model intercomparison is demonstrated by means of simple analytic test functions and idealized simulations of a baroclinic wave (i.e. the Jablonowksi and Williamson test) conducted with MPAS (60 km and 15 km grid spacing). Finally, the algorithm is exemplarily applied onto latest WRF evaluation simulations (15 km and 3 km grid spacing) from the CORDEX-FPS Convection initiative and the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) (~25 km grid spacing) to investigate differences in front statistics in the greater Alpine region of the period 2006 to 2009.

The study is funded by the Austrian Klima- und Energiefonds through the Austrian Climate Research Programme (ACRP) by means of the project "Research for Climate Protection: Value-adding Convection-Permitting Climate Simulations Austria" (reclip:convex, project id: B769999).

How to cite: Truhetz, H., Heinzeller, D., Ritter, R., and Herbsthofer, L.: Front related model evaluation of multi-year simulations from hydrostatic to convection-permitting scales in the greater Alpine region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17810, https://doi.org/10.5194/egusphere-egu2020-17810, 2020.

EGU2020-19716 | Displays | CL2.44

Changes in future precipitation characteristics over the Alpine region in a multi-model convection-permitting ensemble: the role of shifting intensities

Stefan Sobolowski and the CORDEX Flagship Pilot Study on Convection over Europe and the Mediterranean

Changes in precipitation at local to regional scales in a warmer world remain highly uncertain. This is especially true of both moderate and high extremes (e.g. > 90%-iles and > 99.9%-iles, respectively). While a relationship between increasing model resolution and increasing precipitation (both means and extremes) appears to be present for both GCMs and RCMs there are conflicting results when convection-permitting scales are reached. These differences can be region as well as model dependent. A project under the auspices of the World Climate Research Program’s (WCRP) Coordinated Regional Downscaling Experiments Flagship Pilot Studies program (CORDEX-FPS) was established to investigate these, and other issues. This initiative aims to build first-of-their-kind ensemble climate experiments using convection permitting models to investigate present and future convective processes and related extremes over Europe and the Mediterranean. In this presentation we offer a first look at the scenario simulations (Historical 2000-2009 and RCP8.5 2090-99 timeslices) and an analysis of precipitation changes and their drivers over various sub-regions of a large domain, which cover the Alps, parts of central Europe and the Mediterranean and Adriatic coasts (0-17E x 40-50N). This study employs an innovative precipitation separation algorithm specifically designed for use with km-scale models. The algorithm separates convective, stratiform and orographic precipitation, which allows for a more nuanced understanding of projected change. The method is based on physical processes such as vorticity and vertical velocity. This new approach focuses on the physical processes leading to precipitation of a certain types rather than use the circular reasoning of employing the result to determine the cause. As a result we are able to see that despite overall drying in some seasons increasing intensity of convective precipitation contributes toward the shift to more intense extremes. We conclude with a discussion of the changes to the underlying physical processes driving convective and other types of precipitation at highly localized scales.

How to cite: Sobolowski, S. and the CORDEX Flagship Pilot Study on Convection over Europe and the Mediterranean: Changes in future precipitation characteristics over the Alpine region in a multi-model convection-permitting ensemble: the role of shifting intensities , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19716, https://doi.org/10.5194/egusphere-egu2020-19716, 2020.

EGU2020-20581 | Displays | CL2.44

Temperature scaling of convective cells in present and future conditions

Christopher Purr, Erwan Brisson, and Bodo Ahrens

Convection permitting climate models (CPMs) agree on an increase in short-term, extreme precipitation in the future. However, different studies using CPM simulations found regionally varying temperature scaling rates of hourly extreme precipitation either close to or above the Clausius-Clapeyron-rate (CC-rate) of 7%/K. These variations suggest that the dynamics of convective events strongly regulate the local scaling rates. In order to understand how the characteristics of convective events change in the future, we apply a tracking algorithm to precipitation data with 5-min temporal resolution from a regional climate model (COSMO-CLM) simulation. The model is run over central Europe at a grid size of 0.025° for an evaluation period (1981-2015) driven by ERA-Interim reanalysis data, as well as a present-day (1976-2005) and a future (2071-2100) period driven by the EC-Earth global model. We investigate the temperature scaling of convective cell characteristics like total precipitation per cell, mean area, lifetime and maximum intensity, as well as changes in the diurnal cycle of convective cells which might explain the overall scaling rates. The cell characteristics precipitation sum, mean area and maximum intensity show an exponential increase with temperature across most of the temperature range with a drop-off at high temperatures very similar to fixed location scaling curves. While the maximum intensity and area scale at rates close to the CC-rate, the precipitation sum scales at a rate close to twice the CC-rate. In contrast to this, the lifetime of convective cells does not increase with temperature but stays constant with a drop-off at high temperatures. The future simulation shows a shift of the scaling curves towards higher peak values at higher temperatures. Convective activity is projected to decrease during daytime and increase during nighttime. While the mean intensity of convective cells increases throughout the whole day, the number of cells is reduced during the afternoon peak and increased during nighttime. This leads to a slight reduction of convective precipitation during daytime and almost a doubling of convective precipitation during nighttime.

How to cite: Purr, C., Brisson, E., and Ahrens, B.: Temperature scaling of convective cells in present and future conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20581, https://doi.org/10.5194/egusphere-egu2020-20581, 2020.

EGU2020-18958 | Displays | CL2.44

Intercomparison of global storm resolving (coupled) climate models

Daniel Klocke and the DYAMOND Team

The DYAMOND (DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains) project is an intercomparison project for global storm resolving models with horizontal resolutions < 5km. In Phase 0, nine models participated in simulating a 40 day period from August 2016 on. Now, Phase 0 of DYAMOND will be complemented by a boreal winter period and atmospher-ocean coupled models with the goal to: (i) compare the representation of the Madden-Julian-Oscillation in this class of models; (ii) investigate the effect of the atmosphere-ocean coupling at storm and ocean-eddy resolving scales on convection and the general circulation; and (III) link to the EUREC4A campaign, which targets meso-scale convection patterns and the coupling to the upper ocean processes. First results from the intercomparison of this new class of climate models will be presented, giving an outlook to the future of climate modelling.

How to cite: Klocke, D. and the DYAMOND Team: Intercomparison of global storm resolving (coupled) climate models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18958, https://doi.org/10.5194/egusphere-egu2020-18958, 2020.

EGU2020-18097 | Displays | CL2.44

Evaluation of convective lifecycles in convection permitting weather forecasts for tropical Africa.

Peter Hill, Thorwald Stein, Carlo Cafaro, Beth Woodhams, and Stuart Webster

Tropical Africa is subject to weather extremes at a variety of space- and time-scales, leading to droughts, floods and severe storms. The weather has a huge impact on the local population: droughts and floods impact on weather dependent industries such as agriculture or fishing, which much of the population rely on for their livelihoods, while severe storms can lead to destruction of property and even loss of life. Despite this, global numerical weather prediction performance remains notoriously poor in tropical Africa, particularly at smaller scales.

The UK Met Office has recently begun running an ensemble weather forecasting system for tropical Africa at convection permitting scale (4.4 km). This forecasting system clearly has enormous potential to enable improved weather forecasts in  tropical Africa. Previous studies indicate that convection permitting models can provide greater skill than lower resolution global models for sub-regions within tropical Africa. However, skill remains fairly poor and further evaluation work is necessary to identify potential model improvements.

This presentation describes an evaluation of the lifecycles of convective systems in the UK Met Office tropical Africa model. 10.8 micron brightness temperatures are used to identify and follow convective systems both in the model and in geostationary satellite observations, which provide both high temporal (15 minute) and spatial (~3 km) resolution. We evaluate the size, diurnal cycle, propagation, initiation and lifecycle of convective systems in the model and the link between these properties and the magnitude of surface precipitation produced. Finally we analyse and evaluate the response of storm systems and hence precipitation in the model to large scale atmospheric drivers such as the Madden-Julian Oscillation and African easterly waves. This process oriented evaluation helps identify of the causes of model errors, facilitating future improvements in the model.

How to cite: Hill, P., Stein, T., Cafaro, C., Woodhams, B., and Webster, S.: Evaluation of convective lifecycles in convection permitting weather forecasts for tropical Africa., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18097, https://doi.org/10.5194/egusphere-egu2020-18097, 2020.

The Lake Victoria Basin is home to largest freshwater lake (Lake Victoria; LV) in Africa and second largest in the world. Each year on the order of 1,000 fisherman are lost on LV during intense night-time thunderstorms. Despite this, until recently, understanding of the processes contributing to heavy rainfall events was very limited. In this study we present a 10-year (2006-2015) convection permitting (3km grid-spacing) simulation (CPS) of the Lake Victoria Basin using the RegCM version 4.7.0. A lake model is utilized in order to couple the lake regions with RegCM, which has been shown to be of great importance for simulating a realistic lake surface temperature (LST) over LV. The simulated LST from the CPS shows a general warm bias when comparing to ARC Lake observations, however the annual cycle of LST is well represented by the CPS. In the coarser simulation the LST has a large cool bias because of the absence of any lake coupling and this contributes to a large dry bias over LV. The CPS shows a much-improved seasonal rainfall pattern over LV, however there is a general overestimation of the rainfall by the CPS during the peaks in the rainy seasons (March-May; October-December). The CPS shows an improved ability to produce extreme rainfall (>100mm/day) over the western portion of the lake which is consistently found in satellite and in-situ observations. The distribution of rainrates over LV in the CPS is much closer to satellite derived rainfall observations compared to the coarse simulation, demonstrating the improvements made to the simulation of cloud microphysics processes when moving to convection permitting grid-spacing. Mesoscale circulations associated with the diurnal cycle over LV are an important driver of intense night-time thunderstorms. An analysis of the diurnal rainfall cycle over LV shows that the CPS well represents the timing of nocturnal rainfall over the lake which is associated with a strong landbreeze, however the daytime peak in rainfall over the land surrounding the lake is too early. Extreme nocturnal rainfall events over the lake in satellite observations show a clear migration from the previous daytime peak in rainfall westward onto the lake during the night. This suggests a connection between extreme rainfall events at night and the preceding daytime peak in rainfall over land. In the CPS these daytime peaks over the land occur too early and the lakebreeze circulation appears weak compared to the nocturnal landbreeze which is very prominent. The coarse resolution lake coupled simulation shows a surprisingly robust ability to simulate seasonal and annual rainfall associated with mesoscale lake circulations compared to the CPS. The improvement over the coarser simulation seems to be in the CPS’s ability to capture convection scale interactions which may be important for extreme rainfall events.

How to cite: Müller, S. K., Glazer, R., and Coppola, E.: Lake coupled convection permitting simulations over the Lake Victoria basin with RegCM4.7: What is the benefit of permitting convection? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19343, https://doi.org/10.5194/egusphere-egu2020-19343, 2020.

CL3.1 – Challenges in climate prediction: multiple time-scales and the Earth system dimensions

Terrestrial water storage (TWS), including surface water storage, soil water storage, and groundwater storage, is critical for the global hydrological cycle and freshwater resources. A reliable decadal prediction of TWS can provide valuable information for sustainable managements of water resources and infrastructures in the face of climate change. Generally, the hydrological predictability mainly comes from two sources, i.e., initial conditions and boundary conditions. To date, the dependence of TWS forecast skill on the accuracy of initial hydrological conditions and decadal climate forecasts is not clear, and the benchmark skill remains unknown. In this work, we use decadal climate hindcasts from CMIP and perform hydrological ensemble simulations to estimate a baseline decadal forecast skill containing the two predictability sources information for TWS over global major river basins with an elasticity framework that considers varying skill of initial conditions and climate forecasts. With the incorporation of decadal climate forecast, our benchmark skill for TWS incorporated is significantly higher than initial conditions-based forecast skill over 25% and 31% basins for the leads of 1–4 and 3–6 years, especially over mid- and high-latitudes. Although the decadal precipitation forecast skill based on individual model is limited, the ensemble forecasts from multiple climate models are better than individuals. In addition, the standardized precipitation index (SPI) predictability and forecast skill from the latest CMIP6 decadal hindcast data are being investigated. Preliminary results suggest that predictability and forecast skill of SPI are positively correlated in general, and the predictability is higher than forecast skill, indicating the room for improving hydro-climate forecast. Our findings provide a new benchmark for verifying the success of decadal TWS forecasts and imply the possibility of improving decadal hydrological forecasts by using dynamical climate prediction information which still has room for improvement.

How to cite: Zhu, E. and Yuan, X.: Benchmark, predictability, and forecast skill of terrestrial water storage based on CMIP6 decadal hindcasts and land surface ensemble simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6304, https://doi.org/10.5194/egusphere-egu2020-6304, 2020.

EGU2020-20238 | Displays | CL3.1

A supermodel to enhance climate prediction

Francois Counillon, Noel Keenlyside, Mao-Lin Shen, Shunya Koseki, Marion Devilliers, Alok Gupta, and Gregory Duane

We present the first results from a supermodel constructed using three state-of-the-art earth system models: NorESM, CESM, MPIESM. A supermodel is an interactive ensemble in which models are optimally combined so that the systematic errors of the individual models compensate to achieve a model with superior performance. In the supermodel, the individual models are synchronized every month using data assimilation to handle the discrepancies of grid, resolution and variable representativity between the models. In particular, we assimilate a pseudo sea surface temperature (SST) that is computed as a weighted combination of the SST of the individual models. The synchronization of the models distinguishes this approach from the standard multi-model ensemble approach in which model outputs are combined a-posteriori. The data assimilation method used is the Ensemble Optimal Interpolation (EnOI) scheme, for which the covariance matrices are constructed from preindustrial control simulations of the individual models. The performances of a first version of the supermodel based on equal weights is compared to the individual models performances for the period 1980 to 2010. Synchronisation of the surface ocean is achieved in most places and dynamical regimes such as ENSO are occurring in phase. The biases of each model are reduced and the pathway of the Gulf Stream improved. The variability of the supermodel is not larger than in the super ensemble mean, but it is shown with an idealized model that the deflation is cause by a misconstruction of the pseudo observation and can be counteracted by perturbing them.  The Perspectives for performing predictions and climate change experiments with the supermodel method are presented and discussed.

How to cite: Counillon, F., Keenlyside, N., Shen, M.-L., Koseki, S., Devilliers, M., Gupta, A., and Duane, G.: A supermodel to enhance climate prediction, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20238, https://doi.org/10.5194/egusphere-egu2020-20238, 2020.

EGU2020-198 | Displays | CL3.1

Decadal Prediction of Indian Ocean Dipole

Feba Francis, Ashok Karumuri, and Matthew Collins

 

Decadal Prediction is the prediction of climate for the next 5–20 years. Decadal Prediction has gained great importance as it tries to bridge the gap between seasonal and Centennial (50-100 year) predictions creating a balance between initial conditions and boundary conditions. We analysed the model output from CMIP5 decadal runs of nine models. Our results show that two of the decadal hindcasts show prediction skills of significance for the Indian Ocean Dipole for up to a decade. The Indian Ocean Dipole is one of the leading modes of climate variability in the tropics, which affects global climate. As already established, the models also show year-long lead predictability of the El Niño Southern Oscillation. We found no significant skills for the Indian Summer Monsoon. We are presently looking for the source of the lead predictability of Indian Ocean Dipole which appears to be due to links from the Southern Ocean. These decadal prediction skills and predictability for a climate driver like the Indian Ocean Dipole have immense helpfulness for climate science and society in general.

How to cite: Francis, F., Karumuri, A., and Collins, M.: Decadal Prediction of Indian Ocean Dipole, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-198, https://doi.org/10.5194/egusphere-egu2020-198, 2020.

EGU2020-18283 | Displays | CL3.1

A novel model independence methodology to improve multi-model seasonal forecasts combination

Franco Catalano, Andrea Alessandri, Kristian Nielsen, Irene Cionni, and Matteo De Felice

Multi-model ensembles (MMEs) are powerful tools in dynamical climate prediction as they account for the overconfidence and the uncertainties related to single model ensembles. The potential benefit that can be expected by using a MME amplifies with the increase of the independence of the contributing Seasonal Prediction Systems. To this aim, a novel methodology has been developed to assess the relative independence of the prediction systems in the probabilistic information they provide.

We considered the Copernicus C3S seasonal forecasts product considering the one-month lead retrospective seasonal predictions for boreal summer and boreal winter seasons (1st May and 1st November start dates, i.e. June-July-August, JJA and December-January-February, DJF). We analysed the seasonal hindcasts in terms of deterministic and probabilistic scores with a particular focus on continental areas, since little evaluation has been performed so far over land domains that is where most of the applications of seasonal forecasts are based. The most relevant target variables of interest for the energy users have been considered and skill differences between the prediction systems have been analysed together with related possible sources of predictability. The analysis evidenced the importance of snow-albedo processes for temperature predictions in DJF and the effect of the atmospheric dynamics through moisture convergence for the prediction of surface solar radiation in JJA. A new metric, the Brier Score Covariance, designed to quantify the probabilistic independence among the models, has been developed and applied to optimize model selection and combination strategies with a particular focus on the most relevant variables for energy applications.

How to cite: Catalano, F., Alessandri, A., Nielsen, K., Cionni, I., and De Felice, M.: A novel model independence methodology to improve multi-model seasonal forecasts combination, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18283, https://doi.org/10.5194/egusphere-egu2020-18283, 2020.

EGU2020-16129 | Displays | CL3.1

Quantifying the added value of downscaling in extreme precipitation attribution

Jonathan Eden and Bastien Dieppois

While there is a discernible global warming fingerprint in the increase observed daily temperature extremes, there is far greater uncertainty of the role played by anthropogenic climate change with regard to extreme precipitation. A logical progression of thought is that an increase in extreme precipitation results from the 7% increase in atmospheric moisture per 1°C global temperature increase predicted by the Clausius-Clapeyron (CC) relation.  While this is supported by observations on the global scale, rates of extreme precipitation at smaller spatial and temporal scales are influenced to a far greater extent by atmospheric circulation and vertical stability in addition to local moisture availability. Many of these processes and other features of extreme precipitation events are not sufficiently represented in general circulation model (GCM) simulations. Meanwhile, limited observational networks mean that many short-term convective events are not accurately represented in the observational data.  

Errors and biases are common to all global and regional climate models, and many users of climate information require some form of statistical correction to improve the usefulness of model output. As so-called bias correction has become commonplace in climate impact research, its development has been hastened by a sustained debate regarding model correction in general leading to techniques that merge statistical correction and downscaling, represent random variability using stochasticity and are explicitly applicable to extremes. To date, attribution of extreme precipitation has not fully utilised the tools available from recent advances in bias correction, stochastic postprocessing and statistical downscaling. In the same way that GCMs are the most important tool in making climate change projections, understanding the degree to which the nature of a particular weather event has changed due to global warming requires long-term simulations of global climate from the pre-industrial era to the present day.  The lack of a correction and/or downscaling step in almost all precipitation event attribution methodologies is therefore surprising. 

Here, we present a multi-scale attribution analysis of a sample of extreme precipitation events across Europe using a blend of observation- and model-based data. Attribution information generated using the raw output of global and regional climate model ensembles will be compared to that generated using the same set of models following a statistical postprocessing and downscaling step. Our conclusions will make recommendations for the value and wider application of downscaling methodologies in attribution science.

How to cite: Eden, J. and Dieppois, B.: Quantifying the added value of downscaling in extreme precipitation attribution, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16129, https://doi.org/10.5194/egusphere-egu2020-16129, 2020.

EGU2020-8869 | Displays | CL3.1 | Highlight

Predicting water discharge on alpine catchments with downscaled seasonal forecasts

Mattia Callegari, Valentina Cavedon, Alice Crespi, Felix Greifeneder, Marcello Petitta, Marc Zebisch, and Claudia Notarnicola

The prediction of seasonal water availability is a key element for an effective water storage management and hydropower production optimization. Here we propose a machine learning model for monthly water discharge prediction, which is based on statistical relationships between time series of a target, i.e. monthly water discharge, and predictors. The considered predictors can be divided into two classes: the initial catchment state variables and the seasonal forecast variables. Snow plays a crucial role as water storage component in alpine catchments. Thus, snow water equivalent is the predictor employed to describe the initial state of the catchment. To ensure the scalability of the method, snow water equivalent is represented here by ERA-5 climate reanalysis data (0.25° x 0.25° resolution). Depending on the prediction season, seasonal forecast of temperature can drive snowmelt or evapotranspiration, while precipitation provides a natural contribution to the total water availability. To describe these prediction variables, we employed a downscaled and bias-correction version of the ECMWF’s seasonal forecasting system (SEAS5) for temperature and precipitation. More specifically, the seasonal forecast fields were bilinearly downscaled from the original 1° x 1° resolution to the target ERA-5 grid and statistically corrected for bias in respect with ERA-5 data by means of a quantile mapping procedure. ERA-5 reanalysis data were used as reference for the bias-correction in order to allow the approach to be easily applied over different areas.

We tested the proposed method over an alpine catchment in Ulten Valley, South Tyrol, Italy, which is managed by three artificial reservoirs for hydropower production. For this catchment, a time series from 1992 to 2017 of measured daily water discharge is available. The water discharge prediction performances of the proposed method are compared with the ones obtained by considering the water discharge monthly climatology.

How to cite: Callegari, M., Cavedon, V., Crespi, A., Greifeneder, F., Petitta, M., Zebisch, M., and Notarnicola, C.: Predicting water discharge on alpine catchments with downscaled seasonal forecasts, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8869, https://doi.org/10.5194/egusphere-egu2020-8869, 2020.

EGU2020-13841 | Displays | CL3.1 | Highlight

Seasonal prediction of mountain snow resources: an application in the Alps

Silvia Terzago, Filippo Calì Quaglia, Giulio Bongiovanni, Elisa Palazzi, and Jost von Hardenberg

The development of seasonal projections of the state of snow resources in the Alps is of particular interest for the management of water resources and tourism. We present the progress in the development of a modelling chain based on the seasonal forecast variables produced by seasonal prediction systems of the Copernicus Climate Change Service (C3S).

Seasonal forecast variables of precipitation, near-surface air temperature, radiative fluxes, wind and humidity are downscaled at three selected instrumented sites, close to five Alpine glaciers, in the North-Western Italian Alps, eventually bias-corrected and finally used as input for a physically-based multi-layer snowpack model (Snowpack; Lehning et al. 2012). A stochastic downscaling procedure is used for precipitation data in order to allow an estimate of uncertainties linked to small-scale variability in the forcing.

We evaluate uncertainties affecting the skill of the modelling chain in predicting the evolution of the winter snowpack in hindcast simulations, comparing against historical data of snow depth and snow water equivalent by automatic stations in the study areas.

The chain is tested considering seasonal forecast starting dates of November 1st, which are relevant for the snowpack processes. The sensitivity of the snow model to the accuracy of the input variables is discussed.

How to cite: Terzago, S., Calì Quaglia, F., Bongiovanni, G., Palazzi, E., and von Hardenberg, J.: Seasonal prediction of mountain snow resources: an application in the Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13841, https://doi.org/10.5194/egusphere-egu2020-13841, 2020.

EGU2020-13455 | Displays | CL3.1

Challenges in Constraining Future Change of Global Land Precipitation in CMIP6 Models

June-Yi Lee, Kyung-Sook Yun, Arjun Babu, Young-Min Yang, Eui-Seok Chung, Hyo-Eun Oh, Axel Timmermann, and Kyung-Ja Ha

The Coupled Model Intercomparison Project Phase 5 (CMIP5) models have showed substantial inter-model spread in estimating annual global-mean precipitation change per one-degree greenhouse-gas-induced warming (precipitation sensitivity), ranging from -4.5–4.2%oC-1in the Representative Concentration Pathway (RCP) 2.6, the lowest emission scenario, to 0.2–4.0%oC-1in the RCP 8.5, the highest emission scenario. The observed-based estimations in the global-mean land precipitation sensitivity during last few decades even show much larger spread due to the considerable natural interdecadal variability, role of anthropogenic aerosol forcing, and uncertainties in observation. This study tackles to better quantify and constrain global land precipitation change in response to global warming by analyzing the new range of Shared Socio-economic Pathway (SSP) scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6) compared with RCP scenarios in the CMIP5. We show that the range of projected change in annual global-mean land (ocean) precipitation by the end of the 21stcentury relative to the recent past (1995-2014) in the 23 CMIP6 models is over 50% (20%) larger than that in corresponding scenarios of the 40 CMIP5 models. The estimated ranges of precipitation sensitivity in four Tier-1 SSPs are also larger than those in corresponding CMIP5 RCPs. The large increase in projected precipitation change in the highest quartile over ocean is mainly due to the increased number of high equilibrium climate sensitivity (ECS) models in CMIP6 compared to CMIP5, but not over land due to different response of thermodynamic moisture convergence and dynamic processes to global warming. We further discuss key challenges in constraining future precipitation change and source of uncertainties in land precipitation change.

How to cite: Lee, J.-Y., Yun, K.-S., Babu, A., Yang, Y.-M., Chung, E.-S., Oh, H.-E., Timmermann, A., and Ha, K.-J.: Challenges in Constraining Future Change of Global Land Precipitation in CMIP6 Models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13455, https://doi.org/10.5194/egusphere-egu2020-13455, 2020.

EGU2020-13784 | Displays | CL3.1

Impact of different inizialization procedures on near-term predictability of ocean biogeochemistry

Raffaele Bernardello, Valentina Sicardi, Pablo Ortega, and Francisco Doblas-Reyes

With the world population rapidly increasing and the related spectre of a global food crisis, the necessity to improve our ability to manage world's fisheries has never been more pressing. One important step in this direction is the improvement of near-term (i.e. seasonal to decadal) predictions of Net Primary Production (NPP). NPP is the rate of production of phytoplankton biomass, the primary source of food for marine animal life and thus a fundamental environmental variable to be taken into account in fishery management strategies. Here, we present results from a suite of simulations carried out with the Earth System Model EC-Earth3. These simulations include reconstructions of the biogeochemical state of the ocean for the period 1958 to present and a set of near-term predictions covering the period from 1979 to present. The simulations are designed to test the ability of two different initialization techniques to provide predictive skill to the simulation. One initialization technique is based on data-assimilation of physical fields only while, the second technique proposed is based on an attempt to partially reconstruct 3D nutrient fields. This combines information from climatological nutrient fields and reconstructed water masses variability. This combination is meant to exploit the ability of mode and intermediate water masses to propagate a signal on nutrient distribution on interannual timescales providing a source of predictability for nutrients and thus for NPP. Skill scores are used to validate these retrospective predictions derived from both techniques in order to obtain a complete evaluation of the predictive capability of the modelling system.

How to cite: Bernardello, R., Sicardi, V., Ortega, P., and Doblas-Reyes, F.: Impact of different inizialization procedures on near-term predictability of ocean biogeochemistry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13784, https://doi.org/10.5194/egusphere-egu2020-13784, 2020.

EGU2020-7599 | Displays | CL3.1

CSTools R package bringing state-of-the-arts postprocessing methods to seasonal-to-decadal forecast users

Nuria Perez-Zanon, Louis-Philippe Caron, M. Carmen Alvarez-Castro, Lauriane Batté, Susanna Corti, Marta Dominguez, Federico Fabiano, Silvio Gualdi, Jost von Hardenberg, Llorenç Lledó, Nicolau Manubens, Paola Marson, Stefano Materia, Eroteida Sánchez, Bert Van Schaeybroeck, Verónica Torralba, Silvia Terzago, Deborah Verfaillie, and Danila Volpi

The availability of climate data has never been larger, as evidenced by the development of the Copernicus Climate Change Service. However, availability of climate data does not automatically translate into usability and sophisticated post-processing is often required to turn these climate data into user-relevant climate information allowing them to develop and implement strategies of adaptation to climate variability and to trigger decisions. 

Developed under the umbrella of the ERA4CS Medscope project by multiple European partners, here we present an R package currently in development, which aims to provide tools to exploit dynamical seasonal forecasts such as to provide information relevant to public and private stakeholders at the seasonal timescale. This toolbox, called CSTools (short for Climate Service Tools), contains process-based methods for forecast calibration, bias correction, statistical and stochastic downscaling, optimal forecast combination and multivariate verification, as well as basic and advanced tools to obtain tailored products. 

In addition to presenting some of the tools that are contained in the package, we also present a short overview of the development strategy adopted for this toolbox. The latter relies on a version controlling system established such as to allow scientists and developers to work within a common framework using a platform where they can exchange with other developers, test the various functionalities and discuss issues arising from the work, amongst other things. Furthermore, we will also present some vignettes, which are one of the mechanisms that allows users to understand and visualize the capabilities of CSTools. For instance, CSTools contains a step by step vignette showing how to use and visualize the output of MultivarRMSE, which gives an indication of the forecast performance (RMSE) for multiple variables simultaneously. 

While the extensive community of R users offers the opportunity of merging climate forecaster experts with final users, CSTools can also be used by other communities, such as Python users through the interface rpy. Finally, the publication of this package on CRAN (the Comprehensive R Archive Network) makes it easily accessible to interested users and ensures its proper functioning on different operational systems. 

How to cite: Perez-Zanon, N., Caron, L.-P., Alvarez-Castro, M. C., Batté, L., Corti, S., Dominguez, M., Fabiano, F., Gualdi, S., von Hardenberg, J., Lledó, L., Manubens, N., Marson, P., Materia, S., Sánchez, E., Van Schaeybroeck, B., Torralba, V., Terzago, S., Verfaillie, D., and Volpi, D.: CSTools R package bringing state-of-the-arts postprocessing methods to seasonal-to-decadal forecast users, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7599, https://doi.org/10.5194/egusphere-egu2020-7599, 2020.

EGU2020-20721 | Displays | CL3.1

The decadal climate variations simulated in a coupled data assimilation system using only surface pressure observations

Xiaosong Yang, Thomas Delworth, Fanrong Zeng, William Cooke, Liping Zhang, and Gilbert Compo

Initializing climate models for decadal prediction is a major challenge, in part due to the lack of long-term subsurface ocean observations and the changing nature of observing systems. In order to overcome these limitations, we have developed a novel method for initializing a climate model for decadal prediction. Using GFDL’s next-generation prediction system, we developed a coupled ensemble data assimilation system, which assimilated only surface pressure observations, since the surface pressure measurements have been made since the late 1800s. Physically, by assimilating high-frequency surface pressure observations we constrain the model to experience a sequence of wind and storms, and thus surface fluxes, that is very similar to what is observed. The hypothesis is that by having the ocean component of the coupled model experience a very similar sequence of surface fluxes as observations, the ocean component of the coupled model will gradually reproduce the same variations as the observed system.

We assimilated the observed surface pressure station data used in the latest 20-century reanalysis. A coupled simulation during 1960 to 2016 has been completed. In this talk, we will review how well the observed decadal climate variations (e.g., PDO and AMO) can be reproduced solely from the surface pressure observations.  In addition, we will explore the multi-decadal variations of the Atlantic meridional overturning circulation (AMOC) and its connection with the North Atlantic sea surface temperature. The feasibility of using this method to initialize coupled climate models for realistic decadal predictions will be discussed in the talk.            

How to cite: Yang, X., Delworth, T., Zeng, F., Cooke, W., Zhang, L., and Compo, G.: The decadal climate variations simulated in a coupled data assimilation system using only surface pressure observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20721, https://doi.org/10.5194/egusphere-egu2020-20721, 2020.

Observational analysis shows that there is a predominant global-scale multidecadal variability (GMV) of sea surface temperature (SST). Its horizontal pattern resembles that of the Interdecadal Pacific Oscillation (IPO) in the Pacific and the Atlantic multidecadal oscillation (AMO) in the Atlantic Ocean, which could affect global precipitation and temperature over globe. Here, we demonstrate that the GMV could be driven by the Atlantic multidecadal oscillation (AMO) through atmospheric teleconnections and atmosphere-ocean coupling processes. Observations reveal a strong negative correlation when AMO leads GMV by approximately 4–8 yrs. Pacemaker experiments using a climate model driven by observed AMO signals reveal that the tropical Atlantic warm SST anomalies of AMO initiate anomalous cooling in the equatorial central-eastern Pacific through atmospheric teleconnections. Anticyclonic anomalies in the North and South Pacific induce equatorward winds along the coasts of North and South America, contributing to further cooling. The upper ocean dynamics plays a minor role in GMV formation but contributes to a delayed response of the IPO to the AMO forcing. The possible impact of the GMV on AMO was also tested by prescribing only Pacific SST in the model, however, the model could not reproduce the observed phase relationship between the AMO and GMV. These results support the hypothesis that the Atlantic Ocean plays a key role in the multidecadal variability of global SST.

How to cite: Yang, Y.-M.: A Global-scale Multidecadal Variability Driven by Atlantic Multidecadal Oscillation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5439, https://doi.org/10.5194/egusphere-egu2020-5439, 2020.

EGU2020-19803 | Displays | CL3.1

Grand Multi-Model Seasonal Forecasts in the SECLI-FIRM project

Andrea Alessandri, Franco Catalano, Matteo De Felice, Kristian Nielsen, Alberto Troccoli, Marco Formenton, and Gaia Piccioni

A key objective of the Added Value of Seasonal Climate Forecasts for Integrated Risk Management Decisions (SECLI-FIRM, www.secli-firm.eu) project is the optimisation of the performance of seasonal climate forecasts provided by many producing centers, in a Grand Multi-Model approach, for predictands relevant for the specific case studies considered in SECLI-FIRM.

The Grand Multi-Model Ensemble (MME) consists of the five Seasonal Prediction Systems (SPSs) provided by the European Copernicus C3S and a selection of other five SPSs independently developed by centres outside Europe, four by the North American (NMME) plus the SPS by the Japan Meteorological Agency (JMA).

All the possible multi-model combinations have been evaluated showing that, in general, only a limited number of SPSs is required to obtain the maximum attainable performance. Although the selection of models that perform better is usually different depending on the region/phenomenon under consideration, it is shown that the performance of the Grand-MME seasonal predictions is enhanced with the increase of the independence of the contributing SPSs, i.e. by mixing European SPSs with those from NMME-JMA.

Starting from the definition of the Brier score a novel metric has been developed, named the Brier score covariance (BScov), which estimates the relative independence of the prediction systems. BScov is used to quantify independence among the SPSs and, together with probabilistic skill metrics, used to develop a strategy for the identification of the combinations that optimize the probabilistic performance of seasonal predictions for the study cases.

How to cite: Alessandri, A., Catalano, F., De Felice, M., Nielsen, K., Troccoli, A., Formenton, M., and Piccioni, G.: Grand Multi-Model Seasonal Forecasts in the SECLI-FIRM project, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19803, https://doi.org/10.5194/egusphere-egu2020-19803, 2020.

Stochastic weather generators are still widely used for downscaling climate change scenarios, in particular in the context of agricultural and hydrological impact assessments. Their performance is in many respects satisfactory, except perhaps for the fact that they fail to represent climatic variability in an adequate way. This has implications for the representation of extreme values and their statistics. Concerning precipitation, different approaches for amending this situation have proposed in the past, including using more sophisticated models to better simulate the persistence of wet and dry spells, conditioning rainfall-generating parameters on indices of the large-scale atmospheric circulation, or employing autoregressive models to represent year-to-year variations in annual precipitation amounts. With regard to (minimum and maximum) temperature, efforts to address the question of why weather generators underestimate total variability have been less systematic. Based on results obtained with a well-known weather generator (LARS-WG), this contribution aims to discuss which modes of variability are missing and why, elaborate on the implications of underrepresenting temperature variance for the simulation of temperature extremes in downscaled climate change scenarios, and suggest options to tackle the problem and improve the model performance.

How to cite: Calanca, P.: Underestimation of temperature variability in weather generators and implications for the representation of extreme temperatures in downscaled climate change scenarios, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4572, https://doi.org/10.5194/egusphere-egu2020-4572, 2020.

EGU2020-10109 | Displays | CL3.1

Downscaling and bias correction of seasonal forecasts to support climate services for the Alpine regions

Alice Crespi, Mattia Callegari, Felix Greifeneder, Claudia Notarnicola, Marcello Petitta, and Marc Zebisch

The interest in trustable and accurate information about climate and its variability at local scale is currently increasing not only within the scientific community, but also by local stakeholders, political administrators and private companies. Clear, operative and close to the users’ needs climate information represent relevant support tools for a wide range of decision-making policies, including vulnerability assessment, risk management and energy production.

Seasonal forecasts, in particular, allow to provide predictions of the climate up to several months ahead and therefore they could represent precious sources of information for a wide range of activities, such as for the optimization of renewable energy sector. However, specific approaches are needed to deal with the probabilistic nature of seasonal forecasts and post-processing methods are required to adapt their large spatial resolution to the local scales of specific applications. This is particularly true for orographically complex areas, such as the Alpine regions, where coarse-resolution data could lead to remarkable under or overestimations in the predicted variables.

In this framework, we present a downscaled and bias-corrected version of seasonal forecasts provided by the ECMWF’s seasonal forecasting system (SEAS5) for temperature, precipitation and wind speed over the Alpine area and spanning the period 1983 – 2018. The approach is based on the bilinear interpolation of the 1°x1° original fields onto the target 0.25°x0.25° resolution and on the quantile-mapping procedure using ERA-5 reanalysis data for the calibration. The ERA-5 reanalysis dataset is chosen as reference in order to allow the application of the implemented scheme over different areas. The accuracy and skills of the post-processed seasonal forecast fields are evaluated, also in comparison with observations and the performance of alternative downscaling schemes.

The presented study supports the activities of the H2020 European project SECLI-FIRM on the improvement of the seasonal forecast applicability for energy production, management and assessment.

How to cite: Crespi, A., Callegari, M., Greifeneder, F., Notarnicola, C., Petitta, M., and Zebisch, M.: Downscaling and bias correction of seasonal forecasts to support climate services for the Alpine regions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10109, https://doi.org/10.5194/egusphere-egu2020-10109, 2020.

EGU2020-12271 | Displays | CL3.1

Machine learning-based dynamical seasonal prediction of summer rainfall in China

Jialin Wang, Jing Yang, Hongli Ren, Jinxiao Li, Qing Bao, and Miaoni Gao

The seasonal prediction of summer rainfall is crucial for regional disaster reduction but currently has a low prediction skill. This study developed a machine learning (ML)-based dynamical (MLD) seasonal prediction method for summer rainfall in China based on suitable circulation fields from an operational dynamical prediction model CAS FGOALS-f2. Through choosing optimum hyperparameters for three ML methods to reach the best fitting and the least overfitting, gradient boosting regression trees eventually exhibit the highest prediction skill, obtaining averaged values of 0.33 in the reference training period (1981-2010) and 0.19 in eight individual years (2011-2018) of independent prediction, which significantly improves the previous dynamical prediction skill by more than 300%. Further study suggests that both reducing overfitting and using the best dynamical prediction are imperative in MLD application prospects, which warrants further investigation.

How to cite: Wang, J., Yang, J., Ren, H., Li, J., Bao, Q., and Gao, M.: Machine learning-based dynamical seasonal prediction of summer rainfall in China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12271, https://doi.org/10.5194/egusphere-egu2020-12271, 2020.

EGU2020-21094 | Displays | CL3.1

Downscaling sub-daily Land Surface Temperature time series for monitoring heat in urban environments

Nikos Alexandris, Matteo Piccardo, Vasileios Syrris, Alessandro Cescatti, and Gregory Duveiller

The frequency of extreme heat related events is rising. This places the ever growing number of urban dwellers at higher risk. Quantifying these phenomena is important for the development and monitoring of climate change adaptation and mitigation policies. In this context, earth observations offer increasing opportunities to assess these phenomena with an unprecedented level of accuracy and spatial reach. Satellite thermal imaging systems acquire Land Surface Temperature (LST) which is fundamental to run models that study for example hotspots and heatwaves in urban environments.

Current instruments include TIRS on board Landsat 8 and MODIS on board of Terra satellites. These provide LST products on a monthly basis at 100m and twice per day at 1km respectively. Other sensors on board geostationary satellites, such as MSG and GOES-R, produce sub-hourly thermal images. For example the SEVIRI instrument onboard MSG, captures images every 15 minutes. However, this is done at an even coarser spatial resolution, which is 3 to 5 km in the case of SEVIRI. Nevertheless, none of the existing systems can capture LST synchronously with fine spatial resolution at a high temporal frequency, which is a prerequisite for monitoring heat stress in urban environments.

Combining LST time series of high temporal resolution (i.e. sub-daily MODIS- or SEVIRI-derived data) with products of fine spatial resolution (i.e. Landsat 8 products), and potentially other related variables (i.e. reflectance, spectral indices, land cover information, terrain parameters and local climatic variables), facilitates the downscaling of LST estimations. Nonetheless, considering the complexity of how distinct surfaces within a city heat-up differently during the course of a day, such a downscaling is meaningful for practically synchronous observations (e.g. Landsat-8 and MODIS Terra’s morning observations).

The recently launched ECOSTRESS mission provides multiple times in a day high spatial resolution thermal imagery at 70m. Albeit, recording the same locations on Earth every few days at varying times. We explore the associations between ECOSTRESS and Landsat-8 thermal data, based on the incoming radiation load and distinct surface properties characterised from other datasets. In our approach, first we upscale ECOSTRESS data to simulate Landsat-8 images at moments that coincide the acquisition times of other sensors products. In a second step, using the simulated Landsat-8 images, we downscale LST products acquired at later times, such as MODIS Aqua (ca. 13:30) or even the hourly MSG data. This composite downscaling procedure enables an enhanced LST estimation that opens the way for better diagnostics of the heat stress in urban landscapes.

In this study we discuss in detail the concepts of our approach and present preliminary results produced with the JEODPP, JRC's high throughput computing platform.

How to cite: Alexandris, N., Piccardo, M., Syrris, V., Cescatti, A., and Duveiller, G.: Downscaling sub-daily Land Surface Temperature time series for monitoring heat in urban environments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21094, https://doi.org/10.5194/egusphere-egu2020-21094, 2020.

We examine several springtime plant phenology indices calculated from a set of statistically downscaled daily minimum and maximum temperature projections. Multiple statistical downscaling methods are used to refine daily temperature projections from multiple global climate models (GCMs) run with multiple radiative forcing scenarios. Focusing on the northeastern United States, the statistically downscaled temperature projections are input to a commonly used Extended Spring Indices (SI-x) model, yielding yearly estimates of phenological indices such as First Leaf Date (an early spring indicator), First Bloom Date (a late spring indicator), and the occurrence of Late False Springs (a year in which a hard freeze occurs after first bloom, when plants are vulnerable to damage from freezing conditions). The matrix of results allows one to analyze how projected spring phenological index differences arising from the choice of statistical downscaling method (i.e., the statistical downscaling uncertainty) compare with the magnitudes of variations across the different GCMs (climate model uncertainty) and radiative forcing pathways (scenario uncertainty). As expected, the onset of spring in the late 21st century projections, as measured by First Leaf and First Bloom Dates, typically shifts multiple weeks earlier in the year compared with the historical period. Those two start-of-spring indices can be thought of as being largely, but not entirely, dependent on an accumulation of heat since 1 January. In contrast, a Late False Spring occurs in large part due to a short-term weather event - namely if any single day after the First Bloom Date has a minimum temperature below -2.2C. Accordingly, spring phenological indices calculated from statistically downscaled climate projections can be influenced by how well the GCM’s historical simulation represents temperature variations on different time scales (diurnal temperature range, synoptic time-scale temperature variability, inter-annual temperature variations) as well as how a particular statistical refinement method (e.g., a delta change factor method, a quantile-based bias correction method, or a constructed analog method) combines information gleaned from both the GCM time series and the observation-based training data to generate the statistically refined daily maximum and minimum temperature time series. Though this study is limited in scope (northeastern United States region, a finite set of statistical downscaling methods and GCMs), we believe the general findings likely are illustrative and applicable to a wider range of mid-latitude locations where plant responses in spring are mostly temperature and day length driven.

How to cite: Dixon, K., Adams-Smith, D., and Lanzante, J.: On the sensitivity of 21st century spring plant phenology projections to the choice of statistical downscaling method, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3776, https://doi.org/10.5194/egusphere-egu2020-3776, 2020.

EGU2020-8533 | Displays | CL3.1

Downscaling of Precipitation Forecasts Based on Single Image Super-Resolution

Yan Ji, Xiefei Zhi, Ye Tian, Ting Peng, Ziqiang Huo, and Luying Ji

High spatial resolution weather forecasts that capture regional-scale dynamics are important for natural hazards prevention, especially for the regions featured with large topographical variety and local climate. While deep convolutional neural networks have made great progress in single image super-resolution (SR) which learns mapping relationship between low- and high- resolution images, limited efforts have been made to explore the potential of downscaling in this way. In the study, three advanced SR deep learning frameworks including Super-Resolution Convolutional Neural Network (SRCNN), Super-Resolution Generative Adversarial Networks (SRGAN) and Enhanced Deep residual networks for Super-Resolution (EDSR) are proposed for downscaling forecasts of daily precipitation in southeast China (100°E -130°E, 15°N -35°N). The SR frameworks are designed to improve the horizontal resolution of daily precipitation forecasts from raw 1/2 degrees (~50km) to 1/4 degrees (~25km) and 1/8 degrees (~12.5km), respectively. For comparison, Bias Correction Spatial Disaggregation (BCSD) as a traditional SD method is also performed under the same framework. The precipitation forecasts used in our work are obtained from different Ensemble Prediction Systems (EPSs) including ECMWF, NCEP and JMA which are provided by TIGGE datasets. A group of metrics have been applied to assess the performance of the three SR models, including Root Mean Square Error (RMSE), Anomaly Correlation Coefficient (ACC) and Equitable Threat Score (ETS). Results show that three SR models can effectively capture the detailed spatial information of local precipitation that is ignored in global NWPs. Among the three SR models, EDSR obtains the optimum results with lower RMSE and higher ACC which shows better downscaling skills. Furthermore, the SR downscaling methods can be extended to the statistical downscaling for other predictors as well.

How to cite: Ji, Y., Zhi, X., Tian, Y., Peng, T., Huo, Z., and Ji, L.: Downscaling of Precipitation Forecasts Based on Single Image Super-Resolution, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8533, https://doi.org/10.5194/egusphere-egu2020-8533, 2020.

EGU2020-13434 | Displays | CL3.1

Statistical Emulators for Regional Climate Models: Preliminary results

Antoine Doury, Samuel Somot, Sébastien Gadat, Aurélien Ribes, and Lola Corre

Statistical Emulators for Regional Climate Models: Preliminary results

Predicting some robust information on climate at some local geographical scale is of primary importance to assess the impact of the future climate change. But even more important is to quantify the whole range of uncertainties around the evolution of the climate that translates (i) the imperfections of the climate models, (ii) the natural variability variability and (iii) the uncertainties about the future human emissions of greenhouse gases. One of the nowadays tools used to produce future simulations at the local scale is the Regional Climate Models (RCM): they correspond to high resolution climate models used to downscale over a specific region the information simulated by a Global Climate Model (GCM) scenario simulation.

To cover the full range of uncertainties one should ideally force each RCM with every GCM under different emission scenarios and make several members. It comes down to filling up a huge 4D-matrix [Scenario, GCM, RCM, members]. However regarding the increasing number of climate models (regional and global) and the increasing cost of the RCMs due to their increased complexity and resolution, filling up such matrix becomes unrealistic.

To address this issue we propose a novel approach to merge statistical and dynamical downscaling techniques. The principle relies on three phases. Firstly, some RCM simulations are performed using the classical dynamical downscaling approach. Then, following the statistical downscaling principle, a statistical model is trained to learn the relationship between the large scale information given by the GCM and the local one produced by the RCM, using the runs previously performed. We call this statistical model an emulator. Finally this emulator allows to downscale more GCMs simulation, at a very reasonable cost in order to get a robust ensemble.

In this preliminary work we focus on emulating the surface temperature at the daily scale by testing different machine learning methods (RandomForest, Boosting, Neural Network) sometimes coupled with an a-priori signal decomposition. We train and test the emulator with simulations from the ALADIN RCM forced by the CNRM-CM5 GCM over the period 1950-2100. The different methods are discriminated over hidden simulations using skill scores measuring the match between the emulated series and the pseudo-reality RCM series. Day-to-day scores such as correlation or RMSE are used as well as statistical scores to control on the distribution of the predicted series.

How to cite: Doury, A., Somot, S., Gadat, S., Ribes, A., and Corre, L.: Statistical Emulators for Regional Climate Models: Preliminary results, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13434, https://doi.org/10.5194/egusphere-egu2020-13434, 2020.

The spatial and temporal heterogeneity of seasonal snow and its impact on socio-economic and environmental functionality make accurate, real-time estimates of snow water equivalent (SWE) important for hydrological and climatological predictions. Remote sensing techniques facilitate a cost effective, temporally and spatiallyconsistent approach to SWE monitoring in areas where insitu measurements are notsufficient. Passive microwave remote sensing has been used to successfully estimate SWE globally by measuring the microwave attenuation from the Earth’s surface as a function of SWE. However, passive microwave derived SWE estimates at local scales are subject to large errors given the coarse spatial resolution of observations (~625 km2).Regression downscaling techniques can be implemented to increase the spatial resolution of gridded datasets with the use of related auxiliary datasets at a finer spatial resolution. These techniques have been successfully implemented to remote sensing datasets such as soil moisture estimates, however, limited work has applied such techniques to snow-related datasets.This study focuses on assessing the feasibility of using regression downscaling to increase the spatial resolution of the European Space Agency’s (ESA) Globsnow SWE product in the Red River basin, an agriculturally important region of the northern United States.

Prior to downscaling Globsnow SWE, three regression downscaling techniques (Multiple Linear Regression, Random Forest Regression and Geographically Weighted Regression) were assessed in an internal experiment using 1 km grid scale Snow Data Assimilation System (SNODAS) SWE estimates, developed by the National Weather Service’s National Operational Hydrological Remote Sensing Center (NOHRSC). SNODAS SWE estimates for 5-year period between 2013-2018 were linearly aggregated to a 25 km grid scale to match the Globsnow spatial resolution. Three regression downscaling techniques were implemented along with correlative datasets available at the 1 km grid scale to downscale the aggregated SNODAS data back to the original 1 km grid scale spatial resolution. When compared with the original SNODAS SWE estimates, the downscaled SWE estimates from the Random Forest Regression performed the best. Random Forest Regression Downscaling was then implemented on the original Globsnow SWE data for the same time period, as well as a corrected Globsnow SWE dataset. The downscaled SWE results from both the corrected and uncorrected Globsnow data were validated using the original SNODAS SWE estimates as well as in situ SWE measurements from a set of 40-45 (depending on the season) weather stations within the study region. Spatial and temporal error distributions were assessed through both validation datasets. The downscaled results from the corrected Globsnow dataset showed similar overall statistics to the original SNODAS SWE estimates, performing better than the downscaled results from the uncorrected Globsnow SWE dataset. The overall aim of this study is to assess the applicability of regression downscaling as a reliable and reproducible method for local scale SWE estimation in areas where finer resolution data such as SNODAS does not exist. Therefore, the goal is to reproduce the optimal regression downscaling procedure in an area other snow dominated regions across the globe using in situ snow transect data for validation.

How to cite: Flemming, M. and Kelly, R.: Regression Downscaling of Coarse Resolution Globsnow Snow Water Equivalent Estimates in the Red River Basin , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12543, https://doi.org/10.5194/egusphere-egu2020-12543, 2020.

EGU2020-17561 | Displays | CL3.1 | Highlight

A systematic analysis of the performance of the IPSL-CM5A-LR model for decadal temperature predictions over Europe

Giovanni Sgubin, Didier Swingedouw, Juliette Mignot, Leonard Borchert, Thomas Noël, and Harilaos Loukos

Reliable climate predictions over a time-horizon of 1-10 year are crucial for stakeholders and policymakers, as it is the time span for relevant decisions of public and private for infrastructures and other business planning. This promoted, about a decade ago, the development of a new family of climate model: the Decadal Climate Predictions (DCP). Similarly to climate projections, the DCP consists in forced simulations of climate, but initialised from a specific observed climatic state, which potentially represents an added value. Being a relatively new branch of climate modelling the effective application of DCP to impact analysis supporting operational adaptation measures is still conditional on their evaluation.

Here we contribute to this evaluation by exploring the performance of the IPSL-CM5A-LR DCP system in predicting the air temperature over Europe.  Our assessment of the potentiality of the DCP system follows two main steps: (1) the comparison between the simulated large-scale air temperature from hindcasts and the observations from mid-1900 to present day, i.e. NOAA-20CR dataset, which defines a prediction skill, calculated through both the Anomaly Correlation Coefficient (ACC) and the Root Mean Square Error (RMSE); (2) the detection of the “windows of opportunity”, i.e. specific conditions under which the DCP performs better. The exploration of the windows of opportunity stems from a systematic detection that evaluates the DCP skills for each combination of periods, lead times and seasons. Our analysis involves both raw simulations and de-biased simulations, i.e. outputs data that have been adjusted through the quantile-quantile method.

Our results evidence a significant added value over most of Europe with respect to non-initialised historical simulations.  Significant skill scores have been generally found over the Mediterranean sector of Europe and UK, while the performance over the rest of Europe results rather conditional on the season and on the period considered. The best predicted months appear to be those between spring and autumn, while low skills have been found for winter months. Also, the predictions appear to be more performant after the ’80, when a rapid warming signal characterised the temperature over Europe: this shift is well reproduced in the initialised simulations. Finally, skill anomalies between raw and debiased outputs are generally minimal. Nevertheless, debiased data show an overall higher RMSE skill, while ACC skill appears to be slightly higher in winter and slightly lower in summer. These findings may be useful for the exploitation of the IPSL DCP for near-term timescale impact analysis over Europe. Also, our systematic approach for the exploration of the windows of opportunity may be at the base of similar investigations applied to other DCP systems.

How to cite: Sgubin, G., Swingedouw, D., Mignot, J., Borchert, L., Noël, T., and Loukos, H.: A systematic analysis of the performance of the IPSL-CM5A-LR model for decadal temperature predictions over Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17561, https://doi.org/10.5194/egusphere-egu2020-17561, 2020.

Mountain areas are one of the most vulnerable areas to climate change, due to the large amount of natural resources they contribute to society. Moreover, the announced increase in temperature for the next few decades may have uncertain consequences for the ecosystems and landscapes of such territories. To face this challenge, it is necessary to test the capacity to simulate the climate of warm periods using observed data. In the present contribution, different perfect prog (PP) downscaling methods were evaluated to simulate the minimum and maximum daily temperature in a 1x1 km grid in the Pyrenees (Spain, France & Andorra) for the period 1985-2015. To obtain the results, several combinations of predictors, different geographical domains of such predictors, as well as different reanalysis databases were used, to check how much they can influence the prediction skill. In addition, different metrics were calculated to evaluate the bias, the similarity in the observed and predicted distributions, the temporal correlation, etc.

The results obtained reflect that the regression models better represent the warm periods using the observed data, as well as a lower bias. The present study will facilitate the decision making on which method of downscaling PP is more useful to reproduce the future temperature in the Pyrenees.

 

Keywords: Statistical downscaling, perfect prog, Pyrenees, daily temperature.

How to cite: Lemus-Canovas, M. and Brands, S.: Assessing several downscaling methods for daily minimum and maximum temperature in a mountainous area. Are we able to statistically simulate a warmer climate in the Pyrenees? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11389, https://doi.org/10.5194/egusphere-egu2020-11389, 2020.

EGU2020-13752 | Displays | CL3.1

Multivariate Bias Correction of Climate Simulations: an Intercomparison Study

Bastien François, Mathieu Vrac, Alex Cannon, Yoann Robin, and Denis Allard

Climate models are the major tools to estimate climate variables evolutions in the future. However, climate simulations often present statistical biases and have to be corrected against observations before being used in impact assessments. Several bias correction (BC) methods have therefore been developed in the literature over the last two decades, in order to adjust simulations according to historical records and obtain climate projections with appropriate statistical attributes. Most of the existing and popular BC methods are univariate, i.e., correcting one physical variable and one location at a time, and thus can fail to reconstruct inter-variable, spatial or temporal dependencies of the observations. These remaining biases in the correction can then affect the subsequent analyses. This has led to further research on multivariate aspects for statistical postprocessing BC methods. Recently, some multivariate bias correction (MBC) methods have been proposed, with different approaches to restore multidimensional dependencies. However, these methods are not well apprehended yet by researchers and practitioners due to differences in their applicability and assumptions, therefore leading potentially to different results. This study is intended to intercompare four existing MBCs to provide end-users with aid in choosing such methods for their applications. For evaluation and illustration purposes, these methods are applied to correct simulation outputs from one climate model through a cross-validation methodology, which allows for the assessment of inter-variable, spatial and temporal criteria. Then, a second methodology is performed for assessing the ability of the MBC methods to account for the multi-dimensional evolutions of the climate model. Additionally, two reference datasets are used to assess the influence of their spatial resolution on (M)BC results. Most of the methods reasonably correct inter-variable and inter-site correlations. However, none of them adjust correctly the temporal structure as they generate bias corrected data with usually weak temporal dependencies compared to observations. Major differences are found concerning the applicability and stability of the methods in high-dimensional contexts, and in their capability to reproduce the multi-dimensional changes of the model. Based on those conclusions, perspectives for MBC developments are suggested, such as methods to adjust not only multivariate correlations but also temporal structures and allowing to account for multi-dimensional evolutions of the model in the correction.

How to cite: François, B., Vrac, M., Cannon, A., Robin, Y., and Allard, D.: Multivariate Bias Correction of Climate Simulations: an Intercomparison Study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13752, https://doi.org/10.5194/egusphere-egu2020-13752, 2020.

EGU2020-13211 | Displays | CL3.1

Exploring the performance of bias correction applied outside the calibration period’s climate regime

Katharina Klehmet, Peter Berg, Pascual Herrera, David Leidinger, Anthony Lemoine, Ernesto Pasten-Zapata, and Rafael Pimentel

It is common practice to apply some form of bias correction to climate models before use in impact modelling, such as hydrology. The standard method is to evaluate the correction method based on a cross validation procedure with two or more sub-periods. This allows the method to be assessed on data not previously seen in the calibration step. However, with standard split-sample setups, the data is most likely in a similar climate regime as the calibration data. In effect, the method is evaluated in the same climate regime as it is calibrated, and informs little about the performance outside the current climate regime.

To address this issue, a discrete split sample test (DSST) was set up so that as diverse climate regimes as possible were sampled. The simplest climate analogue would be to perform the DSST on the coldest years and evaluate on the warmest, to mimic a changing temperature. Here, the tests are extended to more exotic indicators, such as snow pack, the joint probability of wet and cold seasons, the number of hot days in a year, the convective activity during summer; all related to a specific case study issue. Six different bias correction methods of both standard quantile mapping and other approaches to scale the reference time series are included. The methods are applied in a pseudo-reality framework to six climate model projections from Euro-CORDEX 12.5 km simulations. The analysis is focused on comparing the DSST performance with the impact on the climate change signals, and to the reliability of each method when applied to different climate regimes.

How to cite: Klehmet, K., Berg, P., Herrera, P., Leidinger, D., Lemoine, A., Pasten-Zapata, E., and Pimentel, R.: Exploring the performance of bias correction applied outside the calibration period’s climate regime, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13211, https://doi.org/10.5194/egusphere-egu2020-13211, 2020.

EGU2020-8024 | Displays | CL3.1

Comparison of MK-PRISM according to horizontal resolution in South Korea

Maeng-Ki Kim, Jeong Sang, Ji-hyun Yun, and Ji-Seon Oh

In this study, we produced grid climate data sets of 1km×1km and 5km×5km horizontal resolutions based on MK (Modified Korean)-PRISM (Parameter-elevation Regressions on Independent Slopes Model), a statistical method that can estimate grid data of horizontal high-resolution using observational station data in Korea. To compare the MK-PRISM performance according to resolution, RMSEs of 1km resolution data and 5km resolution data were calculated and analyzed. The RMSEs of the two data sets were similar, but the results classified according to the elevation were different. The 1km high resolution estimated data was shown to better reflect the impact of the terrain for the daily mean temperature and daily maximum temperature, whereas the difference between the two data sets for daily minimum temperature was not statistically significant at each elevation. Furthermore, we also divided the temperature data into 9-classes based on the observed temperatures, and then compared the estimated performance of the two data sets according to elevation. For the low temperature group, performance of the 1 km resolution data at high elevations outperformed that of the 5 km resolution data, regardless of the season. In addition, we have verified the improved PRIDE (PRism based Dynamic downscaling Error correction) model, which can produce future high-resolution scenarios data using the results of RCM and MK-PRISM.

How to cite: Kim, M.-K., Sang, J., Yun, J., and Oh, J.-S.: Comparison of MK-PRISM according to horizontal resolution in South Korea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8024, https://doi.org/10.5194/egusphere-egu2020-8024, 2020.

EGU2020-6697 | Displays | CL3.1

Scale-dependent analysis of climate model biases in relation to dynamics

Katarina Kosovelj and Nedjeljka Žagar

The assessment of climate model biases in an important part of their validation, in particular with respect to the application of the outputs of global models as lateral boundaries in regional climate models. The coupled nature of thermodynamics and circulation asks for their simultaneous treatment in the model bias analysis. This can be achieved by applying the normal-mode decomposition of model outputs and reanalysis that provides biases associated with the two dominant atmospheric regimes, the Rossby (or balanced) and inertia-gravity (or unbalanced) regime. The regime decomposition provides the spectrum of bias in terms of zonal wavenumbers, meridional modes and vertical modes. This can be especially useful in the tropics, where the Rossby and IG regimes are difficult to separate and biases in simulated circulation, just like the circulation itself, have global impacts. 

The method is applied to the intermediate complexity climate model SPEEDY. Fifty-year long simulations  are performed in AMIP-mode with the prescribed SST. Biases are computed with respect to ERA-20C  upscaled to the resolution of SPEEDY (T30L8). We evaluate biases both in modal and physical space and study regional biases associated with the  balanced and unbalanced components of circulation. This work thus expands the results presented by Žagar et al. (2019, Clim. Dyn.) to the two regimes-related bias analysis..

The results show that the bias is strongly scale dependent, just like the simulated variability. The largest biases in SPEEDY are at planetary scales (waveumbers 0-3). Biases associated with the extratropical Rossby modes explain more than the half of bias variance. The Rossby n=1 mode is a single mode with the largest bias variance in balanced circulation whereas the Kelvin wave contains the largest bias among the IG modes. These biases are shown to originate mostly in the stratosphere and the upper-troposphere westerlies in the Southern hemisphere. 

How to cite: Kosovelj, K. and Žagar, N.: Scale-dependent analysis of climate model biases in relation to dynamics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6697, https://doi.org/10.5194/egusphere-egu2020-6697, 2020.

EGU2020-10513 | Displays | CL3.1

Cold and Fresh Biases of the Arctic Atlantic Water Layer in CMIP6 Models; Potential Origin and Implications

Narges Khosravi, Nikolay Koldunov, Qiang Wang, Sergery Danilov, Claudia Hinrichs, Tido Semmler, and Thomas Jung

We examined the Arctic Atlantic Water (AW) layer in the CMIP6 models. Climatological means of temperature and salinity at 400 m depth from multi-model averages are compared with observations, showing significant biases in both variables. Based on the currently available data, we showed that the CMIP6 models have cold and fresh biases in the Arctic AW layer, and warm and saline biases in the East Greenland Current. The temperature biases are comparable to the climate signal magnitude for temperature, predicted by the CMIP6 models for the end of the 21st century. For salinity, the biases are shown to be even more pronounced than the predicted signals. CMIP6 models also show positive sea-level pressure (SLP) and sea-surface height (SSH) biases in the Nordic Seas. We argue that the identified SLP bias leads to an anomalously weak cyclonic gyre circulation in the Nordic seas, as shown through positive SSH bias. This could cause weaker AW inflow through the Fram Strait, which explains the detected hydrography biases in the AW layer. While we do not rule out other possible factors contributing to the weak AW flow to the Arctic Ocean, we suggest that the identified ocean biases within the CMIP6 models are at least partially driven by atmospheric origins.

How to cite: Khosravi, N., Koldunov, N., Wang, Q., Danilov, S., Hinrichs, C., Semmler, T., and Jung, T.: Cold and Fresh Biases of the Arctic Atlantic Water Layer in CMIP6 Models; Potential Origin and Implications, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10513, https://doi.org/10.5194/egusphere-egu2020-10513, 2020.

EGU2020-11561 | Displays | CL3.1

Exploring the role of observational uncertainty and resolution mismatch in the application of bias adjustment methods

Ana Casanueva, Sixto Herrera, Maialen Iturbide, Stefan Lange, Martin Jury, Alessandro Dosio, Douglas Maraun, and José M. Gutiérrez

Systematic biases in climate models hamper their direct use in impact studies and, as a consequence, many bias adjustment methods, which merely correct for deficiencies in the distribution, have been developed. Despite adjusting the desired features under historical simulations, their application in a climate change context is subject to additional uncertainties and modifications of the change signals, especially for climate indices which have not been tackled by the methods. In this sense, some of the commonly-used bias adjustment methods allow changes of the signals, which appear by construction in case of intensity-dependent biases; some others ensure the trends in some statistics of the original, raw models. Two relevant sources of uncertainty, often overlooked, which bring further uncertainties are the sensitivity to the observational reference used to calibrate the method and the effect of the resolution mismatch between model and observations (downscaling effect).

In the present work, we assess the impact of these factors on the climate change signal of a set of climate indices of temperature and precipitation considering marginal, temporal and extreme aspects. We use eight standard and state-of-the-art bias adjustment methods (spanning a variety of methods regarding their nature -empirical or parametric-, fitted parameters and preservation of the signals) for a case study in the Iberian Peninsula. The quantile trend-preserving methods (namely quantile delta mapping -QDM-, scaled distribution mapping -SDM- and the method from the third phase of ISIMIP -ISIMIP3) preserve better the raw signals for the different indices and variables (not all preserved by construction). However they rely largely on the reference dataset used for calibration, thus present a larger sensitivity to the observations, especially for precipitation intensity, spells and extreme indices. Thus, high-quality observational datasets are essential for comprehensive analyses in larger (continental) domains. Similar conclusions hold for experiments carried out at high (approximately 20km) and low (approximately 120km) spatial resolutions.

How to cite: Casanueva, A., Herrera, S., Iturbide, M., Lange, S., Jury, M., Dosio, A., Maraun, D., and Gutiérrez, J. M.: Exploring the role of observational uncertainty and resolution mismatch in the application of bias adjustment methods, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11561, https://doi.org/10.5194/egusphere-egu2020-11561, 2020.

CL3.2 – Predictions of climate from seasonal to (multi)decadal timescales (S2D) and their applications

EGU2020-6358 | Displays | CL3.2

Towards onset: shades of ENSO skill

Dougal Squire and James Risbey

Climate forecast skill for the El Nino-Southern Oscillation (ENSO) is better than chance, but has increased little in recent decades. Further, the relative skill of dynamical and statistical models varies in skill assessments, depending on choices made about how to evaluate the forecasts. Using a suite of models from the North American Multi-Model Ensemble (NMME) archive we outline the consequences for skill of how the bias corrections and forecast anomalies are formed. We show that the method for computing forecast anomalies is such a critical part of the provenance of a skill score that any score for forecast anomalies lacking clarity about the method is open to wide interpretation. Many assessments of hindcast skill are likely to be overestimates of attainable forecast skill because the hindcast anomalies are informed by observations over the period assessed that would not be available to a real forecast. The relative skill rankings of forecast models can change between hindcast and forecast systems because the impact of model bias on skill is sensitive to the ways in which forecast anomalies are formed. Dynamical models are found to be more skillful than simple statistical models for forecasting the onset of El Nino events.

How to cite: Squire, D. and Risbey, J.: Towards onset: shades of ENSO skill, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6358, https://doi.org/10.5194/egusphere-egu2020-6358, 2020.

EGU2020-2235 | Displays | CL3.2

A Linear Inverse Model of Tropical and South Pacific Seasonal Predictability

Jiale Lou, Terence O'Kane, and Neil Holbrook

A multivariate linear inverse model (LIM) is developed to demonstrate the mechanisms and seasonal predictability of the dominant modes of variability from the tropical and South Pacific Oceans. We construct a LIM whose covariance matrix is a combination of principal components derived from tropical and extra-tropical sea surface temperature, and South Pacific Ocean vertically-averaged temperature anomalies. Eigen-decomposition of the linear deterministic system yields stationary and/or propagating eigenmodes, of which the least damped modes resemble the El-Niño Southern Oscillation (ENSO) and the South Pacific Decadal Oscillation (SPDO). We show that although the oscillatory periods of ENSO and SPDO are distinct, they have very close damping time scales, indicating the predictive skill of the surface ENSO and SPDO is comparable. The most damped noise modes occur in the mid-latitude South Pacific Ocean, reflecting atmospheric eastward-propagating Rossby wave train variability. We argue that these ocean wave trains occur due to the atmospheric high-frequency variability of the Pacific South American pattern imprinting onto the surface ocean. The ENSO spring predictability barrier is apparent in LIM predictions initialized in Mar-May (MAM) but nevertheless displays significant correlation skill of up to ~3 months. For the SPDO, the predictability barrier tends to appear in June-September (JAS), indicating remote but delayed influences from the Tropics. We demonstrate that subsurface processes in the South Pacific Ocean are the main source of decadal variability, and further that by characterizing the upper ocean temperature contribution in the LIM the seasonal predictability of both ENSO and the SPDO variability is increased.

How to cite: Lou, J., O'Kane, T., and Holbrook, N.: A Linear Inverse Model of Tropical and South Pacific Seasonal Predictability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2235, https://doi.org/10.5194/egusphere-egu2020-2235, 2020.

EGU2020-4571 | Displays | CL3.2

Statistical prediction of 20th century European summer temperatures based on ERA20c reanalysis data

Maria Pyrina, Sebastian Wagner, and Eduardo Zorita

An alternative to dynamical seasonal prediction of European climate is statistical modeling. Statistical modeling is an appealing and computationally effective approach for producing seasonal forecasts by exploiting the physical connections between the predictand variable and the predictors. We assess the seasonal predictability of summer European 2m temperature (T2m) using canonical correlation analysis. Seasonal means of spring Soil Moisture (SM), Sea Level Pressure (SLP) and Sea Surface Temperature (SST) are used as predictors of mean summer T2m. For SSTs, we test the potential predictability of T2m using three different regions. These regions include what we define as: Extratropical North Atlantic (ENA), Tropical North Atlantic (TNA), and North Atlantic (NA). The predictability is explored in the ERA20c reanalysis and in comprehensive Earth System Model (ESM) fields. The results are provided for the European domain on a horizontal grid of 1°x1° degrees.

In order to identify the local T2m predictability related to the different predictor variables, we first built Univariate Linear Regression models, one for every predictor. The regression models are calibrated and validated during 1902-1950 and a prediction is provided for the periods 1951-1998, 1951-2004, and 1951-2008, respectively. The resulting correlation maps between the original and the predicted T2m anomalies showed that for the predictor variables SLP, SM, and SSTENA the results of the experiments using ESM data share similar T2m predictability patterns with the results of the experiments using reanalysis data. Most prominent disagreements between the predictability patterns resulting from ESMs and from ERA20c refers to the T2m prediction that utilizes tropical SSTs. SM is identified as the most important predictor for the summer European temperature predictability.

The ERA20c data show that the SM predictor field can be used for the T2m prediction over most of our study region west of 15° E and that the ENA SSTs can be used for the prediction over Europe east of 15° E. The resulting gridded correlation coefficients vary between 0.3 and 0.5. These results are not sensitive to the prediction period and to the number of Canonical Coefficients used in the regression model. Our approach complements existing numerical seasonal forecast frameworks and can be implemented for ensemble prediction studies.

How to cite: Pyrina, M., Wagner, S., and Zorita, E.: Statistical prediction of 20th century European summer temperatures based on ERA20c reanalysis data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4571, https://doi.org/10.5194/egusphere-egu2020-4571, 2020.

EGU2020-10557 | Displays | CL3.2

Toward a regional-scale seasonal climate prediction system over the Mediterranean basin: evaluation and comparison of RegCM- and WRF-based dynamical downscaling approaches

Lorenzo Sangelantoni, Vincenzo Mazzarella, Antonio Ricchi, Rossella Ferretti, and Gianluca Redaelli

Seasonal Climate Predictions (SCPs) represent a challenging intermediate field where aspects typical of the short-term weather forecasts and long-term climate projections interact. Skillful SCPs represent an essential tool to reduce societal vulnerabilities to the inter-annual climate fluctuation through short-term (i.e., next season) climate impact mitigation measures. This is especially true over areas characterized by large climate inter-annual variability as the Mediterranean basin, which is also traditionally characterized by a poor seasonal predictability.

The primary research question of present study is to assess the capability of two dynamical downscaling approaches to improve the seasonal inter-annual variability signal coming from the global-scale driving SCP system on the Mediterranean basin.

In this work the Weather Research and Forecasting model (WRF3.9.1.1) and the Regional Climatic Model (RegCM4.1) were nested into NCEP’s operational seasonal forecast model Climate Forecast System version 2 (CFSv2) to dynamically downscale seasonal predictions over Mediterranean basin.

Using the initial and boundary conditions of an ensemble of the CFSv2 we compare the capability of the two downscaling approaches on improving the large scale CFSv2 prediction of a climatological period of 22-cold seasons (December–February) during 1982–2002.

The SCP systems (WRF- and RegCM-based) consist on a double dynamical downscaling where a height-member lagged ensemble of 3-month CFSv2 climate predictions represent the common driving fields. Both the nested models dynamically downscales CFSv2 climate prediction from the original 100 km resolution to 60 km over a domain covering the Mediterranean basin and Central Europe. The first downscaling feeds a second downscaling performed over a domain centered over Central Italy with a resolution of 12 km.

Climate variables considered are: 2 m temperature, precipitation, geopotential height at different pressure levels and mean sea level pressure. Results will be discussed by means of mean bias spatial distribution, inter-annual anomaly variability reproduction and probabilistic hit-rate of anomalous seasons, through tercile plots and reliability diagrams of the above mentioned variables.

Preliminary results, considering the RegCM, identify temperature variability reproduction benefiting from the downscaling. At the same time, precipitation shows an improved spatial distribution patterns but not improved inter-annual variability representation if compared to the driving CFSv2 reference period climate predictions.

How to cite: Sangelantoni, L., Mazzarella, V., Ricchi, A., Ferretti, R., and Redaelli, G.: Toward a regional-scale seasonal climate prediction system over the Mediterranean basin: evaluation and comparison of RegCM- and WRF-based dynamical downscaling approaches, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10557, https://doi.org/10.5194/egusphere-egu2020-10557, 2020.

EGU2020-5649 | Displays | CL3.2

Improvement in the decadal prediction skill of the North Atlantic extratropical winter circulation through increased model resolution

Mareike Schuster, Jens Grieger, Andy Richling, Thomas Schartner, Sebastian Illing, Christopher Kadow, Wolfgang A. Müller, Holger Pohlmann, Stephan Pfahl, and Uwe Ulbrich

As the scientific and societal interest in skillful decadal predictions grows, a lot of effort is currently put into the development and advancement of such prediction systems worldwide. Studies evaluating the skill of basic atmospheric quantities, such as e.g. surface temperatures, in those prediction systems are numerous. However, dynamical quantities are discussed only rarely. Also, there is a lack of investigations which assess the exclusive impact of the model’s resolution on the forecast skill. 

In this study, we address both these issues: we analyse a set of four quantities of the extratropical circulation (storm track, blocking frequencies, cyclone frequencies, windstorm frequencies) and compare the deterministic forecast skill for lead winters 2-5 within the German MiKlip prediction system of two different spatial resolutions. While the lower resolution (LR, atm: T63L47, ocean: 1.5° L40) shows common deficits in the climatological representation, e.g. an overly zonal extratropical storm track and a deficit in blocking frequencies over the North Atlantic and Europe, the higher resolution version (HR, atm: T127L95, ocean: 0.4° L40) counteracts these biases. In return, the deterministic decadal prediction skill, which is measured in terms of anomaly correlation, increases (statistically significant) with the increase in resolution for all four quantities. 

The improvements found in our study for the different metrics follow a physically consistent line of argument, and the areas of improved forecast skill are crucial regions for the genesis and intensification of synoptic weather systems over the North Atlantic and for their impact on Europe. Thus, we identified a significant improvement of the storm track skill along the North Atlantic Current (i.e., the source region of synoptic eddies), a downstream improvement of the cyclone frequency skill over the central North Atlantic (where the synoptic systems intensify), and finally improved skill of the cyclone, windstorm and blocking frequencies over the European continent (i.e., the impact area).

Not only is the skill improved with the increase in resolution (HR vs. LR), but also the HR system itself offers significant deterministic decadal forecast skill for the extratropical circulation metrics in large regions over the North Atlantic and Europe (HR vs. ERA-Interim) for the considered lead time of two to five winters. 

Our results are encouraging for the advancement of decadal prediction systems as they document that even small improvements in the bias of the model, through an increased spatial resolution and possibly a better representation of smaller scales, can have a substantial effect on the representation of dynamical processes and can ultimately lead to a significant improvement of the decadal prediction skill for extratropical features and extreme events.

How to cite: Schuster, M., Grieger, J., Richling, A., Schartner, T., Illing, S., Kadow, C., Müller, W. A., Pohlmann, H., Pfahl, S., and Ulbrich, U.: Improvement in the decadal prediction skill of the North Atlantic extratropical winter circulation through increased model resolution, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5649, https://doi.org/10.5194/egusphere-egu2020-5649, 2020.

Decadal climate prediction can provide invaluable information for decisions made by government agencies and industry. Modes of internal variability of the ocean play an important role in determining the climate on decadal time scales. This study explores the possibility of using self-organizing maps (SOMs) to identify decadal climate variability with the ultimate goal of improving decadal climate prediction. SOM is applied to 11-year running mean winter Sea Surface Temperature (SST) in the North Pacific and North Atlantic within the Community Earth System Model 1850 pre-industrial simulation to identify patterns of internal variability in SSTs. Transition probability tables are calculated to identify preferred paths through the SOM with time.  Results show both persistence and preferred evolutions of SST depending on the initial SST pattern.  This method also provides a measure of the predictability of these SST patterns, with the North Atlantic being predictable at longer lead times than the North Pacific. In addition, decadal SST predictions using persistence and lagged transition probabilities are conducted.

How to cite: Gu, Q. and Gervais, M.: Exploring North Atlantic and North Pacific Decadal Climate Prediction Using Self-Organizing Maps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20876, https://doi.org/10.5194/egusphere-egu2020-20876, 2020.

The Pacific Decadal Oscillation (PDO) is the most prominent form of decadal variability over the North Pacific, characterized by its horseshoe-like sea surface temperature (SST) anomaly pattern. The PDO exerts a substantial influence on marine ecosystems, fisheries, and agriculture. Through modulating global mean temperature, the phase shift of the PDO at the end of the 20th century is suggested to be an influential factor in the recent surface warming hiatus. Therefore, determining the predictability of the PDO in a warming climate is of great importance. By analyzing future climate under different emission scenarios simulated by the Coupled Model Intercomparison Project phase 5 (CMIP5), we show that the prediction lead time and the associated amplitude of the PDO decreases sharply under greenhouse warming conditions. This decrease is largely attributable to a warming-induced intensification of oceanic stratification, which accelerates propagation of Rossby waves, shortening the PDO lifespan and suppressing its amplitude by limiting its growth time. Our results suggest that greenhouse warming will make prediction of the PDO more challenging, with far-reaching ramifications.  

How to cite: Li, S.: The Pacific Decadal Oscillation less predictable under greenhouse warming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6399, https://doi.org/10.5194/egusphere-egu2020-6399, 2020.

EGU2020-14046 | Displays | CL3.2 | Arne Richter Award for Outstanding ECS Lecture

Making an informed use of observations and climate models to advance understanding of past and future sea ice changes

François Massonnet

Polar Regions are viewed by many as "observational deserts", as in-situ measurements there are indeed scarce relative to other regions. The increasing availability of satellite observations is salutary but does not entirely solve the problem due to persistent uncertainties in the derived products. Climate models have been instrumental in completing the big picture. However, models are themselves subject to errors, some of which are systematic. How to take advantage of the respective strengths of observations and models, while minimizing their respective weaknesses? To illustrate this point, I will discuss how recent advances in data assimilation, model evaluation, and numerical modeling have enabled major progress in tackling important questions in polar research, such as: What are the causes of the recent Antarctic sea ice variability? What might the future of Arctic sea ice look like? How to improve the skill of seasonal sea ice predictions? How should the existing observational network be improved at high latitudes? What are the priorities in terms of sea ice modeling for climate change studies? By running through these cases, I will provide evidence for the emerging hypothesis that "the whole is greater than the sum of its parts": treating observations and climate models as two noisy instances of the same, but unknown truth, gives insights that would not be possible if each source was used separately.

How to cite: Massonnet, F.: Making an informed use of observations and climate models to advance understanding of past and future sea ice changes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14046, https://doi.org/10.5194/egusphere-egu2020-14046, 2020.

EGU2020-11159 | Displays | CL3.2

Nonstationary lagged relationships between the Arctic and the midlatitudes

Erik W. Kolstad, James A. Screen, and Marius Årthun

Statistical relationships between climate variables are good source of seasonal predictability, but can we trust them to be valid in the future? In two recent papers, we investigated the stationarity of some well-known lagged relationships. The predictors were Arctic sea surface temperatures (SSTs) and sea ice cover during autumn, and the predictands were the North Atlantic Oscillation (NAO) and European temperature in winter. The reason for studying these variables was that in recent decades, reduced sea ice and above-normal SSTs in autumn have often preceded negative NAO conditions and cold temperatures in Northern Europe in the following winter. When we looked further back in time, however, we found that the relationships between SST/ice and NAO/temperatures have been highly changeable and sometimes even the complete opposite to that seen recently. One key finding was that, according to two 20th century reanalyses, the strength of the negative lagged correlation between Barents Sea SST anomalies in fall and European temperature anomalies in winter after 1979 is unprecedented since 1900. An analysis of hundreds of simulations from multiple climate models confirms that the relationships vary with time, just due to natural climate variability. This led us to question the causality and/or robustness of the links between the variables and to caution against indiscriminately predicting wintertime weather based on Arctic sea ice and SST anomalies.

How to cite: Kolstad, E. W., Screen, J. A., and Årthun, M.: Nonstationary lagged relationships between the Arctic and the midlatitudes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11159, https://doi.org/10.5194/egusphere-egu2020-11159, 2020.

EGU2020-739 | Displays | CL3.2

Seasonal prediction of boreal winter stratosphere

Alice Portal, Paolo Ruggieri, Froila Palmeiro, Javier Garcìa-Serrano, Daniela Domeisen, and Silvio Gualdi

Advances in the development of seasonal forecast systems allow skillful predictions of the atmospheric flow in the extratropics. Recent studies have highlighted the importance of stratospheric processes in climate variability at seasonal time scales, while their representation and impact in seasonal prediction is yet to be understood. Here stratospheric variability and predictability in boreal winter are evaluated on the seasonal range, using multi-model retrospective forecasts initialised in November. A novel focus is adopted to assess troposphere-stratosphere coupling (i.e., the interaction between upper-tropospheric eddy heat flux and the stratospheric polar vortex) on the basis of the empirical relation derived by Hinssen and Ambaum (2010)[1]. Results indicate that dynamical predictions perform better than persistence forecasts and show significant skill up to lead season one (December to February). We find that seasonal anomalies of stratospheric zonal-mean zonal wind in the extratropics are mostly explained by anomalous tropospheric eddy heat flux; the response to tropospheric wave forcing is weaker in models than in reanalysis. Furthermore, we demonstrate that skillful seasonal stratospheric forecasts benefit from residual predictability of the heat flux over the Pacific sector, while further improvements are limited by current unpredictability of the Eurasian heat flux on the seasonal time scale. Sources of long-term predictability are examined and reveal a potential influence of the QBO, Arctic sea ice, Eurasian snow cover and ENSO. This work is realised using data from the seasonal Copernicus Climate Change Service multi-model (November initialisations from 1993 to 2016) and from ERA-Interim reanalysis.

[1] Hinssen,  Y. B. L. and Ambaum,  M. H. P.:  Relation between the 100-hPa heat flux and stratospheric potential vorticity, J. Atmos.Sci., 67, 4017–4027, 2010.

How to cite: Portal, A., Ruggieri, P., Palmeiro, F., Garcìa-Serrano, J., Domeisen, D., and Gualdi, S.: Seasonal prediction of boreal winter stratosphere, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-739, https://doi.org/10.5194/egusphere-egu2020-739, 2020.

EGU2020-7160 | Displays | CL3.2

Multiyear predictability of extratropical North Atlantic sea surface temperatures in hindcasts initialized with wind stress anomalies

Annika Reintges, Mojib Latif, Mohammad Hadi Bordbar, and Wonsun Park

Multiyear to decadal predictability of the North Atlantic sea surface temperature (SST) is commonly attributed to buoyancy-forced changes of the Atlantic Meridional Overturning Circulation and associated poleward heat transport. Here we investigate the role of the wind stress anomalies in decadal hindcasts for the prediction of annual extratropical North Atlantic SST anomalies. A global climate model is forced by ERA-interim wind stress anomalies over the period 1979-2017. The resulting climate states serve as initial conditions for the decadal hindcasts. We find significant skill in predicting annual SST anomalies over the central extratropical North Atlantic with anomaly correlation coefficients exceeding 0.6 at lead times of 4 to 7 years. The skill of annual SSTs is basically insensitive to the calendar month of initialization. This skill is potentially linked to a gyre-driven upper-ocean heat content anomaly that leads anomalous SSTs by several years.

How to cite: Reintges, A., Latif, M., Bordbar, M. H., and Park, W.: Multiyear predictability of extratropical North Atlantic sea surface temperatures in hindcasts initialized with wind stress anomalies, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7160, https://doi.org/10.5194/egusphere-egu2020-7160, 2020.

EGU2020-17685 | Displays | CL3.2

Multi-model decadal predictions of probabilities for seasonal mean temperature and precipitation extremes

Tim Kruschke, Daniel Befort, Grigory Nikulin, and Torben Koenigk

There is great interest from a wide range of stakeholders in near-term climate prediction ranging from seasonal to decadal timescales. While seasonal forecasting is done operationally since more than 20 years now, decadal climate prediction still has to be considered mainly a research subject. The vast majority of existing decadal prediction studies focusses on skill of temporally (typically multi-annual) averaged parameters. This is in line with the general understanding of climate prediction skill to be expectable only for low-frequency climate variability on larger spatial scales. However, while such predictions of multi-annual means might be skilful, they contain little information on shorter timescale extremes.

We present a different approach, that is the temporal pooling of seasonal means to form probabilistic forecasts. Thus, rather than for example analyzing the anomaly of the summer temperature averaged over a decade, we examine the probabilities of extreme seasonal summer temperatures within this decade (exceedance of some quantile of the climatological summer temperature probability distribution). This approach complements the common multi-annual means and hence extends the usability of decadal predictions.

For this study we use decadal climate predictions produced by the CMIP5 multi-model ensemble as well as available CMIP6-DCPP contributions. We analyze these large ensembles’ skill regarding forecasting the probability of extremely warm and extremely dry seasons. A season is considered to be “extreme” if the seasonal mean temperature (precipitation) is above (below) the 5th (1st) sextile of the climatological probability distribution.

We will show that the forecast skill in this respect is comparable to that obtained for the common approach, based on multi-annual year averages. This means the existence of significant skill for many regions globally when considering the probability of extremely warm temperatures. Skill regarding predicting extremely dry seasons (i.e. low precipitation) is rather limited, though.

These results generally agree with studies applying the common multi-annual averaging approach for assessing skill of temperature and precipitation climate predictions but extend the existing knowledge by covering probabilities of seasonal mean extremes. Hence, this approach states an important contribution towards the extended utility of decadal climate predictions. An additional benefit of the framework proposed here is the larger sample size when pooling instead of averaging. This allows to consider extreme events of higher magnitude before reaching the limitations of statistical uncertainty hampering the derivation of robust results.

How to cite: Kruschke, T., Befort, D., Nikulin, G., and Koenigk, T.: Multi-model decadal predictions of probabilities for seasonal mean temperature and precipitation extremes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17685, https://doi.org/10.5194/egusphere-egu2020-17685, 2020.

EGU2020-2605 | Displays | CL3.2

Assessment of prediction skill for land water storage in CMIP5 models based on GRACE satellite observations

Laura Jensen, Annette Eicker, Tobias Stacke, and Henryk Dobslaw

Reliable predictions of terrestrial water storage (TWS) changes for the next couple of years would be extremely valuable for agriculture and water management. Decadal predictions have already shown to be meaningful for predicting e.g. sea surface and air temperature, but have not yet been intensively investigated regarding TWS. Here we evaluate decadal hindcasts of TWS related variables from an ensemble of five CMIP5 (Coupled Model Intercomparison Project Phase 5) climate models against a TWS data set that is based on GRACE (Gravity Recovery And Climate Experiment) satellite observations.

As the overlap time span of 9 years for the model time series and GRACE observations is not long enough for a robust comparison, we also use a GRACE-based reconstruction of TWS utilizing precipitation and temperature data sets (Humphrey and Gudmundsson, 2019) available back to the year 1900. Thus we are able to compare the full 41 year (1970-2011) time span covered by CMIP5 decadal predictions to the TWS reconstruction. Correlations and root mean squared deviations (RMSD) are calculated for yearly global averages and for individual climate zones. Furthermore, we derive global maps of correlations and RMSD.

We find that at least for the first two prediction years the decadal model experiments clearly outperform the classical climate projections, regionally even for the third year. However, the spread among the models is large and absolute similarities between model output and GRACE TWS reconstructions are quite low.

We also perform a preliminary skill assessment for the first CMIP6 decadal hindcasts publicly available, finding a slightly reduced skill for the first forecast year in comparison to the CMIP5 models, while for the second forecast year an improvement is seen. This result is generally encouraging, but requires confirmation as soon as more CMIP6 decadal hindcasts become available.

Humphrey, V., Gudmundsson, L., 2019. GRACE-REC: a reconstruction of climate-driven water storage changes over the last century. Earth System Science Data Discussions 1–41. https://doi.org/10.5194/essd-2019-25

How to cite: Jensen, L., Eicker, A., Stacke, T., and Dobslaw, H.: Assessment of prediction skill for land water storage in CMIP5 models based on GRACE satellite observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2605, https://doi.org/10.5194/egusphere-egu2020-2605, 2020.

EGU2020-4465 | Displays | CL3.2

Forecasting North America Winter Surface Air Temperature Using Machine Learning Methods

Qifeng Qian, Xiaojing Jia, and Hai Lin

Two machine learning (ML) models (Support Vector Regression and Extreme Gradient Boosting; SVR and XGBoost hereafter) have been developed to perform seasonal forecast for the winter (December–January–February, DJF) surface air temperature (SAT) in North America (NA) in this study. The seasonal forecast skills of the two ML models are evaluated in a cross-validated fashion. Forecast results from one Linear Regression (LR and hereafter) model and two Canadian dynamic climate models are used for the purpose of a comparison. In the take-one-out hindcast experiment, the two ML models and the LR model show reasonable seasonal forecast skills for the winter SAT in NA. Comparing to the two Canadian dynamic models, the two ML models and the LR model have better forecast skill for the winter SAT over the central NA which mainly get contribution of a skillful forecast of the second Empirical Orthogonal Function (EOF) mode of winter SAT over NA. In general, the SVR model and XGBoost model hindcasts show better forecast performances than LR model. However, the LR model shows less dependence on the size of the training dataset than SVR and XGBoost models. In the real forecast experiments during the period 2011-2017, compared to the two Canadian dynamic climate models, the two ML models clearly improve the forecast skill of winter SAT over northern and central NA. The results of this study suggest that ML models may provide real-time supplementary forecast tools to improve the forecast skill and may operationally facilitate the seasonal forecast of the winter climate of NA. 

How to cite: Qian, Q., Jia, X., and Lin, H.: Forecasting North America Winter Surface Air Temperature Using Machine Learning Methods, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4465, https://doi.org/10.5194/egusphere-egu2020-4465, 2020.

EGU2020-13849 | Displays | CL3.2

Neural interpretation of European summer climate ensemble predictions

Julianna Carvalho Oliveira, Eduardo Zorita, Johanna Baehr, and Thomas Ludwig

Current state-of-the-art dynamical seasonal prediction systems still show limited skill, particularly over Europe in summer. To circumvent this, we propose a neural network-based classification of individual ensemble members at the initialisation of summer climate predictions, prior to performing a skill analysis. Different from European winter climate, largely dominated by the North Atlantic Oscillation, predictability of European summer climate has been associated with several physical mechanisms, including teleconnections with the tropics. Recent studies have shown that predictive skill improves when the dominant physical processes in a given season are identified at the initialisation of a prediction. Each of these dominant physical processes is associated with large-scale circulation patterns, often depicted by modes of Empirical Orthogonal Functions (EOF). We argue that Self-Organising Maps (SOM), a type of neural network classifier, can provide further insight on interpreting the predictive skill of mixed resolution hindcast ensemble simulations generated by MPI-ESM. This is achieved by identifying which circulation patterns over the North Atlantic-European sector (NAE) at the initialisation of hindcasts lead to more predictable states than others, their preferable transition states, and whether the spatial structure of each SOM mode play a role in shaping climate over Europe. We train SOM networks on sea level pressure fields of ERA-20C reanalysis at the initialisation of the seasonal prediction system (every May) for the period of 1900-2010, covering NAE. We compare the SOM-derived modes with circulation patterns derived from EOF analysis, and characterise each class of circulation regime. This analysis is used to distinguish classes of predictions with two different sets of MPI-ESM initialised simulations with 10 and 30 members, covering the period of 1902-2008 and 1982-2016, respectively. We then discuss the differences and advantages of performing a neural interpretation of the skill of an ensemble prediction, over traditional skill analysis.



How to cite: Carvalho Oliveira, J., Zorita, E., Baehr, J., and Ludwig, T.: Neural interpretation of European summer climate ensemble predictions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13849, https://doi.org/10.5194/egusphere-egu2020-13849, 2020.

EGU2020-20801 | Displays | CL3.2

An evaluation of the CESM Decadal Climate Prediction Large Ensemble with application to regional studies

Juan José Rosa Cánovas, Matilde García Valdecasas-Ojeda, Patricio Yeste, Emilio Romero Jiménez, Sonia Raquel Gámiz Fortís, María Jesús Esteban Parra, and Yolanda Castro Díez

The decadal climate prediction (DCP) is one of the major challenges addressed by the research community focused on climate studies during the last years. DCPs try to fill the gap between seasonal-to-interannual predictions and multidecadal-to-centennial climate change projections by taking advance of not only the forced climate change signal provided by boundary information, but also the initialization of the climate system components which exhibit longer memory, such as the ocean.

Climate modelling for DCP is a very expensive activity in terms of computing resources since many initialized experiments are needed to properly assess the predictive skill at such time scales. In the context of dynamical downscaling (DS), this problem becomes even more important. Hence, the aim of this study is to evaluate some output variables from the Decadal Climate Prediction Large Ensemble (DPLE) and to explore the issue of reducing the number of ensemble members in consideration to make DS more affordable. The DPLE is a set of decadal simulations carried out at NCAR by using the Community Earth System Model (CESM). The DPLE encompasses 62 decadal experiments initialized every year (from 1954 to 2015) for each of the 40 members of the ensemble. Despite the ensemble size, only 10 members provide an adequate set of variables with the proper time aggregation to run a regional model.

Results obtained from this study could be helpful for those researchers who decide to address the regional DCP through a DS approach. Because of high computing resources, conducting DS simulations is restricted to a small number of research groups or institutes which can afford that large investment. It potentially limits the progress on this important and relatively recent branch of the climate science.

 

ACKNOWLEDGEMENTS: JJRC acknowledges the Spanish Ministry of Science, Innovation and Universities for the predoctoral fellowship (grant code: PRE2018-083921). This research has been carried out in the framework of the project CGL2017-89836-R, funded by the Spanish Ministry of Economy and Competitiveness with additional FEDER funds.

How to cite: Rosa Cánovas, J. J., García Valdecasas-Ojeda, M., Yeste, P., Romero Jiménez, E., Gámiz Fortís, S. R., Esteban Parra, M. J., and Castro Díez, Y.: An evaluation of the CESM Decadal Climate Prediction Large Ensemble with application to regional studies, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20801, https://doi.org/10.5194/egusphere-egu2020-20801, 2020.

EGU2020-3677 | Displays | CL3.2

Investigating the climate predictability in the Southern Ocean using global and regional coupled models

Eduardo Moreno-Chamarro, Deborah Verfaillie, Hugues Goosse, Pablo Ortega, Thierry Fichefet, François Massonnet, François Klein, Charles Pelletier, and Guillian Van Achter

The PARAMOUR project (Decadal Predictability and vAriability of polar climate: the Role of AtMosphere-Ocean-cryosphere mUltiscale inteRactions) is a new project funded in the framework of the Belgian program EOS - The excellence of Science. It aims at revealing fundamental drivers of climate variability and assessing the predictability in high-latitudes by using coupled regional climate models in both hemispheres. In this communication, we will present the ongoing contribution of the Earth and Life Institute in Louvain-la-Neuve (ELI, Belgium) and the Barcelona Supercomputing Center (BSC, Spain) to the PARAMOUR project, specifically in the Austral regions. The ELI and BSC efforts centre around two main objectives. The first one is improving our understanding of key processes that control the variability of the ice-ocean-atmosphere system at decadal timescales. The focus will initially be on the interactions between the components at regional scale and, later on, on the links with larger spatial scales. The second one is to determine how those interactions will lead to some predictability of the full ice-ocean-atmosphere system at decadal timescales or of some specific components only. Achieving our goals will require the development of coupled regional models including the atmosphere, ocean, sea ice and ice sheets, driven at their boundaries by the results of global models. Three configurations are proposed in the PARAMOUR project, covering 1/ Greenland, the Arctic and the North Atlantic sector, 2/ Antarctica and the Southern Ocean, 3/ The Totten glacier region. We will focus here on the latter two configurations, for the Austral regions. Retrospective (1980-2015) and prospective (2015-2045) climate simulations at high resolution will be conducted to evaluate the respective roles of initial conditions, some specific physical processes, teleconnections and couplings in the recent trends and to appreciate the potential fluctuations of key climate indicators within the next decades. A specific aspect will also be to determine the added-value of the regional models compared to the global ones.

How to cite: Moreno-Chamarro, E., Verfaillie, D., Goosse, H., Ortega, P., Fichefet, T., Massonnet, F., Klein, F., Pelletier, C., and Van Achter, G.: Investigating the climate predictability in the Southern Ocean using global and regional coupled models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3677, https://doi.org/10.5194/egusphere-egu2020-3677, 2020.

EGU2020-20631 | Displays | CL3.2

Assessing consistency across climate datasets for the potential detectability of extreme events in seasonal forecasting using agroclimatic indicators

Jose Maria Costa Saura, Valentina Bacciu, Valentina Mereu, Antonio Trabucco, and Donatella Spano

Seasonal forecasts are medium-range climate predictions that, used for calculating agroclimatic indicators, might potentially help land managers for best decision making. To assess their reliability seasonal forecasts are commonly contrasted against observed datasets, e.g. gridded data coming from reanalysis, classifying yearly pixel conditions in into/out of the norm events (i.e. using the 33th and 66th percentiles along a time series to define the occurrence of out of the norm events). Potential differences in the shape of the probability distribution across observed climate datasets might influence the results in the validation procedure of seasonal forecasting since the definition of out of the norm events depends on the properties of the statistical distribution. Here, we assess for different agroclimatic indicators related with water availability, vegetation thermal needs and fire risk, the spatial patterns of skewness using a range of climate datasets, i.e. ERA5, E-OBS and WFDEI along a 30 year period. Skewness represents the degree of asymmetry of the probability distribution evidencing locations in which out of the norm events highly differ from mean conditions which might suggest a potentially higher detectability. Common spatial patterns of great skewness (either positive or negative) across observed dataset might suggest areas with high and consistent detectability whereas contrasting patterns might suggest higher uncertainty for the validation procedure.

How to cite: Costa Saura, J. M., Bacciu, V., Mereu, V., Trabucco, A., and Spano, D.: Assessing consistency across climate datasets for the potential detectability of extreme events in seasonal forecasting using agroclimatic indicators, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20631, https://doi.org/10.5194/egusphere-egu2020-20631, 2020.

EGU2020-3309 | Displays | CL3.2

Windows of Opportunity in Decadal Predictions of North Atlantic SST

Juliette Mignot, Leonard Borchert, Matthew Menary, Didier Swingedouw, Giovanni Sgubin, and Stephen Yeager

The skill of decadal predictions in the North Atlantic region changed over time in the 20th century. Recent work based on a single model argued that times of high skill – so-called windows of opportunity – could be identified for average North Atlantic SST by knowing the strength of meridional ocean heat transport in the subpolar North Atlantic at the start of a prediction.

Here, we verify these previous findings for the period 1970-2015 in several prediction systems of the Decadal Climate Prediction Project (DCPP) based on models used in the Coupled Model Intercomparison Project Phase 6 (CMIP6). We find windows of opportunity for decadal predictions of average North Atlantic SST in all examined prediction systems. The timing of these windows of opportunity generally agrees with the published estimate, indicating their robustness around the end of the twentieth century.

Decadal SST prediction skill in the North Atlantic Subpolar Gyre (SPG) shows much less consistent windows of opportunity between prediction systems than average North Atlantic SST. We explore model differences that explain these inconsistencies, discussing the spatial and temporal representation of North Atlantic ocean circulation and heat redistribution in the different prediction systems. We then show that connecting windows of opportunity to observable climatic variables such as sea surface height anomalies in the subpolar North Atlantic can constrain future skill estimates.

How to cite: Mignot, J., Borchert, L., Menary, M., Swingedouw, D., Sgubin, G., and Yeager, S.: Windows of Opportunity in Decadal Predictions of North Atlantic SST, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3309, https://doi.org/10.5194/egusphere-egu2020-3309, 2020.

EGU2020-8669 | Displays | CL3.2

The Northern Hemisphere Winter Polar Jet Stream and its Connection to the Seasonal Prediction Skill of Weather Regimes over Europe

Lara Hellmich, Marc Rautenhaus, Panos Athanasiadis, Mikhail Dobrynin, André Düsterhus, Paolo Ruggieri, and Johanna Baehr

Over the North Atlantic, the frequency of extreme weather events, such as storms or cold spells, is critically dependent on the prevailing weather regime. In consequence, seasonal predictability of these regimes is important. Currently, the ability of seasonal prediction systems to predict such weather regimes over Europe is limited. Weather regimes and the location of the northern hemisphere polar jet stream, hereinafter referred to as jet stream, interact with each other. Specific weather regimes are associated with a northern, central or southern position of the jet stream. Therefore, we investigate whether the relationship between weather regimes and the location of the jet stream can be used to improve seasonal winter forecasts over Europe. For our analysis, we use a seasonal prediction system based on the Max-Planck-Institute Earth-System- Model (MPI-ESM) and investigate a 30-member ensemble, as well as the global reanalysis ERA-Interim as an observational reference.

Our results show that the jet stream’s latitude is predictable per winter month with a seasonal prediction system. We also demonstrate in ERA-Interim that weather regime clusters can be directly identified via the jet stream’s position by using k-mean clustering with monthly data. Moreover our results show that the MPI-ESM reforecast ensemble represents the spatial and temporary variability of these clusters. We analyse whether predictive skill can be improved if the number of clusters represented within the reforecast ensemble at a given time is reduced. Specifically, we test whether the incorporation of the location of the jet stream into the prediction analysis improves the prediction skill of sea level pressure and Z500 in the North Atlantic area.

How to cite: Hellmich, L., Rautenhaus, M., Athanasiadis, P., Dobrynin, M., Düsterhus, A., Ruggieri, P., and Baehr, J.: The Northern Hemisphere Winter Polar Jet Stream and its Connection to the Seasonal Prediction Skill of Weather Regimes over Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8669, https://doi.org/10.5194/egusphere-egu2020-8669, 2020.

The predictability of spring (March–May) precipitation over East China is investigated in the present study based on the February-start hindcasts of eight coupled models from DEMETER and ENSEMBLES during 1960–2001. Five out of the eight models exhibit significantly increased predictability of central East China spring precipitation (CECSP) after the late 1970s. The mechanism analysis indicates that CECSP variability is closely related to a meridional dipole vorticity pattern at 200 hPa and southerly wind at 850 hPa over East Asia, whose prediction skill also increased significantly around the late 1970s, consistent with the changes in CECSP predictability. Observational analysis indicates that the sea surface temperature (SST) over the tropical Pacific and Indian Ocean experienced a notable decadal change around the late 1970s. After the decadal change, the tropical SST has an enhanced impact on the CECSP-related East Asian dipole vorticity pattern at the upper level and on the western North Pacific anticyclone at the lower level. The five models can adequately reproduce the observed enhanced connection between the tropical SST and East Asian atmospheric circulation after the late 1970s, consequently showing higher predictability of East Asian atmospheric circulation and CECSP. However, the other three models cannot reproduce the relationship between the tropical SST and East Asian atmospheric circulation; therefore, CECSP predictability in these models remains low during the entire period. The increased predictability is valuable for current dynamical seasonal prediction for central East China.

How to cite: Zhang, M. and Sun, J.: Increased predictability of spring precipitation over central East China around the late 1970s, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8329, https://doi.org/10.5194/egusphere-egu2020-8329, 2020.

With seasonal forecast models we investigate whether it is possible to give the people in Tanzania, Peru and India time to adapt and prepare to different weather conditions. In recent years, these countries have repeatedly experienced devastating droughts or floods, such as in East Africa in November 2019.

Under the framework of the research project EPICC (East Africa Peru India Climate Capacities) supported by the BMU (Federal Ministry for the Environment, Nature Conservation and Nuclear Safety), we aim to set up a seasonal forecast system. The goal is to make the data useful for the hydrologists at the project partner from PIK (Potsdam Institute for Climate Impact Research) for integration in a tool for adaption in local agriculture in the affected countries (India, Peru and Tanzania). In this study, we validate a number of variables of predicted anomalies in seasonal forecast models as well as of a multimodel product.

There are different methods of seasonal predictability, based on slow variations of boundary conditions, coupled ocean-atmosphere model simulations as well as the concept of ensembles, multi-model ensembles and uncertainties. The focus in this study is on the intercomparison of the single models and the multimodel in a forecast range between 1 and 6 months. In particular, we investigate three-month mean deviation from the long-term mean. It is important for the population (especially for the agriculture industry) in the focus region to know whether in a certain period (rainy season, dry season, El Nino etc.) the next 3 months will be colder, warmer, drier or even wetter compared to the long-term mean.

Due to the fact, that various seasonal forecasting models perform differently, it is the challenge, to find the best fitting seasonal forecast model for each of the affected countries.

How to cite: Möller, T. and Gates, L.: Seasonal forecasting and the predictability of the rainy and dry seasons for Peru, Tanzania and India, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8355, https://doi.org/10.5194/egusphere-egu2020-8355, 2020.

EGU2020-17020 | Displays | CL3.2

Predictability of precipitation extremes over the Mediterranean

Ignazio Giuntoli, Federico Fabiano, and Susanna Corti

Intense precipitations events are associated with impacts like damages to infrastructures, economic activities, agricultural crops, power production and society in general. The ability to predict extreme precipitation events months in advance is therefore of great value in densely populated areas like the Mediterranean and may be achieved using seasonal prediction systems like the Copernicus Climate Change Services (C3S) suite of models. Using weather regimes (WRs) from 500 hPa geopotential heights over the Mediterranean the two main objectives of this study are: first to identify how these regimes are linked to extreme precipitation events over the region using reanalysis data; and second to assess the ability of the C3S models in reproducing/predicting these extreme events. We identify four weather regimes for the winter season (DJF) describing the atmospheric circulation in the Mediterranean using the 1993-2016 period as reference, i.e. maximum availability of C3S hindcasts. We thus provide an assessment of the models’s ability in predicting extreme precipitation over the Mediterranean having quantified how daily precipitation anomalies are associated to each WR.

How to cite: Giuntoli, I., Fabiano, F., and Corti, S.: Predictability of precipitation extremes over the Mediterranean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17020, https://doi.org/10.5194/egusphere-egu2020-17020, 2020.

EGU2020-19710 | Displays | CL3.2

Understanding Sahelian rainfall skill in the NMME seasonal forecast

Veronica Martin-Gomez, Elsa Mohino, and Belén Rodriguez-Fonseca

Sahelian rainfall presents variability from internannual to interdecadal timescales, which is influenced by the sea surface temperature anomalies (SSTa) in different basins. At interannual times scales it has been shown that this variability depends on the SSTa over the equatorial Pacific, Atlantic and eastern Mediterranean. In this work we consider the set of models from the North American Multi-model ensemble (NMME) in order to analyze their skill in reproducing the Sahelian precipitation variability and relate it to their skill in reproducing the variability of the SSTa over the equatorial Pacific, equatorial Atlantic and eastern Mediterranean as well as their ability to simulate their teleconnections with Sahel rainfall.

Results show that the skill in predicting Sahel rainfall is low, decreases rapidly with lead time and is highly model dependent. Skill is improved for those models that are able to correctly simulate the Pacific SST - Sahel rainfall teleconnection.  Models present a good ability to reproduce the Mediterranean SST – Sahel teleconnection, and skill in Sahel rainfall prediction is more dependent on the correct prediction of the Mediterranean SST anomalies. These results suggest a path to increase skill in Sahel rainfall prediction.

How to cite: Martin-Gomez, V., Mohino, E., and Rodriguez-Fonseca, B.: Understanding Sahelian rainfall skill in the NMME seasonal forecast, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19710, https://doi.org/10.5194/egusphere-egu2020-19710, 2020.

EGU2020-11256 | Displays | CL3.2

Inter-annual predictability of net primary productivity in the central equatorial Pacific

Sebastian Brune, Maria Caballero Espejo, Hongmei Li, Tatiana Ilyina, and Johanna Baehr

We analyse central equatorial Pacific inter-annual prediction skill of sea surface temperature (SST) and net primary productivity (NPP) using initialized retrospective forecasts with the Max Planck Institute Earth system model over the time period 1998-2014. We find significant NPP predictability for up to 5 lead years, which is far beyond the SST predictability of less than 1 year in this area. While El-Nino-Southern-Oscillation (ENSO) limits SST predictability, we find the origin of the high NPP prediction skill to be in the tropical upwelling zones of the eastern Pacific, i.e., the Peru-Chile current system offshore South America. Off-equatorial Rossby waves are initiated off the coast of Chile and travel towards the central tropical Pacific on a time scale of 4 to 5 years. On their arrival, the Rossby waves modify the depth of the nutricline, which is fundamental to the availability of nutrients in the euphotic layer in the central tropical Pacific.

We further demonstrate that the seasonal upwelling in the central equatorial Pacific, which is mainly driven by ENSO, transports nutrients, i.e. nitrate and phosphate, from below the nutricline into the euphotic zone, effectively transferring the Rossby wave signal from depth to the near-surface ocean. A shallower than normal nutricline leads to larger primary production, and vice versa, a deeper than normal nutricline to smaller primary production. The Rossby waves also modulate the SST, however, these changes are damped on the daily to weekly time scale due to surface heat fluxes at the atmosphere-ocean boundary. Therefore, the off-equatorial Rossby waves maintain the high predictability of NPP but not the SST. We conclude that NPP predictions in the central equatorial Pacific benefit from the memory contained in properly simulated off-equatorial Rossby waves.

How to cite: Brune, S., Caballero Espejo, M., Li, H., Ilyina, T., and Baehr, J.: Inter-annual predictability of net primary productivity in the central equatorial Pacific, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11256, https://doi.org/10.5194/egusphere-egu2020-11256, 2020.

Anthropogenic fossil fuel emissions are increasing, and about a half of these emissions is absorbed by land and ocean. The CO2 fraction remaining in the atmosphere, the airborne fraction, is varying from year to year. Most of this variability can be explained by the land-atmosphere carbon fluxes. This variability is strongly affected by the El Niño – Southern Oscillation (ENSO); however, it is difficult to determine the cause of the flux anomalies due to the complex interactions between the climatic effects of the ENSO cycle. Here, we use MPI Earth System Model, MPI-ESM, to study the mechanisms of post El Niño carbon fluxes and assess their predictability. 10-member ensemble simulations with small perturbations are initialized at six El Niño events of a 1000-year control run. After removing the long-term mean from the ensemble simulations, a density-based clustering algorithm is applied to the carbon fluxes due to primary productivity, respiration and fires. This allows to identify and delimit the individual hotspots of ENSO-related carbon flux anomalies that contribute most to the atmospheric CO2 change.
We found that the main carbon sources are due to a reduction of primary production in the tropics, while the carbon sinks are due to reduced respiration or increased primary production in the extratropics. The potential predictability of the carbon fluxes from these clusters was assessed by using the perfect model approach. In accordance with this method, the predictive horizon is estimated as the time, when the variability within the ensemble members exceeds the long-term variability. As climate change will likely modify the frequency of El Niño events, this decomposition of the ENSO carbon flux anomalies could be used to improve our understanding of the future trends of land carbon sinks.

How to cite: Dunkl, I. and Brovkin, V.: Decomposing terrestrial carbon flux anomalies after El Niño: process-based predictability of land carbon sinks and sources , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10438, https://doi.org/10.5194/egusphere-egu2020-10438, 2020.

The Southern Annular Mode (SAM) modulates the eddy-driven-westerly jet in the southern mid- to high-latitudes. This modulation has major impacts on the seasonal climate in the southern hemisphere. Thus, a seasonal prediction of the SAM is desirable. Still, only few studies show a significant prediction skill on this timescale. In this contribution the prediction skill of the SAM is improved by using its physical links to the Southern Ocean.
We use the seasonal prediction system based on the Max-Planck-Institute Earth-System-Model (MPI-ESM) in mixed resolution (MR). In ensemble reforecasts for 1982 to 2016 we find large regions of the surface ocean in the southern mid- to high-latitudes to be significantly predictable on seasonal timescales. In contrast, the atmospheric variables in the same regions show only very little skill. In the austral summer season (December-January-February (DJF)) different ensemble members evolve considerably different in the ocean and the atmosphere. With physical links between the Southern Ocean and the SAM, identified in ERA-Interim, we only select ensemble members that also show these links. This process is repeated every year and leads to a new time series with a reduced number of ensemble members. To evaluate the prediction skill of the new ensemble mean SAM we use the correlation coefficient and the Heidke Skill Score (HSS). The reduced ensemble has a correlation with ERA of 0.50, while the full ensemble shows a correlation of 0.31. Similarly the reduced ensemble has a HSS of 0.35 compared to the HSS of the full ensemble of 0.17.
We additionally show that choosing the same ensemble members we selected for the SAM also increases the prediction skill for other atmospheric variables. The reduced ensemble has an increased prediction skill for pressure, wind, and temperature in the southern mid- to high-latitudes, to which the selection is targeted.

How to cite: Hempel, T., Düsterhus, A., and Baehr, J.: Seasonal prediction of the austral summer Southern Annular Mode, and investigation of its connection to the Southern Ocean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8885, https://doi.org/10.5194/egusphere-egu2020-8885, 2020.

EGU2020-11613 | Displays | CL3.2

The signal-to-noise paradox in a conceptual framework based on the 1963 Lorenz model

Björn Mayer, André Düsterhus, and Johanna Bahr

Seasonal prediction systems based on comprehensive Earth System Models are capable of skillfully predicting the winter North Atlantic Oscillation. However, the predictive skill reported for these systems is accompanied by a potential inconsistency: The quality of the predictions measured over a set of retrospective forecasts and quantified by the correlation coefficient between prediction and observation exceeds expectations based exclusively on model properties. This discrepancy is commonly referred to as the signal-to-noise paradox (SNP)

Current investigations of the SNP are predominantly looking at seasonal predictions systems based on comprehensive Earth System Models, focusing the uncertainties in the model formulation. In the present contribution, we investigate the SNP in a simple conceptual framework of an ensemble prediction system based on the simple three dimensional Lorenz 1963 Model (L63). This framework enables us to separate the influence of uncertainties in the model initialization and uncertainties in the model formulation on the occurrence of the SNP.

We show that in the absence of uncertainties in the model formulation the SNP is not apparent in L63, if the uncertainty assumed for the initialization of the ensemble is equal to the observational uncertainty. However, if we assume that the uncertainty in the initialization systematically overestimates the observational uncertainty, the SNP is also apparent in L63 - even if there are no uncertainties in the model formulation itself.

While these results obtained in the conceptual framework cannot directly translated to the SNP in comprehensive Earth System Models, we suggest to include in further investigations of the SNP in Earth System Models also a comparison of the magnitude of the initial ensemble spread and the observational uncertainty.

How to cite: Mayer, B., Düsterhus, A., and Bahr, J.: The signal-to-noise paradox in a conceptual framework based on the 1963 Lorenz model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11613, https://doi.org/10.5194/egusphere-egu2020-11613, 2020.

EGU2020-13560 | Displays | CL3.2

New approaches to decadal predictions on the regional scale

Gerard McCarthy, André Düsterhus, Catherine O'Beirne, Stephen Ogungbenro, Samuel T. Diabate, Levke Caesar, Maeve C. Upton, Niamh Cahill, and Andrew C. Parnell

The North Atlantic has a major influence on the climate of Europe. In the past, decadal prediction systems have shown consistent prediction skill in the North Atlantic for initialised models, indicating the potential to exploit this skill for better predictions on the continent. One prime area of potential for this approach is Ireland, due to its proximity to the Atlantic.

Until now, the prediction skill for the island of Ireland is limited, leading to the conclusion that dynamical models alone are not able to transfer the prediction skill from the North Atlantic to the surrounding land masses. Therefore, the project Aigéin, Aeráid, agus athrú Atlantaigh (A4) aims to establish new physical and statistical approaches to enhance the skill. This includes a better understanding on the oceanographic processes leading to the prediction skill in the North Atlantic as well as usage of statistical-dynamical predictions.

This contribution will give an overview of the approaches and a first look on the factors we anticipate to use in our analysis. Special attention will be given to the statistical approaches for the statistical dynamical prediction as well new verification procedures to evaluate them.

How to cite: McCarthy, G., Düsterhus, A., O'Beirne, C., Ogungbenro, S., Diabate, S. T., Caesar, L., Upton, M. C., Cahill, N., and Parnell, A. C.: New approaches to decadal predictions on the regional scale, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13560, https://doi.org/10.5194/egusphere-egu2020-13560, 2020.

CL3.3 – Bringing together future climate predictions and projections for Europe

EGU2020-7297 | Displays | CL3.3

UK Climate Projections 2018 (UKCP18): progress towards more information on future weather

David Sexton, Jason Lowe, James Murphy, Glen Harris, Elizabeth Kendon, Fai Fung, Carol McSweeney, John Rostron, Kuniko Yamazaki, Hazel Thornton, Giorgia Fosser, Simon Tucker, and Philip Bett

UK Climate Projections 2018 (UKCP18) included land and marine projections and were published in 2018 to replace UKCP09. The land projections had three components, and all were designed to provide more information on future weather compared to UKCP09. The first component updated the UKCP09 probabilistic projections by including newer CMIP5 data and focussing on seasonal means from individual years rather than 30-year averages. The probabilistic projections represent the wider uncertainty. The second two components (global and regional projections) both had the aim of providing plausible examples of future climate, but at different resolutions.

The global projections were a combination of 13 CMIP5 models and a 15-member perturbed parameter ensemble (PPE) of coupled simulations for 1900-2100 using CMIP5 RCP8.5 from 2005 onwards. The PPE was provided at 60km atmosphere, quarter degree ocean and the large-scale conditions from twelve of the members were used to drive the regional model at both 12km and 2.2km resolution. These plausible examples are more useful for providing information about weather in a future climate to support a storyline approach for decision making.

The talk will present examples of new ways to use UKCP18 compared to UKCP09.  We will show how the global projections can be used to understand that the recent record winter daily maximum temperature in the UK in 2019 had a large contribution from internal variability and what this means for breaking the record in a warming climate. We also use an example from China to demonstrate one way to exploit information at different time scales, looking at how a circulation index, which is predictable and related to tropical cyclone landfall, changes in a future climate.

Finally, we show that while the enhanced resolution of the global and regional projections has improved our capability to provide climate information linked to the better representation of circulation, they lack diversity in some of the key drivers of future climate. Therefore, a key way forward will be to find an appropriate balance between the need for better diversity (e.g. multiple ensembles such as CMIP or PPEs) and the need for an appropriate resolution to retain this new capability.

How to cite: Sexton, D., Lowe, J., Murphy, J., Harris, G., Kendon, E., Fung, F., McSweeney, C., Rostron, J., Yamazaki, K., Thornton, H., Fosser, G., Tucker, S., and Bett, P.: UK Climate Projections 2018 (UKCP18): progress towards more information on future weather, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7297, https://doi.org/10.5194/egusphere-egu2020-7297, 2020.

The challenge of combining initialised and uninitialised decadal projections

James Murphy, Robin Clark, Nick Dunstone, Glen Harris, Leon Hermanson and Doug Smith

During the past 10 years or so, exploratory work in initialised decadal climate prediction, using global climate models started from recent analyses of observations, has grown into a coordinated international programme that contributes to IPCC assessments. At the same time, countries have continued to develop and update their national climate change scenarios.  These typically cover the full 21st century, including the initial decade that overlaps with the latest initialised forecasts. To date, however, national scenarios continue to be based exclusively on long-term (uninitialised) climate change simulations, with initialised information regarded as a separate stream of information.

We will use early results from the latest UK national scenarios (UKCP), and the latest CMIP6 initialised predictions, to illustrate the potential and challenges associated with the notion of combining both streams of information. This involves assessing the effects of initialisation on predictability and uncertainty (as indicated, for example, by the skill of ensemble-mean forecasts and the spread amongst constituent ensemble members). Here, a particular challenge involves interpretation of the “signal-to-noise” problem, in which ensemble-mean skill can sometimes be found which is larger than would be expected on the basis of the ensemble spread. In addition to initialisation, we will also emphasise the importance of understanding how the assessment of climate risks depends on other features of prediction system design, including the sampling of model uncertainties and the simulation of internal climate variability.

How to cite: Murphy, J.: The challenge of combining initialised and uninitialised decadal projections, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7313, https://doi.org/10.5194/egusphere-egu2020-7313, 2020.

Climate adaptation often requires high resolution information about the expected changes in the statistical distribution of user-relevant variables. Thanks to targeted national programmes, research projects and international climate service initiatives  this kind of information is not only becoming more easily available but it is also making its way into building codes, engineering standards as well as the risk assessments for financial products.  If such an increase in the use of climate data can be seen as a positive step towards the construction of a climate resilient society, it is also true that the inconsistencies that exist between the information derived from different sources of information, have the potential to reduce the user uptake, increase the costs of adaptation and even undermine the credibility of both climate services and the underpinning climate science.
This paper offers a personal reflection on the emerging user requirements in this field. The presenation also aims at suggesting  some prelimimary ideas in support of the development of appropriate methodologies for extracting robust evidence from different sources in a scalable way.

How to cite: Buontempo, C.: The overwhelming jungle of climate information and the role of climate services., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18610, https://doi.org/10.5194/egusphere-egu2020-18610, 2020.

EGU2020-5777 | Displays | CL3.3 | Highlight

Quantifying uncertainty in projections of future European climate: a multi-model multi-method approach

Lukas Brunner, Carol McSweeney, Daniel Befort, Chris O'Reilly, Ben Booth, Glen Harris, Jason Lowe, Marianna Benassi, Erika Coppola, Rita Nogherotto, Gabriele Hegerl, Reto Knutti, Geert Lendrink, Hylke de Vries, Said Qasmi, Aurelien Ribes, and Sabine Undorf

Political decisions, adaptation planning, and impact assessments need reliable estimates of future climate change and related uncertainties. Different approaches to constrain, filter, or weight climate model simulations into probabilistic projections have been proposed to provide such estimates. Here six methods are applied to European climate projections using a consistent framework in order to allow a quantitative comparison.  Focus is given to summer temperature and precipitation change in three different spatial regimes in Europe in the period 2041-2060 relative to 1995-2014. The analysis draws on projections from several large initial condition ensembles, the CMIP5 multi-model ensemble, and perturbed physics ensembles, all using the high-emission scenario RCP8.5.  
The methods included are diverse in their approach to quantifying uncertainty, and include those which apply weighting schemes based on baseline performance and inter-model relationships, so-called ASK (Allen, Stott and Kettleborough) techniques which use optimal fingerprinting to scale the scale the response to external forcings, to those found in observations and Bayesian approaches to estimating probability distributions. Some of the key differences between methods are the uncertainties covered, the treatment of internal variability, and variables and regions used to inform the methods. In spite of these considerable methodological differences, the median projection from the multi-model methods agree on a statistically significant increase in temperature by mid-century by about 2.5°C in the European average. The estimates of spread, in contrast, differ substantially between methods. Part of this large difference in the spread reflects the fact that different methods attempt to capture different sources of uncertainty, and some are more comprehensive in this respect than others. This study, therefore, highlights the importance of providing clear context about how different methods affect the distribution of projections, particularly the in the upper and lower percentiles that are of interest to 'risk averse' stakeholders. Methods find less agreement in precipitation change with most methods indicating a slight increase in northern Europe and a drying in the central and Mediterranean regions, but with considerably different amplitudes. Further work is needed to understand how the underlying differences between methods lead to such diverse results for precipitation. 

How to cite: Brunner, L., McSweeney, C., Befort, D., O'Reilly, C., Booth, B., Harris, G., Lowe, J., Benassi, M., Coppola, E., Nogherotto, R., Hegerl, G., Knutti, R., Lendrink, G., de Vries, H., Qasmi, S., Ribes, A., and Undorf, S.: Quantifying uncertainty in projections of future European climate: a multi-model multi-method approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5777, https://doi.org/10.5194/egusphere-egu2020-5777, 2020.

EGU2020-2654 | Displays | CL3.3

Decadal Predictions of the Probability of Occurrence for Summer Temperature Extremes in the Northern Hemisphere

Leonard Borchert, Holger Pohlmann, Johanna Baehr, Nele-Charlotte Neddermann, Laura Suarez Gutierrez, and Wolfgang A. Müller

We use a decadal prediction system with the Coupled Model Intercomparison Project Phase 6 version of the coupled Max Planck Institute Earth System Model to predict the probability of occurrence for extremely warm summers in the Northern Hemisphere. An assimilation run with Max Planck Institute Earth System Model shows a robust response of summer temperature extremes in northern Europe and northeast Asia to North Atlantic sea surface temperature via a circumglobal Rossby wavetrain. When the North Atlantic is warm, warm summer temperature extremes occur with a probability of 20% and 24% in northern Europe and northeast Asia, respectively. In a cold North Atlantic phase, these probabilities are 0% and 8%. A similar dependence of the probability of occurrence for summer temperature extremes in these regions to North Atlantic SST can be found in observations.
To examine this effect in decadal predictions, we pool all available realizations for any given year in the decadal prediction system. Using 10 ensemble members and 10 lead years, we therefore end up with 100 realizations for any year between 1970 and 2018. We find that the probability of occurrence for summer temperature extremes in the pooled initialized climate predictions shows good agreement with the observations and the assimilation run. This agreement is related to high skill of the model system in predicting North Atlantic SST. Consequently, the likelihood of a warm summer temperature extreme occurring in the examined regions in the next 10 years can be inferred from predictions of North Atlantic temperature.

How to cite: Borchert, L., Pohlmann, H., Baehr, J., Neddermann, N.-C., Suarez Gutierrez, L., and Müller, W. A.: Decadal Predictions of the Probability of Occurrence for Summer Temperature Extremes in the Northern Hemisphere, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2654, https://doi.org/10.5194/egusphere-egu2020-2654, 2020.

EGU2020-22378 | Displays | CL3.3 | Highlight

The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, Part I: Evaluation of precipitation

Nikolina Ban, Erwan Brisson, Cécile Caillaud, Erika Coppola, Emanuela Pichelli, Stefan Sobolowski, Marianna Adinolfi, Bodo Ahrens, Antoinette Alias, Ivonne Anders, Sophie Bastin, Danijel Belusic, Ségolène Berthou, Rita Cardoso, Steven Chan, Ole Christensen, Jesus Fernandez, Lluis Fita, Thomas Frisius, and Klaus Goergen and the Erika Coppola

Here we present the first multi-model ensemble of climate simulations at kilometer-scale horizontal resolution over a decade long period. A total of 22 simulations, performed by 21 European research groups are analyzed. Six different regional climate models (RCMs) are represented in the ensemble. The simulations are compared against available high-resolution precipitation observations and coarse resolution (12 km) RCMs with parameterized convection. The model simulations and observations are compared with respect to mean precipitation, precipitation intensity and frequency, and heavy precipitation on daily and hourly timescales in different seasons.

The results show that kilometer-scale models produce more realistic representation of precipitation than the coarse resolution RCMs. The most significant improvements are found for heavy precipitation and precipitation frequency on both daily and hourly time scales in the summer season. In general, kilometer-scale models tend to produce more intense precipitation and reduced wet-hour frequency compared to coarse resolution models. Although differences between the model simulations at the kilometer-scale and observations exist, it is evident that they are superior to the coarse-resolution RCMs in the simulation of precipitation in the present-day climate, and thus offer a promising way forward for investigations of climate and climate change at local to regional scales.

How to cite: Ban, N., Brisson, E., Caillaud, C., Coppola, E., Pichelli, E., Sobolowski, S., Adinolfi, M., Ahrens, B., Alias, A., Anders, I., Bastin, S., Belusic, D., Berthou, S., Cardoso, R., Chan, S., Christensen, O., Fernandez, J., Fita, L., Frisius, T., and Goergen, K. and the Erika Coppola: The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, Part I: Evaluation of precipitation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22378, https://doi.org/10.5194/egusphere-egu2020-22378, 2020.

EGU2020-19471 | Displays | CL3.3

Supporting European coastal sectors to adapt to changes in extreme sea levels with climate change

Sanne Muis, Maialen Irazoqui Apecechea, Job Dullaart, Joao de Lima Rego, Kristine S. Madsen, Jian Su, Kun Yan, and Martin Verlaan

Climate change will lead to increases in the flood risk in low-lying coastal areas. Understanding the magnitude and impact of such changes is vital to design adaptive strategies and create awareness. In  the  context  of  the  CoDEC  project  (Coastal  Dataset  for  Evaluation  of  Climate  impact),  we  developed a consistent European dataset of extreme sea levels, including climatic changes from 1979 to 2100. To simulate extreme sea levels, we apply the Global Tide and Surge Model v3.0 (GTSMv3.0), a 2D hydrodynamic model with global coverage. GTSM has a coastal resolution of 2.5 km globally and 1.25 km in Europe, and incorporates dynamic interactions between sea-level  rise,  tides  and  storm surges. Validation of the dataset shows a good performance with a mean bias of 0-.04 m for the 1 in 10-year water levels. When analyzing changes in extreme sea levels for the future climate scenarios, it is projected that by the end of the century the 1 in 10-year water levels are likely to increase up to 0.5 m. This change is largely driven by the increase in mean sea levels, although locally changes in storms surge and interaction with tides can amplify the impacts of sea-level rise with changes up to 0.2 m in the 1 in 10-year water level.

The CoDEC dataset will be made accessible through a web portal on Copernicus Climate Data Store (C3S). The dataset includes a set of Climate Impact Indicators (CII’s) and new tools designed to evaluate the impacts of climate change on different sectors and industries. This data service will support European coastal sectors to adapt to changes in sea levels associated with climate change. In this presentation we will also demonstrate how the C3S coastal service can be used to enhance the understanding of local climate impacts.

How to cite: Muis, S., Irazoqui Apecechea, M., Dullaart, J., de Lima Rego, J., Madsen, K. S., Su, J., Yan, K., and Verlaan, M.: Supporting European coastal sectors to adapt to changes in extreme sea levels with climate change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19471, https://doi.org/10.5194/egusphere-egu2020-19471, 2020.

EGU2020-3027 | Displays | CL3.3

Convection in future winter storms over northern Europe

Segolene Berthou, Elizabeth Kendon, Malcolm Roberts, and Benoit Vanniere

How to cite: Berthou, S., Kendon, E., Roberts, M., and Vanniere, B.: Convection in future winter storms over northern Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3027, https://doi.org/10.5194/egusphere-egu2020-3027, 2020.

An alternative approach to constraining climate projections based on a probabilistic approach with observational constraints, is to select a subset of models from the ensemble based on their ability to represent key physical processes, along with some indicators of model performance. The method that is presented here is based on the assumption that if a model is unable to reproduce the key factors important for determining the regional climate, the projections from this model are not considered reliable. The projection range for CMIP5 for the three EUCP European regions is assessed using two different subsampled model ensembles.

The first sub-sampling method presented uses the approach of Mc Sweeney et al. (2015), which assessed the models based on their performance for the UK climate. Each model in the CMIP5 ensemble (where data is available), is firstly assessed against these key performance indicators and poor performers eliminated from the selection. Several models also share large portions of code and therefore have similar errors and projections, Sanderson et al 2015a and 2015b quantifies these similarities. This analysis was used identify ‘near-neighbours’ and further reduce the selection. The applicability of a sub-selection of models based on their performance for the UK climate is assessed for the wider European area and found to reduce the projected range for the Northern European Area (NEU), for precipitation and near surface temperature considerably. The impact on the projected ranges for the Central European Area (CEU) and the Mediterranean (MED) was not as large, suggesting that a different set of physical processes are of primary importance for these regions.

To further investigate the effect of subsampling based on physical processes, a subset of CMIP5 models identified by the approach of Vogel et al. (2018) has been applied for the EUCP European areas. Vogel et al. (2018) looked at the ability of the CMIP5 models to reproduce the correlation between the hottest day of the year and precipitation within the same range as that found in the observations. This approach is designed to subsample the ensemble based on the ability of the model to represent soil moisture feedback processes with the atmosphere. It is thought that these processes are likely to be increasingly important for determining the projected climate in the CEU and MED regions.  

Finally, the projection range for the CMIP6 ensemble in the EUCP regions for precipitation and the near surface temperature will be presented and compared with those for CMIP5.

How to cite: Palmer, T., Mc Sweeney, C., and Booth, B.: Determining the range for CMIP climate projections for Europe using a sub-selected model ensemble based on key model performance indicators and key regional physical processes., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5511, https://doi.org/10.5194/egusphere-egu2020-5511, 2020.

EGU2020-9183 | Displays | CL3.3

Regional climate simulations at kilometer-scale with RegCM4: Evaluation of precipitation and future projections

Paolo Stocchi, Emanuela Pichelli, Erika Coppola, Jose Abraham Torres Alvarez, and Filippo Giorgi

The recent increase in climate modeling activities at convection permitting scales (grid spacing under 4 km) has strongly been motivated by the increased computer capacities in the last years with the aim to reduce the model errors associated with parameterized convection and a more detailed representation of present and future regional climate. Some Regional climate projects addressing on convection permitting modeling simulations and projections have been recently implemented to make more robust conclusions on the added value of convection permitting simulation to future climate projections. Here, we present convection resolving climate simulations performed in the framework the European Climate Prediction System (EUCP) project, using the non-hydrostatic version of the RegCM model. The RegCM simulations have a grid spacing of 3 km, over three different regions (Pan-Alpine, Central Europe, and South-East Europe). These simulations were driven by initial and boundary conditions built from intermediate 12 km simulations driven by the global climate model (GCM) HadGEM2-ES. We considered three time slices each one of them covering a 10-year period, the historical (1996-2005), the near future (2041-2050) and the far future (2090-2099) under the RCP8.5 scenario. The high resolutions (3 km) simulations, over the historical period, are evaluated through comparison with available observations data sets (including in-situ and satellite-based observation of precipitation) and coarse resolution (12 km) simulation is used as benchmark. The kilometer-scale RegCM4.7 scenario (RCP8.5) simulations, driven by HadGEM2-ES, near future (2041-2050) and the far future (2090-2099), are also analyzed and presented, focusing on the future change in terms of mean precipitation, precipitation intensity and frequency and heavy precipitation on daily and hourly timescales in different seasons.

How to cite: Stocchi, P., Pichelli, E., Coppola, E., Torres Alvarez, J. A., and Giorgi, F.: Regional climate simulations at kilometer-scale with RegCM4: Evaluation of precipitation and future projections , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9183, https://doi.org/10.5194/egusphere-egu2020-9183, 2020.

EGU2020-9263 | Displays | CL3.3

Estimating future changes in Alpine flash floods using CP-RCM projections

Frederiek Sperna Weiland, Pety Viguurs, Marjanne Zander, and Albrecht Weerts

Flash floods are a significant natural hazard in the Alpine region (FOEN, 2010). With changing rainfall regimes and decreased snow accumulation due to climate change, the risk of flash flood occurrence and timing thereof could change as well (Etchevers et al., 2002).

In this study the frequency and occurrence of flash floods in the Alpine region is estimated for current and future climate (RCP8.5) using state-of-the-art high-resolution convection permitting climate models (CP-RCMs). For the historical period and far future (2100), data from an ensemble of convection permitting climate models (Ban et al., submitted 2019) was used to drive a high-resolution distributed hydrological model, i.e. the wflow_sbm model (Imhoff et al., 2019, Verseveld et al., 2020). The model domains cover the mountainous parts of the Danube, Rhone, Rhine and Po located in the Alps.  The CP-RCM time-series available are of limited length due to computational constrains. At the same time the locations of flash floods vary per year therefore a regional scale analysis is made to assess whether in general the severity, frequency and timing of flash floods in the Alps will likely change under changing climate conditions.

This research is embedded in the EU H2020 project EUCP (EUropean Climate Prediction system) (https://www.eucp-project.eu/), which aims to support climate adaptation and mitigation decisions for the coming decades by developing a regional climate prediction and projection system based on high-resolution climate models for Europe.

References:

Etchevers, P., Golaz, C., Habets, F., and Noilhan, J., Impact of a climate change on the Rhone river catchment hydrology, J. Geophys. Res., 107( D16), doi:, 2002.

Federal office for the environment FOEN (2010) Environment Switzerland 2011, Bern and Neuchatel 2011. Retrieved from www.environment-stat.admin.ch

Imhoff, R.O., W. van Verseveld, B. van Osnabrugge, A.H. Weerts, 2019. Scaling point-scale pedotransfer functions parameter estimates for seamless large-domain high-resolution distributed hydrological modelling: An example for the Rhine river. Submitted to Water Resources Research, 2019.

N. Ban, E. Brisson, C. Caillaud, E. Coppola, E. Pichelli, S. Sobolowski, …, M.J. Zander (submitted 2019): “The first multi-model ensemble of regional climate simulations at the kilometer-scale resolution, Part I: Evaluation of precipitation”, manuscript submitted for publication.

How to cite: Sperna Weiland, F., Viguurs, P., Zander, M., and Weerts, A.: Estimating future changes in Alpine flash floods using CP-RCM projections, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9263, https://doi.org/10.5194/egusphere-egu2020-9263, 2020.

EGU2020-10048 | Displays | CL3.3

Reliability Ensemble Averaging (REA) of the European regional climate change

Rita Nogherotto, Paolo Stocchi, Erika Coppola, and Filippo Giorgi

The Reliability Ensemble Averaging (REA) method calculates average, uncertainty range and a measure of reliability of simulated regional climate changes from ensembles of different model simulations. The REA method is applied to mean seasonal temperature and precipitation changes in three different European spatial regimes in the period 2041-2060 and 2081-2100 relative to the reference period 1995-2014. Regional ensemble results of 55 scenario simulations for the RCP8.5 and RCP2.6 at 0.11 degree resolution over the common EURO-CORDEX domain, using 8 GCMs and 11 RCMs, are compared with the driving CMIP5 global models. For each region we show the median and the 25th-75th and 5th-95th percentile spreads of the weighted temperature and precipitation change. The spread of the changes (both 25th-75th and 5th-95th percentiles) are strongly reduced by the weightening as expected, while the best estimate changes (median) of the projection ranges varies according to the region and the season. The method is also applied to evaluate the reliability of the extreme precipitation simulations.

 

How to cite: Nogherotto, R., Stocchi, P., Coppola, E., and Giorgi, F.: Reliability Ensemble Averaging (REA) of the European regional climate change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10048, https://doi.org/10.5194/egusphere-egu2020-10048, 2020.

EGU2020-10149 | Displays | CL3.3

Projections and uncertainties of sandy beach loss due to sea level rise at the European scale

Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Roshanka Ranasinghe, and Jaap Kwadijk

Climate change driven sea level rise (SLR) is expected to rise with even higher rates during the second half of the present century. This will exacerbate shoreline retreat of sandy coasts, which comprise one third of the global coastline. Sandy coasts have high touristic and ecological value while they are the first level of defense against storms, protecting valuable infrastructures and buildings. Therefore, in recent years, large scale risk assessments are considered useful tools for the guidance of policy makers to identify high risk hotspots.  Reliable input data at this scale are required in order to make useful estimations. Among others, crucial data to assess the impact of SLR on shoreline retreat are the detection of different coastal types and, in particular, of sandy erodible beaches, and the nearshore slope, which is usually assumed to be uniform.

The important issue of input data uncertainty and spatial variation and consequent impact on predictions has been so far ignored in most large-scale studies. Estimates of shoreline retreat are however very sensitive to the variation in these inputs. Here we quantify SLR driven potential shoreline retreat and consequent land loss in Europe during the 21st century by employing different combinations of geophysical datasets for (a) the location of sandy beaches and (b) their nearshore slopes. For the estimation of the shoreline retreat, the Bruun Rule is used, which offers a suitable approach for a first approximation of erosion impacts at large scales. Sea level rise projections associated with the moderate-emission- mitigation-policy (RCP4.5) and the high-end, business-as-usual scenario (RCP8.5) are used as boundary conditions. The location of sandy beaches is determined from two different datasets. One is based on manual visual estimation from satellite images and the other on automatic detection from satellite images using machine learning techniques. For nearshore slopes we apply the commonly used constant slope assumption of 1:100 and a newly produced global dataset which captures the spatial variation of coastal slopes.

With this approach, we create four different combinations for each SLR scenario, for which we estimate and compare land loss at EU, country and NUTS3 regional level. We find that the land loss estimations for each combination can differ significantly, especially at the regional and local level. At the European or country level, even though differences in total land loss projections can be significant, they can be concealed by the spatial aggregation of the results. Using data-based spatially-varying nearshore slope data, a European averaged median shoreline retreat of 97 m (54 m) is projected under RCP 8.5 (4.5) by year 2100, relative to the baseline year 2010. This retreat would translate to 2,500 km2 (1,400 km2) of land loss. A variance-based global sensitivity analysis indicates that the uncertainty associated with the choice of geophysical datasets can contribute up to 45% (26%) of the variance in land loss projections for Europe by 2050 (2100).

How to cite: Athanasiou, P., van Dongeren, A., Giardino, A., Vousdoukas, M., Ranasinghe, R., and Kwadijk, J.: Projections and uncertainties of sandy beach loss due to sea level rise at the European scale, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10149, https://doi.org/10.5194/egusphere-egu2020-10149, 2020.

EGU2020-2618 | Displays | CL3.3

Constraining Climate Projections using Decadal Predictions

Daniel J. Befort, Christopher H. O’Reilly, and Antje Weisheimer

There is an increasing demand for robust, reliable and actionable climate information for the near-term future (1-40 years). Seamless information on these time-scales can only be derived from uninitialized climate projections, which however are not aligned with the observed, internal state of the climate system. Another source of information are Initialized predictions for which the observed state is taken into account, but these are only available for the upcoming decade. 

In this study, we test in how far decadal predictions can be used to constrain uninitialized projections to obtain skillful predictions on time-scales beyond decades. This is done by selecting a sub-ensemble of uninitialized projections, which are chosen by their proximity to the decadal predictions ensemble mean. This framework is applied to surface air temperatures from CMIP5 simulations over the North Atlantic Gyre region, as decadal predictions show largest added value over projections for this region. Skill is measured using anomalous correlation coefficient (ACC) and root-mean-square-error (RMSE). Results show that ACC values for forecast years 10-15 for the constrained sub-ensemble are similar to those derived for the non-constrained uninitialized ensemble. However, RMSEs are significantly decreased for the constrained sub-ensemble, not only for the first 10 forecast years but also beyond. This is mainly due to the fact that the constrained sub-ensemble has a much higher ability to capture the observed warming trend during the end of the 20th century compared to the uninitialized ensemble mean. Further to these results, the limitations of this framework are discussed, including an assessment of the potential upper limit of added value and it’s dependency on the skill of the decadal forecast system. 

This easy-to-apply framework can be used to provide crucial climate information for mitigation and adaptation strategies by filling the gap between initialized decadal predictions and uninitialized projections.

How to cite: Befort, D. J., O’Reilly, C. H., and Weisheimer, A.: Constraining Climate Projections using Decadal Predictions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2618, https://doi.org/10.5194/egusphere-egu2020-2618, 2020.

EGU2020-5852 | Displays | CL3.3

Calibrating large-ensemble European climate projections using observational data

Christopher O'Reilly, Daniel Befort, and Antje Weisheimer

In this study methods of calibrating the output of large single model ensembles are examined. The methods broadly involve fitting seasonal ensemble data to observations over a reference period and scaling the ensemble signal and spread so as to optimize the fit over the reference period. These calibration methods are then applied to the future (or out-of-sample) projections. The calibration methods are tested and give indistinguishable results so the simplest of these methods, namely Homogenous Gaussian Regression, is selected. An extension to this method, applying it to dynamically decomposed data (in which the underlying data is separated into dynamical and residual components), is found to improve the reliability of the calibrated projections. The calibration methods were tested and verified using an “imperfect model” approach using the historical/RCP8.5 simulations from the CMIP5 archive. The verification indicates that this relatively straight-forward calibration produces more reliable and accurate projections than the uncalibrated (bias-corrected) ensemble for projections of future climate over Europe. When the two large ensembles are applied to observational data, the 2041-2060 climate projections for Europe for the RCP 8.5 scenario are more consistent between the two ensembles, with a slight reduction in warming but an increase in the uncertainty of the projected changes. 

How to cite: O'Reilly, C., Befort, D., and Weisheimer, A.: Calibrating large-ensemble European climate projections using observational data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5852, https://doi.org/10.5194/egusphere-egu2020-5852, 2020.

EGU2020-10990 | Displays | CL3.3

Internal variability in regional climate simulations

Hylke de Vries and Geert Lenderink

Following the huge increase in computer power over the past fifty years, it is now possible to conduct regional climate simulations at the convective-permitting (CP) scale (horizontal grid spacing O(1-3km)). Societal relevance is evident, as a large fraction of high-impact weather operates on these scales (e.g., intense summer convection, extreme wind gusts, hail storms) and it is only partly known how these processes change as the planet warms. However, because the computational demands of running a CP regional climate model (CP-RCM) are formidable, most CP-RCM simulations to date are relatively short (O(10) years), with future trends being derived as differences between two time slices. Consequently, internal variability is considerable in these decadal simulations for most variables, but is difficult to estimate, especially for the extremes. Nevertheless, these simulations are the best we have at the moment. 

For some variables such as summer rainfall, spatial pooling might be a way to increase the sample size. However we believe a careful analysis of the internal variability is still necessary to provide a context for the future changes. Here we examine different methods to estimate the amplitude of the internal variability of precipitation and temperature over Europe. Special focus will be on comparing the differences between such estimates obtained from O(10) years time-slice experiments and those obtained from long transient RCM simulations (which in contrast to the CP-RCMs are available!), with the expectation that some of the lessons learned in the "RCM-world" carry over to that of the CP-RCM.

How to cite: de Vries, H. and Lenderink, G.: Internal variability in regional climate simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10990, https://doi.org/10.5194/egusphere-egu2020-10990, 2020.

EGU2020-11554 | Displays | CL3.3

Constraints on European temperature and rainfall changes from attributed changes

Gabriele Hegerl, Andrew Ballinger, and Sabine Undorf

Quantifying and reducing the uncertainty of climate projections will benefit both mitigation and adaptation decisions. Observed climate change provides evaluation of climate model simulated change, but the contribution by different external forcing factors needs to be reliably separated in order to use observational constraints. We revisit this ASK (for Allen et al., 2000; Stott and Kettleborough, 2002) approach to use attributed responses to greenhouse gas forcing to constrain future predictions.

We derive constraints on the projected near-surface summer temperature change over Europe as well as over three European subregions. The temperature responses to different external forcings (natural and greenhouse-gas (GHG) or combined anthropogenic) are estimated as the multi-model means of historical simulations from the Coupled Model Intercomparison Project 5 and incoming CMIP6, and the range of factors by which they can be scaled and still be consistent with observations since 1950 (E-OBS) given internal variability is calculated and applied to future RCP8.5 simulations.

Results show that both the response to GHG-only and to the combined anthropogenic (including aerosols etc.) forcing are detectable in the observed temperature change over Europe, and that the response over the Mediterranean region might be underestimated. Observed precipitation changes over Europe are also detected over some regions, although the confounding effects of the North Atlantic Oscillation need to be considered carefully. The results demonstrate the successful application of the ASK method for constraining projections of regional change over Europe.

 

How to cite: Hegerl, G., Ballinger, A., and Undorf, S.: Constraints on European temperature and rainfall changes from attributed changes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11554, https://doi.org/10.5194/egusphere-egu2020-11554, 2020.

EGU2020-15892 | Displays | CL3.3

Constraining hydrological impact simulations over Europe through weighting the climatic forcing

Peter Greve, Peter Burek, Renate Wilcke, Lukas Brunner, Carol McSweeney, Ben Booth, Geert Lenderink, and Yoshihide Wada

Global hydrological models (GHMs) have become an established tool to simulate water resources on continental scales. To assess the future of water availability and various impacts related to hydrological extreme events, these models usually use sets of atmospheric variables (such as e.g., precipitation, humidity, temperature) obtained from (regional) climate model simulations as input data. The uncertainty associated with the climate projections is transferred onwards into the impact simulations and is usually accounted for through the use of large model ensembles. These ensembles thus enable assessments addressing the robustness of projected hydrological changes and impacts. Given recent efforts within the European Climate Prediction (EUCP) project to test existing and develop new techniques to constrain/weight climate model ensembles, we use here different methods to specify the large-scale meteorological input to an ensemble of regional climate models that provide the input data for a state-of-the-art GHM. The climate models are weighted/constrained based on the key large-scale climatic and meteorological drivers shaping the hydrological characteristics in different regions and large river basins across Europe. To assess the potential benefits of the different techniques, we compare simulation ensembles using unweighted input data obtained from the full ensemble of regional climate models against an ensemble based on constrained/weighted forcing data. Given the large uncertainties usually associated with hydrological impact simulations forced by the full range of available climate models, processing the ensemble output of GHMs based on uncertainty assessments of the underlying climate forcing could lead to more robust projections of water resources in general and hydrological extreme events in particular.

How to cite: Greve, P., Burek, P., Wilcke, R., Brunner, L., McSweeney, C., Booth, B., Lenderink, G., and Wada, Y.: Constraining hydrological impact simulations over Europe through weighting the climatic forcing, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15892, https://doi.org/10.5194/egusphere-egu2020-15892, 2020.

EGU2020-16822 | Displays | CL3.3

Dependence of benefits of convection permitting models on large-scale conditions

Danijel Belusic, Petter Lind, Oskar Landgren, Dominic Matte, Rasmus Anker Pedersen, Erika Toivonen, Felicitas Hansen, and Fuxing Wang

Current literature strongly indicates large benefits of convection permitting models for subdaily summer precipitation extremes. There has been less insight about other variables, seasons and weather conditions. We examine new climate simulations over the Nordic region, performed with the HCLIM38 regional climate model at both convection permitting and coarser scales, searching for benefits of using convection permitting resolutions. The Nordic climate is influenced by the North Atlantic storm track and characterised by large seasonal contrasts in temperature and precipitation. It is also in rapid change, most notably in the winter season when feedback processes involving retreating snow and ice lead to larger warming than in many other regions. This makes the area an ideal testbed for regional climate models. We explore the effects of higher resolution and better reproduction of convection on various aspects of the climate, such as snow in the mountains, coastal and other thermal circulations, convective storms and precipitation with a special focus on extreme events. We investigate how the benefits of convection permitting models change with different variables and seasons, and also their sensitivity to different circulation regimes.

How to cite: Belusic, D., Lind, P., Landgren, O., Matte, D., Pedersen, R. A., Toivonen, E., Hansen, F., and Wang, F.: Dependence of benefits of convection permitting models on large-scale conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16822, https://doi.org/10.5194/egusphere-egu2020-16822, 2020.

EGU2020-18478 | Displays | CL3.3

Evaluating key aspects of large-scale circulation for Europe in a coupled PPE

Carol McSweeney, David Sexton, Philip Bett, Hazel Thornton, Ruth McDonald, Marie Drouard, Tim Woollings, John Rostron, Kuniko Yamazaki, and James Murphy

European climate is influenced by a number of large-scale phenomena which are typically poorly represented by global climate models.  A key motivation in generating a coupled perturbed parameter ensemble (PPE) for use in the latest UK climate projections (UKCP18) was to exploit the significant improvements in regional dynamics that have been demonstrated at higher vertical and horizontal resolutions.

The UKCP18 package includes a number of products, including a set of 28 global model ‘realizations’ comprising a 15-member PPE and a filtered sub-set of 13 CMIP5 members. These physically coherent, spatially and temporally complete scenarios of future change provide a flexible tool for exploring plausible future changes and their likely impacts.

We present an assessment of the PPE’s ability to represent key aspects of the regional large-scale circulation and its implications for the realistic simulation of UK and European climate and its variability. These include the large-scale circulation climatology, frequencies of weather types determined by clustering of north Atlantic MSLP anomalies, latitude and strength of the north Atlantic jet, location and frequency of north Atlantic and European storms and the frequency of blocking events. We show that the PPE members perform at least at as well as, or better than, the filtered 13-member CMIP5 subset with respect to these circulation characteristics.  This realistic behaviour offers a good basis for UK and European climate impacts studies, as well as the further development of ‘storylines’ approaches.

How to cite: McSweeney, C., Sexton, D., Bett, P., Thornton, H., McDonald, R., Drouard, M., Woollings, T., Rostron, J., Yamazaki, K., and Murphy, J.: Evaluating key aspects of large-scale circulation for Europe in a coupled PPE , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18478, https://doi.org/10.5194/egusphere-egu2020-18478, 2020.

EGU2020-19475 | Displays | CL3.3

An overview of the EUCP project – towards improved European Climate Predictions and Projections

Jason A. Lowe, Carol McSweeney, and Chris Hewitt

There is clear evidence that, even with the most favourable emission pathways over coming decades, there will be a need for society to adapt to the impacts of climate variability and change. To do this regional, national and local actors need up-to-date information on the changing climate with clear accompanying detail on the robustness of the information. This needs to be communicated to both public and private sector organisations, ideally as part of a process of co-developing solutions.

EUCP is an H2020 programme that began in December 2017 with the aim of researching and testing the provision of improved climate predictions and projections for Europe for the next 40+ years, and drawing on the expertise of researchers from a number of major climate research institutes across Europe. It is also engaging with users of climate change information through a multiuser forum (MUF) to ensure that what we learn will match the needs of the people who need if for decision making and planning.

The first big issue that EUCP seeks to address is how better to use ensembles of climate model projections, moving beyond the one-model-one-vote philosophy. Here, the aim is to better understand how model ensembles might be constrained or sub-selected, and how multiple strands of information might be combined into improved climate change narratives or storylines. The second area where EUCP is making progress is in the use of very high-resolution regional climate simulations that are capable of resolving aspects of atmospheric convection. Present day and future simulations from a new generation of regional models ae being analysed in EUCP and will be used in a number of relevant case studies. The third issue that EUCP will consider is how to make future simulations more seamless across those time scales that are most relevant user decision making. This includes generating a better understanding of predictability over time and its sources in initialised forecasts, and also how to transition from the initialised forecasts to longer term boundary forced climate projections.

This presentation will provide an overview of the challenges being addressed by EUCP and the approaches the project is using.



 

How to cite: Lowe, J. A., McSweeney, C., and Hewitt, C.: An overview of the EUCP project – towards improved European Climate Predictions and Projections, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19475, https://doi.org/10.5194/egusphere-egu2020-19475, 2020.

EGU2020-21533 | Displays | CL3.3

Observational constraints for European climate projections

Saïd Qasmi, Aurélien Ribes, and Hervé Douville

Observational constraints involve the combined use of models and observations in order to assess their consistency, and aim to reduce the uncertainty on future climate using past information. Several constraints are investigated with the CMIP5 models and re-examined in the light of newly available CMIP6 data. This includes constraints based on detection-attribution approaches and physically-based constraints, in particular those related to the water cycle (e.g. soil moisture, clouds, snow cover). A wide range of methods is used to provide a probabilistic description of future changes address the issue of combining together multi-model ensembles of projections, and a large number of observational constraints. Uncertainty quantification techniques are used to assess the sensitivity of the results (i) to the used method and (ii) to the internal variability.

How to cite: Qasmi, S., Ribes, A., and Douville, H.: Observational constraints for European climate projections, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21533, https://doi.org/10.5194/egusphere-egu2020-21533, 2020.

EGU2020-3666 | Displays | CL3.3

On the reliability of decadal climate prediction

Deborah Verfaillie, Francisco J. Doblas-Reyes, Markus G. Donat, Nuria Pérez-Zanón, Balakrishnan Solaraju-Murali, Verónica Torralba, and Simon Wild

Decadal climate predictions and forced climate projections both provide potentially useful information to users for the next ten years. They only differ in the former being initialised with observations, while the latter is not. Bringing together initialised decadal climate predictions and non-initialised climate projections in order to provide seamless climate information for users over the next decades is a new challenging area of research. This can be achieved by comparing the forecast quality of global initialised and non-initialised simulations in their common prediction time horizons (up to 10 years ahead), and quantify in how far initialisation improves the forecast quality. Forecast quality has been usually explored through skill assessment. However, the impact of initialisation on the reliability, which quantifies the agreement between the predicted probabilities and observed relative frequencies of a given event, of decadal predictions has not yet been investigated sufficiently. Hence, users of probabilistic predictions are particularly sensitive to the potential lack of reliability which would imply that the probabilities are not trustworthy and this can have negative consequences for decision-making. In this communication, initialised decadal hindcasts (or retrospective forecasts) from 12 forecasting systems of the Coupled Model Intercomparison Project Phase 5 are compared to the corresponding non-initialised historical simulations in terms of reliability over their common period 1961-2005. We show that reliability varies greatly depending on the region or model ensemble analysed and on the correction applied. In particular, the North Atlantic and Europe stand out as regions where there is some added-value of initialised decadal hindcasts over non-initialised historical simulations in terms of reliability, mainly because of smaller biases and/or a better representation of the trend. Furthermore, we show that post-processed data display more reliable results, indicating that bias correction and calibration are fundamental to obtain reliable climate information.

How to cite: Verfaillie, D., Doblas-Reyes, F. J., Donat, M. G., Pérez-Zanón, N., Solaraju-Murali, B., Torralba, V., and Wild, S.: On the reliability of decadal climate prediction, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3666, https://doi.org/10.5194/egusphere-egu2020-3666, 2020.

Understanding processes and mechanisms which contribute to decadal climate variability is a crucial step in the development of a reliable prediction system, and as such it constitutes an important segment of the activities carried forward by the EU-funded Horizon 2020 EUCP project.

Sea surface temperature (SST) variability in the North Atlantic is known to be a key source of decadal predictability for the Euro-Atlantic sector. However, the nature of the observed variability is at the core of a long-standing debate.

In this work, we investigate the origins of North Atlantic SST variability, focusing on a specific event: the mid-20th century (1940-1975) “warm-to-cold” transition. This event is particularly interesting as it represents a well documented decadal-scale fluctuation of the observed climate record and can be used as a suitable test-bed to evaluate the relative skill of initialized versus non-initialized (historical) climate simulations.

Several mechanisms and processes have been taken into account to explain the cooling in the middle of 20th century, ranging from a slowdown of the Atlantic Meridional Overturning Circulation (AMOC) to an increase in anthropogenic aerosol. Here the 1940-1975 transition is examined firstly in the NCAR Large Ensemble (NCAR-LENS), aiming to further explore the role of the possible drivers. Despite the lack of a realistic model state initialization, the NCAR-LENS shows some skill in capturing the North Atlantic SST transition, suggesting a non-negligible influence of the external forcing. Some lag between observations and model results is found, with the ensemble mean SST leading the onset of the observed transition by about ten years. This is consistent with previous studies, where some evidence was found of the driving role of anthropogenic aerosol and greenhouse gas forcing. In contrast, the simultaneous ocean dynamic response (AMOC) exhibits a large intra-member spread. This finding corroborates the hypothesis of a non-oceanic driver for the decadal-scale SST fluctuation. The same episode is then analysed in the NCAR Decadal Prediction Large Ensemble (NCAR-DPLE), which shares the same model code, configuration details, component resolutions, and external forcing datasets as for the non-initialized LENS ensemble. This allows a rigorous attribution of the relative roles of initialization, (mainly constraining the ocean-driven internal variability) and external forcing conditions on the overall skill in reproducing the Atlantic decadal variability, with clear implications for decadal predictability and predictions.

 

How to cite: Bellucci, A., Benassi, M., Gualdi, S., and Mariotti, A.: Assessing the role of internal ocean dynamics and external forcings on the decadal-scale predictability in the North Atlantic: a large ensemble analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4914, https://doi.org/10.5194/egusphere-egu2020-4914, 2020.

EGU2020-8985 | Displays | CL3.3

Finding homogeneous regions of extreme rainfall in reanalysis data

Marjanne Zander, Frederiek Sperna Weiland, and Albrecht Weerts

In this study a methodology is developed and tested to delineate homogeneous regions of extreme rainfall around a city of interest using meteorological indices from reanalysis data.

Scenarios of future climate change established with numerical climate models are well-established tools to help inform climate adaptation policy. The latest generation of regional climate models is now employed at a grid resolution of 2 to 3 kilometers. This enables the simulation of convection; whereby intensive convective rainfall is better represented (Kendon et al., 2017). However, the associated large computational burden limits the simulation length, which poses a challenge for estimating future rainfall statistics.

Rainfall return periods are a commonly used indicator in the planning, design and evaluation of urban water systems and urban water management. In order to estimate potential future rainfall for return periods larger than the length of the simulation length, regional frequency analysis (RFA) can be applied (Li et al., 2017).  For applying RFA, time series from nearby locations are pooled, the locations considered should fall within the same hydroclimatic climate. This is a region which can be assumed statistically homogeneous for extreme rainfall (Hosking & Wallis, 2009).

Traditionally, these homogeneous regions are defined on geographical region characteristics and rain gauge statistics (Hosking & Wallis, 2009).  To make the methodology less dependent on rain gauge record availability, Gabriele & Chiaravalloti (2013) used meteorological indices derived from reanalysis data to delineate the homogeneous regions.

Here we evaluate the methodology to delineate homogeneous regions around cities. Meteorological indices are calculated from the ERA-5 reanalysis dataset (Hersbach et al., 2018) for days with extreme rainfall. The variation herein is used as a measure of homogeneity. The derived homogeneous regions will in future work be used for data pooling of convection-permitting regional climate model simulations datasets to enable the derivation of future extreme rainfall statistics.

This study is embedded in the EU H2020 project EUCP (EUropean Climate Prediction system) (https://www.eucp-project.eu/), which aims to develop a regional climate prediction and projection system based on high-resolution climate models for Europe, to support climate adaptation and mitigation decisions for the coming decades.

References:

Gabriele, S., & Chiaravalloti, F. (2013). “Searching regional rainfall homogeneity using atmospheric fields”. Advances in Water Resources, 53, 163–174. https://doi.org/https://doi.org/10.1016/j.advwatres.2012.11.002

Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C., …, Zuo, H. (2018). “Operational global reanalysis: progress, future directions and synergies with NWP”, ECMWF.

Hosking, J. R. M., & Wallis, J. R. (2009). “Regional Frequency Analysis: An Approach Based on L-Moments”. The Edinburgh Building, Cambridge CB2 2RU, UK: Cambridge University Press. ISBN: 9780511529443.

Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., … Wilkinson, J. M. (2017). “Do Convection-Permitting Regional Climate Models Improve Projections of Future Precipitation Change?” BAMS, 98(1), 79–93. https://doi.org/10.1175/BAMS-D-15-0004.1

 Li, J., Evans, J., Johnson, F., & Sharma, A. (2017). “A comparison of methods for estimating climate change impact on design rainfall using a high-resolution RCM.” Journal of Hydrology, 547(Supplement C), 413–427. https://doi.org/https://doi.org/10.1016/j.jhydrol.2017.02.019

How to cite: Zander, M., Sperna Weiland, F., and Weerts, A.: Finding homogeneous regions of extreme rainfall in reanalysis data , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8985, https://doi.org/10.5194/egusphere-egu2020-8985, 2020.

EGU2020-18519 | Displays | CL3.3

Future European changes of extreme precipitation : What can we learn from inter-model cross-validation?

Torben Schmith, Peter Thejll, Fredrik Boberg, Peter Berg, Ole Bøssing Christensen, Bo Christiansen, Marianne Sloth Madsen, and Jens Hesselbjerg Christensen

Severe precipitation events occur rarely and are often localized in space and of short duration, but are important for societal managing of infrastructure such as sewage systems, metros etc. Therefore, there is a demand for estimating expected future changes in the statistics of these rare events. These are usually projected using RCM scenario runs combined with extreme value analysis to obtain selected return levels of precipitation intensity. However, due to RCM imperfections, the modelled climate for the present-day usually has errors relative to observations. Therefore, the RCM results are ‘error corrected‘ to match observations more closely in order to increase reliability of results.

In the present work we evaluate different error correction techniques and compare with non-corrected projections. This is done in an inter-model cross-validation setup, in which each model in turn plays the role of observations, against which the remaining error-corrected models are validated. The study uses hourly data (historical & RCP8.5 late 21st century) from 13 models covering the EURO-CORDEX ensemble at 0.11 degree resolution (about 12.5 km), from which fields of selected return levels are extracted for 1 h and 24 h duration. The error correction techniques applied to the return levels are based on extreme value analysis and include analytical quantile-quantile matching together with a simpler climate factor approach.

The study identifies regions where the error correction techniques perform differently, and therefore contributes to guidelines on how and where to apply calibration techniques when projecting extreme return levels.

How to cite: Schmith, T., Thejll, P., Boberg, F., Berg, P., Christensen, O. B., Christiansen, B., Madsen, M. S., and Christensen, J. H.: Future European changes of extreme precipitation : What can we learn from inter-model cross-validation?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18519, https://doi.org/10.5194/egusphere-egu2020-18519, 2020.

CL4.2 – Future insights from a constantly varying past, and climate variability across scales.

The Equilibrium Climate Sensitivity (ECS) remains not very well constrained, either by climate models, observational, historical or palaeoclimate data. In particular, large values of warming as a consequence of atmospheric greenhouse gas increase cannot be excluded. Interestingly, some of the most recent state-of-the-art climate models (CMIP6) suggest much more warming than previous generations of climate models. Next to the classical (measurement) uncertainty, the spread in ECS values is due to dynamical aspects: 

  1. The climate system has strong internal variability on many timescales such that the 'equilibrium' will only be relative to fixing slow processes. This implies the assumption that time scale separation exists and ECS values from palaeoclimate time series can be compared to short model simulations. Palaeoclimate records often determine the Earth System Sensitivity, which includes the integrated effect of slow processes and boundary conditions (e.g. geography, vegetation and land ice).
  2. The background state dependence of fast feedback processes: Information from the late Pleistocene ice age cycles indicates that ECS varies considerably between regime because of fast feedback processes changing their relative strength over one cycle.
  3. Tipping elements in the climate system: Extreme values of palaeo-derived ECS suggest that the climate response is in a region where the assumption of linear response to perturbations breaks down. 

Here we show for climate system models with more than one regime and occasional switches between these regimes, we can empirically determine probability of change in regime and confirm that extremes of climate sensitivity are associated with very high probabilities of tipping.

How to cite: von der Heydt, A.: Uncertainty quantification of climate sensitivity: State-dependence, extreme values and the probability of tipping, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4684, https://doi.org/10.5194/egusphere-egu2020-4684, 2020.

EGU2020-5265 | Displays | CL4.2

Past warming trend constrains future warming in CMIP6 models

Martin Stolpe, Katarzyna Tokarska, Sebastian Sippel, Erich Fischer, Christopher Smith, Flavio Lehner, and Reto Knutti
Future global warming estimates have been similar across past assessments, but several climate models of the latest Sixth Coupled Model Intercomparison Project (CMIP6) simulate much stronger warming, apparently inconsistent with past assessments. Here we show that projected future warming is correlated with the simulated warming trend during recent decades across CMIP5 and CMIP6 models, enabling us to constrain future warming based on consistency with the observed warming. These findings carry important policy-relevant implications: the observationally-constrained CMIP6 median warming in high emissions and ambitious mitigation scenarios is over 16% and 14% lower by 2050 compared to the raw CMIP6 median, respectively, and over 14% and 8% lower by 2090, relative to 1995-2014. Observationally-constrained CMIP6 warming is consistent with previous assessments based on CMIP5 models, and in an ambitious mitigation scenario, the likely range is consistent with reaching the Paris Agreement target.
 
Reference: 
Tokarska, K.B., Stolpe, M.B., Sippel, S., Fischer, E.M., Smith, C.J., Lehner, F., and Knutti, R. (2020). Past warming trend constrains future warming in CMIP6 models. Science Advances  (accepted).
equal first authors

How to cite: Stolpe, M., Tokarska, K., Sippel, S., Fischer, E., Smith, C., Lehner, F., and Knutti, R.: Past warming trend constrains future warming in CMIP6 models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5265, https://doi.org/10.5194/egusphere-egu2020-5265, 2020.

EGU2020-11802 | Displays | CL4.2

Insights for the Future of Arctic Sea Ice from the CMIP6 lig127k Experiment

Esther C. Brady, Bette L. Otto-Bliesner, and Masa Kageyama and the PMIP4 and QUIGS team

New to CMIP6 is the Tier 1 lig127k experiment, designed to address the climate responses to stronger orbital forcing than the midHolocene experiment, using the same state-of-the-art models and following a common experimental protocol. We present a multi-model ensemble of 17 climate models, all of which (except for two) have also completed the CMIP6 DECK experiments, looking at the lig127k Arctic’s responses across models and the relationships with each model’s Equilibrium Climate Sensitivity (ECS), preindustrial sea ice thickness and 127ka temperature anomalies.

Boreal insolation anomalies at 127 ka enhance the seasonal cycle of Arctic sea ice, though with notable differences among the models. The consensus from the lig127k sea ice distributions is a reduced minimum (August-September) summer sea ice extent in the Arctic as compared to the piControl simulations. Sea ice remains above 15% concentrations over the central Arctic Ocean in all but one of the lig127k simulations. More than half of the models simulate a retreat of the Arctic minimum ice edge similar to the average of the last 2 decades. The lig127k minimum Arctic sea ice area anomalies show a strong negative correlation with the Arctic (60-90°N) annual surface temperature anomalies but only a weak correlation with the corresponding June-July-August (JJA) temperature anomalies. Memory in the ocean and cryosphere provide feedbacks to maintain larger positive temperature anomalies, December-January-February (DJF) and annually, in the Arctic than in JJA. The models contributing to the lig127k ensemble have an ECS varying from 2.1 to 5.3°C. There is a notable relationship between the ECS and simulation of lig127k minimum Arctic sea ice area.  With very limited Arctic sea ice proxies for 127 ka, and with evolving interpretation of the relationships of these proxies with sea ice coverage, it is still difficult to rule out the high or low values of ECS from the proxy data.

How to cite: Brady, E. C., Otto-Bliesner, B. L., and Kageyama, M. and the PMIP4 and QUIGS team: Insights for the Future of Arctic Sea Ice from the CMIP6 lig127k Experiment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11802, https://doi.org/10.5194/egusphere-egu2020-11802, 2020.

EGU2020-22069 | Displays | CL4.2

Monsoon dynamics in past and future climates: the Holocene is not an analogue of future projections

Roberta D'Agostino, Juergen Bader, Josephine Brown, Simona Bordoni, David Ferreira, Aurel Moise, Hanh Nguyen, Pedro Silva-Dias, and Johann Jungclaus

In recent decades the paleo-modelling community has sought to identify past warm climates that could provide analogues for greenhouse induced warming. In spite of some similarities in temperature distributions (e.g. Pliocene, Eocene, Cretaceous and summertime Northern Hemisphere mid-Holocene), however, it is unlikely that any past epoch can provide detailed insight into future warming, especially in terms of changes in the hydrological cycle. Reviewing recent work, we show that changes in the atmospheric circulation can dramatically alter the relationship between temperature and precipitation, weakening the possibility for useful climate analogs as envisioned in the literature. We present results of moisture budget decomposition from mid-Holocene and Representative Pathways Scenario RCP8.5, two climates in which monsoons are stronger and wider than the pre-Industrial era. We find that Northern Hemisphere monsoons are much stronger and wider during the Holocene than what projected for the end of the 21st century. This is because the thermodynamic (i.e. moisture changes) and dynamic responses (i.e. mean-flow changes) reinforce each other in the mid-Holocene while they partially cancel out in the future climate. Therefore, the Holocene does not represent an analogue of the future given the opposite dynamical responses in the two climates. Consistent with other studies, our work highlights that changes in atmospheric circulation are the major source of uncertainty for future projection of hydrological cycle, especially at regional scales.

How to cite: D'Agostino, R., Bader, J., Brown, J., Bordoni, S., Ferreira, D., Moise, A., Nguyen, H., Silva-Dias, P., and Jungclaus, J.: Monsoon dynamics in past and future climates: the Holocene is not an analogue of future projections, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22069, https://doi.org/10.5194/egusphere-egu2020-22069, 2020.

EGU2020-11881 | Displays | CL4.2

Centennial and millennial variability in models and data

Gerrit Lohmann, Martin Butzin, Nina Eissner, Xiaoxu Shi, and Christian Stepanek

The Earth’s climate is characterized by many modes of variability. On millennial timescales, decaying Northern Hemisphere ice sheets during the last deglaciation affect the high latitude hydrological balance in the North Atlantic and therefore the ocean circulation after the Last Glacial Maximum. Global sea-level reconstructions indicate marked abrupt changes within several hundred years. Using a multi-scale climate model with a high resolution near the coast, we find a strong sensitivity of the ocean circulation depending on where the deglacial meltwater is injected. Meltwater injections via the Mississippi and near Labrador hardly affect the AMOC. The reduced sensitivity of the overturning circulation against freshwater perturbations following the Mississippi route provides a consistent representation of the deglacial climate evolution. A subpolar North Atlantic Ocean freshening, mimicking a transport of water by icebergs, yields, on the other hand, a quasi-shutdown. We can conclude that millennial climate variability depends on the spatio-temporal structure and their representation in models.

Millennial DO-like variability is seen in a handful of model simulations, including even some pre-industrial simulations. As a mechanism, the subsurface is warmed by the downward mixing of the warmer overlying water during an AMOC weak state, until the surface became denser than at mid-depth and deep ventilation is initiated. In recent model developments, the large oscillations in the Labrador Sea mixing were reduced. However, it might be that the centennial-to-millennial oscillations are required to explain climate variability as expressed e.g. by the Little Ice age and the Medieval Warm Event during the last 1000 years. It could be that a de-tuning of the models is necessary in order to exhibit irregular oscillations on centennial-to-millennial time-scales. Although a systematical analysis of the mechanisms leading to centennial-to-millennial variability remains open, numerical experiments suggest that at least in the Labrador Sea and other sensitive areas the high resolution can play an important role in realistically simulating the variability in the mixed layer depth affecting AMOC. One can question regularities found in DO-events occurrence and statistically analyzed the distribution of inter-event waiting times. To estimate the statistical significance of detected event patterns, we construct a simple stochastic process in which events are triggered each time a threshold criterion is fulfilled. For a given time interval each event occurs therefore stochastically independent of another meaning that the probability of one abrupt warming does not affect the probability distribution of any other warming events in that interval. Additionally, novel periodicities of ∼900 and ∼1150 yrs in the NGRIP record are reported besides the prominent 1500 yrs cycle but demonstrate that although a high periodicity reflected in a high Rayleigh R can be found in the data it remains indistinguishable from a simple stationary random Poisson process. These are quite interesting findings as ∼1500 and ∼900 yrs periods are visible throughout the Holocene. The understanding of such low-frequency variability is crucial to allow a separation of anthropogenic signals from natural variability. 

How to cite: Lohmann, G., Butzin, M., Eissner, N., Shi, X., and Stepanek, C.: Centennial and millennial variability in models and data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11881, https://doi.org/10.5194/egusphere-egu2020-11881, 2020.

 

How to cite: Olonscheck, D. and Notz, D.: Anthropogenic changes in internal climate variability can cause the most extreme climate extremes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5116, https://doi.org/10.5194/egusphere-egu2020-5116, 2020.

EGU2020-3150 | Displays | CL4.2

Using Late Pleistocene SST reconstructions to constrain future greenhouse warming

Tobias Friedrich and Axel Timmermann

Global warming projections for a given anthropogenic greenhouse gas concentration scenario still exhibit a substantial spread.  In order to constrain this spread and to provide robust warming projections, our understanding of Earth's climate sensitivity needs to be further improved. Here, we employ a global network of 64 paleo-proxies of SST to reconstruct global-mean SST variations during the Last Glacial Cycle. This temperature reconstruction is then used as a target function for 25 transient model simulations conducted for the same period with 25 different climate sensitivities. Our combined proxy/model approach allows us to determine an optimal range of model climate sensitivities corresponding to a minimum of the weighted mean squared error calculated for reconstructed and simulated global-mean SSTs. Based on our best estimate, Earth's averaged Late Pleistocene equilibrium climate sensitivity is in the order of ~4.2 K per CO₂ doubling with an associated transient climate response of ~2.4 K/2xCO₂. The latter value translates into a global-mean surface warming of about 5.0 K by the year 2100 (relative to pre-industrial levels) based on the Representative Concentration Pathway 8.5. This warming estimate is in excellent agreement with the ensemble-mean projection of climate simulations conducted as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Error bars resulting from uncertainties in aerosol and ice-sheet forcing as well as in temperature reconstruction clearly document the current limitations for paleo-based constrains of both climate sensitivity and future greenhouse warming and demonstrate the need for more robust forcing and temperature reconstructions that can be utilized to narrow down the spread in global warming projections.

 

 

 

 

How to cite: Friedrich, T. and Timmermann, A.: Using Late Pleistocene SST reconstructions to constrain future greenhouse warming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3150, https://doi.org/10.5194/egusphere-egu2020-3150, 2020.

EGU2020-3046 | Displays | CL4.2

A Bayesian framework for emergent constraints: case studies of climate sensitivity with PMIP

Martin Renoult, James Annan, Julia Hargreaves, Navjit Sagoo, Clare Flynn, Marie-Luise Kapsch, Uwe Mikolajewicz, Rumi Ohgaito, and Thorsten Mauritsen

In this study we introduce a Bayesian framework, which is flexible and explicit about the prior assumptions, for using model ensembles and observations together to constrain future climate change. The emergent constraint approach has seen broad application in recent years, including studies constraining the equilibrium climate sensitivity (ECS) using the Last Glacial Maximum (LGM) and the mid-Pliocene Warm Period (mPWP). Most of these studies were based on Ordinary Least Squares (OLS) fits between a variable of the climate state, such as tropical temperature, and climate sensitivity. Using our Bayesian method, and considering the LGM and mPWP separately, we obtain values of ECS of 2.7 K (1.1 - 4.8, 5 - 95 percentiles) using the PMIP2, PMIP3 and PMIP4 data sets for the LGM, and 2.4 K (0.4 - 5.0) with the PlioMIP1 and PlioMIP2 data sets for the mPWP. Restricting the ensembles to include only the most recent version of each model, we obtain 2.7 K (1.1 - 4.3) using the LGM and  2.4 K (0.4 - 5.1) using the mPWP. An advantage of the Bayesian framework is that it is possible to combine the two periods assuming they are independent, whereby we obtain a slightly tighter constraint of 2.6 K (1.1 - 3.9). We have explored the sensitivity to our assumptions in the method, including considering structural uncertainty, and in the choice of models, and this leads to 95% probability of climate sensitivity mostly below 5 and never exceeding 6 K. The approach is compared with other approaches based on OLS, a Kalman filter method and an alternative Bayesian method. An interesting implication of this work is that OLS-based emergent constraints on ECS generate tighter uncertainty estimates, in particular at the lower end, suggesting a higher bound by construction in case of weaker correlation. Although some fundamental challenges related to the use of emergent constraints remain, this paper provides a step towards a better foundation of their potential use in future probabilistic estimation of climate sensitivity.

How to cite: Renoult, M., Annan, J., Hargreaves, J., Sagoo, N., Flynn, C., Kapsch, M.-L., Mikolajewicz, U., Ohgaito, R., and Mauritsen, T.: A Bayesian framework for emergent constraints: case studies of climate sensitivity with PMIP, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3046, https://doi.org/10.5194/egusphere-egu2020-3046, 2020.

EGU2020-19747 | Displays | CL4.2

An emergent constraint on transient warming from simulated historical warming in CMIP6 models

Femke J. M. M. Nijsse, Peter M. Cox, and Mark S. Williamson

The transient climate response (TCR), transient warming for a doubling of CO2, contributes the biggest uncertainty to estimates of the carbon budgets consistent with the Paris targets. In the IPCC 5th Assessment Report (AR5), the stated ‘likely’ range of TCR was given as 1.0 to 2.5K, with a central estimate which was broadly consistent with the ensemble mean of the CMIP5 Earth System Models (ESMs) available at the time (1.8 +/- 0.4 K) . Many of the latest CMIP6 ESMs have larger climate sensitivities, with 6 of 23 models having TCR values above 2.5 K, and an ensemble mean TCR of 2.1 +/- 0.4 K. On the face of it, these latest ESM results suggest that the IPCC likely range of TCRE may need revising upwards, which would cast further doubt on the feasibility of the Paris targets.

We analyse the CMIP6 models through an emergent constraint approach which relates the value of TCR to the global warming from 1970 onwards. We confirm a consistent emergent constraint on TCR when we apply the same method to CMIP5 model. Our emergent constraint on TCR benefits from both the large range of TCR values across the CMIP6 models, and also from the extension of the historical simulations into a period when the uncertain changes in aerosol forcing have had a far less significant impact on the trend in global warming.

We show that rather than increasing the uncertainty in climate sensitivity, the CMIP6 models help to further constrain the likely range of TCR to 1.5-2.2 K. In CMIP6, diagnosed emissions at carbon doubling was found to be independent of TCR, so that a constraint on TCR directly leads to a constrained estimate of TCRE, with a likely range of 1.3 – 2.0 K per EgC. 

How to cite: Nijsse, F. J. M. M., Cox, P. M., and Williamson, M. S.: An emergent constraint on transient warming from simulated historical warming in CMIP6 models , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19747, https://doi.org/10.5194/egusphere-egu2020-19747, 2020.

Surface Melt (SM) is one of the factors that contribute to sea level rise; surface meltwater draining through the ice and beneath Antarctic glaciers may cause acceleration in their flow towards the sea. Changes in the frequency of relatively warm days (including heatwaves) can substantially alter the SM variability, thus leading to extreme melting events. By using simulations from 13 Global Climate Models (GCMs) and according to a moderate representative concentration pathways (RCP4.5), here we show that the frequency of extreme SM events (SM90; according to the 90th percentile over the reference period 1961-1990) may significantly increase in coastal areas of West Antarctica; in particular in the Antarctic Peninsula. By the end of the century SM90 estimates are expected to increase from currently 0.10 kg/m2/day to about 0.45 kg/m2/day in the Antarctic Peninsula. Increments in SM90 estimates are not just driven by changes in the average SM, but also by the variability in SM. The latter is expected to increase by around 50% in the Antarctic Peninsula.

How to cite: Feron, S. and Cordero, R.: Major increases projected in extreme surface melt events in Antarctica, even under a moderate emission scenario, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21267, https://doi.org/10.5194/egusphere-egu2020-21267, 2020.

EGU2020-8592 | Displays | CL4.2

Variability of surface climate in simulations of past and future

Kira Rehfeld, Raphaël Hébert, Juan M. Lora, Marcus Lofverstrom, and Chris M. Brierley

It is virtually certain that the mean surface temperature of the Earth will continue to increase under realistic emission scenarios. Yet comparatively little is known about future changes in climate variability. We explore changes in climate variability over the large range of climates simulated in the framework the Coupled Model Intercomparison Project Phases 5 and 6 (CMIP5/6) and the Paleoclimate Modeling Intercomparison Project Phases 3 and 4 (PMIP3/4). 
This consists of time slice simulations for the Pliocene, Last Interglacial, Last Glacial Maximum, the Mid Holocene and idealized warming experiments (1% CO2 and abrupt 4xCO2), and encompasses climates with a range of 12°C of global mean temperature change. We examine climate variability from different perspectives: from local interannual change, to coherent climate modes and through compositing extremes. The change in the interannual variability of precipitation is strongly dependent upon the local change in the total amount of precipitation. Meanwhile only over tropical land is the change in the interannual temperature variability positively correlated to temperature change, and then weakly. In general, temperature variability is inversely related to mean temperature change - with analysis of power spectra demonstrating that this holds from intra-seasonal to multi-decadal timescales. We systematically investigate changes in the standard deviation of modes of climate variability. Overall, no generalisable pattern emerges. Several modes do show, sometimes weak, increasing variability with global mean temperature change (most notably the Atlantic Zonal Mode), but also the El Niño/Southern Oscillation indices (NINO3.4 and NINO4). The annular modes in the Northern (Southern) hemisphere show only weakly increasing (decreasing) relationships.
By compositing extreme precipitation events across the ensemble, we demonstrate that the atmospheric drivers dominating rainfall variability in Mediterranean climates persist throughout palaeoclimate and future simulations. The robust nature of the response of climate variability in model simulations, between both cold and warm climates and across multiple timescales, suggests that observations and proxy reconstructions could provide a meaningful constraint on climate variability in future projections.

How to cite: Rehfeld, K., Hébert, R., Lora, J. M., Lofverstrom, M., and Brierley, C. M.: Variability of surface climate in simulations of past and future, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8592, https://doi.org/10.5194/egusphere-egu2020-8592, 2020.

Multidecadal to millenial timescale climate variability has been investigated over the ocean

using extensive proxy data and it was found to yield coherent interproxy estimates of global and regional sea-surface temperature (SST) climate variability (Laepple and Huybers, 2014). Global Climate Model (GCM) simulations on the other hand, were found to exhibit an increasingly large deficit of regional SST climate variability for increasingly longer timescales.

Further investigation is needed to better quantify terrestrial climate variability for long

timescales and validate climate models.

Vegetation related proxies such as tree rings and pollen records are the most widespread

types of archives available to investigate terrestrial climate variability. Tree ring records are

particularly useful for short time scales estimates due to their annual resolution, while pollen-based reconstructions are necessary to cover the longer timescales. In the present work, we use a large database of 1873 pollen records covering the northern hemisphere in order to quantify Holocene vegetation and climate variability for the first time at centennial to multi-millenial timescales.

To ensure the robustness of our results, we are particularly interested in the spatio-temporal representativity of the archived signal in pollen records after taking into account the effective spatial scale, the intermittent and irregular sampling, the age-uncertainty and the sediment mixing effect. A careful treatment of the proxy formation allows us to investigate the spatial correlation structure of the pollen-based climate reconstructions as a function of timescales. The pollen data results are then contrasted with the analysis replicated using transient Holocene simulations produced with state-of-the-art climate models as well as stochastic climate model simulations.Our results indicate a substantial gap in terrestrial climate variability between the climate model simulations and the pollen reconstructions at centennial to multi-millenial timescales, mirroring the variability gap found in the marine domain. Finally, we investigate how future climate model projections with greater internal variability would be affected, and how this increases the uncertainty of regional land temperature projections.

How to cite: Hébert, R., herzschuh, U., and Laepple, T.: Quantification of terrestrial regional climate variability from a large database of pollen-based reconstructions and implications for future projections, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1203, https://doi.org/10.5194/egusphere-egu2020-1203, 2020.

Model simulations of the last glacial maximum (LGM) and RCP8.5 projections suggest that factors responsible for past and future changes in the Mediterranean region are different.  The wet LGM conditions were determined mainly by low evaporation, with some increase of precipitation in the western areas, while dry rcp8.5 conditions will be driven by a reduction of precipitation over the whole region. These changes were caused by atmospheric dynamics (changes of mean atmospheric circulation ) in LGM and it will be caused by the atmospheric thermodynamics (reduction of mean moisture content ) in the future rcp8.5. In both cases, the Mediterranean region appears to be more sensitive to climate change than the rest of areas within the same latitudinal range, particularly considering the hydrological cycle, whose characteristics in winter exhibit large changes between these two different climates. These conclusions emerge from the substantial consensus among six PMIP3 and CMIP5 models, simulating LGM, pre-Industrial and rcp8.5 climate conditions.

How to cite: Lionello, P. and D'Agostino, R.: Factors driving the Mediterranean water cycle from a cold and wet glacial past to a warm and dry future, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5338, https://doi.org/10.5194/egusphere-egu2020-5338, 2020.

EGU2020-6918 | Displays | CL4.2

Assessing temperature fingerprints for the Atlantic overturning in the past two millennia

Reyhan Shirin Ermis, Paola Moffa-Sánchez, Alexandra Jahn, and Kira Rehfeld

The Atlantic Meridional Overturning Circulation (AMOC) is essential to maintain the temperate climates of Europe and North America. It redistributes heat from the tropics, and stores carbon in the deep ocean. Yet, its variability and evolution are largely unknown due to the lack of long-term direct circulation measurements. Previous studies suggest a connection between the variability of the AMOC strength and a temperature dipole in the North Atlantic. These results suggest a substantial decline in the strength of the overturning at the onset of the industrial era. 

Here we compare temperature reconstructions from four sediment cores in the North Atlantic with model simulations of the Community Earth System Model (CESM1) as well as the Hadley Centre Coupled Model (HadCM3) over the Common Era. By examining the correlation between the surface temperatures in the North Atlantic and the strength of the overturning we test the robustness of previously used temperature fingerprints. Analysing variability in the surface and subsurface temperatures as well as the overturning strength in models we assess possible drivers of variability in ocean circulation. We compare the persistence times and the time scale dependent variability of the AMOC, the surface and ocean temperatures in the model with those in the temperature reconstructions. The sub-surface reconstructions match with the 200m ocean temperatures in persistence times but not with the AMOC in the models. The surface temperatures in the models show persistence times similar to those obtained for the AMOC. However, time scale dependent variabilities in the surface temperatures do not match those found the AMOC. Therefore, temperature fingerprints might not be a reliable basis to reconstruct the ocean overturning strength.

Due to the systematic comparison of two models on different time scales and an assessment of surface to sub-surface temperatures this study could provide new insights into the variability of Atlantic overturning on decadal time scales and beyond.

How to cite: Ermis, R. S., Moffa-Sánchez, P., Jahn, A., and Rehfeld, K.: Assessing temperature fingerprints for the Atlantic overturning in the past two millennia , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6918, https://doi.org/10.5194/egusphere-egu2020-6918, 2020.

Climate field reconstruction (CFR) techniques have become common tools for studying terrestrial climate variability across various time and space scales1,2. Here, we present the framework of ensemble-based CFR of sea surface temperature in the North Atlantic Ocean, using a Bayesian hierarchical model5 and the proxy surrogate reconstruction method6. Methodological development is necessary in order to take properly into account the age-depth uncertainties that is specific to proxies originating from marine sediment cores, and the generally low temporal resolution of the data. The new reconstructions will provide evidence on linkages and mechanisms between the marine realm and European climate including extremes covering the past 2000 years. The spatiotemporal covariance-structures of the input and output data are of special relevance, and the benchmarking datasets can be used for various impact studies and for paleomodel/data comparison and process understanding coupling the North Atlantic with Eurasia.

 

References:

1Luterbacher, J. & Zorita, E. in “The Palgrave Handbook of Climate History”, (2018), Palgrave Macmillan, Springer Nature Limited,London, 131-140, ISBN 978-1-137-43020-5 (eBook), doi: 10.1057/978-1-137-43020-5

2Neukom, R. et al. (2019), Nature, 571, 550–554, doi:10.1038/s41586-019-1401-2

3 Tingley, M. P. and P. Huybers (2010a), J. Clim., 23, 2759–2781, doi: 10.1175/2009JCLI3015.1

4 Graham, N.E. et al. (2007), Clim. Change, 83, 241-285, doi: 10.1007/s10584-007-9239-2

How to cite: Nilsen, T. and Luterbacher, J.: Bridging the gap between the terrestrial and marine paleoclimate reconstructions in the North Atlantic realm, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4669, https://doi.org/10.5194/egusphere-egu2020-4669, 2020.

EGU2020-7492 | Displays | CL4.2

A spatio-temporal view of variability in pollen records during the last Glacial

Nils Weitzel, Moritz Adam, Anna Sommani, and Kira Rehfeld

Climate variability influences the probability of extreme events and is therefore of great importance for risk management. Nevertheless, changes in climate variability over time are far less studied than changes in the mean state of the climate system. Proxy records can be used to estimate the dependency of climate variability on the state and timescale, but their climate signal is perturbed by non-climatic processes and dating uncertainties. Analyzing ice cores and marine sediments, it was shown that temperature variability during the Last Glacial Maximum was larger than in the Holocene and that the magnitude of variability change depends on latitude.

We estimate millennial and orbital scale variability in pollen records during the last Glacial. We draw on a global network of published pollen records, which are influenced by local temperature and moisture availability, and compare these estimates with temperature, precipitation, and vegetation variability in climate simulations of the last Glacial cycle. We discuss the regional consistency of timescale dependent estimates. Differences between Marine Isotope Stages 2, 3, and 4 are examined by comparing spatial patterns during those three periods. Then, we use spectral methods to study the scaling behavior of the pollen records. This provides additional information on the continuum of variability from centennial to orbital scales. Finally, we quantify the co-occurrence of millennial and orbital scale fluctuations across different pollen records with paleoclimate network techniques.

Our work extends previous estimates to the terrestrial realm and to longer timescales. The results provide new insight on the climate variability differences between glacial and interglacial states, and on the mismatch between climate simulations and proxy data.

How to cite: Weitzel, N., Adam, M., Sommani, A., and Rehfeld, K.: A spatio-temporal view of variability in pollen records during the last Glacial, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7492, https://doi.org/10.5194/egusphere-egu2020-7492, 2020.

EGU2020-17788 | Displays | CL4.2

Impact of the Late Pleistocene permafrost relics on spatial patterns of linear erosion in agricultural landscapes of central European Russia

Anna Semochkina, Irina Streletskaya, Vladimir Belayaev, Sergey Kharchenko, Julia Kuznetsova, and Nicolai Lugovoy

More than 90% territory of Russia influenced by modern and relict cryolithogenesis (Velichko, 1996). Many relict periglacial features bear witness of Late Pleistocene climate oscillation events and nowadays they are widespread in Mid-Latitude Western Europe including Russian territory. It is known, paleocryogenic factor influence on soil cover’s structure on the different geomorphological position. However interrelation problem between various type of relict cryogenic features (RCF) and modern geomorphological processes, especially erosion and sedimentation, and soil degradation stays unsearched.

The goal of research – to estimate, how RCF affects modern processes and soil cover structure within the agricultural areas (Yaroslavl and Kursk regions). The research also is concentrated on evaluation relationship between different types of the relic cryogenic features and intensity and spatial distribution of soil erosion and deposition processes on cultivated slopes.

Materials and Methods

This study is based on the analysis of aerial photographs (Sentinel, BingSat, Google, Yaundex), including DEMs and aero photos from air drone, and new field surveys. Also we used a group of methods to estimate erosion rates within the small catchments areas (soil profile morphology, analysis of Cesium-137 supply in soil, empirical-mathematical models USLE/ГГИ and WaTEM/SEDEM).  It is supposed to test modern methods (neuron net) for automatic decoding of paleocryogenic relief and creating an appropriate data set - contours or at least positions (centroids) of these forms.

Results

The relict permafrost-thermokarst relief prevails in the Yaroslavl Region; a polygonal relief with a block length of 40-50 m is visible almost everywhere. In new-ploughed fields  inside the polygons, a second generation of blocks with a side length of 10-20 m is visible.

To the south, on the territory covered with loess-loam soil stripes or trenches can be also detected. But on this southern territories relict cryogenic network are smaller, the relief of small knolls and depressions are widespread. They appeared due to ice-wedges melting.  An analysis of the structure of the erosion-channel network in the Kursk region showed that numerous small ravines and washed-out troughs, widespread on agricultural fields, largely inherit or developed due to the RCM forms.

Conclusions

The period of transition of active cryogenic forms to the relict state is associated with numerous processes of burial, redeposition and destruction of material and microrelief alignment.
RCF affects the structure and dynamics of modern erosion processes: shape and density of the erosion network; the direction, extent and complexity of the slope flows structure, the presence and alternation of redeposition and transit zones; sediment budget structure of elementary slope, gullys and small river catchment areas.

*This research is supported by the Russian Foundation for Basic Research (Project No. 18-05-01118a).

How to cite: Semochkina, A., Streletskaya, I., Belayaev, V., Kharchenko, S., Kuznetsova, J., and Lugovoy, N.: Impact of the Late Pleistocene permafrost relics on spatial patterns of linear erosion in agricultural landscapes of central European Russia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17788, https://doi.org/10.5194/egusphere-egu2020-17788, 2020.

EGU2020-6402 | Displays | CL4.2

Managing Carbon Emissions to Avoid the Next Ice Age

Felix Pretis and Robert Kaufmann

There is considerable uncertainty about how the rapid, recent rise in greenhouse gas concentrations driven by anthropogenic emissions will interact with on-going changes in orbital position to affect climate in the very long run – the next several thousand years. Here we study the evolution of climate over the next hundred thousand years using a statistical climate model estimated on the paleo record that represents physically consistent relations between orbital position and climate. This climate model is able to use orbital position alone to simulate the timing, magnitude, and saw-toothed pattern of ice volume, CO2 concentrations, and other climate time series both in- and out-of-sample. The model is used to run experiments that simulate climate with- and without human intervention in the global carbon cycle. Without human intervention, the next glacial maximum is forecast to occur in about 20,000 years. This result is relatively unaffected by the current anthropogenic spike in CO2 concentrations. Conversely, the glacial maximum can be avoided - and the current climate maintained - by geo-engineering carbon concentrations to stabilize at around 325 ppm. The emissions needed to sustain these concentrations can be generated from known resources of fossil fuels. This suggests that CO2 is a cost effective control variable that - if managed carefully - can be used to sustain a hospitable climate in the short-run (by reducing emissions) and the long-run (by stabilizing concentrations).

How to cite: Pretis, F. and Kaufmann, R.: Managing Carbon Emissions to Avoid the Next Ice Age , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6402, https://doi.org/10.5194/egusphere-egu2020-6402, 2020.

Precipitation extremes and associated hazards pose a significant risk to society and the economy on a global scale. Effective mitigation strategies require accurate estimates of the intensity and frequency of those extremes. Traditional approaches for precipitation frequency analysis rely on long-record from in-situ observations, which however are not available on a global scale. Satellite and reanalysis-based products provide global precipitation estimates suitable for frequency analysis due to their extensive spatial coverage. However, errors in global precipitation products lead to significant bias in the quantification of extremes and potential changes. To examine this issue, five regions(Austria, north Italy, Florida, Texas, Arizona) that include a high-density gauge network (>3 gauges/satellite pixel) are selected as references to evaluate the uncertainty in retrieving extreme value statistics based on four global precipitation products (MSWEP, IMERG, GSMaP, CMORPH). The statistical properties of extremes are based on the application of the Metastatistical Extreme Value (MEV) framework. MEV has been validated in previous studies that have demonstrated that the method is able to provide robust estimates of high quantiles from short data records. In this work we evaluate the uncertainty on the estimation of extremes focusing primarily on the dependence to a) data characteristics and b) hydroclimatic region. Additionally, we evaluate the sub-grid variability of extreme precipitation and we demonstrate the impact of spatial scale mismatch (i.e. point vs satellite pixel) on the frequency analysis of extremes. This work provides a relatively comprehensive assessment of the use of MEV for estimating precipitation extremes from globally available datasets and an understanding of the variability of sub-daily precipitation extremes at different hydroclimatic regions of the world.

How to cite: Hu, L.: Uncertainty Analysis of Sub-daily Precipitation Extremes estimated from Satellite Datasets on a Global Scale, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-916, https://doi.org/10.5194/egusphere-egu2020-916, 2020.

EGU2020-6137 | Displays | CL4.2

Nonlinear components in global climate teleconnections

Jiří Mikšovský

Among the sources of temporal variability in the climate system, an important role belongs to internal variability modes – phenomena with oscillatory behavior ranging from predominantly sub-annual (e.g. North Atlantic Oscillation) or inter-annual (e.g. Southern Oscillation) to decadal or multidecadal variations (e.g. Pacific Decadal Oscillation, Atlantic Multidecadal Oscillation). These oscillations manifest themselves not only within their particular geographical areas of origin, but their effects are typically also transmitted through long-range teleconnections, affecting weather and climate patterns worldwide. Analysis of these relationships is often done assuming their linearity – but rarely is such assumption explicitly verified.

In this presentation, presence and magnitude of nonlinear components in long-range teleconnections associated with selected climate variability modes are studied through various time series analysis methods. Several nonlinearity-quantifying statistics, ranging from simple measures of asymmetry in the regression coefficients to outcomes of more formal surrogate data-based tests, are employed to investigate the teleconnection-related responses of local temperatures across the globe. It is shown that substantial variations exist in degree of manifested nonlinearity, subject to both the target location and type of the variability mode(s) considered. Potential of individual nonlinearity-sensitive techniques for more realistic capture of the teleconnection-related response patterns is also discussed, with an ultimate goal of construction of a more accurate model of variability transfer in the climate system.

How to cite: Mikšovský, J.: Nonlinear components in global climate teleconnections, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6137, https://doi.org/10.5194/egusphere-egu2020-6137, 2020.

EGU2020-17086 | Displays | CL4.2

Towards a more reliable reconstruction of the historical solar variability: a more realistic description of solar ephemeral magnetic regions

Bernhard Hofer, Natalie A. Krivova, Chi-Ju Wu, Ilya A. Usoskin, and Robert Cameron

Solar irradiance is a crucial input to climate models, but its measurements are only available since 1978. The variability of solar irradiance on climate-relevant time-scales is caused by the competition between bright and dark features formed by the magnetic fields emerging on the solar surface. Thus, models have been developed that reconstruct past irradiance variability from proxies of the solar magnetic activity. The longest direct proxy is the sunspot number. The common problem of such reconstructions is, however, that while sunspots adequately describe the evolution of the active regions (ARs) (large bipolar regions hosting sunspots), the evolution of their smaller counterparts, the ephemeral regions (ERs), is not directly featured by sunspots. At the same time, these small regions are much more numerous and are believed to be the main source of the long-term irradiance changes, which are of special interest to climate models. We develop an improved description of the ephemeral region emergence taking different solar observational constraints into account. The model builds on the SATIRE-T model, in which the emergence of ARs is described by the sunspot number and the emergence of the ERs is linearly linked to that of ARs. The latter, however, implies that whenever the sunspot number drops to zero, no magnetic field emerges in the model. In the new model, the emergence of the ERs is no longer linked to sunspots linearly. Instead, ARs and ERs are considered to be parts of a single power-law size distribution of the emerging magnetic regions. This ensures that even in the absence of ARs (e.g., during the grand minima of solar activity), the emergence rate of ERs remains non-zero. In particular, the solar open magnetic flux reconstructed using this approach does not drop to zero during the Maunder minimum, in agreement with independent reconstructions from the cosmogenic isotope data. Such an improved description of the ERs will allow a better constraint on the maximum solar irradiance drop during grand minima events. This, in turn, will allow a better constraint on the potential solar forcing in the future.

How to cite: Hofer, B., Krivova, N. A., Wu, C.-J., Usoskin, I. A., and Cameron, R.: Towards a more reliable reconstruction of the historical solar variability: a more realistic description of solar ephemeral magnetic regions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17086, https://doi.org/10.5194/egusphere-egu2020-17086, 2020.

EGU2020-11825 | Displays | CL4.2

Using the fractional energy balance equation for accurate temperature projections through 2100

Roman Procyk, Shaun Lovejoy, and Lenin Del Rio Amador

The conventional energy balance equation (EBE) is a first order linear differential equation driven by solar, volcanic and anthropogenic forcings.  The differential term accounts for energy storage usually modelled as one or two “boxes”.  Each box obeys Newton’s law of cooling, so that when perturbed, the Earth’s temperature relaxes exponentially to a thermodynamic equilibrium.

However, the spatial scaling obeyed by the atmosphere and its numerical models implies that the energy storage process is a scaling, power law process, a consequence largely of turbulent, hierarchically organized oceans currents but also hierarchies of land ice, soil moisture and other processes whose rates depend on size.

Scaling storage leads to power law relaxation and can be modelled via a seemingly trivial change - from integer to fractional order derivatives - the Fractional EBE (FEBE): with temperature derivatives order 0 < H  < 1 rather than the EBE value H = 1.  Mathematically the FEBE is a past value problem, not an initial value problem.    Recent support for the FEBE comes from [Lovejoy, 2019a] who shows that the special H = 1/2 case (close to observations), the “Half-order EBE” (HEBE), can be analytically obtained from classical Budyko-Sellers energy balance models by improving the boundary conditions.

The FEBE simultaneously models the deterministic forced response to external (e.g. anthropogenic) forcing as well as the stochastic response to internal forcing (variability) [Lovejoy, 2019b].  We directly exploit both aspects to make projections based on historical data estimating the parameters using Bayesian inference.  Using global instrumental temperature series, alongside CMIP5 and CMIP6 standard forcings, the basic FEBE parameters are H ≈ 0.4 with a relaxation time ≈ 4 years.  

This observation-based model also produces projections for the coming century with forcings prescribed by the CMIP5 Representative Concentration Pathways scenarios and the CMIP6 Shared Socioeconomic Pathways.

We compare both generations of General Circulation Models (GCMs) outputs from CMIP5/6 alongside with the projections produced by the FEBE model which are entirely independent from GCMs, contributing to our understanding of forced climate variability in the past, present and future.  When comparing to CMIP5 projections, we find that the mean projections are about 10- 15% lower while the uncertainties are roughly half as large.  Our global temperature projections are therefore within the  CMIP5 90% confidence limits and thus give them strong, independent support.

 

References

Lovejoy, S., The half-order energy balance equation, J. Geophys. Res. (Atmos.), (submitted, Nov. 2019), 2019a.

Lovejoy, S., Fractional Relaxation noises, motions and the stochastic fractional relxation equation Nonlinear Proc. in Geophys. Disc., https://doi.org/10.5194/npg-2019-39, 2019b.

How to cite: Procyk, R., Lovejoy, S., and Del Rio Amador, L.: Using the fractional energy balance equation for accurate temperature projections through 2100, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11825, https://doi.org/10.5194/egusphere-egu2020-11825, 2020.

EGU2020-9904 | Displays | CL4.2

Narrowing uncertainty on past and future human-induced warming using Kriging

Aurélien Ribes, Saïd Qasmi, and Nathan Gillett

Using historical observations to constrain climate projections is an old idea. A variety of approaches, time periods and scales have been used to this purpose. Simultaneously, detection and attribution (D&A) methods have been developed to assess the contribution of subsets of forcings to historical changes, and have also been used to constrain projections. Here, we describe a unified statistical method to constrain the entire forced response pathway of global mean temperature using an adaptation of Kriging. We start by introducing this new statistical approach. Then, we derive consistent observationally-constrained estimates of attributable warming to date for various forcings, attributable warming rate, the response to various scenarios, Transient Climate Response (TCR), and Equilibrium Climate Sensitivity (ECS). Using revised observations of near-surface atmospheric temperature, we estimate a total forced warming of 1.19+/-0.15°C in 2019, with respect to the 1850-1900 baseline. Based on the newly available CMIP6 ensemble, we find that historical observations narrow uncertainty on past and future warming by about 50%, while evidence suggests that the proposed technique is not over-confident. Remarkably, both sides of uncertainty ranges are affected, leading to a 5–95% range for TCR of 1.44–2.35°C. We also compare and discuss the differences between the CMIP5 and CMIP6 ensembles. The proposed method is easily transposable, thus opening the possibility to monitor climate change and narrow uncertainty at the regional scale and/or for different climate variables.

How to cite: Ribes, A., Qasmi, S., and Gillett, N.: Narrowing uncertainty on past and future human-induced warming using Kriging, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9904, https://doi.org/10.5194/egusphere-egu2020-9904, 2020.

EGU2020-11424 | Displays | CL4.2

How good have our climate models been so far? A case study from West Africa.

Olayemi Ursula Gaba, Thomas Poméon, Bernd Diekkrueger, and Yae Ulrich Gaba

This research compared a set of past projections made by the Intergovernmental Panel on Climate Change (IPCC) to observations originating from both gauged stations and satellite products. Three IPCC assessment reports were taken into account (First, Second and Third assessment reports- FAR, SAR and TAR) and for each, two scenarios from various models were chosen. The period 1998-2005 was considered. A focus was given to West Africa, which was divided in 3 subregions following the latitudes and two main variables for the region were analyzed: precipitation and temperature. The analyses were conducted on mean annual values and monthly annual cycles both at subregional and regional levels. They revealed that the differences are greater on lower latitudes and depend a lot on the scenarios. The Business-as-Usual scenario which assumes that few or no steps are taken to limit greenhouse gas emissions seems to be the one that is the closest to the observations. The relative importance and potential implications of the differences between projections and observations on the society were appreciated with regard to key development sectors in the region such as water, agriculture; health; breeding, fishery. We concluded by giving some recommendations that might be very useful for policy/decision makers but also by listing possible topics for further research that could be addressed by the scientific community.

Keywords: Climate change; Climate models; Past Projections; Observations; West Africa

How to cite: Gaba, O. U., Poméon, T., Diekkrueger, B., and Gaba, Y. U.: How good have our climate models been so far? A case study from West Africa., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11424, https://doi.org/10.5194/egusphere-egu2020-11424, 2020.

EGU2020-262 | Displays | CL4.2

Understanding and modeling the scaling spectrum of climate

Beatrice Ellerhoff and Kira Rehfeld

Modeling climate dynamics in a comprehensive way and improving its predictability in a warming world requires a better understanding of climate variability across scales. However, fundamental mechanisms governing variability on long timescales are still poorly understood.
The temporal evolution of climate can be inferred from paleoclimate records, such as ice cores or marine sediments. Power spectra serve to quantify changes of variability over time and to identify timescales associated with periodic or quasi-periodic processes. The spectra of surface temperature not only comprise spectral peaks, but also reveal a continuous part. It was shown that the background continuum exhibits a scale break, following different power-laws on monthly to decadal versus millennial to longer periods. It is yet mostly unexplained, how these power-laws arise and whether a coupling between different timescales can be deduced from it. We study these questions by comparing and applying spectral analyses to paleoclimate records and climate model simulations for the Quaternary. The data is used to reconstruct the temperature spectrum on diurnal to astronomical timescales. We extend previous studies by including climate responses, such as δ18O and temperature records, and climate forcings, for example, insolation and volcanic forcing. The emergence of scaling in temperature variability is analyzed by successively accessing the background continuum. Higher order spectra test for correlations between forcings and responses. In particular, the bispectrum and bicoherence is computed for statistical processes and evaluated for temperature records in order to study whether the scaling properties are related to energy transfers between different states in time. We elaborate the potential of these methods to reveal dynamical processes governing the continuous spectrum of surface temperature.

How to cite: Ellerhoff, B. and Rehfeld, K.: Understanding and modeling the scaling spectrum of climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-262, https://doi.org/10.5194/egusphere-egu2020-262, 2020.

CL4.3 – Paleoclimates from the Cretaceous to the Holocene: learning from numerical experiments and model-data comparisons

EGU2020-8911 | Displays | CL4.3

Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations

Chris Brierley, Anni Zhao, Sandy Harrison, and Pascale Braconnot and the PMIP4 Community

The mid-Holocene (6,000 years ago) is a standard experiment for the evaluation of the simulated response of global climate models using paleoclimate reconstructions. The latest mid-Holocene simulations are a contribution by the Palaeoclimate Model Intercomparison Project (PMIP4) to the current phase of the Coupled Model Intercomparison Project (CMIP6). Here we provide an initial analysis and evaluation of the results of the experiment for the mid-Holocene. We show that state-of-the-art models produce climate changes that are broadly consistent with theory and observations, including increased summer warming of the northern hemisphere and associated shifts in tropical rainfall.  Many features of the PMIP4-CMIP6 simulations were present in the previous generation (PMIP3-CMIP5) of simulations. The PMIP4-CMIP6 ensemble for the mid-Holocene has a global mean temperature change of -0.3 K, which is -0.2 K cooler that the PMIP3-CMIP5 simulations predominantly as a result of the prescription of realistic greenhouse gas concentrations in PMIP4-CMIP6. Neither this difference nor the improvement in model complexity and resolution seems to improve the realism of the simulations. Biases in the magnitude and the sign of regional responses identified in PMIP3-CMIP5, such as the amplification of the northern African monsoon, precipitation changes over Europe and simulated aridity in mid-Eurasia, are still present in the PMIP4-CMIP6 simulations. Despite these issues, PMIP4-CMIP6 and the mid-Holocene provide an opportunity both for quantitative evaluation and derivation of emergent constraints on climate sensitivity and feedback strength.

How to cite: Brierley, C., Zhao, A., Harrison, S., and Braconnot, P. and the PMIP4 Community: Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8911, https://doi.org/10.5194/egusphere-egu2020-8911, 2020.

EGU2020-21624 | Displays | CL4.3

A Climate Model Structural Behavior Under Different Forcing

Emmanuele Russo, Bijan Fallah, and Christoph Raible
In this study the COSMO-CLM sensitivity to parameters perturbation is investigated under different climate forcings. The main aim is to understand
how the uncertainty of the model propagates in different climate regimes and whether the model presents structural stability when different forcings are considered. For this purpose, two Physically Perturbed Ensembles (PPEs) are produced, each composed of 35 realizations, at two different periods of the past: the Mid-Holocene, 6000 years ago, and the Pre-industrial period. The two periods present significant differences in the seasonal values of incoming insolation due to changes in the Earth’s orbital configuration. The effects of these changes on the Earth’s radiative balance, at least when considering seasonal values, are of the same magnitude of the changes due to GHGs emissions of the worst case Representative Concentration Pathway scenario (RCP8.5). Two additional ensembles, but with a lower number of components, are produced in order to determine the role of the boundaries with respect to the one of changes in the climate forcings.
Preliminary analyses show that the model presents a structurally stable behavior in the two periods for several variables, in particular when considering climate mean statistics. Some parameters do not produce sensible changes in the model behavior in both periods. This confirms that conducting a calibration of the model only on a restricted set of parameters is a good praxis when willing to simulate future or past climate change. On the other hand, some parameters show remarkable changes with respect to a reference simulation: these differences are maintained in the two different regimes, pointing again to a relatively good model stability, but also to a very similar sensitivity of the model to the different forcings. Finally, when considering the ensembles with the same forcings but different boundaries, the effect of the boundaries seems to play a major role. This is particularly important for climate projections using the COSMO-CLM: a model PPE would probably not be particularly relevant in order to characterize the model uncertainty, but more attention should instead be paid to consider a wide ensemble of independent boundary realizations with different GCMs

How to cite: Russo, E., Fallah, B., and Raible, C.: A Climate Model Structural Behavior Under Different Forcing, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21624, https://doi.org/10.5194/egusphere-egu2020-21624, 2020.

Driven by plate tectonics and geodynamics, Earth surface has been reshaped during the Cenozoic, with the uplift of numerous mountain ranges. Climate modellers have been tackling the direct impact of these changes on climate for decades, essentially thanks to sensitivity experiments to topography, aiming at quantifying the impact of mountains on atmospheric and ocean dynamics. An indirect consequence of mountain uplift is changes in the continental river routing system, that can be relocated and provide the ocean with freshwater fluxes very different from the present. Here we focus on the Amazon and the Congo river, which routing are known to have been altered by the uplifts of the Andes and the East African Rift System, respectively. We carried out numerical simulations with the IPSL-CM5A2 earth system model in which we alternatively relocated or cut the runoff of these two rivers, and compared the results to simulations where topography only has been changed. We analyze the consequences of the changes in routing in terms of ITCZ position, precipitation spatial patterns, and salinity budgets and associated AMOC strength over the oceans. We show that depending on the region considered, the direct (mechanical) and indirect (hydrology) consequences of uplift on climate can either add up or counteract each other.

 

How to cite: Sepulchre, P. and Bres, J.: Did the evolution of tropical river systems impact the Cenozoic climate system ? A preliminary study with the IPSL-CM5A2 earth system model., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9387, https://doi.org/10.5194/egusphere-egu2020-9387, 2020.

EGU2020-11028 | Displays | CL4.3

Large-scale features of Last Interglacial climate: Results from evaluating the lig127k simulations for CMIP6-PMIP4

Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, and Chris Brierley and the PMIP4 and QUIGS team

The modeling of paleoclimate, using physically based tools, is increasingly seen as a strong out-of-sample test of the models that are used for the projection of future climate changes. New to CMIP6 is the Tier 1 lig127k experiment, designed to address the climate responses to stronger orbital forcing than the midHolocene experiment, using the same state-of-the-art models and following a common experimental protocol. We present a multi-model ensemble of 17 climate models, all of which (except for two) have also completed the CMIP6 DECK experiments. The Equilibrium Climate Sensitivity (ECS) of these models varies from 2.1 to 5.3°C. The seasonal character of the insolation anomalies results in strong warming over the Northern Hemisphere (NH) continents in the lig127k ensemble as compared to the piControl in June-July-August and a much-reduced minimum (August-September) summer sea ice extent in the Arctic. The multi-model results indicate enhanced summer monsoonal precipitation and areal extent in the Northern Hemisphere and reductions in the Southern Hemisphere. These responses are greater in the lig127k than midHolocene simulations as expected from the larger insolation anomalies at 127 ka than 6 ka.

New syntheses for surface temperature and precipitation, targeted for 127ka, have been developed for comparison to the multi-model ensemble. The lig127k model ensemble and data reconstructions are in good agreement for summer temperature anomalies over Canada, Scandinavia, and the North Atlantic and precipitation over the Northern Hemisphere continents. The model-data comparisons and mismatches point to further study of the sensitivity of the simulations to uncertainties in the specified boundary conditions and of the uncertainties and sparse coverage in current proxy reconstructions.

The CMIP6-PMIP4 lig127k simulations, in combination with the proxy record, have potential implications for confidence in future projections of monsoons, surface temperature, Arctic sea ice, and the stability of the Greenland ice sheet.

How to cite: Otto-Bliesner, B. L., Brady, E. C., Zhao, A., and Brierley, C. and the PMIP4 and QUIGS team: Large-scale features of Last Interglacial climate: Results from evaluating the lig127k simulations for CMIP6-PMIP4, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11028, https://doi.org/10.5194/egusphere-egu2020-11028, 2020.

EGU2020-8628 | Displays | CL4.3

A multi-model CMIP6 study of Arctic sea ice at 127 ka: Sea ice data compilation and model differences

Louise Sime, Masa Kageyama, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, David Schroeder, Ruediger Stein, and Irene Malmierca-Vallet and the Ayako Abe-Ouchi6, Cecilia Bitz7, Pascale Braconnot1, Esther Brady8, Matthew A. Chamberlain9, Danny Feltham4, Chuncheng Guo10, Gerrit Lohmann5, Katrin Meissner11, Laurie Menviel11, Polina Morozova12, Kerim H. Nisancioglu13,14, Bette Otto-Bliesner8, Ryouta

The Last interglacial (LIG) is a period with increased summer insolation at high northern latitudes, which results in strong changes in the terrestrial and marine cryosphere. Understanding the mechanisms for this response via climate modelling and comparing the models’ representation of climate reconstructions is one of the objectives set up by the Paleoclimate Modelling Intercomparison Project for its contribution to the sixth phase of the Coupled Model Intercomparison Project. Here we analyse the results from 12 climate models in terms of Arctic sea ice. The mean pre-industrial to LIG reduction in minimum sea ice area (SIA) reaches 59% (multi-model mean LIG area is 2.21 mill. km2, compared to 5.85 mill. km2 for the PI), and the range of model results for LIG minimum sea ice area (from 0.02 to 5.65 mill. km2) is larger than for PI (from 4.10 to 8.30 mill. km2). On the other hand there is little change for the maximum sea ice area (which is 12 mill. km2 for both the PI and the LIG, with a standard deviation of 1.04 mill. km2 for PI and 1.21 mill. km2 for LIG). To evaluate the model results we synthesize LIG sea ice data from marine cores collected in the Arctic Ocean, Nordic Seas and northern North Atlantic. South of 78oN, in the Atlantic and Nordic seas, the LIG was seasonally ice-free. North of 78oN there are some discrepancies between sea ice reconstructions based on dinocysts/foraminifers/ostracods and IP25: some sites have both seasonal and perennial interpretations based on the same core, but different indicators. Because of the conflicting interpretations it is not possible for any one model to match every data point in our data synthesis, or say whether the Arctic was seasonally ice-free. Drivers for the inter-model differences are: different phasing of the up and down short-wave anomalies over the Arctic ocean, associated with differences in model albedo; possible cloud property differences, in terms of optical depth; LIG ocean circulation changes which occur for some, but not all, LIG simulations. Finally we note that inter-comparisons between the LIG simulations, and simulations with moderate CO2 increase (during the transition to high CO2 levels), may yield insight into likely 21C Arctic sea ice changes using these LIG simulations.

How to cite: Sime, L., Kageyama, M., Sicard, M., Guarino, M.-V., de Vernal, A., Schroeder, D., Stein, R., and Malmierca-Vallet, I. and the Ayako Abe-Ouchi6, Cecilia Bitz7, Pascale Braconnot1, Esther Brady8, Matthew A. Chamberlain9, Danny Feltham4, Chuncheng Guo10, Gerrit Lohmann5, Katrin Meissner11, Laurie Menviel11, Polina Morozova12, Kerim H. Nisancioglu13,14, Bette Otto-Bliesner8, Ryouta : A multi-model CMIP6 study of Arctic sea ice at 127 ka: Sea ice data compilation and model differences, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8628, https://doi.org/10.5194/egusphere-egu2020-8628, 2020.

Stable oxygen isotope records from northern Greenland suggest that the local multidecadal surface-temperature variability exhibited a large reduction from the last glaciation to the Holocene. The origin of the reduced variability is thought to be perturbations in the mean atmospheric circulation due to Northern Hemisphere ice sheet variability. We reassess the factors driving the large multidecadal Greenland surface temperature (T2m) variability during the Last Glacial Maximum. The Kiel Climate Model has been integrated under preindustrial and glacial boundary conditions. We find that both atmospheric teleconnections from the Interdecadal Pacific Oscillation (IPO) and North Atlantic/Arctic sea ice variations strongly intensify under glacial boundary conditions, driving enhanced surface wind and in turn heat flux variability over Greenland. Additional simulations that restore the Pacific sea-surface temperature (SST) to its climatology confirm the important role of the IPO.

To investigate the relative contributions of atmospheric teleconnection from the IPO and sea-ice on the Greenland T2m, we force the atmospheric component of the coupled model in stand-alone mode by SSTs and sea ice concentrations simulated in coupled mode. The influence of atmospheric teleconnection is three times larger than that of sea ice. We conclude that the enhanced multidecadal Greenland surface-temperature variability during the LGM can largely be attributed to stronger atmospheric teleconnection from the IPO.

How to cite: Song, Z., Latif, M., Park, W., and Zhang, Y.: Enhanced multidecadal Greenland surface temperature variability during the Last Glacial Maximum linked to the Interdecadal Pacific Oscillation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22296, https://doi.org/10.5194/egusphere-egu2020-22296, 2020.

EGU2020-9264 | Displays | CL4.3

Integrating model and data over the Southern Ocean at the Last Glacial Maximum to better understand the sea-ice cover

Fanny Lhardy, Nathaëlle Bouttes, Didier Roche, and Xavier Crosta

At the interface of the atmosphere and the oceans, sea ice is a thin and reactive layer which depends on the surface temperatures of the two and with significant impact on both. In this vein, sea ice affects the regional energy budget due to its high albedo, modulates the transfer of gas and energy at the ocean-atmosphere by its simple presence and modifies the water column vertical structure through brine rejection during freezing and freshwater input during melting. As the densification of surface waters can lead to deep water formation, sea ice has an impact on deep ocean circulation (Ferrari et al. [2014], Marzocchi et al. [2019]).

Around 21,000 years ago, the glacial period called the LGM was marked by extensive ice sheets in the Northern Hemisphere, a consequent lower sea-level, and lower atmospheric CO2 concentrations than today’s. However, the processes driving these lower atmospheric CO2 concentrations are still not fully understood. Paleotracer data (Curry and Oppo [2005]) suggest that the Antarctic Bottom Water was a poorly ventilated and voluminous water mass, therefore efficiently trapping carbon. Proxies also allow for the reconstruction of LGM sea ice (de Vernal et al. [2013]), and their studies have indicated both an extended Southern Ocean sea ice and an enhanced seasonality (Gersonde et al. [2005], Allen et al. [2011], Benz et al. [2016]).

Models are very helpful to investigate the potentially complex response of the climate system to any perturbation. The Paleoclimate Modelling Intercomparison Project (now in phase 4) has proposed standardized LGM boundary conditions which notably allows for an evaluation of the model performance under cold conditions. During past PMIP phases, the simulation of the LGM deep ocean circulation has proven to be challenging (Otto-Bliesner et al. [2007], Muglia and Schmittner [2015]), which could be linked – at least partially – to the limitations in modelling past sea-ice changes (Goosse et al. [2013], Roche et al. [2012]).

In this study, the iLOVECLIM model – of intermediate complexity – (Goosse et al. [2010]) is used under the PMIP4 experimental design with both the ICE-6G-C and GLAC-1D topographies. The simulated sea ice is compared with a recent compilation of proxy data (Crosta, pers. com.). We look for potential sources of the observed model-data discrepancies using different model configurations. We examine in particular the simulated SSTs compared to MARGO [2009] data and show a regional and seasonal model-data disagreement that is quite consistent with the sea-ice model-data comparison.

How to cite: Lhardy, F., Bouttes, N., Roche, D., and Crosta, X.: Integrating model and data over the Southern Ocean at the Last Glacial Maximum to better understand the sea-ice cover, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9264, https://doi.org/10.5194/egusphere-egu2020-9264, 2020.

EGU2020-10622 | Displays | CL4.3

Sensitivity of isotopes in the hydrological cycle to simulated vs. reconstructed Last Glacial Maximum surface conditions

André Paul, Martin Werner, Alexandre Cauquoin, Javier García-Pintado, Ute Merkel, and Thejna Tharammal

The evaluation of a specific component of a comprehensive climate model is often hindered by biases in the coupled system, in simulations of the present as well as of past climate conditions. To assess different implementations of water isotopes as part of the hydrological cycle, we carried out atmosphere-only runs using different atmospheric general circulation models (AGCMs, here: CAM and ECHAM) but the same pre-industrial and Last Glacial Maximum (LGM, ~19,000 to ~23,000 a before present) boundary conditions, especially with respect to the monthly sea-surface temperature (SST) and sea-ice fraction fields. For the LGM, we used a new global climatology of the ocean surface during the Last Glacial Maximum mapped on a regular grid (GLOMAP), which is an extension of the Glacial Atlantic Ocean Mapping (GLAMAP) reconstruction of the Atlantic SST based on the results of the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO) project and several recent estimates of the LGM sea-ice extent. This way, we can, on the one hand, avoid the propagation of the SST bias in coupled climate models. On the other hand, by comparing to fully-coupled simulations, we can isolate the impact of the ocean feedback on the simulated distributions of water isotopes over land, ice and ocean. To analyze the results, we calculated the anomalies between the LGM and pre-industrial climate states and compared them between the different models and to data. It turned out that the model response was affected by the amount of global cooling as well as the structure of the SST anomalies. The patterns in the simulated isotopic composition of precipitation for the LGM tended to follow the patterns in the SST boundary condition; a more zonal structure in the SST led to a more zonal response. Our results show the advantage of using water isotopes as a diagnostic tool for an AGCM through direct model-data comparison.

How to cite: Paul, A., Werner, M., Cauquoin, A., García-Pintado, J., Merkel, U., and Tharammal, T.: Sensitivity of isotopes in the hydrological cycle to simulated vs. reconstructed Last Glacial Maximum surface conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10622, https://doi.org/10.5194/egusphere-egu2020-10622, 2020.

To understand the processes that govern the climate response and feedbacks, modelling paleoclimate states offers a unique possibility to have insights into the mechanisms that convert a modified forcing into climate changes. In spite of the benefit of using global climate models (GCMs) for reproducing other climate states, their spatial resolution insufficiently represents regional and local climates, especially over complex topography. In this study, we bridge this scale gap by using a dynamical downscaling with the regional climate model Weather Forecast Research Model version 3.8.1. that is driven by the fully coupled Community Climate System Model version 4. Focussing on the Alpine region, we obtain climate information at 2 km resolution at present-day (perpetual 1990 AD conditions), the Last Glacial Maximum (LGM, 21 kya) and Marine Isotope Stage 4 (MIS4, 65 kya). The benefit of the dynamical downscaling approach is illustrated by analysing the PD and LGM simulations with the proxy evidences. The orbital forcing response is assessed by the comparing MIS4 to LGM simulations. Since the height of the Laurentide and Scandinavian ice sheets may still have some uncertainties, we carry out two additional dynamically downscaled simulations where the thickness of the ice-sheets is modified to 66% and 125% of the LGM level.

Focusing on temperature and precipitation, we observe that the dynamical downscaling approach improves the representation of the Alpine climate agreeing the proxy evidences better than the GCM, especially during colder months. Furthermore, the MIS4 orbital forcing shows an increase of temperature over the Alpine region, in particular at low levels and during colder months. In addition, the precipitation is slightly increased over low-altitude areas, but strongly over the mountains, in particular in the western Alps during colder months. This increase of precipitation is the result of an increment of water content due to the temperature rise. The outcome of using different ice-sheet thicknesses shows that temperature remains almost unchanged but the precipitation patterns is modified showing differences over southwestern and northeastern Alps, especially during colder months. This change in the precipitation pattern is explained by the modification of the atmospheric dynamics over the North Atlantic and Europe, in particular by the orientation and the shift of the larger-scale wind patterns, i.e., wind stream and storm tracks.

In conclusion, we demonstrate that the regional dynamical downscaling is a valuable method for representing paleoclimates at a finer scale. Moreover, a different orbital forcing mostly impacts on temperature, especially during colder months. Whereas a modified thickness of the Laurentide and Scandinavian ice-sheets mainly impacts on precipitation pattern, in particular the southwestern and northeastern regions during colder months.

How to cite: Velasquez, P. and Raible, C. C.: High resolution climate information over Europe during glacial times using a dynamical downscaling approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18159, https://doi.org/10.5194/egusphere-egu2020-18159, 2020.

EGU2020-20896 | Displays | CL4.3

Environmental parameters affecting composition of modern Mediterranean planktonic foraminifera assemblages

Lucía A. Azibeiro, Michal Kucera, Lukas Jonkers, Francisco J. Sierro, and Angela Cloke-Hayes

La reconstrucción de la temperatura de la superficie del mar (TSM) ha estado durante mucho tiempo en el centro de la investigación paleoceanográfica. Los estudios en el Mediterráneo no han sido una excepción, ya que la reconstrucción cuantitativa de TSM en esta cuenca semicerrada es crucial para comprender el cambio climático pasado en la región. Muchos de estos métodos se basaron en foraminíferos planctónicos, tanto en su geoquímica de caparazón como en la composición de los ensamblajes (por ejemplo, funciones de transferencia). Comprender y modelar las relaciones entre el censo actual y las variables ambientales es la base para transformar los datos fósiles en estimaciones cuantitativas de estas variables. Aunque globalmente, los conjuntos de foraminíferos parecen estar determinados principalmente por la temperatura, en cuencas marginales como el Mediterráneo, 

In this study we attempt to determine which environmental parameters may control the variability of planktonic foraminifer assemblages in the modern Mediterranean. For this purpose, census counts of planktonic foraminifera assemblages from Mediterranean coretops (ForCenS data base) have been integrated with monthly estimates of SST, chlorophyll concentration, and vertical gradients of various parameters as proxies for water column stratification/mixing (WOA 1998).  Redundancy Analysis (RDA) was used to evaluating the explanatory power and the collinearity among tested environmental parameters and a forward selection of variables was carried out to identify those explaining independently the largest share of the variance in the composition of planktonic foraminifera assemblages.

Se identificaron nueve variables significativas. Tres de ellos corresponden a TSM, mientras que los otros seis se distribuyen entre las concentraciones de clorofila superficial (2) y los gradientes térmicos verticales (4). Las variables más explicativas son la TSM de junio (R 2 0.43) y el gradiente térmico vertical de diciembre (R 2 0.15).

How to cite: Azibeiro, L. A., Kucera, M., Jonkers, L., Sierro, F. J., and Cloke-Hayes, A.: Environmental parameters affecting composition of modern Mediterranean planktonic foraminifera assemblages, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20896, https://doi.org/10.5194/egusphere-egu2020-20896, 2020.

EGU2020-5553 | Displays | CL4.3

Global reconstruction of surface temperature fields for past equilibrium climates

Julia Hargreaves and James Annan

Paleoclimate simulations are widely used as a test of the ability of climate models to simulate climate states that are substantially different to the present day, and quantitative reconstructions of these climate states is an essential component of model evaluation.  With there being no large network of instrumental observations from these periods, we must rely on inferences from a relatively modest number of unevenly distributed proxy records which are believed to be quantitatively indicative of the climate state.  In order to robustly establish climatic conditions over global scales, we require methods for smoothing and interpolating between these sparse and imperfect estimates.  In recent years, we have worked on this problem and created a global reconstruction of the Last Glacial Maximum [Annan and Hargreaves, 2013, Climate of the Past] using the data and models which were available at that time.  The method uses scaled patterns from the PMIP ensemble of structurally diverse climate simulations, combined with sparse sets of proxy data, to produce spatially coherent and complete  data  fields  for  surface  air  and  sea  temperatures  (potentially  including  the  seasonal cycle)  along  with  uncertainty  estimates  over  the  whole  field.   This  approach  is  more  robust than alternative methods, which either perform a purely statistical interpolation of the data or at best combine the data with a single climate model. Here, we aim to improve the method, update the inputs, and apply the same technique to both Last Glacial Maximum and mid Pliocene climate intervals. As well as generating spatially complete and coherent maps of climate variables, our approach also generates well-calibrated uncertainty estimates.

How to cite: Hargreaves, J. and Annan, J.: Global reconstruction of surface temperature fields for past equilibrium climates, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5553, https://doi.org/10.5194/egusphere-egu2020-5553, 2020.

The Last Glacial Maximum (LGM, ~21,000 years ago) has been a major focus for evaluating how well state-of-the-art climate models simulate climate changes as large as those expected in the future using paleoclimate reconstructions. A new generation of climate models have been used to generate LGM simulations as part of the Palaeoclimate Modelling Intercomparison Project (PMIP) contributionto CMIP6. Here we provide a preliminary analysis and evaluation of the results of these LGM experiments and compare them with the previous generation of simulations (PMIP3-CMIP5). We show that the PMIP4-CMIP6 are globally less cold and less dry than the PMIP3-CMIP5 simulations, most probably because of the use of a more realistic specification of the northern hemisphere ice sheets in the latest simulations although changes in model configuration may also contribute to this. There are important differences in both atmospheric and ocean circulation between the two sets of experiments, with the northern and southern jet streams being more poleward and the changes in the Atlantic Meridional Overturning Circulation being less pronounced in the PMIP4-CMIP6 simulations than in the PMIP3-CMIP5 simulations. Changes in simulated precipitation patterns are influenced by both temperature and circulation changes. Differences in simulated climate between individual models remain large so, although there are differences in the average behaviour across the two ensembles, the new simulation results are not fundamentally different from the PMIP3-CMIP5 results. Evaluation of large-scale climate features, such as land-sea contrast and polar amplification, confirms that the models capture these well and within the uncertainty of the palaeoclimate reconstructions. Nevertheless, regional climate changes are less well simulated: the models underestimate extratropical cooling, particularly in winter, and precipitation changes. The spatial patterns of increased precipitation associated with changes in the jet streams are also poorly captured. However, changes in the tropics are more realistic, particularly the changes in tropical temperatures over the oceans. Although these results are preliminary in nature, because of the limited number of LGM simulations currently available, they nevertheless point to the utility of using paleoclimate simulations to understand the mechanisms of climate change and evaluate model performance.

How to cite: Kageyama, M. and the PMIP4 LGM group: The PMIP4-CMIP6 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3-CMIP5 simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11153, https://doi.org/10.5194/egusphere-egu2020-11153, 2020.

EGU2020-12398 | Displays | CL4.3

Abrupt Bølling‐Allerød Warming Simulated under Gradual Forcing of the Last Deglaciation

Takashi Obase and Ayako Abe-Ouchi

During the last deglaciation, a major global warming trend was punctuated by abrupt climate changes, likely related to Atlantic meridional overturning circulation (AMOC). One problem is that an abrupt increase in the AMOC during the Bølling‐Allerød (BA) transition occurred when the melting of Northern Hemisphere ice sheets was significant, which tended to weaken the AMOC. Here, from transient simulations of the last deglaciation using an atmosphere‐ocean general circulation model, we show that an abrupt increase in the AMOC during the BA transition could occur without reduction in glacial meltwater. The abrupt increase in the AMOC accompanied abrupt warming in Greenland and sea ice retreat in the North Atlantic, consistent with proxies and previous modeling studies. The results imply that abrupt BA warming during the middle stage of the last deglaciation was a response to gradual warming under the presence of meltwater from continental ice sheets.

How to cite: Obase, T. and Abe-Ouchi, A.: Abrupt Bølling‐Allerød Warming Simulated under Gradual Forcing of the Last Deglaciation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12398, https://doi.org/10.5194/egusphere-egu2020-12398, 2020.

EGU2020-22222 | Displays | CL4.3

Unforced oscillations of climate and AMOC under Glacial climate in MIROC 4m AOGCM

Ayako Abe-Ouchi, Wing-Le Chan, Sam Sherriff-Tadano, Takashi Obase, Takahito Mitsui, Kenji Kawamura, Akira Oka, Masakazu Yoshimori, and Rumi Ohgaito

The glacial period was punctuated by abrupt millennial scale climate changes, such as Dansgaard Oeschger events, Boeling-Allerod and Younger Dryas. Although abrupt climate changes were shown to have a strong link to the shift between the (quasi) multiple equilibria of Atlantic Meridional Overturning Circulation (AMOC), modeling both together the stability of AMOC under different climate condition and observed glacial-deglacial climate change with fully coupled ocean-atmosphere GCM have been challenging. Here we present a series of long transient experiments (> 10, 000 years) with steadyforcing under different glacial condition summarized as a phase diagram and compared them with simulation under transient forcing experiments following PMIP4 using a coupled ocean-atmosphere model, MIROC4m AOGCM. The simulated LGM AMOC is weaker and shallower than the modern AMOC under Pre-Industrial condition. Conventional stability diagram for varied freshwater flux as well as phase diagram showing the response of the AMOC and climate to steady forcing is first obtained. It is shown that (quasi-) multiple equilibria exist indeed under a certain range of climate condition. When a steady forcing under glacial condition is applied even without freshwater perturbation, however, the whole climate-ocean system shows self-sustained oscillation with bipolar seesaw pattern and changes between interstadials and stadials, whose periodicity or the return time ranges from 1000 years to nearly 10000 years depending on the background forcing, e.g. Greenhouse Gas levels. We show that the Southern Ocean plays important role in determining the condition of oscillations. It implies that the abrupt climate change during the glacial climate and deglaciation can be induced much more frequently when the coupled climate system enters the region of the AMOC oscillatory mode than outside of the region. Implication on the mechanism and the conditions of the millennial scale climate changes for the past time period is discussed.

 

How to cite: Abe-Ouchi, A., Chan, W.-L., Sherriff-Tadano, S., Obase, T., Mitsui, T., Kawamura, K., Oka, A., Yoshimori, M., and Ohgaito, R.: Unforced oscillations of climate and AMOC under Glacial climate in MIROC 4m AOGCM, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22222, https://doi.org/10.5194/egusphere-egu2020-22222, 2020.

EGU2020-5645 | Displays | CL4.3

Methane from the LGM to the present: The Natural methane cycle

Thomas Kleinen, Sergey Gromov, Benedikt Steil, and Victor Brovkin

The time between the last glacial maximum (LGM) and the present is highly interesting with regard to atmospheric methane. Between the LGM and 10 ka BP atmospheric CH4, as reconstructed from ice cores, nearly doubled, with very rapid concentration changes of about 200 ppb occurring during the Bølling Allerød (BA) and Younger Dryas (YD) transitions. During the Holocene, atmospheric CH4 is very similar for 10 ka BP and PI, but CH4 is about 15% lower in between at 5 ka BP.

We use a methane-enabled version of MPI-ESM, the Max Planck Institute Earth System Model, to investigate changes in methane cycling in a transient ESM experiment from the LGM to the present. The model is driven by prescribed orbit, greenhouse gases and ice sheets, with all other changes to the climate system determined internally. Methane cycling is modelled by modules representing the atmospheric transport and sink of methane, as well as terrestrial sources and sinks from soils, termites, and fires. Thus, the full natural methane cycle – with the exception of geological and animal emissions – is represented in the model.

Model results are compared to methane concentrations from ice cores, and key periods in climate/methane evolution are highlighted by detailed analyses. Methane concentrations can mainly be explained by emission changes, with LGM emissions substantially reduced in comparison to the early Holocene and preindustrial states due to lower temperature, CO2, and soil carbon. For the large transitions during the deglaciation, such as the transitions from Older Dryas to BA, BA to YD, and YD to Holocene, ocean circulation changes are required to obtain atmospheric methane changes of sufficient magnitude and rapidity.

How to cite: Kleinen, T., Gromov, S., Steil, B., and Brovkin, V.: Methane from the LGM to the present: The Natural methane cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5645, https://doi.org/10.5194/egusphere-egu2020-5645, 2020.

CL4.5 – Sea level rise: past, present and future

EGU2020-4888 | Displays | CL4.5 | Highlight

Probabilistic reanalysis of storm surge extremes in Europe

Francisco Mir Calafat and Marta Marcos

Extreme sea levels are a significant threat to life, property, and the environment. These threats are managed by coastal planers through the implementation of risk mitigation strategies. Central to such strategies is knowledge of extreme event probabilities. Typically, these probabilities are estimated by fitting a suitable distribution to the observed extreme data. Estimates, however, are often uncertain due to the small number of extreme events in the tide gauge record and are only available at gauged locations. This restricts our ability to implement cost-effective mitigation. A remarkable fact about sea-level extremes is the existence of spatial dependences, yet the vast majority of studies to date have analyzed extremes on a site-by-site basis. Here we demonstrate that spatial dependences can be exploited to address the limitations posed by the spatiotemporal sparseness of the observational record. We achieve this by pooling all the tide gauge data together through a Bayesian hierarchical model that describes how the distribution of surge extremes varies in time and space. Our new approach has two highly desirable advantages: 1) it enables sharing of information across data sites, with a consequent drastic reduction in estimation uncertainty; 2) it permits interpolation of both the extreme values and the extreme distribution parameters at any arbitrary ungauged location. Using our model, we produce the first, to our knowledge, observation-based probabilistic reanalysis of surge extremes covering the entire Atlantic and North Sea coasts of Europe for the period 1960-2013.

How to cite: Mir Calafat, F. and Marcos, M.: Probabilistic reanalysis of storm surge extremes in Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4888, https://doi.org/10.5194/egusphere-egu2020-4888, 2020.

EGU2020-8563 | Displays | CL4.5

Ocean-only FAFMIP: Understanding Regional Patterns of Ocean Heat Content and Dynamic Sea Level Change

Alexander Todd, Laure Zanna, and Jonathan Gregory

A rise in global mean sea level is a robust feature of projected anthropogenic climate change using state-of-the-art atmosphere-ocean general circulation models (AOGCMs). However, there is considerable disagreement over the more policy-relevant regional patterns of sea level rise. The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) aims to improve our understanding of the mechanisms controlling regional and dynamic sea level change. In FAFMIP, identical air-sea buoyancy and momentum flux perturbations are applied to an ensemble of different AOGCMs, to sample the uncertainty associated with model structure and physical processes. Our novel implementation applies FAFMIP perturbations to an ensemble of OGCMs. This framework enables an estimate of the unknown atmosphere-ocean feedbacks, by comparing the coupled and ocean-only response to surface flux perturbations.

Comparing the response to idealised FAFMIP forcing with more realistic, increasing CO2 forcing, much of the spread in regional sea level projections for the North Atlantic and Southern Ocean arises from ocean model structural differences. Ocean-only simulations indicate that only a small proportion of this spread is due to differences in the atmosphere-ocean feedback. Novel tendency diagnostics indicate the relative effect of resolved advection, parametrised eddies, and dianeutral mixing on regional and dynamic sea level change. This study helps to reduce uncertainty in regional sea level projections by refining our estimates of atmosphere-ocean feedbacks and developing our understanding of the physical processes controlling sea level change.

How to cite: Todd, A., Zanna, L., and Gregory, J.: Ocean-only FAFMIP: Understanding Regional Patterns of Ocean Heat Content and Dynamic Sea Level Change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8563, https://doi.org/10.5194/egusphere-egu2020-8563, 2020.

EGU2020-7084 | Displays | CL4.5 | Highlight

The transient sensitivity of sea level rise

Aslak Grinsted and Jens Hesselbjerg Christensen

We are warming our planet, and sea levels are rising as oceans expand and ice on land melts. This instigates a threat to coastal communities and ecosystems, and there is an urgent need for sea level predictions encompassing all known uncertainties to plan for it. Comprehensive assessments have concluded that sea level is unlikely to rise by more than about 1.1m this century but with further increase beyond 2100. However, some studies conclude that considerably greater sea level rise could be realised and an expert elicitation assign a substantially higher likelihood to this scenario. Here, we show that models used to assess future sea level in AR5 & SROCC have a lower sea level sensitivity than inferred from observations. By analyzing mean rate of change in sea level (not sea level itself), we identify a near linear relationship with global mean surface temperature in both model projections, and in observations. The model projections fall below expectations from the more recent observational period. This comparison suggests that the likely range of sea level projections in IPCC AR5 and SROCC would be too low.

How to cite: Grinsted, A. and Christensen, J. H.: The transient sensitivity of sea level rise, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7084, https://doi.org/10.5194/egusphere-egu2020-7084, 2020.

EGU2020-7907 | Displays | CL4.5 | Highlight

The causes of sea-level rise since 1900

Thomas Frederikse, Felix Landerer, Lambert Caron, Surendra Adhikari, David Parkes, Vincent Humphrey, Sönke Dangendorf, Peter Hogarth, Laure Zanna, Lijing Cheng, and Yun-Chao Wu

Global-mean sea level (GMSL) has been rising unsteadily by about 1.5 mm/yr since 1900, but the underlying causes of this trend and the multi-decadal variations are still poorly understood. Over the last few years, updated estimates of the underlying contributing processes have become available, notably for the contributions from glaciers, terrestrial water storage, the Greenland Ice Sheet, and thermal expansion. In parallel, 20th-century GMSL estimates have been revised downward as a result of improved reconstruction approaches, spatial bias correction schemes, and the inclusion of estimates of local vertical land motion at tide-gauge locations. Together, both developments now necessitate the re-evaluation of the GMSL budget to determine whether the observed sea-level rise since 1900 can be reconciled with the estimated sum of contributing processes. 

Here we present a probabilistic framework to reconstruct and budget sea level with independent observations considering their inherent uncertainties. We find that the sum of thermal expansion, ice-mass loss and terrestrial water storage changes is consistent with the trends and multi-decadal variability in observed sea level on both global and basin scales, which we reconstruct from tide-gauge records. 

Glacier-dominated cryospheric mass loss has caused twice as much sea-level rise as thermal expansion since 1900. Glacier and Greenland Ice Sheet mass loss well explains the high rates typically seen in global sea-level reconstructions during the 1930s, while a sharp increase in water impoundment by artificial reservoirs has been the dominant contributor to lower-than-average rates during the 1970s. The acceleration since the 1970s is caused by both thermal expansion and increased Greenland mass loss. No additional large-scale deep ocean warming or additional mass loss from Antarctica are needed to explain 20th-century changes in global-mean sea level. This assessment reconciles the magnitude of observed global-mean sea-level rise since 1900 with estimates of underlying processes.

How to cite: Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D., Humphrey, V., Dangendorf, S., Hogarth, P., Zanna, L., Cheng, L., and Wu, Y.-C.: The causes of sea-level rise since 1900, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7907, https://doi.org/10.5194/egusphere-egu2020-7907, 2020.

EGU2020-7302 | Displays | CL4.5 | Highlight

Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from expert assessment

Benjamin Horton, Nicole Khan, Niamh Cahill, Janice Lee, Tim Shaw, Andra Garner, Andrew Kemp, Simon Engelhart, and Srefan Rahmstorf

Sea-level rise projections and knowledge of their uncertainties are vital to make informed mitigation and adaptation decisions. To elicit expert judgments from members of the scientific community regarding future global mean sea-level (GMSL) rise and its uncertainties, we repeated a survey originally conducted five years ago. Under Representative Concentration Pathway (RCP) 2.6, 106 experts projected a likely (at least 66% probability) GMSL rise of 0.30–0.65 m by 2100, and 0.54–2.15 m by 2300, relative to 1986–2005. Under RCP 8.5, the same experts projected a likely GMSL rise of 0.63–1.32 m by 2100, and 1.67–5.61 m by 2300. Expert projections for 2100 are similar to those from the original survey, although the projection for 2300 has extended tails and is higher than the original survey. Experts give a likelihood of 42% (original survey) and 45% (current survey) that under the high emissions scenario GMSL rise will exceed the upper bound (0.98 m) of the likely (i.e. an exceedance probability of 17%) range estimated by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Responses to open-ended questions suggest that the increases in upper-end estimates and uncertainties arose from recent influential studies about the impact of marine ice cliff instability on the meltwater contribution to GMSL rise from the Antarctic Ice Sheet.

How to cite: Horton, B., Khan, N., Cahill, N., Lee, J., Shaw, T., Garner, A., Kemp, A., Engelhart, S., and Rahmstorf, S.: Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from expert assessment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7302, https://doi.org/10.5194/egusphere-egu2020-7302, 2020.

EGU2020-8808 | Displays | CL4.5

A revised sea level budget equation to accurately represent physical processes driving sea level rise

Bramha Dutt Vishwakarma, Sam Royston, Ricardo E. M. Riva, Richard M. Westaway, and Jonathan L. Bamber

The sea level budget (SLB) equates changes in sea surface height (SSH) to the sum of various geo-physical processes that contribute to sea level change. Currently, it is a common practice to explain a change in SSH as a sum of ocean mass and steric change, assuming that solid-Earth motion is corrected for and completely explained by secular visco-elastic relaxation of mantle, due to the process of glacial isostatic adjustment. Yet, since the Solid Earth also responds elastically to changes in present day mass load near the surface of the Earth, we can expect the ocean bottom to respond to ongoing ocean mass changes. This elastic ocean bottom deformation (OBD) has been ignored until very recently because the contribution of ocean mass to sea level rise was thought to be smaller than the steric contribution and the resulting OBD was within observation system uncertainties. However, ocean mass change has increased rapidly in the last 2 decades. Therefore, OBD is no longer negligible and recent studies have shown that its magnitude is similar to that of the deep steric sea level contribution: a global mean of about 0.1 mm/yr but regional changes at some places can be more than 10 times the global mean. Although now an important part of the SLB, especially for regional sea level, OBD is considered by only a few budget studies and they treat it as a spatially uniform correction. This is due to lack of a mathematical framework that defines the contribution of OBD to the SLB. Here, we use a mass-volume framework to derive, for the first time, a SLB equation that partitions SSH change into its component parts accurately and it includes OBD as a physical response of the Earth system. This updated SLB equation is important for various disciplines of Earth Sciences that use the SLB equation: as a constraint to assess the quality of observational time-series; as a means to quantify the importance of each component of sea level change; and, to adequately include all processes in global and regional sea level projections. We recommend using the updated SLB equation for sea level budget studies. We also revisit the contemporary SLB with the updated SLB equation using satellite altimetry data, GRACE data, and ARGO data.

How to cite: Vishwakarma, B. D., Royston, S., Riva, R. E. M., Westaway, R. M., and Bamber, J. L.: A revised sea level budget equation to accurately represent physical processes driving sea level rise, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8808, https://doi.org/10.5194/egusphere-egu2020-8808, 2020.

EGU2020-13312 | Displays | CL4.5

The codependence of contributors to regional sea-level rise

Erwin Lambert, Dewi Le Bars, and Roderik van de Wal

Science-based policy for coastal protection requires accurate estimates of the uncertainty in regional sea-level rise. These estimates are strongly influenced by the codependence of individual contributors: thermosteric expansion, ocean dynamics, and mass loss from glaciers and ice sheets. In this study, we use model output and parameterisations to quantify the projected total sea-level rise from a set of 15 Earth System Models from the Coupled Model Intercomparison Project (CMIP) 5. We use these model-based estimates of total sea-level rise to quantify the codependence of individual contributors, determined by the full climate response. We find that assumptions on codependence made in recent reports of the Intergovernmental Panel on Climate Change (IPCC) lead to an overestimation in the uncertainty in regional sea-level rise by 20 to 60%. We further conclude that global mean surface temperature rise is a poor indicator for the inter-model difference in regional sea-level rise as it does not account for inter-model differences in atmospheric and oceanic heat distribution and precipitation patterns. The codependencies derived in this study are suitable for application to new projections, allowing for accurate and consistent estimates of the uncertainty in global and regional sea-level rise.

How to cite: Lambert, E., Le Bars, D., and van de Wal, R.: The codependence of contributors to regional sea-level rise, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13312, https://doi.org/10.5194/egusphere-egu2020-13312, 2020.

EGU2020-1909 | Displays | CL4.5

Sea Level Rise in Macau and Adjacent Southern China Coast: Historical Change and Future Projections

Lin Wang, Gang Huang, Wen Zhou, and Wen Chen

    Global warming-related SLR (sea level rise) constitutes a substantial threat to Macau, due to its low elevation, small size and ongoing land reclamation. This study was devised to determine the long-term variation of sea level change in Macau, as well as to develop future projections based on tide gauge and satellite data and GCM simulations, aiming to provide knowledge for SLR mitigation and adaptation.

    Based on local tide gauge records, sea level in Macau is now rising at an accelerated rate: 1.35 mm yr−1 over 1925–2010 and jumping to 4.2 mm yr−1 over 1970–2010, reflecting an apparent acceleration of SLR. Furthermore, the sea level near Macau rose 10% faster than the global mean during the period from 1993 to 2012. In addition, the rate of VLM (vertical land movement) at Macau is estimated at -0.153mm yr-1, contributing little to local sea level change.

    In the future, as projected by a suite of climate models, the rate of SLR in Macau will be about 20% higher than the global average. This is induced primarily by a greater-than-average rate of oceanic thermal expansion in Macau, together with enhanced southerly anomalies that lead to a piling up of sea water. Specifically, the sea level is projected to rise 8–12, 22–51 and 35–118 cm by 2020, 2060 and 2100 with respect to the 1986–2005 baseline climatology, respectively, depending on the emissions scenario and climate sensitivity. If we consider the medium emissions scenario RCP4.5 along with medium climate sensitivity, Macau can expect to experience an SLR of 10, 34 and 65 cm by 2020, 2060 and 2100. If the worst case happens (RCP8.5 plus high climate sensitivity), the SLR will be far higher than that in the medium case; namely, 12, 51 and 118 cm by 2020, 2060, and 2100, respectively. The SLR under the lower emissions scenario is expected to be less severe than that under the higher emissions scenarios: by 2100, an SLR of 65–118 cm in Macau under RCP8.5, almost twice as fast as that under RCP2.6. The key source of uncertainty stems from the emissions scenario and poor knowledge of climate sensitivity. By 2020, the uncertainty range is only 4 cm, yet by 2100 the range will be increased to 83 cm.

How to cite: Wang, L., Huang, G., Zhou, W., and Chen, W.: Sea Level Rise in Macau and Adjacent Southern China Coast: Historical Change and Future Projections, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1909, https://doi.org/10.5194/egusphere-egu2020-1909, 2020.

EGU2020-3009 | Displays | CL4.5

Revisiting the Global and Regional Steric Sea-level Trends in the Satellite Era

Carolina Camargo, Riccardo Riva, Tim Hermans, and Aimée Slangen

The steric component of sea-level change comprises variations in the temperature (thermosteric) and salinity (halosteric) of the oceans, which alter the water’s density, leading to volumetric variations of the water column. Although its importance is unarguable, throughout the literature there is a disagreement on how much the steric component actually contributes to sea-level change.

Here, we investigate two sources of uncertainty to steric trends, both at global and regional scale. First, we look at how the use of different temperature and salinity datasets influences the estimated steric height. For that, we analyzed 15 datasets, combining different techniques (hydrographic profiles, Argo floats and ocean reanalyses). Second, since the estimation of uncertainties for linear and quadratic trends requires the adoption of a noise model, we compared the performance of several different noise models.  

We find that by varying both the dataset and noise-model, the global mean trend and uncertainty from 2005 to 2015 can vary from 0.566 to 2.334 mm/yr and 0.022 to 1.646 mm/yr, respectively. This range becomes even larger at regional scales. At a global scale, the selection of datasets has a larger influence on the trend, while at a regional scale the choice of the noise model dominates the spread in steric sea-level trends. Our results emphasize the need to use an ensemble of datasets to infer steric changes, and to carefully choose a noise model.

How to cite: Camargo, C., Riva, R., Hermans, T., and Slangen, A.: Revisiting the Global and Regional Steric Sea-level Trends in the Satellite Era, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3009, https://doi.org/10.5194/egusphere-egu2020-3009, 2020.

EGU2020-3381 | Displays | CL4.5

Resolution Dependency of Future Caribbean Sea Level Response

René van Westen and Henk Dijkstra

The current global climate models, which are often used in inter-comparison projects, have a large variety in their spatial resolution. For most climate models, the resolution of the ocean grid does not allow to resolve mesoscale processes such as ocean eddies. Current sea level projections are based on these coarse climate models, but might have biases (either positive or negative) in these projections since mesoscale processes are parameterised.

Here we investigate the differences in future Caribbean sea level rise using a centennial simulation of a high- and low-resolution version of the Community Earth System Model under the same anthropogenic forcing. In the high-resolution version of the model mesoscale processes are resolved. Locally, we find a decrease of 7.2 cm in sea level extremes over a 100-year period in the high-resolution version; this decrease is almost absent in the low-resolution version. This local decrease in sea level extremes is related to ocean eddies, which are not resolved in the low-resolution version, hence explaining the different sea level response between the models. When comparing modelled sea level trends to observed sea level trends over the past 25 years, we find a reasonable agreement between observations and the high-resolution model. However, for the low-resolution model and some of the preliminary CMIP6 model output, there is a substantial mismatch between the observed- and modelled sea level trends.

By analysing model output from two different resolutions of the same climate model, we find that the sea level response in the Caribbean Sea is resolution-dependent. As a result, not resolving mesoscale processes in climate models can locally result in overestimations of future sea level rise projections.

How to cite: van Westen, R. and Dijkstra, H.: Resolution Dependency of Future Caribbean Sea Level Response, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3381, https://doi.org/10.5194/egusphere-egu2020-3381, 2020.

EGU2020-3507 | Displays | CL4.5

Closing the global and regional sea level budgets by combining multi-mission altimetry and GRACE(-FO) data

Bernd Uebbing, Christina Lück, Roelof Rietbroek, Kristin Vielberg, and Jürgen Kusche

Understanding present day sea level changes and their drivers requires the separation of the total sea level change into individual mass and steric related contributions. Total sea level rise has been observed continuously since 1993 providing a more than 25 year long time series of global and regional sea level variations. However, direct monitoring of ocean mass change has only been done since the start of the Gravity Recovery And Climate Experiment (GRACE) mission in 2002. It ended in 2017 and was succeeded by the follow-on mission (GRACE-FO) in 2018 leaving a gap of about 1 year. In the same time period of GRACE, since the early 2000s, a global array of freely drifting Argo floats samples temperature and salinity profiles of up to 2000m depth which can be converted to steric sea level change.

By combining altimetry, GRACE(-FO) and Argo data sets it is possible to derive global and regional sea level budgets. The conventional approach is to analyze at least two of the data sets and derive the residual, or compare with the third one. A more recent approach is the global joint inversion method (Rietbroek et al., 2016) which fits forward-modeled spatial fingerprints to a combination of GRACE gravity data and Jason-1/-2 satellite altimetry data. This enables us, additionally, to separate altimetric sea level change into mass contributions from terrestrial hydrology, the melting of land glaciers and the ice-sheets in Greenland and Antarctica as well as contributions from steric sea level changes due to variations in ocean temperature and salinity. It also allows to include a data weighting scheme in the analysis.

Here, we present global and regional sea level budget results from an updated inversion based on multi-mission altimetry (Jason-1/-2/-3, Envisat, Cryosat-2, Sentinel-3, …) providing better spatial coverage as well as new RL06 GRACE and GRACE-FO data which enables us to extend the time series of individual components of the sea level budget beyond the GRACE era from 2002-04 till 2019-06. The presented sea level budget is closed on global scale with a residual (unexplained) contribution of about 0.1 mm/yr, globally, originating in eddy-active regions. We provide consistent validation of our results against conventionally analyzed altimetry and GRACE data sets where we find agreement on global scales to be better than 0.1 mm/yr but a larger disagreement at regional scales as well as the implications of our results for deriving ocean heat content. We will also provide first results for filling the gap in the sea level budget estimates due to the gap between the GRACE and GRACE-FO missions by additionally incorporating time-variable gravity information from the Swarm mission as well as from Satellite Laser Ranging (SLR) to 5 satellites (Lageos-1/-2, Stella, Starlette, Ajisai).

How to cite: Uebbing, B., Lück, C., Rietbroek, R., Vielberg, K., and Kusche, J.: Closing the global and regional sea level budgets by combining multi-mission altimetry and GRACE(-FO) data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3507, https://doi.org/10.5194/egusphere-egu2020-3507, 2020.

EGU2020-6393 | Displays | CL4.5

Deciphering forcing mechanisms for dynamic sea level variations off the northeast US coast

Tong Lee, Ou Wang, Hong Zhang, Ian Fenty, and ichiro fukumori

Regional sea level change is strongly societal relevant. The knowledge about the forcing mechanisms for contemporary regional sea level variation is important to the evaluation of climate models and the fidelity of projected sea level changes using these models. Dynamic sea level variation off the northeast US coast has been a subject of significant interest of late. However, there is inadequate understanding about the forcing mechanisms and the underlying oceanic processes. The Estimating the Circulation and Climate of the Ocean (ECCO) state estimate reproduced well the observed interannual-to-decadal variation of dynamic sea level in the region during the satellite altimeter era. Here we use the ECCO adjoint sensitivity tools to quantify the relative contributions of local and remote winds, surface heat flux, and surface freshwater flux on dynamic sea level variation in this region. We further characterize the salient oceanic processes associated with different surface forcings on different time scales.

How to cite: Lee, T., Wang, O., Zhang, H., Fenty, I., and fukumori, I.: Deciphering forcing mechanisms for dynamic sea level variations off the northeast US coast, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6393, https://doi.org/10.5194/egusphere-egu2020-6393, 2020.

EGU2020-6495 | Displays | CL4.5 | Highlight

Developing future sea level services for Small Island Developing States

Svetlana Jevrejeva, Judith Wolf, Andy Matthews, Joanne Williams, David Byrne, Elizabeth Bradshaw, Simon Williams, Angela Hibbert, Kathy Gordon, Lesley Rickards, Michela De Dominicis, and Lucy Bricheno

The Caribbean islands encompass some of the most vulnerable coastlines in terms of sea level rise, exposure to tropical cyclones, changes in waves and storm surges. Climate in the Caribbean is already changing and sea level rise impacts are already being felt. Considerable local and regional variations in the rate, magnitude, and direction of sea-level change can be expected as a result of thermal expansion, tectonic movements, and changes in ocean circulation. Governments in the Caribbean recognise that climate change and sea level rise are serious threats to the sustainable development and economic growth of the Caribbean islands and urgent actions are required to increase the resilience and make decisions about how to adapt to future climate change (Caribbean Marine Climate Change Report Card 2017; IPCC 2014).

As part of the UK Commonwealth Marine Economies (CME) Programme and through collaboration with local stakeholders in St Vincent, we have identified particular areas at risk from changing water level and wave conditions. The Caribbean Sea, particularly the Lesser Antilles, suffers from limited observational data due to a lack of coastal monitoring, making numerical models even more important to fill this gap. The current projects brings together improved access to tide gauge observations, as well as global, regional and local water level and wave modelling to provide useful tools for coastal planners.

We present our initial design of a coastal data hub with sea level information for stakeholder access in St. Vincent and Grenadines, Grenada and St Lucia, with potential development of the hub for the Caribbean region. The work presented here is a contribution to the wide range of ongoing activities under the Commonwealth Marine Economies (CME) Programme in the Caribbean, falling within the work package “Development of a coastal data hub for stakeholder access in the Caribbean region”, under the NOC led projects “Climate Change Impact Assessment: Ocean Modelling and Monitoring for the Caribbean CME states”.

How to cite: Jevrejeva, S., Wolf, J., Matthews, A., Williams, J., Byrne, D., Bradshaw, E., Williams, S., Hibbert, A., Gordon, K., Rickards, L., De Dominicis, M., and Bricheno, L.: Developing future sea level services for Small Island Developing States, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6495, https://doi.org/10.5194/egusphere-egu2020-6495, 2020.

EGU2020-6913 | Displays | CL4.5

Reproduction and projection of sea level around Korean Peninsula using regional climate ocean model with dynamical downscaling method

Kwang-Young Jeong, Eunil Lee, Do-Seong Byun, Gwang-Ho Seo, Hwa-Young Lee, Yang-Ki Cho, and Yong-Yub Kim

EGU2020-7596 | Displays | CL4.5

Historical tide-gauge sea-level observations in Alicante and Santander (Spain) since the 19th century

Marta Marcos, Bernat Puyol, Angel Amores, Begoña Pérez Gómez, M. Ángeles Fraile, and Stefan A. Talke

A set of historical tide-gauge sea-level records from two locations in Santander (Northern Spain) and Alicante (Spanish Mediterranean coast) have been recovered from logbooks stored in national archives. Sea-level measurements have been digitised, quality-controlled and merged into three consistent sea-level time series (two in Alicante and one in Santander) using high precision levelling information. The historical sea-level record in Santander consists of a daily time series spanning the period 1876-1924 and it is further connected to the modern tide-gauge station nearby, ensuring datum continuity up to the present. The sea-level record in Alicante starts in 1870 with daily averaged values until the 1920s and hourly afterwards, and is still in operation, thus representing the longest tide-gauge sea-level time series in the Mediterranean Sea. The long-term consistency and reliability of the new records is discussed based on the comparison with nearby tide gauge time series.

How to cite: Marcos, M., Puyol, B., Amores, A., Pérez Gómez, B., Fraile, M. Á., and Talke, S. A.: Historical tide-gauge sea-level observations in Alicante and Santander (Spain) since the 19th century, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7596, https://doi.org/10.5194/egusphere-egu2020-7596, 2020.

EGU2020-7675 | Displays | CL4.5

The future of sea level: More knowledge, more uncertainty

Dewi Le Bars, Sybren Drijfhout, and Marjolijn Haasnoot

Sea level rise is one of the most indisputable effects of global warming with important consequences for current decisions concerning mitigation and adaptation. A few evolutions in the climate and decision making fields have recently increased the concerns of sea level information users about the potential impacts of future sea level. We identify four main evolutions:

- Most countries are not on track to reach their Paris agreement emission pledges, making the goal of staying well bellow 2ºC less and less attainable.

- New climate model simulations from the Coupled Model Inter-comparison Project 6 (CMIP6) have both a higher average climate sensitivity and a larger spread between models compared to CMIP5.

- The Greenland and Antarctic ice sheets are melting faster than expected in previous IPCC reports and future projections from a recent structured expert judgment show larger expected melt and more uncertainty than both current numerical models and a previous expert judgment.

- Decision makers are more and more interested in events with a large impact and a small probability to build robust infrastructure and design robust long term strategies concerning relocation of coastal communities.

While these four evolutions are fundamentally deeply uncertain, to explore their combined effect we build a subjective probabilistic framework that allows to propagate the uncertainty through the different components and obtain sea level rise projections. In this presentation we present this framework, the results and their sensitivity to multiple hypothesis and we discuss implications for different uses and users of sea level rise information.

How to cite: Le Bars, D., Drijfhout, S., and Haasnoot, M.: The future of sea level: More knowledge, more uncertainty, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7675, https://doi.org/10.5194/egusphere-egu2020-7675, 2020.

EGU2020-8254 | Displays | CL4.5 | Highlight

Consolidating Sea Level Acceleration Estimates from Altimetry for the 1991-2019 Period

Ole Baltazar Andersen and Tadea Veng

More than 28 years of high precision satellite altimetry enables analysis of recent global sea level changes. Several studies have determined the trend and acceleration of global mean sea level (GMSL). This is however done almost exclusively with data from the TOPEX/Poseidon, Jason-1, Jason-2 and Jason-3 satellites (TPJ data). In this study we extend the altimetry record in both time and space by including independent data from the ERS-1, ERS-2, Envisat and CryoSat-2 satellites (ESA data). This increases the time-series to span more than 28 years (1991.7-2020.0) and the spatial coverage is extended from ± 66⁰ to ± 82⁰ latitude. Another advantage of the ESA data is that it is independent of the Cal-1 mode issues which introduces a significant uncertainty to the first 6 years of data from the TOPEX altimeter. Resulting GMSL accelerations of 0.080 ± 0.008 mm/yr2 (TPJ) and 0.095 ± 0.009 mm/yr2 (ESA).The distribution of sea level acceleration across the global ocean are highly similar between the ESA and TPJ dataset. 

The Pinatubo eruption in 1991 and El-Nino Southern Ocean Oscillation will both affect GMSL. Particularly so as Pinatubo erupted right before the launch of the first ERS-1 satellite. The decrease in GMSL during the first years is seen in the ERS-1 data. We conclude that the effect of the Pinatubo as well as the ENSO effect on GMSL acceleration estimates are below the noise level with the extended time series.

 

How to cite: Andersen, O. B. and Veng, T.: Consolidating Sea Level Acceleration Estimates from Altimetry for the 1991-2019 Period, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8254, https://doi.org/10.5194/egusphere-egu2020-8254, 2020.

EGU2020-8848 | Displays | CL4.5

Detecting non-linear sea-level variations in tide gauge records: a study case along the Dutch coast.

Riccardo Riva, David Steffelbauer, Jan Kwakkel, Jos Timmermans, and Mark Bakker

Tide gauges are the main source of information about sea-level changes in the Industrial Age. When looking at global mean values, century-long reconstructions produce rates between 1-2 mm/yr, while estimates over the last three decades reveal a much faster rise of about 3 mm/yr, as also indicated by satellite altimetry observations. In spite of this evidence for a recent acceleration, its quantification remains a challenging and relevant task, because results are highly dependent on the length of the record and on the reconstruction technique, whereas decision makers require clear proof to legitimise action.

While global mean results are very important to understand climate change, regional to local variations are more relevant for the purpose of planning mitigation and adaptation measures. However, mainly due to natural variability, looking at individual tide gauge stations hampers the accurate determination of linear and non-linear trends.

We analyse tide gauge records along the Dutch coast by means of advanced statistical techniques, with the main objective of determining whether and under which conditions it is possible to detect departures from secular trends. We particularly focus on how to handle noise in the natural system, which for the Dutch coast is mainly represented by local atmospheric effects and by variability in ocean dynamics in the NE Atlantic.

How to cite: Riva, R., Steffelbauer, D., Kwakkel, J., Timmermans, J., and Bakker, M.: Detecting non-linear sea-level variations in tide gauge records: a study case along the Dutch coast., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8848, https://doi.org/10.5194/egusphere-egu2020-8848, 2020.

EGU2020-9706 | Displays | CL4.5

An International Data Centre for GNSS Interferometric Reflectometry Data for Observing Sea Level Change

Andrew Matthews, Simon Williams, Elizabeth Bradshaw, Kathy Gordon, Angela Hibbert, Svetlana Jevrejeva, Lesley Rickards, and Philip Woodworth

The Permanent Service for Mean Sea Level (PSMSL) is the internationally recognised global sea level data bank for long-term sea level change information from tide gauges, responsible for the collection, publication, analysis and interpretation of sea level data. The primary aim of PSMSL is to collate, archive and distribute long-term sea level information from tide gauges. There is a need both for more records in data sparse regions such as Antarctica, the Arctic and Africa, and for a low cost method for monitoring climate change through sea level.

Recent studies have demonstrated the utility of ground-based GNSS Interferometric Reflectometry (GNSS-IR) for the observation of sea level. GNSS receivers suffer from multipath, but if the physical and geometric effects multipath has on the measured signals are understood then this knowledge can be used to measure other environmental parameters such as the sea surface reflection. The GNSS receiver can also determine vertical land motion.

PSMSL has received funding to create an international archive to preserve and deliver GNSS-IR data and to integrate these data with existing sea level observing networks. We aim to create an efficient data delivery mechanism to allow the sea level community to access these new data and incorporate them into existing records. We will develop a data format and create and/or populate controlled vocabularies with the new parameters, site identifiers and other discovery metadata required.

Currently, we have processed records from over 250 GNSS receivers across the globe: each will be made available alongside information detailing how the records were processed; which GNSS constellations, satellites and frequencies were used; and visual diagnostics of each site. In this presentation we will give a brief overview of the theory behind GNSS-IR, and present some of the content that we plan to include in the completed portal.

 

How to cite: Matthews, A., Williams, S., Bradshaw, E., Gordon, K., Hibbert, A., Jevrejeva, S., Rickards, L., and Woodworth, P.: An International Data Centre for GNSS Interferometric Reflectometry Data for Observing Sea Level Change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9706, https://doi.org/10.5194/egusphere-egu2020-9706, 2020.

EGU2020-9754 | Displays | CL4.5

Estimating Vertical Land Motion in Northern Adriatic Sea with Coastal Altimetry and In Situ Observations

Francesco De Biasio, Stefano Vignudelli, and Giorgio Baldin

The European Space Agency, in the framework of the Sea Level Climate Change Initiative (SL_CCI), is developing consistent and long-term satellite-based data-sets to study climate-scale variations of sea level globally and in the coastal zone. Two altimetry data-sets were recently produced. The first product is generated over a grid of 0.25x0.25 degrees, merging and homogenizing the various satellite altimetry missions. The second product that is still experimental is along track over a grid of 0.35 km. An operational production of climate-oriented altimeter sea level products has just started in the framework of the European Copernicus Climate Change Service (C3S) and a daily-mean product is now available over a grid of 0.125x0.125 degrees covering the global ocean since 1993 to present.

We made a comparison of the SL_CCI satellite altimetry dataset with sea level time series at selected tide gauges in the Mediterranean Sea, focusing on Venice and Trieste. There, the coast is densely covered by civil settlements and industrial areas with a strongly rooted seaside tourism, and tides and storm-related surges reach higher levels than in most of the Mediterranean Sea, causing damages and casualties as in the recent storm of November 12th, 2019: the second higher water registered in Venice since 1872. Moreover, in the Venice area the ground displacements exhibit clear negative trends which deepen the effects of the absolute sea level rise.

Several authors have pointed out the synergy between satellite altimetry and tide gauges to corroborate evidences of ground displacements. Our contribution aims at understanding the role played by subsidence, estimated by the diffence between coastal altimetry and in situ measurements, on the local sea level rise. A partial validation of these estimates has been made against GPS-derived values, in order to distinguish the contributions of subsidence and eustatism. This work will contribute to identify problems and challenges to extend the sea level climate record to the coastal zone with quality comparable to the open ocean, and also to assess the suitability of altimeter-derived absolute sea levels as a tool to estimate subsidence from tide gauge measurement in places where permanent GPS receivers are not available.

How to cite: De Biasio, F., Vignudelli, S., and Baldin, G.: Estimating Vertical Land Motion in Northern Adriatic Sea with Coastal Altimetry and In Situ Observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9754, https://doi.org/10.5194/egusphere-egu2020-9754, 2020.

EGU2020-10082 | Displays | CL4.5

Statistical Downscaling of daily extreme Sea Level with Random Forest: Examples from South-East Asia and the Baltic Sea

Svenja Bierstedt, Eduardo Zorita, and Birgit Hünicke

The coastlines of the Baltic Sea and Indonesia are both relatively complex, so that the estimation of extreme sea levels caused by the atmospheric forcing becomes complex with conventional methods. Here, we explore whether Machine Learning methods can provide a model surrogate to compute more rapidly daily extremes in sea level from large-scale atmosphere-ocean fields. We investigate the connections between the atmospheric and ocean drivers of local extreme sea level in South East Asia and along the Baltic Sea based on statistical analysis by Random Forest Models, driven by large-scale meteorological predictors and daily extreme sea level measured by tide-gauge records over the last few decades.

First results show that in some Indonesian areas extremes are driven by large-scale climate fields; in other areas they are incoherently driven by local processes. An area where random forest predicted extremes show good correspondence to observed extremes is found to be the Malaysian coastline. For the Indonesian coasts, the Random Forest Algorithm was unable to predict extreme sea levels in line with observations. Along the Baltic Sea, in contrast, the Random Forest model is able to produce reasonable estimations of extreme sea levels based on the large-scale atmospheric fields. An analysis of the interrelations of extreme sea levels in the South Asia regions suggests that either the data quality may be compromised in some regions or that other forcing factors, distinct from the large-scale atmospheric fields, may also be involved.

How to cite: Bierstedt, S., Zorita, E., and Hünicke, B.: Statistical Downscaling of daily extreme Sea Level with Random Forest: Examples from South-East Asia and the Baltic Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10082, https://doi.org/10.5194/egusphere-egu2020-10082, 2020.

EGU2020-12644 | Displays | CL4.5 | Highlight

Observed Regional Sea Level Trends: Climate Drivers and Implications for Projecting Future Change

R. Steven Nerem and John Fasullo

The satellite altimeter record has provided an unprecedented climate data record for understanding sea level rise and has recently exceeded 27 years in length. This record of sea level change is becoming sufficiently long that we can begin to infer how sea level will change in the future. Results from Large Ensembles (LEs) of climate model simulations reveal that (a) the trend pattern of the Forced Response (FR) of sea level due to aerosols and Greenhouse gases (GHGs) is beginning to emerge from the altimeter record, (b) this pattern is likely to continue similarly for decades into the future, (c) the altimeter record falls during an interesting period when we are transitioning from an aerosol-dominated FR to a GHG dominated FR. All of these results provide clues into the causes of regional variations in the altimeter-observed regional trend pattern. In addition, these results suggest a possible path forward for performing short-term data-driven extrapolations of the satellite altimeter record to better understand future sea level change. We will review all of these results, show initial attempts at extrapolating the measurements, and discuss potential societal implications of the results.

How to cite: Nerem, R. S. and Fasullo, J.: Observed Regional Sea Level Trends: Climate Drivers and Implications for Projecting Future Change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12644, https://doi.org/10.5194/egusphere-egu2020-12644, 2020.

EGU2020-12811 | Displays | CL4.5

Data products from the ESA CCI Sea Level Budget Closure project

Martin Horwath and the Sea Level Budget Closure CCI Team

Studies of the sea-level budget are a means of assessing our ability to quantify and understand sea-level changes and their causes. ESA's Climate Change Initiative (CCI) projects include Sea Level CCI, Greenland Ice Sheet CCI, Antarctic Ice Sheet CCI, Glaciers CCI and the Sea Surface Temperature CCI, all addressing Essential Climate Variables (ECVs) related to sea level. The cross-ECV project CCI Sea Level Budget Closure used different products for the sea level and its components, based on the above CCI projects in conjunction with in situ data for ocean thermal expansion (e.g., Argo), GRACE-based assessments of ocean mass change, land water and land ice mass change, and model-based data for glaciers and land hydrology. The involvement of the authors of the individual data products facilitated consistency and enabled a unified treatment of uncertainties and their propagation to the overall budget closure. 

After conclusion of the project, the developed data products are now available for science users and the public. This poster summarizes the project results with a focus on presenting these data products. They include time series (for the periods 1993-2016 and 2003-2016) of global mean sea level changes and global mean sea level contributions from the steric component, from the ocean mass component and from the individual mass contributions by glaciers, the Greenland Ice Sheet, the Antarctic Ice Sheet and changes in land water storage. They are designed and documented in the consistent framework of ESA SLBC_cci and include uncertainty measures per datum. Additional more comprehensive information, such as geographic grids underlying the global means, are available for some components.

For the long-term trend, the budget is closed within uncertainties on the order of 0.3 mm/yr (1 sigma). Moreover, the budget is also closed within uncertainties for interannual variations.

How to cite: Horwath, M. and the Sea Level Budget Closure CCI Team: Data products from the ESA CCI Sea Level Budget Closure project, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12811, https://doi.org/10.5194/egusphere-egu2020-12811, 2020.

EGU2020-20007 | Displays | CL4.5

Decadal Sea level Variability in the subtropical South Pacific

Frauke Albrecht, Oscar Pizarro, and Eduardo Zorita

Observational altimetry data and data of 18 phase 5 of the Coupled Model Intercomparison Project (CMIP5) are investigated to analyze decadal sea level variability for the subtropical South Pacific. The altimetry data covers the period 1993 to 2017. In order to analyze decadal variability yearly means of detrended data are considered. An Empirical Orthogonal Function (EOF) analysis of the Region 20°S to 60°S is performed in to analyze sea level variablility in the subtropics. The tropical region has been omitted in order to avoid the strong El Niño Southern Oscillation (ENSO) signal masking other subtropical variability in the analysis. The first EOF of the altimetry data shows a clear pattern with a North-South dipole explaining 30% of the variance and the corresponding time series shows a decadal periodicity. The decadal variability of this pattern is reproduced by the CMIP5 models. Analyzing model ocean circulation data show consistent decadal variability in the North-South velocity. As a possible forcing zonal (westerly) surface winds are analyzed. Their pattern confirm Ekman transport to the North (South) in the lower (higher) latitudes, leading to a convergence zone and therefore explaining the sea level rise as seen in the EOF pattern, consistently with the Ekman transport a deep compensatory poleward flow is observed.

How to cite: Albrecht, F., Pizarro, O., and Zorita, E.: Decadal Sea level Variability in the subtropical South Pacific, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20007, https://doi.org/10.5194/egusphere-egu2020-20007, 2020.

CL4.11 – Dynamics of the atmospheric circulation in past, present and future climates

The tropical zonal-mean precipitation distribution can vary between single and double peaks, which are associated with intertropical convergence zones (ITCZs). Here, the meridional modality and the sensitivity to hemispherically-asymmetric heating of tropical precipitation is studied in an idealized GCM with parameterized wind-driven ocean energy transport (OET). In the idealized model, transitions from unimodal to bimodal distributions are driven by equatorial ocean upwelling and cooling which inhibits equatorial precipitation. For sufficiently strong cooling, the circulation bifurcates to anti-Hadley circulation (AHC) in the deep tropics, with a descending branch near the equator and off-equatorial double ITCZs. The intensity of the AHC is limited by a negative feedback: the AHC drives westerly surface winds which balance the easterly stress (and hence equatorial upwelling) required for its maintenance. The modality of the precipitation affects the response to asymmetric heating: For weak ocean stratification, OET damps shifts of the tropical precipitation centroid but amplifies shifts of precipitation peaks. For strong ocean stratification, which leads to double ITCZs, asymmetric heating leads to relative intensification of the ITCZ in the warming hemisphere, but the positions of the double ITCZs are insensitive to changes in the asymmetric heating and ocean stratification. The dynamic feedbacks of the coupled system damp the slope of the atmospheric energy transport (AET) near the equator. This justifies a cubic root relation between the cross-equatorial AET and the position of the ITCZ, which captures migrations of the ITCZ significantly better than the commonly-used linear relation.

How to cite: Adam, O. and Gerstman, H.: Dynamic and energetic constraints on the modality and position of the intertropical convergence zone in an aquaplanet, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4903, https://doi.org/10.5194/egusphere-egu2020-4903, 2020.

EGU2020-11593 | Displays | CL4.11

ITCZ dynamics as seen by complex network theory

Frederik Wolf, Aiko Voigt, and Reik V. Donner

The intertropical convergence zone (ITCZ) is an important component of the tropical rain belt. Climate models still struggle to represent the ITCZ and differ substantially in its simulated response to climate change. Here, we study to what extent complex network theory, which can effectively extract spatio-temporal variability patterns from climate data, helps to understand the dynamics of the ITCZ and model differences therein. For this purpose, we study simulations with 14 global climate models in an idealized aquaplanet setup performed within the TRAC-MIP model intercomparison project.


We construct network representations based on the spatial correlation pattern of surface temperature and perform a detailed study of the zonal mean patterns of different topological and spatial network characteristics. This allows us to identify clusters of climate models which differ not only in their current climate state dynamics but also in their response to climate change. Specifically, we address possible mechanisms controlling the seasonal change of the location of the ITCZ, and we connect our results to previous work on ITCZ controls by cross-equatorial heat transport and tropical sea-surface temperature gradients.

How to cite: Wolf, F., Voigt, A., and Donner, R. V.: ITCZ dynamics as seen by complex network theory, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11593, https://doi.org/10.5194/egusphere-egu2020-11593, 2020.

EGU2020-20223 | Displays | CL4.11

ITCZ-MIP: Understanding ITCZ width and its impacts on climate and circulation

Angeline Pendergrass, Oliver Watt-Meyer, Michael Byrne, Penelope Maher, Mark Webb, Kathleen Schiro, and Hui Su

The intertropical convergence zone (ITCZ) is a band of intense rainfall near the equator that dominates tropical climate. Recent work has demonstrated that most climate models predict a narrowing of the ITCZ under global warming and this narrowing may act as a control on global precipitation (Byrne et al., 2018). Observations suggest that a narrowing of the ITCZ has already occurred (Wodzicki and Rapp, 2016). However, a firm theoretical understanding of what sets ITCZ width is still lacking and an understanding of how ITCZ width influences circulation and climate elsewhere is only beginning to be developed (e.g. Watt-Meyer and Frierson, 2019). Theoretical advances to date have been tested in an idealized gray-radiation model and across comprehensive coupled atmosphere-ocean models. We have begun an effort to systematically test theories of ITCZ width at an intermediate level of complexity: in aquaplanets with full radiation schemes but no seasonal cycle. Our approach is to use a slab ocean boundary condition to ensure energy conservation but at the same time constrain global mean surface temperatures to be similar across a small set of models. By imposing idealized q-flux profiles of heating in the deep tropics and cooling elsewhere, we vary ITCZ width. We also perform instantaneous CO2 quadrupling experiments to test the response to greenhouse gas forcing. Results from the protocol development and proof of concept phase of the effort, including simulations from three climate models, show changes in ITCZ width of up to 40% that are roughly linear in forcing. In these experiments, ITCZ width has substantial effects on global climate and circulation, including the strength of the ITCZ, global-mean temperature, and the Hadley cell. 

How to cite: Pendergrass, A., Watt-Meyer, O., Byrne, M., Maher, P., Webb, M., Schiro, K., and Su, H.: ITCZ-MIP: Understanding ITCZ width and its impacts on climate and circulation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20223, https://doi.org/10.5194/egusphere-egu2020-20223, 2020.

Arguments based on atmospheric energetics and aqua-planet model simulations link the latitudinal position of the Intertropical Convergence Zone (ITCZ) to atmospheric cross-equatorial energy transport –- a greater southward transport corresponds to a more northerly position of the ITCZ. This idea is often invoked to explain an interhemispheric dipole pattern of precipitation anomalies in paleoclimates. In contrast, here we demonstrate that in the tropical Pacific the response of the fully coupled ocean-atmosphere system to a hemispherically asymmetric thermal  forcing, modulating this energy transport, involves an interplay between the ITCZ and its counterpart in the South Pacific - the Southern Pacific Convergence Zone (SPCZ). This interplay leads to interhemispheric seesaw changes in tropical precipitation, such that the latitudinal position of each rain band remains largely fixed, but their intensities follow a robust inverse relationship. The seesaw behavior is also evident in the past and future coupled climate simulations of the Climate Model Intercomparison Project Phase 5 (CMIP5). We also show that the tropical Pacific precipitation response to thermal forcing is qualitatively different between the aqua-planet (without ocean heat transport), slab-ocean (with climatological ocean heat transport represented by a ``Q-flux'') and fully-coupled model configurations. Specifically, the induced changes in the ITCZ latitudinal position successively decrease, while the seesaw precipitation intensity response becomes more prominent, from the aqua-planet to the slab-ocean to the fully-coupled configuration. Thus, the ITCZ/SPCZ seesaw can explain the paleoclimate precipitation dipole pattern without invoking a too strong climate forcing and is relevant to future projections of tropical precipitation.

How to cite: Zhao, B. and Fedorov, A.: The seesaw response of the Intertropical and South Pacific convergence zones to hemispherically asymmetric thermal forcing, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11225, https://doi.org/10.5194/egusphere-egu2020-11225, 2020.

EGU2020-1039 | Displays | CL4.11

Indo-Pacific warm pool expansion modulates MJO lifecycle

Panini Dasgupta, Roxy Mathew Koll, Michael J. McPhaden, Tamaki Suematsu, Chidong Zhang, and Daehyun Kim

The Madden–Julian Oscillation (MJO) is the most dominant mode of intraseasonal
variability in the tropics, characterized by an eastward propagating zonal circulation pattern
and rain bands. MJO is very crucial phenomenon due to its interactions with other
timescales of ocean-atmosphere like El Niño Southern Oscillation, tropical cyclones,
monsoons, and the extreme rainfall events all across the globe. MJO events travel almost
half of the globe along the tropical oceans, majorly over the Indo-Pacific Warm Pool
(IPWP) region. This IPWP region has been warming during the twentieth and early twenty-
first centuries in response to increased anthropogenic emissions of greenhouse gases and
is projected to warm further. However, the impact of the warming of the IPWP region on
the MJO life cycle is largely unknown. Here we show that rapid warming over the IPWP
region during 1981–2018 has significantly changed the MJO life cycle, with its residence
time decreasing over the Indian Ocean by 3–4 days, and increasing over the Indo-Pacific
Maritime Continent by 5–6 days. We find that these changes in the MJO life cycle are
associated with a twofold expansion of the Indo-Pacific warm pool. The warm pool has
been expanding on average by 2.3 × 105 km2 per year during 1900–2018 and at an
accelerated average rate of 4 × 105 km2 per year during 1981–2018. The accelerated
warm pool expansion has increased moisture in the lower and middle troposphere over
IPWP and thereby increased the gradient of lower-middle tropospheric moisture between
the Indian Ocean and western Pacific. This zonal gradient of moisture between the Indian Ocean
and west Pacific and the increased subsidence over the Indian ocean due to increased
convective duration of MJO over maritime continent are likely the reasons behind the
changing lifecycle of MJO.

How to cite: Dasgupta, P., Koll, R. M., McPhaden, M. J., Suematsu, T., Zhang, C., and Kim, D.: Indo-Pacific warm pool expansion modulates MJO lifecycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1039, https://doi.org/10.5194/egusphere-egu2020-1039, 2020.

EGU2020-14862 | Displays | CL4.11

The large-scale tilt of the eddy divergence in the tropics

Pablo Zurita-Gotor

This work is concerned with the large-scale structure of the upper-level divergence/precipitation field in the deep tropics. Once the fine ITCZ structure is filtered out, the coarse-grained eddy divergence field is found to tilt eastward moving away from its maximum near the equator in the summer hemisphere. This robust tilt (observed for both hemispheres and seasons) is also present in the classical Gill solution.

In this presentation we show that the sign of the tilt is intimately linked to the direction of the eddy momentum flux. The observed eastward tilt is such that the momentum flux is directed towards the wave source, suggesting that the observed tilt is determined by wave propagation.

We also discuss the determination of the tilt in the simple Gill model and its sensitivity to the meridional Hadley flow. We show that the increase in the cross-equatorial momentum flux when the Hadley cell strengthens is associated with an increased tilt of the divergence field in the downstream direction of the flow, supporting the conjecture that the tilt is associated with propagation. 

How to cite: Zurita-Gotor, P.: The large-scale tilt of the eddy divergence in the tropics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14862, https://doi.org/10.5194/egusphere-egu2020-14862, 2020.

EGU2020-16892 | Displays | CL4.11

Changes in the relationship between the East Asian winter monsoon and ENSO under global warming

Zixuan Jia, Massimo Bollasina, Chaofan Li, Ruth Doherty, and Oliver Wild

The East Asian winter monsoon (EAWM) is a prominent feature of the northern hemisphere atmospheric circulation during boreal winter, which has a large influence on weather and climate of the Asian-Pacific region. At interannual time scales, the strength of the EAWM is strongly influenced by the El Niño-Southern Oscillation (ENSO), while the ENSO-EAWM relationship displays pronounced interdecadal variations associated with changes in the ENSO teleconnection pathways to East Asia. Using future transient simulations from the Max Planck Institute-Grand Ensemble (MPI-GE), changes in the ENSO-EAWM relationship are examined at various global warming levels during the 21st-century. Results indicate that this relationship will enhance from present-day to +1.5°C, and then weaken until +3°C, strongly impacted by changes in anthropogenic forcing with internal variability playing a negligible role. The ENSO-EAWM relationship is strongly related to the background mean state of both the EAWM and ENSO under global warming. Both the climatological EAWM strength and the ENSO-related anomalies across the Asian-Pacific region contribute to changes in the ENSO-EAWM relationship. Furthermore, anthropogenic aerosols are also found to play a major role in influencing the ENSO-EAWM relationship under moderate warming (up to 1.5°C).

How to cite: Jia, Z., Bollasina, M., Li, C., Doherty, R., and Wild, O.: Changes in the relationship between the East Asian winter monsoon and ENSO under global warming , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16892, https://doi.org/10.5194/egusphere-egu2020-16892, 2020.

The Hadley circulation (HC) is a key element of the climate system. It is traditionally defined as the zonally averaged meridional circulation in the tropics, therefore treated as a zonally symmetric phenomenon. However, differences in temperature between land and sea cause zonal asymmetries on Earth, dramatically affecting the circulation. The longitudinal dependence of the HC evokes questions about where and when the actual large scale tropical circulation occurs. In this study, we look into the connection between the longitudinally dependent HC and the actual large scale movement of air in the tropics using a coupled Eulerian and Lagrangian approach. Decomposing the velocity field, we identify the components affecting the actual circulation. In addition, we calculate trajectories of air parcels to analyze the actual movement. We propose an alternative definition for the circulation, that describes the actual path of air parcels in the tropics, as a tropical conveyor belt. The Indo-Pacific warm pool is the driver of the circulation, where air converges and ascends, then moves westward and poleward before entering the jet stream, moving eastward with it, eventually beginning its descent near the Americas. Furthermore, using an idealized moist GCM, we explore how tropical asymmetries affect the circulation and discuss the possible mechanisms controlling the tropical conveyor belt.

How to cite: Raiter, D., Galanti, E., and Kaspi, Y.: The tropical atmospheric conveyor belt: a Lagrangian perspective of the large-scale tropical circulation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4633, https://doi.org/10.5194/egusphere-egu2020-4633, 2020.

EGU2020-5042 | Displays | CL4.11

Tropical expansion driven by poleward advancing subtropical front

Hu Yang, Gerrit Lohmann, Xiaoxu Shi, and Evan J. Gowan

Abundance of evidence shows that the tropics are expanding in the past four decades. Despite many attempts to decipher its cause, the underlying dynamical mechanism driving tropical expansion is still not clear. Here, based on observations and multi-model simulations from the Coupled Model Intercomparison Project phase 5 (CMIP5), the variations and trends of tropical width are explored from a regional perspective. We find that the width of the tropics closely follows the meridional displacement of oceanic subtropical front. Under global warming, the subtropical ocean experiences more surface warming due to convergence of surface water. Such enhanced warming, superimposing onto the variation of Pacific Decadal Oscillation, leads to poleward advancing of subtropical front and drives the tropical expansion. Our results, supported by both observations and model simulations, imply that the observed expanding tropics may largely attributed to the anthropogenic global warming rather than the natural climate variability.

How to cite: Yang, H., Lohmann, G., Shi, X., and Gowan, E. J.: Tropical expansion driven by poleward advancing subtropical front, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5042, https://doi.org/10.5194/egusphere-egu2020-5042, 2020.

The weakening of the Hadley cell and of the midlatitude eddy heat fluxes are two of the most robust responses of the atmospheric circulation to increasing concentrations of greenhouse gases.  These changes have important global climatic impacts, as the large-scale circulation acts to transfer heat and moisture from the tropics to polar regions.  Here, we examine Hadley cell and eddy heat flux trends in recent decades: contrasting model simulations with reanalyses, we uncover two important flaws -- one in the reanalyses and other in the model simulations -- that have, to date, gone largely unnoticed.

First, we find that while climate models simulate a weakening of the Hadley cell over the past four decades, most atmospheric reanalyses indicate a considerable strengthening.  Interestingly, that discrepancy does not stem from biases in climate models, but appears to be related to artifacts in the representation of latent heating in the reanalyses.  This suggests that when dealing with the divergent part of the large-scale circulation, reanalyses may be fundamentally unreliable for the calculation of trends, even for trends spanning several decades.

Second, we examine recent trends in eddy heat fluxes at midlatitudes, which are directly linked the equator-to-pole temperature gradient.  In the Northern Hemisphere models and reanalyses are in good agreement. In the Southern Hemisphere, however, models show a weakening while reanalyses indicate a robust strengthening.  In this case, the flaw is found to be with the climate models, which are unable to simulate the observed multidecadal cooling of the Southern Ocean at high-latitudes, and the accompanying increase in sea-ice.  While the biases in modeled Antarctic sea ice trends have been widely reported, our results demonstrates that such biases have important implications well beyond the high Southern latitudes, as they impact the equator-to-pole temperature and, as a consequence, the midlatitude atmospheric circulation.

How to cite: Chemke, R. and Polvani, L.: Recent atmospheric circulation trends: two major flaws in reanalyses and in climate models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5636, https://doi.org/10.5194/egusphere-egu2020-5636, 2020.

The midlatitude storm tracks are one of the most prominent features of the extratropical climate. Much of our understanding of what controls the storm tracks comes from linear theory of baroclinic instability, which explains generally most of the observed response of storms to the general circulation. One example to where this approach is lacking is the Pacific midwinter minimum, a decrease in the eddy activity over the Pacific storm track during midwinter when baroclinicity is at its peak due to extremely strong zonal jets. A similar response was found recently for the Atlantic storm track, in correlation to periods of strong zonal jets. Following on these findings we study the effect of strong zonal jet streams on eddy activity in the midlatitudes. In order to isolate the effect of the jet strength we used several idealized GCM experiments with different jet strengths, and analyze the formed storm track from a Lagrangian perspective by using a storm tracking algorithm. In both the Eulerian analysis and analysis of the tracks a strong reduction of high level eddy activity is prominent, as well as a modest weakening of the low-level activity. The observed response is then further analyzed by studying the connection between the upper and lower wave and how it changes with jet-stream intensity. 

 

How to cite: Hadas, O. and Kaspi, Y.: The Effect of a Strong Zonal Jet Stream on the Temporal Evolution of Baroclinic Eddies, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4648, https://doi.org/10.5194/egusphere-egu2020-4648, 2020.

EGU2020-5917 | Displays | CL4.11

An Eddy-Feedback Model for Propagating Annular Modes

Sandro Lubis and Pedram Hassanzadeh

Some types of extreme events in the extratropics are often associated with anomalous jet behaviors. A well-known example is the annular mode, wherein its variation e.g., the meandering in the north-south direction of the jet, disrupts the normal eastward migration of troughs and ridges. Since the seminal works of Lorenz and Hartmann, the annular mode has been mostly analyzed based on single EOF mode. However, a recent study showed that the first and second leading EOFs are strongly correlated at long lags and are manifestations of a single oscillatory decaying-mode. This means that the first and second leading EOF modes interact and exert feedbacks on each other. The purpose of this study is to develop an eddy-feedback model for the extratropical low-frequency variability that includes these cross-EOF feedbacks to better isolate the eddy momentum/heat flux changes with time- and/or zonal-mean flow. Our results show that, in the presence of the poleward-propagation regime, the first and second leading EOF modes interact and exert positive feedbacks at lags ~10 (~20) days about ~0.07 (~0.16) day-1 in the reanalysis (idealized GCM). This feedback is often ignored in the previous studies, and in fact, the magnitude is nearly double the feedback exerted by the single EOF mode. We found that this apparent positive eddy feedback is a result of the effect of jet pulsation (strengthening and weakening) in zonal flow variability (z2) on the eddy momentum flux due to the meandering in the north-south direction of the jet (m1). A finite-amplitude eddy-mean flow interaction diagnostic has been performed to demonstrate the dynamics governing the positive feedback in the propagating regime of the annular modes. It is shown that the poleward propagation is caused by an orchestrated combination of equatorward propagation of wave activity (baroclinic process), nonlinear wave breaking (barotropic processes), and radiative relaxation. The latter two processes follow the first one, and as such, the meridional propagation of Rossby wave activity (likely generated by an enhanced baroclinic wave source at a low level) is the central mechanism. Finally, our model calculations suggest the rule of thumb that the propagating annular modes (i.e., when EOF1 and EOF2 together represent quasi-periodic poleward propagation of zonal-mean flow anomalies) exist if the ratio of the fractional variance and decorrelation time-scale of EOF2 to that of EOF1 exceeds 0.5 or the two leading PCs showing maximum correlations at larger lags. These criteria can be used to assess the predictability of preferred modes of extratropical circulation in GCMs. The present study advances and potentially transforms the state of our understanding of the low-frequency variability of the extratropical circulation.

How to cite: Lubis, S. and Hassanzadeh, P.: An Eddy-Feedback Model for Propagating Annular Modes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5917, https://doi.org/10.5194/egusphere-egu2020-5917, 2020.

EGU2020-682 | Displays | CL4.11

A Quantitative Assessment of the Impact of Increase in CO2 Concentration on Baroclinic Instability

Mahshid Kaviani, Farhang Ahmadi-Givi, Ali. R. Mohebalhojeh, and Daniel Yazgi

Interaction between CO2 and atmospheric radiation plays a significant part in changing horizontal and vertical temperature distributions through which it can affect the mid-latitude atmospheric dynamics. The baroclinic instability, which is the source of large-scale eddy formation in mid-latitudes, depends on meridional and vertical eddy fluxes of heat. In addition, the eddy available potential energy, which comes from the mean available potential energy, relies on meridional temperature gradient and provides eddy growth by conversion to eddy kinetic energy. The aim of this study is to determine how the amount of CO2 concentration present in the atmosphere affects the baroclinic instability and formation of large-scale eddies in mid-latitudes. In contrast with what is common in climatological studies, the response of atmospheric flows to CO2 radiative effects has been investigated for a short period relevant for the duration of baroclinic instability. For this purpose, the RRTMG radiative parameterization scheme has been coupled with the DCASL dry dynamical core. The Jablonowski–Williamson test is used to carry out baroclinic instability simulations for five cases with the same initialization but different CO2 concentrations (0, 250, 500, 750 and 1000 ppm). The impacts of different CO2 concentrations on eddies growth, mean flow and eddy-mean flow interaction are discussed. Results show that increase in the concentration of CO2 decreases the meridional temperature gradient and thus reduces the eddy kinetic energy at lower atmospheric levels. Also, increase in CO2 concentration has a considerable impact on the growth rate, meridional and vertical eddy propagation and jet intensification. It is also interesting to note that the CO2 radiative impacts on baroclinic instability are saturated at 750 ppm.

How to cite: Kaviani, M., Ahmadi-Givi, F., Mohebalhojeh, Ali. R., and Yazgi, D.: A Quantitative Assessment of the Impact of Increase in CO2 Concentration on Baroclinic Instability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-682, https://doi.org/10.5194/egusphere-egu2020-682, 2020.

There is a growing concern that human-induced climate change has been affecting weather systems. However, robust observational evidences that confirm the links between global warming and synoptic phenomena at the global scale are lacking. Here we reveal robust covarying signals between poleward temperature gradient and baroclinic life cycle of synoptic (1-10 days) eddies under global warming. We note that the changes in temperature structure in Northern Hemisphere winter and summer in the past decades are different. In boreal winter, the tropospheric warming has been larger in tropical upper troposphere and around 30°N than for the midlatitude (30-60°N). This inhomogeneous warming resulted in the enhancement of poleward temperature gradient in the subtropical upper troposphere and in the lower midlatitude (30-45°N). We observed correlated increasing trends in the entire baroclinic life cycle of synoptic eddies — including eddy fluxes of heat and momentum, and zonal mean jet — associated with steepened poleward temperature gradients in these regions in the winter Northern Hemisphere over the past four decades. By contrast, in the summer Northern Hemisphere, the overall tropospheric warming over the mid- to high-latitude land areas has been accompanied by weakly reduced synoptic eddy activities and zonal mean flow. Our findings suggest that if greenhouse gas–induced warming continue to change the atmospheric thermal structure as projected in a warming climate, extratropical synoptic disturbances and large-scale circulations may change accordingly.

How to cite: Hsu, P.-C. and Hsu, H.-H.: Coherent changes in large-scale thermal structure and baroclinic life cycle of synoptic eddies in the Northern Hemisphere under global warming , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13290, https://doi.org/10.5194/egusphere-egu2020-13290, 2020.

EGU2020-3025 | Displays | CL4.11

The past and future of flow blocking around Greenland: connections between extremes

Bradford Barrett and Gina Henderson

Atmospheric flow blocking can be defined as a quasi-stationary center of high pressure that deflects traveling cyclones from their usual storm tracks. Over Greenland, flow blocking can result in a large-scale reversal of the meridional geopotential height gradient. Blocking often produces a strong equatorward deflection of polar air on the eastern flank of the anticyclone, and for Europe, blocking over or near Greenland can lead to severe cold episodes in winter and severe droughts and heat waves in summer. Moreover, because blocking is associated with an amplification of the meridional flow structure, it can be connected to extremes in poleward moisture transport. When these temperature and moisture extremes occur over Greenland itself, they exert significant stresses on the surface ice sheet. For these reasons, it is important to examine atmospheric blocking, both historically and in future climates.

There have been many metrics created to identify and quantify atmospheric flow blocking. Here, we use one such metric, the Greenland Blocking Index (GBI), to examine atmospheric flow blocking over and around Greenland and link that blocking to moisture transport. Moisture transport was calculated at each grid point in the ERA-Interim reanalysis using the integrated vapor transport (IVT) method applied between 200 and 1000 hPa. The GBI was calculated daily for the period 1948-present by averaging the 500-hPa height field in the NCEP/NCAR reanalysis over 80°E-20°E and 60°N-80°N. An IVT index was calculated from 1980-present by averaging IVT at each grid point over a North Atlantic region encompassing Greenland (85°E-15°E and 55°N-80°N). Both GBI and IVT were also examined in the historical NCAR CESM run of the Climate Model Intercomparison Project 6 (CMIP6), but over a much longer time record (1850-2015). In both datasets, extreme instances of blocking and IVT were examined at the 90th, 95th, 97th, and 99th percentiles, for both summer (JJA) and winter (DJF) seasons. Blocking frequency was found to increase in the latter half of the period in both datasets and over both time records. Moreover, a time lag was found between the instances of extreme blocking events and above-average IVT: high moisture transport more frequently preceeded instances of extreme blocking than lagged after it (by an average of 3 days). Implications of these results for Greenland ice mass balance will be explored in the presentation. 

How to cite: Barrett, B. and Henderson, G.: The past and future of flow blocking around Greenland: connections between extremes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3025, https://doi.org/10.5194/egusphere-egu2020-3025, 2020.

EGU2020-3762 | Displays | CL4.11

Intraseasonal Transitions of the Wintertime Pacific Jet Stream

Maria Madsen and Jonathan Martin

The deficiency in predictability at subseasonal-to-seasonal timescales, as compared to prediction at conventional weather prediction timescales, is significant. Intraseasonal variability of atmospheric features like the jet stream, occurring within this gap, lead to extreme weather events that present considerable hazards to society. As jets are an important feature at the interface of the large-scale general circulation and the life cycle of individual weather systems, there is strong incentive to more comprehensively understand their variability.

The wintertime Pacific jet manifests its intraseasonal variability in two predominant modes: a zonal extension or retraction and a meridional shift by as much as 20° of the jet exit region. These two leading modes are associated with basin-scale anomalies in the Pacific that directly impact weather in Hawaii and continental North America. Although recent work has demonstrated the impact intramodal changes of the Pacific jet have on large-scale structure, sensible weather phenomena, and forecast skill in and around the vast North Pacific Basin, the transitions between the leading modes have hardly been considered and, therefore, are poorly understood. Consequently, this work examines the nature and predictability of transitions between modes of wintertime Pacific jet variability as well as their associated synoptic environments.

We apply two distinct but complementary statistical analyses to 70 cold seasons (NDJFM 1948/49-2017/18) of daily 250-hPa zonal winds from the NCEP/NCAR Reanalysis to investigate such transitions. Empirical orthogonal analysis (EOF)/principal component (PC) analysis is used to depict the state of the daily Pacific jet as a point in a two dimensional phase space defined by the two leading modes.  Supporting this technique is a self-organizing maps (SOMs) analysis that identifies non-orthogonal, synoptically recurring patterns of the Pacific jet. Together, these analyses show that there are, in fact, preferred transitions between these leading modes of variability. Composite and individual case analyses of preferred transition evolutions provides new insight into the synoptic-scale environments that drive Pacific jet variability.

How to cite: Madsen, M. and Martin, J.: Intraseasonal Transitions of the Wintertime Pacific Jet Stream, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3762, https://doi.org/10.5194/egusphere-egu2020-3762, 2020.

EGU2020-6804 | Displays | CL4.11

The representation of Northern Hemisphere blocking in current global climate models

Reinhard Schiemann, Panos Athanasiadis, David Barriopedro, Francisco Doblas-Reyes, Katja Lohmann, Malcolm J. Roberts, Dmitry Sein, Christopher D. Roberts, Laurent Terray, and Pier Luigi Vidale

Global Climate Models (GCMs) are known to suffer from biases in the simulation of atmospheric blocking, and this study provides an assessment of how blocking is represented by the latest generation of GCMs. It is evaluated (i) how historical CMIP6 (Climate Model Intercomparison Project Phase 6) simulations perform compared to CMIP5 simulations, and (ii) how horizontal model resolution affects the simulation of blocking in the CMIP6-HighResMIP (PRIMAVERA) model ensemble, which is designed to address this type of question. Two blocking indices are used to evaluate the simulated mean blocking frequency and blocking persistence for the Euro-Atlantic and Pacific regions in winter and summer against the corresponding estimates from atmospheric reanalysis data. There is robust evidence that CMIP6 models simulate blocking frequency and persistence better than CMIP5 models in the Atlantic and Pacific and in winter and summer. This improvement is sizeable so that, for example, winter blocking frequency in the median CMIP5 model in a large Euro-Atlantic domain is underestimated by 32 % using the absolute geopotential height (AGP) blocking index, whereas the same number is 19 % for the median CMIP6 model. As for the sensitivity of simulated blocking to resolution, it is found that the resolution increase, from typically 100 km to 20 km grid spacing, in the PRIMAVERA models, which are not re-tuned at the higher resolutions, benefits the mean blocking frequency in the Atlantic in winter and summer, and in the Pacific in summer. Simulated blocking persistence, however, is not seen to improve with resolution. Our results are consistent with previous studies suggesting that resolution is one of a number of interacting factors necessary for an adequate simulation of blocking in GCMs. The improvements reported in this study hold promise for further reductions in blocking biases as model development continues.

How to cite: Schiemann, R., Athanasiadis, P., Barriopedro, D., Doblas-Reyes, F., Lohmann, K., Roberts, M. J., Sein, D., Roberts, C. D., Terray, L., and Vidale, P. L.: The representation of Northern Hemisphere blocking in current global climate models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6804, https://doi.org/10.5194/egusphere-egu2020-6804, 2020.

EGU2020-4589 | Displays | CL4.11

North Atlantic – European weather regimes in a changing climate: present and future

Luise J. Fischer, Dominik Büeler, Christian M. Grams, Urs Beyerle, David N. Bresch, and Heini Wernli

We present findings from an analysis of weather regimes over the North Atlantic and Europe in present and future climate conditions. Weather regimes strongly influence the statistical distribution of surface weather variables. We use a recently developed, all-season North Atlantic - European weather regime classification with seven regimes. These regimes were originally identified in ERA-Interim reanalyses and, in this study, we investigate how they are represented in climate simulations using the CESM1 large ensemble for present-day and future (RCP8.5) climate conditions. With these regimes, the classification of the flow conditions in the considered region goes beyond the classical categorization according to the North Atlantic oscillation index; the weather regimes explicitly capture different flavors of strong zonal flows and the occurrence of blocking over Greenland, Scandinavia, and Central Europe, respectively. In ERA-Interim they explain 70% of the variability in geopotential height at 500 hPa year-round. Our analysis quantifies how well CESM1 represents the statistics of the weather regimes in present-day climate and how strongly their frequencies change in the future climate scenario. In addition, we identify statistical relationships between weather regimes and their resulting impacts on spatial patterns of surface variables such as precipitation. We compare those patterns and characteristics of the weather regimes identified in ERA-Interim to their characteristics in simulations of present and future climate conditions.

This analysis leads to insight into the representation of and changes in atmospheric circulation in one particular climate model, and, at the same time, it quantifies how well the climate model captures the observed link between surface weather and weather regimes. This approach contributes to improving our understanding of atmospheric circulation changes and their impact on a regional scale, and it may benefit the interpretation and communication of climate projections.

How to cite: Fischer, L. J., Büeler, D., Grams, C. M., Beyerle, U., Bresch, D. N., and Wernli, H.: North Atlantic – European weather regimes in a changing climate: present and future, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4589, https://doi.org/10.5194/egusphere-egu2020-4589, 2020.

A common model bias in comprehensive climate models used in climate assessements such as the Coupled Model Intercomparison Project is a double inter-tropical convergence, with excessive precipitation in the tropical eastern South Pacific. In addition, the current generation of climate models cannot adequately resolve the dynamics of the Agulhas Current, and in particular the relative fraction of the Current that leaks into the Atlantic as opposed to retroflecting back into the Indian Ocean. The intermodel spread in the magnitude of the double ITCZ bias is   significantly correlated with the strength and phasing of   SH stationary waves in the CMIP archive, with models with a smaller bias generally showing more realistic stationary waves. An intermediate complexity moist General Circulation Model is used to demonstrate the causality of this connection: by fluxing heat out of  the tropical South Pacific Ocean, we can capture the  responses seen in CMIP5 models.  Finally, the same intermediate complexity moist General Circulation Model is used to demonstrate that an overly diffuse Agulhas leads to an equatorward shift of the Southern Hemisphere jet by more than  3degrees, and indeed an overly equatorward Southern Hemisphere jet is a common model bias in most CMIP5 models.

How to cite: Garfinkel, C., White, I., Gerber, E., and Jucker, M.: The impact of biases in the tropical South Pacific and near the Agulhaus Current on the large-scale Southern Hemisphere circulation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5124, https://doi.org/10.5194/egusphere-egu2020-5124, 2020.

EGU2020-2462 | Displays | CL4.11

Moist static energy solves storm track intensity puzzle for Snowball Earth

Tiffany A Shaw and Robert J Graham

Modern theories of the midlatitude storm tracks connect their intensity to surface baroclinicity (latitudinal surface temperature gradient). However, simulations show storm tracks were weaker during past cold, icy climates relative to the modern climate even though surface baroclinicity was stronger. We revisit this surface baroclinicity-intensity puzzle for Snowball Earth using simulations across the climate model hierarchy. Here we show the Moist Static Energy framework for storm track intensity solves the puzzle for Snowball Earth. It connects the weaker storm track to the increase of surface albedo, decrease of latent heat flux and decrease of latitudinal surface Moist Static Energy gradient. Weaker intensity can be predicted assuming a surface ice albedo and zero latent heat flux (large Bowen ratio) everywhere in Snowball Earth. The weaker storm track is also consistent with weaker Mean Available Potential Energy (weaker upper-tropospheric baroclinicity), however that cannot be predicted. Overall, the exotic Snowball Earth climate reveals storm track intensity follows the surface Moist Static Energy gradient and not surface baroclinicity. Our insights may help resolve the puzzle in other climates such as the Last Glacial Maximum.

How to cite: Shaw, T. A. and Graham, R. J.: Moist static energy solves storm track intensity puzzle for Snowball Earth, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2462, https://doi.org/10.5194/egusphere-egu2020-2462, 2020.

EGU2020-20184 | Displays | CL4.11

How Global Warming Changes the Difficulty of Synoptic Weather Forecasting

Sebastian Scher and Gabriele Messori

Little is known on whether and how global warming may affect the atmosphere's predictability and thus our ability to produce accurate weather forecasts. Here, we combine a climate and an ensemble weather prediction model to show that, in a business-as-usual 21st century setting, global warming could significantly change the predictability of the atmosphere, defined here via the expected error of weather predictions. Predictability of synoptic weather situations could significantly increase, especially in the Northern Hemisphere. This can be explained by a decrease in the meridional temperature gradient, which seems to control the inter-annual variability of atmospheric predictability. Contrarily, summertime predictability of weekly rainfall sums might significantly decrease in most regions.

How to cite: Scher, S. and Messori, G.: How Global Warming Changes the Difficulty of Synoptic Weather Forecasting, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20184, https://doi.org/10.5194/egusphere-egu2020-20184, 2020.

EGU2020-9745 | Displays | CL4.11

Drivers of biases in the extratropical storm tracks in CMIP6

Matthew Priestley, Duncan Ackerley, Jennifer Catto, Kevin Hodges, Ruth McDonald, and Robert Lee

Extratropical cyclones are the leading driver of the day-to-day weather variability and wintertime losses for Europe. In the latest generation of coupled climate models, CMIP6, it is hoped that with improved modelling capabilities come improvements in the structure of the storm track and the associated cyclones. Using an objective cyclone identification and tracking algorithm the mean state of the storm tracks in the CMIP6 models is assessed as well as the representation of explosively deepening cyclones. Any developments and improvements since the previous generation of models in CMIP5 are discussed, with focus on the impact of model resolution on storm track representation. Furthermore, large-scale drivers of any biases are investigated, with particular focus on the role of atmosphere-ocean coupling via associated AMIP simulations and also the influence of large-scale dynamical and thermodynamical features.

How to cite: Priestley, M., Ackerley, D., Catto, J., Hodges, K., McDonald, R., and Lee, R.: Drivers of biases in the extratropical storm tracks in CMIP6, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9745, https://doi.org/10.5194/egusphere-egu2020-9745, 2020.

EGU2020-4001 | Displays | CL4.11

Do CMIP5 emergent constraints on the large scale atmospheric circulation work to constrain CMIP6 projections?

Isla Simpson, Fances Davenport, Abdullah Al Fahad, and Flavio Lehner

Accurate future projections of the climate system are hindered by a number of sources of uncertainty: forcing uncertainty, internal variability and model structural uncertainty. An ``Emergent constraint'' is a technique that has been devised to reduce projection uncertainties arising from the model structural component. It consists of a statistical relationship (across a model ensemble) between a model’s representation of some aspect of the present day climate and its future projected climate change. This relationship can then be used to imply the future projected change, given the observed value of that present-day aspect. However, in order for the emergent constraint to be considered robust it must: (a) be accompanied by a physical mechanism and (b) be robust to out-of-sample testing.

 

In prior Coupled Model Intercomparison Projects (CMIP), in particular CMIP5, a number of emergent constraints on the large scale atmospheric circulation were proposed, with implications for regional hydroclimate change. These include: (1) a relationship between a model’s climatological jet latitude and its future projected poleward shift in the Southern Hemisphere; (2) a relationship between a model’s future projected wintertime circulation and hydroclimate change over North America and its climatological representation of stationary waves in the North Pacific; and (3) a relationship between a model’s future projected precipitation change over California and its representation of the relationship between ENSO and California precipitation. Constraints (2) and (3) actually imply opposite constraints on California precipitation changes for the real world, which speaks to the need for a deeper understanding of these emergent constraints and a comprehensive assessment of their robustness.

 

While the CMIP6 archive does not represent a true ``out-of-sample’’ test of CMIP5 emergent constraints, it does provide us with a new dataset composed of new and/or more advanced models in which to assess their robustness. This presentation will review the proposed emergent constraints on the large-scale atmospheric circulation and assess whether or not they are robust across both the CMIP5 and CMIP6 ensembles. Their potential for constraining regional hydroclimate projections will also be discussed.

 

How to cite: Simpson, I., Davenport, F., Al Fahad, A., and Lehner, F.: Do CMIP5 emergent constraints on the large scale atmospheric circulation work to constrain CMIP6 projections?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4001, https://doi.org/10.5194/egusphere-egu2020-4001, 2020.

EGU2020-10820 | Displays | CL4.11

Southern Hemisphere jet stream: emergent constraints on future shift in zonally varying framework

Camille Li, Fumiaki Ogawa, Martin King, Jerry Tjiputra, Bjørnar Jensen, and Klaus Johannsen

IPCC climate models (CMIP3/5) predict a poleward shift of the Southern Hemisphere (SH) jet stream under global warming, with a large spread across the models. Efforts to find emergent constraints for the future jet shift (response) have relied on the simulated present-day jet position (observable). However, this has been investigated primarily in a zonal-mean framework, which averages out important zonal asymmetries. In this study, we revisit the problem allowing for variations in the longitude, height and season of the response to gain a better physical understanding of the nature of the future jet shift in individual models. Results from a manual data analysis will help guide an exploration of the problem using a big data approach, in particular, the application of a genetic algorithm that finds optimal solutions based on iterative random selection within large sample data spaces.

How to cite: Li, C., Ogawa, F., King, M., Tjiputra, J., Jensen, B., and Johannsen, K.: Southern Hemisphere jet stream: emergent constraints on future shift in zonally varying framework, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10820, https://doi.org/10.5194/egusphere-egu2020-10820, 2020.

Intensification of extreme precipitation and weather events are some of the projections under a 2°C average global temperature increase scenario. Rossby wave trains may be triggered by anomalous tropical precipitation through the interaction of the associated upper level divergent wind and the vorticity gradients of the subtropical jet streams. In this way, anomalous tropical precipitation can influence weather patterns in the Northern Hemisphere. Owing to the quasi-linearity of this teleconnection pattern, it may be studied statistically as a series of signal-response functions. Here the anomalous precipitation events are treated as input forcings and the resulting geopotential height anomalies are the output signals. Through calculating the response functions we are able to realistically capture the 250 hPa geopotential height response to a step-like change in precipitation over the Maritime Continent or the eastern Indian Ocean during the boreal winter. When examining these responses using the same forcing for a selection of CMIP5 models, we find that there is a large inter-model spread, owing to differences in the model basic state. Since these teleconnection patterns are not faithfully represented in climate models, this can obscure our ability to develop realistic projections of atmospheric circulation and extreme weather. We discuss the potential of the linear response theory method to provide improved projections for Northern Hemisphere climate variability.

How to cite: Senior, N., Joshi, M., Matthews, A., and Deb, P.: A new method for studying the extratropical response to tropical precipitation anomalies and its role in improving projections of Northern Hemisphere climate variability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11911, https://doi.org/10.5194/egusphere-egu2020-11911, 2020.

EGU2020-13085 | Displays | CL4.11

A review of Aleutian Low variability for the last 7,500 years using pan-Pacific delta 18O records

Kana Nagashima, Jason Addison, and Naomi Harada

   The North Pacific Ocean is the largest geographic feature in the Northern Hemisphere and its interactions with the overlying atmosphere drives critical components of the global climate system. The Aleutian Low (AL), the semi-permanent atmospheric low-pressure system centered near the Aleutian Islands, is dynamically linked to environmental change in the North Pacific and surrounding continental areas. However, the multi-centennial and longer time-scale history of the AL during the Holocene is poorly understood.

   In this study, AL variability since 7.5 ka was examined by applying principal component analysis (PCA) to published δ18O data of sedimentary calcite, peat, and speleothem deposits (n = 7) from western North America. Extracted Principal Component 1 (PC1) is characterized by multi-centennial to millennial-scale oscillations, with a spatial loading pattern that suggests PC1 reflects intensification and westward shifts of the AL during ca. 7.3–7.1, 6.3–5.2, 3.6–3.3, 2.9–2.7, 2.6–2.1, 1.8–1.2 and 0.5–0.3 ka. The timing of these shifts are coeval to periods characterized by large meanderings of the Westerly Jet (WJ) Stream over East Asia and solar activity minima, which together suggest that AL variability is related to declines in solar irradiance through its interactions with the WJ. In contrast, PC2 represents a dramatic change between the middle and late Holocene, and appears to reflect long-term intensified AL conditions related to orbitally-driven El Niño–Southern Oscillation intensification between the middle to late Holocene at ~4.5 ka. These findings are critically important for understanding background natural climate variability during the Holocene.

How to cite: Nagashima, K., Addison, J., and Harada, N.: A review of Aleutian Low variability for the last 7,500 years using pan-Pacific delta 18O records, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13085, https://doi.org/10.5194/egusphere-egu2020-13085, 2020.

EGU2020-16108 | Displays | CL4.11

Revisiting the relationship between dynamical sensitivity and climate sensitivity in the Southern hemisphere

Thomas Wood, Amanda Maycock, Christine McKenna, Andreas Chrysanthou, John Fyfe, and Francois Engelbrecht

The Southern Annular Mode (SAM) is the dominant mode of midlatitude atmospheric circulation variability in the Southern hemisphere. In the future, the SAM trend is expected to be the net result of opposing effects from increasing greenhouse gases (GHG) and ozone recovery. Different greenhouse gas scenarios, which induce different rates of surface and atmospheric temperature change, are therefore associated with different future SAM trends (Barnes et al., 2014). Since the magnitude of warming due to GHGs is an important component of this response, one might expect to find a relationship between equilibrium climate sensitivity (ECS) and future Southern hemisphere circulation trends. In CMIP5, the relationship between the SAM and the level of tropospheric warming across models was found to be strongest in the summer and autumn and could explain around 20% of the intermodel spread (Grise and Polvani, 2014). The spread is more strongly correlated with differences in meridional temperature gradients (Harvey et al., 2014).

Many of the latest CMIP6 models show a larger equilibrium climate sensitivity (ECS) of up to ~5.5 K (Forster et al., 2019) compared to a maximum of ~4.7 K in CMIP5. This raises the important question of how a higher level of warming affects projections of the SH midlatitude circulation. In this study, we examine the response of the SAM in CMIP6 models and quantify its relationship to ECS and temperature gradients. Our starting hypothesis is that stronger surface warming will induce a larger increase in tropical free tropospheric temperatures, and hence all being equal, a larger tropics-to-pole temperature gradient and a more positive SAM trend. However, results show that despite the higher level of warming in the CMIP6 models, there is a smaller positive trend in SAM index than in CMIP5 indicating a different relationship between warming and midlatitude circulation trends in CMIP6. We attempt to explain potential reasons for these differences.

References:

Barnes, E.A., N.W. Barnes, and L.M. Polvani, 2014: Delayed Southern Hemisphere Climate Change Induced by Stratospheric Ozone Recovery, as Projected by the CMIP5 Models. J. Climate, 27, 852–867, https://doi.org/10.1175/JCLI-D-13-00246.1

Forster, P.M., Maycock, A.C., McKenna, C.M. et al. (2019), Latest climate models confirm need for urgent mitigation. Nat. Clim. Chang. (2019) doi:10.1038/s41558-019-0660-0

Grise, K. M., and Polvani, L. M. (2014), Is climate sensitivity related to dynamical sensitivity? A Southern Hemisphere perspective, Geophys. Res. Lett., 41, 534– 540, doi:10.1002/2013GL058466.

Harvey, B.J., Shaffrey, L.C. & Woollings, T.J. (2014) Equator­-to-­pole temperature differences and the extra­tropical storm track responses of the CMIP5 climate models, Clim Dyn, 43: 1171. https://doi.org/10.1007/s00382-013-1883-9

How to cite: Wood, T., Maycock, A., McKenna, C., Chrysanthou, A., Fyfe, J., and Engelbrecht, F.: Revisiting the relationship between dynamical sensitivity and climate sensitivity in the Southern hemisphere, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16108, https://doi.org/10.5194/egusphere-egu2020-16108, 2020.

EGU2020-22522 | Displays | CL4.11

Connections between climate sensitivity and the extratropical circulation

Luke Davis, David Thompson, and Thomas Birner
The dry dynamical core represents one of the simplest possible numerical models for studying the response of the extratropical circulation to climate change. In the model, the circulation is forced by relaxing temperature to a notional “equilibrium” using linear damping. The linear damping coefficient plays an essential role in governing the structure of the circulation. But despite decades of research with the dry dynamical core, the role of the damping coefficient in governing the circulation has received relatively little scrutiny.

In this work, we systematically vary the damping coefficient in a dry dynamical core in order to understand how the amplitude of the damping influences extratropical dynamics. Critically, we prove that the local climate feedback parameter is proportional to the damping coefficient – that is, the damping timescale is a measure of climate sensitivity for the dry atmosphere. The key finding is that the steady-state extratropical circulation responds to changes in this climate sensitivity.

Longer damping timescales (i.e. higher climate sensitivities) lead to a less dynamically active extratropical circulation, stronger and more persistent annular modes, and equatorward shifts in the jet. When perturbed with climate change-like forcings, changing the damping timescale can also change the dynamical response to the forcing. We argue that understanding the response of the circulation to climate change is critically dependent on understanding its climate sensitivity, and consider how climate sensitivity might be inferred from its effect on the circulation in the dry model and more complex general circulation models.

How to cite: Davis, L., Thompson, D., and Birner, T.: Connections between climate sensitivity and the extratropical circulation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22522, https://doi.org/10.5194/egusphere-egu2020-22522, 2020.

EGU2020-4961 | Displays | CL4.11

Polar vortex regimes in a simple general circulation model

Roland Walz, Hella Garny, and Thomas Birner

A dry dynamical-core model is used to investigate the regime behavior of the polar vortex under the influence of tropical upper-tropospheric warming. Up to 5 K temperature increase in this region, the polar vortex strength and variability hardly changes. Only for temperature increases above 8 K the polar night jet speeds up by approximately 20 m s−1 and the probability of sudden stratospheric warmings is strongly reduced.

A comparison of climatological-mean differences of the zonal-mean zonal winds between the two regimes and the first empirical orthogonal function of the zonal-mean zonal wind closest to the regime transition at around 7.5 K temperature increase reveals that the system oscillates between both regimes at the regime transition. Every regime is present for a long time accounting for the peaked autocorrelation time scale being distinctive of a regime transition. From a dynamical point of view the strong polar vortex regime is characterized by less negative Eliassen-Palm (EP) flux divergence in the stratosphere and an equatorward refraction of EP flux in the midlatitudes compared to the weak polar vortex regime.

In order to quantify the influence of the polar vortex on the tropospheric circulation during tropospheric warming, another set of tropical upper-tropospheric heating simulations without a polar vortex is performed. This reveals that the latitudes of the tropospheric jets in both sets of simulations coincide for tropical upper-tropospheric warmings up to 5 K, or equivalently, when the polar vortex is in its weak regime. However, when the polar vortex starts to transition to the strong regime, i.e. for tropospheric warmings above 5 K, the poleward contraction of the tropospheric jet is strongly enhanced compared to the set of simulations without polar vortex.

How to cite: Walz, R., Garny, H., and Birner, T.: Polar vortex regimes in a simple general circulation model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4961, https://doi.org/10.5194/egusphere-egu2020-4961, 2020.

EGU2020-19444 | Displays | CL4.11

Impacts of global re-/afforestation and deforestation on large scale atmospheric circulation

Iris Manola, Dim Coumou, Andrea Alessandri, Edouard Davin, Suqi Guo, Felix Havermann, Steven De Hertog, Quentin Lejeune, Inga Menke, Julia Pongratz, Carl Schleussner, Sonia Seneviratne, and Wim Thiery

Land cover and land management (LCLM) changes have a high potential to influence the biogeophysical and biogeochemical earth system processes. The interaction of soil and vegetation with the atmosphere alternates the water, energy and momentum balance, in turn affecting the climate locally, as well as the climate of distant regions through teleconnection pathways. This, among others, might benefit or oppose risks to local and global breadbasket regions, impacting the crop yields.

In this study, we conduct model experiments to assess the local and remote impact of LCLM changes, in particular global re-/afforestation and deforestation, with a focus on the large-scale boreal summer atmospheric circulation. We hypothesize that due to the dominant role of land-atmosphere feedbacks in this season, robust dynamical transformations take place due to the LCLM changes. The idealized model experiments consist of three fully coupled Earth System Models (EC-EARTH, MPI-ESM and CESM) that run under constant 2015 greenhouse forcing for 150 years. Globally the LCLM changes go through a sequence of unchanged grid boxes in a checkerboard approach as recent studies have done, in order to accurately separate the local from the non-local effects.

How to cite: Manola, I., Coumou, D., Alessandri, A., Davin, E., Guo, S., Havermann, F., De Hertog, S., Lejeune, Q., Menke, I., Pongratz, J., Schleussner, C., Seneviratne, S., and Thiery, W.: Impacts of global re-/afforestation and deforestation on large scale atmospheric circulation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19444, https://doi.org/10.5194/egusphere-egu2020-19444, 2020.

Winter surface air temperature (SAT) over North America exhibits pronounced variability on sub-seasonal-to-interdecadal timescales, but its causes are not fully understood. Here observational and reanalysis data from 1950-2017 are analyzed to investigate these causes. Detrended daily SAT data reveals a known warm-west/cold-east (WWCE) dipole over midlatitude North America and a cold-north/warm-south (CNWS) dipole over eastern North America. It is found that while the North Pacific blocking (PB) is important for the WWCE and CNWS dipoles, they also depend on the phase of the North Atlantic Oscillation (NAO). When a negative-phase NAO (NAO-) concurs with PB, the WWCE dipole is enhanced (compared with the PB alone case) and it also leads to a warm north/cold south dipole anomaly in eastern North America; but when PB occurs with a positive-phase NAO (NAO+), the WWCE dipole weakens and the CNWS dipole is enhanced. In particular, the WWCE dipole is favored by a combination of eastward-displaced PB and NAO- that form a negative Arctic Oscillation. Furthermore, a WWCE dipole can form over midlatitude North America when PB occurs together with southward-displaced NAO+.The PB events concurring with NAO- (NAO+) and SAT WWCE (CNWS) dipole are favored by the El Nio-like (La Nia-like) SST mode, though related to the North Atlantic warm-cold-warm (cold-warm-cold) SST tripole pattern. It is also found that the North Pacific mode tends to enhance the WWCE SAT dipole through increasing PB-NAO- events and producing the WWCE SAT dipole component related to the PB-NAO+ events because the PB and NAO+ form a more zonal wave train in this case.

How to cite: Luo, B., Luo, D., Dai, A., and Wu, L.: North Hemispheric winter air temperature variability and its linkage to North Pacific and North Atlantic SST modes?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16, https://doi.org/10.5194/egusphere-egu2020-16, 2020.

EGU2020-186 | Displays | CL4.11

A multivariate assessment of climate change projections over South America using CMIP5 models

Paul Loikith, Valerie Thaler, Luana Albertani Pampuch, C. Roberto Mechoso, Armineh Barkhordarian, and Huikyo Lee

A multivariate assessment of climate model projections over South America from the CMIP5 archive is presented. Change in near-surface temperature, precipitation, evapotranspiration, integrated water vapor transport (IVT), sea level pressure, and wind at multiple pressure levels is quantified across the multi-model suite and an assessment of model-to-model agreement on projected change performed. All models project warming by the mid- and late-21st century throughout the continent, with the highest magnitude projected over tropical regions. The CMIP5 models are in strong agreement that precipitation will decrease in all seasons over portions of Patagonia, especially along the northern portions of the current-climate mid-latitude storm track. This is consistent with a robustly projected poleward shift of the Pacific extratropical high and mid-latitude storm track indicated by a systematic increase in sea level pressure and decrease in westerly wind over Patagonia. Decreased precipitation for the months of September, October, and November is also projected, with strong model agreement, over portions of northern and northeastern Brazil, coincident with decreases in sea level pressure and increases in evapotranspiration. IVT is broadly projected to decrease over southern South America, coincident with the projected poleward shift of the mid-latitude storm track indicators, with increases projected in the vicinity of the South Atlantic Convergence Zone in austral spring and summer. Further decomposition of the thermodynamic and dynamic components to this change in IVT indicate that the projected decreases in the mid-latitudes are primarily driven by changes in circulation (i.e. dynamic) while the sub-tropical and tropical changes have a predominantly thermodynamic origin. Results provide a comprehensive picture of climate change across South America and highlight where projections should be interpreted with the most confidence.

How to cite: Loikith, P., Thaler, V., Albertani Pampuch, L., Mechoso, C. R., Barkhordarian, A., and Lee, H.: A multivariate assessment of climate change projections over South America using CMIP5 models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-186, https://doi.org/10.5194/egusphere-egu2020-186, 2020.

Global climate changes particularly observed in the Arctic region are influenced on the formation of circulation in the atmosphere. The planetary high-altitude frontal zone for midlatitudes has analyzed from 1991 to 2019 in the summer period, on July. Deviations poleward from the normal of high-altitude frontal zone and jet stream have observed, particularly marked over the Eurasia during last decades. Changes in the form and decreasing of intensity of high-altitude jet streams are noted, which further contribute to the formation of blocking anticyclones and increasing in the incidence of anomalous weather events.

The case of July 2018 is presented in this work. The anomalous high temperature in Scandinavia and north area of the European part of Russia have observed due to formation of the blocking over this territory. The main reason for the formation of blocking is the instability of the jet stream. The characteristics (intensity, position relative to the North Pole and form) of the arctic and midlatitudes jet stream have analyzed.

How to cite: Durneva, E.: Variability of planetary high-altitude frontal zone and jet stream in the Northern hemisphere from 1991 to 2019 in the summer period, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-229, https://doi.org/10.5194/egusphere-egu2020-229, 2020.

EGU2020-1796 | Displays | CL4.11

Mode-Decomposed Equation Diagnosis for Atmospheric Blocking Development

Masaru Inatsu, Takuya Aikawa, and Naoto Nakano

This paper proposes a new method to identify atmospheric blocking development without the time filtering used in previous studies. A mode-decomposed vorticity equation is formulated from the principal components (PCs) of 500-hPa geopotential height by applying a new idea; the orthonormality of PCs allows any variable to be decomposed into a projection corresponding to the PCs. To test this, sectorial blocking episodes in Northern Hemisphere winter were identified by Barriopedro’s method. A blocking index was defined for each longitudinal range as the linear combination of the 10 largest PCs by means of the composite for the blocking episodes. Blocking development was diagnosed, in terms of the low modes of PC1–PC10 and the high modes of PC11–PC50. The results suggest that the intensification of blocking over the North Pacific and Eurasia is associated with nonlinear interaction among high modes, whereas the intensification (decay) of North Atlantic blocks is related mainly to enhanced nonlinear interaction among low-frequency (high-frequency) eddies. This main result is insensitive to the choice of definition for blocks and the choice of the mode separation boundary.

How to cite: Inatsu, M., Aikawa, T., and Nakano, N.: Mode-Decomposed Equation Diagnosis for Atmospheric Blocking Development, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1796, https://doi.org/10.5194/egusphere-egu2020-1796, 2020.

EGU2020-2703 | Displays | CL4.11

Nonlinearity in the Tropospheric Pathway of ENSO to the North Atlantic

Bernat Jiménez-Esteve and Daniela I.V. Domeisen

El Niño Southern Oscillation (ENSO) can exert a remote impact on North Atlantic and European (NAE) winter climate. This teleconnection is driven by the superposition and interaction of different influences, which are generally grouped into two main pathways, namely the tropospheric and stratospheric pathways. In this study, we focus on the tropospheric pathway through the North Pacific and across the North American continent. Due to the possible non-stationary behaviour and the limited time period covered by reanalysis data sets, the potential nonlinearity of this pathway remains unclear. In order to address this question, we use a simplified physics atmospheric model forced with seasonally varying prescribed sea surface temperatures (SST) following the evolution of different ENSO phases with linearly varying strength at a fixed location. To isolate the tropospheric pathway the zonal mean stratospheric winds are nudged towards the model climatology. The model experiments indicate that the tropospheric pathway of ENSO to the North Atlantic exhibits significant nonlinearity with respect to the tropical SST forcing, both in the location and amplitude of the impacts. For example, strong El Niño leads to a significantly stronger impact over the North Atlantic Oscillation (NAO) than a La Niña forcing of the same amplitude. For La Niña forcings, there is a saturation in the response, with no further increase in the NAO impact even when doubling the SST forcing, while this is not the case for El Niño. These findings may have important consequences for long-range prediction of the North Atlantic and Europe.

How to cite: Jiménez-Esteve, B. and Domeisen, D. I. V.: Nonlinearity in the Tropospheric Pathway of ENSO to the North Atlantic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2703, https://doi.org/10.5194/egusphere-egu2020-2703, 2020.

EGU2020-2941 | Displays | CL4.11

A breakdown of ENSO-North Pacific Teleconnection in early January

Chang-Hyun Park, Seok-Woo Son, and Jung Choi

During El Niño winters, East Asia and western North America become anomalously warm because of the combined effect of anti-cyclonic circulation anomaly over Kuroshio Extension and Philippine sea, and an enhanced Aleutian Low. However, this El Niño-Southern Oscillation (ENSO)-North Pacific teleconnection disappears in early January. In this study, we suggest that this breakdown in regional teleconnection is partly due to Madden-Julian Oscillation (MJO). In early December of El Niño winters, MJOs frequently form and reach at Western Pacific, causing positive intraseasonal Pacific North American (PNA)-like teleconnection, which is same pattern to the El Niño teleconnection. In mid-December, however, as MJOs are frequently organized over Indian Ocean, it causes a destructive interference, cancelling El Niño teleconnection in early January. Although weak and not statistically significant, this sharp decline of ENSO teleconnection in early January also appears in La Niña winters. A preference of MJO organization and its propagation in ENSO winters are explained by moist static energy anomalies in the west Indian Ocean. This result suggests that MJO is important for predicting ENSO teleconnection on intraseasonal scales.

How to cite: Park, C.-H., Son, S.-W., and Choi, J.: A breakdown of ENSO-North Pacific Teleconnection in early January , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2941, https://doi.org/10.5194/egusphere-egu2020-2941, 2020.

The present study investigates the intraseasonal variations of meridional winds over North Pacific during summer based on reanalysis datasets. It is shown that the band of 10-30 days is the main component of total intraseasonal varaitions. We identified a teleconnection pattern over North Pacific at this band . This teleconnection pattern is characterized by a zonally-oriented wave-like structure with a zonal wavenumber 5, and does not show a phase-locking feature. In addition, the anomalies associated with the teleconnection pattern exhibit a roughly baratropic structure. Further analyses suggest that the teleconnection pattern can gain energy from the basic flow through the baroclinic energy conversion, while the barotropic energy conversion plays a trivial role.

How to cite: Du, L. and Lu, R.: A teleconnection pattern of 10-30-day atmospheric oscilations over North Pacific during summer: Chracteristics and maintainance mechanism, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3187, https://doi.org/10.5194/egusphere-egu2020-3187, 2020.

EGU2020-3228 | Displays | CL4.11

Why Northeast China Has a Cooling Trend in 21st century?

Xiang Li and Hui Gao

    Under the global warming scenarios, the air temperatures (T2m) in China in boreal winter shows a remarkable increasing trend since the 1980s, which is quite similar with the change of the globe. But in Northeast China (NEC), the temperature displays an opposite characteristics with an obvious decreasing trend in recent two decades. Results of the empirical orthogonal functions (EOF) of T2m in China indicate that the first leading mode is a consistent positive or negative temperature departures in the whole country, but the variance of this mode show a weakening tendency. The second leading mode of T2m in China shows a seesaw temperature anomaly pattern in NEC and in other regions of eastern China. Different from the 1st EOF mode, variances of this mode show an intensifying tendency. Both statistical analysis and case studies of 20 winters during 2000 to 2019 indicate that this opposite change in NEC may be related to the decadal relationship between the Siberian high and the Arctic oscillation. Previous studies explored that there was a significant negative correlation between the two factors, but this relationship was significantly weakened in the past two decades, which led to the independent influences from the two circulation members on the temperature in NEC, and consequently resulted in an inconsistent variation in the region.

How to cite: Li, X. and Gao, H.: Why Northeast China Has a Cooling Trend in 21st century?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3228, https://doi.org/10.5194/egusphere-egu2020-3228, 2020.

EGU2020-3630 | Displays | CL4.11

Impacts of ENSO and IOD on Snow Depth over the Tibetan Plateau: Roles of Convections over the Western North Pacific and Indian Ocean

Tuantuan Zhang, Xingwen Jiang, Chi-Yung Tam, Junwen Chen, Ngar-Cheung Lau, Song Yang, and Zunya Wang

This is a consensus that snow over the Tibetan Plateau (TP) modulates the regional climate significantly. Possible causes for the interannual variability of snow over the TP, however, are under debate, especially regarding the independent roles of El Niño-Southern (ENSO) and Indian Ocean dipole (IOD). Based on in-situ observational data analyses and model simulations, our study shows that impacts of ENSO and IOD on snow depth (SD) over the TP are different during early winter. In particular, ENSO mostly affects SD over the eastern TP, while IOD affects SD over the central-western TP. Both above-normal snowfall and cold temperature anomaly contribute to deeper-than-normal SD, with the former playing a more important role. Diabatic cooling of the suppressed convection over the western North Pacific that related to the positive phase of ENSO could excite an anomalous cyclonic circulation and strong cold temperature anomalies over the eastern TP. There is an enhanced moisture transported over the eastern TP from the tropics due to the anomalous cyclonic circulation; along with strong cold temperature anomalies, resulting in above-normal snowfall in the eastern TP. On the other hand, anomalous convection over the western Indian Ocean related to the positive IOD could generate a wave-train propagating northeastward and induce an anomalous cyclonic circulation over the central-western TP. The associated anomalous circulation transports extra moisture from the tropics to the central-western TP, providing conditions favorable for more snowfall over the central-western TP. Opposite conditions tend to occur during negative phases of ENSO and IOD.

How to cite: Zhang, T., Jiang, X., Tam, C.-Y., Chen, J., Lau, N.-C., Yang, S., and Wang, Z.: Impacts of ENSO and IOD on Snow Depth over the Tibetan Plateau: Roles of Convections over the Western North Pacific and Indian Ocean , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3630, https://doi.org/10.5194/egusphere-egu2020-3630, 2020.

The western Pacific pattern (WP) is one of the most prominent teleconnection patterns over the Northern Hemisphere (NH) in boreal winter. There exist several methods employed to identify the WP in the literature. This study compares eight WPs defined by different methods. Correlation coefficients among the eight WP indices (WPIs) show considerable spreads, though most of them are statistically significant. The meridional dipole structure of WP can be captured by all of the WPIs, but it shows large spreads in the locations of the centers. Several WPIs produce a significant correlation with the winter Arctic Oscillation, with marked signals of atmospheric anomalies over the Arctic region. Connections of the WPs with the simultaneous winter El Niño-Southern Oscillation (ENSO) depend largely upon their definitions. Impacts of the WPs on the surface air temperature over many parts of Eurasia and North America are also sensitive to their definitions. Differences in the surface air temperature anomalies are closely related to differences in the spatial structure of the WPs. Finally, we define a new WP index as differences in the area-average 500-hPa geopotential height anomalies between subtropics and mid-latitude of northwestern Pacific. This newly defined WP index has a close relation with the above eight WPIs, the tropical Pacific sea surface temperature and surface air temperature anomalies over Eurasia and North America.

How to cite: Aru, H.: Comparisons of different definitions of the western Pacific pattern and associated winter climate anomalies in Eurasia and North America, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4297, https://doi.org/10.5194/egusphere-egu2020-4297, 2020.

Atmospheric variability and predictable components over North Atlantic-European area were analyzed using an atmospheric general circulation model of intermediate complexity (ICTP AGCM). In order to extract individual modes of variability occurring in the ensemble of numerical simulations, EOF analysis was applied onto the fields of the 200 hPa geopotential height and total precipitation. The same variables were selected for the signal-to-noise optimal patterns method, which identifies the patterns that maximize the signal-to-noise ratio, following Straus et al. (2003).

To detect the potential impact of tropical ocean SSTs, five experiments based on a 35-member ensemble of simulations for the 1855 – 2010 period were conducted. Each experiment was forced with observed SST anomalies prescribed in different ocean areas: the experiment with climatological SSTs (i.e. no SST forcing), SST anomalies prescribed globally, SST forcing prescribed in the entire tropical zone, SST forcing constrained to the tropical Atlantic, and the experiment with SST forcing constrained to the tropical Pacific.

SST forcing impacts the interannual variability of the geopotential height and total precipitation, represented with EOF1 and EOF2 patterns, only in the frequency of occurrence of a certain atmospheric mode. In the winter season the first EOF pattern projects onto the NAO, while the second EOF pattern projects onto the Atlantic ridge.

The signal-to-noise optimal patterns method has shown that the optimal patterns and signal-to-noise ratio are affected by the boundary forcing of the oceans.

How to cite: Ivasić, S. and Herceg Bulić, I.: Impact of tropical ocean SSTs on the variability and predictable components of seasonal atmospheric circulation in the North Atlantic – European area , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4542, https://doi.org/10.5194/egusphere-egu2020-4542, 2020.

EGU2020-4891 | Displays | CL4.11

ENSO teleconnection over the Euro-Mediterranean sector: the role of extratropical Pacific modulation

Marianna Benassi, Giovanni Conti, Silvio Gualdi, Paolo Ruggeri, Javier Garcia–Serrano, Froila Palmeiro, Lauriane Battè, and Constantin Ardilouze

El Nino Southern Oscillation (ENSO) represents the major driver of interannual climate variability at the global scale. Observational and model-based studies have fostered a long-standing debate on the shape and the intensity of ENSO influence over the Euro-Mediterranean sector. Indeed, the detection of this signal is strongly affected by the large variability which characterizes the atmospheric circulation in the North Atlantic and European sector.

Different mechanisms have been proposed as involved in the propagation of ENSO signal from low to mid latitude, and we want to investigate if and how the low frequency variability of North Pacific sea-surface temperature (SST) may affect their efficacy. In this work, we study how the different phases of the extratropical SST pattern linked to the Pacific Decadal Oscillation (PDO) modulates the ENSO fingerprint over the Euro-Mediterranean region.

A set of idealized sensitivity experiments designed in the framework of the MEDSCOPE project has permitted to identify the ENSO teleconnection over the Euro-Mediterranean domain and to reveal the potential modulating role of the different phases of the extratropical PDO SST forcing.

In order to place this process in a dynamical framework, a tropospheric pathway has been proposed. The propagation of planetary waves from low to mid latitude has been investigated, by looking at the sensitivity of this mechanism to different underlying mean state.

These results allow to gain a deeper understanding of the links between mid-latitude climate variability and tropical forcing and of the processes ruling the low-mid latitude teleconnection in the Northern Hemisphere. Moreover, a clearer insight of these processes may lead to a new comprehension of possible sources of predictability for the Euro-Mediterranean domain over different time scales.

 

How to cite: Benassi, M., Conti, G., Gualdi, S., Ruggeri, P., Garcia–Serrano, J., Palmeiro, F., Battè, L., and Ardilouze, C.: ENSO teleconnection over the Euro-Mediterranean sector: the role of extratropical Pacific modulation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4891, https://doi.org/10.5194/egusphere-egu2020-4891, 2020.

The roles of planetary and synoptic-scale waves in extreme cold wave (ECW) events over the southeastern (SE) and northwestern (NW) United States (US) are studied using a spherical harmonic decomposition in conjunction with piecewise tendency diagnosis (PTD). Planetary waves and synoptic waves jointly work together to initiate ECW events. Notably, the planetary waves not only provide a direct contribution to circulation field enacting ECW events but also alter the background circulation field in such a manner that promotes synoptic waves growth via increases in regional barotropic deformation. The SE-ECW events, concurrent with the Northern Hemisphere annular mode (NAM) negative phase, feature high latitude intensification and subsequent southeastward movement of cold surface air temperature (SAT) anomalies. The planetary-scale pattern provides a sizable contribution to the total wave pattern on both sea level pressure (SLP) and upper level. Moreover, the negative NAM planetary anomaly acts to displace the jet equatorward and thereby increases the barotropic deformation of the synoptic-scale anomaly over southeastern US. PTD confirms that the planetary-scale barotropic deformation plays a key role in deepening the negative height anomaly with a secondary contribution from baroclinic growth. In contrast, NW-ECW events feature a regional SAT cold anomaly that intensified in situ in association with a quasi-stationary positive SLP anomaly with a substantial planetary-scale wave component. The upper level circulation is characterized by a pronounced anomalous ridge over the Gulf of Alaska and a northeast-southwest tilted negative height anomaly to its east. The negative height anomaly axis is orthogonal to the planetary-scale dilatation, result in a stronger planetary barotropic deformation of the incipient negative height anomaly.

How to cite: Xie, Z., Black, R., and Deng, Y.: Planetary and synoptic-scale dynamic control of extreme cold wave patterns over the United States, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5549, https://doi.org/10.5194/egusphere-egu2020-5549, 2020.

EGU2020-6179 | Displays | CL4.11

Dynamics of Coastal El Niño Events in present and future climates.

Jil Kiefer, Christina Karamperidou, and Pedro DiNezio

Sudden and strong positive sea surface temperatures (SST) anomalies in the far eastern Pacific that are tied to the rather narrow NINO1+2 (0-10°S, 90°W-80°W) region are known as coastal El Niño events. In contrast to the well-studied features of typical basin-scale ENSO events, the frequency, origin and relevant processes of coastal El Niños are largely unknown. Here, we analyze their characteristics and future behavior using observational data and simulations with the Community Earth System Model (CESM), which exhibits skill in simulating precipitation, wind and SST fields associated with coastal El Niños. We find that tropical Pacific basin-scale ocean dynamics – in sharp contrast to a typical El Niño event  – play no major role in the evolution of a coastal El Niño. On the other hand, we find that atmospheric circulation anomalies from the Southern Hemisphere lead the evolution of coastal El Niño events, by causing warm SST anomalies that then propagate into the NINO1+2 region. Once initiated, local thermodynamical feedback processes such as cloud radiation feedbacks are responsible for the growth and decay of the events. Greenhouse gas forcing leads to an increase in the frequency of coastal El Niño events and a shift of their peak month in CESM simulations, related to a shallowing of the thermocline and changes in Rossby wave forcing from the Southern Hemisphere. In conclusion, based on our results, we will demonstrate the potential for increased predictability of coastal El Niño events, whose intense coastal SST warming and associated extreme precipitation poses a serious threat for local communities via loss of life and severe economic damage.

How to cite: Kiefer, J., Karamperidou, C., and DiNezio, P.: Dynamics of Coastal El Niño Events in present and future climates., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6179, https://doi.org/10.5194/egusphere-egu2020-6179, 2020.

Heatwave is affected by large-scale atmospheric circulation on temperature-related climates in the context of global warming. Recently Northern China have experienced an increase in heatwaves which is partly due to the atmospheric circulation. This study aims to address the influence clearly. Northern China heatwaves are computed on excess hot factor (EHF) and the five EHF indexes are studied afterwards to get a picture of heatwaves in summer Northern China. China circulation patterns are classified into nine typical circulation patterns on self-organizing map (SOM) which then can be described quantitatively by pattern factors: frequency, persistence and maximum persistence. Pearson correlation analysis and stepwise regression analysis are applied for exploring the impact. Results show the spatial pattern of the times of individual heatwave event (HWN) and the days of the longest heatwave duration (HWD) are high value everywhere in Northern China. The overall EHF indexes all rising in time series (P<0.05) and the regional heatwave occurrence have trends of 0.79 day per year (P<0.05). However, the factors of the patterns show inconspicuous tendency. Two patterns with significant correlations (P<0.05) are proved to be suggestive of Okhotsk Sea high and West Pacific Subtropical High. It declares that the Okhotsk Sea high favors Northern China heatwave occurrence rather than subtropical high: the warm center over Okhotsk Sea transfer heat upper and west, generating the high temperature and persist high pressure system, causing heatwave happening in summer Northern China. The two related atmospheric circulation patterns explain 38% of the heatwave occurrence based on stepwise regression model, the Okhotsk Sea high gets the coefficient of 0.443 and the subtropical high is -0.347.  

How to cite: Shi, C., Kaicun, W., and Chunlüe, Z.: The impact of large-scale atmospheric patterns on Heatwaves in summer Northern China based on Self-Organizing Map, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6209, https://doi.org/10.5194/egusphere-egu2020-6209, 2020.

The equatorial zonal asymmetric (Walker) circulation causes changes in the tropical rainfall pattern which induces devastation flood and drought that considerably impact the lives of millions of people. However, understanding of changes in zonal circulation is not yet certain. Here we examine the robustness of changes in Indian Walker Circulation (IWC) characteristics using different reanalysis and observation datasets in terms of the linear trends of IWC. The meridional (5oS:5oN)  averaged vertical velocity using different datasets are used to precisely locate the ascending (94oE:104oE, eastern) and descending (35oE:45oE, western) branch of IWC. We analyzed the zonal sea level pressure (SLP) gradient, velocity potential (VP) at 850 and 200 hPa, surface zonal wind (SZW) and zonal mass stream function (ZMSF) anomalies over the period of 1980–2017. We found that the magnitude of ZMSF representing anticlockwise circulation has an increasing trend in all the datasets. This kind of change is physically in agreement with the changes of SLP and SZW (an increasing trend in westerlies over the central IO) while the VP shows the decreasing trend which is in agreement with the strengthening of IWC during the recent decades. JRA55 is the most reliable which shows the significant and highest trend among all other datasets. The change point detection using the Pettitt method is applied to the normalized mean of all datasets which determines that in the post-1997-98 there is a significant strengthening of IWC as compared to the pre-1997-98 which demonstrates that IWC is highly sensitive by super El-Nino. The attribution of this strengthening can be examined using the CMIP5/6 datasets to determine the relative contribution of anthropogenic warming and natural variability.

How to cite: Sharma, S. and Ha, K.-J.: Equatorial atmospheric zonal circulation changes over India Ocean during recent decades, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6285, https://doi.org/10.5194/egusphere-egu2020-6285, 2020.

EGU2020-6380 | Displays | CL4.11

Remote Sources of Surface Temperature Cold Bias over the Tibetan Plateau: Role of Tropical SST Climatological Bias

Yuting Wu, Xiaoming Hu, Ziqian Wang, Zhenning Li, and Song Yang

The surface temperature cold bias over the Tibetan Plateau (TP) is a long-lasting problem in both reanalysis data and climate models. While previous studies have mainly focused on local processes for this bias, the TP surface temperature is also closely related to tropical SST in both observations and Coupled Model Inter-comparison Project (CMIP5) models. This study investigates the role of tropical SST climatological bias in the TP surface temperature cold bias, and analysis of CMIP5 models suggests that the surface temperature cold bias over the TP is more obvious (about 4 K) in winter, with an east-west distribution pattern, than in summer (about 1 K), with a south-north distribution pattern. Considering that the tropical SST bias in CMIP5 models may be an important source of the TP surface temperature cold bias, a series of model experiments were conducted by the NCAR CAM4 to test the hypothesis. Model experiment results show that the tropical SST bias can reproduce cold bias over the TP, with 2 K in winter and about 0.5 K in summer. The mechanisms for TP surface temperature cold bias are different in winter and summer. In winter, tropical SST bias influences the TP surface temperature mainly by anomalous snow cover, while anomalous precipitation and clouds are more important for the temperature bias in summer.

How to cite: Wu, Y., Hu, X., Wang, Z., Li, Z., and Yang, S.: Remote Sources of Surface Temperature Cold Bias over the Tibetan Plateau: Role of Tropical SST Climatological Bias, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6380, https://doi.org/10.5194/egusphere-egu2020-6380, 2020.

EGU2020-7508 | Displays | CL4.11

A simple derivation of tropical mean precipitation and circulation changes

Sally Dacie and Jiawei Bao

Using just a few simple assumptions and a widely used radiative transfer scheme, we try to explain why rainfall increases in a warming climate and predict how the tropical mean circulation changes to accommodate this. We use konrad, a 1D radiative-convective equilibrium model, in which convection is handled simply by specifying the tropospheric lapse rate and enthalpy conservation (similar to Manabe and Wetherald 1967). Considering energy balance at the surface or equivalently in the whole of the atmosphere, evaporation or condensation rates can be calculated (as in Jeevanjee and Romps 2018), giving precipitation increases of 2.0-2.7% per Kelvin increase in surface temperature. The direct radiative effect of carbon dioxide results in a decrease in precipitation, but the warming it induces leads to an overall increase in precipitation at the new equilibrium state of 1.4-2.0%/K. Thus, in agreement with global modelling studies (eg. Flaeschner et al 2016), we expect that the continual increase in atmospheric carbon dioxide in the real world is suppressing the increase in mean precipitation that will occur in the long term. To derive the convective mass flux as well as the downwelling and upwelling velocities and area fractions from our single column model output, we think of the atmosphere as two distinct regions, a saturated moist region of upward motion and a non-saturated region where adiabatic motion balances radiative cooling. The mass flux decreases in a warming climate as the increase in water vapour available for condensation is larger than the increase in condensation rate required to balance radiative cooling. Further, using our simplistic approach we find an increase in upwelling area in a warming climate. This has implications for convective aggregation and how it may change with climate change.

How to cite: Dacie, S. and Bao, J.: A simple derivation of tropical mean precipitation and circulation changes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7508, https://doi.org/10.5194/egusphere-egu2020-7508, 2020.

EGU2020-7550 | Displays | CL4.11

Using a long-term climate simulation to address future changes in Western Europe precipitation regimes due to global warming

Pedro M. Sousa, Alexandre M. Ramos, Ricardo M. Trigo, Christoph C. Raible, Martina Messmer, Joaquim G. Pinto, and Ricardo Tomé

Moisture transport and Atmospheric Rivers (ARs) over the Northeastern Atlantic are a very relevant process for the inter-annual variability of precipitation over Western Europe. Based on a long-term transient simulation (850-2100CE) from the CESM model, we have showed that moisture transport towards Western Europe (using the vertically integrated horizontal water vapor transport, IVT) has been increasing significantly since pre-industrial period, in a clear association with the global warming trend. Both current and projected changes (using RCP 8.5) significantly exceed the range given by inter-annual to inter-decadal internal/external variability observed during the last millennium.

We have checked the emergence of the temperature, IVT and precipitation signals in Iberia and the UK, showing that while the first two have now clearly emerged from the pre-warming state, precipitation series are still slightly below that threshold. Nevertheless, projections clearly show an increase in rainfall at higher latitudes (i in phase with a warmer and moister atmosphere); and a decrease at lower latitudes decoupled from the overall increase in moisture availability. Additionally we have explored the role played by large-scale circulation and atmospheric dynamics for these contrasting projections. Overall, results show that a poleward migration of moisture corridors and ARs explain a significant fraction of these projected trends. Based on the Clausius–Clapeyron relation we have separated the thermodynamical from dynamical changes. We also show how that a significant increase in subtropical anticyclonic activity over Iberia is responsible for: i) dynamical circulation changes; ii) a shortening of the wet season; iii) to less efficient precipitation regimes in the region. These results highlight the urge to adapt to a drying trend in Mediterranean-type climates, as a consequence of Global Warming.

 

The financial support for this work was possible through the following FCT project: HOLMODRIVE - North Atlantic Atmospheric Patterns influence on Western Iberia Climate: From the Lateglacial to the Present [PTDC/CTA-GEO/29029/2017]

How to cite: Sousa, P. M., Ramos, A. M., Trigo, R. M., Raible, C. C., Messmer, M., Pinto, J. G., and Tomé, R.: Using a long-term climate simulation to address future changes in Western Europe precipitation regimes due to global warming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7550, https://doi.org/10.5194/egusphere-egu2020-7550, 2020.

EGU2020-7778 | Displays | CL4.11

Impacts of Heinrich events upon Human existence potential in Europe

Masoud Rostami, Konstantin Klein, Christian Wegener, Yaping Shao, and Gerd-Christian Weniger

Heinrich events are recognized as the dominant periods of extreme cold terrestrial climate conditions during the last glacial period. The role of climate forcing alone upon Human Existence Potential (HEP) during extreme events, e.g. Heinrich and Dansgaard-Oeschger events, is not yet sufficiently resolved. By reproducing climate variables during the two extreme cold and warm cycles by means of an Earth System Model, employing an improved HEP model, and utilizing archaeological excavation sites, we report the spatial distribution of HEP over Europe during both cold stadials and warm interstadials corresponding to the two Upper Palaeolithic technocomplexes: Late Gravettian and Aurignacian. By introducing some other diagnostics like Environmental Human Catchment, which is defined as an area delimited by low HEP, cooling-aridity index, and Least Cost Path among colonized people, we shed light into population dynamics in this epoch. Consecutive extreme cold and warm cycles, corresponding to contraction-expansion of HEP, supports the hypothesis of repetitive depopulation–repopulation cycles of habitats. Regarding the controversial issue of late survival location of Neanderthals, we illustrate that western coastlines had such a suitable and stable HEP scores for all human taxa including Neanderthals to survive during Heinrich events.

How to cite: Rostami, M., Klein, K., Wegener, C., Shao, Y., and Weniger, G.-C.: Impacts of Heinrich events upon Human existence potential in Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7778, https://doi.org/10.5194/egusphere-egu2020-7778, 2020.

EGU2020-7905 | Displays | CL4.11

Intermittency of Arctic-midlatitude teleconnections: the stratospheric pathway between autumn sea ice and the winter NAO

Peter Yu Feng Siew, Camille Li, Stefan Sobolowski, and Martin King

An observed relationship linking Arctic sea ice conditions in autumn to the North Atlantic Oscillation (NAO) index the following winter has potential relevance for seasonal predictions of European and North American climate. The physical pathway most often invoked to explain this particular teleconnection passes through the stratosphere. A Causal Effect Networks (CEN) approach is used to explore this stratospheric pathway between late autumn Barents-Kara sea ice and the February NAO, focusing on its seasonal evolution, timescale-dependence, and robustness. This pathway is statistically detectable in the satellite period, explaining 26% of the interannual variability in the February NAO. However, a bootstrap-resampling test reveals that the pathway is highly intermittent: the whole pathway emerges in only 15% of the bootstrapped samples. The intermittent nature of the pathway is consistent with the weak signal-to-noise ratio of the atmospheric response in the sea ice perturbation experiments, and suggests that a background state is important in determining whether the pathway is active. Higher frequency synoptic interactions between Barents-Kara sea ice and sea level pressure over Urals potentially interfere with the stratospheric pathway. Such interference likely reduces the potential for using the ice-NAO relationship for predicting midlatitude winter climate. This study helps quantify the robustness of linkages within the stratospheric pathway, and provides insight into which linkages are most subject to sampling issues within the relatively short observational record.

How to cite: Siew, P. Y. F., Li, C., Sobolowski, S., and King, M.: Intermittency of Arctic-midlatitude teleconnections: the stratospheric pathway between autumn sea ice and the winter NAO, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7905, https://doi.org/10.5194/egusphere-egu2020-7905, 2020.

EGU2020-8416 | Displays | CL4.11

Eurasian cooling linked with Arctic warming: Insights from PV dynamics

Yongkun Xie, Guoxiong Wu, and Yimin Liu

The three-dimensional connections between Eurasian cooling and Arctic warming since 1979 were investigated using potential vorticity (PV) dynamics. We found that Eurasian cooling can be regulated by Arctic warming through PV adaptation and PV advection. Here, PV adaptation refers to the adaptation of PV to forcing and coherent dynamic/thermodynamic adaptation to PV change. In a PV perspective, first, the anticyclonic circulation change over the Arctic is produced by a negative PV change through PV adaptation, in which the change means the linear trend from 1979~2017. The negative PV change is directly regulated by Arctic warming because the vertical structure of Arctic warming is stronger at lower levels, which generates a negative PV change through the diabatic heating effect. Second, the circulation change produces a change in horizontal PV advection due to the existence of climatological PV gradients. Thus, as a balanced result, both the circulation change and PV change extend to mid-latitude through horizontal PV advection and PV adaptation. Eventually, Eurasian cooling at the surface and in the lower troposphere is dominated by PV changes at the surface through PV adaptation. Meanwhile, enhanced Eurasian cooling in the middle troposphere is dominated by top-down influences of upper-level PV change through PV adaptation. Nevertheless, the upper-level PV changes are still contributed by horizontal PV advection associated with Arctic warming. Overall, the general dynamics connecting Eurasian cooling with Arctic warming is demonstrated in a PV view.

How to cite: Xie, Y., Wu, G., and Liu, Y.: Eurasian cooling linked with Arctic warming: Insights from PV dynamics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8416, https://doi.org/10.5194/egusphere-egu2020-8416, 2020.

The equivalent potential temperature Θe is a useful measure of the total heat content in the atmosphere, as it is conserved during both dry adiabatic and wet adiabatic processes. It is defined as letting an air parcel expand pseudo-adiabatically until all the water vapour has condensed, release and precipitate all its latent heat and compress it dry-adiabatically to the standard pressure of 1000 hPa.

Changes in surface or air temperature can thus be related to changes in humidity. For example, the relative contributions of temperature and humidity changes in tropical cyclones can be addressed, Arctic amplification due to the fact that saturation mixing ratio follows an exponential curve with temperature can be investigated, and by considering Θe in different vertical levels, an assessment of changes in convective stability can be made.

We have conducted a very long climate simulation with a global model interactively coupled to a Greenland ice sheet component. An extended RCP8.5 scenario is applied, where emissions of greenhouse gases continue to increase and then eventually level out around 2250. The model is then run for another 1000 years. With such an extreme forcing, all Arctic sea ice has completely disappeared, and a large part of the Greenland Ice Sheet has melted at the end of the simulation.

We examine changes in the total heat content based on observations and model data for past and present as well as for future climate. Daily data, allowing the identification of individual weather systems will be discussed for time slices with a seasonally and later a totally ice-free Arctic.

How to cite: Stendel, M.: Trends in total heat content in a very long climate change simulation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9526, https://doi.org/10.5194/egusphere-egu2020-9526, 2020.

Sea ice alters the surface albedo and modulates the heat, moisture and momentum exchange between the ocean and the atmosphere. Various studies suggest an influence of the sea ice on the atmospheric circulation, whereby the focus is often on simultaneous connections and Arctic-wide sea ice conditions. Sea ice has a strong memory and we thus hypothesize a potential feedback on the atmosphere also at higher lags. Using ERA5 reanalysis data between 1983 and 2017, the present work investigates a potential connection of the summer atmospheric circulation over Eurasia to winter sea ice anomalies southwest of Greenland. Composites of the June-July geopotential height pattern show a wave-train structure throughout the troposphere and the resulting circulation anomalies are found to influence the two metre temperatures over northeastern Europe and northern Russia. These anomalies are significantly correlated with December-January sea ice anomalies. Persistent sea surface temperature (SST) anomalies associated with the strong ice memory indicates that the winter signal is partly stored in the Labrador Sea. The observations indicate a response in the June-July 500 hPa vertical velocity in proximity of the strongest SST anomalies that is dynamically consistent with the lower-level and upper-level divergence pattern. The result suggests that the vertical velocity potentially connects a vorticity forcing in the upper troposphere to near-surface conditions over the Labrador Sea that originate from the preceeding winter.
A further analysis shows a particularly pronounced wave-train signal when the December-January ice anomalies appear in phase with a strong North Atlantic Oscillation (NAO) index. Those years are characterized by extensive and persistent SST anomalies in the North Atlantic bearing similarities with the tripole pattern that is known to be associated with the NAO. The SST signal is accompanied by widespread heat flux anomalies hinting at a further influence coming from the central North Atlantic. The study provides a first analysis of two possible factors that potentially contribute to the linkage between winter sea ice and the summer atmospheric circulation.

How to cite: Sauer, J., Baehr, J., and Žagar, N.: Potential linkage between the atmospheric summer circulation over Eurasia and preceding sea ice anomalies southwest of Greenland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10464, https://doi.org/10.5194/egusphere-egu2020-10464, 2020.

A detailed assessment of climate variability of the Baltic Sea area for the period 1958-2008 (Lehmann et al. 2011) revealed that changes in the warming trend since the mid-1980s, were associated with changes in the large-scale atmospheric circulation over the North Atlantic. The analysis of winter sea level pressure (SLP) data highlighted considerable changes in intensification and location of storm tracks, in parallel with the eastward shift of the North Atlantic Oscillation (NAO) centres of action. Additionally, a seasonal shift of strong wind events from autumn to winter and early spring exists for the Baltic area. Lehmann et al. (2002) showed that different atmospheric circulation regimes force different circulation patterns in the Baltic Sea. Furthermore, as atmospheric circulation, to a large extent, controls patterns of water circulation and biophysical aspects relevant for biological production, such as the vertical distribution of temperature and salinity, alterations in weather regimes may severely impact the trophic structure and functioning of marine food webs (Hinrichsen et al. 2007). To understand the processes linking changes in the marine environment and climate variability, it is essential to investigate all components of the climate system which of course include also the large-scale atmospheric circulation. Now, since extended time series data (1948-2018) for additional 20 years are available, it is interesting to investigate recent changes/shifts of the large-scale atmospheric conditions and their impact on the wind climate over the Baltic Sea area.

How to cite: Post, P. and Lehmann, A.: Impact of large-scale atmospheric circulation changes over the North Atlantic on the wind climate of the Baltic Sea area for the period 1948/49-2018/19, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10662, https://doi.org/10.5194/egusphere-egu2020-10662, 2020.

EGU2020-10705 | Displays | CL4.11

Heavy Alpine snowfall in January 2019 connected to atmospheric blocking

Kamilya Yessimbet and Andrea Steiner

Winter weather and extreme events at mid-latitudes are determined by the atmospheric circulation variability, which is closely related to jet stream configuration and atmospheric blocking. In January 2019, record-breaking snowfall in the Northern Alps affected Austria and Germany. The event is linked to a typical weather regime of blocking over the North Atlantic and southward meridional moisture transport from the high latitudes to the Alps. This study investigates the synoptic conditions prior and during the event addressing possible forcing mechanisms for the extreme snowfall occurrence.

We analyzed the atmospheric conditions using the ERA-5 reanalysis dataset investigating geopotential height (GPH), pressure, temperature, and wind fields. For blocking detection, we applied a classical algorithm based on the reversal of mid-latitude 500 hPa GPH gradients. Evolution of surface conditions and snowfall impacts was studied based on the European daily high-resolution gridded dataset (E-OBS) and snow data provided by the Austrian weather service.

Tropospheric analysis revealed that a persistent blocking high over the North Atlantic played a major role in the meridional elongation of upper-level streams. A low-pressure system, embedded in the strongly meandering jet stream’s trough, modulated the moisture flow directly towards the Alpine mountains leading to record-breaking snowfall.

Prior to the event, a major sudden stratospheric warming (SSW) took place at Northern high latitudes. We discuss the initial atmospheric conditions including SSW, blocking, and impacts on surface weather in Europe, and particularly in the Alpine region.

How to cite: Yessimbet, K. and Steiner, A.: Heavy Alpine snowfall in January 2019 connected to atmospheric blocking, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10705, https://doi.org/10.5194/egusphere-egu2020-10705, 2020.

EGU2020-10832 | Displays | CL4.11

A global circulation model for the asteroid impact simulations

Hakan Sert, Orkun Temel, Cem Berk Senel, and Ozgur Karatekin

In this study, we present a three-dimensional global circulation model (GCM) to investigate the environmental effects of an asteroid impact on the global Earth system. The model is applied to model the atmospheric response of the Cretaceous–Paleogene (K–Pg) extinction event which took place 66 million years ago and resulted in the mass extinction of various animal and plant species. The atmospheric model is developed based on the planetWRF model. First, the paleoclimate model is validated using the proxy data. Then, the sensitivity to atmospheric co2 concentration is investigated. The radiation parameterization scheme of the planetWRF model is modified to include the effect of various climate-active aerosols and gases released after the impact event. The model is also coupled both to a simple one-dimensional ocean mixed layer and a three-dimensional ocean circulation model. Both the atmospheric and oceanic response is investigated.

How to cite: Sert, H., Temel, O., Senel, C. B., and Karatekin, O.: A global circulation model for the asteroid impact simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10832, https://doi.org/10.5194/egusphere-egu2020-10832, 2020.

A new teleconnection pattern (the BEAP) across the Bay of Bengal‐East Asia‐Pacific region in boreal summer is revealed in this study using mainly ERA‐Interim reanalysis data from the European Centre for Medium‐Range Weather Forecasts. The BEAP index (BEAPI) is defined as the signed sum of standardized apparent moisture sinks at five centers along the pathway. Correlation analysis of the apparent heat sources and apparent moisture sinks has verified the existence of the BEAP teleconnection. Variations in BEAP can affect precipitation anomalies resulting from the anomalous moisture transport and the antiphase surface temperature variation. Wave flux analysis has verified the Rossby wave propagation route that originates around the central Bay of Bengal and extends across North China to the West Pacific. La Niña‐type sea surface temperature anomalies (SSTAs) appearing simultaneously in the same season can excite a positive BEAP pattern by enhancing convection over the Bay of Bengal, while El Niño‐type SSTAs have the opposite effect. Significant correlation between the BEAPI and the SSTAs can last from early summer to early winter. Numerical experiments confirm the BEAP teleconnection pattern and the associated physical processes.

How to cite: Cao, J.: Bay of Bengal‐East Asia‐Pacific Teleconnection in Boreal Summer, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12432, https://doi.org/10.5194/egusphere-egu2020-12432, 2020.

This study examines how the thermodynamic anomaly in Arabian Sea (AS)–Bay of Bangle (BOB) relates to Yunnan precipitation in the rainy season. The observational diagnosis basing on data sets of atmospheric circulation reanalysis, precipitation from 124 stations in Yunnan and outgoing longwave radiation indicates that, when the thermodynamic anomaly in the AS–BOB is weaker during rainy-season, an anomalous anticyclone will control the AS–BOB. An anomalous cyclone in Yunnan resulted from the anomalous anticyclone in the AS–BOB induces anomalous water vapor converging with anomalous cold air in the same region. As a result, heavier-than-normal precipitation occurs in Yunnan in rainy-season. When the thermodynamic anomaly in the AS–BOB is stronger, the opposite configuration of anomalous circulation will cause less-than-normal precipitation in Yunnan. The results of several numerical experiments obtained from a linear baroclinic model support the key physical processes revealed in the observational diagnosis.

How to cite: Zhu, Y.: Relationship between Thermodynamic Anomalies in Arabian Sea–Bay of Bangle on Rainy-season Precipitation in Yunnan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12651, https://doi.org/10.5194/egusphere-egu2020-12651, 2020.

The intensity index of Kuroshio Extension and northern front zones (KEF) is defined as the area average of SST meridional gradient by using Hadley Center’s surface sea temperature dataset (1949-2014), and the Kuroshio Extension frontal intensity index (KEFI) has seasonal to interdecadal variations. In winter, the KEFI has significant positive correlation with transient variances in the North Pacific storm tracks area, and the positive relationship appears when KEFI lead storm tracks one month which indicates the intensity of KEF could influence storm tracks in winter. To investigate the possible mechanism, we found: when the winter SST front is stronger, the more significant difference between ocean-air heat flux in both sides of KEF could strengthen the near-surface temperature gradient, which maintains the near-surface baroclincity and benefits the transient heat transport, promote the develop of transient eddies at last. Additional, the large-scale circulation also be response to KEF in winter: when the KEF is stronger, the Aleutian is deepen, the subtropical high is strengthen, the 500 hPa potential high is increased (decreased) in south (north), the subtropical jet is weaker and wider. It is found that the oceanic fronts promote storm tracks by transporting heat upward and maintaining the air temperature gradient in winter. In further, the significant correlation was found between the Kuroshio Extension Oceanic Front intensity and the temperature over North America in autumn and winter.

How to cite: Xiao, Z.: The Impact of Kuroshio Extension Fronts Variation on the Pacific Storm Tracks and the relationship with Temperature over North America, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12735, https://doi.org/10.5194/egusphere-egu2020-12735, 2020.

EGU2020-13616 | Displays | CL4.11

Projecting the Reoccurrence of one in 100-year Caribbean Hurricanes under the Paris Agreement Goals

Emily Vosper, Eunice Lo, Dann Mitchell, and Kerry Emanuel

Hurricanes are among the most destructive extreme weather events affecting humanity, in both social and economic terms. Hurricane Dorian (2019) caused widespread devastation when it stalled over the Bahamas as a category five hurricane bringing the most rainfall to the country from a hurricane in the reliable observation period, whilst secondary events such as flooding, landslides and disease left tens of thousands of people homeless. Climate change has been shown to influence hurricane activity, but so far there have been few studies that have explored hurricane response under the Paris Agreement goals especially in the case of stalling hurricanes. Here we show that extreme hurricane rainfall events, which affect the Caribbean region, are more likely in both of the Paris Agreement scenarios compared to the present climate with five of the six 100-year hurricanes studied occurring more often in these simulations. In particular, we show a currently one in 100-year rainfall event affecting the Bahamas is at least three times as likely under the Paris Agreement goals compared to the present climate.

How to cite: Vosper, E., Lo, E., Mitchell, D., and Emanuel, K.: Projecting the Reoccurrence of one in 100-year Caribbean Hurricanes under the Paris Agreement Goals, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13616, https://doi.org/10.5194/egusphere-egu2020-13616, 2020.

EGU2020-13817 | Displays | CL4.11

The change of MJO teleconnection under the global warming

Wan-Ling Tseng, Huang-Hsiung Hsu, Li-Chiang Jiang, Chiung-Wen June Chang, Ben-Jei Tsuang, and Chia-Ying Tu

Global warming’s impact on the Madden-Julian Oscillation (MJO) is assessed using one of the few models capable in reproducing its key features. In a warmer climate predicted for the end of the century, it has been proved the MJO increases in amplitude and frequency, showing a more circumglobal propagation tendency. Here, we examine the MJO teleconnection and its extratropical response under the warmer climate by the time-slide experiments. The extratropics impact on different phase is shifted through the change of the mean atmospheric circulation. The strengthening of the midlatitude jet stream leads to the zonal extended wave propagation. It results the stronger variability of the atmospheric river to the America west coast. Moreover, the relationship with the NAO and PNA is weaker but the stronger fluctuation is shown in the polar area. This suggests the teleconnection of the North America weather by the tropical convection is going to change in the warming climate. It is essential to consider in the further projection and subseasonal to seasonal forecast.

How to cite: Tseng, W.-L., Hsu, H.-H., Jiang, L.-C., Chang, C.-W. J., Tsuang, B.-J., and Tu, C.-Y.: The change of MJO teleconnection under the global warming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13817, https://doi.org/10.5194/egusphere-egu2020-13817, 2020.

EGU2020-16144 | Displays | CL4.11

The role of increasing vertical resolution on the detection and attribution of North Atlantic storms

Erin Walker, Daniel Mitchell, William Seviour, Paul Valdes, and Mat Collins

Accurately determining extratropical cyclone paths is key in determining regional impacts associated with precipitation and wind. It is known that the stratosphere plays an important role in atmospheric dynamics and can extend its influence down to the surface. Despite this, many attribution studies have not included a stratosphere in their experiments. We believe that not considering the stratosphere could affect the results of these experiments, so the role it has on North Atlantic storm tracks is analysed using an idealised, atmospheric only model named Isca. With the aim of identifying clear implications of including the stratosphere in storm track analysis in the North Atlantic basin, a large ensemble formed of 4 separate experiments is set up for the winter of 2013/2014. The four experiments are as follows; 1) no vertical layers in the stratosphere, 2) vertical levels extended to the upper stratosphere, 3) doubling of vertical levels throughout the atmosphere, and finally, 4) an increase of vertical levels at the tropopause. We expect that including the stratosphere, in addition to increasing vertical resolution, will help improve model representation of storm tracks and their intensities during the 2013/2014 winter. The results of this study hope to highlight how the inclusion of the stratosphere and increased vertical resolution can lead to the improvement in modelling storm track statistics, which in turn will help to make more reliable attribution statements in the future.

How to cite: Walker, E., Mitchell, D., Seviour, W., Valdes, P., and Collins, M.: The role of increasing vertical resolution on the detection and attribution of North Atlantic storms, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16144, https://doi.org/10.5194/egusphere-egu2020-16144, 2020.

EGU2020-18113 | Displays | CL4.11

The impact of ENSO and the Atlantic Multidecadal Variability (AMV) on the upper tropospheric large scale flow in the PRIMAVERA models.

Paolo Ghinassi, Federico Fabiano, Virna L. Meccia, and Susanna Corti

Rossby waves play a fundamental role for both climate and weather. They are in fact associated with heat, momentum and moisture transport across large distances and with different types of weather at the surface. Assessing how they are represented in climate models is thus of primary importance to understand both predictability and the present and future climate. In this study we investigate how ENSO and the AMV affect the large scale flow pattern in the upper troposphere of the Northern Hemisphere, using reanalysis data and data from the PRIMAVERA simulations.

The upper tropospheric large scale flow is investigated in terms of the Rossby wave activity associated with persistent and recurrent patterns over the Pacific-North American and Euro-Atlantic regions during winter, the so called weather regimes. In order to quantify the vigour of Rossby wave activity associated with each weather regime we make use of a recently developed diagnostic based on Finite Amplitude Local Wave Activity in isentropic coordinates, partitioning the total wave activity into the stationary and transient components. The former is associated with quasi-stationary, planetary Rossby waves, whereas the latter is associated with synoptic scale Rossby wave packets. This allows one to quantify the contribution from stationary versus transient eddies in the total Rossby wave activity linked to each weather regime.

In this study we explore how ENSO and the AMV affect both the weather regimes frequencies and the upper tropospheric waviness in the Pacific and Atlantic storm tracks, respectively. Furthermore we analyse how both the stationary and transient wave activity component modulate the onset and transition between different regimes.

How to cite: Ghinassi, P., Fabiano, F., Meccia, V. L., and Corti, S.: The impact of ENSO and the Atlantic Multidecadal Variability (AMV) on the upper tropospheric large scale flow in the PRIMAVERA models., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18113, https://doi.org/10.5194/egusphere-egu2020-18113, 2020.

EGU2020-18239 | Displays | CL4.11

An MSE budget view on seasonal and CO2-induced ITCZ shifts in the TRAC-MIP model ensemble

Elzina Bala, Aiko Voigt, and Peter Knippertz

One of the grand challenges of climate is predicting and modeling tropical rainfall. Here, we address a specific problem of this grand challenge, namely how does the vertical structure of the atmosphere affect the tropical circulation and the position of the ITCZ during the seasonal cycle and in response to increased CO2. The tropical circulation can be described by the column-integrated budget of moist static energy (MSE). We use this framework in the TRAC-MIP model ensemble to investigate the role of the vertical structure of the tropical atmosphere in setting the anti-correlation between the ITCZ location and the atmospheric energy transport.

TRACMIP "The Tropical Rain belts with an Annual cycle and Continent - Model Intercomparison Project" is a set of idealized simulations that are designed to study the tropical rain belt response to past and future forcings. TRACMIP includes 13 comprehensive CMIP5-class atmosphere models and one simplified atmospheric model. Importantly, TRACMIP includes a slab ocean with prescribed ocean heat transport. This leads to a closed surface energy balance and forces the annual-mean ITCZ to be north of the equator, consistent with today’s climate.

We use the MSE budget framework to diagnose the seasonal evolution of vertical velocity from the energetic terms in the MSE budget equation. We obtain a diagnostic expression for the vertical velocity. By means of the MSE budget framework we estimate the efficiency of exporting energy from the atmospheric column, which is defined as the gross moist stability (GMS). The GMS characterizes the stability of the tropical troposphere related to moist convective processes in the tropospheric column. We use the MSE and GMS analysis to disentangle the impact of deep and shallow circulations on energy transport, vertical velocity and hence precipitation in an objective manner.

Through this work we aim to elucidate to what extent model uncertainty in simulations of future ITCZ changes are caused by model differences in the vertical structure of the atmosphere. We also hope to use the results to advance our understanding of the tropical climate and to assess the plausibility of simulated changes in tropical rainfall.

How to cite: Bala, E., Voigt, A., and Knippertz, P.: An MSE budget view on seasonal and CO2-induced ITCZ shifts in the TRAC-MIP model ensemble, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18239, https://doi.org/10.5194/egusphere-egu2020-18239, 2020.

EGU2020-18294 | Displays | CL4.11

Northern Hemisphere atmospheric blocking simulation in present and future climate

Fabio D'Andrea and Paolo Davini

We present a comprehensive analysis of the representation of winter and summer Northern Hempishere atmospheric blocking in global climate simulations in both present and future climate. Three generations of climate models are considered: CMIP-3 (2007), CMIP-5 (2012) and CMIP-6 (2019).
All models show common and extended underestimation of blocking frequencies, but a reduction of the negative biases in successive model generations is observed. However, in some specific regions and seasons as the winter European sector, even CMIP-6 models are not yet able to achieve the observed blocking frequency. For future decades the vast majority of models simulates a decrease of blocking frequency in both winter and summer, with the exception of summer blocking over the Urals and winter blocking over Western North America. Winter predicted decreases may be even larger than currently estimated considering that models with larger blocking frequencies  hence generally smaller errors - show larger reduction. Nonetheless trends computed over the historical period are weak and often contrasts with observations: this is particularly worrisome for summer Greenland blocking where models and observation significantly disagree. Finally, the intensity of global warming is related to blocking changes: wintertime European blocking is expected to decrease following larger global mean temperatures, while Western Russia summer blocking is expected to increase.

How to cite: D'Andrea, F. and Davini, P.: Northern Hemisphere atmospheric blocking simulation in present and future climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18294, https://doi.org/10.5194/egusphere-egu2020-18294, 2020.

EGU2020-18722 | Displays | CL4.11

Projected change in frequency of Weather Regimes in CMIP6 models

Federico Fabiano, Ignazio Giuntoli, Paolo Ghinassi, and Susanna Corti

Weather Regimes (WRs) are preferred large-scale atmospheric circulation patterns found in mid-latitude regions like the North-Atlantic or North-Pacific, that have a certain degree of recurrence and persistence. From a nonlinear dynamical system view, they can be seen as the attractors of the chaotic atmospheric flow at mid-latitudes. In simple nonlinear dynamical systems, under a small external forcing the attractors remain fixed at first-order, but the frequency of occurrence of the different dynamical regimes changes, with some regimes becoming more populated. By analogy, a similar response to forcing has also been hypothesized for the WRs in complex GCMs. Here we test this hypothesis in the climate models participating to CMIP6, looking for the change of the WRs frequency in the future climate (2050-2100) under different scenarios, with respect to the historical simulations (1964-2014).

WRs also constitute a suitable framework to study the impacts and occurrence of extreme weather. In this sense, each WR is characterized by a large-scale circulation pattern, that drives different climatic conditions over specific regions, and long-lasting WRs are often connected with extreme temperature or precipitation anomalies. Therefore, the projected change in the frequency of the WRs also produces an intensification of the impacts connected with the regimes occurring more often. For each model analyzed, we also study the impacts related with each WR and their change with future climate under the different scenarios.

How to cite: Fabiano, F., Giuntoli, I., Ghinassi, P., and Corti, S.: Projected change in frequency of Weather Regimes in CMIP6 models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18722, https://doi.org/10.5194/egusphere-egu2020-18722, 2020.

CL4.12 – Regional climate modeling, including CORDEX

EGU2020-20479 | Displays | CL4.12

Assessing mean climate change signals in the global CORDEX-CORE ensemble

Claas Teichmann, Daniela Jacob, Armelle Reca Remedio, and Erika Coppola and the CORDEX-CORE team

The Coordinated Output for Regional Evaluations (CORE) simulation ensemble is an effort of the WCRP CORDEX community to provide high-resolution regional climate change information for the major inhabited areas of the world and thus generate a solid scientific basis for further research related vulnerability, impact, adaptation and climate services. This is especially important in those areas in which only a few high-resolution simulations or only comparatively coarse simulations from global models were available. The driving global climate model (GCM) simulations were selected to cover the spread of high, medium, and low equilibrium climate sensitivity at a global scale. Initially, two regional climate models (RCMs) REMO and RegCM4 were used to downscale GCM output to a spatial resolution of 0.22°. It is intended that the CORDEX-CORE ensemble can then be extended by additional regional simulations to further increase the ensemble size and thus the representation of possible future climate change pathways. 

The aim of this study is to investigate and document the climate change information provided by the current CORDEX-CORE ensemble with respect to the mean climate change in different regions of the world and in comparison to previously existing global climate information, especially those global climate simulations used as boundary forcing for CORDEX-CORE RCMs. First, the regional biases of the RCMs simulations and its driving GCMs simulations were quantified compared to the CRU TS 4.02 observational dataset during the reference period from 1971 to 2000. Second, the near future (2036 to 2065) and far future (2071 to 2099) climate change signals were quantified from the new CORDEX-CORE ensemble. The analysis focuses on the mean temperature and precipitation changes based on the new IPCC physical climate reference regions. For selected regions, the differences of the climate change information at different resolutions are documented. Using this selected regions, the climate change signals from the CORDEX-CORE ensemble were compared to other existing CORDEX simulations and the CMIP5 GCM ensemble. First results of this comparison will be presented.

How to cite: Teichmann, C., Jacob, D., Remedio, A. R., and Coppola, E. and the CORDEX-CORE team: Assessing mean climate change signals in the global CORDEX-CORE ensemble, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20479, https://doi.org/10.5194/egusphere-egu2020-20479, 2020.

EGU2020-3147 | Displays | CL4.12

Precipitation Associated with Cyclogenetic Hotspot Regions in the Extratropical Southern Hemisphere: CORDEX-CORE Projections

Michelle Reboita, Marco Reale, Rosmeri da Rocha, Graziano Giuliani, Erika Coppola, Rosa Nino, Marta Llopart, Jose Torres, and Tereza Cavazos

Projections of the precipitation associated with cyclones in the main cyclogenetic regions of the Extratropical Southern Hemisphere domains (Africa - AFR, Australia - AUS and South America - SAM) are here analyzed during the winter season (JJA). The projections were obtained with the Regional Climate Model version 4 (RegCM4) nested in three global climate models (GCMs) from the Coupled Model Intercomparison Project phase 5 (CMIP5) under the Representative Concentration Pathway 8.5. RegCM4 simulations were executed with horizontal grid spacing of 25 km and for the period 1979-2100. As reference period, we consider the interval 1995-2014 and as future climate, the period 2080-2099. Cyclones are identified using an algorithm based on the neighbor nearest approach applied to 6 hourly mean sea level pressure (SLP) fields. In SAM and AUS domains, two hotspot regions for cyclogenesis are selected while for AFR only one is considered. First, in each hotspot region, the cyclogeneses are identified and, then, the mean precipitation from the previous day (day-1) to the day after (day+1) of these processes is calculated. A general negative trend in the cyclone's frequency is projected for the period 2080-2099. However, for the same period, it is projected an increase of precipitation intensity for AFR domain, mainly near the southwestern coast of the continent. In AUS the increase is observed between southeastern Australia and New Zeland, and over north New Zealand. For SAM there is an expansion of the area with a maximum precipitation intensity close to southern Brazil and Uruguay and to the east of 60oW near 40oS. Summarizing, the precipitation associated with individual cyclones will increase on average in the future (for example 30% in the SAM domain), being the storms less frequent but more intense.

How to cite: Reboita, M., Reale, M., da Rocha, R., Giuliani, G., Coppola, E., Nino, R., Llopart, M., Torres, J., and Cavazos, T.: Precipitation Associated with Cyclogenetic Hotspot Regions in the Extratropical Southern Hemisphere: CORDEX-CORE Projections , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3147, https://doi.org/10.5194/egusphere-egu2020-3147, 2020.

EGU2020-18858 | Displays | CL4.12

Future projections of river floods hazard over the multiple CORDEX-CORE domains

Francesca Raffaele and Fabio Di Sante and the CORDEX-CORE

One of the most largely recognized effect of the Global Warming is the change of weather extremes. The increase of extreme precipitation events is directly linked to a greater availability of precipitable water induced by a warmer atmosphere.The flood projected signals are heterogeneous and influenced by different phenomena. As an example, the rise in temperature could increase the risk of floods over the regions sensible to extreme precipitations and at the same time could reduce the risk of floods over the regions sensible to the melted snow accumulated during the cold season. In this work the CORDEX-CORE simulations completed using two different Regional Climate Models (RegCM and REMO) are used to estimate the future changes on flood risk for eight CORDEX domains (North-America, Central-America, South-America, Europe, Africa, West-Asia, East-Asia, South-East-Asia and Australasia). A river-routing model is applied to simulate the river discharge of a high resolution grid (0.06 degree) for three different driving Global Climate Models, two different scenarios (rcp2.6 and rcp8.5) and for each of the domains. The simulated discharges are hence used to fit a generalized extreme value (GEV) distribution to estimate the change on flood risk related to the future climate projections.

How to cite: Raffaele, F. and Di Sante, F. and the CORDEX-CORE: Future projections of river floods hazard over the multiple CORDEX-CORE domains, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18858, https://doi.org/10.5194/egusphere-egu2020-18858, 2020.

EGU2020-2611 | Displays | CL4.12

A new spatially distributed Added Value Index for Regional Climate Models: the EURO-CORDEX and the CORDEX-CORE highest resolution ensembles

James M. Ciarlo`, Erika Coppola, Adriano Fantini, XueJie Gao, Yao Tong, Russell H. Glazer, Jose Abraham Torres Alavez, Taleena Sines, Emanuela Pichelli, Francesca Raffaele, Sushant Das, Moetasim Ashfaq, Eun-Soon Im, Thanh Nguyen-Xuan, Claas Teichmann, Armelle Remedio, Thomas Remke, Katharina Bülow, Torsten Weber, Lars Buntemeyer, Kevin Sieck, Diana Rechid, and Daniela Jacob

Regional Climate Models (RCMs) have undergone substantial development, resulting in increasingly reliable high-resolution simulations. Despite this, the added value of these simulations compared to their driving General Circulation Models (GCMs) has been a recurring issue. Past studies have used different techniques to quantify the added value of a RCM. A new method is now being presented, based on these past studies, that quantifies the added value and presents it spatially. The method was also adapted to assess the Downscaling Signal (DS) in climate change simulations and compare this to the added value.

This new method has been used to assess the daily precipitation of the 55-model EURO-CORDEX ensemble and the CORDEX-CORE ensemble, focusing especially on the higher-end of the PDFs. This revealed an overall positive added value across all domains, especially in areas of complex topography, cost-lines, and tropical regions. This DS was similar to that of the added value when looking at RCP 8.5 far-future simulations.

How to cite: Ciarlo`, J. M., Coppola, E., Fantini, A., Gao, X., Tong, Y., Glazer, R. H., Torres Alavez, J. A., Sines, T., Pichelli, E., Raffaele, F., Das, S., Ashfaq, M., Im, E.-S., Nguyen-Xuan, T., Teichmann, C., Remedio, A., Remke, T., Bülow, K., Weber, T., Buntemeyer, L., Sieck, K., Rechid, D., and Jacob, D.: A new spatially distributed Added Value Index for Regional Climate Models: the EURO-CORDEX and the CORDEX-CORE highest resolution ensembles, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2611, https://doi.org/10.5194/egusphere-egu2020-2611, 2020.

EGU2020-12102 | Displays | CL4.12

Robust Late 21st Century Shift in the Regional Monsoons in RegCM-CORDEX Simulations

Moetasim Ashfaq, Tereza Cavazos, Michelle Reboita, José Abraham Torres-Alavez, Eun-Soon Im, Christiana Olusegun, Lincoln Alves, Kesondra Key, Mojisola Adeniyi, Moustapha Tall, Mouhamadou Bamba Sylla, Shahid Mehmood, Qudsia Zafar, Sushant Das, Ismaila Diallo, and Erika Coppola

We use an unprecedented ensemble of regional climate model (RCM) projections over seven regional CORDEX domains to provide, for the first time, an RCM-based global view of monsoon changes at various levels of increased greenhouse gas (GHG) forcing. All regional simulations are conducted using RegCM4 at a 25km horizontal grid spacing using lateral and lower boundary forcing from three General Circulation Models (GCMs), which are part of the fifth phase of the Coupled Model Inter-comparison Project (CMIP5). Each simulation covers the period from 1970 through 2100 under two Representative Concentration Pathways (RCP2.6 and RCP8.5). Regional climate simulations exhibit high fidelity in capturing key characteristics of precipitation and atmospheric dynamics across monsoon regions in the historical period. In the future period, regional monsoons exhibit a spatially robust delay in the monsoon onset, an increase in seasonality, and a reduction in the rainy season length at higher levels of radiative forcing. All regions with substantial delays in the monsoon onset exhibit a decrease in pre-monsoon precipitation, indicating a strong connection between pre-monsoon drying and a shift in the monsoon onset. The weakening of latent heat driven atmospheric warming during the pre-monsoon period delays the overturning of atmospheric subsidence in the monsoon regions, which defers their transitioning into deep convective states. Monsoon changes under the RCP2.6 scenario are mostly within the baseline variability. 

How to cite: Ashfaq, M., Cavazos, T., Reboita, M., Torres-Alavez, J. A., Im, E.-S., Olusegun, C., Alves, L., Key, K., Adeniyi, M., Tall, M., Sylla, M. B., Mehmood, S., Zafar, Q., Das, S., Diallo, I., and Coppola, E.: Robust Late 21st Century Shift in the Regional Monsoons in RegCM-CORDEX Simulations , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12102, https://doi.org/10.5194/egusphere-egu2020-12102, 2020.

EGU2020-8800 | Displays | CL4.12

Future projections in tropical cyclone activity over multiple CORDEX domains from RegCM4 CORDEX-CORE simulations

Abraham Torres, Russell Glazer, Erika Coppola, Xuejie Gao, Kevin Hodges, Sushant Das, and Moetasim Ashfaq

Under the Coordinated Regional Downscaling Experiment (CORDEX) initiative, simulations of tropical cyclones were performed using the latest version of the International Centre for Theoretical Physics (ICTP) Regional Climate Model 4 (RegCM4) at a spatial resolution of 25 km over four domains (Australasia, Central America, Western Pacific and South Asia). These simulations cover the 130-year period, 1970-2099, for two Representative Concentration Pathways, 2.6 (RCP2.6) and 8.5 (RCP8.5) emission scenarios and were driven by three General Circulation Models (GCMs) from phase 5 of the Coupled Model Inter-comparison Project (CMIP5). In these simulations, the potential changes in TC activity for future climate conditions over five areas of tropical cyclone formation (North Indian Ocean, the Northwest Pacific, North Atlantic, Australasia and Eastern Pacific) are investigated, using an objective algorithm to identify and track them. The RegCM4 simulations driven by GCMs are evaluated for the period of 1995–2014 by comparing them with the observed tropical cyclone data from the International Best Track Archive for Climate Stewardship (IBTrACS); then the changes in two future periods (2041-2016 and 2080–2099), relative to the baseline period (1995–2014), are analyzed for RegCM4 simulations driven by GCMs. Preliminary results show that RegCM4 simulations driven by GCMs are capable of most of the features of the observed tropical cyclone climatology, and the future projections show an increase in the number of tropical cyclones over the North Indian Ocean, the Northwest Pacific and Eastern Pacific regions. These changes are consistent with an increase in mid-tropospheric relative humidity. On the other hand, the North Atlantic and Australasia regions show a decrease in tropical cyclone frequency, mostly associated with an increase in wind shear. We also find a consistent increase in the future storm rainfall rate and the frequency of the most intense tropical cyclones over almost all the domains. Our study shows robust and statistically significant responses, often, but not always, in line with previous studies. This implies that a robust assessment of tropical cyclone changes requires analyses of ensembles of simulations with high-resolution models capable of representing the response of different characteristics of different key atmospheric factors.

How to cite: Torres, A., Glazer, R., Coppola, E., Gao, X., Hodges, K., Das, S., and Ashfaq, M.: Future projections in tropical cyclone activity over multiple CORDEX domains from RegCM4 CORDEX-CORE simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8800, https://doi.org/10.5194/egusphere-egu2020-8800, 2020.

EGU2020-9970 | Displays | CL4.12

Projected changes to Severe Thunderstorm environments as a result of 21st century warming from RegCM CORDEX-CORE simulations

Russell Glazer, José Abraham Torres-Alavez, Erika Coppola, Sushant Das, Moetasim Ashfaq, and Taleena Sines

Dangerous weather related to severe thunderstorms including tornadoes, high-winds, and hail cause significant damage globally to life and property every year. Yet the impact on these storms from a warming climate remains a difficult task due to their transient nature. In this study we investigate changes in the large-scale environments in which severe thunderstorms form during 21st century warming (RCP2.6 and RCP8.5) in a group of RegCM CORDEX-CORE simulations. Severe potential is measured in terms of CAPE (Convective Available Potential Energy) and shear during the severe seasons in three regions which are known to currently be prone to severe hazards: North America, the southeastern coast of South America east of the Andes, and eastern India and Bangladesh. In every region environments supportive for severe thunderstorms are increasing during the warm season months in both RCP2.6 and RCP8.5 during the 21st century. The number of days supportive for severe thunderstorms increases by several days per season over the vast majority of each region by the end of the century. In the case of RCP2.6, where greenhouse gas forcing is relatively weak compared to RCP8.5, there is still a consistent positive trend in the impact on severe days. The simulations using RCP8.5 forcing show large changes to the annual cycle of severe weather as well as the number of days supportive for severe weather per season. In some regions, like for example Northern Argentina along the Andes mountains, the number of days with severe conditions present increases by nearly 100% by the end of the century. Analyzing the CAPE and shear trends during the 21st century we find seasonal and regionally specific changes driving the increased severe potential. 21st century surface warming is clearly driving a robust increase in CAPE in all regions, however poleward displacement of vertical shear in the future leads to the movement of severe environments over North America and South America. The results found here relate that severe impacts in the future cannot be generalized globally, and that regionally specific changes in vertical shear may drive future movement of regions prone to severe weather.

How to cite: Glazer, R., Torres-Alavez, J. A., Coppola, E., Das, S., Ashfaq, M., and Sines, T.: Projected changes to Severe Thunderstorm environments as a result of 21st century warming from RegCM CORDEX-CORE simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9970, https://doi.org/10.5194/egusphere-egu2020-9970, 2020.

EGU2020-4481 | Displays | CL4.12

Impact of horizontal resolution on the tropical cyclone activity over the western North Pacific in CORDEX-East Asia phase I and II experiments

Dong-Hyun Cha, Minkyu Lee, Myoung-Seok Suh, Eun-Chul Chang, Joong-Bae Ahn, Seung-Ki Min, and Young-Hwa Byun

 This study evaluated tropical cyclone (TC) activity simulated by two regional climate models (RCMs) incorporated in the Coordinated Regional Climate Downscaling Experiment (CORDEX) framework with two different horizontal resolutions. Evaluation experiments with two RCMs (RegCM4 and MM5) forced by reanalysis data were conducted over the CORDEX-East Asia domain with 25 km and 50 km horizontal resolutions. The 20-year (19892008) mean performances of the experiments were investigated in terms of TC genesis, track, intensity, and TC-induced precipitation. In general, the simulated TC activities over the western North Pacific (WNP) varied depending on the model type and horizontal resolution. The MM5 tended to simulate more reasonable TC activity compared with the RegCM4. For both models, higher horizontal resolution improved the simulation of TC tracks near the coastal regions of East Asia, whereas the coarse horizontal resolution led to underestimated TC genesis compared with the best track data because of greater convective precipitation and enhanced atmospheric stabilization. In addition, the increased horizontal resolution prominently improved the simulation of TCs landfalling in East Asia and associated precipitation around coastal regions. This finding implies that high-resolution RCMs can produce added value in improving the simulation of TCs over the WNP; thus, they have an advantage in climate change assessment studies.

How to cite: Cha, D.-H., Lee, M., Suh, M.-S., Chang, E.-C., Ahn, J.-B., Min, S.-K., and Byun, Y.-H.: Impact of horizontal resolution on the tropical cyclone activity over the western North Pacific in CORDEX-East Asia phase I and II experiments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4481, https://doi.org/10.5194/egusphere-egu2020-4481, 2020.

EGU2020-14592 | Displays | CL4.12

Fidelity of CORDEX experiments over Himalayan Watersheds

Shabehul Hasson

How much water will come in future from the Himalayan watersheds under changing climate is a growing concern for ensuring sustainable development of downstream agrarian economies and for socioeconomic wellbeing of dependent communities. However, robust assessment of future water availability largely depends upon fidelity of climate modelling experiments simulating future change scenarios, beyond the debate of their possibility and plausibility. Thus, I assess the fidelity of CORDEX experiments over the Himalayan watersheds for the historical period against a broader set of observational datasets, in terms of reproducibility of the observed climatology of temperature and precipitation. Changes in these basic variables relevant for impact studies will also be presented under different scenarios and their robustness will be discussed in view of their fidelity for the historical period. The study will suggest the suitability of CORDEX experiments for the impact studies and further possibilities for improvement.

How to cite: Hasson, S.: Fidelity of CORDEX experiments over Himalayan Watersheds, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14592, https://doi.org/10.5194/egusphere-egu2020-14592, 2020.

EGU2020-3732 | Displays | CL4.12

Convection-Permitting Regional Climate Simulations over North America

Changhai Liu, Kyoko Ikeda, and Roy Rasmussen

The NCAR Water System Program has been striving to improve the representation of the water cycle and its future changes in both regional and global models during the past decade. One of our efforts is conducting continental-scale convection-permitting simulations of the current and future climate of North America using the WRF model based atmospheric-hydrological coupling system. The major science objectives of these simulations are: 1) to evaluate the capability of convection-permitting WRF model in capturing orographic precipitation and snow mass balance over the western mountains of North America and convective precipitation in the eastern part of the continent; 2) to assess future changes in seasonal snowfall and snowpack and associated surface hydrological cycles under the CMIP5-projected global warming; 3) to investigate water cycle changes in response to climate warming, including the summertime convective precipitation and associated mesoscale convective storm tracks; and 4) to examine the impact of climate change on severe weather over North America. As such, two phases of convection-permitting climate modeling have been undertaken using 4-km horizontal grid spacing covering most of North America.

The phase-one effort involves two 13-year simulations as reported in Liu et al. (2017): 1) a historical simulation with initial and boundary conditions from ERA-interim, and 2) a future climate sensitivity simulation, called pseudo-global warming (PGW), with modified reanalysis-derived initial and boundary conditions by adding the CMIP5 ensemble-mean projected climate change. These WRF-downscaled climate change simulations provide a unique high-resolution dataset to the community for studying one possible scenario of regional climate changes and impacts.

Recognizing that only the thermodynamic future climate impacts can be adequately addressed in the PGW approach, the NCAR Water System team has started conducting a second set (phase II) of current and future simulations at 4-km grid spacing over North America. In these simulations, the WRF model is forced using the weather perturbations derived from the NCAR CESM model 6-hourly output plus the reanalysis-based bias-corrected CMIP5 ensemble mean climate as detailed in Dai et al. (2017). The model domain is also expanded northward to include Canada and the Canadian Arctic. Because storm track changes are permitted, these simulations complement the previous PGW simulations, allowing us to address the impact of dynamic changes in the future warmer climate. We will present some preliminary analysis results of these simulations, with focus on the evaluation of the historical simulation and the added value of convection-permitting resolution and mean climate bias corrections.

How to cite: Liu, C., Ikeda, K., and Rasmussen, R.: Convection-Permitting Regional Climate Simulations over North America, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3732, https://doi.org/10.5194/egusphere-egu2020-3732, 2020.

EGU2020-1927 | Displays | CL4.12

AFRICAP - The impact of climate change on agriculture in Tanzania, Malawi, Zambia and South Africa

Sarah Chapman, Cathryn Birch, Edward Pope, Susannah Sallu, Catherine Bradshaw, Jemma Davie, and John Marsham

Sub-Saharan Africa is one of the most food insecure regions in the world and is highly vulnerable to climate change. We use a comprehensive set of bias-corrected global (CMIP5) and regional (CORDEX-Africa) models and a new convection-permitting pan-Africa simulation (and its parameterized counterpart) to examine changes in rainfall and temperature and the impact on agricultural suitability of maize, cassava and soy in sub-Saharan Africa by 2100 (RCP8.5). This is the first time a convection-permitting projection has been used to examine agricultural suitability in Africa. Increasing temperatures and declining rainfall led to large parts of sub-Saharan Africa becoming unsuitable for multiple staple crops, which may necessitate a transition to more heat and drought resistant crops to ensure food and nutrition security. Soy was resilient to temperature increases, however maize and cassava were not, leading to declines in crop suitability. Inclusion of sensitivity to extreme temperatures led to larger declines in maize suitability than when this was excluded. The variation in rainfall projections within the multi-model ensemble was examined in detail for Tanzania, Malawi, Zambia and South Africa. In each country the range of projections included wetting and drying, but the majority of models projected rainfall declines, except in Tanzania, leading to declines in crop suitability. Overall, the CORDEX and CMIP5 models gave similar results for agricultural suitability. Explicit-convection led to more temperature extremes, but had little systematic impact on temperature and rainfall, and the resulting suitability analysis. Global model uncertainty, rather than convection parameterizations, still makes up the largest part of the uncertainty in future climate. Explicit-convection may have more impact if suitability included a more comprehensive treatment of extremes. This work highlights the key uncertainty from global climate projections for crop suitability projections, and the need for improved information on sensitivities of African crops to extremes, in order to give better predictions and make better use of the new generation of explicit-convection models.

How to cite: Chapman, S., Birch, C., Pope, E., Sallu, S., Bradshaw, C., Davie, J., and Marsham, J.: AFRICAP - The impact of climate change on agriculture in Tanzania, Malawi, Zambia and South Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1927, https://doi.org/10.5194/egusphere-egu2020-1927, 2020.

EGU2020-7093 | Displays | CL4.12

Impacts of land cover changes and global warming on climate in Colombia using the regional climate model WRF

Astrid Manciu, Andreas Krause, Anja Rammig, and Benjamin Quesada

Deforestation in Colombia has drastically increased in recent years. At the same time, droughts and floods are affecting the country more frequently due to climate change. Analyzing the impacts and interactions of deforestation and global warming is challenging due to the terrain’s complexity and the high climate variability along with the severe lack of regional climate modelling.

Here, we quantify the impact of historical anthropogenic global warming (CC) and land cover changes (LCC) on precipitation, temperature and the surface energy balance in Colombia by running the Weather Research and Forecasting model WRF v3.9.1.1. across different land cover and climate scenarios during the study period 2009-2011 for Colombia.

We find that precipitation is increased by CC with a stronger effect over forests. LCC implies a small reduction of precipitation which is strongly enhanced above deforested areas. LCC is found to be a strong driver of regional precipitation changes representing up to 25% and 60% of the CC effects magnitude in Coastal Caribbean and Andean regions, respectively. CC causes a temperature increase across the whole domain, in particular with increasing altitude. Surprisingly however, WRF simulates a slight cooling after deforestation which is not in line with almost all observations and modelling studies regarding biophysical effects of tropical deforestation. This apparent bias is further investigated across different WRF schemes and parameters because of its great importance for climate studies using WRF with default parametrization in tropical contexts.

 

How to cite: Manciu, A., Krause, A., Rammig, A., and Quesada, B.: Impacts of land cover changes and global warming on climate in Colombia using the regional climate model WRF, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7093, https://doi.org/10.5194/egusphere-egu2020-7093, 2020.

EGU2020-13441 | Displays | CL4.12

Effects of GCM selection for regional climate modelling illustrated by the interactive tool GCMeval

Oskar A. Landgren, Kajsa Parding, Andreas Dobler, Carol F. McSweeney, Rasmus Benestad, Helene B. Erlandsen, Abdelkader Mezghani, Hilppa Gregow, Olle Räty, Elisabeth Viktor, Juliane El Zohbi, Ole Bøssing Christensen, and Harilaos Loukos

With the increasing number of global climate models available, regional modellers have to make choices to select a manageable subset for downscaling. This limits the representation of both present day climate and future climate change compared to the full GCM ensemble.

We present the interactive web-based tool called “GCMeval”, available at https://gcmeval.met.no. This tool lets you assign weights to different regions, seasons, climate variables, and skill scores and presents a ranking with model performance for a historical period. We demonstrate how the tool can be used to, for example, remove models with the largest historical biases for the selected criteria, or to optimise the spread. The weighting can be used to illustrate the sensitivity of the results to model choice.

Based on the choice of regions and weights, the tool produces scatter plots of projected future temperature and precipitation and shows how the selected sub-ensemble compares to the full ensemble. The tool can also be used to evaluate ensemble selections "post-hoc", as demonstrated with examples from CORDEX.

How to cite: Landgren, O. A., Parding, K., Dobler, A., McSweeney, C. F., Benestad, R., Erlandsen, H. B., Mezghani, A., Gregow, H., Räty, O., Viktor, E., El Zohbi, J., Bøssing Christensen, O., and Loukos, H.: Effects of GCM selection for regional climate modelling illustrated by the interactive tool GCMeval, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13441, https://doi.org/10.5194/egusphere-egu2020-13441, 2020.

EGU2020-10324 | Displays | CL4.12

Evaluating fine-resolution, regional outputs of a variable resolution global climate model

Alan Di Vittorio, Zexuan Xu, Jie Zhang, Xiaoge Xin, Hongmei Xu, and Chan Xiao

Climate models have been used to study water resources and regional hydrologic responses to climate change, but climate model outputs must be downscaled to provide relevant regional data. However, the accuracy of this regional data is limited by uncertainties across and within downscaling methods, uncertainty across global outputs, and discontinuities at downscaled boundaries. A new alternative to traditional downscaling is a variable resolution model that incorporates fine-resolution regions directly into a coarse-resolution, global climate simulation in order to capture contiguous dynamics across resolution boundaries. In this study, we used the Variable-Resolution Community Earth System Model (VR-CESM) to generate one-eighth degree (14 km) fine-resolution outputs for the western U.S. and eastern China from 1970-2006.

 

We focus our evaluation on precipitaiton, temperature, snow pack, solar radiation, and wind. We compare the model outputs with remote-sensing-based precipitation data, and both reanalysis and gridded weather station data for precipitation and temperature. VR-CESM generally has a cold bias in winter and a warm bias in summer in the western U.S., which compensate each other to reduce the annual bias. In eastern China, however, the sign of temperature biases are more consistent throughout the year with cold biases in the higher mountains and warm biases throughout most of the rest of the region. Precipitation biases are dependent upon reference data, and show slight overestimation in high mountain regions in both the U.S. and China with respect to gridded weather station data. Simulated snow cover in the western U.S. is reasonable compared to remote sensing data, but snow cover and snow water equivalent have larger biases when compared to reanalysis data. In eastern China there are widespread snow cover biases compared to remote sensing data. VR-CESM underestimates downward shortwave radiation to a greater degree in summer than in winter, and underestimates surface layer windspeed over mountains to a greater degree than in other areas. Comparison between VR-CESM and a coarser simulation (1-degree Beijing Climate Center model) shows reduced precipitation biases in the mountainous regions with finer resolution, indicating the value of variable-resolution modeling for reigonal studies.

How to cite: Di Vittorio, A., Xu, Z., Zhang, J., Xin, X., Xu, H., and Xiao, C.: Evaluating fine-resolution, regional outputs of a variable resolution global climate model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10324, https://doi.org/10.5194/egusphere-egu2020-10324, 2020.

EGU2020-15001 | Displays | CL4.12

Climate hazard indices projections based on CORDEX-CORE, CMIP5 and CMIP6 ensemble.

Erika Coppola and the CORDEX-CORE

Under the CORDEX umbrella the CORDEX-CORE initiative has been developed that was able to produce an ensemble of two RCMs at 0.22° resolution downscaling 3 GCMs for each of the 9 CORDEX domains for two climate scenarios the RCP2.6 and the RCP8.5. The CORDEX-CORE and the CMIP5 driving ensemble together with the most recently produced CMIP6 ensemble has been analyzed and several temperature, heat, wet and dry hazard indicators have been computed for the present day and mid and far future time slices.

As a results CORDEX-CORE shows a better validation for several hazard indices due to the higher spatial resolution. For the far future time slice the 3 ensembles project an increase for all the temperature and heat indices under the RCC8.5 scenario. The highest values are always shown by the CMIP6 ensemble except that for Tx>35 °C for which CORDEX-CORE projects higher warming. Extreme wet and flood prone maxima are projected by the regional ensemble over la Plata basin in South America , over the Congo basin in Africa, in east North America, north east Europe , India and Indochina, notably the regions where a better validation is obtained, whereas the global ensembles show quite small or not existent signal. Compound hazard hotspots based on heat and drought indicators have been identified in Central America, in the Amazon region, in the Mediterranean, South Africa, India and Australia since in all these regions a linear relation is shown by the heatwave and drought change signal. Although still limited the CORDEX-CORE initiative was able to produce high resolution climate projections with a quasi global coverage. This can be seen as a first step to foster collaboration among the global and regional climate community. The existence of the first of this kind ensemble together with the previous CORDEX 0.44 ensembles and the global ensemble is very valuable for climate impact assessment studies since can provide information on the mean and extreme regional climate projections but also more robust quantification on the model spread. All being an added value for the impact and climate services communities.

How to cite: Coppola, E. and the CORDEX-CORE: Climate hazard indices projections based on CORDEX-CORE, CMIP5 and CMIP6 ensemble., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15001, https://doi.org/10.5194/egusphere-egu2020-15001, 2020.

EGU2020-1062 | Displays | CL4.12

Hindcast Simulation of Medicanes with an Atmosphere-Ocean-Wave Coupled Modelling System

Fulden Batıbeniz, Barış Önol, and Ufuk Utku Turuncoglu

Tropical-like Mediterranean storms associated with strong winds, low pressure centers and extreme precipitation are called medicanes. These devastating storms threaten the coastal regions and some small islands in the Mediterranean. Recent studies including future climate projections indicate that the intensity of medicanes could increase under the climate change conditions. Therefore it is important to improve a comprehensive understanding of the medicanes and theirs occurrence processes including thermodynamic mechanisms between the atmosphere and the sea. In pursuing these mechanisms, we use reanalysis/observations (ECMWF’s ERA5 and MyOCEAN etc.) and coupled Regional Earth System Model (RegESM). The RegESM model is run in coupled mode (Regional Climate Model-RegCM4-12km coupled with Regional Ocean Modelling System-ROMS-1/12°, and Wave Model-WAM-0.125°) and uncoupled mode (RegCM4 only-12km) for 1979-2012 period over the Med-CORDEX domain prescribed under the CORDEX framework. Additionally, standalone simulation of RegCM4 has been forced by Era-Interim Reanalysis over the Med-CORDEX domain and the standalone simulation of the wave model (WAM) has been forced by the standalone RegCM4 wind field (12 km horizontal resolution) for the Mediterranean Sea.

We analyze the ability of the coupled and uncoupled models to reproduce the characteristics of the observed medicanes and to investigate the role of air-sea interaction in the simulation of key processes that govern medicane occurrences over the study area. In general, the spatial extent and the timing of the observed medicanes better simulated with the coupled model. The reason behind this better replication with the coupled model is the wave model’s interactive contribution with the roughness length to the surface winds, which allows necessary conditions for medicane formation. Our results also reveals that the recently developed modeling system RegESM incorporates atmosphere, ocean and wave components and thereby is better capable to improve the understanding of the mechanisms driving medicanes.

Keywords Regional earth system model, Ocean-atmosphere-wave coupling, Medicanes

Acknowledgements This study has been supported by a research grant 40248 by the Scientific Research Projects Coordination Unit of Istanbul Technical University (ITU) and  a research grant (116Y136) provided by The Scientific and Technological Research Council of Turkey (TUBITAK). The computing resources used in this work were provided by the National Center for High Performance Computing of Turkey (UHEM) under grant number 5004782017.

How to cite: Batıbeniz, F., Önol, B., and Turuncoglu, U. U.: Hindcast Simulation of Medicanes with an Atmosphere-Ocean-Wave Coupled Modelling System , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1062, https://doi.org/10.5194/egusphere-egu2020-1062, 2020.

EGU2020-971 | Displays | CL4.12

Future circulation changes over the EURO-CORDEX domain

Tugba Ozturk, Dominic Matte, and Jens Hesselbjerg Christensen

The occurrence of extreme weather events and climate extremes over Europe and the Mediterranean region are believed to be associated with changes and variability in the mid-latitude atmospheric circulation. CMIP5 models exhibits a substantial decrease in mid-latitude mean storm track activity for summer under climate change for a variety of scenarios. In this work, we aim to investigate future change in summer circulation and its implication for summer temperature and precipitation extremes over Europe particularly focusing on the Southeastern Mediterranean. EURO-CORDEX regional climate projections at 0.11° grid-mesh are used to analyze future climate projections addressing climate warming targets of 1°C, 2°C and 3°C, respectively. Simple scaling with the global mean temperature change is applied to the regional climate projections for the variables in concern in order to provide robust signals not to be dependent on climate sensitivity. Our focus in this study is on monthly mean geopotential height, winds at mid- and lower-troposphere as indicators of the simulated circulation changes.

How to cite: Ozturk, T., Matte, D., and Christensen, J. H.: Future circulation changes over the EURO-CORDEX domain, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-971, https://doi.org/10.5194/egusphere-egu2020-971, 2020.

Snow cover is a crucial part of the climate system due to its distinctive alteration of surface reflectance (snow-albedo-feedback) and its influence on further physical surface properties (e.g. heat conduction and water storage). These effects are particularly relevant in alpine areas and high latitude regions, where snow coverage prevails for a significant part of the season. In addition, various human activities rely on snow cover duration and/or snow amounts, such as winter tourism, agriculture and hydropower production.

The EURO-CORDEX project provides an RCM ensemble with a horizontal resolution of ~50 and ~12 km for both present-day and future climates assuming different emission scenarios. These simulations present a potentially valuable information source for the future snow cover evolution. Prerequisite, however, is the ability of RCMs to reproduce historical snow cover conditions. These issues are addressed in the present work on a European scale. A horizontal resolution of ~12 km allows for an improved representation of topography and is thus particularly interesting for snow cover studies, as snow in alpine regions strongly correlates with elevation. We therefore only consider the high-resolution EURO-CORDEX RCMs and, for the climate projection part, simulations for RCP2.6, RCP4.5 and RCP8.5.

To assess the RCMs’ ability of reproducing current snow cover conditions in Europe, we evaluate simulated snow water equivalent and snow cover duration/extent by comparison against different reanalysis data (e.g. ERA5, UERRA MESCAN-SURFEX) and snow products derived from remote sensing. Regarding the spatial domain, we consider entire Europe with a focus on four mountainous regions (Alps, Norway, Pyrenees and Carpathians). The evaluation reveals that, on an European scale, mean yearly snow cover duration is well captured by the ensemble mean of the models. However, the majority of the RCMs underestimates snow cover extent throughout the season. This bias is more pronounced in the reanalysis (ERA-Interim) driven set of simulations than in the GCM-driven runs. In regions with complex topography, winter snow water equivalent is distinctively overestimated in some simulations - whereas certain grid cells reveal glaciation (i.e. year-round snow coverage). A comparison with E-OBS data indicates that biases in snow cover duration and amount are, besides arising from inaccurate snow schemes, linked to mismatches in simulated air temperature and precipitation patterns. Scenarios for the 21st century show a distinctive reduction in snow cover duration for low-elevation regions, whereas the magnitude of this decrease depends, amongst other factors, on the climate scenario. Projected decreases in the snow cover are less pronounced for medium to high-elevation regions.

How to cite: Bülow, K., Kotlarski, S., Steger, C., and Teichmann, C.: Can the latest generation of regional climate models reproduce European snow conditions and how do biases translate into uncertainties of snow cover projections?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9964, https://doi.org/10.5194/egusphere-egu2020-9964, 2020.

EGU2020-17466 | Displays | CL4.12

Climate Extremes in the Lake Victoria Basin: The ELVIC CORDEX Flagship Pilot Study

Nicole van Lipzig, Jonas Van de Walle, Wim Thiery, Grigory Nikulin, Minchao Wu, Russell Glazer, Erika Coppola, Joaquim Pinto, Andreas Fink, Patrick Ludwig, Dave Rowell, Ségolène Berthou, Declan Finney, and John Marsham

Extreme weather events, like heavy precipitation, heat waves, droughts and wind storms have a detrimental impact on East African societies. The Lake Victoria Basin (LVB) is especially vulnerable, since nightly storms on the lake catch fishermen by surprise. As the frequency and intensity of climate extremes is projected to further increase substantially with climate change, so do the risks, with potentially major consequences for livelihoods and policy in the LVB.

The ultimate aim of the ELVIC CORDEX-FPS is to investigate how extreme weather events evolve in the future in the LVB and to provide improved probabilistic information to the impact community. ELVIC (Climate Extremes in the Lake Victoria Basin) brings together different research groups that perform simulations with multiple high-resolution regional climate models operating at the convection-permitting scale (CPS) (https://ees.kuleuven.be/elvic).

As a first step towards this overall goal, the added value of the CPS on the representation of deep convective systems in Equatorial Africa was assessed. For this purpose, 10-year present-day model simulations were carried out with five regional climate models both at the CPS and at the scale where convection was parameterized, namely COSMO-CLM, RegCM, HCLIM-AROME, WRF and the Met Office Unified Model. From a comparison of model output with different observational products, no robust improvement was found for seasonal average meteorological variables. Moreover, the change in the seasonal precipitation when going to CPS differs between the models. A robust improved performance was found for deep convection, reflected in an improved representation of the daily precipitation cycle. Preliminary results also point towards an improvement in the representation of extreme precipitation. This suggests that regional climate model simulations at the convection-permitting scale are indeed relevant to assess the climate sensitivity of extreme precipitation in the Lake Victoria Basin.

How to cite: van Lipzig, N., Van de Walle, J., Thiery, W., Nikulin, G., Wu, M., Glazer, R., Coppola, E., Pinto, J., Fink, A., Ludwig, P., Rowell, D., Berthou, S., Finney, D., and Marsham, J.: Climate Extremes in the Lake Victoria Basin: The ELVIC CORDEX Flagship Pilot Study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17466, https://doi.org/10.5194/egusphere-egu2020-17466, 2020.

EGU2020-2357 | Displays | CL4.12

Future changes in high-impact events in pan-European convection-permitting projections

Elizabeth Kendon, Steven Chan, Segolene Berthou, Colin Manning, and Abdullah Kahraman

At the UK Met Office we have recently completed climate change simulations at convection-permitting resolution (2.2km grid scale) across a pan-European domain, which are feeding into the CORDEX-FPS and European Climate Prediction System (EUCP) projects. At such high resolution, the model gives a much better representation of convection and is able to capture hourly precipitation characteristics, including extremes, as well as better representing the influence of mountains, coastlines and cities. In this talk, I will present results from these new convection-permitting climate simulations, looking at future changes in high impact events, including hourly precipitation extremes and severe winds. I will also discuss remaining outstanding issues, such as the deficiencies in land-surface-atmosphere coupling, and work underway to try and address these.

How to cite: Kendon, E., Chan, S., Berthou, S., Manning, C., and Kahraman, A.: Future changes in high-impact events in pan-European convection-permitting projections, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2357, https://doi.org/10.5194/egusphere-egu2020-2357, 2020.

EGU2020-13098 | Displays | CL4.12

Impact of ocean-atmosphere coupling on regional climate: the Iberian Peninsula case

William Cabos, Dmitry Sein, Alba de la Vara, and Francisco Alvarez Garcia

Regional models used for downscaling the European climate usually include a relatively small area of the Atlantic Ocean and are uncoupled, with the SST used as lower boundary conditions much coarser than the mesh of the regional atmospheric model. Concerns thus arise about the proper representation of the oceanic influence and the role of air-sea coupling in such experiments.  A complex orography and the exposure to different air and ocean masses make the Iberian Peninsula (IP) an ideal test case for exploring the impact of including explicitly the North Atlantic in the regional domain and the added value that coupling brings to regional climate modeling. To this end, the regionally-coupled model ROM and its atmospheric component, the regional atmospheric model REMO are used in a set of coupled and uncoupled experiments forced by the ERA-Interim reanalysis and by the global climate model MPI-ESM. The atmospheric domain is the same in all simulations and includes the North Atlantic and the ocean component is global and eddy permitting. Results show that the impact of air-sea coupling on the IP winter biases can be traced back to the features of the simulated North Atlantic Ocean circulation. In summer, it is the air-sea interactions in the Mediterranean that exert the largest influence on the regional biases. Despite improvements introduced by the eddy-permitting ocean, it is suggested that a higher resolution could be needed for a correct simulation of the features of the large-scale atmospheric circulation that impact the climate of the IP.     

How to cite: Cabos, W., Sein, D., de la Vara, A., and Alvarez Garcia, F.: Impact of ocean-atmosphere coupling on regional climate: the Iberian Peninsula case, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13098, https://doi.org/10.5194/egusphere-egu2020-13098, 2020.

The analysis of climate patterns can be performed for each climatic variable separately or the data can be aggregated using e.g. a kind of climate classification. The advantage of such method, in our case Köppen-Trewartha classification, is putting together the most important variables, i.e. temperature and precipitation, considering not only annual means, but through monthly values the annual cycle as well. These classifications usually correspond to vegetation distribution in the sense that each climate type is dominated by one vegetation zone or eco-region. Climate classifications represent a convenient tool for the assessment and validation of climate models and for the analysis of simulated future climate changes.

 

The results of RegCM driven by selected CMIP5 simulations (mostly HadGEM, MPI and NorESM) produced within the CORDEX-CORE experiment over nine CORDEX domains are analysed. Validation based on ERA-Interim driven runs compared to CRU database (E-OBS for higher resolution in Europe) shows reasonable agreement in the Northern hemisphere with a tendency towards wetter and colder climate types in North America. Worse representation in Southern hemisphere is observed, mainly in Australia (lack of desert type). Through the analysis of the control experiments together with the performance of driving GCMs we can assess the sources of the biases in present conditions as well as the added value, which comes mainly from better representation of topography in higher resolution and thus appearance of mountaineous tundra type, as well as better representation of coastal regions and thus separating maritime subtypes. Finally, for two scenarios RCP8.5 and RCP2.6 we show the projections of the individual types‘ area changes, mainly decline of boreal and polar types, their shift to the higher latitudes and altitudes, increase of temperate, subtropical and dry climates. Magnitude, and in some cases (temperate climate) even the sign of change is largely dependent on the region and driving model.

How to cite: Belda, M. and Halenka, T.: Global Changes of Köppen-Trewartha Climate Zones Derived from RegCM CORDEX-CORE Simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16236, https://doi.org/10.5194/egusphere-egu2020-16236, 2020.

EGU2020-20151 | Displays | CL4.12

First results of a comparison study of multi-domain REMO CORDEX simulations between 0.11° and 0.22° resolution with ERA-Interim forcing

Martina Schubert-Frisius, Susanne Pfeifer, Armelle Reca Remedio, Claas Teichmann, Lars Buntemeyer, Kevin Sieck, Torsten Weber, Diana Rechid, and Daniela Jacob

Within the framework of WCRP CORDEX, the CORE (CORDEX Coordinated Output for Regional Evaluations) experiment provides a homogeneous ensemble of regional climate projections for 9 domains covering all land areas of the globe with the exception of the Arctic and Antarctic regions (http://www.cordex.org/experiment-guidelines/cordex-core/). CORDEX-CORE provides data from two regional climate models (REMO2015 and RegCM), driven by 3 GCMs and under 2 RCP scenario conditions at a resolution of about 25 km. In addition, within the same framework, simulations of the current climate, driven by ERA-Interim, were carried out for all areas with REMO2015 at a grid resolution of approx. 25 km.

Within the German Project ViWA (Virtual Water Values, https://viwa.geographie-muenchen.de), simulations with the regional climate model REMO2015, driven by ERA-INTERIM analyses were carried out for the same regions globally, but on a significantly higher spatial resolution of approx. 12.5 km. These simulations cover the time period from 2015 to 2018. Comparing these highly resolved simulations to the coarsely resolved CORDEX-CORE simulations, can give indications, in which regions and for which processes the CORDEX-CORE resolution of 25 km is sufficient and where a higher resolution brings a clear added value.

We will show first results of this comparison, focusing on selected regions and processes which potentially benefit from higher spatial resolution of the simulations.

How to cite: Schubert-Frisius, M., Pfeifer, S., Reca Remedio, A., Teichmann, C., Buntemeyer, L., Sieck, K., Weber, T., Rechid, D., and Jacob, D.: First results of a comparison study of multi-domain REMO CORDEX simulations between 0.11° and 0.22° resolution with ERA-Interim forcing, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20151, https://doi.org/10.5194/egusphere-egu2020-20151, 2020.

EGU2020-18411 | Displays | CL4.12

Future projections in the climatology of five low-level jets across different CORDEX domains

Sushant Das, Abraham Torres, Arturo Corrales, Erika Coppola, Filippo Giorgi, Francesca Raffaele, Melissa Bukovsky, Moetasim Ashfaq, and Taleena Sines

Five of the most prominent low-level jets (LLJs) around the world – the Monsoon Low-Level Jet, Caribbean Low-Level Jet, West African Westerly Jet, Great Plains Low-Level Jet and South American Low-Level Jet – are examined for future climate conditions relative to the present using an ensemble of Regional Climate Model (RCM) simulations under the Coordinated Regional Downscaling Experiment (CORDEX) initiative. The simulations were conducted on a 25 km horizontal grid spacing using lateral and lower boundary forcing from three Coupled Model Inter-comparison Project 5 (CMIP5) global climate models (GCMs) for a near-present historical period (1995–2014) and two future periods (2041–2060 and 2080–2099) under the Representative Concentration Pathway 8.5 (RCP8.5). The RCM is capable of capturing most of the observed climatological features of the LLJs and exhibits a much greater capacity to represent their positioning and core strength compared to the driving GCMs. Analysis of the influence of global warming on the LLJs shows a consistent strengthening of the jets and a shift in their location under both future scenarios. The Monsoon and West African LLJs exhibit a northward shift, while the Caribbean and South American LLJs undergo a westward expansion. The use of an ensemble of high-resolution simulations provides a key element in a robust assessment of changes in LLJs associated with future global-warming scenarios.

How to cite: Das, S., Torres, A., Corrales, A., Coppola, E., Giorgi, F., Raffaele, F., Bukovsky, M., Ashfaq, M., and Sines, T.: Future projections in the climatology of five low-level jets across different CORDEX domains, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18411, https://doi.org/10.5194/egusphere-egu2020-18411, 2020.

EGU2020-21337 | Displays | CL4.12

Assessment of the CORDEX-CORE Africa simulations: evaluation and uncertainties in the mean and extreme indices climate change signal

Sabina Abba-Omar, Francesca Raffaele, Erika Coppola, Daniela Jacob, Claas Teichmann, and Armelle Remedio

CORDEX-CORE is a new phase of CORDEX simulations with higher resolutions (0.22 degrees) consisting of two RCMs forced by three GCMs. This higher resolution ensemble could provide added value to regional climate change information, however, since the data has just recently been released, more studies are required to validate and report on its climate change signal. With this in mind, we computed the mean climate and extreme indices over Africa using the CORDEX-CORE ensemble. These results are compared to the results of  the driving models as well as to the lower resolution CORDEX-phase 1 ensemble. We found that for most of the extreme indices the CORDEX-CORE shows lower biases over Africa owing to its higher spatial resolution. We also found that the mean climate change signal over Africa was broadly consistent across the three different ensembles. Indicating that the new CORDEX-CORE ensemble is able to capture the uncertainty spread well. We report the projected changes in extreme indices over Africa found in the new higher resolution CORDEX-CORE ensemble. We also examine and compare the representation of some key dynamical features over Africa in the different ensembles. Africa is especially vulnerable to extreme events, due to its limited capacity for disaster management. Thus, this study adds important, higher resolution information to the existing climate change impact knowledge for Africa. 



How to cite: Abba-Omar, S., Raffaele, F., Coppola, E., Jacob, D., Teichmann, C., and Remedio, A.: Assessment of the CORDEX-CORE Africa simulations: evaluation and uncertainties in the mean and extreme indices climate change signal, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21337, https://doi.org/10.5194/egusphere-egu2020-21337, 2020.

EGU2020-2290 | Displays | CL4.12

Projected changes of temperature extremes over Southeast Asia under 1.5 and 2 degrees global warming

Fei Ge, Shoupeng Zhu, Xiefei Zhi, Frank Sielmann, and Klaus Fraedrich

Projected changes in temperature extremes at 1.5°C and 2°C global warming levels (GWLs) have been evaluated for Southeast Asia (SEA) based on temperature extreme indices from ETCCDI using the latest available CORDEX simulations. Results show that the temperature indices significant increase across Indochina Peninsula and Maritime Continent at 1.5°C and 2°C GWLs except for the decreasing daily temperature range (DTR) in the dry season. The most pronounced increases of summer days (SU) are projected in Sulawesi with the percentage magnitude of 31.7% and 19.7% (47.2% and 31.3%) at the 1.5°C (2°C) GWL for wet and dry seasons, respectively, while tropical nights (TR) increase significantly over Sumatra and Sulawesi. Robust differences of temperature extremes can be found over the SEA in both wet and dry seasons for the additional global warming of 0.5°C. The temperature extremes under the global warming of 1.5°C and 2°C levels and their differences primarily concentrate on the main islands in the densely populated coastal regions, suggesting more conspicuous impacts on the human system in the developing countries over the SEA.

How to cite: Ge, F., Zhu, S., Zhi, X., Sielmann, F., and Fraedrich, K.: Projected changes of temperature extremes over Southeast Asia under 1.5 and 2 degrees global warming , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2290, https://doi.org/10.5194/egusphere-egu2020-2290, 2020.

EGU2020-4422 | Displays | CL4.12

Evolution of Climate Growth Period in Chinese Based on Coordinated Regional Downscaling Experiment

Huaizhi Yang, Pengcheng Li, and Xinyi Zhao

Based on the historical measured temperature data (1971 ~ 2010) and the output of coordinated regional downscaling experiment (CORDEX) East Asia, including the climate prediction based on RCP4.5 and RCP8.5, the authors get the evolution pattern of climatic growth period in historical period and future scenarios.. The results show : (1) in the 40 years from 1971 to 2010, the duration of the climatic growth period in most regions of China increased slightly, and the effect of the advance of the start date of the growth period on the climatic growth period was dominant. (2)In RCP4.5, the change of the start date of the climatic growth period is mainly in East China, Central China, Northwestern South China, Northern South China and the Qinghai-Tibet Plateau, while the change of the end date is mainly in the central, southern and eastern parts of the Tibetan Plateau and the mountainous regions of Xinjiang. (3)In RCP8.5, days of change of start date  increase significantly. The duration of the climatic growth season in southern South China has remained unchanged, and the rest of the region has been extended for more than 20 days. (4) Although the number of meteorological stations in the Qinghai-Tibet Plateau is relatively small, the terrain is more complex, and the accuracy of the calculation results is affected, the northern Qinghai-Tibet Plateau is the most sensitive to global changes in both historical periods and future scenarios.

How to cite: Yang, H., Li, P., and Zhao, X.: Evolution of Climate Growth Period in Chinese Based on Coordinated Regional Downscaling Experiment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4422, https://doi.org/10.5194/egusphere-egu2020-4422, 2020.

EGU2020-12934 | Displays | CL4.12

Future projections of photovoltaic power generation on climate change simulated by CORDEX II multi-RCMs over East Asia

Changyong Park, Dong-Hyun Cha, Seok-Woo Shin, Gayoung Kim, and Taehyung Kim

East Asia is a highly industrialized region with high CO2 emissions from fossil fuel use. Therefore, to achieve the goal of the Paris Agreement on CO2 reduction, an increase in the production of renewable energy such as photovoltaic (PV) and wind power generation is required in this region. Most renewable energy production is directly affected by weather and climate. This study projected changes in future PV power generation and climate variables affecting them using CORDEX phase 2 RCMs with 25km horizontal resolution forced by HadGEM2-AO GCM over East Asia. The present change and future projection of PV potential production (PVpot) depend critically on changes in surface-downwelling shortwave radiation (RSDS). In the analysis of recent changes in PVpot over East Asia using the ERA5 reanalysis data, PVpot overall increased slightly. For PVpot projections using the high-emission scenario during the late 21C, RegCM4 is expected to increase, while the other RCMs will decrease. The results of this study will help to develop policies for efficient future production of renewable energy over East Asia by presenting the projection of future photovoltaic power generation on a detailed regional scale.

How to cite: Park, C., Cha, D.-H., Shin, S.-W., Kim, G., and Kim, T.: Future projections of photovoltaic power generation on climate change simulated by CORDEX II multi-RCMs over East Asia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12934, https://doi.org/10.5194/egusphere-egu2020-12934, 2020.

EGU2020-13548 | Displays | CL4.12

Added Value of reproduced precipitation by high resolved regional climate model simulation over CORDEX-East Asia

Taehyung Kim, Dong-Hyun Cha, Gayoung Kim, Seok-Woo Shin, Changyong Park, Minkyu Lee, Young-Hwa Byun, and Hyun-Suk Kang

In the framework of the CORDEX-East Asia, evaluation simulations using high-resolution regional climate models (SNURCM and HadGEM3-RA) with ~25km (Phase2) grid scale have been conducted. In this study, we investigate whether the higher-resolution regional climate models (RCMs) can generate added values for summer mean precipitation, large-scale circulation, and extreme precipitation compared to those with lower-resolution (~50km, Phase 1). In addition, the added value index is used to quantitatively analyze the abilities of fine- and coarse-resolution RCMs. Hence, sets of phase 1 and phase 2 simulations of two RCMs are compared to observations in the East Asia region. In SNURCM simulations, positive (negative) added value of summer mean precipitation is reproduced over most ocean (land) region of East Asia in fine-resolution simulation. Extreme precipitation over Korea and Japan is well reproduced in Phase 2 simulations because the simulations of typhoons and East Asia summer monsoon are improved. In HadGEM3-RA simulations, the results of summer mean precipitation over most East Asian regions above 25°N are improved in Phase 2, while worse results are reproduced below 25°N. But, extreme precipitation in fine-resolution simulation is adequately reproduced in most regions of East Asia except China and the Yellow sea. As a result, the results of the simulations are different depending on the characteristics of the individual models, but more positive added values for the intensity and spatial distribution of precipitation over East Asia are generated as the horizontal resolution of RCMs increases.

This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMI(KMI2018-01211)

 

How to cite: Kim, T., Cha, D.-H., Kim, G., Shin, S.-W., Park, C., Lee, M., Byun, Y.-H., and Kang, H.-S.: Added Value of reproduced precipitation by high resolved regional climate model simulation over CORDEX-East Asia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13548, https://doi.org/10.5194/egusphere-egu2020-13548, 2020.

The regional model program (RMP) that is the regional atmospheric model component of the Global/Regional Integrated Model system (GRIMs), which has the spectral dynamical core, have been participated in the Regional Model comparison project (RMIP) and the COordinated Regional Climate Downscaling Experiment (CORDEX) East Asia. The spectral method has advantages of accuracy, because numerical problems related to the spatial truncation in the grid system does not occur. However, the spectral system has the Gibbs phenomenon, which is the problem that negative values of positive definite quantities (e.g., moisture, tracer gases) can be generated by the spectral space transformation in a spectral model system. In this study, the non-iteration dimensional-split semi-Lagrangian (NDSL) advection scheme is applied to the RMP for the dynamical downscaling of the East Asian summer monsoon. In a regional climate simulation, the RMP with the NDSL scheme simulated enhanced precipitation by improving moisture field in the lower troposphere. The improvement is also induced by the revised vertical momentum which is affected by evaporation and condensation adjustment from the corrected moisture field.

How to cite: Chang, E.-C., Yeo, N., and Cha, D.-H.: Semi-Lagrangian advection scheme for the dynamical downscaling of the East Asian summer monsoon in a regional spectral model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21084, https://doi.org/10.5194/egusphere-egu2020-21084, 2020.

EGU2020-15161 | Displays | CL4.12

Evaluation of MM5 and HadGEM3-RA hindcast in the CORDEX East Asia Phase Ⅱ: near-surface air temperature

Seok-Woo Shin, Dong-Hyun Cha, Taehyung Kim, Gayoung Kim, Changyoung Park, Minkyu Lee, Young-Hwa Byun, and Hyun-Suk Kang

Extreme temperature can have a devastating impact on the ecological environment (i.e., human health and crops) and the socioeconomic system. To adapt to and cope with the rapidly changing climate, it is essential to understand the present climate and to estimate the future change in terms of temperature. In this study, we evaluate the characteristics of near-surface air temperature (SAT) simulated by two regional climate models (i.e., MM5 and HadGEM3-RA) over East Asia, focusing on the mean and extreme values. To analyze extreme climate, we used the indices for daily maximum (Tmax) and minimum (Tmin) temperatures among the developed Expert Team on Climate Change Detection and Indices (ETCCDI) indices. In the results of the CORDEX-East Asia phase Ⅰ, the mean and extreme values of SAT for DJF (JJA) tend to be colder (warmer) than observation data over the East Asian region. In those of CORDEX-East Asia phase Ⅱ, the mean and extreme values of SAT for DJF and JJA have warmer than those of the CORDEX-East Asia phase Ⅰ except for those of HadGEM3-RA for DJF. Furthermore, the Extreme Temperature Range (ETR, maximum value of Tmax - minimum value of Tmin) of CORDEX-East Asia phase Ⅰ data, which are significantly different from those of observation data, are reduced in that of CORDEX-East Asia phase Ⅱ. Consequently, the high-resolution regional climate models play a role in the improvement of the cold bias having the relatively low-resolution ones. To understand the reasons for the improved and weak points of regional climate models, we investigated the atmospheric field (i.e., flow, air mass, precipitation, and radiation) influencing near-surface air temperature. Model performances for SAT over East Asia were influenced by the expansion of the western North Pacific subtropical high and the location of convective precipitation in JJA and by the contraction of the Siberian high, the spatial distribution of snowfall and associated upwelling longwave radiation in DJF.

How to cite: Shin, S.-W., Cha, D.-H., Kim, T., Kim, G., Park, C., Lee, M., Byun, Y.-H., and Kang, H.-S.: Evaluation of MM5 and HadGEM3-RA hindcast in the CORDEX East Asia Phase Ⅱ: near-surface air temperature, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15161, https://doi.org/10.5194/egusphere-egu2020-15161, 2020.

EGU2020-19402 | Displays | CL4.12

Impact of biogeochemistry feedbacks on the projected climate change signal over the Indian Continent

Dmitry Sein, William Cabos, Pankaj Kumar, Vladimir Ryabchenko, Stanislav Martyanov, and Anton Dvornikov

There are few studies dedicated to assessing the impact of biogeochemistry feedbacks on the climate change signal. In this study, we evaluate this impact in a future climate change scenario over the Indian subcontinent with the coupled regional model ROM in the Indian CORDEX area.In ROM a global ocean model (MPIOM) with regionally high horizontal resolution (up to 15 km resolution in the Bay of Bengal) is coupled to an atmospheric regional model (REMO, with 25 km resolution) and global terrestrial hydrology model. The ocean and the atmosphere are interacting within the region covered by the atmospheric domain. Outside this domain, the ocean model is not coupled to the atmosphere, being driven by prescribed atmospheric forcing, thus running in so-called stand-alone mode.

To assess the impact of biogeochemical feedbacks on the climate change signal, we compare two simulations with ROM. In both simulations, the model is driven by data from a climate change simulation under the RCP 8.5 scenario with the MPI-ESM global model and differ only in the activation of the biochemistry module of MPIOM. In the first simulation, we use a light attenuation parameterization based on the Jerlov water types, when the attenuation coefficient varies spatially depending on the water type specified but does not vary in time. In the second simulation, we introduce the biochemical feedbacks as implemented in the global ocean biogeochemistry model HAMOCC.  

Both simulations capture the main features of the present time atmospheric and oceanic variability in the region and the model with HAMOCC reproduces well the intra-annual dynamics of the marine ecosystem in the northern Indian Ocean.

A comparison of the simulated changes in atmospheric variables shows that the feedbacks have a substantial impact on the climate change signal for precipitation and air temperature, especially over the central Indian region.

Acknowledgement: The work was supported by the Russian Science Foundation (Project 19-47-02015) and Indian project no. DST/INT/RUS/RSF/P-33/G.

How to cite: Sein, D., Cabos, W., Kumar, P., Ryabchenko, V., Martyanov, S., and Dvornikov, A.: Impact of biogeochemistry feedbacks on the projected climate change signal over the Indian Continent, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19402, https://doi.org/10.5194/egusphere-egu2020-19402, 2020.

EGU2020-7772 | Displays | CL4.12

Study of Northeast Monsoon over India using a coupled land-atmosphere model RegCM4-CLM4.5

Praveen Rai, Pyarimohan Maharana, Dhirendra Kumar, Ashok Priyadarshan Dimri, and Heiko Paeth

The major rainfall period over the southern peninsular part of the Indian Subcontinent generally occurs during the months of October-December (OND) through the northeast (NE) monsoon (also called winter monsoon or post-monsoon season). The present study focuses on the ability of regional climate model RegCM4 forced with MIROC5 Global Climate Model and three different land-surface parameterization schemes: Biosphere-Atmosphere Transfer Scheme (BATS, herewith referred as CONTROL), Community Land Model (CLM4.5), and Sub-grid BATS in capturing the mean features of NE monsoon for the present climate (1975-2005) over India region. Based on their ability to simulate the inter-annual and intra-seasonal variability, and seasonal mean during monsoon, the current GCM is selected for downscaling from the available literature. The model performance is evaluated against the gridded temperature and precipitation datasets from the Climate Research Unit (CRU) and India Meteorological Department (IMD) respectively. We have found that the MIROC5_CLM4.5 is simulating the precipitation and surface temperature better than other experiments with relatively less bias over the study. MIROC5_CLM4.5 experiment again performs well in capturing the precipitation and surface temperature during wet and dry years’ composite. Overall, our results show a better representation of NE Monsoon mean features by MIROC5_CLM4.5 compared to other sets. The RegCM4-CLM4.5 coupled simulation has shown promising performance in representing NE monsoon. Further, it is envisaged to test and customize this framework in order to generate reliable future projections in subsequent studies.

Keywords: RegCM4, CLM4.5, NE Monsoon, Downscaling.

How to cite: Rai, P., Maharana, P., Kumar, D., Dimri, A. P., and Paeth, H.: Study of Northeast Monsoon over India using a coupled land-atmosphere model RegCM4-CLM4.5, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7772, https://doi.org/10.5194/egusphere-egu2020-7772, 2020.

In this study, it is aimed to compare wind patterns at Menderes area in Aegean Region in Turkey using HadGEM2 dataset from Hadley Center, United Kingdom and MPI-ESM-MR dataset from Max Planck Institute, Germany. These datasets are downscaled to high resolutions at 10km, 5km and 1km for two different RCP scenarios RCP 4.5 and RCP 8.5 and for different time periods 1970-1999, 2020-2049 and 2070-2099 using Regional Climate Modeling RegCM4.5 and above of the Abdus Salam International Centre for Theoretical Physics (ICTP) to see the changes of the wind patterns at Menderes area in Aegean Regiion in Turkey due to climate change.

How to cite: Collu, K. and Kurnaz, M. L.: Comparing Wind Patterns at Menderes Area in Aegean Region, Turkey using different datasets at higher resolutions using Regional Climate Modeling RegCM4, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8002, https://doi.org/10.5194/egusphere-egu2020-8002, 2020.

EGU2020-10647 | Displays | CL4.12

Climate projections in fine resolution downscaling over South America: trends and classification of cyclonic systems

Rosmeri Porfírio da Rocha, Michelle Simões Reboita, Natália Machado Crespo, Eduardo Marcos de Jesus, Andressa Andrade Cardoso, Lívia Márcia Mosso Dutra, and Ana Maria Bueno Nunes

Cyclones developing in eastern coast of South America impact weather and control the climate in most parts of the continent as well as over the South Atlantic Ocean. Current knowledge of these cyclones shows that they can have different thermal and dynamic structures along their lifecycles being classified as tropical, subtropical or extratropical. Cyclones occurring over the sea generate intense near-surface winds with major impacts on human activities and ecosystems. Given this context, we are producing fine resolution (~25 km) dynamic downscaling with RegCM4 to investigate the climatic trends of the different phases of cyclones over the southwest South Atlantic Ocean. Special emphasis will be given on the contribution of subtropical cyclones causing extreme events (rainfall and wind) in eastern Brazil. The simulations cover South America and wider area of South Atlantic Ocean. For evaluation simulation RegCM4 is forced by ERA-Interim reanalysis, while for the projections by CMIP5 models under RCP4.5 and RCP8.5 scenarios. Cyclones are tracked using an algorithm based on cyclonic relative vorticity. In this study we present the climatology of all cyclones provided by the ERA-Interim evaluation simulation in the period 1979-2015. Basically, we discuss the ability of fine resolution simulation in reproducing the main cyclogenetic areas over the continent, seasonality and interannual variability of cyclones. Comparisons with previous simulations allow discussing the impact of fine resolution downscaling on the climatological features of all cyclones and their classification in South America domain.    

How to cite: Porfírio da Rocha, R., Reboita, M. S., Crespo, N. M., de Jesus, E. M., Cardoso, A. A., Dutra, L. M. M., and Nunes, A. M. B.: Climate projections in fine resolution downscaling over South America: trends and classification of cyclonic systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10647, https://doi.org/10.5194/egusphere-egu2020-10647, 2020.

EGU2020-5955 | Displays | CL4.12

Future Snow Water Equivalent and Snowmelt Extremes from NA-CORDEX Ensembles

Eunsang Cho, Rachel R. McCrary, and Jennifer M. Jacobs

Snowpack and snowmelt driven extreme events can have large societal and economic consequences. Extreme snow can damage infrastructure and buildings. Snow meltwater is a dominant driver of severe spring flooding in the north-central and -eastern U.S. and southern Canada with impacts to the built and natural environments. However, the currently there is very limited guidance regarding the magnitude of “future” snow-driven extremes in a changing climate as needed to plan, design, and manage potentially vulnerable infrastructure and ecosystems. Regional climate models (RCMs) are commonly used to study and quantify regional climate changes, even though the ability of these models to accurately represent snow varies. In this study, trends and designs of extreme 25- and 100-year snowpack (snow water equivalent; SWE) and snowmelt events are estimated in the mid and late 21st century using the North America - Coordinated Regional Climate Downscaling Experiment (NA-CORDEX) ensemble of RCMs under Representative Con-centration Pathways 8.5 (RCP 8.5). This study aims to answer the following three research questions:

  1. How much will snow-driven extreme events be changed in the mid and late 21st century?
  2. Which regions have the largest differences among models?
  3. Which RCM models are the source of these regional uncertainties?

How to cite: Cho, E., McCrary, R. R., and Jacobs, J. M.: Future Snow Water Equivalent and Snowmelt Extremes from NA-CORDEX Ensembles, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5955, https://doi.org/10.5194/egusphere-egu2020-5955, 2020.

EGU2020-3151 | Displays | CL4.12

Land Surface Model influence on the simulated climatologies of extreme temperature and precipitation events within the WRF model over North America

Almudena García-García, Francisco José Cuesta-Valero, Hugo Beltrami, J. Fidel González-Rouco, Elena García-Bustamante, and Joel Finnis

The representation and projection of extreme temperature and precipitation events in climate models are of major importance for developing polices to build communities’ resilience in the face of climate change. However, state-of-the-art global and regional climate model simulations yield a broad inter-model range of intensities, durations and frequencies of these extremes.

Here, we present a modeling experiment using the Weather Research and Forecasting (WRF) Regional Climate Model (RCM) to determine the influence of the choice of land surface model (LSM) component on the uncertainty in the simulation of extreme event statistics. First, we evaluate land-atmosphere interactions within four simulations performed with the WRF model coupled to three different LSMs from 1980 to 2012 over North America. Results show regional differences among simulations for the frequency of events when surface conditions are altered by atmospheric forcing or by land surface processes. Second, we find a large inter-model range of extreme statistics across the ensemble of WRF-LSM simulations. This is particularly the case for indices related to the intensity and duration of temperature and precipitation extremes.

Regions displaying large uncertainty in the WRF simulation of extreme events are also identified in a model ensemble experiment carried out with three different RCMs participating in the Coordinated Regional Climate Downscaling Experiment (CORDEX) project. This agreement between the model simulations performed in this work and the set of CORDEX simulations suggests that the implications of our results are valid for other model ensembles. This study illustrates the importance of supporting the development of new multi-LSM modeling studies to understand inter-model differences in simulating extreme events, ultimately helping to narrow down the range across climate model projections.

How to cite: García-García, A., Cuesta-Valero, F. J., Beltrami, H., González-Rouco, J. F., García-Bustamante, E., and Finnis, J.: Land Surface Model influence on the simulated climatologies of extreme temperature and precipitation events within the WRF model over North America, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3151, https://doi.org/10.5194/egusphere-egu2020-3151, 2020.

EGU2020-5906 | Displays | CL4.12

The Sensitivity of Regional Climate Projections to SSP-Based Land Use Changes in the North American CORDEX Domain

Melissa Bukovsky, Linda Mearns, Jing Gao, and Brian O'Neill

In order to assess the combined effects of green-house-gas-induced climate change and land-use land-cover change (LULCC), we have produced regional climate model (RCM) simulations that are complementary to the North-American Coordinated Regional Downscaling Experiment (NA-CORDEX) simulations, but with future LULCCs that are consistent with particular Shared Socioeconomic Pathways (SSPs).  In standard, existing NA-CORDEX simulations, land surface characteristics are held constant at present day conditions.  These new simulations, in conjunction with the NA-CORDEX simulations, will help us assess the magnitude of the changes in regional climate forced by LULCC relative to those produced by increasing greenhouse gas concentrations.     

Understanding the magnitude of the regional climate effects of LULCC is important to the SSP-RCP scenarios framework.  Whether or not the pattern of climate change resulting from a given SSP-RCP pairing is sensitive to the pattern of LULCC is an understudied problem.  This work helps address this question, and will inform thinking about possible needed modifications to the scenarios framework to better account for climate-land use interactions.

Accordingly, in this presentation, we will examine the state of the climate at the end of the 21st century with and without SSP-driven LULCCs in RCM simulations produced using WRF under the RCP8.5 concentration scenario.  The included LULCC change effects have been created following the SSP3 and SSP5 narratives using an existing agricultural land model linked with a new long-term spatial urban land model. 

How to cite: Bukovsky, M., Mearns, L., Gao, J., and O'Neill, B.: The Sensitivity of Regional Climate Projections to SSP-Based Land Use Changes in the North American CORDEX Domain , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5906, https://doi.org/10.5194/egusphere-egu2020-5906, 2020.

EGU2020-7001 | Displays | CL4.12

Regional modeling of urban climate: the impact of physical process representation

Peter Huszár, Jan Karlický, jana Ďoubalová, Tereza Nováková, Filip Švábik, Michal Belda, and Tomáš Halenka

The urban heat island (UHI) is a relaively old concept and has been widely studied using both observational and modeling approches. However, urban canopies impact the meteorological conditions in the planetary boundary layer (PBL) and above in many other ways, e.g. urban breeze circulation can form, enhanced drag causes intensification of the turbulent diffusion leading to elevated PBL height, reduced evaporation results in decreased absolute humidity, changes in cloudiness etc.
A well established regional model representation of these phenomena is crucial for both mitigation and adaptation in areas affected by intense urbanization and climate change. There are however large uncertainities how the underlying physical processes are represented in numerical models, i.e. what models are used along with which parameterizations and parameters.

Here we perform a regional multi-model analysis over central Europe using the Regional Climate Model (RegCM4) and Weather Research and Forecast (WRF) regional models with different configurations representing different PBL treatment, convection parameterization, surface layer physics, microphysics and urban canopy models. Model results are extensively compared to surface measurements as well as satellite observation of surface temperatures. We analyse the model results mainly in terms of the urban-rural contrast which is a measure of the difference between the urban core value and the vicitinity (with respect to the particular city) for selected meteorological parameters. Our results show substantial impact of the choice of the model as well as the choice of parameterization on the intensity of UHI and other meteorological effects. The urban-rural difference of PBL height and average wind speed between urban areas and their vicinity is affected the most, controlled by the boundary layer physics parameterization.
Our simulations confirm the large uncertainity in how models resolve the meteorological features specific to urbanized areas and this has to be taken into account when designing different strategies for urban planning and multimodel approaches should be preferred.

How to cite: Huszár, P., Karlický, J., Ďoubalová, J., Nováková, T., Švábik, F., Belda, M., and Halenka, T.: Regional modeling of urban climate: the impact of physical process representation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7001, https://doi.org/10.5194/egusphere-egu2020-7001, 2020.

High number of regional climate model (RCM) experiments have been accomplished over different subregions of the globe in the framework of the international initiative called the COordinated Regional Downscaling Experiment (CORDEX). Being the European branches of the CORDEX program: EURO-CORDEX and Med-CORDEX provide RCM simulations targeting Europe at grid resolutions of 0.11°. Investigation of ensembles of driving GCM and nested RCM simulations for the late 21st century with respect to late 20th century from the CMIP5, EURO-CORDEX, and Med-CORDEX experiments are presented at high resolution, with a special focus on mountainous regions such as the Alps and the Carpathians. Present work gives an overview on how the fine-scale RCM downscaling can modulate the GCM-produced precipitation change signal in future climate projections over the regions of interest. Our findings point to the fact that the topographically induced fine scale precipitation signal is mostly of dynamical nature in winter, while is more thermodynamic in nature during summer which manifests in strong elevation dependence, thus the high-resolution representation of topography in climate models is crucial for the provision of fine scale precipitation projections in mountainous regions.

How to cite: Torma, C. Z.: Orographic modulation and elevation dependence of regional fine scale precipitation change signals - European examples, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1251, https://doi.org/10.5194/egusphere-egu2020-1251, 2020.

EGU2020-20052 | Displays | CL4.12

Balanced subsampling of future regional climate ensembles of opportunity

Jesús Fernández and María Dolores Frías

International model intercomparison initiatives, such as CORDEX or CMIP5, along with several relatively recent projects at international and national level, provide a wealth of model simulations of future regional climate. In a recent work, Fernandez et al (2019) collected 196 different future climate change projections over Spain, considering data from ENSEMBLES, ESCENA, EURO- and Med-CORDEX, along with their driving global climate projections from CMIP3 and CMIP5. This ensemble mixed different multi-model initiatives in an ensemble of opportunity, in the sense that it does not respond to any scientific design beyond the exploration of multi-model uncertainty. This ensemble of opportunity is not only the result of the mixture of different initiatives, but also responds to the lack of a balanced experimental design within most of the initiatives. Many of the initiatives -especially those unfunded, such as CORDEX- are carried out on a voluntary basis, with no strong constraint in the global climate models (GCMs) used as boundary conditions or in the number of contributing members per regional climate model (RCM).

Fernandez et al (2019) found in this ensemble a strong influence of the driving GCM on the regional climate change signal, along with favored GCMs, selected by many regional climate modelling groups to the detriment of GCMs publishing their output later or not at all. In this work, we quantitatively assess the impact of unbalanced GCM-RCM ensembles. For this purpose, we subsampled the ensemble of opportunity to obtain balanced sets of members according to different “what-if” situations: What if all RCMs had contributed a single member to the ensemble? What if each GCM had been dynamically downscaled only once? What if a given GCM/RCM had not contributed to the ensemble? For each hypothesis, there are a number of alternative sub-ensembles, which are used to evaluate uncertainty.

Acknowledgement:

This work is partially funded by the Spanish government through MINECO/FEDER co-funded projects INSIGNIA (CGL2016-79210-R) and MULTI-SDM (CGL2015-66583-R). 

References:

Fernández, J., et al. (2019) Consistency of climate change projections from multiple global and regional model intercomparison projects. Clim Dyn 52:1139. https://doi.org/10.1007/s00382-018-4181-8

How to cite: Fernández, J. and Frías, M. D.: Balanced subsampling of future regional climate ensembles of opportunity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20052, https://doi.org/10.5194/egusphere-egu2020-20052, 2020.

In previous studies, it was noticed that many Regional Climate Models (RCMs) tend to overestimate mean near surface air temperature and underestimate precipitation in the Pannonian Basin during summer, leading to so-called summer drying problem [1]. Our intention for this study was to analyze temperature and precipitation biases in the state of the art EURO-CORDEX multi-model ensemble results in the summer season. Models’ results from the historical runs, and over time period 1971-2000, for temperature, precipitation and sea level pressure were verified against gridded E-OBS data set. In total there were 30 selected integrations, with different combinations of RCMs and Global Climate Models (GCMs). In order to assess the impact of the different lateral boundary conditions on the results from RCMs simulations, emphasizing the errors of the corresponding driving models used in 30 RCMs simulations, results from driving GCMs are also verified.

Verification results for selected time period was expressed in term of four verification scores: bias, root mean square error (RMSE), spatial correlation coefficient and standard deviations. Verification scores were evaluated within a sub-domain in the center of the region bounded by longitudes, 14E and 27E, and latitudes, 43.5N and 50N, in which topography elevation is below 200 m. This sub-domain was selected to eliminate the influence of results over the surrounding mountains on spatially averaged scores [2], because previous studies indicated a pronounced summer drying problem in low lying areas. Our analysis showed that 17 RCMs tend to overestimate the temperature, 8 RCMs tend to underestimate the temperature and 5 RCMs tend to estimate temperature around E-OBS gridded data set. On the other hand, most of the RCMs that overestimate the temperature, underestimate the precipitation. According to the results, temperature bias was in the range from -1.9°C to +4.4°C , while precipitation bias was in the range from 42% to -70%. For some models the positive temperature and negative precipitation bias were even more pronounced, leading to the conclusion, that the problem is still present in the majority of analyzed simulations. Analysis of the sea level pressure was conducted as an indirect indicator of errors in advection processes in RCMs, which was indicated, beside others, as a potential precursor of temperature and precipitation biases [3]. To better understand the sources and reasons for summer drying problem further research is needed.

[1] Kotlarski S. et al., (2014): Regional climate modelling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geoscientific Model Development 7:1297–1333, doi: 10.5194/gmd-7-1297-2014

[2] Lazic I., Djurdjevic V., (2019): EURO-CORDEX regional climate models’ performances in representing temperature and precipitation over Pannonian Basin, Book of abstracts, 5th PannEx Workshop, 3-5 June 2019, Novi Sad, Serbia.

[3] Szépszó G., (2006): Adaptation of the REMO model at the Hungarian Meteorological Service (in Hungarian). Proceedings of the 31st Scientific Days for Meteorology, 125–135.

Keywords: summer drying problem, verification, EURO-CORDEX, Pannonian Basin

Acknowledgement: This study was supported by the Serbian Ministry of Science and Education, under grant no. 176013.

How to cite: Lazic, I. and Djurdjevic, V.: Temperature and precipitation verification over Pannonian Basin in EURO-CORDEX simulations during summer season, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-517, https://doi.org/10.5194/egusphere-egu2020-517, 2020.

Regional Climate Models (RCMs) are powerful tools to study changes in the climate system on the regional scale. However, the reliability of their simulations has been considerably limited by the longstanding issue that climate models often fail to reproduce various aspects of the historical climate. In our study, we analyse how RCMs from the EURO-CORDEX project are able to reproduce high-impact winter weather. We analyse temporal and spatial characteristics of snowfalls, wind gust, extreme temperatures, late spring frosts, total precipitation, and winter storms. Model outputs are validated against observed data from the gridded European database (EOBS) and the novel ERA5 reanalysis. We focus on the Central European domain (defined roughly between 48–52°N and 10–20°E) over the 1979 – 2017 period. We investigate a set of 12 simulations of 4 different RCMs driven by 3 different global climate models which allow us to analyse the influence of driving data on the RCM’s performance. Since local climate elements are relatively tightly linked to a large-scale atmospheric circulation over Europe in winter, we also evaluate the ability of RCMs to reproduce the atmospheric circulation and its links to selected high-impact winter weather in detail. Investigation of these links can lead to better physical understanding of the climate and to the identification of inadequacies in simulated characteristics of the studied events. All of this is an important step forward in further improving the models and enhancing the credibility of climate change scenarios based on climate model simulations.

How to cite: Plavcová, E., Lhotka, O., and Stryhal, J.: High-impact winter weather in EURO-CORDEX climate models and their links to large-scale atmospheric circulation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4620, https://doi.org/10.5194/egusphere-egu2020-4620, 2020.

Snow is a key environmental parameter in mountains, and in this changing climate reductions in snow are expected. Traditionally, future estimates of snow are based on dedicated snow/hydrological models forced by climate projections, which, however, are computationally intensive and which decouple hydrology from climate forcing. Recently, regional climate models (RCM) have been used as an alternative, although snow is only an auxiliary parameter in RCMs and not as accurately represented as compared to dedicated snow models. Nonetheless, RCMs encompass the climate-hydrology feedbacks, cover large areas, and have recently become available in moderate horizontal resolutions.

Here, we skip the need to biascorrect the input variables to the snow/hydrological models (i.e. temperature, precipitation, …) and use observations to directly biascorrect the target variable, i.e. snow cover. Quantile delta mapping (QDM), a trend preserving bias correction method, is used to correct biases in EURO-CORDEX RCMs that provide snow cover fraction as output (CCLM4-8-17, ALADIN63, WRF331F, WRF381P, RACMO22E, RCA4) using remote sensing observations of snow cover from MODIS for the European Alps. As such, snow cover biases were accounted for, which originated mostly from orographic mismatches as well as temperature and precipitation biases. Model ensemble means were calculated for two emission scenarios (rcp26 and rcp85; with 6 and 21 GCM-RCM combinations available). The biascorrected projections can be used to put the climate model projections into context of current observations thus facilitating interpretations.

These are results from CliRSnow, a project that aims at providing bias corrected and downscaled projections of snow cover for the whole Alpine region until 2100. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 795310.

How to cite: Matiu, M., Petitta, M., Notarnicola, C., and Zebisch, M.: Biascorrected projections of snow cover fraction from EURO-CORDEX regional climate models with MODIS remote sensing observations for the European Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4610, https://doi.org/10.5194/egusphere-egu2020-4610, 2020.

EGU2020-16235 | Displays | CL4.12

Regionalization of Vapor Pressure Deficit (VPD) in Spain
not presented

Miquel Tomas-Burguera, Santiago Beguería Portugués, Roberto Serrano-Notivoli, and William Cabos

Vapor Pressure Deficit (VPD) is an atmospheric variable that represents the extra water vapor that air may contain prior to condensation. It is a relevant variable for climatology due to its consideration as a measure of ‘air dryness’, but also for hydrology and ecohydrology. In spite of its relevance, studies focusing on VPD are scarce, especially when comparing with other variables such as temperature or precipitation. To obtain VPD values, temperature and air humidity data are required at the same time and location, which is difficult to obtain even in dense observational networks. While temperature is positively related with VPD, relative humidity shows a negative relation with VPD.

Within the framework of the CLICES Project, a spatial regionalization of VPD will be performed for mainland Spain. This project is focused on the climatic reconstruction of the last century and, for the most recent decades, data from a Regional Climate Model (RCM) simulation will be used as a complement of the observational data. Specifically, the climate of Spain for the period 1980-2017 at 3-hourly time step was simulated using REMO. Among a high amount of available methods, a bias correction procedure based on a quantile-quantile mapping in spatial coherent regions will be tested for the RCM correction. In order to implement this methodology, the VPD spatial regionalization is required and it will be addressed using a clustering methodology. Furthermore, regionalization of VPD will sharply improve our knowledge of this variable in Spain, a region showing high spatial contrasts affecting temperature, precipitation and wind speed. It is expected that the combination of the dissimilarities between temperature and precipitation will emerge in the regionalization of VPD values.

How to cite: Tomas-Burguera, M., Beguería Portugués, S., Serrano-Notivoli, R., and Cabos, W.: Regionalization of Vapor Pressure Deficit (VPD) in Spain, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16235, https://doi.org/10.5194/egusphere-egu2020-16235, 2020.

EGU2020-5745 | Displays | CL4.12

Intercomparison of terrestrial water budgets in EURO-CORDEX and TSMP evaluation runs

Mohamed Eltahan, Klaus Goergen, Carina Furusho-Percot, and Stefan Kollet

Water is one of Earth’s most important geo-ecosystem components. Here we present an evaluation of water cycle components using 12 EURO-CORDEX Regional Climate Models (RCMs) and the Terrestrial Systems Modeling Platform (TSMP) from ERA-Interim driven evaluation runs. Unlike the other RCMs, TSMP provides an integrated representation of the terrestrial water cycle by coupling the numerical weather prediction model COSMO, the land surface model CLM and the surface-subsurface hydrological model ParFlow, which simulates shallow groundwater states and fluxes. The study analyses precipitation (P), evapotranspiration (E), runoff (R), and terrestrial water storage (TWS=P-E-R) at a 0.11degree spatial resolution (about 12km) on EUR-11 CORDEX grid from 1996 to 2008. As reference datasets, we use ERA5 reanalysis to represent the complete terrestrial water budget, as well as the E-OBS, GLEAM and E-Run datasets for precipitation, evapotranspiration and runoff, respectively. The terrestrial water budget is investigated for twenty catchments over Europe (Guadalquivir, Guadiana, Tagus, Douro, Ebro, Garonne, Rhone, Po, Seine, Rhine, Loire, Maas, Weser, Elbe, Oder, Vistuala, Danube, Dniester, Dnieper, and Neman). Annual cycles, seasonal variations, empirical frequency distributions, spatial distributions for the water cycle components and budgets over the catchments are assessed. The analysis demonstrates the capability of the RCMs and TSMP to reproduce the overall characteristics of the water cycle over the EURO-CORDEX domain, which is a prerequisite if, e.g., climate change projections with the CORDEX RCMs or TSMP are to be used for vulnerability, impacts, and adaptation studies.

How to cite: Eltahan, M., Goergen, K., Furusho-Percot, C., and Kollet, S.: Intercomparison of terrestrial water budgets in EURO-CORDEX and TSMP evaluation runs, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5745, https://doi.org/10.5194/egusphere-egu2020-5745, 2020.

EGU2020-22227 | Displays | CL4.12

Modeling of air temperatures using a combination of TBATS and SVM models for various climatic locations in Europe

Magdalena Gos, Piotr Baranowski, Jaromir Krzyszczak, Małgorzata Murat, and Iwona Malinowska

By modelling and forecasting  of meteorological  time  series it is possible to  improve   understanding  of  the  weather dynamics and fluctuations as a result of climate change . The most frequently used forecasting models are exponential smoothing, ARIMA models (Box and Jenkins, 1970), state-space models (Harvey, 1989) and innovations State Space Models (Hyndman et al., 2008).

The aim of this study was to check the effectiveness of the coupled TBATS and Support Vector Machines (SVM) model, supplied with some measured meteorological quantities to forecast air temperature for six years for four climatic localizations in Europe. The study was calculated from northern (Jokioinen in Finland), central (Dikopshof located in the west part of Germany and Nossen in the south part of Germany) and southern (Lleida in Spain) Europe to present different climatic conditions. Jokioinen city has a subarctic climate that has severe winters, with cool and short summers and strong seasonality. Lleida has a semi-arid climate with Mediterranean. Dikopshof represents maritime temperate climate. There are significant precipitation throughout the year in Dikopshof and Nossen. In the study we study on air temperature dataset collected on a daily basis from January 1st 1980 to December 31st 2010 (11322 days).

For all the studied sites coupled TBATS/SVM models occurred to be effective in predicting air temperature courses, giving an improved precision (up to 25%) in forecasting of the seasonality and local temperature variations, compared to pure SVM or TBATS modelling. The precision of prediction of the maximum and minimum air temperatures strongly depended on the dynamics of the weather conditions, and varied for different climatic zones.

This study has been partly financed from the funds of the Polish National Centre for Research and Development in frame of the project: MSINiN, contract number: BIOSTRATEG3/343547/8/NCBR/2017.

 

Reference to a journal publication:

BOX, G.E.P. – Jenkins, G. 1970. Time Series Analysis: forecasting and control. Holden-Day, p. 20-31.

HARVEY A. 1989. Forecasting Structural Time Series Model and the Kalman Filter. New York, Cambridge University press., p. 32-41.

HYNDMAN, R.J. – KOEHLER, A.B. – ORD, J.K. – SNYDER, R.D. 2008. Forecasting with Exponential Smoothing: The State Space Approach. Springer-Verlag, p. 50-62.

How to cite: Gos, M., Baranowski, P., Krzyszczak, J., Murat, M., and Malinowska, I.: Modeling of air temperatures using a combination of TBATS and SVM models for various climatic locations in Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22227, https://doi.org/10.5194/egusphere-egu2020-22227, 2020.

EGU2020-3498 | Displays | CL4.12

BigData@Geo: A Climate Atlas for Lower Franconia (Germany)

Daniel Schönbein, Luzia Keupp, Felix Pollinger, and Heiko Paeth

Within the frame of BigData@Geo, a collaborative EFRE-funded project between the University of Würzburg and several medium-sized companies in regional pomi- and viticulture, a webportal similar to a climate-atlas is built. An Ensemble of six RCM/GCM-Couples from EURO-CORDEX with EUR-11 resolution is therefore retrieved. After a Nearest-Neighbour-Remap onto a 1x1km-grid within Lower Franconia (Bavaria, Germany), a linear bias-correction of air-temperature and precipitation is executed. The applied method calibrates mean seasonal cycles for the reference period 1970-1999 using gridded observation data from the German Weather Service. Subsequently, climatic tendecies of seasonal temperature and precipitation as well as various derived indizes (e.g. frostdays, hot days, tropical nights, vegetation period, huglin index) are evaluated along emission pathways rcp45 and rcp85 during the 21st century.

How to cite: Schönbein, D., Keupp, L., Pollinger, F., and Paeth, H.: BigData@Geo: A Climate Atlas for Lower Franconia (Germany), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3498, https://doi.org/10.5194/egusphere-egu2020-3498, 2020.

EGU2020-3005 | Displays | CL4.12

REMOLAND: New high-resolution surface boundary data for the regional climate model REMO and their impacts

Katrin Ziegler, Felix Pollinger, Daniel Abel, and Heiko Paeth

In cooperation with the Climate Service Center Germany (GERICS) we want to improve the land surface module in the regional climate model REMO. Due to the need of high-resolution regional climate models to get information about local climate change, new data and new processes have to be integrated in these models.

Based on the REMO2015 version and focusing on EUR-CORDEX region we included and compared five different high-resolution topographic data sets. To improve the thermal and hydrological processes in the model’s soil we also tested three new soil data sets with a much higher spatial resolution and with new parameters for a new soil parameterization.

How to cite: Ziegler, K., Pollinger, F., Abel, D., and Paeth, H.: REMOLAND: New high-resolution surface boundary data for the regional climate model REMO and their impacts, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3005, https://doi.org/10.5194/egusphere-egu2020-3005, 2020.

The KlimAdat national project was started in 2016 to create a complex database of detailed meteorological information aiming to support local climate change impact studies in different sectors, adaptation strategies and related decision making. Besides observation data its primary basis will be ALADIN-Climate and REMO regional climate model simulations achieved by the Hungarian Meteorological Service and this set of projections will be extended by members of the Euro-CORDEX ensemble in order to quantify the projection uncertainties. 
This study is focusing on analysis of the ALADIN-Climate model projections driven with RCP4.5 and RCP8.5 scenarios. Firstly, the CNRM-CM5 global model outputs were downscaled to 50 km horizontal resolution over the EURO-CORDEX domain with ALADIN-Climate Version 5.2. Then using these  results as lateral boundary conditions, 10 km experiments were prepared on a domain covering Central and South-Eastern Europe.
The presentation aims to introduce the behaviour of these simulations achieved by different scenarios and at different spatial resolution from the aspect of temperature and precipitation change over Hungary. Special attention will be put on the differences in extreme indices. Finally, our 10 km resolution simulations are compared with EURO-CORDEX results to specify their place in a larger ensemble.

How to cite: Bán, B. and Zsebeházi, G.: Impacts of different RCP scenarios on ALADIN-Climate regional climate model projections over Hungary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15871, https://doi.org/10.5194/egusphere-egu2020-15871, 2020.

EGU2020-14899 | Displays | CL4.12

Temperature and precipitation projections for Poland based on downscaled EuroCORDEX ensemble

Joanna Struzewska, Maciej Jefimow, Paulina Jagiełło, Maria Kłeczek, Anahita Sattari, Aneta Gienibor, Aleksander Norowski, Pawel Durka, Barłomiej Walczak, and Piotr Drzewiecki

Regional climate projections are necessary to assess possible changes in the exposure and risk to allow planning the adaptation strategies.

Projections of temperature and precipitation trends were developed using a consistent methodology and homogeneous datasets to address the needs of up-to-date climate change scenarios for Poland.

The Euro-Cordex results with the resolution of 0.11deg (about 12.5km) for RCP4.5 and RCP8.5 were downscaled based on various historical gridded datasets (EOBS, ERA5, UERRA and data from IMWM).

Ensemble analysis was undertaken to assess the projection uncertainty and ensemble mean were calculated for base parameters (daily average, minimum, and maximum temperature and daily precipitation sum) as well as for the number of climate indices.

We will present spatial and temporal variability of selected climate indices over Poland for subsequent decades. Increase of the annual average temperature is due to the rise in the number of hot days and the reduction of the number of frost days. All temperature indices are characterized by statistically significant trends, strongest for RCP8.5. The most pronounced changes in the frequency and amount of precipitation occur in the north-east of Poland. The total number of days with precipitation increases slightly. The increase in the annual rainfall is due to the increase in the number of days with extreme precipitation.

Results are presented via an interactive web portal. Further analysis includes the development of projection for solar radiation, wind speed, humidity and snow cover.

How to cite: Struzewska, J., Jefimow, M., Jagiełło, P., Kłeczek, M., Sattari, A., Gienibor, A., Norowski, A., Durka, P., Walczak, B., and Drzewiecki, P.: Temperature and precipitation projections for Poland based on downscaled EuroCORDEX ensemble, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14899, https://doi.org/10.5194/egusphere-egu2020-14899, 2020.

EGU2020-20830 | Displays | CL4.12

Lateral boundary relaxation and large scale nudging in RCM runs

Fedor Mesinger, Katarina Veljovic, and Sin Chan Chou

Almost universally, in Regional Climate Modeling (RCM) integrations, Davies’ relaxation lateral boundary conditions are applied. They force variables in a number of rows around the boundary to conform to the driver global model values, completely at the boundary, and less and less toward the inside of the integration domain. Very often, in addition, investigators apply so-called large scale or spectral nudging inside the domain, forcing the integration variables not to depart much from those of the driver model.

It is pointed out that there is no scientific basis for these two practices. So why are they used? In particular for the former of these two, it is suggested that reasons must be either a belief that this is a practice RCM should follow, or a technique to address numerical issues of the limited area model used, or a combination of the two.  For the latter, a belief only.

Examples are shown that, in the absence of these two stratagems, the limited area model can improve on large scales inside its domain. This demonstrates that their use, aimed to force variables inside the domain not to depart much from the driver model data, should be detrimental, if possible numerical issues of the model used were to be remedied.

How to cite: Mesinger, F., Veljovic, K., and Chou, S. C.: Lateral boundary relaxation and large scale nudging in RCM runs, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20830, https://doi.org/10.5194/egusphere-egu2020-20830, 2020.

EGU2020-16320 | Displays | CL4.12

Effects of a new land surface parametrization scheme on thermal extremes in a Regional Climate Model

Felix Pollinger, Katrin Ziegler, Daniel Abel, and Heiko Paeth

The EFRE project Big Data@Geo aims at providing high resolution environmental information for the Lower Franconian region in Bavaria, Germany, including climate change simulations suitable and relevant for adaptation. Hence, it is a crucial tasks within this interdisciplinary project to enhance the regional climate model REMO, both by substantially increasing the spatial resolution as well as by including further processes in the model, which must be resolved on this new spatial scale.

For the first time, we successfully coupled REMO’s version 2015 (REMO15) with a superior land surface parametrization scheme (iMOVE) based on JSBACH. REMO15-iMOVE’s core feature is the interactive vegetation, represented on subgrid level via discrete classes. These plant functional types do not only respond to atmospheric forcing but in turn also affect numerous near-surface climate variables. In contrast, the standard version of REMO15 employs an idealized, constant seasonal cycle. Preliminary results indicate that REMO15-iMOVE vegetation's dynamic is in good agreement with observational data and hence the atmosphere’s lower boundary conditions should be more realistic than in REMO15.

To estimate the effects of the enhanced model on the simulation of thermal extreme events typically affecting Lower Franconia, we analyze for both versions one simulation with 0.1°x0.1° and one with 0.44°x0.44° horizontal resolution forced with ERA-Interim for the decade 2000-2009. We evaluate the occurrence of extremely warm (minimum temperature of 20.0°C or above or maximum temperature above 30.0°C) and cold days (maximum temperature below 0.0°C) as well as the spatio-temporal pattern of the European Heat Wave 2003 in comparison to E-OBS data. While the spatial resolution is clearly the main factor affecting the quality of the simulations, we also find significant effects of the land surface scheme on warm events.

Based on these first results, REMO15-iMOVE appears to be a capable and flexible tool for transient climate change simulations as well as for studies focussing on thermal extremes.

How to cite: Pollinger, F., Ziegler, K., Abel, D., and Paeth, H.: Effects of a new land surface parametrization scheme on thermal extremes in a Regional Climate Model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16320, https://doi.org/10.5194/egusphere-egu2020-16320, 2020.

EGU2020-17121 | Displays | CL4.12

Impact of Soil Moisture Initialization on Temperature Extreme Detection in the context of Regional Climate Modeling

Matilde García-Valdecasas Ojeda, Juan José Rosa-Cánovas, Emilio Romero-Jiménez, Patricio Yeste, Sonia R. Gámiz-Fortis, Yolanda Castro-Díez, and María Jesús Esteban-Parra

Land surface-related processes play an essential role in the climate conditions at a regional scale. In this study, the impact of soil moisture (SM) initialization on regional climate modeling has been explored by using a dynamical downscaling experiment. To this end, the Weather Research and Forecasting (WRF) model was used to generate a set of high-resolution climate simulations driven by the ERA-Interim reanalysis for a period from 1989 to 2009. As the spatial configuration, two one-way nested domains were used, with the finer domain being centered over the Iberian Peninsula (IP) at a spatial resolution of about 10 km, and nested over a coarser domain that covers the Euro-CORDEX region at 50 km of spatial resolution.

The sensitivity experiment consisted of two control runs (CTRL) performed using as SM initial conditions those provided by ERA-Interim, and initialized for two different dates times (January and June). Additionally, another set of runs was completed driven by the same climate data but using as initial conditions prescribed SM under wet and dry scenarios.

The study is based on assessing the WRF performance by comparing the CTRL simulations with those performed with the different prescribed SM, and also, comparing them with the observations from the Spanish Temperature At Daily scale (STEAD) dataset. In this sense, we used two temperature extreme indices within the framework of decadal predictions: the warm spell index (WSDI) and the daily temperature range (DTR).

These results provide valuable information about the impact of the SM initial conditions on the ability of the WRF model to detect temperature extremes, and how long these affect the regional climate in this region. Additionally, these results may provide a source of knowledge about the mechanisms involved in the occurrence of extreme events such as heatwaves, which are expected to increase in frequency, duration, and magnitude under the context of climate change.

Keywords: soil moisture initial conditions, temperature extremes, regional climate, Weather Research and Forecasting model

Acknowledgments: This work has been financed by the project CGL2017-89836-R (MINECO-Spain, FEDER). The WRF simulations were performed in the Picasso Supercomputer at the University of Málaga, a member of the Spanish Supercomputing Network.

How to cite: García-Valdecasas Ojeda, M., Rosa-Cánovas, J. J., Romero-Jiménez, E., Yeste, P., Gámiz-Fortis, S. R., Castro-Díez, Y., and Esteban-Parra, M. J.: Impact of Soil Moisture Initialization on Temperature Extreme Detection in the context of Regional Climate Modeling , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17121, https://doi.org/10.5194/egusphere-egu2020-17121, 2020.

Climate indices, calculated from observations or model simulations, have become a common source of information for many climate impact studies. On the other hand, systematic errors in climate model results often present a barrier for wider use of indices, especially when calculated using the fixed threshold value. We propose and test a method of transformation of fixed threshold indices to percentile threshold indices, that can help to bypass a problem of model biases. To demonstrate the proposed method over Europe, we chose three fixed threshold indices: summer days (SU, TX > 25 °C), ice days (ID, TX < 0 °C) and number of days with daily rainfall greater than 10 mm (RR10, RR ≥ 10 mm), and two datasets: E-OBS gridded data and outputs from two regional climate models' (RCMs) simulations from the EURO-CORDEX database. We selected these indices and datasets, after more detailed analysis over Serbia [1], as a convenient subset to test proposed method over wider region.

The initial step in our method is to find corresponding percentile value for each fixed threshold of selected indices, within the historical period 1986-2005, for each grid point of E-OBS data. Then using these percentile values, and model results for the same time period, we set a unique new threshold for each model grid point such that the model-based  frequency of events that defines SU, ID, and RR10 is equal to the observed one. The difference between original fixed threshold and the new calculated threshold for each model grid point could be considered as an estimate of the systematic model error, and potentially could be used as additional information for model verification. Finally, we calculated future changes of the indices for the RCP8.5 scenario, using redefined thresholds and applying them for indices calculation over three future periods: 2016-2035, 2046-2065 and 2081-2100. To verify the proposed method, we compared our results of future changes of the indices with changes obtained from results of the same model which are bias corrected (i.e. bias-adjusted EURO-CORDEX) before calculation of the indices. Considering that bias-adjusted data are available just for limited number of all models in EURO-CORDEX ensemble, this method could help to increase number of ensemble members that could be used for analysis of future changes of climate indices, without bias correction of temperature and precipitation.

[1] Tosic, M., Djurdjevic, V., 2019: Transformation of fixed threshold to percentile based climate indices and implication on their change in the future, Book of abstracts, 5th PannEx Workshop: Building PannEx Task Teams to address environmental needs in the Pannonian basin, 3-5. june 2019, Novi Sad, Serbia

Key words: climate indices, temperature, precipitation, EURO-CORDEX, RCP8.5 scenario, bias correction

How to cite: Tosic, M. and Djurdjevic, V.: Proposal for transformation of fixed threshold to percentile based climate indices and implications on their changes in the future, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-516, https://doi.org/10.5194/egusphere-egu2020-516, 2020.

CL4.13 – Arctic climate change: governing mechanisms and global implications

EGU2020-2748 | Displays | CL4.13 | Highlight

Divergent consensuses on Arctic amplification influence on mid-latitude severe winter weather

Judah Cohen and Xiangdong Zhang and the Arctic mid-latitude linkages review paper

The Arctic has warmed more than twice as fast as the global average since the late 20th century, a phenomenon known as Arctic amplification (AA).  Recently, there have been significant advances in understanding the physical contributions to AA and progress has been made in understanding the mechanisms linking AA to mid-latitude weather variability.  Observational studies overwhelmingly support that AA is contributing to winter continental cooling.  While Arctic warming is strongest at the surface, it extends throughout the mid-troposphere. In addition, the sea ice loss and associated warming is not uniform across the Arctic, but rather regionally focused including in the Barents-Kara Seas, a key region for disrupting the polar vortex.  The probability of severe winter weather increases across the Northern Hemisphere continents following polar vortex disruptions.  While some model experiments support the observational evidence, the majority of modeling results show little connection between AA and severe mid-latitude weather. Rather the excess warming generated in the Arctic due to sea ice loss and other mechanisms is not redistributed vertically in model simulations, but rather horizontally suggesting the export of excess heating from the Arctic to lower latitudes.  Divergent conclusions between model and observational studies, and even intra-model studies, continue to obfuscate a clear understanding of how AA is influencing mid-latitude weather.

How to cite: Cohen, J. and Zhang, X. and the Arctic mid-latitude linkages review paper: Divergent consensuses on Arctic amplification influence on mid-latitude severe winter weather, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2748, https://doi.org/10.5194/egusphere-egu2020-2748, 2020.

EGU2020-3961 | Displays | CL4.13

Substantial twentieth-century Arctic warming caused by ozone-depleting substances

Lorenzo Polvani, Michael Previdi, Mark England, Gabriel Chiodo, and Karen Smith

The rapid warming of the Arctic, perhaps the most striking evidence of climate change, is believed to arise from increases in atmospheric concentration of greenhouse gases since the industrial revolution.  While the dominant role of carbon dioxide is undisputed, another important set of anthropogenic greenhouse gases was also being emitted over the second half of the twentieth century: ozone-depleting substances (ODS).  These compounds, in addition to causing the ozone hole over Antarctica, have long been recognized as powerful greenhouse gases.  However, their contribution to Arctic warming has not been quantified to date.  We do so here by analyzing ensembles of climate model integrations specifically designed for this purpose, spanning the period 1955-2005 when atmospheric concentrations of ODS increased rapidly.  We show that when ODS are kept fixed the forced Arctic surface warming, and the forced sea ice loss, are only half as large as when ODS are allowed to increase.  We also demonstrate that the large Arctic impact of ODS occurs primarily via direct radiative warming, not via ozone depletion.  Our findings reveal a substantial, and hitherto unrecognized, contribution of ODS to recent Arctic warming and highlight the importance of the Montreal Protocol as a major climate change mitigation treaty.

How to cite: Polvani, L., Previdi, M., England, M., Chiodo, G., and Smith, K.: Substantial twentieth-century Arctic warming caused by ozone-depleting substances, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3961, https://doi.org/10.5194/egusphere-egu2020-3961, 2020.

EGU2020-4729 | Displays | CL4.13

An Internal Atmospheric Process Determining Summertime Arctic Sea Ice Melting in the Next Three Decades: Lessons Learnt from 5 Large Ensembles and CMIP5 Simulations

Daniel Topal, Qinghua Ding, Jonathan Mitchell, Ian Baxter, Mátyás Herein, Tímea Haszpra, Rui Luo, and Qingquan Li

Arctic sea ice melting processes in summer due to internal atmospheric variability have recently received considerable attention. A regional barotropic atmospheric process over Greenland and the Arctic Ocean in summer (June-July-August), featuring either a year-to-year change or a low-frequency trend toward geopotential height rise, has been identified as an essential contributor to September sea ice loss, in both observations and the CESM1 Large Ensemble (CESM-LE) of simulations [1-2]. This local melting is further found to be sensitive to remote sea surface temperature (SST) variability in the East Central Pacific [3]. Here, we utilize five available single-model large ensembles and 31 CMIP5 models’ pre-industrial control simulations to show that the same atmospheric process, resembling the observed one and the one found in the CESM-LE, also dominates internal sea ice variability on interannual to interdecadal time scales in pre-industrial, historical and future scenarios, regardless of the modeling environment. However, all models exhibit limitations in replicating the correct magnitude of the observed local atmosphere-sea ice coupling and its sensitivity to remote tropical SST variability. These biases cast a shadow over models’ credibility in simulating interactions of sea ice variability with the Arctic and global climate systems. Further efforts toward identifying possible causes of these model limitations may provide profound implications for alleviating the biases and improving interannual and decadal time scale sea ice prediction and future sea ice projection.

 

[1] Ding, Q., and Coauthors, (2017): Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Climate Change, 7, 289-295.

[2] Ding, Q., and Coauthors, (2019): Fingerprints of internal drivers of Arctic sea ice loss in observations and model simulations. Nat. Geosci., 12, 28–33.

[3] Baxter, I., and Coauthors, (2019): How tropical Pacific surface cooling contributed to accelerated sea ice melt from 2007 to 2012 as ice is thinned by anthropogenic forcing. J. Climate, 32, 8583–8602 https://doi.org/10.1175/JCLI-D-18-0783.1 

How to cite: Topal, D., Ding, Q., Mitchell, J., Baxter, I., Herein, M., Haszpra, T., Luo, R., and Li, Q.: An Internal Atmospheric Process Determining Summertime Arctic Sea Ice Melting in the Next Three Decades: Lessons Learnt from 5 Large Ensembles and CMIP5 Simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4729, https://doi.org/10.5194/egusphere-egu2020-4729, 2020.

EGU2020-7006 | Displays | CL4.13

The effect of latent heat transport by waves on Greenland Surface Mass Balance

Tuomas Ilkka Henrikki Heiskanen and Rune Grand Graversen

The Arctic region shows some of the world's most significant signs of climate change. The atmospheric energy transport plays an important role for the Arctic climate; the atmospheric transport contributes an amount of energy into the Arctic that is comparable to that provided directly by the sun. From recently developed Fourier and wavelet based methods it has been found that the planetary component of the latent heat transport affects that Arctic surface temperatures stronger than the decomposed dry-static energy transport and the synoptic scale component of the latent heat transport. 

A large concern for humanity is that the climate change in polar regions will lead to significant melting of the ice sheets and glaciers. In fact the discharge water from the Greenland ice sheet has recently increased to the extent that this ice sheet is one of the major contributorsto sea-level rise. Here we test the hypothesis that the recent rapid increase in melt of the Greenland ice sheet is linked to a shift of planetary-scale waves transporting warm and humid air over the ice sheet.

The effect of the atmospheric energy transport is investigated by correlating the divergence of energy over the Greenland ice sheet with the surface mass balance of this ice sheet. The divergence of latent heat transport is found to correlate positively with the surface mass balance along the edges of the ice sheet, and negatively in the interior. This indicates that a convergence of latent at the edges of the ice sheet lead to a increased mass discharge from the ice sheet, whilst in the interior converging latent heat indicates an accumulation of mass to the ice sheet. 

To investigate the effect of transport by planetary and synoptic scale waves on the Greenland ice sheet surface mass balance the mass flux component of the transport divergence is decomposed into wavenumbers through the application of a Fourier series. The divergences of transport contributions of each wavenumber are then correlated with the surface mass balance of the Greenland ice sheet. The correlations between the surface-mass balance and divergence of transport contributions by different wavenumbers reveals the relative impact of atmospheric circulation systems, such as Rossby waves and cyclones, on the Greenland ice sheet mass balance. Further, identifying shifts in the circulation patterns over Greenland by applying self organizing maps, or similar methods, and investigations of how these circulation patterns affect the energy transport over Greenland by atmospheric waves of different scales are also pursued.
 
  

How to cite: Heiskanen, T. I. H. and Graversen, R. G.: The effect of latent heat transport by waves on Greenland Surface Mass Balance, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7006, https://doi.org/10.5194/egusphere-egu2020-7006, 2020.

EGU2020-8283 | Displays | CL4.13

Impact of an abrupt Arctic sea ice loss on the extreme precipitation events in the midlatitudes

Steve Delhaye, Thierry Fichefet, François Massonnet, David Docquier, Svenya Chripko, Sarah Keeley, Rym Msadek, and Christopher Roberts

The current Arctic sea ice melting is accompanied by a significant Arctic warming, which could induce several climatic responses not limited to the high latitudes. These responses include changes in storm tracks, modification of the jet stream patterns as well as a stimulation of the planetary waves. The objective of this study is to determine the short-term changes on the extreme precipitation events over the high and mid-latitudes due to a sudden loss of Arctic sea ice. These changes are analysed using two different climate models (ECMWF-IFS and CNRM-CM6) at two different horizontal resolutions, that participate to the EU Horizon 2020 PRIMAVERA project. A common protocol in which the sea ice albedo is reduced to the ocean value is applied to simulate the sudden loss of Arctic sea ice. The results show an increase in drought duration in early winter over the southwestern North America in the ECMWF-IFS model at the two different horizontal resolutions and in the CNRM-CM6 at low resolution, and over the western part of the Mediterranean Basin in the ECMWF-IFS model. This increase can be understood by a stationary wave response due to Arctic sea ice loss which leads to an amplification of the subsidence over these two regions. Indeed, a northward shift of the North Atlantic High and North Pacific High is modelled in early winter. Thanks to these results, abrupt Arctic sea ice loss seems to play a role on the extreme precipitation events over mid-latitudes.

How to cite: Delhaye, S., Fichefet, T., Massonnet, F., Docquier, D., Chripko, S., Keeley, S., Msadek, R., and Roberts, C.: Impact of an abrupt Arctic sea ice loss on the extreme precipitation events in the midlatitudes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8283, https://doi.org/10.5194/egusphere-egu2020-8283, 2020.

EGU2020-15906 | Displays | CL4.13

What drives the Arctic response to mid-latitude sulphate aerosol emissions?

Srinath Krishnan, Annica Ekman, Hans-Christen Hansson, and Ilona Riipinen

Modeling studies have shown that changes in sulphate aerosol emissions from both Europe and North America can have an impact on remote Arctic climate. The bulk of this response is driven by atmospheric changes, rather than through changes in meridional ocean heat transport. However, these simulations have focused on the Arctic response from an equilibrium perspective; i.e. the simulations are run for 200 years and the analyses are based on means of the last 50 years. While these simulations are useful to analyze the extent of contribution of mid-latitude aerosol emission changes, they cannot be used to investigate the mechanistic processes that initiate and drive the high-latitude response. We approach this problem by conducting two sets of initial condition ensemble simulations with >30 members for each set and focus our analysis on the first 30 years. Having a large number of ensemble members improves the signal-noise ratio and allows us to distinguish the model response to emission changes from internal variability. In the first set of simulations (control set), the aerosol emissions are set to year 2000. In the second set of simulations (perturbed set), we increase the European sulphate aerosol emissions to seven times the year 2000 value. We compare the two sets of simulations to evaluate the dynamical response of the atmosphere to the change in aerosol emissions. One of the key parameters that link the mid- and high-latitudes in the equilibrium response is the change in sea-ice area in the sub-polar latitudes. Reduced sea-ice coverage and greater open ocean area with lower mid-latitude aerosol emissions leads to increased ocean-atmosphere energy exchange and impacts the atmospheric meridional heat and energy budgets in the Arctic. We present the extent and seasonality of sea-ice changes for the first 30 years of our ensemble simulations and discuss their implications in the context of the mechanistical links between the mid- and high-latitudes.

 

How to cite: Krishnan, S., Ekman, A., Hansson, H.-C., and Riipinen, I.: What drives the Arctic response to mid-latitude sulphate aerosol emissions?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15906, https://doi.org/10.5194/egusphere-egu2020-15906, 2020.

EGU2020-19188 | Displays | CL4.13

Occurrence and mechanisms of extreme winter air temperatures in the Arctic and surrounding continents

Timo Vihma, Petteri Uotila, Tuomas Naakka, and Tiina Nygård

The recent rapid warming of the Arctic atmosphere and ocean and related sea ice decline have been associated with increasing occurrence of extreme weather events in the Arctic. Applying ERA-Interim reanalysis, we identify 100 days with largest positive and negative anomalies (compared to local climatology) in 2-m air temperature (T2m) in the Northern Hemisphere in winter during 2005-2019, and address various physical mechanisms contributing to these events. The mechanisms responsible for warm extremes in the Arctic are often associated with a meandering Polar front jet stream, favouring cases of large transports of heat and moisture from mid-latitudes to the Arctic. In addition, subsidence heating often contributes to warm extremes in the Arctic, allowing them to occur also under high-pressure conditions. The coldest T2m anomalies north of 30oN mostly occur in regions that are also climatologically cold, i.e., cannot be strongly affected by cold-air advection. This suggests a dominating role local surface energy budget and boundary-layer processes.

Extreme weather events often interact with anomalies in sea ice concentration. Cases of strong winds transporting warm, moist air masses to the Arctic provide both dynamic and thermodynamic forcing for large sea ice anomalies, and during winter the openings in sea ice field contribute to air temperature extremes via large heat fluxes from the ocean to atmosphere.

Coldest winter extremes in mid-latitudes are typically associated with meandering jet stream and high-pressure blockings, but show differences between Central Europe, North America and northern China. In Central Europe the coldest events are typically associated with cold-air advection from the East or Northeast, whereas during the coldest events in North American East Coast the cold air is transported from the North. In northern China, the coldest events often occur under high-pressure conditions with weak winds. Accordingly, the role of cold-air advection is much smaller than in the case of the coldest events in North America.

How to cite: Vihma, T., Uotila, P., Naakka, T., and Nygård, T.: Occurrence and mechanisms of extreme winter air temperatures in the Arctic and surrounding continents, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19188, https://doi.org/10.5194/egusphere-egu2020-19188, 2020.

This study assesses the ability of the Coupled Model Intercomparison Project phase 5 (CMIP5) simulations in capturing the interdecadal precipitation enhancement over the Yangtze River valley (YRV) and investigates the contributions of Arctic temperature and mid- to high-latitude warming to the interdecadal variability of the East Asian summer monsoon rainfall. Six CMIP5 historical simulations including models from the Canadian Centre for Climate Modeling and Analysis (CCCma), the Beijing Climate Center, the Max Planck Institute for Meteorology, the Meteorological Research Institute, the Met Office Hadley Centre, and NCAR are used. The NCEP–NCAR reanalysis and observed precipitation are also used for comparison.Among the sixCMIP5 simulations, only CCCma can approximately simulate the enhancement of interdecadal summer precipitation over the YRV in 1990–2005 relative to 1960–75; the various relationships between the summer precipitation and surface temperature (Ts), 850-hPa winds, and 500-hPa height field (H500); and the relationships between Ts and H500 determined using regression, correlation, and singular value decomposition (SVD) analyses. It is found that CCCma can reasonably simulate the interdecadal surface warming over the boreal mid- to high latitudes in winter, spring, and summer. The summer Baikal blocking anomaly is postulated to be the bridge that links the winter and spring surface warming over the mid- to high latitude and Arctic with the enhancement of summer precipitation over the YRV. Models that missed some or all of these relationships found in CCCma and the reanalysis failed to simulate the interdecadal enhancement of precipitation over the YRV. This points to the importance of Arctic and mid- to high-latitude processes on the interdecadal variability of the East Asian summer monsoon and the challenge for global climate models to correctly simulate the linkages.

How to cite: Li, Y. and Leung, L. R.: Interdecadal Connection between Arctic Temperature and Summer Precipitation over the Yangtze River Valley in the CMIP5 Historical Simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2031, https://doi.org/10.5194/egusphere-egu2020-2031, 2020.

EGU2020-2284 | Displays | CL4.13

Memory effects of Eurasian land processes cause enhanced cooling in response to sea ice loss

Tetsu Nakamura, Koji Yamazaki, Tomonori Sato, and Jinro Ukita

Amplified Arctic warming and its relevance to mid-latitude cooling in winter have been intensively studied. Observational evidence has shown strong connections between decreasing sea ice and cooling over the Siberian/East Asian regions. However, the robustness of such connections remains a matter of discussion because modeling studies have shown divergent and controversial results. Here, we report a set of general circulation model experiments specifically designed to extract memory effects of land processes that can amplify sea ice–climate impacts. The results show that sea ice–induced cooling anomalies over the Eurasian continent are memorized in the snow amount and soil temperature fields, and they reemerge in the following winters to enhance negative Arctic Oscillation-like anomalies. The contribution from this memory effect is similar in magnitude to the direct effect of sea ice loss. The results emphasize the essential role of land processes in understanding and evaluating the Arctic–mid-latitude climate linkage.

How to cite: Nakamura, T., Yamazaki, K., Sato, T., and Ukita, J.: Memory effects of Eurasian land processes cause enhanced cooling in response to sea ice loss, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2284, https://doi.org/10.5194/egusphere-egu2020-2284, 2020.

EGU2020-2745 | Displays | CL4.13

On monsoon character of circulation over the Barents and Kara Seas

Alexander Kislov and Tatiana Matveeva

This study analysed the monsoon features of atmospheric circulation in the Barents and Kara Seas, the variability of atmospheric circulation, and anomalies in temperature, precipitation, and wind speed. In a cold period, the extreme winds are southerly winds that develop in the eastern parts of cyclones. In the warm season, the extreme speeds correspond to a northerly wind in the western periphery of cyclones. The regional circulation systems were divided into ten circulation weather types, separately for each sea. Their frequencies were compared with different indexes, describing the main modes of variability for the arctic region (the North Atlantic Oscillation, the summer North Atlantic Oscillation, the Scandinavia teleconnection pattern, the Siberian High). In the winter season, the monsoon currents from land to sea occur only when the North Atlantic Oscillation index is positive. With the prevalence of other modes of variability, the direction of the winds can be different, and this causes the monsoon regularity to be stochastic. In summer, the northern streams move on the western periphery of cyclones, regenerating and stabilizing over the Kara Sea.

The work was supported by the grant of the Russian Foundation for Basic Research (RFBR) [project number 18-05-60147] and this work was carried out as part of governmental assignment АААА-А16-116032810086-4.

How to cite: Kislov, A. and Matveeva, T.: On monsoon character of circulation over the Barents and Kara Seas , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2745, https://doi.org/10.5194/egusphere-egu2020-2745, 2020.

EGU2020-3352 | Displays | CL4.13

Interactions between ocean heat transport and Arctic sea ice

David Docquier, Ramon Fuentes-Franco, Klaus Wyser, and Torben Koenigk

Arctic sea ice has been retreating at fast pace in the last decades, with potential impacts on the weather and climate at mid and high latitudes, as well as the biosphere and society. Sea-ice loss is driven by anthropogenic global warming, atmospheric circulation changes, climate feedbacks, and ocean heat transport. To date, no clear consensus regarding the detailed impact of ocean heat transport on Arctic sea ice exists. Previous observational and modeling studies show that the poleward Atlantic Ocean heat transport and Arctic sea-ice area and volume are generally anti-correlated, suggesting a decrease in sea-ice area and volume with larger ocean heat transport. In turn, the changing sea ice may also affect ocean heat transport, but this effect has been much less studied. Our study explores the two-way interactions between ocean heat transport and Arctic sea ice. We use the EC-Earth global climate model, coupling the atmosphere and ocean, and perform different sensitivity experiments to gain insights into these interactions. The mechanisms by which ocean heat transport and Arctic sea ice interact are analyzed, and compared to observations. This study provides a way to better constrain model projections of Arctic sea ice, based on the relationships between ocean heat transport and Arctic sea ice.

How to cite: Docquier, D., Fuentes-Franco, R., Wyser, K., and Koenigk, T.: Interactions between ocean heat transport and Arctic sea ice, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3352, https://doi.org/10.5194/egusphere-egu2020-3352, 2020.

EGU2020-4309 | Displays | CL4.13

Evaluation of snow albedo feedback simulated by CMIP6 coupled climate models

jiangling hu and duoying ji

As the land surface warms, a subsequent reduction in snow and ice cover reveals a less reflective surface that absorbs more solar radiation, which further enhances the initial warming. This positive feedback climate mechanism is the snow albedo feedback (SAF), which will exacerbate climate warming and is the second largest contributor to Arctic amplification. Snow albedo feedback will increase the sensitivity of climate change in the northern hemisphere, which affects the accuracy of climate models in simulation research of climate change, and further affects the credibility of future climate prediction results.

Using the latest generation of climate models from CMIP6 (Coupled Model Intercomparison Project Version 6), we analyze seasonal cycle snow albedo feedback in Northern Hemisphere extratropics. We find that the strongest SAF strength is in spring (mean: -1.34 %K-1), second strongest is autumn (mean: -1.01 %K-1), the weakest is in summer (mean: -0.18 %K-1). Except summer, the SAF strength is approximately 0.15% K-1 larger than CMIP5 models in the other three seasons. The spread of spring SAF strength (range: -1.09 to -1.37% K-1) is larger than CMIP5 models. Oppositely, the spread of summer SAF strength (range: 0.20 to -0.56% K-1) is smaller than CMIP5 models. When compared with CMIP5 models, the spread of autumn and winter SAF strength have not changed much.

How to cite: hu, J. and ji, D.: Evaluation of snow albedo feedback simulated by CMIP6 coupled climate models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4309, https://doi.org/10.5194/egusphere-egu2020-4309, 2020.

EGU2020-5301 | Displays | CL4.13

Strong future increases in Arctic precipitation variability linked to poleward moisture transport

Richard Bintanja, Karin van der Wiel, Eveline van der Linden, Jesse Reusen, Linda Bogerd, Folmer Krikken, and Frank Selten

The Arctic region is projected to experience amplified warming as well as strongly increasing precipitation rates. Equally important to trends in the mean climate are changes in interannual variability, but changes in precipitation fluctuations are highly uncertain and the associated processes unknown. Here we use various state-of-the-art global climate model simulations to show that interannual variability of Arctic precipitation will likely increase markedly (up to 40% over the 21st century), especially in summer. This can be attributed to increased poleward atmospheric moisture transport variability associated with enhanced moisture content, possibly modulated by atmospheric dynamics. Because both the means and variability of Arctic precipitation will increase, years/seasons with excessive precipitation will occur more often, as will the associated impacts.

How to cite: Bintanja, R., van der Wiel, K., van der Linden, E., Reusen, J., Bogerd, L., Krikken, F., and Selten, F.: Strong future increases in Arctic precipitation variability linked to poleward moisture transport, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5301, https://doi.org/10.5194/egusphere-egu2020-5301, 2020.

EGU2020-5830 | Displays | CL4.13

Long-term trends of surface reflectance derived from models, satellite and in-situ observations over polar areas

Christian Lanconelli, Fabrizio Cappucci, Bernardo Mota, Nadine Gobron, Amelie Driemel, and Angelo Lupi

Nowadays, an increasingly amount of remote sensing and in-situ data are extending over decades. They contribute to increase the relevance of long-term studies aimed to deduce the mechanisms underlying the climate change dynamics. The aim of this study is to investigate the coherence between trends of different long-term climate related variables including the surface albedo (A) and land surface temperature (LST) as obtained by remote sensing platforms, models and in-situ observations. 

Directional-hemispherical and bi-hemispherical broadband surface reflectances as derived from MODIS-MCD43 (v006) and MISR, and the analogous products of the Copernicus Global Land (CGLS) and C3S services derived from SPOT-VEGETATION, PROBA-V and AVHRR (v0 and v1), have been harmonized and, together with the ECMWF ERA-5 model, assessed with respect ground data taken over polar areas, over a temporal window spanning the last 20 years.  

The benchmark was established using in-situ measurements provided from the Baseline Surface Radiation Network (BSRN) over four Arctic and four Antarctic sites. The 1-minute resolution datasets of broadband upwelling and down-welling radiation, have been reduced to directional- and bi-hemispherical reflectances, with the same time scale of satellite products (1-day, 10-days, monthly).  

A similar approach was used to investigate the fitness for purpose of Land Surface Temperature as derived by MODIS (MOD11), ECMWF ERA-5, with respect to the brightness temperature derived using BSRN measurements over the longwave band.  

The entire temporal series are decomposed into seasonal and residual components, and then the presence of monotonic significant trends are assessed using the non-parametric Kendall test. Preliminary results shown a strong correlation between negative albedo trends and positive LST trends, especially in arctic regions. 

How to cite: Lanconelli, C., Cappucci, F., Mota, B., Gobron, N., Driemel, A., and Lupi, A.: Long-term trends of surface reflectance derived from models, satellite and in-situ observations over polar areas , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5830, https://doi.org/10.5194/egusphere-egu2020-5830, 2020.

EGU2020-7635 | Displays | CL4.13

Dynamics and drivers of extreme seasons in the Arctic region

Katharina Hartmuth, Lukas Papritz, Maxi Böttcher, and Heini Wernli

Single extreme weather events such as heavy storms or heat waves can have a major impact on Arctic surface temperatures, melting rates and sea-ice extent. If weather conditions in the Arctic become anomalous on the time scale of an entire season, this could affect the Arctic energy budget and sea ice coverage even more.

From a meteorological perspective, in a certain region an extreme season can be defined as a season when a specific meteorological parameter, such as surface temperature, reaches extremely high or low seasonal-mean values in this region. The dynamical processes leading to such anomalous seasons in the Arctic region as well as their possible change in a warmer climate have not yet been analysed in detail. Furthermore, it is yet unknown if climate models are able to correctly represent the processes leading to extreme seasons, which is an important aspect for the validation and potential further improvement of such models.

Here we focus on a detailed analysis of Arctic extreme seasons and their underlying atmospheric dynamics in the ERA5 reanalysis data set. Specifically, extreme seasons are determined based on departures from a transient climatology of four parameters (surface temperature, sea-ice extent, surface energy balance and net surface freshwater flux) in distinct regions of the Arctic with different climatological sea-ice extents. Using EOF analysis, the overall most extreme seasons, which occur as significantly anomalous for several parameters, are selected to perform extended case studies. Highly anomalous seasons occur on a broad range of spatial scales as well as for areas nearly covering the whole Arctic Ocean. The formation of small and large extreme seasons may vary significantly, including local processes as well as large-scale atmospheric features.

The winter of 1984/1985 shows one of the largest positive departure of surface temperature from the background warming trend together with a significant sea-ice reduction in the region of the High Arctic and the Greenland Sea. An analysis of the synoptic situation for this winter shows a slightly positive cyclone frequency anomaly over the Greenland Sea combined with a more pronounced negative cyclone frequency anomaly over the Kara-Barents Sea, favouring the advection of warm mid-latitude air masses towards the pole.

How to cite: Hartmuth, K., Papritz, L., Böttcher, M., and Wernli, H.: Dynamics and drivers of extreme seasons in the Arctic region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7635, https://doi.org/10.5194/egusphere-egu2020-7635, 2020.

The wintertime warm Arctic-cold Eurasia (WACE) temperature trend during 1990-2010 was characterized by accelerating warming in the Arctic region, cooling in Eurasia and accelerating autumn/winter Arctic sea ice loss. We identify two atmospheric circulation modes over the North Atlantic-Northern Eurasian sector which displayed strong upward trends over the same period and can explain a large part of the observed decadal WACE pattern. Both modes bear a close resemblance to well-known teleconnection patterns and are relatively independent from anomalies in Arctic sea-ice cover. The first mode (PC1) captures the recent negative trends in the North Atlantic Oscillation and increased Greenland blocking frequency while the second mode (PC2) is reminiscent of a Rossby wave train and reflects an increased blocking frequency over the Urals and North Asia. We find that the loss in the Arctic sea ice and the upward trends in the PC1/PC2 together account for most of the decadal Arctic warming trend (>80%). However, the decadal Eurasian cooling trends may be primarily ascribed to the two circulation modes alone: all of the cooling in Siberia is contributed to by the PC1, and 65% of the cooling in East Asia by their combination (the contribution by PC2 doubles that by PC1). Enhanced intraseasonal activity of the two circulation modes increases blocking frequencies over Greenland, the Ural region and North Asia, which drive anomalous moisture/heat flux towards the Arctic and alter the downward longwave radiation. It weakens warm advection and enhances advection of Arctic cold airmass towards Eurasia.

How to cite: Ye, K. and Messori, G.: Two leading modes of wintertime atmospheric circulation drive the recent warm Arctic-cold Eurasia temperature pattern, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9705, https://doi.org/10.5194/egusphere-egu2020-9705, 2020.

EGU2020-11694 | Displays | CL4.13

Warm hole in Pacific Arctic sea ice cover forces mid-latitude Northern Hemisphere cooling during winter

Yoshihiro Tachibana, Kensuke Komatsu, Vladimir Alexeev, Lei Cai, and Yuta Ando

In North America and Asia, extreme cold weather characterized the winter of 2017–18. At the same time, the Pacific Arctic regions -- Chukchi and Bering Seas --experienced the historical lowest sea ice extent. Because the shape of the ice-free ocean appears as a hole in the larger ice cover, we refer to this sea ice hole as a warm hole. The jet stream dividing cold Arctic air from warm air deviated from normal zonal patterns northward into the ice-free areas north of the Bering Strait. Large southward jet stream pathways formed over Asia and America, allowing cold air to spread into Asia and the southern areas of North America. We hypothesise that the warm hole and Pacific atmospheric rivers were partially responsible for the cold winter. We used data analyses and numerical experiments to test this hypothesis. We propose a positive feedback mechanism between the sea ice anomaly and atmospheric river activity, with anomalous south winds toward the sea ice anomaly potentially leading to more warm water injected by the wind-driven current through the Bering Strait. Our findings suggest that Poleward propagation of the atmospheric rivers made upper air warm, leading to their upgliding, which further heated the overlying air, causing poleward jet meanders. As a part of this response the jet stream meandered southward over Asia and North America, resulting in cold intrusions.

We speculate that the positive feedback mechanism observed during the 2017–18 winter could recur in future years. This winter may be the first year when the warm hole shifted the dynamics of hemispheric climate to the new state, because ice retreat has not abated, and the warm hole would be expected to appear again and again. This would provide Eastern Eurasia and North America with cold winter in the new era of the warm hole. This study was recently published in Scientific Reports [1].

References

 [1] Tachibana, Y., K. K. Komatsu, V. A. Alexeev, L. Cai, and Y. Ando, Warm hole in Pacific Arctic sea ice cover forced mid-latitude Northern Hemisphere cooling during winter 2017-18, Scientific Reports, 9, 5567, DOI: 10.1038/s41598-019-41682-4 , (2019)

 

How to cite: Tachibana, Y., Komatsu, K., Alexeev, V., Cai, L., and Ando, Y.: Warm hole in Pacific Arctic sea ice cover forces mid-latitude Northern Hemisphere cooling during winter, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11694, https://doi.org/10.5194/egusphere-egu2020-11694, 2020.

EGU2020-11872 | Displays | CL4.13

Model and state dependence of the atmospheric response to Arctic sea-ice loss

Amber Walsh, James Screen, Adam Scaife, Doug Smith, and Rosie Eade

The climate response to Arctic sea-ice loss is highly uncertain. There exists considerable disagreement between observational and modelling studies, and between models, for reasons that remain poorly understood. To make progress, the Polar Amplification Model Intercomparison Project (PAMIP) was designed to provide coordinated experiments, with consistent sea-ice loss applied in multiple models. Results from the PAMIP are presented, focussing on the robustness of the atmospheric response to Arctic sea-ice loss across models and, within individual models, the dependence of the response on the mean state.

In the troposphere, the mid-latitude jet is either weakened and/or shifted towards the equator in all models, albeit with varying magnitudes. We hypothesise that the magnitude of the jet response is sensitive to the atmospheric model resolution. To test this, and to more broadly identify the aspects of the atmospheric response that are sensitive to model resolution, we compare like-for-like experiments with two versions of the HadGEM3 model at low (N96) and high (N216) horizontal resolution.

The stratospheric polar vortex response to Arctic sea-ice loss is not consistent between models, and appears to be influenced by both the size of the ensemble for each model and the phase of the Quasi-Biennial Oscillation (QBO). The possible modulating effect of the QBO is further explored using new simulations with background atmospheric states representing the easterly and westerly QBO phases.

A surprising early result from the PAMIP simulations were sizeable changes in the Southern Hemisphere in response to Arctic sea-ice loss and significant changes in the Northern Hemisphere in response to Antarctic sea-ice loss, even in atmosphere-only model experiments. The robustness of such apparent interhemispheric connections across models, ensemble sizes and mean states is investigated.

 

 

 

How to cite: Walsh, A., Screen, J., Scaife, A., Smith, D., and Eade, R.: Model and state dependence of the atmospheric response to Arctic sea-ice loss, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11872, https://doi.org/10.5194/egusphere-egu2020-11872, 2020.

EGU2020-12232 | Displays | CL4.13

Landfast ice in the Canadian Sub-Arctic: A Hudson-Bay wide study.

Kaushik Gupta, Anirban Mukhopadhyay, and Jens Ehn

Hudson Bay, along with James Bay, forms a significant section of the Canadian Sub-Arctic basin which experiences an annual event of Land-fast sea ice formation and melt. Here Landfast ice dynamics largely depends on the climatic and oceanographic conditions, along with coastal geomorphology. In this study, we attempt to investigate the annual cycle of land-fast sea ice formation and melt in the Hudson Bay and James Bay region by estimating the ice period, stages of development and extent. Through this study, we also emphasize the role of coastal morphology influencing ice stability. We have analysed over 2000 ice charts produced by the Canadian Ice Service (CIS) and satellite observations from Worldview and LANDSAT series. The Canadian Ice Service publishes charts of ice concentration and stages of development of Hudson Bay and James Bay on a monthly, weekly and daily scale. We observe the variation in land-fast ice dynamics by digitally extracting information from the daily and weekly ice charts produced by the CIS and satellite observation coupled with mean surface temperature throughout the period of study. Our results indicate landfast ice forming earlier and breaking later in the northern and north-western coastal margin of Hudson Bay as compared to the southern and eastern shore. James Bay experiences a relatively shorter ice season than Hudson Bay. Though time series analysis of break-up in the northern and north-western Hudson Bay shows a negative trend implying an earlier break-up in these regions. Southern and eastern Hudson Bay and James Bay have a positive trend implying a negligible change in the break-up period. The extent of landfast ice in the eastern coastal margins of Hudson Bay and James Bay was noted to be significantly more compared to the west, primarily due to the north to south and finally eastward movement of pack ice in the bay system. Complex coastal topography in the eastern coastal margin also contributes to the stability of these extended ice sheets. The study determines the description of the multiyear variability of land-fast sea ice under changing temperature regimes over the Canadian Sub-Arctic.

How to cite: Gupta, K., Mukhopadhyay, A., and Ehn, J.: Landfast ice in the Canadian Sub-Arctic: A Hudson-Bay wide study., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12232, https://doi.org/10.5194/egusphere-egu2020-12232, 2020.

EGU2020-12620 | Displays | CL4.13

Modeling and Extrapolating Arctic Feedback Loops using Macroeconometric Techniques

Philippe Goulet Coulombe and Maximilian Göbel

The minimum extent of arctic sea ice (SIE) in 2019 ranked second-to-lowest in history and is trending downward. Hence, there is an immediate need for flexible statistical modeling approaches that both explain endogenously the trend of SIE and permits its extrapolation to generate a long-run forecast. To that end, we propose the VARCTIC, which is a Vector Autoregression (VAR) specifically designed to capture and extrapolate feedback loops that characterize the Arctic system.  VARs are dynamic simultaneous systems of equations routinely estimated in economics to predict and understand the interactions of multiple macroeconomic time series. The VARCTIC is a compromise between fully structural/deterministic modeling and purely statistical approaches that usually offer little explanation of the underlying mechanism. Our "business as usual" completely unconditional forecast has September SIE hitting 0 around the middle of the century. By studying the impulse response functions of Bayesian VARs including different sets of variables, we single out CO2 shocks as main drivers of the long-run evolution of SIE. Additionally, we document that the corresponding responses of Sea Ice Albedo and Thickness largely amplify the long-run impact of CO2 on SIE.  Finally, we conduct conditional forecasts analysis of remedies like reducing CO2 emissions or the implementation of Albedo-enhancing Geo-Engineering technologies.

How to cite: Goulet Coulombe, P. and Göbel, M.: Modeling and Extrapolating Arctic Feedback Loops using Macroeconometric Techniques, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12620, https://doi.org/10.5194/egusphere-egu2020-12620, 2020.

At the end of December 2015, Storm Frank, a major Atlantic windstorm, intruded into the Arctic-circle along with warm air and a large amount of moisture, resulting in an unprecedented Arctic high-temperature phenomenon. In late January 2016, the Eurasian continent suffered a series of strong cold events. This study performed a synoptic analysis of a daily Northern Hemisphere SLP and 500hPa, 300hPa height anomaly using JRA-reanalysis data focusing on the process understanding of the sequential development and strengthening of Siberian high in association with the generation of the Ural blocking after the Arctic warming event. From synoptic analysis , we found that, within one month period, there exist several spells of Ural blocking occurrence instead of steady occupation of persistent high pressure over Ural Mountain region. The heat intrusion from midlatitude in association with Storm Frank caused a large wave breaking event over Atlantic sector of Arctic and initiated Ural blocking. The unprecedented warm temperature in early 10 days of January 2016 caused a large sea-ice loss and further heat injection from Barents/Kara seas helping anchoring the blocking over Ural Mountain region. In January 2016, several cold events over Eurasian continent well matched with the several spell of Ural blocking events. We suggest that daily scale interactions among warm advection, downward longwave radiation, sea-ice loss, and blocking occurrence need to be carefully considered to understand true nature of Arctic-Midlatitude linkage issue.

How to cite: Han, K., Ku, H., and Kim, B.: Process understanding of a linkage between East-Asian cold-surge wiith the unprecedented Arctic warming event in early 2016, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12794, https://doi.org/10.5194/egusphere-egu2020-12794, 2020.

EGU2020-13463 | Displays | CL4.13

Impact of Rossby waves on Norther-Hemisphere continental climate

Rune Grand Graversen

Mid-latitude continental weather and climate are strongly affected by the atmospheric circulation patterns such as Rossby waves and cyclones. For instance these patterns may lead to warm- and humid-air advection over western part of the continents in winter and cold-air advection in these regions during summer. By applying a newly developed method for splitting the atmospheric latent and dry-static energy transport into waves, hereby decomposing the energy transport into parts accomplished by e.g. Rossby waves and synoptic-scale weather systems, the effect of different atmospheric circulation patterns on Northern-Hemisphere continental climate is investigated.

Climate change and the associated Arctic temperature amplification may impact mid-latitude atmospheric circulation. Here we investigate the effect on Northern-Hemisphere continental climate from changes over recent decades in the atmospheric circulation patterns using the above-mentioned method.

How to cite: Graversen, R. G.: Impact of Rossby waves on Norther-Hemisphere continental climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13463, https://doi.org/10.5194/egusphere-egu2020-13463, 2020.

EGU2020-18233 | Displays | CL4.13

Experimental black and brown carbon heating rate and from mid-latitudes to the Arctic along two years (2018-2019) of research cruises: the energy gradient for the Arctic Amplification

Luca Ferrero, Niccolò Losi, Alessandra Bigogno, Asta Gregoric, Martin Rigler, Griša Močnik, Piotr Markuszewski, Przemysław Makuch, Paulina Pakszys, Tomasz Petelski, Tymon Zielinski, and Ezio Bolzacchini

Black carbon (BC) and Brown Carbon (BrC) absorbs sunlight and heat the atmosphere. The heating rate (HR) can be determined from the divergence of the net radiative flux with altitude (vertical profiles) or from the modelling activity; however, it determination is, up to now, too sparse, does not account for light-absorbing-aerosol (LAA) speciation and for the influence of different cloudy sky conditions on the BC induced heating rate (HR) in the atmospheric layer below clouds. This work applies a new method (Ferrero et al., 2018) to experimentally determine (at high time resolution) the HR induced by the LAA from mid-latidudes to the Arctic along two years (2018-2019, June-August) of oceanographic cruises moving from 54°N to 81°N and from 2°W to 25°E.

The HR was experimentally determined at high time resolution and apportioned in the context of LAA species (BC, BrC), and sources (fossil fuel, FF; biomass burning, BB) as reported in Ferrero et al. (2018) equipping the Oceania vessel of the Polish Academy of Science  with the following instrumentation:

1) Aethalometer (AE-33, Magee Scientific, 7-λ), 2) Multiplexer-Radiometer-Irradiometer ROX (diffuse, direct and reflected radiance: 350-1000 nm, 1 nm resolution), 3) a SPN1 radiometer (global and diffuse radiation), 4) High volume sampler (TSP ECHO-PUF Tecora). Samples were analysed for ions (Dionex IC) and by EC/OC by using DRI Model 2015 Multi-Wavelength Thermal/Optical Carbon Analyzer. Radiometers were compensated for the ship pitch and roll by an automatic gimbal. AE33 absorption coefficient accuracy was determined through comparison with a MAAP (Thermo-Fischer).

The HR showed a clear latitudinal behavior with higher values in the harbor of Gdansk (0.29±0.01 K/day) followed by the Baltic Sea (0.04±0.01 K/day), the Norvegian Sea (0.01±0.01 K/day) and finally with the lowest values in the pure Arctic Ocean (0.003±0.001 K/day).

They followed the decrease of both BC concentrations and global radiation from 1189±21 ng/m3  and 230±6 W/m2 (Gdansk) to 27±1 ng/m3 and 111±3 W/m2 (Arctic Ocean). The latitunal gradient of the HR clearly demonstrate that the warming of the Arctic could be influenced by a heat transport. In this respect, the LAA added about 300 J/m3 at mid-latitudes and only 3 J/m3 close to the North Pole. Moreover, above the Arctic circle, 70% of the HR was due to the diffuse radiation induced by cloud presence, a condition that climate models in clear-sky assumption cannot capture. In addition, in the Arctic the BrC experienced an increase of 60% in determining the HR compared to mid-latitudes.

Acknowledgements: GEMMA Center - Project MIUR – Dipartimenti di Eccellenza 2018–2022.

Reference: Ferrero, L., et al (2018) Environ. Sci Tech., 52, 3546−3555

How to cite: Ferrero, L., Losi, N., Bigogno, A., Gregoric, A., Rigler, M., Močnik, G., Markuszewski, P., Makuch, P., Pakszys, P., Petelski, T., Zielinski, T., and Bolzacchini, E.: Experimental black and brown carbon heating rate and from mid-latitudes to the Arctic along two years (2018-2019) of research cruises: the energy gradient for the Arctic Amplification, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18233, https://doi.org/10.5194/egusphere-egu2020-18233, 2020.

EGU2020-19898 | Displays | CL4.13

Role of the Arctic Sea Ice melt on the lower latitude Climate

Varunesh Chandra and Sandeep Sukumaran

The melting of polar ice caps and sea ice are of immediate concern in the context of global warming. The observations suggest that the thickness, as well as the areal extent of the Arctic sea ice, have been declining in the last three decades, in large part due to manmade global warming. The effect of faster sea ice melt on lower latitude climate is not well understood as compared to that of mid and high latitudes. It is reported that the mid-Pacific trough (MPT) can be influenced by a stationary wave train triggered in response to a melt of sea ice over the Bering strait (Deng et al., 2018, J. Clim).   The MPT is known to influence Pacific tropical cyclone (TC) activity.

         Here, we investigate the effect of the summer sea ice variability over the Arctic on Pacific TC activity. We have seen in the higher melting Sea Ice years showing the strong wave train toward the lower latitude over the northern pacific in comparison to the lower melting years and also affecting the pacific TCs. The summer Arctic sea ice concentration is regressed on TC track density and accumulated cyclone energy (ACE). Both track density and ACE show an increase with increased sea ice concentration. The wind shear over the tropical Pacific is found to have an opposite relation with the Arctic sea ice concentration that led to a more favorable environment for the TC development when the sea ice concentration is high.

KEYWORDS: Climate Change; Tropical Cylone;

How to cite: Chandra, V. and Sukumaran, S.: Role of the Arctic Sea Ice melt on the lower latitude Climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19898, https://doi.org/10.5194/egusphere-egu2020-19898, 2020.

EGU2020-21344 | Displays | CL4.13

Arctic climate response to extreme events in synoptic and planetary scale atmospheric energy transport

Johanne H. Rydsaa, Rune G. Graversen, and Patrick Stoll

Atmospheric energy transport into the Arctic (>70° N) has been shown to greatly alter the Arctic temperatures and the development of the Arctic weather and climate. Recent research suggests that latent energy transport into the Arctic by large, planetary-scale atmospheric systems cause a stronger and more long-lasting impact on near surface temperatures, than energy transported by smaller, synoptic scale systems. This implies that Rossby waves impact Arctic climate more than synoptic cyclones. Therefore, shifts in circulation patterns driving atmospheric energy transport into the Arctic on different scales have a potential to change Arctic climate.

Here, we show that the annual mean impact of latent energy transport on Arctic temperatures is dominated by the winter season transport. Furthermore, by examining the ERA5 dataset for the years 1979-2018, we find that over the past four decades, there has been a shift in the mean winter season latent energy transport, from smaller, synoptic scale systems (-0.03 PW/decade), towards larger, planetary scale systems (+0.05 PW/decade) which as mentioned, have a larger climatic impact. As a consequence, this shift is estimated to have increased the Arctic temperatures. We find that the trends are driven by an increase in the extreme transport events (here we examine the upper 97.5th percentile). The upper extremes have increased more than the average on the planetary scale, and decreased more on the synoptic scale. The decrease in extreme synoptic scale transport at 70° N has been confirmed in other analyses of high vorticity weather systems. By examining the extreme transport events on seasonal scales, we reveal differences in the temporal distribution of planetary vs. synoptic scale extreme events, and identify areas of the Arctic that receive the strongest impact with respect to increases in near-surface temperatures.

How to cite: Rydsaa, J. H., Graversen, R. G., and Stoll, P.: Arctic climate response to extreme events in synoptic and planetary scale atmospheric energy transport, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21344, https://doi.org/10.5194/egusphere-egu2020-21344, 2020.

CL4.14 – Arctic changes – processes and feedbacks in climate, ocean and cryosphere

EGU2020-3053 | Displays | CL4.14 | Highlight

Late 20th century increase in northern Svalbard glacier-derived runoff tracked by encrusting coralline algae

Steffen Hetzinger, Jochen Halfar, Zoltan Zajacz, Marco Möller, and Max Wisshak

The Arctic cryosphere is changing at a rapid pace due to global warming and the large-scale changes observed in the Arctic during the past decades exert a strong influence throughout the global climate system. The warming of Arctic surface air temperatures is more than twice as large as the global average over the last two decades and recent events indicate new extremes in the Arctic climate system, e.g. for the last five years Arctic annual surface air temperature exceeded that of any year since 1900 AD. Northern Spitsbergen, Svalbard, located in the High Arctic at 80°N, is a warming hotspot with an observed temperature rise of ~6°C over the last three decades indicating major global warming impacts. However, even the longest available datasets on Svalbard climatic conditions do not extend beyond the 1950s, inhibiting the study of long-term natural variability before anthropogenic influence. Ongoing climate trends strongly affect the state of both glaciers and seasonal snow in Svalbard. Modeled data suggest a marked increase in glacier runoff during recent decades in northern Svalbard. However, observational data are sparse and short and the potential effects on the surface ocean are unclear.
This study focuses on the ultra-high-resolution analysis of calcified coralline algal buildups growing attached to the shallow seafloor along Arctic coastlines. Analysis of these new annually-layered climate archives is based on the long-lived encrusting coralline algae Clathromorphum compactum, providing a historic perspective on recently observed changes. Here, we present a 200-year record of past surface ocean variability from Mosselbukta, Spitsbergen, northern Svalbard. By using algal Ba/Ca ratios as a proxy for past glacier-derived meltwater input, we investigate past multi-decadal-scale fluctuations in land-based freshwater contributions to the ocean surface layer. Our records, based on multiple coralline algal specimens, show a strong and statistically significant increasing trend in algal Ba/Ca ratios from the 1990s onwards, suggesting a drastic increase in land-based runoff at Mosselbukta. The drastic rate of increase is unprecedented during the last two centuries, directly capturing the impact of amplified surface air temperature warming on coastal high Arctic surface ocean environments.

 

How to cite: Hetzinger, S., Halfar, J., Zajacz, Z., Möller, M., and Wisshak, M.: Late 20th century increase in northern Svalbard glacier-derived runoff tracked by encrusting coralline algae, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3053, https://doi.org/10.5194/egusphere-egu2020-3053, 2020.

EGU2020-12445 | Displays | CL4.14

MOSAiC’s Pan Arctic Water Isotope Network: Sea ice-water vapor isotope interactions and transport processes within, into and out of the Arctic

Ben Kopec, Eric Klein, David Noone, Hannah Bailey, Kaisa-Riikka Mustonen, Pete Akers, Jean-Louis Bonne, Martin Werner, Hans Chirstian Steen-Larsen, Sonja Wahl, Franziska Aemisegger, Bjorn Klove, Alun Hubbard, and Jeff Welker

MOSAiC is a one of a kind, year-long study of the Arctic Basin’s behavior focused in large part on interactions between sea ice, atmospheric processes, ecosystem dynamics and oceanography, as well as connections between the Arctic and the mid-latitudes. Our MOSAiC project is focused on how the Arctic Basin’s water cycle behaves throughout the year, especially now that sea ice loss allows for a new source of moisture to the atmosphere during times when this basin was formerly frozen over. These massive changes in open water and corresponding fluxes in conjunction with significant shifts in atmospheric circulation, are altering how moisture is transported into, within, and out of the Arctic Basin. In order to help quantify these Arctic hydrologic cycle variations, we have established the AWIN (Arctic Water Isotope Network) that uses continuous water vapor isotope measurements (δD, δ18O, and deuterium excess) at eight land-based stations from Barrow in Alaska to Ny Alesund in Svalbard, as well as on board the Polarstern.

With a network of sites rather than a single station, we gain the significant advantage of being able to track water vapor and how it varies from site to site, allowing us to identify the sources of moisture, and how and where that moisture is transported into, within, and out of the Arctic. For this analysis, we focus on the first months of the expedition (October-December 2019) to closely examine cases of critical events including a major low-pressure system in mid-November that impacted much of the Arctic Ocean basin and three key repeating transport regimes – 1) transport into the Arctic from the North Atlantic via the Greenland Sea, 2) transport into the Arctic via Baffin Bay, and 3) transport out of the Arctic via the Greenland Sea, as well as transport within the Arctic during each of these regimes. For example, in the scenario of transport into the Arctic via Baffin Bay, at our site in Thule, Greenland, we see significant reductions in deuterium excess each time the southerly flow initiates, suggesting significant moisture evaporating from nearby in Baffin Bay. We then can track that moisture to another site to observe how much of that locally-sourced vapor is transported to a given downwind location, allowing us to quantify vapor fluxes and isotopic fractionation processes across the Arctic. By examining these scenarios under varying sea ice conditions and large-scale atmospheric circulation patterns, this circum-Arctic network of water isotope measurements is transforming our understanding of the Arctic hydrologic cycle during MOSAiC.

How to cite: Kopec, B., Klein, E., Noone, D., Bailey, H., Mustonen, K.-R., Akers, P., Bonne, J.-L., Werner, M., Steen-Larsen, H. C., Wahl, S., Aemisegger, F., Klove, B., Hubbard, A., and Welker, J.: MOSAiC’s Pan Arctic Water Isotope Network: Sea ice-water vapor isotope interactions and transport processes within, into and out of the Arctic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12445, https://doi.org/10.5194/egusphere-egu2020-12445, 2020.

EGU2020-908 | Displays | CL4.14

Climate changes along the Labrador coasts during the Holocene based from pollen assemblages

Natasha Roy, Bianca Fréchette, and Anne de Vernal

The rapid ongoing warming recorded across northern regions is unprecedented. This warming is however not uniform across the territory and large regional discrepancies exist. It is therefore relevant to document the variations of climate in the past in both time and space in order to understand the regional climate dynamics. However, in Labrador, instrumental and historical data are rare and only cover a short period of time. Our knowledge of the natural evolution of the climate is therefore limited, which hampers our capacity to evaluate the natural modes of variability and simulate changes at regional scales. From this viewpoint, quantitative climate reconstructions from pollen assemblages are useful because they allow the development of time series covering long periods of time. Here, we report on pollen data from peat and lake sediments collected in the area of Okak, Nain and Dog Island along the Labrador coast.  These data are used for climate reconstruction over the last millennia, thus allowing to document natural climate variability at regional scale. The climate parameters we reconstruct by the means of the modern analogue technique include the summer temperature, sunshine and precipitation. The results provide new insights about the climate of Labrador at local to regional scale, illustrating notably the importance of the Labrador Current on climatic conditions at nearshore locations. In fact, our climate reconstructions demonstrate a disparity with the regional climate curve which may testify of the east-west climatic gradient between islands and the land.

How to cite: Roy, N., Fréchette, B., and de Vernal, A.: Climate changes along the Labrador coasts during the Holocene based from pollen assemblages , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-908, https://doi.org/10.5194/egusphere-egu2020-908, 2020.

EGU2020-21713 | Displays | CL4.14

AMOC step-wise inception during the present interglacial recorded by Nd-isotopes.

Lucie Menabreaz, Claude Hillaire-Marcel, Maccali Jenny, André Poirier, Bassam Ghaleb, and Evan Edinger

The Atlantic Meridional Overturning Circulation (AMOC) and the production rate of the North Atlantic Deep Water (NADW) are major components of the North Atlantic climate-system, with important hemispheric climatic influences. The post-glacial history of the AMOC, as reconstructed from Nd-isotopes (εNd) in biogenic minerals and sediments, demonstrates its sensitivity to freshwater fluxes, leading to concerns about its near-future response to the ongoing accelerated Greenland/Arctic ice melting. Whereas the early Holocene inception of the deep NADW components originating from the Nordic Seas has been well documented from such εNd-data, information on the status of its western, shallower and most sensitive component, the Labrador Sea Water (LSW), is still missing. New εNd-measurements in corals from the Labrador Slope provide the means to fill this gap. These data demonstrate that convection in the Labrador Sea was fully implemented by ca. 4 ka BP only, i.e., well after the final demise of the Laurentide ice-sheet. The time- and space-transgressive pattern of the full AMOC inception implies more complex driving mechanisms than meltwater fluxes only. Whereas the late Holocene neo-glacial cooling trend could have played here a minor role, the penetration and strengthening of the Irminger Current into the Labrador Sea has likely been the driving force.

How to cite: Menabreaz, L., Hillaire-Marcel, C., Jenny, M., Poirier, A., Ghaleb, B., and Edinger, E.: AMOC step-wise inception during the present interglacial recorded by Nd-isotopes. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21713, https://doi.org/10.5194/egusphere-egu2020-21713, 2020.

EGU2020-4699 | Displays | CL4.14

A 14 - 0 ka record of trends and events of sea ice cover, primary production and freshwater discharge in the Beaufort Sea, Arctic Ocean

Junjie Wu, Ruediger Stein, Kirsten Fahl, Nicole Syring, Jens Hefter, Gesine Mollenhauer, and Seung-il Nam

The Arctic is changing rapidly, and one of the main and most obvious features is the drastic sea-ice retreat over the past few decades. Over such time scales, observations are deficient and not long enough for deciphering the processes controlling this accelerated sea-ice retreat. Thus, high-resolution, longer-term proxy records are needed for reconstruction of natural climate variability. In this context, we applied a biomarker approach on the well-dated sediment core ARA04C/37 recovered in the southern Beaufort Sea directly off the Mackenzie River, an area that is characterized by strong seasonal variability in sea-ice cover, primary productivity and terrigenous (riverine) input. Based on our biomarker records, the Beaufort Sea region was nearly ice-free in summer during the late Deglacial to early Holocene (14 to 8 ka). During the mid-late Holocene (8 to 0 ka), a seasonal sea-ice cover developed, coinciding with a drop in both terrigenous sediment flux and primary production. Supported by multiple proxy records, two major flood events characterized by prominent maxima in sediment flux occurred near 13 and 11 ka. The former is coincident with the Younger Dryas Cooling Event probably triggered by a  freshwater outburst from the Lake Agassiz. The origin of the second (younger) one might represent a second Mackenzie flood event, coinciding with meltwater pulse IB/post-glacial flooding of the shelf and related increased coastal erosion. Here, our interpretation remains a little bit speculative, and further research is needed and also in progress.

How to cite: Wu, J., Stein, R., Fahl, K., Syring, N., Hefter, J., Mollenhauer, G., and Nam, S.: A 14 - 0 ka record of trends and events of sea ice cover, primary production and freshwater discharge in the Beaufort Sea, Arctic Ocean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4699, https://doi.org/10.5194/egusphere-egu2020-4699, 2020.

EGU2020-18268 | Displays | CL4.14

High sensitivity of Bering Sea winter sea ice to winter insolation and carbon dioxide over the last 5,500 years

Miriam C. Jones Jones, Max Berkelhammer, Katherine Keller, Kei Yoshimura, and Matthew J. Wooller

Anomalously low winter sea-ice extent and early retreat in CE 2018 and 2019 challenges previous notions of relatively stable winter sea ice in the Bering Sea over the instrumental record, but long-term sea-ice records from sediment proxies remain limited.  Here we use a record of peat-cellulose oxygen isotopes from St. Matthew Island, along with isotope-enabled general circulation model (IsoGSM) simulations to generate a 5,500-year record of Bering Sea winter sea-ice extent.  Results show that over the instrumental period (CE 1979-2018), oxygen isotope variability is largest over the late winter to spring (February, March, April, May [FMAM]) and highly correlated (-0.77, p<0.00001) with maximum winter sea-ice extent, months in which Bering sea ice reaches its winter maximum and then rapidly diminishes. We find that over the last 5,500 years, sea ice in the Bering Sea decreased in response to increasing winter insolation and atmospheric CO2, and on shorter, centennial timescales, small (<10 ppmv)  perturbations in atmospheric CO2, suggesting that the North Pacific is highly sensitive to small (<3 W m-2) changes in radiative forcing. However, we find that reconstructed sea-ice loss lags CO2 concentrations by ~120 years, indicating that the extremely anomalous recent conditions are a legacy of the early 20th century and that even with a complete cessation of greenhouse gas emissions today. As a consequence, the Bering Sea could lose all winter sea ice by mid-century, which it may not recover for millennia.

How to cite: Jones, M. C. J., Berkelhammer, M., Keller, K., Yoshimura, K., and Wooller, M. J.: High sensitivity of Bering Sea winter sea ice to winter insolation and carbon dioxide over the last 5,500 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18268, https://doi.org/10.5194/egusphere-egu2020-18268, 2020.

The downward trend in the amount of Arctic sea ice is a key factor determining the pace and intensity of future global climate change. Diminished sea ice also has a wide range of other environmental and economic consequences. Based on several decades of satellite data, we provide statistical forecasts of Arctic sea ice extent during the rest of this century. The best fitting statistical model indicates that overall sea ice coverage is declining at an increasing rate. By contrast, average projections from the CMIP5 global climate models foresee a gradual slowing of Arctic sea ice loss even in scenarios with high carbon emissions. Our long-range statistical projections also deliver probability assessments of the timing of an ice-free Arctic. These results indicate almost a 60 percent chance of an effectively ice-free Arctic Ocean during some summer in the 2030s -- much earlier than the average projection from global climate models.

How to cite: Rudebusch, G. and Diebold, F.: Probability Assessments of an Ice-Free Arctic: Comparing Statistical and Climate Model Projections, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3717, https://doi.org/10.5194/egusphere-egu2020-3717, 2020.

Mass loss from the Greenland Ice Sheet has increased in recent decades due to significant increases in surface melt and runoff. The fraction of summer melt retains as a liquid water or refreezes as it percolates into the underlying cold firn, acting as a buffer to the summer runoff. There are challenges to quantifying both infiltration and refreezing of meltwater in this complex heterogeneous cold firn and to understand the spatial variability of these processes. In this study we present continuous in situ measurements of near-surface temperature and dielectric permittivity, a proxy for volumetric water content, using TDR (Time Domain Reflectometry) methods in the percolation zone of the southern Greenland Ice Sheet. We established two observation sites near Dye 2 in April, 2016, excavating firn pits to depths of 2.2 and 5.3 m. The two sites are 650 m apart to quantify the percolation and refreezing of meltwater and to observe the spatial variability of these processes through summer 2016. Thermistor arrays were used to track the thermal signature of meltwater penetration in firn, through the effects of latent heat release when meltwater refreezes. Through the addition of TDR probes, we attempt to directly quantify meltwater volume as well as hydraulic conductivity of the near-surface snow and firn. An automatic weather station (AWS) configured for surface energy balance monitoring was also installed. AWS data were used to calculate the surface energy balance and model meltwater production. The melting front, characterized by 0°C conditions and direct evidence of liquid water, penetrated to a depth of between 1.8 and 2.1 m in summer 2016; at depths of 2.1 m and greater, temperatures remained below 0°C, there was no evidence of abrupt warming (i.e. latent heat release), and dielectric permittivities remained at their background levels. Meltwater penetrated several thick ice layers, but not until temperatures reached the melting point at these depths, implying that ice layers may transition to a permeable ‘slush’ layer, given enough conductive and latent heating, permitting progressive penetration of meltwater to depth. Firn temperatures (sub-zero conditions below ~2 m) appear to have been the main barrier to deep penetration of meltwater during summer 2016.

How to cite: Samimi, S., Marshall, S., and McFerrin, M.: Time-Domain Reflectometry Observations of Meltwater Percolation and Retention in the Firn Layer of the Greenland Ice Sheet , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1113, https://doi.org/10.5194/egusphere-egu2020-1113, 2020.

EGU2020-909 | Displays | CL4.14

A new free drift sea ice velocity dataset for improved representations of ice drift trajectories

Charles Brunette, Bruno Tremblay, and Robert Newton

Previous work shows that tracking the motion of sea ice in a Lagrangian framework can be used to produce skillful seasonal forecasts of sea ice at the pan-Arctic scale (Williams et al. 2016) and at the regional scale (Brunette et al. 2019) and can also be used to analyze socio-environmental impacts related to sea ice circulation (Newton et al. 2017). However, the Polar Pathfinder sea ice motion dataset from the National Snow and Ice Data Centre (Tschudi et al. 2019), which is commonly used for calculations of ice drift trajectories, contains biases in sea ice drift speed and angle. The bias is particularly strong in the summer when less satellite drift-vectors are available, and the Polar Pathfinder composite product relies more heavily on poorly-constrained free drift estimates (ice motion in response to wind forcing and ocean drag in the absence of internal stresses), that have up to a 60% low speed bias when compared to buoy drifts. These free drift estimates are notoriously ill-constrained, since information on the ocean forcing from below and lateral forces within the ice pack are lacking. To improve the quality of ice motion estimates in the summer, we propose to compile a new free drift sea ice motion dataset, based on surface winds from ERA-Interim and calibrated on drifting buoys from the International Arctic Buoy Program. We include dependencies of free drift velocity on sea ice concentration and thickness, which will improve the representation of temporal and spatial variability of sea ice in a free drift regime. We present work on the parameterization of an ice state dependent transfer coefficient between wind velocity and ice velocity, and estimates of the near surface oceanic currents that are necessary to constrain ice motion.

How to cite: Brunette, C., Tremblay, B., and Newton, R.: A new free drift sea ice velocity dataset for improved representations of ice drift trajectories, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-909, https://doi.org/10.5194/egusphere-egu2020-909, 2020.

EGU2020-5215 | Displays | CL4.14

A Study on the Change of Arctic Ocean Surface Temperature in CESM

Peiyan Xie, Hailun He, and Shuang Li

Since the 1950s, human has begun to explore the Arctic area. As the scientific research goes further, scientists gradually realize the important role the Arctic plays in the global climate system, and it has been said the Arctic has an amplifying effect on surface warming, which increases 2 to 3 times faster than the global average increment. Given the importance of this area, we try to figure out the relationship among the Arctic sea surface temperature (SST), sea ice index and the Arctic Oscillation (AO) in this paper. By using Community Earth System Model (CESM), we calculated an ocean-seaice-atmosphere coupled 200-year experiment. As a result, we found out that the variation of Arctic SST is negatively correlated with the change of sea ice area. There is a significant correlation between the change of SST and AO, which can lead to the anomaly of air heat transport between the Arctic area and the areas in lower latitude.

How to cite: Xie, P., He, H., and Li, S.: A Study on the Change of Arctic Ocean Surface Temperature in CESM, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5215, https://doi.org/10.5194/egusphere-egu2020-5215, 2020.

EGU2020-13541 | Displays | CL4.14

Large-scale patterns preceding Arctic warm events

Sonja Murto, Rodrigo Caballero, and Gunilla Svensson

Atmospheric blockings are defined as quasi-stationary synoptic-scale systems of high pressure that can influence different weather events. Previous studies have examined the role of blockings in favoring intense poleward moisture transport into the Arctic and the role of polar anticyclones to Arctic sea-ice loss (e.g. Woods et al. 2013; Wernli & Papritz 2018). However, the mechanisms and theories for blocking formation and maintenance, in combination with their contributions to the Arctic climate, are yet not fully understood. This study presents a detailed northern hemisphere climatological analysis of large-scale patterns during 50 warm events of extreme wintertime (NDJFM) Arctic surface temperature anomalies, as defined by Messori et al. (2018), for the ERA-Interim period of 1979-2016. In contrast to the previous mentioned study, the main focus in this study is to relate the warm events with atmospheric blockings, identified as upper level anticyclonic PV anomalies following a dynamically-based blocking identification algorithm (Schwierz et al. 2004). In order to classify the events by their spatially and temporally varying blocking patterns, we calculate regional averages of the blocking frequencies for sector areas defined above 50 °N. General patterns and anomalies in meteorological variables in the different area clusters are quantified. Based on the blocking fractions for 90th and 95th percentiles, we can relate up to 80 % of the warm events to strong blockings. Additionally, we show that the remaining events obtain similar patterns, though with weaker or shorter-lived blocks. Overall, it can be conducted that almost all warm events in the clusters precede with a significant blocking located in the area around the Urals and the nearby parts of the Arctic Ocean. Despite the similarities found in the high Arctic for most of the events, there are different patterns identified in the periphery between the clusters. A North-Atlantic block is often found in the same cluster as with the Ural blocking, however with some temporal lag prior to the latter one. Therefore, the connection with the NAO-index during the warm events is also investigated. Our study gives a deeper insight into the large-scale patterns and emphasizes the importance of the large-scale settings prior to the Arctic warm events, primarily focusing on the importance of the atmospheric blockings. The formation of these blockings and the dynamical processes on different scales driving these warm events are further discussed using trajectory-analysis in an upcoming study. These two studies aim to improve the understanding of the preconditions needed for these Arctic warm events to occur and, furthermore, the mechanisms that control these events in high latitudes.

 

Woods, C., Caballero, R., & Svensson, G. (2013). Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophysical Research Letters, 40(17), 4717-4721.

Wernli, H., & Papritz, L. (2018). Role of polar anticyclones and mid-latitude cyclones for Arctic summertime sea-ice melting. Nature Geoscience, 11(2), 108.

Messori, G., Woods, C., & Caballero, R. (2018). On the drivers of wintertime temperature extremes in the High Arctic. Journal of Climate, 31(4), 1597–1618.

Schwierz, C., Croci-Maspoli, M. & Davies, H. C. 2004). Perspicacious indicators of atmospheric blocking. Geophys. Res. Lett. 31, L06125.

How to cite: Murto, S., Caballero, R., and Svensson, G.: Large-scale patterns preceding Arctic warm events, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13541, https://doi.org/10.5194/egusphere-egu2020-13541, 2020.

EGU2020-10881 | Displays | CL4.14

Sensitivity of the Atlantic meridional overturning circulation (AMOC) to the tropical Indian Ocean warming.

Brady Ferster, Alexey Fedorov, Juliette Mignot, and Eric Guilyardi

The Arctic and North Atlantic Ocean play a fundamental role in Earth’s water cycle, distribution of energy (i.e. heat), and the formation of cold, dense waters. Through the Atlantic meridional overturning circulation (AMOC), heat is transported to the high-latitudes. Classically, the climate impact of AMOC variations has been investigated through hosing experiments, where anomalous freshwater is artificially added or removed from the North Atlantic to modulate deep water formation. However, such a protocol introduces artificial changes in the subpolar area, possibly masking the effect of the AMOC modulation. Here, we develope a protocol where AMOC intensity is modulated remotely through the teleconnection of the tropical Indian Ocean (TIO), so as to investigate more robustly the impact of the AMOC on climate. Warming in the TIO has recently been shown to strengthen the Walker circulation in the Atlantic through the propagation of Kelvin and Rossby waves, increasing and stabilizing the AMOC on longer timescales. Using the latest coupled-model from Insitut Pierre Simon Laplace (IPSL-CM6), we have designed a three-member ensemble experiment nudging the surface temperatures of the TIO by -2°C, +1°C, and +2°C for 100 years. The objectives are to better quantify the timescales of AMOC variability outside the use of hosing experiments and the TIO-AMOC relationship.  In each ensemble member, there are two distinct features compared to the control run. The initial changes in AMOC (≤20 years) are largely atmospherically driven, while on longer timescales is largely driven by the TIO teleconnection to the tropical Atlantic. In the northern North Atlantic, changes in sensible heat fluxes range from 15 to 20 W m-2 in all three members compared to the control run, larger than the natural variability. On the longer timescales, AMOC variability is strongly influenced from anomalies in the tropical Atlantic Ocean. The TIO teleconnection supports decreased precipitation in the tropical Atlantic Ocean during warming (opposite during TIO cooling) events, as well as positive salinity anomalies and negative temperature anomalies. Using lagged correlations, there are the strongest correlations on scales within one year and a delayed response of 30 years (in the -2°C ensembles). In comparing the last 20 years, nudging the TIO induces a 3.3 Sv response per 1°C change. In summary, we have designed an experiment to investigate the AMOC variability without directly changing the North Atlantic through hosing, making way for a more unbiased approach to analysing the AMOC variability in climate models.

How to cite: Ferster, B., Fedorov, A., Mignot, J., and Guilyardi, E.: Sensitivity of the Atlantic meridional overturning circulation (AMOC) to the tropical Indian Ocean warming., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10881, https://doi.org/10.5194/egusphere-egu2020-10881, 2020.

EGU2020-6908 | Displays | CL4.14

Response/feedback of the Arctic Ocean in the Northern Hemisphere climate system: the sea-level joker

Claude Hillaire-Marcel, Anne de Vernal, and Yanguang Liu

The Arctic Ocean is a major player in the climate system of the Northern Hemisphere due to its role vs albedo, atmospheric pressure regimes, and thermohaline circulation. It shows large amplitude variability from millennial, to decadal and seasonal time scales. At millennial time scales, two drastically distinct regimes prevail primarily in relation with ocean volume and sea level (SL) changes: A modern like system, with a high SL when the Arctic Ocean shelves are submerged and Bering Strait is opened vs a glacial one, with a low SL, when shelves are emerged and partly glaciated and Bering Strait is closed. In the modern system, large submerged shelves result in high productivity, high sea-ice production rates and sea ice-rafting deposition in the Central Arctic. Moreover, a fully open Bering Strait, with SL at the present elevation, contributes about 40% of the freshwater budget of the Arctic Ocean (Woodgate & Aagaard, 2005, doi:10.1029/2004GL021747), and supports Si fluxes of about 20 kmol.s-1 towards the Western Arctic (Torres-Valdés et al., 2013, doi:10.1002/jgrc.20063), thus impacting primary productivity. Under low SL conditions, the Arctic Ocean is linked exclusively to the North Atlantic, through practically a single gateway, that of Fram Strait. Sedimentation in the Central Arctic is then dominated ice-rafting deposition from icebergs, thus controlled by streaming and calving processes along surrounding ice sheets. Due to its shallowness (< 50 m), the Bering Strait gateway becomes effective at a very late stage of glacial to interglacial transitions but closes early during reverse climate trends. Sedimentary records from shelves North of Strait may provide information on the status of the gateway, so far, for the present interglacial. Clay minerals in cores from the northern Alaskan shelf (Ortiz et al., 2009, doi:10.1016/j.gloplacha.2009.03.020) and micropaleontological tracers from the Chukchi Sea southern shelf (present study) can be used to document the status of the gateway. Here, North Pacific microfossils transported by currents through the gateway demonstrate its full effectiveness at ca 6 ka BP, well after the insolation maximum of the early Holocene but when SL had reached its maximum postglacial elevation, with significant impacts on Arctic Ocean salinity, sea-ice cover and productivity.. This out-of-phase behavior of the Arctic Ocean may have impacted the North Atlantic and Northern Hemisphere climate system, as the openings and closings of Bering Strait constitute critical tipping points on this system, off out of phase with other parameters controlling more globally the climate of the Northern Hemisphere.

How to cite: Hillaire-Marcel, C., de Vernal, A., and Liu, Y.: Response/feedback of the Arctic Ocean in the Northern Hemisphere climate system: the sea-level joker, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6908, https://doi.org/10.5194/egusphere-egu2020-6908, 2020.

EGU2020-16044 | Displays | CL4.14

The impact of orbital forcing on the Arctic climate during the Last Interglacial simulated by the IPSL-CM6A-LR model

Marie Sicard, Masa Kageyama, Pascale Braconnot, and Sylvie Charbit

The Last Interglacial (129 – 116 ka BP) is a time period with a strong orbital forcing which leads to a different seasonal and latitudinal distribution of insolation compared to the present. In particular, these changes amplify the Arctic climate seasonality. They induce warmer summers and colder winters in the high latitudes of the Northern Hemisphere. Such surface conditions favour a huge retreat of the arctic sea ice cover.
In this study, we try to understand how this solar radiation anomaly spreads through the surface and impacts the seasonal arctic sea ice. Using IPSL-CM6A-LR model outputs, we decompose the surface energy budget to identify the role of atmospheric and oceanic key processes beyond 60°N and its changes compared to pre-industrial. We show that solar radiation anomaly is greatly reduced when it reaches the Earth’s surface, which emphasizes the role of clouds and water vapor transport.
The results are also compared to other PMIP4-CMIP6 model simulations. We would like to thank PMIP participants for producing and making available their model outputs.

How to cite: Sicard, M., Kageyama, M., Braconnot, P., and Charbit, S.: The impact of orbital forcing on the Arctic climate during the Last Interglacial simulated by the IPSL-CM6A-LR model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16044, https://doi.org/10.5194/egusphere-egu2020-16044, 2020.

EGU2020-17959 | Displays | CL4.14

High Arctic Polynyas in a Changing Climate

Rebecca Jackson, Anna Bang Kvorning, Christof Pearce, Marit-Solveig Seidenkrantz, and Sofia Ribeiro

Polynyas, areas of open water in the otherwise sea-ice dominated high Arctic, are vital oases for biological productivity, supporting a plethora of marine mammals and birds that in turn sustain indigenous communities. Polynyas are not, however, consistent features. Beyond the observational era, little to nothing is known about their past dynamics and equally, about their resilience to emerging changes in Arctic sea-ice conditions.

Recent paleoceanographic reconstructions of the North Water in northern Baffin Bay, the largest of the high Arctic polynyas, indicate that the polynya contracted in response to warm climatic intervals during the Holocene (e.g. Roman Warm Period). In contrast, the onset of stable North Water polynya formation acted to suppress northward incursion of warm Atlantic-sourced waters. This highlighted not only the sensitivity of polynyas to past climatic changes, but the role their formation plays in mediating water column dynamics and ocean circulation.

These new findings provided the rationale for the MSCA project ‘POLARC: High Arctic Polynyas in a Changing Climate’, to investigate the Holocene dynamics of other high Arctic polynyas forming off the east Greenland coast. New marine sedimentary archives and a multiproxy approach will be used to reconstruct productivity, sea-ice conditions and bottom water conditions, capturing a holistic view of these systems and their interaction with climatic and oceanographic variation during the Holocene (11,700 years BP to present). We present here preliminary paleoceanographic reconstructions of the Sirius Water, the first Holocene record from this polynya region, as well as plans for model-data comparisons in key polynya regions with the aim of constraining the past and better predicting the future of these phenomena.

How to cite: Jackson, R., Bang Kvorning, A., Pearce, C., Seidenkrantz, M.-S., and Ribeiro, S.: High Arctic Polynyas in a Changing Climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17959, https://doi.org/10.5194/egusphere-egu2020-17959, 2020.

EGU2020-13231 | Displays | CL4.14

Early to mid-Holocene sea ice changes on the Labrador Shelf - biomarker evidence.

Henriette Kolling, Ralph Schneider, Annalena Lochte, Kirsten Fahl, and Ruediger Stein

Understanding the Earth’s climate system and by that improving predictions of future changes are of utmost importance. A key player in this context is the global thermohaline ocean circulation, of which North Atlantic deep ocean convection is an essential component. Hence, one important region for deep ocean convection is the Labrador Sea, where the warm Gulf Stream meets cold polar waters in the Subpolar Gyre. Sea surface temperature and salinity play a major role in this convective process; two factors that influence these parameters are seasonal sea ice cover and freshwater inflow. During the early Holocene a major freshening in the Labrador Sea at 8.5 ka BP has been associated with the collapse of the Hudson Bay Ice Saddle (Lochte et al., 2019a). This collapse was triggered by a subsurface warming of the western Labrador Sea, linked to the strengthening of the Irminger and West Greenland Current that could have accelerated the ice saddle collapse. However, the role of sea ice in this process is yet unknown.

 

Here, we present a reconstruction of sea ice cover during the respective time interval, based on the organic biomarker IP25, a highly branched isoprenoid that is considered as a reliable proxy for past sea ice conditions. Actually, we apply the more advanced PIP25 sea ice index, together with other biomarkers for phytoplankton productivity, to reconstruct sea ice changes at centennial scale for the early to mid Holocene from a Labrador Shelf sediment core.

 

Based on this approach we infer that nearly perennial sea ice cover opened towards more seasonally, extremely fluctuating, conditions around 8.5 ka, parallel to the strengthening of Atlantic warm water inflow towards the Labrador Shelf. The shift to more seasonal sea ice cover may have favoured the advance of Atlantic water into Hudson Bay and could have accelerated the collapse and subsequent drainage of the Hudson Bay Ice Saddle. The opening of the sea ice triggered phytoplankton productivity and we find evidence for the establishment of a stable ice edge in the vicinity of the core location between 8.1 and 7.6 ka. With the establishment of the Labrador Sea Water formation around 7.4 ka (Lochte et al., 2019b) sea ice continued to fluctuate seasonally and reduced freshwater inflow favoured enhanced phytoplankton productivity.

 

References:

Lochte, A. A., Repschläger, J., Kienast, M.,Garbe-Schönberg, D., Andersen, N., Hamann, C., Schneider, R., 2019a. Labrador Sea freshening at 8.5 ka BP caused by Hudson Bay Ice Saddle collapse. Nature Communications, 10-586

Lochte, A. A., Repschläger, J., Seidenkrantz, M-S., Kienast, M., Blanz, T., Schneider, R.R., 2019b. Holocene water mass changes in the Labrador Current. The Holocene 1-15

How to cite: Kolling, H., Schneider, R., Lochte, A., Fahl, K., and Stein, R.: Early to mid-Holocene sea ice changes on the Labrador Shelf - biomarker evidence., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13231, https://doi.org/10.5194/egusphere-egu2020-13231, 2020.

EGU2020-880 | Displays | CL4.14

Land-Ocean interactions at the southwest Greenland margin during the Holocene

Estelle Allan, Anne de Vernal, Marit-Solveig Seidenkrantz, Claude Hillaire-Marcel, Christof Pearce, Lorenz Meire, Hans Røy, Anders Møller Mathiasen, Mikkel Thy Nielsen, Jane Lund Plesner, and Kerstin Perner

Palynomorph analysis of marine cores raised off Nuuk (southwestern Greenland) provided records of sea-surface conditions and climate-ocean-ice dynamics at centennial resolution over the last 12,000 years. Transfer functions using dinocyst assemblages provided information about the sea-ice cover, seasonal sea-surface temperature (SST) and salinity (SSS), as well as primary productivity. At about 10,000 cal. years ago, an increase in species diversity and the rapid increase of phototrophic taxa (light-dependent), marks the onset of interglacial conditions, with summer temperature increasing up to ~10°C during the Holocene Thermal Maximum (HTM). Low SSS and high productivity conditions are recorded during the interval, which we associate to increased meltwater and nutrient input from the Greenland Ice Sheet. After ~5000 cal. years BP, the decrease of phototrophic taxa marks a two-steps cooling associated with the Neoglacial trend. Since ~2000 cal. years BP, an increase in the high-frequency variability of sea surface conditions is noticeable. The second step change towards colder and more unstable conditions starting about 3000 cal. years BP coincides with the disappearance of the Saqqaq culture. The gap of human occupation in western Greenland, between the Dorset and the Norse settlements, i.e., from ca. 2000 to 1000 cal. years BP, may thus be linked to the highly unstable conditions in surface waters.

How to cite: Allan, E., de Vernal, A., Seidenkrantz, M.-S., Hillaire-Marcel, C., Pearce, C., Meire, L., Røy, H., Mathiasen, A. M., Nielsen, M. T., Plesner, J. L., and Perner, K.: Land-Ocean interactions at the southwest Greenland margin during the Holocene , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-880, https://doi.org/10.5194/egusphere-egu2020-880, 2020.

EGU2020-786 | Displays | CL4.14

Neoglacial Ice Advance and Sediment Provenance Changes in Southwest Greenland and its Marginal Seas Traced by Radiogenic Isotopes

Lina Madaj, Claude Hillaire-Marcel, Friedrich Lucassen, and Simone Kasemann

Marine sediments from the West Greenland margin represent high-resolution archives of Holocene climate history, past ice sheet dynamics, changes in meltwater discharge and coastal current intensities. We investigate potential changes of sediment provenances using strontium (Sr) and neodymium (Nd) radiogenic isotopes as tracers for the origin and pathways of the silicate detrital fraction in marine sediments. Meltwater discharge and coastal currents are the most important transport pathways for detrital sediments into (northeast) Labrador Sea, which is an important pathway for freshwater from the Arctic Ocean and meltwater from the Greenland Ice Sheet to enter the North Atlantic, where deep water formation takes place. Variations in freshwater supply into Labrador Sea may influence deep water formation and therefore further circulation and climate patterns on a global scale.

The marine sediment record collected in Nuuk Trough, southwest Greenland, displays uniform isotopic compositions throughout most of the Holocene, indicating well mixed detrital material from local sources through meltwater discharge and distal sources transported via the West Greenland Current. From around 4 ka BP to present the composition of Nd isotopes reveals a steep (εNd: -29 to -35) and the Sr isotope composition a slight (87Sr/86Sr: 0.723 to 0.728) but pronounced shift. This time interval coincides with the transition into the Neoglacial time period [1], which is characterized by a significant drop in atmospheric temperatures [2], and the onset of the modern Labrador Sea circulation pattern (e.g. [3]). We suggest that the shift in Nd and Sr isotopes indicates a change towards less distal and more local sediment sources, possibly caused by enhanced erosion of the local bedrock during Neoglacial ice advance [4], along with a decrease in meltwater discharge [5] and coastal current strength, leading to a sediment delivery shift.

[1] Funder & Fredskild (1989) Quaternary geology of Canada and Greenland, 775–783. [2] Seidenkrantz et al. (2007) The Holocene 17, 387-401. [3] Fagel et al. (2004) Paleoceanography 19, PA3002. [4] Funder et al. (2011) Developments in Quaternary Sciences 15, 699-713, (and references therein). [5] Møller et al. (2006) The Holocene 16, 685-695.

How to cite: Madaj, L., Hillaire-Marcel, C., Lucassen, F., and Kasemann, S.: Neoglacial Ice Advance and Sediment Provenance Changes in Southwest Greenland and its Marginal Seas Traced by Radiogenic Isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-786, https://doi.org/10.5194/egusphere-egu2020-786, 2020.

EGU2020-3103 | Displays | CL4.14

Late Holocene thermohaline perturbation of the N-Atlantic Subpolar Gyre linked to exceptional Greenland Ice Sheet melting between 4.4 and 4.0 ka BP

Antoon Kuijpers, Marit-Solveig Seidenkrantz, Ralph Schneider, Camilla S. Andresen, Signe Hygom Jacobsen, Mimmi Oksman, Lisa C. Orme, Jian Ren, and Sandrine Solignac

Knowledge of the impact of past climate warming on Greenland Ice Sheet stability is an important issue for assessing  thresholds that are critical for a potential ice sheet collapse. For the late Holocene, evidence has recently been found of a so-called 4.2 ka BP event(1) including a prominent warming spike in several ice core records from Greenland and Canada (Agassiz).  Also lake records from both Northwest(2) and South Greenland(3) support pronounced summer warming during that time. After c. 4.0 ka BP NW Greenland July air temperature dropped by about 3o C. Coeval with this exceptional atmospheric warming anomaly over northern Canada and parts of Greenland, abrupt cooling and freshening affected  the N-Atlantic subpolar gyre where Labrador Sea deep convection ceased(4). Northern N-Atlantic climate generally deteriorated. With our contribution we present Holocene sub-bottom profiling  and sedimentary shelf and  fjord records from Southwest Greenland and Disko Bay that indicate exceptional Greenland Ice Sheet melting 4.4-4.0 ka BP at a rate and magnitude not recorded since early Holocene deglaciation. Extremely strong melt water discharge resulted in erosion of fjord sediments(5) and local deposition of up to several meters thick meltwater sediment on the shelf(6-8).  Timing of this melting event corresponds to a significant anomaly in hydrographic parameters of the Labrador Current off Newfoundland(9,10), which is concluded to have resulted in thermohaline perturbation of the N-Atlantic Subpolar gyre.   

  • (1) Weiss, H. 2019. Clim Past doi:10.5194/cp-2018-162-RC2
  • (2) McFarlin, J.M. et al. 2018. PNAS doi:10.1073/pnas.1720420115
  • (3) Andresen, C.S. et al. 2004. J Quat Sci 19(8) doi:10.1002/jqs.886
  • (4) Klus, A. et al. 2018. Clim Past doi:10.5194/cp-14-1165-2018
  • (5) Ren, J. et al. 2009. Mar Micropal doi:10.1016/j.marmicro.2008.12.003
  • (6) Hygom Jacobsen, S. 2019. Master Thesis Aarhus Univ, Dept. of Geoscience, pp105
  • (7) Schneider, R. 2015. Cruise Rep epic.awi.de/id/eprint/37062/131/msm-44-46-expeditionsheft.pdf
  • (8) Kuijpers, A. et al. 2001. Geol. Greenland Surv Bull 189, 41-47
  • (9) Solignac, S. et al. 2011. The Holocene, doi: 10.1177/0959683610385720
  • (10) Orme, L. et al 2019. The Holocene (submitted)

How to cite: Kuijpers, A., Seidenkrantz, M.-S., Schneider, R., S. Andresen, C., Hygom Jacobsen, S., Oksman, M., C. Orme, L., Ren, J., and Solignac, S.: Late Holocene thermohaline perturbation of the N-Atlantic Subpolar Gyre linked to exceptional Greenland Ice Sheet melting between 4.4 and 4.0 ka BP , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3103, https://doi.org/10.5194/egusphere-egu2020-3103, 2020.

EGU2020-169 | Displays | CL4.14

Early Holocene history of the Zachariae Ice Stream, NE Greenland: Evidence from geochemistry, grain size and sedimentary parameters

Joanna Davies, Anders Møller Mathiase, Christof Pearce, and Marit-Solveig Seidenkrantz

The Arctic region exhibits some of the most visible signs of climate change globally. Arctic sea ice extent and volume has been declining sharply in recent decades; observations indicate a mean annual decrease of 3.2% since 1980. However, no extensive network of sea ice observations extends back further than the mid-18th century and satellite data since the late 1970s; this limits perspectives of sea ice variability on longer time scales. Thus, to understand the processes governing sea-ice cover and variability, predict how sea ice and ocean conditions will respond to anthropogenic climate change and to understand if the shrinking of Arctic sea ice is a unique and irreversible process, longer records of sea ice variability and oceanic conditions are required.

A multi-proxy approach, involving grain size, geochemical, foraminifera and sedimentary analysis, was applied to a marine sediment core from North East Greenland to reconstruct changes in sea ice extent and palaeoceanographic conditions throughout the early Holocene (ca. 12,400-7,800 cal. yrs. BP). The study aimed to improve the understanding of the interaction between ocean circulation, sea ice and fluctuations of the Zachariae Isstrøm (ZI), one of the main glacier outlets of NE Greenland. Four distinct zones have been identified: Zone 1 (12,400-11,600 cal. yrs. BP) covering the transition from the Younger Dryas into the Holocene which evidences a gradually warming climate, resulting in a retreat of the ZI; Zone 2 (11,600 – 10,300 cal. yrs. BP) which encapsulates two distinct cooling events as a result of cooler surface waters, rapid release of freshwater and local feedback mechanisms. This coincides with sudden re-advances of the ZI followed by gradual retreats; 3) Zone 3 (10,300 – 8,600 cal. yrs. BP) shows warm and stable conditions, with warm surface waters that resulted in the retreat of the ZI; 4) Zone 4 (8,600 – 7,800 cal. yrs. BP) which shows a rapid return to cooler conditions, with cold surface waters and rapid freshwater outbursts resulting in the re-advance of the ZI, forced by decreasing solar insolation and cold surface waters. Our investigation thus indicated that changes in oceanic conditions at the NE Greenland shelf had a significant impact on the extent and melting rate of the ZI glacier.

How to cite: Davies, J., Møller Mathiase, A., Pearce, C., and Seidenkrantz, M.-S.: Early Holocene history of the Zachariae Ice Stream, NE Greenland: Evidence from geochemistry, grain size and sedimentary parameters, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-169, https://doi.org/10.5194/egusphere-egu2020-169, 2020.

EGU2020-5473 | Displays | CL4.14

Holocene biomarker- and microfossil-based sea-ice reconstructions off the eastern North Greenland continental shelf (western Fram Strait)

Nicole Syring, Ruediger Stein, Jeremy M. Llyod, Kirsten Fahl, Maximilian Vahlenkamp, Marc Zehnich, Robert Spielhagen, and Frank Niessen

Understanding the processes controlling the natural variability of sea ice in the Arctic, one of the most dynamic components of the climate system, can help to constrain the effects of future climate change in this highly sensitive area. For the first time, a detailed multi-proxy study was carried out to reconstruct past sea-ice variability off eastern North Greenland. This area is strongly influenced by cold surface waters and drift ice transported via East Greenland Current, meltwater pulses from the outlet glaciers of the Northeast Greenland Ice Stream, the build-up of landfast ice, and the formation of the Northeast Water Polynya. For our study, we have used well-dated sedimentary sections of Kastenlot Core PS93/025 and Gravity Core PS100/270. These sites are ideally suited to identify and disentangle the driving mechanisms of sea-ice distribution in the western Fram Strait. As proxies for the reconstruction of sea-ice cover we have used the sea-ice proxy IP25, a highly branched isoprenoid (HBI) monoene with 25 carbon atoms, in combination with specific open-water phytoplankton and terrestrial higher land plant biomarkers as well as specific microfossils (e.g., diatoms). Based on these high-resolution data sets we are able to reconstruct sea-ice variability, primary productivity, terrigenous input and seasonal formation of the NEW Polynya that evolved during the Holocene at the eastern North Greenland shelf.

The presence of IP25 throughout the core PS93/025 confirms that there has been seasonal sea ice in the area during the entire Holocene time interval. Our biomarker proxies indicate relatively rapid changes in sea-ice conditions at ~9 ka and ~1 ka, i.e., sea-ice conditions progressed through three major stages over the course of the Holocene. During the early Holocene we recorded a reduced, but variable sea-ice cover. Between about 9.3 and 5.5 ka, sea-ice coverage increased towards seasonal conditions. Based on terrigenous biomarkers and IRD we assume a stronger regional than local sea-ice signal at core site PS93/025, due to the high influence of drift ice transported from the central Arctic Ocean along the eastern North Greenland shelf. During the late Holocene, especially during the last 1 ka, our records reflect the seasonal formation of the NEW Polynya leading to stable sea-ice edge conditions and a fully developed polynya situation. Probably, cyclic changes in the solar activity acted as trigger for the short-term variability in sea-ice cover during Holocene times.

How to cite: Syring, N., Stein, R., Llyod, J. M., Fahl, K., Vahlenkamp, M., Zehnich, M., Spielhagen, R., and Niessen, F.: Holocene biomarker- and microfossil-based sea-ice reconstructions off the eastern North Greenland continental shelf (western Fram Strait), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5473, https://doi.org/10.5194/egusphere-egu2020-5473, 2020.

We use stable isotope data from different morphotypes of the polar species Neogloboquadrina pachyderma in a sediment core from the NE Greenland continental margin (79°N) as proxies for the variability of salinity, ice coverage, and bioproductivity/carbon fluxes. Stable oxygen and carbon isotopes (d18O, d13C) were measured on both thin- and thick shelled specimens of planktic foraminifers N. pachyderma. Since this species is known to attain the thick carbonate crust of adult specimens in deeper water, the isotopic difference between thick-shelled (morphotypes 1 and 2, according to Eynaud, 2011) and thin-shelled specimens (morphotypes 4 and 5) is proposed to reflect the salinity difference between subsurface and near-surface waters. In Late Glacial sediments only minor d18O differences between the morphotypes suggest an upper water mass structure with only minor salinity differences. The high d13C difference of >0.5‰ is ascribed to strong quantitative differences in the decomposition of isotopically light organic carbon within the upper water column (likely from intense ice coverage and reduced bioproductivity) which precludes that the d18O similarities merely result from a reduced vertical migration activity of the foraminifers. After 13 ka, a series of d18O spikes (amplitudes >1.5‰ in morphotypes 4/5) preserved in laminated sediments reflects a strong freshwater event at the NE Greenland margin, likely related to the export of freshwater from the Arctic Ocean and/or the decay of the nearby outer Greenland Ice Sheet. Within these spikes, d18O and d13C differences of N. pachyderma morphotypes reach maximum values, pointing at extreme salinity differences in the upper few hundred meters of the water column and likely high portions of isotopically light dissolved inorganic carbon from terrestrial sources (meltwater). In the Holocene, d18O differences are reduced to ca. 0.5‰ and relatively low d13C differences may indicate an activity of organic carbon decomposition reaching significantly deeper in the water column than in the glacial and deglacial, possibly related to a more open ice cover, enhanced bioproduction and higher C fluxes.

Reference

Eynaud, F., 2011. Planktonic foraminifera in the Arctic: potentials and issues regarding modern and quaternary populations. IOP Conf. Series, Earth and Environmental Science 14, 012005, doi:10.1088/1755-1315/14/1/012005

How to cite: Spielhagen, R. F. and Mackensen, A.: Variability of ocean stratification, sea ice coverage and bioproduction off NE Greenland in the Late Glacial to Holocene reconstructed from planktic foraminifer morphotypes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4818, https://doi.org/10.5194/egusphere-egu2020-4818, 2020.

EGU2020-534 | Displays | CL4.14

Ocean-Atmosphere positive feedback in the Barents Sea region with reanalyses data

Katrina Kalavichchi and Igor Bashmachnikov

This study investigates the mechanism of positive feedback in the Barents Sea region, using the results of reanalyses from 1993 to 2014. Vertical heat fluxes, wind and pressure fields are obtained from OAFlux and ERA-Interim databases, the water temperature and currents from the ARMOR-3D database.

Oceanic heat transport was computed through three sections-at the entrance to the Barents Sea (BSO), in the southern part of the Norwegian sea and in the west of Spitsbergen. The results show that, during the study period, the oceanic heat flux through BSO was rapidly increasing, significantly faster than in the northwards heat transport in the Norwegian Sea. west of Spitsbergen, a negative linear trend was observed, indicating a redistribution of the increasing transport of the Atlantic Water into the Nordic Seas.

Based on reanalyses data, we show the tight relationship between the current velocities through the BSO and the change in the gradient of the zonal component of wind velocity. The variability of the atmospheric circulation and the variability of the convergence of atmospheric heat fluxes for the studied region was also assessed.

The results also show that, in winter, with increasing oceanic heat flux through the BSO, the turbulent heat fluxes in the southwestern part of the sea decreased, and the northern part of the sea and west of Novaya Zemlya increased. In the annual means, the increasing heat flux from the ocean to the atmosphere is due to a retreat of the ice edge and an increase in the ice-free area of the sea. The sea-surface atmospheric pressure also increased over the water area, with a maximum changes in the south-east of the sea.

For the years with the maximum oceanic winter heat fluxes into the Barents Sea, the atmospheric heat flux across the southern boundary increased, while it across the northern border weakened. The convergence of the atmospheric heat fluxes increased only at the sea surface (1000-975 hPa), whereas above (975-100 hPa) the convergence decreased, and the total atmospheric heat convergence varies out of phase with that of the ocean.

This study was supported by the Russian Science Foun- dation, project no. 17-17-01151.

How to cite: Kalavichchi, K. and Bashmachnikov, I.: Ocean-Atmosphere positive feedback in the Barents Sea region with reanalyses data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-534, https://doi.org/10.5194/egusphere-egu2020-534, 2020.

Holocene climate variability and environmental changes have been studied using a sediment record from the Barents Sea with focus on the spatio-temporal evolution of bio-productivity and terrestrial sediment deposition in response to changes of climate and regional oceanography. From a 3 m long sediment core recovered in the South-Eastern Barents Sea at 72.5°N 32.5°E u-channels were extracted and stepwise demagnetized and measured for their natural remanent magnetization (NRM) and anhysteretic remanent magnetization (ARM) at the cryogenic magnetometer facility at the Geological Survey of Norway. The u-channel measurements at 3 mm resolution allow the reconstruction of palaeoinclination, relative declination and relative palaeointensity. Comparison of these parameters to FENNOSTACK (Snowball et al., 2007) and EGLACOM-SVAIS (Sagnotti et al., 2011) establishes a robust age model for the sediment sequence which otherwise contains little datable material. We applied statistical factor analysis as centred logratio (clr) transformation to reduce dimensionality of the XRF data and compare changes in high-resolution magnetic susceptibility, wet bulk density and XRF elemental composition with changes of climate proxies in other North Atlantic sedimentary records.

Based on the new chronostratigraphic framework changes of inorganic and organic proxies at long-term and sub-millennial scale resolve the temperature variability throughout the Holocene. Calcium content changes are related to regional bio-productivity changes in response to surface temperature changes with a pronounced deterioration at the beginning of the Neoglaciation and gradual enhancement during the late Holocene. Besides palaeoclimatic responses, the results offer the opportunity to study sediment transport and deposition during the regional deglaciation and mid-Holocene glacier growth in northwestern Fennoscandia. The temporal changes of the regional oceanography and the variability of marine palaeoproductivity in the South-Eastern Barents Sea indicate an active interplay between the North Atlantic Current (NAC) and the Norwegian Coastal Current (NCC) during the early Holocene, a predominance of the NCC during middle Holocene and a re-amplification of the NAC during the late Holocene. Comparison to other records from the Nordic Seas enables the reconstruction of responses and the vulnerability of this arctic marine ecosystem to past climate variations and may help to estimate upcoming responses to recent and future climate changes.

 

References:

Snowball, I., L. Zillén, A. Ojala, T. Saarinen, and P. Sandgren (2007), FENNOSTACK and FENNORPIS: Varve dated Holocene palaeomagnetic secular variation and relative palaeointensity stacks for Fennoscandia, Earth and Planetary Science Letters, 255, (1-2), 106–116

Sagnotti, L., P. Macrì, R. Lucchi, M. Rebesco, and A. Camerlenghi (2011), A Holocene paleosecular variation record from the northwestern Barents Sea continental margin, Geochemistry, Geophysics, Geosystems, 12, (11)

How to cite: Klug, M., Fabian, K., Knies, J., Bellec, V., and Rise, L.: Holocene climatic and palaeoenvironmental changes in the South-Eastern Barents Sea – new insights from palaeomagnetic and geochemical stratigraphy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7894, https://doi.org/10.5194/egusphere-egu2020-7894, 2020.

EGU2020-20778 | Displays | CL4.14

Temporal and spatial variations of sub-surface ocean temperatures in fjord systems, Western Svalbard

Martin Schulthess, Jacqueline Otto, Ellen Berntell, and Qiong Zhang

Frontal ablation processes and resulting mass loss at tidewater glaciers are a key uncertainty in future predictions of sea level rise. As recent studies have shown, frontal ablation is most importantly influenced by the sub-surface and surface water temperatures, at the same time interlinked with complex ice-ocean interactions. Since in the last years warm water masses from the West Spitsbergen Current are increasingly affecting the fjords of Western Svalbard, referred to as the process of Atlantification, the relevance to improve our knowledge about water temperature dynamics as well as the interactions with frontal ablation is rising. In this study, the temporal and spatial variations of sub-surface ocean temperatures in three fjord systems in Western Svalbard were investigated by reanalysing data from previous studies. A high variability of water temperatures on a temporal as well as spatial scale were found, reflecting the complex dynamics between different factors, such as fjord bathymetry, ongoing Atlantification, influence from different ocean currents, salinity, mixing of water masses, and tides.

Measurements at different depths are revealing temperature value ranges of up to ± 25% of the annual temperature range for a divergence of 10m in the measurement depth. Profile measurements are therefore strongly recommended for future observations. Tidal variations occur in only one of three fjord system, with temperature variations of up to 2.5°C per day. The analysis of the influence of these warm water peaks, enduring only a few hours, on frontal ablation should be part of future research projects, since the difference to the daily mean water temperature can be up to 1°C. Differences in domination of certain water masses, such as cold or warm waters, can vary strongly in different locations within the fjord system, depending on the interplay of the different impacting factors. Concluding from the results, the depth and location of water temperature measurements, play a key role for making reliable assumptions concerning ice-ocean interactions, since water temperatures can vary strongly with depth and distance from the glacier front.

How to cite: Schulthess, M., Otto, J., Berntell, E., and Zhang, Q.: Temporal and spatial variations of sub-surface ocean temperatures in fjord systems, Western Svalbard, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20778, https://doi.org/10.5194/egusphere-egu2020-20778, 2020.

EGU2020-8627 | Displays | CL4.14

The observed recent surface air temperature development across Svalbard and concurring footprints in local sea ice cover

Sandro Dahlke, Nicholas Hughes, Penelope Wagner, Sebastian Gerland, Tomasz Wawrzyniak, Boris Ivanov, and Marion Maturilli

The Svalbard archipelago in the Arctic North Atlantic is experiencing rapid changes in the surface climate and sea ice distribution, with impacts for the coupled climate system and the local society. Using observational data of surface air temperature (SAT) from 1980–2016 across the whole Svalbard archipelago, and sea ice extent (SIE) from operational sea ice charts,  a systematic assessment of climatologies, long-term changes and regional differences is conducted. The proximity to the warm water mass of the West Spitsbergen Current (WSC) drives a markedly warmer climate in the western coastal regions compared to northern and eastern Svalbard. This imprints on the SIE climatology in southern and western Svalbard, where the annual maxima of 50–60% area ice coverage are substantially less than 80–90% in the northern and eastern fjords. Owing to winter-amplified warming, the local climate is shifting towards more maritime conditions, and SIE reductions of between 5% to 20% per decade in particular regions are found, such that a number of fjords in the west have been virtually ice-free in recent winters. The strongest decline comes along with SAT forcing and occurs over the most recent 1–2 decades in all regions. In the 1980s and 1990s, enhanced northerly winds and sea ice drift can explain 30–50% of SIE variability around northern Svalbard, where they had correspondingly lead to a SIE increase. At the same time, interannual temperature fluctuations within the WSC waters can explain 20-37% of SIE variability in a number of fjords on the west coast. With an ongoing warming it is suggested that both the meteorological and cryospheric conditions in eastern Svalbard will become increasingly similar to what is already observed in the western fjords, namely suppressed typical Arctic climate conditions.

How to cite: Dahlke, S., Hughes, N., Wagner, P., Gerland, S., Wawrzyniak, T., Ivanov, B., and Maturilli, M.: The observed recent surface air temperature development across Svalbard and concurring footprints in local sea ice cover, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8627, https://doi.org/10.5194/egusphere-egu2020-8627, 2020.

EGU2020-17819 | Displays | CL4.14

Recent landscape changes assessed by remotely sensed data in Pechora Region

Florina Ardelean, Marinela Chețan, Andrei Dornik, Alexandru Onaca, Goran Georgievski, Dmitry Drozdov, Vladimir Romanovsky, Stefan Hagemann, Dmitry Nicolsky, and Dmitry Sein

Pechora Region, located in North-East European Russia, is a unique natural environment with high biodiversity and wilderness areas, such as coastal habitats, the Arctic tundra or the Ural Mountains. The area lies on different permafrost zones and faces considerable challenges such as the over-exploitation of natural resources or climate change related. Our objective is to analyze landscape changes in the last 30 years using free available satellite data and identify possible influences on the degradation of permafrost in the study area. We used Surface Reflectance images from Landsat archive between 1985 and 2019. For each year, normalized indices were derived, illustrating consistency of green vegetation, as Normalized Difference Vegetation Index (NDVI), and vegetation moisture, Normalized Difference Moisture Index (NDMI). From MODIS data archive we used land surface temperature (LST), between 2000 and 2019. Moreover, the Global Surface Water dataset which contains maps with the spatial and temporal distribution of permanent and seasonal surface water from 1984 to 2018 was used. These data were aggregated to yearly mean (i.e. NDVI, NDMI, LST) or yearly sum (surface water), for the entire Pechora region. The results reveal a significant increase in NDVI mean. This "greening" of the tundra landscape, especially the southern tundra, between 1985 and 2019 has also been highlighted in other studies in the Arctic. Similarly, NDMI shows a slight increase of vegetation moisture in this area in the last three decades. Vegetation dynamics in the last 20 years is in accordance with LST evolution, showing an increase especially in the August mean temperature, more significant after 2011. From the analysis of the spatio-temporal changes of the water surfaces, a significant increase in seasonal water can be observed after 1997, and a relatively stable trend of permanent waters, with minimum values in 1999, 2003 and 2012. In the same time, an increase in the active layer thickness in the last 20 years of measurements in a site located in the study area has been documented. We conclude that Pechora Region experienced significant landscape changes in the last 30 years, our results showed mostly positive changes on vegetation consistency and moisture, and a high spatial variability of surface water.

Acknowledgement

This work is funded for WUT by a grant of the Romanian National Authority for Scientific Research and Innovation, CCDI-UEFISCDI, project number ERANET-RUS-PLUS-SODEEP, within PNCD III in the frame of ERA-Net plus Russia, TSU is supported by MOSC RF # 14.587.21.0048(RFMEFI58718X0048), AWI and HZG are supported by BMBF (Grant no. 01DJ18016A and 01DJ18016B).

How to cite: Ardelean, F., Chețan, M., Dornik, A., Onaca, A., Georgievski, G., Drozdov, D., Romanovsky, V., Hagemann, S., Nicolsky, D., and Sein, D.: Recent landscape changes assessed by remotely sensed data in Pechora Region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17819, https://doi.org/10.5194/egusphere-egu2020-17819, 2020.

CL4.15 – Climate Variability and Prediction in High Latitudes

EGU2020-8003 | Displays | CL4.15

Memory of Arctic sea ice in model simulations, observations, and reanalyses

Céline Gieße, Dirk Notz, and Johanna Baehr

The strong decline of Arctic sea ice in recent years has raised growing interest in seasonal-to-interannual predictions of Arctic sea ice. Previous studies have revealed a large predictability gap between potential and operational forecast skill of Arctic sea ice, which could indicate a strong potential for improvement of operational sea ice predictions or hint at a systematic overestimation of sea ice memory in current climate models.

Here, we assess and compare memory of Arctic sea ice in terms of lagged correlations of sea ice area anomalies on seasonal to interannual time scales in a large model ensemble (MPI Grand Ensemble) as well as several reanalysis and observational products. While the different datasets show good agreement for short-term memory on time scales of a few months on which persistence is the dominant source of memory, we find substantial differences between model and observational memory behaviour on longer time scales. In particular, we find that memory from the summer sea ice minimum into the following year is significantly overestimated in the model, as lagged correlation values in all observational datasets are outside the range of model variability. Reanalysis data show correlation values that lie in between observational and model mean values, underpinning the hybrid nature of reanalyses combining observations and model behaviour. Extending the analysis of sea ice memory to a regional scale provides further information on the spatial origin of specific memory features in the different datasets and helps in understanding differences between model and real-world behaviour on a physical process level.

How to cite: Gieße, C., Notz, D., and Baehr, J.: Memory of Arctic sea ice in model simulations, observations, and reanalyses, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8003, https://doi.org/10.5194/egusphere-egu2020-8003, 2020.

The METROMS is a coupled ocean and sea ice model based on the Regional Ocean Modeling System (ROMS) and the Los Alamos sea ice model CICE.  It was employed for seasonal forecast of the September Arctic sea ice extent (SIE) in 2019 in the Sea Ice Prediction Network (SIPN), using a regional configuration of grid resolution 20km for the Arctic, the so-called Arctic-20km configuration. In the present study, we investigate the impact of model initialization and sea ice data assimilation on the seasonal forecast of the September Arctic SIE. The ERA5 atmospheric forcing is used to driver the model. The preliminary results indicate that model initialization plays a very important role in the seasonal prediction of September Arctic SIE. Experiments using different model initializations from climate monthly mean (CMM) and actual monthly mean (AMM) indicate that the AMM generally has a much higher prediction skill. The prediction skill also increases with decreasing prediction time. With a reasonable model initialization, SIC assimilation can significantly improve the prediction skill, particularly within two months. On the contrary, SIT assimilation tends to provide relatively small contribution to the September SIE prediction when model is reasonably initialized, due mostly to the fact that no data is available in the summer period. 

How to cite: Wang, K., Li, Q., Wang, C., Debernard, J., and Keeley, S.: Effect of model initialization and sea ice data assimilation on the seasonal forecast of September Arctic sea ice extent in a coupled ocean-sea ice model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13429, https://doi.org/10.5194/egusphere-egu2020-13429, 2020.

EGU2020-13516 | Displays | CL4.15

Assessment of decadal prediction skills and sensitivity to sea-ice thickness initialization in the Arctic when seasonal ice becomes dominant in the Arctic

Tian Tian, Shuting Yang, Pasha Karami, François Massonnet, Tim Kruschke, and Torben Koenigk

The Arctic has lost more than 50% multiyear sea ice (MYI) area during 1999-2017. Observation analysis suggests that if the decline of the MYI coverage continues, changes in the Arctic ice cover (i.e. area and volume) will be more controlled by seasonal ice than the effect of global warming. To investigate how large and where the source of Arctic prediction skill is given a large losses of thick MYI during the last two decades, we explore the decadal prediction skills and sensitivity to sea ice thickness (SIT) initialization from the EC-Earth3 Climate Prediction System with Anomaly Initialization (EC-Earth3-CPSAI). Three sets of ensemble hind-cast experiments following the protocol for the CMIP6 Decadal Climate Prediction Project (DCPP) are carried out in which the predictions start from: 1) a baseline system with ocean only initialization; 2) with ocean and sea ice concentration (SIC) initialization; 3) with ocean, SIC and SIT initialization. The hind-cast experiments are initialized and validated based on the ERA-Interim-reanalysis for the atmosphere and ORAS5 for ocean and sea-ice, with a focus period 1997-2016. All initialized experiments show better agreement with ORAS5 than the CMIP6 historical run (i.e. the Free run) for the first winter sea ice forecast. The SIT initialized experiments show the best skill in predicting SIT (or volume) and the added value by greatly reducing errors of near surface air temperature over the Greenland and its surrounding waters. In the Central Arctic, the Beaufort and East Siberian Seas, there are only minor differences in prediction skills on seasonal to decadal time scales between the ocean-only initialized and the SIT initialized experiments, indicating that the source of predictability in these regions are mainly from the ocean; while the ocean-only initialization degrades skill with larger RMSE than the Free run, e.g. during the ice-freezing season in the GIN and Barents Seas, or at  the summer minimum in the Kara Sea, the added value from the SIT initialized experiment is present, and it may have long-term effect (>4 years) probably associated with sea-ice recirculation. In all cases, the improvement from the ocean-only initialization to also including SIC initialization is found negligible, even somehow degrading the skills. This highlights the important use of SIT in predicting changes in the Arctic sea ice cover at various time scales during the study period. Therefore, the sea-ice initialization with constraint on SIT is recommended as the most effective initialization strategy in our EC-Earth3-CPSAI for present climate prediction from seasonal to decadal time scales.

How to cite: Tian, T., Yang, S., Karami, P., Massonnet, F., Kruschke, T., and Koenigk, T.: Assessment of decadal prediction skills and sensitivity to sea-ice thickness initialization in the Arctic when seasonal ice becomes dominant in the Arctic , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13516, https://doi.org/10.5194/egusphere-egu2020-13516, 2020.

EGU2020-14616 | Displays | CL4.15

Assessing the climate response to regional sea ice change across all Arctic regions.

Xavier Levine, Ivana Cvijanovic, Pablo Ortega, and Markus Donat

Climate models predict that sea ice cover will shrink--even disappear-- in most regions of the Arctic basin by the end of the century, triggering local and remote responses in the surface climate via atmospheric and oceanic circulation changes. In particular, it has been suggested that seasonal anomalies over Europe and North America in recent years could have been caused by record low Arctic sea ice cover. Despite an intense research effort toward quantifying its effect, the contribution of regional sea ice loss to climate change and its mechanisms of action remain controversial. 

In this study, we prescribe sea ice loss in individual sectors of the Arctic within a climate model, and study its effect on climatic anomalies in the Northern Hemisphere. Using the EC-EARTH3.3 model in its atmospheric-only and fully coupled configuration, and following the PAMIP protocol, sea ice cover is set to either its present day state, or a hypothetical future distribution of reduced sea ice cover in the Arctic. This pan-Arctic sea ice loss experiment is then complemented by 8 regional sea ice loss experiments.

Comparing those experiments, we assess the contribution of sea ice loss in each region of the Arctic to climate change over Europe, Siberia and North America. We find that sea ice loss in some sectors of the Arctic appears to matter more for Northern Hemisphere climate change than others, even after normalizing for differences in surface cover. Furthermore, the climatic effect of regional sea ice loss is compared to that of a pan-Arctic sea ice loss, whose associated climate anomalies are found to be strikingly different from that expected from a simple linear response to regional sea ice loss. We propose a mechanism for this nonlinear climate response to regional sea ice loss, which considers regional differences in the strength of the thermal inversion over the Arctic, as well as the relative proximity of each Arctic region to features critical for stationary wave genesis (e.g. the Tibetan plateau).

How to cite: Levine, X., Cvijanovic, I., Ortega, P., and Donat, M.: Assessing the climate response to regional sea ice change across all Arctic regions., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14616, https://doi.org/10.5194/egusphere-egu2020-14616, 2020.

EGU2020-17763 | Displays | CL4.15

Regime behaviour in the Atlantic-Eurasian Arctic related to sea ice and sea surface temperature changes

Ralf Jaiser, Mirseid Akperov, Alexander Timazhev, Erik Romanowsky, Dörthe Handorf, and Igor Mokhov

Climate change in the Arctic is embedded in the global climate system leading to phenomenon like Arctic Amplification and linkages to the mid-latitudes. A major forcing emerges from changed surface conditions like declining sea ice cover (SIC) and rising sea surface temperatures (SST). We performed time-slice model experiments with the global atmosphere-only model ECHAM6 and changed SIC and SST to either high or low states, respectively. These experiments are compared to reanalysis data and analysed aiming at a separation between the influences of SIC and SST, while focusing on linkages between the Arctic and mid-latitudes in winter.

We identify five significant regimes in the Atlantic-Eurasian sector with the k-means clustering method. The regimes include different blocking patterns, situation with strong low pressure influence and the North Atlantic Oscillation in its two phases. Their frequency of occurrence is discussed for winter months. In the reanalysis we observe an increase of blocking patterns in early winter of the most recent decades. This is reproduced by our experiments with increased SST, where blocking becomes more dominant overall. In late winter, an increased frequency of occurrence of the North Atlantic Oscillation in its negative phase is observed. This and the overall temporal behaviour of regimes in recent years is best represented if SST and SIC are changed to their more recent state simultaneously. Therefore, our results suggest that increased SSTs and reduced SIC together act on observed linkages between polar regions and mid-latitudes.

How to cite: Jaiser, R., Akperov, M., Timazhev, A., Romanowsky, E., Handorf, D., and Mokhov, I.: Regime behaviour in the Atlantic-Eurasian Arctic related to sea ice and sea surface temperature changes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17763, https://doi.org/10.5194/egusphere-egu2020-17763, 2020.

EGU2020-18270 | Displays | CL4.15

Linear predictability of Barents Sea ice cover: effects of coupling and resolution

Chuncheng Guo and Aleksi Nummelin

Wintertime Barents Sea ice cover has been strongly linked to heat transport through the Barents Sea opening and Barents Sea heat content. Previous studies have shown predictability at seasonal timescales with short lead times. However, studies that have used statistical prediction have focused on a small set of predictors in the vicinity of the Barents Sea. Here we will extend the analysis further south following the path of the Norwegian Atlantic Current and show that monthly predictability with lead times up to 1-2 years can be achieved in CMIP6 models using Climate Response Function (CRF's). We further examine the effects of model resolution and coupling in the predictability and compare the results to CRF derived from observations. Our results suggest that higher resolution generally leads to stronger predictability and the fully coupled system provides the most realistic response function. The ocean provides a narrow range of lead times corresponding to an advective timescale, while coupling to the atmosphere broadens the lead times that are important for prediction. Finally, we show that even the upstream sea surface temperatures provide relatively high predictability of the Barents Sea ice cover both in the models and in the observations.

How to cite: Guo, C. and Nummelin, A.: Linear predictability of Barents Sea ice cover: effects of coupling and resolution, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18270, https://doi.org/10.5194/egusphere-egu2020-18270, 2020.

EGU2020-10690 | Displays | CL4.15

Understanding cyclone variability in the Barents Sea

Erica Madonna, Gabriel Hes, Clio Michel, Camille Li, and Peter Yu Feng Siew

Extratropical cyclones are a key player for the global energy budget as they transport a large amount of moisture and heat from mid- to high-latitudes. One of the main corridors for cyclones entering the Arctic from the North Atlantic is the Barents Sea, a region that has experienced the largest decrease in winter sea ice during the past decades. On the one hand, some studies showed that moisture transported by cyclones to the Arctic can lead to drastic temperature increases and sea ice melt. On the other hand, it has been suggested that the location of the sea ice edge can influence the tracks of cyclones. Therefore, it is crucial to understand what controls cyclone tracks through the Barents Sea into the Arctic to explain and potentially predict climate variability at high latitudes.

To address this question, we track cyclones from 1979 to 2018 in the ERA-Interim data set, characterizing and quantifying them depending on their genesis location and path. The focus is on cyclones entering the Barents Sea from the North Atlantic as they carry the most moisture into the Arctic. Despite a clear declining trend in sea ice in the Barents Sea, our results show neither significant changes in cyclone frequency nor in their tracks. However, we find that the large-scale flow and in particular the presence or absence of blocking in the Barents Sea influence the cyclone frequency in this region, providing a potential mechanism that controls high latitude climate variability.

How to cite: Madonna, E., Hes, G., Michel, C., Li, C., and Siew, P. Y. F.: Understanding cyclone variability in the Barents Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10690, https://doi.org/10.5194/egusphere-egu2020-10690, 2020.

EGU2020-456 | Displays | CL4.15

Impact of Atlantic water inflow on winter cyclone activity in the Barents Sea: Insights from coupled regional climate model simulations

Mirseid Akperov, Vladimir A. Semenov, Igor I. Mokhov, Wolfgang Dorn, and Annette Rinke

The impact of the Atlantic water inflow (AW inflow) into the Barents Sea on the regional cyclone activity in winter is analyzed in 10 ensemble simulations with the coupled Arctic atmosphere-ocean-sea ice model HIRHAM-NAOSIM for the 1979–2016 period. The model shows a statistically robust connection between AW inflow and climate variability in the Barents Sea. The analysis reveals that anomalously high AW inflow leads to changed baroclinicity in the lower troposphere via changed static stability and wind shear, and thus favorable conditions for cyclogenesis in the Barents/Kara Seas. The frequency of occurrence of cyclones, but particularly of intense cyclones, is increased over the Barents Sea. Furthermore, the cyclones in the Barents Sea become larger (increased radius) and stronger (increased intensity) in response to an increased AW inflow into the Barents Sea, compared to years of anomalously low AW inflow.

The authors acknowledge the support by the Russian-German project funded by the Federal Ministry of Education and Research of Germany and Ministry of Science and Higher Education of the Russian Federation (grant 05.616.21.0109 (RFMEFI61619X0109)).

How to cite: Akperov, M., Semenov, V. A., Mokhov, I. I., Dorn, W., and Rinke, A.: Impact of Atlantic water inflow on winter cyclone activity in the Barents Sea: Insights from coupled regional climate model simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-456, https://doi.org/10.5194/egusphere-egu2020-456, 2020.

The winter North Atlantic oscillation (NAO), is a crucial part of our understanding of Eurasian and Atlantic climate variability and predictability. However, both the statistical forecast model and the coupled model showed the limited forecasting skill for the winter NAO. In this study, we developed effective prediction schemes based on the interannual increment prediction method and verified their performance based on the climate hindcasts of the coupled ocean–atmosphere climate models(DEMETER, ENSEMBLES,CFSV2). This approach utilizes the year-to-year increment of a variable (i.e. a difference in a variable between the current year and the previous year, e.g. DY of a variable) as the predictand rather than the anomaly of the variable. The results demonstrate that the new schemes can generally improve prediction skill of the winter NAO compared to the raw coupled model’s output(DEMETER, ENSEMBLES,CFSV2). Also, the new schemes show higher skill in prediction of abnormal NAO cases than the climatological prediction. Scheme-I uses just the NAO in the form of year-to-year increments as a predictor that is derived from the direct outputs of the models. Scheme-II is a hybrid prediction model that contains two predictors: the NAO derived from the coupled models, and the observed preceding autumn Atlantic sea surface temperature in the form of year-to-year increments. Scheme-II shows an even better prediction skill of the winter NAO than Scheme-I. Besides, a new statistical forecast scheme was also developed using observed North Atlantic sea surface temperature and Eurasian snow cover in the preceding autumn to predict the upcoming winter NAO. The statistical prediction model showed high predictive skill in reproducing the interannual and interdecadal variability of NAO in boreal winter.

How to cite: Fan, K.: Skillful prediction of the winter North Atlantic Oscillation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3872, https://doi.org/10.5194/egusphere-egu2020-3872, 2020.

According to the reanalysis data of recent years, the Siberian snow-albedo feedback is found to play a crucial role on the spring East Asian dust cycle by influence local energy budget and circulation. By analyzing the CESM Last Millennium Ensemble conducted by National Center for Atmospheric Research (NCAR), we found that the spring East Asian dust burden is significantly correlated with the snow-albedo over Siberia during the past millennium. The correlation coefficient between the snow depth over Siberia and the East Asian dust burden reaches to 0.56. The cloud fraction over Siberia is also correlated with the dust burden with a coefficient of 0.40. The Siberian snow cover reflects shortwave radiation and cools down the lower and middle troposphere, which leads to more clouds and snows occurring over Siberia. The increased cloud cover therefore reflects more shortwave to cool down the surface as a positive feedback. The cooling of lower troposphere over Siberia induces cyclonic wind anomalies around the region, enhances the westerly winds over the East Asian deserts which locate on the south side of Siberia and finally promotes the East Asian dust cycle.

How to cite: Liu, H.: The teleconnection between the Siberian snow-albedo feedback and the spring East Asian dust cycle : based on Last Millennium Ensemble, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4673, https://doi.org/10.5194/egusphere-egu2020-4673, 2020.

EGU2020-5576 | Displays | CL4.15

Tropical sources of predictability for summer precipitation over Nordic European countries

Ramón Fuentes Franco and Torben Koenigk

We show evidence that tropical atmospheric variability over the central tropical Pacific modulates the circulation over the western Arctic and the North Atlantic-European sector, impacting the sea ice concentration over the Arctic and the summer precipitation especially over Nordic European countries (NEC). Our results, based on the ERA5 reanalysis, suggest the occurrence of a teleconnection mechanism (similar to the Pacific North American pattern) between the tropical Pacific in early spring and summer precipitation over NEC, and we propose two indices as predictors for NEC summer precipitation based on geopotential height anomalies at 500hPa over the western tropical Pacific during March. After successfully cross-validate an empirical model with both indices as predictors, we show that these indices allow predicting the observed tercile of summer precipitation over big portions of NEC in most of the summers within the 1979-2018 period, with a Heidke skill score greater than 90%.

Furthermore, we analysed CMIP6 simulations, and we found that models that show strong ENSO variability, reproduce the observed link of tropical variability in early spring with precipitation over NEC and ice concentration over the Arctic. In turn, CMIP6 simulations with weak ENSO variability fail to reproduce this observed connection.

How to cite: Fuentes Franco, R. and Koenigk, T.: Tropical sources of predictability for summer precipitation over Nordic European countries, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5576, https://doi.org/10.5194/egusphere-egu2020-5576, 2020.

Natural variability of Arctic climate is studied on the basis of preindustrial run with climate model INM-CM5-0.  The length of run is 1200 years. Temperature in Arctic shows significant peaks at periods of 60 and 15 years. Model climate oscillations are studied using technique of calculation of energy generation and impact to phase change.

60-year oscillation is generated mainly by advection of Atlantic water to Arctic ocean. Anomaly of oceanic currents associated with the oscillation are generated by gradients of density. Before warm phase there is negative anomaly of density near coasts and continental slope. This leads to enhancing of Atlantic water inflow to Arctic ocean, warming, increasing of density near slope and turning to negative phase of oscillation. Cyclonic vorticity over warm Bartents and Kara seas leads to wind currents that enhance inflow of Atlantic water to Arctic.

15-year oscillation is also generated by advection of Atlantic water to Arctic ocean, but anomalies of currents are generated mainly by wind stress. Before warm Arctic we have cold and fresh North Atlantic, that leads to positive NAO, it induces wind currents that transport more Atlantic water to Arctic ocean. This leads to Arctic warming, decrease of NAO and turn to opposite phase of oscillation. Warming of North Atlantic happens 3-4 years after maximum of Arctic warming. The response of Atlantic meridional streamfunction to the oscillation is studied.

"Ideal model" potential predictability experiments started from synthetic state preceding warm Arctic (cold and fresh North Atlantic) show that this oscillation can be predicted for time interval up to 10 years.

How to cite: Volodin, E.: The mechanism of 60-year and 15-year Arctic climate oscillations in climate model INM-CM5-0, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7265, https://doi.org/10.5194/egusphere-egu2020-7265, 2020.

EGU2020-7280 | Displays | CL4.15

Autumn Arctic predictors and predictions for winter marine cold air outbreaks over the Barents Sea

Iuliia Polkova, Hilla Afargan-Gerstman, Daniela Domeisen, Martin King, Paolo Ruggieri, Panos Athanasiadis, Mikhail Dobrynin, and Johanna Baehr

The air temperature over Arctic sea ice can fall strongly below 0°C, while for adjacent areas of open water, sea surface temperature remains close to freezing. This creates a strong temperature gradient across the sea ice edge. Transports of cold air masses from the sea ice toward open ocean water, known as marine cold air outbreaks (MCAOs), modify vertical stability of the atmospheric column and thus can create conditions favorable for the formation of hazardous maritime cyclones (polar lows), which pose risks to marine and coastal infrastructure and society. For marine management, MCAO predictions would be highly beneficial. Previous studies analyze the genesis of MCAOs, while predictability and large-scale drivers of MCAOs remain poorly understood. 


We investigate (i) the ability of the Earth System Model from the Max-Planck Institute for Meteorology (MPI-ESM) to predict MCAOs at a seasonal timescale and (ii) options to improve predictability of MCAOs through their large-scale drivers. To identify MCAO preconditions, we utilize the atmospheric reanalysis ERA-Interim using lagged cross-correlation analysis, composite analysis, and causal effect network (CEN).


Our results show that the MPI-ESM has high prediction skill for MCAOs over the Barents Sea (BS), Greenland-Iceland-Norwegian Seas and the Labrador Sea for about 2-2.5 weeks ahead starting from the November and February initial conditions. This holds for the prediction skill analyzed from daily model output. For MCAO properties such as extreme MCAO values occurring during a month, or the frequency of MCAO events per month, we find high prediction skill for up to a month ahead. Whereas the lagged cross-correlation analysis indicates a relationship between September and October atmospheric circulation and sea ice conditions with November BS-MCAOs, the CEN identifies the causal link only from the Arctic sea ice cover.

How to cite: Polkova, I., Afargan-Gerstman, H., Domeisen, D., King, M., Ruggieri, P., Athanasiadis, P., Dobrynin, M., and Baehr, J.: Autumn Arctic predictors and predictions for winter marine cold air outbreaks over the Barents Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7280, https://doi.org/10.5194/egusphere-egu2020-7280, 2020.

Accelerated loss of the sea-ice cover and increased human activities in the Arctic highlight the need for meaningful prediction of sea-ice conditions at sub-seasonal to seasonal time scales. There is a large variety in the predictive skill of dynamical forecast systems, which can be benchmarked against reference forecasts based on present and past observations of the ice-edge. However, the simplest types of reference forecasts – persistence of the present state and climatology – do not exploit the observations optimally and thus lead to overestimation of forecast skill. For spatial objects such as the ice-edge location, the development of damped-persistence forecasts that combine persistence and climatology in a meaningful way poses a challenge. We have developed a probabilistic reference forecast method that combines the climatologically derived probability of ice presence with initial (present) anomalies of the ice edge. We have tested and optimized the method based on minimization of the Spatial Probability Score, using observed as well as idealized model data. The damping of persistence takes into consideration the temporal pattern of re-emergence and predictability of ice-extent in the Arctic. The resulting reference forecasts provide a challenging benchmark to assess the added value of dynamical forecast systems.

How to cite: Niraula, B.: Sea-ice edge forecast using damped persistence of probability anomaly, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7502, https://doi.org/10.5194/egusphere-egu2020-7502, 2020.

EGU2020-9281 | Displays | CL4.15

Modulation of PDO in the Arctic tropospheric warming

Lingling Suo, Yongqi Gao, Guillaume Gastineau, Yu-Chiao Liang, Rohit Ghosh, Tian Tian, and Ying Zhang

The Arctic amplified warming under global warming is one of the prominent climate change events during the past several decades. Arctic sea ice retreat contributed the majority of the near-surface warming, and little to the mid-troposphere warming. The remote factors might contribute to or modulate the aloft Arctic warming.

Here we performed a multi-model joint-analysis to study the role of the Pacific decadal oscillation, which is one of the most important recurring ocean-atmosphere variability in the climate system, in the tropospheric Arctic warming. In the multi-model simulation, PDO reduced the Arctic warming trend during 1979-2013 significantly in spring, Autumn and early winter season from the near-surface to the upper troposphere. The reduction of warming reaches 0.3 / 0.2 °C per decade in the upper / lower troposphere.

How to cite: Suo, L., Gao, Y., Gastineau, G., Liang, Y.-C., Ghosh, R., Tian, T., and Zhang, Y.: Modulation of PDO in the Arctic tropospheric warming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9281, https://doi.org/10.5194/egusphere-egu2020-9281, 2020.

EGU2020-11243 | Displays | CL4.15

The decadal climate prediction skill with focus on the North Atlantic region

Shuting Yang and Bo Christiansen

The skill of the decadal climate prediction is analyzed based on recent ensemble experiments from the CMIP5 and CMIP6 decadal climate prediction projects (DCPP) and the Community Earth System Model (CESM) Large Ensemble (LENS) Project. The experiments are initialized every year at November 1 for the period of 1960-2005 in the CMIP5 DCPP experiments and 1960-2016 for the CMIP6 DCPP models as well as the CESM LENS decadal prediction. The CMIP5/6 ensemble has 10 members for each model and the CESM ensemble has 40 members. For the considered models un-initialized (historical) ensembles with the same forcings exist. The advantage of initialization is analyzed by comparing these two sets of experiments.

We find that the models agree that for lead-times between 4-10 years little effect of initialization is found except in the North Atlantic sub-polar gyre region (NASPG). This well-known result is found for all the models and is robust to temporal and spatial smoothing. In the sub-polar gyre region the ensemble mean of the forecast explains 30-40 % more of the observed variance than the ensemble mean of the historical non-initialized experiments even for lead-times of 10 years.

However, the skill in the NASPG seems to a large degree to be related to the shift towards warmer temperatures around 1996. Weak or no skill is found when the sub-periods before and after 1996 are considered. We further analyze the characteristics of other climate indicators than surface temperature as well as the NAO to understand the cause and implication of the prediction skill.

How to cite: Yang, S. and Christiansen, B.: The decadal climate prediction skill with focus on the North Atlantic region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11243, https://doi.org/10.5194/egusphere-egu2020-11243, 2020.

EGU2020-11692 | Displays | CL4.15

The impact of denying sea ice information on the predictability of atmospheric processes over the Arctic and at mid-latitude regions

Leandro Ponsoni, Daniela Flocco, François Massonnet, Steve Delhaye, Ed Hawkins, and Thierry Fichefet

In this work, we make use of an inter-model comparison and of a perfect model approach, in which model outputs are used as true reference states, to assess the impact that denying sea ice information has on the prediction of atmospheric processes, both over the Arctic and at mid-latitude regions. To do so, two long-term control runs (longer than 250 years) were generated with two state-of-the-art General Circulation Models (GCM), namely EC-Earth and HadGEM. From these two reference states, we have identified three different years in which the Arctic sea ice volume (SIV) was (i) maximum, (ii) minimum and (iii) a representative case for the mean state. By departing from each of these three dates (not necessarily the same for the two models), we generated a set of experiments in which the control runs are restarted both from original and climatological sea ice conditions. Here, climatological sea ice conditions are estimated as the time-average of sea ice parameters from the respective long-term control runs. The experiments are 1-year long and all of them start in January when ice is still thin, snow depth is small, air-ocean temperatures contrast the most and, therefore, the heat conductive flux in sea ice (at the surface) is nearly maximum. To robustly separate the response to degrading the initial sea ice state from background internal variability, each of the two counterfactual experiments (reference and climatological) consists of 50 ensembles members. Threstatedese ensembles are generated by adding small random perturbations to the sea surface temperature (EC-Earth) or to the air temperature (HadGEM) fields. Preliminary results reinforce the importance of having the right sea ice state for improving the (sub-)seasonal prediction of atmospheric parameters (e.g., 2m-temperature and geopotential) and circulation (e.g., Westerlies and Jet Stream) not only over the Arctic, but also at mid-latitude regions.

How to cite: Ponsoni, L., Flocco, D., Massonnet, F., Delhaye, S., Hawkins, E., and Fichefet, T.: The impact of denying sea ice information on the predictability of atmospheric processes over the Arctic and at mid-latitude regions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11692, https://doi.org/10.5194/egusphere-egu2020-11692, 2020.

EGU2020-12849 | Displays | CL4.15

Assessment of the Regional Arctic System Model Intra-Annual Ensemble Predictions of Arctic Sea Ice

Wieslaw Maslowski, Younjoo Lee, Anthony Craig, Mark Seefeldt, Robert Osinski, John Cassano, and Jaclyn Clement Kinney

The Regional Arctic System Model (RASM) has been developed and used to investigate the past to present evolution of the Arctic climate system and to address increasing demands for Arctic forecasts beyond synoptic time scales. RASM is a fully coupled ice-ocean-atmosphere-land hydrology model configured over the pan-Arctic domain with horizontal resolution of 50 km or 25 km for the atmosphere and land and 9.3 km or 2.4 km for the ocean and sea ice components. As a regional model, RASM requires boundary conditions along its lateral boundaries and in the upper atmosphere, which for simulations of the past to present are derived from global atmospheric reanalyses, such as the National Center for Environmental Predictions (NCEP) Coupled Forecast System version 2 and Reanalysis (CFSv2/CFSR). This dynamical downscaling approach allows comparison of RASM results with observations, in place and time, to diagnose and reduce model biases. This in turn allows a unique capability not available in global weather prediction and Earth system models to produce realistic and physically consistent initial conditions for prediction without data assimilation.

More recently, we have developed a new capability for an intra-annual (up to 6 months) ensemble prediction of the Arctic sea ice and climate using RASM forced with the routinely produced (every 6 hours) NCEP CFSv2 global 9-month forecasts. RASM intra-annual ensemble forecasts have been initialized on the 1st of each month starting in 2019 with forcing for each ensemble member derived from CSFv2 forecasts, 24-hr apart from the month preceding the initial forecast date.  Several key processes and feedbacks will be discussed with regard to their impact on model physics, the representation of initial state and ensemble prediction skill of Arctic sea ice variability at time scales from synoptic to decadal. The skill of RASM ensemble forecasts will be assessed against available satellite observations with reference to reanalysis as well as hindcast data using several metrics, including the standard deviation, root mean square difference, Taylor diagrams and integrated ice-edge error.

How to cite: Maslowski, W., Lee, Y., Craig, A., Seefeldt, M., Osinski, R., Cassano, J., and Clement Kinney, J.: Assessment of the Regional Arctic System Model Intra-Annual Ensemble Predictions of Arctic Sea Ice , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12849, https://doi.org/10.5194/egusphere-egu2020-12849, 2020.

EGU2020-13027 | Displays | CL4.15

Internal variability of the Arctic Oscillation and its projections

Annalisa Cherchi, Paolo Oliveri, and Aarnout van Delden

The Arctic Oscillation (AO) is one of the main modes of variability of the Northern Hemisphere winter, also referred as Northern Annular Mode (NAM). The positive phase of the AO is characterized by warming/cooling over Northern Eurasia and the United States and cooling over Canada, especially over eastern Canada. Its positive phase is also characterized by very dry conditions over the Mediterranean and wet conditions over Northern Europe. A positive trend of the AO is observed for the period 1951-2011 and it is captured in CMIP5 models only when GHG-only forcing are included. In CMIP5 models the change expected is mostly mitigated by the effects of the aerosols. When considering AR5 scenarios, the AO is projected to become more positive in the future, though with a large spread among the models.

Overall the spread in the representation of the AO variability and trend is large also in experiments with present-day conditions, likely associated with the large internal variability. Unique tools to identify and measure the role of the internal variability in the model representation of the large-scale modes of variability are large ensembles where multiple members are built with different initial conditions.

Here we use the NCAR Community Model Large Ensemble (CESM-LE) composing the historical period (1920-2005) to the future (2006-2100) in a RCP8.5 scenario to measure the role of the internal variability in shaping AO variability and changes. Potential predictability of the AO index is quantified in the historical and future periods, evidencing how the members spread remain large without specific trends in these characteristics. Preliminary results indicate that the internal variability has large influence on the AO changes and related implications for the Northern Hemisphere climate.

How to cite: Cherchi, A., Oliveri, P., and van Delden, A.: Internal variability of the Arctic Oscillation and its projections, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13027, https://doi.org/10.5194/egusphere-egu2020-13027, 2020.

EGU2020-15262 | Displays | CL4.15

Investigating tropical and midlatitude drivers of Arctic atmospheric energy transport

Etienne Dunn-Sigouin, Camille Li, and Paul Kushner

Planetary waves with zonal wavenumbers k ≤ 3 dominate poleward atmospheric energy transport and its associated Arctic warming and moistening impacts in reanalysis data. Previous work suggests planetary waves generated by tropical warm pool Sea-Surface Temperatures (SSTs) and midlatitude synoptic waves (k ≥ 4) can drive Arctic energy transport. Here, we investigate tropical and midlatitude drivers of Arctic planetary wave transport using an idealised aquaplanet model. First, we show that the zonally-symmetric model qualitatively captures the main characteristics of observed planetary wave transport, as well as its impacts in the Arctic. Next, we show that an idealised tropical warm pool, driven by regional SST forcing, amplifies but is not the dominant source of Arctic planetary wave transport. Finally, lag-regressions using reanalysis and model data suggest midlatitude synoptic waves compensate rather than drive Arctic planetary wave transport. The results do not support the simple geometric effect of midlatitude synoptic waves aliasing onto Arctic planetary waves on a sphere, but rather point towards more complex scale interactions and local drivers of Arctic planetary wave transport.

How to cite: Dunn-Sigouin, E., Li, C., and Kushner, P.: Investigating tropical and midlatitude drivers of Arctic atmospheric energy transport, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15262, https://doi.org/10.5194/egusphere-egu2020-15262, 2020.

The Last Interglacial period (130-115 ka BP, hereafter LIG) is often considered as a prime example to study the effect of warmer-than-present temperatures on polar ice sheets evolution. As the debate mainly focuses on the causes and tipping point of a potential collapse of the West Antarctic Ice Sheet (hereafter WAIS), few investigations examine the consequences of a wais collapse in terms of atmospheric circulation. However, a knowledge of the state of the atmosphere is necessary to use proxy data recorded in ice cores. By analysing a new ice core drilled in Skytrain ice rise and using climate modeling, the WACSWAIN (WArm Climate Stability of West Antarctic ice sheet in the last Interglacial) aims to reconstruct WAIS extent during the LIG. Here, we use simulations from the atmospheric general circulation model HadCM3 with different WAIS configurations. We show that changes in temperature are directly linked to changes in orography through thermodynamic effects, as well as a linear sea ice extent rise over the Pacific Ocean with the WAIS reduction explained by a reversal of meridional winds turning southwards as the WAIS disappears. At the Skytrain ice rise, we show that not only the isotopic thermometer can be applied, but we also suggest that the water stable isotope record imprinted in the ice core will allow us to quantify the wais reduction.

How to cite: Goursaud, S., Sime, L., and Wolff, E.: Inferring the Last Interglacial West Antarctic Ice Sheet from the coupling of an ice core water stable isotope record and an atmospheric general circulation model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16787, https://doi.org/10.5194/egusphere-egu2020-16787, 2020.

EGU2020-17838 | Displays | CL4.15

Prediction skill of Arctic sea ice in decadal climate simulations of the EC-Earth3 model

Pasha Karami, Tim Kruschke, Tian Tian, Torben Koenigk, and Shuting Yang

Arctic sea ice variability and long-term trend play a major role in affecting the climate of polar and lower latitudes via complex coupling with the polar atmospheric circulation and the North Atlantic Ocean circulation. Moreover, sea ice conditions in the Arctic have direct impacts on socio-economy (e.g. the key shipping regions) and on the ecosystem. Understanding and improving predictions of Arctic sea ice on seasonal to decadal time scales is therefore crucial. We investigate the skill of decadal climate prediction simulations of the EC-Earth3 model (T255L91, ORCA1L75) with a focus on Arctic sea ice. In line with the protocol for the CMIP6 Decadal Climate Prediction Project (DCPP), we launched 59 hindcasts/forecasts from 1960 to 2018. Each hindcast/forecast has 15 ensemble members which were initialized on 1 November and integrated for 10 years (+ 2 months). Anomaly initialization approach for the ocean and sea-ice (based on data from the ORA-S5-reanalysis) and full-field initialization for the atmosphere/land surface (based on ERA-Interim/ERA-Land) were applied. We first present a comparison of our hindcasts to observations for global key parameters and provide quantitative estimates of hindcast skill by using common deterministic metrics such as correlation and the Mean Squared Error Skill Score. We focus particularly on the skill regarding sea ice concentration and area in the Arctic’s sub-basins and its relation to the temperature and circulation of lower troposphere as well as the mean state of the ocean outside the Arctic. We also explore relevant processes and how the ocean state and natural climate variability can affect our prediction skills to improve the prediction system.

How to cite: Karami, P., Kruschke, T., Tian, T., Koenigk, T., and Yang, S.: Prediction skill of Arctic sea ice in decadal climate simulations of the EC-Earth3 model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17838, https://doi.org/10.5194/egusphere-egu2020-17838, 2020.

EGU2020-18867 | Displays | CL4.15

Making Use and Sense of 75,000 Forecasts of the Sea Ice Drift Forecast Experiment (SIDFEx)

Helge F. Goessling and the SIDFEx Team

The Sea Ice Drift Forecast Experiment (SIDFEx) is a Year of Polar Prediction (YOPP) community effort to solicit, collect, and analyze sea ice drift forecasts, based on various methods, on a regular basis. SIDFEx is inspired by research and operational needs to forecast future positions of assets drifting in Arctic sea ice. Beside a number of sea-ice buoys of the International Arctic Buoy Programme, current targets include the MOSAiC drift campaign main site (and distributed network) for which consensus forecasts are delivered every six hours. A systematic assessment of real drift forecasting capabilities across operational and research forecast systems is meant to improve our physical understanding of sea ice and to identify and resolve model shortcomings.

Since the launch of SIDFEx in 2017, thirteen groups have started contributing drift forecasts to SIDFEx on a regular basis. Most groups derive their 2-days to seasonal-range forecasts by means of diagnostic tracking based on prediction drift fields of coupled or uncoupled general circulation models. Some groups submit ensembles of drift trajectories instead of single (deterministic) trajectories, and several groups submit their forecasts in real-time. We present results from around 75,000 individual forecasts, how they have been used for real-time support of the MOSAiC Arctic drift campaign since autumn 2019, and what they reveal about current models' capabilities to forecast sea-ice drift and deformation.

How to cite: Goessling, H. F. and the SIDFEx Team: Making Use and Sense of 75,000 Forecasts of the Sea Ice Drift Forecast Experiment (SIDFEx), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18867, https://doi.org/10.5194/egusphere-egu2020-18867, 2020.

EGU2020-20372 | Displays | CL4.15

Sea ice representation in CMIP6 simulations with EC-Earth3-Veg

Torben Koenigk and Evelien Dekker

In this study, we compare the sea ice in ensembles of historical and future simulations with EC-Earth3-Veg to the sea ice of the NSIDC and OSA-SAF satellite data sets. The EC-Earth3-Veg Arctic sea ice extent generally matches well to the observational data sets, and the trend over 1980-2014 is captured correctly. Interestingly, the summer Arctic sea ice area minimum occurs already in August in the model. Mainly east of Greenland, sea ice area is overestimated. In summer, Arctic sea ice is too thick compared to PIOMAS. In March, sea ice thickness is slightly overestimated in the Central Arctic but in the Bering and Kara Seas, the ice thickness is lower than in PIOMAS.

While the general picture of Arctic sea ice looks good, EC-Earth suffers from a warm bias in the Southern Ocean. This is also reflected by a substantial underestimation of sea ice area in the Antarctic.

Different ensemble members of the future scenario projections of sea ice show a large range of the date of first year with a minimum ice area below 1 million square kilometers in the Arctic. The year varies between 2024 and 2056. Interestingly, this range does not differ very much with the emission scenario and even under the low emission scenario SSP1-1.9 summer Arctic sea ice almost totally disappears.

How to cite: Koenigk, T. and Dekker, E.: Sea ice representation in CMIP6 simulations with EC-Earth3-Veg, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20372, https://doi.org/10.5194/egusphere-egu2020-20372, 2020.

EGU2020-20595 | Displays | CL4.15

Random Walks through Climate Networks: Sea Ice Prediction with Bayesian Inference

William Gregory, Michel Tsamados, Julienne Stroeve, and Peter Sollich

Spatial predictions of the Arctic sea ice cover are becoming of paramount importance for Arctic communities and industry stakeholders. However, with sea ice variability likely to increase under continued anthropogenic warming, increasingly complex tools are required in order to make accurate forecasts. In this study, predictions of both Arctic and Antarctic summer sea ice extents are made using a complex network statistical approach. This method exploits statistical relationships within geo-spatial time series data in order to construct regions of spatio-temporal homogeneity -- nodes, and subsequently derive teleconnection links between them. The nodes and links of the networks here are generated from monthly sea ice concentration fields in June(November), July(December) and August(January) for Arctic(Antarctic) forecasts, hence lead times extend from 1 to 3 months. Network information is then utilised within a linear Gaussian Process Regression forecast model; a Bayesian inference technique. Network teleconnection weights are used to generate priors over functions in the form of a random walk covariance kernel; the hyperparameters of which are determined by the empirical Bayesian approach of type-II maximum likelihood. We also show predictions of all other months in order to ascertain the presence of a spring predictability barrier in observational data, for both hemispheres.

How to cite: Gregory, W., Tsamados, M., Stroeve, J., and Sollich, P.: Random Walks through Climate Networks: Sea Ice Prediction with Bayesian Inference, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20595, https://doi.org/10.5194/egusphere-egu2020-20595, 2020.

EGU2020-21935 | Displays | CL4.15

Sea ice representation in sea ice model of CICE and Icepack

Caixin Wang, Mats A. Granskog, Jens Boldingh Debernard, and Keguang Wang

Sea ice is a critical component of the Earth system, playing an important role in high-latitude
surface radiation balance and heat, moisture and momentum exchange between atmosphere
and ocean. In recent years, rapid changes have been occurring in Arctic sea ice, including
decline in ice extent/area, decreasing in ice thickness and volume, and shifting towards a first-
year ice (FYI) dominated, rather than multi-year ice (MYI) dominated ice pack. These are one
of the most well-known and striking examples of climate change. However, representing
these changes in the model is still in question since most of our knowledge is based on MYI.
CICE is a sea ice model developed at Los Alamos National Laboratory since 1994. It is
widely used to simulate the growth, melt and movement of sea ice, and to resolve the
biogeochemical processes. Its column version, Icepack, has been separated from CICE after
CICE V5.1.2, which provides additional opportunity for simulating the evolution of drifting
sea ice floes. How about the representation of sea ice in a column model (Icepack) and a 3d
model (CICE)? In 2012, an ice mass balance buoy (IMB) and a Spectral Radiation Buoy
(SRB) were deployed on FYI near the North Pole, and later drifted towards Fram Strait. These
buoys collected a complete summer melt season of in-band (350-800 nm) spectral solar
radiation and sea ice mass balance data. In this study, we apply the Icepack (version 1.1.1)
and CICE (version 5.1.2) to investigate the seasonal evolution of sea ice in 2012 in these two models, and
assess how well the physical processes are represented in CICE and Icepack, with the focus
on the surface changes.

How to cite: Wang, C., Granskog, M. A., Debernard, J. B., and Wang, K.: Sea ice representation in sea ice model of CICE and Icepack, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21935, https://doi.org/10.5194/egusphere-egu2020-21935, 2020.

The changes in Eurasian vegetation not only have important effects on regional climate, but also have effects on global temperatures and the carbon cycle. In this study, the interannual linkage between spring vegetation growth over Eurasia and winter sea-ice cover over the Barents Sea (SICBS), as well as the prediction of spring Euraisan vegetation are investigated. The Normalized Difference Vegetation Index (NDVI) derived from the advanced very high resolution radiometer is used as the proxy of vegetation growth. During 1982–2015, the winter SICBS is significantly correlated with the spring NDVI over Eurasia (NDVIEA). The positive (negative) winter SICBS anomalies tend to increase (decrease) the spring NDVIEA. The increased winter SICBS corresponds to higher winter surface air temperature and soil temperature over most parts of Eurasia, and in turn, corresponds to less winter snow cover and less snow water equivalent. The persistent less and thinner snow cover from winter to spring over Eurasia, especially over Western and Central Siberia, tends to induce increased surface air temperature through decreased surface albedo and less snowmelt latent heat. Subsequently, the increased surface air temperature corresponding to increased SICBS contributes to higher vegetation growth over Eurasia in spring and vice versa. Based on this linkage, seasonal predictions of spring NDVI over Eurasia are explored by applying the year-to-year increment approach. The prediction models were developed based on the coupled modes of singular value decomposition analyses between Eurasian NDVI and climate factors. One synchronous predictor, the spring surface air temperature from the NCEPs Climate Forecast System (SAT-CFS), and three previous-season predictors (winter SICBS, winter sea surface temperature over the equatorial Pacific (SSTP), and winter North Atlantic Oscillation (NAO) were chosen to develop four single-predictor schemes: the SAT-CFS scheme, SICBS scheme, SSTP scheme, and NAO scheme. Meanwhile, a statistical scheme that involves the three previous-season predictors (i.e., SICBS, SSTP, and NAO) and a hybrid scheme that includes all four predictors are also proposed. To evaluate the prediction skills of the schemes, one-year-out cross-validation and independent hindcast results are analyzed, revealing the hybrid scheme as having the best prediction skill in terms of both the spatial pattern and the temporal variability of spring Eurasian NDVI.

How to cite: Ji, L. and Fan, K.: Winter arctic sea-ice cover variability and the prediction of spring vegetation growth over Eurasia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22339, https://doi.org/10.5194/egusphere-egu2020-22339, 2020.

CL4.16 – The North Pacific’s role in the global climate system across temporal and spatial scales

The North Pacific basin has undergone large changes in subsurface oxygenation in the past. In general, oxygen-depleted zones increased volumetrically as climate warmed, with the rate of warming playing a critical role in determining the spatial extent of subsurface deoxygenation. The most pronounced deoxygenation episode in the upper ocean occurred midway through the deglaciation, an interval referred to as the Bolling/Allerod (B/A), associated with the reinvigoration of the Atlantic Meridional Overturning Circulation (AMOC). At this time, the upper Indo-Pacific ocean was probably less oxygenated than today. The B/A was characterized by substantial changes in intermediate water circulation, combined with efficient removal of oxygen associated with enhanced remineralization of labile organic matter, as export production increased throughout the subarctic North Pacific. The abrupt decrease in oxygenation affected large swaths of the North Pacific, including shelf environments with detrimental consequences for marine ecosystems.
This contribution will review the available paleoceanographic evidence spanning the last 3 million years and distill the salient constraints that can help better predicting the future evolution of North Pacific (de)oxygenation in the context of anthropogenic climate forcing.

How to cite: Jaccard, S.: Past changes in North Pacific (de)oxygenation – a complex interplay between water mass ventilation and organic matter respiration, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13597, https://doi.org/10.5194/egusphere-egu2020-13597, 2020.

EGU2020-7221 | Displays | CL4.16

Persistent millennial-scale links between North Pacific intermediate-water ventilation and North Atlantic Climate during the deglaciation and last glaciation

Jianjun Zou, Xuefa Shi, Aimei Zhu, Yuan-Pin Chang, Min-Te Chen, Xun Gong, and Lester Lembke-Jene

The deep ocean carbon cycle, especially carbon sequestration and outgassing, is one of the mechanisms to explain variations in atmospheric CO2 concentrations on millennial and orbital timescales. However, the potential role of subtropical North Pacific subsurface waters in modulating atmospheric CO2 levels on millennial timescales is poorly constrained. Here, we investigate a suite of geochemical proxies in a sediment core from the northern and middle Okinawa Trough to understand variations in intermediate-water ventilation of the subtropical North Pacific over the last 50,000 years (50 ka). Our results suggest that enhanced mid-depth western subtropical North Pacific (WSTNP) sedimentary oxygenation occurred during cold intervals during the last deglaciation and last glaciation, while oxygenation decreased during the Bölling-Alleröd (B/A) and warm interstadials. The enhanced oxygenation during cold spells is linked to the intensified North Pacific Intermediate Water (NPIW), while interglacial increase after 8.5 ka is linked to an intensification of the Kuroshio Current due to strengthened northeast trade winds over the tropics. The enhanced formation of NPIW during Heinrich Stadials was likely driven by the perturbation of sea ice formation and sea surface salinity oscillations in high-latitude North Pacific. The diminished sedimentary oxygenation during the B/A and interstadials due to decreased NPIW formation and enhanced export production, indicates an expansion of oxygen minimum zone in the North Pacific and enhanced CO2 sequestration at mid-depth waters. We attribute the millennial-scale changes to intensified NPIW and enhanced abyss flushing during deglacial cold and warm intervals, respectively, closely related to variations in North Atlantic Deep Water formation. Out study extends the millennial-scale links between ventilation in the subtropical North Pacific Ocean and the Atlantic Climate into the last glaciations, highlighting the key roles of Atlantic Meridional Overturning Circulation in regulating the North Pacific environment at millennial timescales. Note: Financial support was provided by the National Program on Global Change and Air-Sea Interaction (GASI-GEOGE-04) and by the National Natural Science Foundation of China (Grant Nos.: 41876065, 41476056, and U1606401).

How to cite: Zou, J., Shi, X., Zhu, A., Chang, Y.-P., Chen, M.-T., Gong, X., and Lembke-Jene, L.: Persistent millennial-scale links between North Pacific intermediate-water ventilation and North Atlantic Climate during the deglaciation and last glaciation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7221, https://doi.org/10.5194/egusphere-egu2020-7221, 2020.

EGU2020-20325 | Displays | CL4.16 | Highlight

A dynamic giant: changes in North Pacific circulation, biogeochemistry, and CO2 over the last ice age

James Rae, William Gray, Louisa Bradtmiller, Andrea Burke, Holger Gebhardt, Michael Sarnthein, and David Thornalley

The North Pacific has been thought of as a sleeping giant in Earth’s climate system.  Despite being a major reservoir of heat, nutrients, and carbon, the lack of deep water formation in this region today limits the exchange of these properties.  Here, using a variety of new and published sediment core data, alongside Earth system modeling, we provide evidence that the North Pacific giant is in fact a dynamic player in Earth’s climate system, with active PMOC during the LGM and deep water formation during HS1.  We also demonstrate a persistent Atlantic-Pacific seesaw in deep water formation during rapid climate change events, and discuss the impact of these changes on regional climate and global CO2.

How to cite: Rae, J., Gray, W., Bradtmiller, L., Burke, A., Gebhardt, H., Sarnthein, M., and Thornalley, D.: A dynamic giant: changes in North Pacific circulation, biogeochemistry, and CO2 over the last ice age , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20325, https://doi.org/10.5194/egusphere-egu2020-20325, 2020.

The occurrence of deep convection could redistribute ocean heat and materials, and induce robust climate and biogeochemical changes. The convection in the North Pacific is quite shallow now (typically 300-m), but paleo records and model simulations suggest that it might reach 2000-3000 m during stadials in the last deglaciation, such as the Heinrich event 1 (H1: ~17.5-15 ka) and Younger Dryas event (YD: ~12.8-11.5 ka). The deep convection during H1 has been explained by increased North Pacific surface salinity due to evaporation and precipitation changes, but this explanation conflicts with many paleo records for YD. Here we collected published paleo records in the northwest Pacific and carried out simulations for the YD period. We show that due to the weakened Atlantic Meridional Overturning Circulation (MOC) during YD, the oceanic Meridional Heat Transport (MHT) weakened. According to the Bjerknes compensation, the atmospheric MHT strengthened. Because atmospheric MHT mainly occurs through baroclinic eddies in extratropics, storm activities strengthened. The strengthened wintertime storm activities induced more oceanic turbulent heat loss and triggered deep convections in the North Pacific, and further contributed to a seesaw pattern of MOC strengths between the North Pacific and North Atlantic. Our result not only provides a new explanation for the North Pacific deep convection during YD but also suggest that synoptic-scale atmospheric variations are capable of influencing low-frequency paleoclimate changes.

How to cite: lin, X. and Zhang, C.: Enhanced storm activities triggered the North Pacific deep convection during the Younger Dryas event, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-236, https://doi.org/10.5194/egusphere-egu2020-236, 2020.

EGU2020-13892 | Displays | CL4.16

Decadal variability of nutrients and biomass in the southern region of Kuroshio Extension

Jinfeng Ma, Pengfei Lin, Fei Chai, Peng Xiu, and Hailong Liu

The phytoplankton and zooplankton biomass as well as nutrients in the southern region of Kuroshio Extension (KE) presents obvious decadal variability. Both local and remote links between biomass and physical properties are investigated by comparing satellite observations and the outputs from a biological-physical coupled model. The Regional Ocean Model System (ROMS) and Carbon, Silicate, and Nitrogen Ecosystem (CoSiNE) cover the entire Pacific Ocean. The ROMS-CoSiNE model captures the spatial distribution and decadal variation of the key biological variables including phytoplankton and zooplankton biomass and nutrients in the upper ocean around the KE. The decadal variation in the region is mainly caused by the westward-propagating signals that originate from the central and eastern North Pacific. Specifically, these signals are induced by the decadal oscillation of vertical displacement related to large-scale decadal Pacific modes, such as the North Pacific Gyre Oscillation (NGPO).The evidence obtained here includes not only from surface variables (sea surface height and surface chlorophyll) but also from the variables in the deeper ocean (thermocline, subsurface nutrients, upper 100-m phytoplankton and zooplankton biomass) in the KE region. The signals of the variables in the southern KE region significantly lag that of the NPGO in the central and eastern North Pacific by about 2-4 years. The mixed layer nitrogen budget is conducted to evaluate the contribution of vertical and horizontal advection for the decadal variation of nutrients. 

How to cite: Ma, J., Lin, P., Chai, F., Xiu, P., and Liu, H.: Decadal variability of nutrients and biomass in the southern region of Kuroshio Extension, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13892, https://doi.org/10.5194/egusphere-egu2020-13892, 2020.

EGU2020-4536 | Displays | CL4.16

The influence of the eddy in north pacific on ocean internal mixing based on the finescale parameterization

Juan Chen, Shaofeng Li, Anzhou Cao, and Jinbao Song

Based on the Vector Geometry method, the eddy identification is carried out by using the altimeter data in 2016-2018, and the ocean internal diapycnal mixing diffusivity near the eddy is calculated by using the finescale parameterization method and the Argo data. The influence of the eddy in the North Pacific on the internal mixing of the ocean is analyzed. The results show that the average diffusivity of the study region under the influence of eddies is 6% greater than that without the influence of the eddy. The cyclonic eddy enhances the mixing of 600-1200m depth, and the effect on the mixing at the depth of 600-900m is the maximal and can be up to 18%. The anticyclonic eddy significantly enhances the mixing at the depth of 300-900m, but the effect on the mixing at the depth of 900-1200m is not obvious. As the distance from the center of the eddy increases, the diffusivity outside the eddy slowly decreases and that inside the eddy does not change significantly, the result is consistent with the one of a single case analysis of the region (24°N-36°N and 132°E-152°E) from March to October 2014. Moreover, as the intensity of the eddy increases, the diapycnal mixing is significantly enhanced. The statistical result in the study region shows that the diffusivity value of 90 percent is within the range of 10-5.5-10-4 m2/s.

How to cite: Chen, J., Li, S., Cao, A., and Song, J.: The influence of the eddy in north pacific on ocean internal mixing based on the finescale parameterization , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4536, https://doi.org/10.5194/egusphere-egu2020-4536, 2020.

EGU2020-235 | Displays | CL4.16

North Pacific Subtropical Mode Water Controlled by the Atlantic Multi-Decadal Variability

Baolan wu, Xiaopei lin, and Lisan yu

The North Pacific Subtropical Mode Water (mode water hereafter) is a vertically homogeneous thermocline water mass, occupying the entire subtropical Western Pacific Ocean. By transporting mass, heat and nutrients from the surface into the subsurface ocean, it provides memory of climate variability and is a potential source of predictability. Previous studies attributed decadal variability of the mode water mean temperature to the Pacific Decadal Oscillation (PDO). Using available observations and reanalysis data, here we show that decadal to multi-decadal variability of the mode water mean temperature is controlled by the Atlantic Multi-Decadal Variability (AMV) instead. During an AMV positive phase, warm sea surface temperatures (SSTs) in the north Atlantic Ocean weaken the subtropical North Pacific westerlies, and the anomalous easterlies in the subtropical west Pacific drive an anomalous northward Ekman transport of warm water into the mode water formation area. This increases the mode water temperature through subduction, driving variability of the upper-layer ocean heat content and fish catches in the Northwestern Pacific. This mechanism is supported by a long pre-industrial model simulation with multiple AMV cycles and by a Pacemaker model experiment, in which the AMV forcing alone is shown to drive the variability of the mode water. Our finding suggests that the AMV is an important driver for decadal climate and ecosystem variability and provides memory for prediction in the Pacific Ocean.

How to cite: wu, B., lin, X., and yu, L.: North Pacific Subtropical Mode Water Controlled by the Atlantic Multi-Decadal Variability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-235, https://doi.org/10.5194/egusphere-egu2020-235, 2020.

A sedimentary multi-index comprehensive study on a gravity core collected from the central Bay of Bengal (BoB) was presented with an attempt to understand the sedimentary processes and their responses to climate changes since the last glaciation. The sea level is suggested to be responsible for significant distinction of the terrigenous input between the last glaciation and the Holocene period through the depositional center transition in the BoB at the glacial-interglacial scale. The monsoon controlled terrigenous input at precession-related scales since it showed similar patterns with solar radiation and precipitation before 18 ka. Terrigenous input responses to the climate changes in the north Atlantic Ocean during the last deglaciation and early Holocene suggested at millennial scales. The paleoproductivity in the central BoB was at a roughly equivalent level during the last glaciation and the Holocene period, as indicated by the authigenic element accumulation rates. Different terrestrial nutrient inputs and ocean surface stratifications related to the Indian Summer Monsoon (ISM) were suggested to be responsible for this pattern. This study provides a brief understanding of the sedimentary response to the climate and emphasizes the different roles of the sea level and ISM in the central BoB.

How to cite: Li, J. and Shi, X.: Sedimentary responses to the climate changes in the Bay of Bengal since the last glaciation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2291, https://doi.org/10.5194/egusphere-egu2020-2291, 2020.

EGU2020-3192 | Displays | CL4.16

Symmetric Instability and Ageostrophic Secondary Circulation in the East Korea Warm Current

Seongjung Kim, Young-Tae Son, and SungHyun Nam

Submesoscale dynamics and ocean-atmosphere exchange process in frontal regions play an important role in regulating ocean overturning circulation and cycles of materials (including carbon) and energy, yet our understanding on the dynamics is limited primarily due to lack of relevant observation. To investigate frontal processes such as symmetric instability (SI) and ageostrophic secondary circulation (ASC), multiple comprehensive hydrographic and current observations were made with marine meteorological measurements across a sharp front of the East Korea Warm Current (EKWC) over spring 2017, summer 2017 and fall 2018. Submesoscale features were identified from the observations, estimating diagnostic variables that are the Ertel’s potential vorticity (fq), balanced Richardson number angle ( ), and Ekman buoyancy flux (EBF). The results with fq < 0 along the front,  corresponding to SI regime, and enhanced EBF along the surface of front support that submesoscale overturning circulation induced by down-front wind is due to the SI and ASC. The ASCs with ageostrophic current estimated using the Omega equations further provide vertical motions in the vicinity of the front. Our results suggest that the western boundary currents like EKWC within the North Pacific marginal sea strongly interact with local wind to impact submesoscale overturning circulation and (re-)distribution of materials via SI and ASC.

How to cite: Kim, S., Son, Y.-T., and Nam, S.: Symmetric Instability and Ageostrophic Secondary Circulation in the East Korea Warm Current, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3192, https://doi.org/10.5194/egusphere-egu2020-3192, 2020.

EGU2020-6266 | Displays | CL4.16

New insights into the latitudinal ventilation variations in the Japan Sea since the Last Glacial Maximum: A radiolarian assemblage perspective

Zhi Dong, Xuefa Shi, Jianjun Zou, Yanguang Liu, Ruxi Dou, and Sergey Gorbarenko

The formation of intermediate and deep water plays a key role in regulating climate changes at a variety of time scales through the heat redistribution and carbon cycling. The Japan Sea has unique water-mass characteristics in the North Pacific with its own deep-water formation within the Sea itself called Japan Sea Proper Water (JSPW). Latitudinal ventilation changes in the Japan Sea were reconstructed using radiolarian assemblage from three sediment cores, extending from the southwestern, central to northwestern Japan Sea. Here, we present downcore faunal records spanning the last 25 ka as well as other existing ventilation records in the Japan Sea, and provide reliable evidence to evaluate the potential controlling mechanism that lead to onset and interruption of JSPW ventilation. Taking all together, we argue that radiolarian assemblage records have revealed a distinct basin-scale transition in deep-water conditions from anoxic to oxic during the deglaciation related to changing surface hydrography. However, it should be recognized that there is significant potential for bias in the timing of the ventilation changes among regions. Deep ventilation in the central Japan Sea has been in an interglacial mode during the Bølling/Allerød presumably related to northward volume transport of the Tsushima Warm Current. Moreover, the decrease of JSPW Assemblage at the B/A in southwestern Japan Sea was attributed to higher export productivity, facilitating suboxic deepwater condition through enhanced consumption of oxygen, which was probably caused by coastal upwelling. In contrast, the weakening ventilation of the northwestern Japan Sea during the B/A and YD periods was probably caused by the blocking effect of the sea ice. Note: This study was supported by the National Natural Science Foundation of China (Grant No. 41420104005, U1606401) and National Program on Global Change and Air-Sea Interaction (GASI-GEOGE-04).

How to cite: Dong, Z., Shi, X., Zou, J., Liu, Y., Dou, R., and Gorbarenko, S.: New insights into the latitudinal ventilation variations in the Japan Sea since the Last Glacial Maximum: A radiolarian assemblage perspective, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6266, https://doi.org/10.5194/egusphere-egu2020-6266, 2020.

EGU2020-6533 | Displays | CL4.16

Provenance of sediments in the western Sea of Japan over the last 30 ka: Implications for paleoenvironmental changes

Ruxi Dou, Jianjun Zou, Xuefa Shi, Aimei Zhu, Zhi Dong, Fengdeng Shi, Xinru Xue, and Sergey Gorbarenko

The Sea of Japan is a unique marginal sea in the northwest Pacific Ocean, which is known as "miniature ocean". Constrained by four shallow straits communicating with surroundings seas, it is very sensitive to glacio-eustatic sea level changes. Also, it is located beneath the East Asia Monsoon, which affects the hydrography of surface waters, deep circulations and accumulation of terrigenous materials. The presence of seasonal ice also plays a role in controlling the local distributions of terrigenous materials and deep ventilation in the Sea of Japan. An increasing body of studies revealed pronounced changes in past ocean environment in the Sea of Japan since the late Quaternary. However, it remains elusive for past environment changes in the western Sea of Japan. In this study, we investigate the lithology, rare earth elements and radiogenic isotopes of sediment core LV53-18 retrieved from the western Sea of Japan since the last glaciation.

The contents of coarse fraction of sediment grain size suggest an advance in sea ice cover during the last deglaciation and the early Holocene (15-8 ka) and potential perennial sea ice cover during Heinrich Stadial (HS) 1 and HS2. The variation in sea ice cover is explained by changing strength of East Asian Winter Monsoon (EAWM). On millennial timescales (HS2, HS1 and Younger Dryas), our grainsize data shows a reverse correlation between the EAWM and the East Asian Summer Monsoon (EASM), indicating by Chinese stalagmite δ18O record, and it is ascribed to the slowdown of Atlantic Meridional Overturning Circulation (AMOC). The brine rejection related to sea-ice generation enhances local deep ventilation.

Both the concentration of ∑REEs and positive Eu anomaly (1.2~1.4) reveal a sustained contribution of calcium-rich volcanic materials after 8 ka, which coincides with the onset and intensity of Liman Cold Current during the sea-level highstand. Furthermore, the 87Sr/86Sr values (0.706347 to 0.711713) decrease after 8 ka while εNd (-5.09 to -2.45) are more radiogenic, which further corroborate the presence of volcanic materials. On the basis of a binary mixture of volcanic material and upper crust, we estimated qualitatively the relative contributions of these two end-members. In summary, our study underlines the importance of EAWM in controlling the environment in the western Sea of Japan and reveals increasing volcanic contribution since 8 ka, which is related to the intensity of Liman Cold Current.

Note: This study was supported by the National Natural Science Foundation of China (Grant No. 41420104005, U1606401) and National Program on Global Change and Air-Sea Interaction (GASI-GEOGE-04).

How to cite: Dou, R., Zou, J., Shi, X., Zhu, A., Dong, Z., Shi, F., Xue, X., and Gorbarenko, S.: Provenance of sediments in the western Sea of Japan over the last 30 ka: Implications for paleoenvironmental changes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6533, https://doi.org/10.5194/egusphere-egu2020-6533, 2020.

EGU2020-6677 | Displays | CL4.16

Contrasting spatial distributions of surface sediment compositions from the Emperor Seamount Chain, North Pacific

Jie Chen, Jianjun Zou, Xuefa Shi, Lester Lembke-Jene, Dirk Nürnberg, and Ralf Tiedemann

The Emperor Seamount chain is located in the North Pacific Ocean and beneath the Northern Westerly wind belt. It extends from the subtropical to subarctic North Pacific oceans between 30°N-50°N. Modern observations have shown this region has complex physical oceanic processes, including the Kuroshio Extension, the Oyashio Current, the polar front and the subarctic front. A large amount of dust from the central Asian continent is delivered to this area, which affects the regional marine ecosystem and the global carbon cycle. Due to the lack of sediments from the Emperor Seamount chain, few studies have examined the composition of surface sediments in this ocean realm. On the basis of 50 samples collected during the SO264 Expedition in 2018 using multicorers, we investigate the spatial distributions of sediment grainsize, total organic carbon, CaCO3 and major and minor elements in surface sediments of this ocean realm. Our data show that the detritus sediments mainly consist of siltly sand and clayey silt with more coarse fractions between ~45°N and 48°N, which has strong negative correlations with water depth. The content of CaCO3 varies between 0.04% and 83.67% with higher values at the south of 48°N. The TOC content ranges between 0.07% and 1.36% with lower values (<0.3%) occurring at the north of ~45°N. The concentration of ∑REEs ranges from 31 ppm to 136 ppm with lower values between ~45° N and 48°N. There is significant positive Eu anomaly at all stations, indicating widespread occurrence of volcanic detritus. A significant negative correlation between sediment grainsize and ∑REEs and some lithophile elements, such as Al2O3, Fe2O3, K2O, Th, REEs, etc., indicates a strong effect of sediment grainsize on sediment geochemical composition. A strong negative correlation between Al and CaCO3 suggests contrasting sources, such as terrigenous vs biogenic sources, respectively. Our data confirms the contributions of terrigenous, volcanic and biogenic materials to the bulk sediment with contrasting spatial distribution along the Emperor Seamount Chain.

Note: This study was supported by the National Natural Science Foundation of China (Grant No.41876065, U1606401) and National Program on Global Change and Air-Sea Interaction(GASI-GEOGE-04). 

How to cite: Chen, J., Zou, J., Shi, X., Lembke-Jene, L., Nürnberg, D., and Tiedemann, R.: Contrasting spatial distributions of surface sediment compositions from the Emperor Seamount Chain, North Pacific, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6677, https://doi.org/10.5194/egusphere-egu2020-6677, 2020.

EGU2020-7703 | Displays | CL4.16

Diagenetic manganese and iron cycling and implications for past redox conditions in sediments along the Emperor Seamount Chain, NW Pacific Ocean

Sabine Kasten, Jessica Volz, Walter Geibert, Ingrid Stimac, Denise Bethke, Ingrid Dohrmann, Annika Schnakenberg, and Weng-Si Chaoa

The deep water of the North Pacific Ocean is enriched in CO2 and nutrients as a result of organic matter degradation in the water column and surface sediments. Due to its large volume, the deep North Pacific may have played a fundamental role for the postulated glacial carbon sequestration leading to the observed drawdown of atmospheric CO2. As a consequence of increased CO2 levels in the deep glacial ocean, bottom-water oxygen concentrations must have been correspondingly low compared to current oxygenated conditions (e.g., Anderson et al., 2019). Previous studies on sediments from the NW Pacific Ocean have provided evidence that glacial bottom‑water O2 concentrations were significantly lower than today, which have induced suboxic surface sediment redox conditions (Jaccard et al., 2009) and have altered the primary sediment composition and properties of glacial deposits (e.g., magnetic susceptibility) due to diagenetic processes (Korff et al., 2016).

We have investigated seven 10- to 15-m-long sediment cores along a S-N transect at the Emperor Seamount Chain taken during RV SONNE cruise SO264 in order to (1) geochemically characterize the sediments and, (2) reconstruct past sediment redox conditions. The cores were retrieved from water depths between 3.5 and 5.7 km from organic-poor siliciclastic‑carbonaceous sediments in the South to more organic-rich siliciclastic‑siliceous sediments in the North with tephra layers found throughout all cores (Nürnberg et al., 2018).

Mn2+ is released into the pore water at all study sites with increasing Mn2+ concentrations below 20‑30 cm sediment depth. Pore-water Mn2+ reraches up to 190 µM in siliciclastic‑siliceous sediments most likely associated with high rates of dissimilatory Mn(IV) reduction. The solid‑phase composition of a core taken from the Minnetonka Seamount (47°44’N, 168°40’E) at 4 km water depth shows Mn/Al ratios below 0.0003. These ratios are much lower than the average MORB Mn/Al value of 0.013 (Klein, 2004), which further indicates that Mn has been diagenetically lost from these sediments. As pore-water Fe2+ concentrations are below detection limit at the Minnetonka Seamount and the depth distribution of solid-phase Fe/Al is mostly constant with ratios close to the average MORB Mn/Al value of 0.59 (Klein, 2004), Fe has probably not been diagenetically redistributed at this site. Pore‑water Fe2+ concentrations of up to 20 µM are only found at two sites most likely as a result of dissimilatory Fe(III) reduction due to higher fluxes of organic material to the seafloor compared to the other sites.

References

Anderson, R.F., et al., 2019. Deep-sea oxygen depletion and ocean carbon sequestration during the last ice age. Global Biogeochem. Cycles 33, 301-317.

Jaccard, S.L., et al., 2009. Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool. Earth Planet. Sci. Lett. 277, 156‑165.

Klein, E.M., 2004. Geochemistry of the Igneous Oceanic Crust. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry, Vol.3. Elsevier, Amsterdam, pp. 433‑463.

Korff, L., et al., 2016. Cyclic magnetite dissolution in Pleistocene sediments of the abyssal northwest Pacific Ocean: evidence for glacial oxygen depletion and carbon trapping. Paleoceanography 31, 600‑624.

Nürnberg, D., 2018. RV SONNE Fahrtbericht /Cruise Report SO264, SONNE-EMPEROR, 30.6. – 24.8.2018.

How to cite: Kasten, S., Volz, J., Geibert, W., Stimac, I., Bethke, D., Dohrmann, I., Schnakenberg, A., and Chaoa, W.-S.: Diagenetic manganese and iron cycling and implications for past redox conditions in sediments along the Emperor Seamount Chain, NW Pacific Ocean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7703, https://doi.org/10.5194/egusphere-egu2020-7703, 2020.

EGU2020-8181 | Displays | CL4.16

Sediment provenance of the East Siberian Arctic shelf: evidence from clay minerals and chemical elements

Qiuling Li, Shuqing Qiao, Xuefa Shi, Limin Hu, Yazhi Bai, Aimei Zhu, and Jingjing Cui

    Grain size, clay minerals and major and trace elements of surface sediment samples collected from the East Siberian Arctic shelf are analyzed. Based on factor analysis and cluster analysis the study area is classified into four provinces, the main sediment sources of each provinces is discussed. The results show: province I covers the coastal estuary of the Kolyma River and the Indigirka River. The sediments are mainly composed of silt and sandy silt, and characterized by highest content of SiO2, TiO2, Zr, Sr and low content of other elements. Illite is dominant which accounting for 70% of the whole clay minerals. This area is strongly influenced by terrestrial sources from the Kolyma River and the Indigirka River. ProvinceⅡis located in the middle of the East Siberian Sea, where the sediments are generally silt and mud. The content of Al2O3, K2O, MnO and Ni are relatively high. Clay minerals composition is similar to Province I, but MnO/TiO2 ratio is higher. The sediments in this area are mainly fine-grained imported by rivers, which are also influenced by sea ice process. As the distance increasing offshore, the content of marine authigenic components begin to increase. Province Ⅲ is located in the northern East Siberian Sea, sediments there are mainly mud. Elements such as Al2O3, K2O, V, Li reach the maximum value in this area. The content of illite is the lowest, semctite and kaolinite reach the maximum (>10%). Fine sediments in this area are probably influenced by Atlantic waters and the Beaufort Gyre. Province Ⅳ is located in Chukchi Sea where the sediments consist of silt and sandy silt. Elements are characterized by higher contents of CaO, P2O5, and the content of Chlorite reach peak (>20%). Sediments in this area are significantly influenced by the Pacific inflow water.

    Note: This study was supported by the Marine S&T Fund of Shandong Province for Qingdao National Laboratory for Marine Science and Technology (Grant No. 2018SDKJ0104-3) , National Natural Science Foundation of China (Grant No. U1606401,41722603) and National Program on Global Change and Air-Sea Interaction (GASI-GEOGE-03)

How to cite: Li, Q., Qiao, S., Shi, X., Hu, L., Bai, Y., Zhu, A., and Cui, J.: Sediment provenance of the East Siberian Arctic shelf: evidence from clay minerals and chemical elements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8181, https://doi.org/10.5194/egusphere-egu2020-8181, 2020.

EGU2020-8765 | Displays | CL4.16

Pleistocene shifts of the Subarctic Front in the North Pacific: Evidence from planktonic foraminiferal proxy data

Lara Jacobi, Dirk Nürnberg, Weng-si Chao, Ralf Tiedemann, Lester Lembke- Jene, Mariem Saavedra Pellitero, Thomas Frederichs, and Tilo von Dobeneck

The North Pacific plays a key role in shaping the Earth’s climate, yet there still is a lack in understanding the complex interplay of atmosphere and ocean, and their respective circulation patterns reacting to a varying Pleistocene climate. Proxy records established on marine sediment core SO264-28-2, recovered from the Emperor Seamount Chain (Suiko Seamount; ~45°N, close to the Subarctic Front) during R/V SONNE Cruise SO264 in 2018, allow to reconstruct changes of surface and subsurface water masses in order to provide unique insight in spatial and temporal shifts of North Pacific Subarctic vs. Subtropical gyres. According to the preliminary age model based on radiocarbon dating, benthic oxygen isotopes, combined magneto-, tephra- and biostratigraphical approaches, the only 7 m long core covers the last ~1.35 Myr. This core was chosen due to its highly characteristic pattern in magnetic susceptibility and a prominent lithological change from carbonate oozes to more siliciclastic sediment sequences at ~1.2 Ma. Thus, numerous other cores from the study area can be correlated with it suggesting this core as a reference record for the North Pacific.

A continuous and synchronous cooling of both surface and subsurface ocean temperatures since ~1.35 Ma changed rapidly at 1.2 Ma to a continuous warming surface from <4 °C to ~ 8 °C while subsurface temperature remained constant below 4 °C. The long-term diverging temperatures and increasing salinities at both surface and subsurface point to the continuous northward displacement of the Subarctic Front and an increased influence of the North Pacific Tropical Water at Suiko Seamount, with most prominent, millennial-scale, changes of the gyre system and the related Kuroshio Current during interglacials. Around ~430 ka, the influence of warm and saline subtropical surface water masses declines, reflected by a rapid decrease of sea surface temperatures of 4-5 °C and a salinity inversion, whereby the subsurface water mass becomes more saline than the surface water. After ~430 ka, interglacials are very pronounced and with the prominent presence of low saline and cooler surface waters, conditions are similar to present.

How to cite: Jacobi, L., Nürnberg, D., Chao, W., Tiedemann, R., Lembke- Jene, L., Saavedra Pellitero, M., Frederichs, T., and von Dobeneck, T.: Pleistocene shifts of the Subarctic Front in the North Pacific: Evidence from planktonic foraminiferal proxy data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8765, https://doi.org/10.5194/egusphere-egu2020-8765, 2020.

EGU2020-9416 | Displays | CL4.16

Sea-level and climate signatures recorded in the 1 Myr continental margin deposits from the Bohai Sea

Zhengquan Yao, Xuefa Shi, Yanguang Liu, and Shuqing Qiao

Sediment accumulation in the continental margin is largely influenced by both sea-level fluctuations and climate changes during the Quaternary Period. However, the response of sediment accumulation to these changes at orbital timescale, remains poorly understood, mainly due to (i) the scarce of sedimentary records with high-resolution chronology and (ii) the difficulty of distinguishing the role of sea-level from climate signals. Here we present sediment color reflectance (c*), grain size and total organic carbon (TOC) data of core BH08 (212.4 m; ~1 Myr) recovered from the Bohai Sea, China. The chronology of core BH08 was constrained at orbital timescale by using magnetostratigraphy and astronomical tuning methods. Sedimentary facies analysis suggests that the core sequence is dominated by alternations of deltaic system and floodplain deposits. Principal components analysis on grain size data reveals two principal components (PCs), including PC1 (31–500 µm, coarse fraction) and PC2 (18–66 µm, fine fraction). Comparison of PC1, PC2, c* and TOC with sedimentary environments, we found that PC1 and c* corresponds well with cycles of deltaic and floodplain deposits at ~100/40-kyr cycles, while PC2 and TOC display ~20-kyr cycle, in addition to the ~100/40-kyr cycles. We interpret that PC1 and c* are mainly sea-level dependent, whereas PC2 and TOC are controlled by a combination of monsoonal climate and sea level. We suggest that Milankovitch-scale monsoon climate controlled the sediments supply to the Bohai Sea during the last 1 Myr, while the redistribution of sediments by marine process (e.g. tidal currents) seem to have obscured the monsoonal signal in the grain size proxy (e.g. PC1) which is sensitive to sea-level change. Our results provide an example of climate and sea-level influenced sediment accumulation in the shallow continental margin influenced by monsoonal climate in an icehouse world.

How to cite: Yao, Z., Shi, X., Liu, Y., and Qiao, S.: Sea-level and climate signatures recorded in the 1 Myr continental margin deposits from the Bohai Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9416, https://doi.org/10.5194/egusphere-egu2020-9416, 2020.

EGU2020-10522 | Displays | CL4.16 | Highlight

Role of the deep North Pacific in overturning circulation and carbon cycling

Weng-Si Chao, Lara Jacobi, Lester Lembke-Jene, Ralf Tiedemann, and Dirk Nürnberg

At present, the North Pacific constitutes one of the main marine natural carbon sinks and thus helps regulate atmospheric COconcentrations. Understanding past changes in North Pacific deep water circulation and biological productivity are of particular importance, since the region likely changed these characteristics on both orbital and millennial time scales, and may have even undergone switches between being a carbon source and sink. We present a suite of new sediment records retrieved from the subarctic Northwest Pacific along the Emperor Seamount Chain in order to contribute to the Pleistocene stratigraphy and reconstruct changes in the physical and biological carbon pump on millennial to orbital timescales. We used high-resolution AMS 14C-derived benthic-planktic (B-P) foraminiferal ventilation ages, and stable carbon and oxygen isotopes of epibenthic foraminifera along both meridional and water depth transects in order to establish deep water ventilation patterns and reconstruct nutrient concentrations over the last 200 ka. We used X-ray fluorescence (XRF)-scanning records combined with radiocarbon dating to correlate prominent patterns between sediment cores, and to develop a stratigraphic framework for the study area. We used changes in Ba/Ti, Ca/Ti, Si/Ti ratios to assess variationsin biological productivity. Biogenic Barium (Ba/Ti) and Calcium (Ca/Ti) ratios generally show high values during interglacials and low values during glacials. This pattern resembles subpolar Northwest Pacific ODP Site 882, which shows a good correlation to the global COrecord. These results provide evidence for the close link between global climate, the ocean carbon cycle and marine biogeochemistry in North Pacific.

How to cite: Chao, W.-S., Jacobi, L., Lembke-Jene, L., Tiedemann, R., and Nürnberg, D.: Role of the deep North Pacific in overturning circulation and carbon cycling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10522, https://doi.org/10.5194/egusphere-egu2020-10522, 2020.

EGU2020-12806 | Displays | CL4.16

Paleoenvironmental and paleoclimatic changes in the Japan Sea since the last glaciation

Xuefa Shi, Jianjun Zou, and Sergey Gorbarenko

The Japan Sea, one of the marginal seas of the North Pacific, communicates with adjacent seas through four shallow straits (<130 m) and the present environment in the Japan Sea is mainly forced by the Tsushima Warm Current (TWC), East Asia Monsoon (EAM) and seasonal sea ice. During the Quaternary, the pronounced effects of glacial eustatic sea level on the hydrography, ocean biogeochemistry and sediment depositions in the Japan Sea over glacial-interglacial cycles. However, the spatial heterogeneity of these forcings exerting on environment of the Japan Sea may results in contrasting response. On the basis of a suite of sediment cores collected during the China-Russia joint expedition in 2010, we investigate the sedimentary processes and paleoenvironment changes in the Japan Sea. We found enhanced extent of seasonal sea-ice coverage in the western Japan Sea, which is synchronous with the intensification of East Asian Winter Monsoon (EAWM) from 15ka to 8ka. During the early last deglaciation (17ka-15ka), perennial sea ice cover at investigated site occurs and thus inhibits the deepwater formation in the Japan Sea. Since 8 ka, increased deep ventilation and dampened sea ice coverage are closely related to enhanced EAWM and invasion of high-salinity TWC into the Japan Sea. In the southern Japan Sea, the sediment provenance is mainly derived from the Yangtze and old yellow rivers, while the terrigenous matter was mainly sourced from the Yangtze River after 7 ka, on the basis of elemental and radiogenic isotopic data (Sr and Nd) of fine-sized (<63 μm) sediments. Abrupt shifts in sediment provenance occurred at ~18 ka and ~7 ka and these time periods are synchronous with changes in surface hydrography and deep ventilation in the Ulleung Basin. In the central Japan Sea, eolian dust sourced from central Asia and Chinese Loess Plateau by westerly was delivered to the central Japan Sea. In addition, deep ventilation in the southern and central Japan Sea evidenced by redox-sensitive elements and ventilation-like radiolarian species suggest intensified ventilation since 8ka and during cold spells of the last deglaciation, which is closely related to the invasion of the Tsushima Warm Current into the Japan Sea. Our data suggest that sea level is a first-order factor in controlling the environment and sediment deposition in the Japan Sea at orbital timescales, while the East Asian Monsoon and Kuroshio Current play a secondary role. Note: This study was supported by the National Natural Science Foundation of China (Grants No. 41420104005, U1606401) and National Program on Global Change and Air-Sea Interaction (GASI-GEOGE-03 &-04). 

How to cite: Shi, X., Zou, J., and Gorbarenko, S.: Paleoenvironmental and paleoclimatic changes in the Japan Sea since the last glaciation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12806, https://doi.org/10.5194/egusphere-egu2020-12806, 2020.

EGU2020-12967 | Displays | CL4.16

Evolution of upper water column structure inferred from paired alkenone and tetraether lipid proxies in the central Japan/East Sea since 25 ka BP

Yonghua Wu, Xuefa Shi, Jianjun Zou, Xun Gong, Yanguang Liu, Gerrit Lohmann, Lester Lembke-Jene, and Sergey Gorbarenko

We measure and analyse the alkenone and tetraether lipid records over the past 25 ka, from a sediment core recovered from the central Japan/East Sea. In our results, UK′37- and TEX86- derived temperatures commonly represent warm signals during the period of 25-16.2 ka BP, indicating fresher and thus a stratified surface ocean. In comparison, the UK′37- and TEX86- derived temperatures become diverged abruptly after 16.2 ka BP, suggesting a thermal gradient between surface and subsurface water. In addition, the isoprenoidal glycerol dialkyl glycerol tetraethers (GDGT) community structure index, GDGT-[2]/[3] ratio is high during the period of 25-16.2 ka BP and drops sharply along with the TEX86- derived temperatures at 16.2 ka BP, which is likely attributed to changes in the depth of GDGT export and/or in archaeal community structure. Specifically, the high GDGT-[2]/[3] ratio (larger than 8) can be related to strongly stratified surface Japan/East Sea. Moreover, the UK′37- and TEX86- derived temperatures start converging at 5.8 ka BP, representing the impact of the Tsushima Warm Current until nowadays. Note: This study was supported by the National Natural Science Foundation of China (Grants No. 41420104005, U1606401) and National Program on Global Change and Air-Sea Interaction (GASI-GEOGE-03 &-04).

How to cite: Wu, Y., Shi, X., Zou, J., Gong, X., Liu, Y., Lohmann, G., Lembke-Jene, L., and Gorbarenko, S.: Evolution of upper water column structure inferred from paired alkenone and tetraether lipid proxies in the central Japan/East Sea since 25 ka BP, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12967, https://doi.org/10.5194/egusphere-egu2020-12967, 2020.

EGU2020-20927 | Displays | CL4.16

Flooding sedimentation at the Yellow River mouth, China

Yu Yonggui, Shi Xuefa, Wu Bin, and Qiao Shuqing

Chinese Huanghe (Yellow River) provides an extreme case of human controlled large river system. Since 2002, a unique Water-Sediment Regulation (WSR) regime was implemented annually through Xiaolangdi Dam to buffer pool infilling and scour the hanging riverbed. This involves transfers of large-volume of water and sediment between reservoirs, becoming a human-made flooding event. 37 surface sediments 8 box cores sampled during the 2018 WSR were analyzed for grain-size, C/N, 13C, radionuclides, etc. Satellite images together with high-resolution bathymetric data were incorporated to depict the flooding sedimentation at the river mouth. The results show that 7Be and 210Pb activity is pretty low, implying its incapability of tracing flood sediments at the Huanghe River mouth. The results also uncover that a majority of the sediment was deposited in the vicinity of the river mouth where the water depth is less than 15 m. Two depocenters with a maximum thickness of 9 m were formed expanding within a very restricted area, which was largely controlled by tidal currents.

How to cite: Yonggui, Y., Xuefa, S., Bin, W., and Shuqing, Q.: Flooding sedimentation at the Yellow River mouth, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20927, https://doi.org/10.5194/egusphere-egu2020-20927, 2020.

EGU2020-21680 | Displays | CL4.16

The Influence of Anthropogenic Aerosols on the Aleutian Low

William Dow, Amanda Maycock, and Marcus Lofverstrom

There is an incomplete understanding of the mechanisms that govern the Pacific Decadal Oscillation (PDO), a major mode of climate variability that plays a key role in the evolution of global climate on decadal time-scales. Recent research has suggested that regional anthropogenic aerosol (AA) emissions could modulate the behaviour of the PDO, including the transition to a negative PDO phase starting in the late 1990s (Smith et al., 2016). However, other studies have questioned whether this connection is robust (Oudar et al., 2018). East Asia is a region of particular focus, where AA emissions having increased in recent decades (Bartlett et al., 2017). Here we combine analysis of an ensemble of coupled climate models running idealised AA perturbation experiments and a steady-state primitive equation model (LUMA) forced by diabatic heating anomalies to examine whether AA emissions influence the behaviour of the Aleutian low - a climate feature closely associated with the PDO  - and if so, test the posited teleconnection mechanisms proposed by Smith et al. (2016). We further compare the response of the Aleutian low to well mixed greenhouse gases to examine if AAs and GHGs influence the Aleutian low in a similar manner.

How to cite: Dow, W., Maycock, A., and Lofverstrom, M.: The Influence of Anthropogenic Aerosols on the Aleutian Low, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21680, https://doi.org/10.5194/egusphere-egu2020-21680, 2020.

EGU2020-22599 | Displays | CL4.16

A modelling perspective of North Pacific Intermediate water in the future

Xun Gong, Lars Ackermann, and Gerrit Lohmann

North Pacific Intermediate water (NPIW) is a dominant water mass controlling ~400-1200m depth North Pacific Ocean, characterized by its low salinities and relatively lower temperatures. In the modern climate, the interplay between NPIW-related physical and biogeochemical processes among seasons determines annual-mean budget and efficiency of carbon sink into the North Pacific Ocean. Thus, to understand the NPIW physics is key to project roles of the North Pacific Ocean in changing Earth climate and carbon systems in the future. In this study, we provide a modelling view of the NPIW history since Yr 1850 (historical experiment) and its projection to near future (IPCC-defined RCP 4.2 and 8.5 experiments until Yr 2100), using new-generation Alfred Wegener Institute Earth System Model (AWI-ESM). Our results suggest an important role of regional hydroclimate feedback over the NW Pacific and Sea of Okhotsk in determining the NPIW from recent past to near future.

How to cite: Gong, X., Ackermann, L., and Lohmann, G.: A modelling perspective of North Pacific Intermediate water in the future, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22599, https://doi.org/10.5194/egusphere-egu2020-22599, 2020.

EGU2020-22629 | Displays | CL4.16

The North Pacific in Warm(ing) Climates: effects on ocean circulation and biogeochemical cycles

Lester Lembke-Jene, Ralf Tiedemann, Dirk Nürnberg, Xun Gong, Jianjun Zou, Weng-si (JC) Chao, Xuefa Shi, and Gerrit Lohmann

The North Pacific hosts the both one of the largest oceanic reservoirs of sequestered carbon and extensive oxygen minimum zones in the world ocean, which will likely intensify and expand under future climate warming scenarios, yielding significant consequences for ecosystems, biogeochemical cycles, and living resources. At present, relatively better-oxygenated subsurface North Pacific Intermediate Water (NPIW) mitigates OMZ development, but on instrumental time scales, data the past decades indicate decreasing NPIW ventilation, induced by a freshening and increased stratification of surface and thermocline waters. Longer variations in these oceanographic boundary conditions were, however, large and are thus able to hinder assessment of anthropogenic influences against natural background shifts. We previously provided evidence modern well-ventilated waters underwent significant millennial-scale variations over the last ca. 12,000 years (Lembke-Jene et al., 2018), with a prominent “tipping point” around 4,500 years before present.Crossing such mid-Holocene threshold led to the Okhotsk Sea becoming the modern ventilation source it is today, although the underlying forcing and physical boundary conditions characteristics remain largely enigmatic. A combination of sea ice loss, higher water temperatures, and remineralization rates may be able to induce a nonlinear change into a different mean state in this region. To constrain these factors we present combined surface, mesopelagic and bathyal ocean proxy records from key study sites in the Western Subarctic Pacific, the Okhotsk Sea and Bering Sea, and the Gulf of Alalska, with submillennial-scale resolution to assess changes in upper ocean stratification, nutrient characteristics and resulting changes on mid-depth water ventilation. Our results imply that under assumed past hemispheric warmer- than-present conditions, regional surface temperatures and upper ocean stratification were increased and changed in a nonlinear mode during the last 4-5,000 years, associated with changing primary productivity patterns and biogeochemical feedback mechanisms. Results from complementary Earth System Model simulations provide evidence for the interaction between the high-latitude North Pacific marginal seas and thePacific Western Subarctic Gyre circulation, with effects on mesopelagic ventilation dynamics and its consequences for large oceanic regions.

How to cite: Lembke-Jene, L., Tiedemann, R., Nürnberg, D., Gong, X., Zou, J., Chao, W., Shi, X., and Lohmann, G.: The North Pacific in Warm(ing) Climates: effects on ocean circulation and biogeochemical cycles, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22629, https://doi.org/10.5194/egusphere-egu2020-22629, 2020.

CL4.17 – Mountain Climatology and Meteorology

EGU2020-15589 | Displays | CL4.17

Climate change in mountains around the globe: Elevation dependencies and contrasts to adjacent lowlands

Enrico Arnone, Nick Pepin, Elisa Palazzi, Sven Kotlarski, Silvia Terzago, Petra Seibert, and Herbert Formayer

Mountain and high elevation regions often show distinct climate trends in temperature and precipitation, which can contrast those of adjacent lowland regions. In the context of temperature, this phenomenon is known as elevation-dependent warming (EDW). Past temperature trends can increase with elevation, but this is not always so, and they may peak in a critical elevation band, or show more complex elevation profiles. This is controlled by a variety of mechanisms which may be responsible for the observed patterns, including snow albedo feedback, vegetation change, cloud and moisture patterns, aerosol forcing and their interactions.

We here present a literature-based meta-analysis of elevation profiles in recent warming rates and, in a more general context, temperature change in mountain regions around the globe. For the recent historical period (~1960-2010) we find that when comparing like with like (i.e. high elevation regions with adjacent low elevation regions) warming rates are mostly stronger at higher elevations. Warming rates have also increased over time, with more recent decades showing stronger warming. On a global scale there is no significant difference between mean warming rates in mountains and in other areas. Thus, elevation-dependency within regions can be masked by differences in geographical location in global meta-analyses. Although there have been far fewer studies on vertical profiles of precipitation changes, we extend our meta-analysis to consider this parameter,  where information is available.

In addition to the meta-analysis, we compare past temperature and precipitation changes in mountain and lowland regions using global gridded observation-based and reanalysis datasets (e.g. CRU, ERA5, NCEP2) and global climate model simulations (CMIP5). Despite the uncertainties of these datasets (e.g. inhomogeneous underlying station coverage and related interpolation errors, biases, coarse spatial resolution), they allow us to compare different mountain regions globally with the same level of accuracy. There are only a few mountain areas that show distinct differences when their temperature trends are compared with lowland surroundings, but patterns vary by dataset and region. We also explore different extensions of adjacent lowlands, which may influence the quantification of differences in temperature and precipitation trends at high and low elevation.

This historical assessment is completed by an analysis of model projections (CMIP5) for studying the expected future evolution of climate change in mountains and contrasts to adjacent lowlands

How to cite: Arnone, E., Pepin, N., Palazzi, E., Kotlarski, S., Terzago, S., Seibert, P., and Formayer, H.: Climate change in mountains around the globe: Elevation dependencies and contrasts to adjacent lowlands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15589, https://doi.org/10.5194/egusphere-egu2020-15589, 2020.

EGU2020-18274 | Displays | CL4.17

Detection of precipitation and snow cover trends in the the European Alps over the last century using model and observational data

Julien Beaumet, Martin Menegoz, Hubert Gallée, Vincent Vionnet, Xavier Fettweis, Samuel Morin, Juliette Blanchet, Nicolas Jourdain, Bruno Wilhelm, and Sandrine Anquetin

The European Alps are particularly sensitive to climate change. Compared to temperature, changes in precipitation are more challenging to detect and attribute to ongoing anthropic climate change mainly as a result of large inter-annual variability, lack of reliable measurements at high elevations and opposite signals depending on the season or the elevation considered. However, changes in precipitation and snow cover have significant socio-environmental impact mostly trough water resource availability. These changes are investigated within the framework of the Trajectories initiative (). The variability and changes in precipitation and snow cover in the European Alps has been simulated with the MAR regional climate model at a 7 km horizontal resolution driven by ERA20C (1902-2010) and ERA5 (1979-2018) reanalyses.

For precipitation, MAR outputs were compared with EURO-4M, SAFRAN, SPAZM and E-OBS reanalyses as well as in-situ observations. The model was shown to reproduce correctly seasonal and inter-annual variability. The spatial biases of the model have the same order of magnitude as the differences between the three observational data sets. Model experiment has been used to detect precipitation changes over the last century. An increase in winter precipitation is simulated over the North-western part of the Alps at high altitudes (>1500m). Significant decreases in summer precipitation were found in many low elevation areas, especially the Po Plain while no significant trends where found at high elevations. Because of large internal variability, precipitation changes are significant (pvalue<0.05) only when considering their evolution over long period, typically 60-100 years in both model and observations.

Snow depth and water equivalent (SWE) in the French Alps simulated with MAR have been compared to the SAFRAN-Crocus reanalyses and to in-situ observations. MAR was found to simulate a realistic distribution of SWE as function of the elevation in the French Alpine massifs, although it underestimates SWE at low elevations in the Pre-Alps. Snow cover over the whole European Alps is evaluated using MODIS satellite data. Finally, trends in snow cover and snow depth are highlighted as well as their relationships with the precipitation and temperature changes over the last century.

How to cite: Beaumet, J., Menegoz, M., Gallée, H., Vionnet, V., Fettweis, X., Morin, S., Blanchet, J., Jourdain, N., Wilhelm, B., and Anquetin, S.: Detection of precipitation and snow cover trends in the the European Alps over the last century using model and observational data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18274, https://doi.org/10.5194/egusphere-egu2020-18274, 2020.

EGU2020-15536 | Displays | CL4.17

Investigating the anthropogenic influence on the mesoscale over Kilimanjaro

Carolyne Pickler and Thomas Mölg

Anthropogenic influence on climate change has increased over time and has been detected in all major components of the climate system.  High altitude mountains constitute a highly-sensitive region.  This has lead to many studies, on varying scales, with detection of climate change as motivation.  However, questions persist as to how this anthropogenic influence is manifested in the mesoscale over these mountains and how it transfers between various scales.

A case of study of Kilimanjaro and the glaciers on its summit is undertaken to start addressing these questions.  Its unique location, an isolated peak with a summit at almost exactly 500 hPa, allows for the examination of the large and local scale climate change dynamics and how they are linked by the mesoscale circulation over the mountain.  Furthemore, it has been extensively studied on the large and local scale and has decadal automated weather station records.  A first step involves running the limited-area Weather and Research Forecasting (WRF) regional climate model over the East African region for the period of 1985-2015 using multiple grid nesting centred over Kilimanjaro.  The lateral boundaries of WRF will be forced with output from two simulations, historical and historicalNat, of a global climate model (BNU-ESM r1i1p1) from the Coupled Model Intercomparison Project Phase 5 (CMIP5).  These two simulations differ by the addition of anthropogenic forcing in the historical simulation.  The model was carefully selected by a rigorous testing procedure, where analysis of the top 5 ranked models yielded a first estimate of anthropogenic influence in East Africa.  Comparison of WRF output from both simulations will be undertaken to assess how anthropogenic forcing has affected dynamical (e.g. flow regimes) and microphysical processes (e.g. cloud composititon and stability) in the mesoscale over Kilimanjaro.

How to cite: Pickler, C. and Mölg, T.: Investigating the anthropogenic influence on the mesoscale over Kilimanjaro, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15536, https://doi.org/10.5194/egusphere-egu2020-15536, 2020.

EGU2020-16856 | Displays | CL4.17

Impactful Tibetan Plateau Vortices: structure, lifecycle and environmental conditions

Julia Curio, Reinhard Schiemann, Kevin Hodges, Andrew Turner, and Nicholas Klingaman

The Tibetan Plateau (TP) and surrounding high mountains constitute an important forcing of the atmospheric circulation due to their height and extent, and thereby impact weather and climate in East Asia. Mesoscale Tibetan Plateau Vortices (TPVs) form over the TP and are one of the major systems generating TP precipitation. The majority of TPVs remain on the TP throughout their lifetime, while a fraction moves east off the TP. These “moving-off” TPVs can trigger extreme precipitation and severe flooding over large parts of eastern and southern China, for example in Sichuan province and the Yangtze River valley. Due to their potentially severe impacts downstream of the TP, it is first important to understand the conditions under which TPVs can move east off the TP.

In this study, we examine the vertical and horizontal structure of TPVs moving off the TP in contrast to those that do not using reanalysis in order to understand which local and/or large-scale atmospheric conditions lead TPVs to move off the TP. We use composites of atmospheric fields at different stages of the TPV lifecycle (e.g. genesis, maximum intensity, and maximum precipitation) and at different locations over and downstream of the TP, to account for the heterogeneous topography. Preliminary results suggest that the large-scale background flow, characterised by the strength and position of the subtropical westerly jet, is one of the factors determining whether a TPV moves off the TP or not.

Another important question is how and where moving-off TPVs trigger precipitation. Do TPVs transport moisture from the TP to the downstream regions? Do they move off while already precipitating? Do they trigger precipitation dynamically east of the TP? Results from a case study suggest that the TPV triggers precipitation as it moves over the edge of the TP, which then stays locked to the orography while the system is moving further east. The TPV appears to change the local atmospheric circulation in the Sichuan basin while moving off, thereby directing a flow of moist air towards the eastern slope of the TP.

Understanding how the combination of the right large-scale atmospheric conditions and a TPV-induced change in the local circulation downstream of the TP can create an impactful TPV may enable improved forecasts of TPVs and their impacts in the densely populated regions downstream of the TP.

How to cite: Curio, J., Schiemann, R., Hodges, K., Turner, A., and Klingaman, N.: Impactful Tibetan Plateau Vortices: structure, lifecycle and environmental conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16856, https://doi.org/10.5194/egusphere-egu2020-16856, 2020.

The spatial-temporal structure of the Planetary Boundary Layer (PBL) over mountainous areas can be strongly modified by topography. The PBL over the mountainous terrain of the Tibetan Plateau (TP) is more complex than that observed over its flat areas. To date, there have been no detailed analyses which have taken into account the topography effects exerted on PBL growth over the Tibetan Plateau (TP). A clear understanding of the processes involved in the PBL growth and depth over the TP’s mountainous areas is therefore long overdue.
The PBL in the Himalayan region of the Tibetan Plateau (TP) is important to the study of interaction between the area’s topography and synoptic circulation. This study used radiosonde, in-situ measurements and ECMWF ERA5 reanalysis dataset to investigate the vertical structure of the PBL and the land surface energy balance in the Rongbuk Valley on the north of the central Himalaya, and their association with the Westerlies, which control the climate of the Himalaya in winters. Measurements show that the altitude of the PBL’s top in November was the highest of three intensive observation periods (i.e., June, August and November). The PBLs in November appeared to have been influenced by the Westerlies which prevails in this region during the non-monsoon season. We discovered that the deep PBLs seen in November correlate with the downward transmission of the Westerlies to the valley floor (DTWTV). It was found that DTWTV happened in the direction of southwest when the synoptic wind above the valley ridges height blow from southwest, which is parallel to the valley axis. DTWTV happened in the direction of southwest promotes a stronger near-surface wind, smaller aerodynamic resistance, and larger sensible heat flux, which cause PBLs grow high.

How to cite: Chen, X., Lai, Y., and Ma, Y.: The impact of the Westerlies on the PBL growth and land surface energy balance on the north of the central Himalaya, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1329, https://doi.org/10.5194/egusphere-egu2020-1329, 2020.

A non-hydrostatic theory for mountain flow with a boundary layer of constant eddy viscosity is presented. The theory predicts that dissipation impacts the dynamics over a an inner layer which depth δ is predicted by viscous critical level theory. In the near neutral case, the surface pressure decreases when the flow crosses the mountain to balance an increase in surface friction along the ground. This produces a form drag which can be predicted quantitatively. With stratification, internal waves start to control the dynamics and produce a wave drag that can also be predicted. For weak stratification, upward propagating mountain waves and reflected waves interact destructively and low drag states occur, whereas for moderate stability they interact constructively and high drag states are reached. In very stable cases the reflected waves do not affect the drag much.

The sign and vertical profiles of the Reynolds stress are profoundly affected by stability. In the neutral case and up to the point where internal waves interact constructively, the Reynolds stress in the flow is positive, with maximum around the top of the inner layer, decelerating the large scale flow in the inner layer and accelerating it above. In the stable case, the opposite occurs, and the large scale flow above the inner layer is decelerated as expected for dissipated mountain waves. These opposed behaviors challenge how mountain form drag and mountain wave drag should be parameterized in large-scale models.

The structure of the flow around the mountain is also strongly affected by stability: it is characterized by non separated sheltering in the neutral case, by upstream blocking in the very stable case, and at intermediate stability by the presence of a strong but isolated wave crest immediately downstream of the ridge.

How to cite: Lott, F., Deremble, B., and Soufflet, C.: Mountain waves produced by a stratified shear flow with a boundary layer: transition from downstream sheltering to upstream blocking, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5343, https://doi.org/10.5194/egusphere-egu2020-5343, 2020.

Mountains are know to impact the atmospheric circulation on a variety of spatial scales and through a number of different processes. They exert a drag force on the atmosphere both locally through deflection of the flow and remotely through the generation of atmospheric gravity waves. The degree to which orographic drag parametrizations are able to capture the complex impacts on the circulation from realistic orography in high resolution simulations is examined here. We present results from COnstraing ORographic Drag Effects (COORDE), a project joint with the Working Group on Numerical Experimentation (WGNE) and Global Atmospheric System Studies (GASS). The aim of COORDE is to validate parametrized orographic drag in several operational models in order to determine both systematic and model dependent errors over complex terrain. To do this, we compare the effects of parametrized orographic drag on the circulation with those of the resolved orographic drag, deduced from km-scale resolution simulations which are able to resolve orographic low-level blocking and gravity-wave effects. We show that there is a large spread in the impact from parametrized orographic drag between the models but that the impact from resolved orography is much more robust. This is encouraging as it means that the km-scale simulations can be used to evaluate the caveats of the existing orographic drag parametrizations. Analysis of the parametrized drag tendencies and stresses shows that much of the spread in the parametrized orographic drag comes from differences in the partitioning of the drag into turbulent and flow blocking drag near the surface. What is more, much of the model error over complex terrain can be attributed to deficiencies in the parametrized orographic drag, particularly coming from the orographic gravity wave drag.

How to cite: VanNiekerk, A. and Sandu, I.: COnstraining ORographic Drag Effects (COORDE): A model intercomparison of resolved and parametrized orographic drag, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-75, https://doi.org/10.5194/egusphere-egu2020-75, 2020.

EGU2020-9260 | Displays | CL4.17

Shifts in in High-Mountain Asia’s mountain-specific climate indicators derived with large ensemble modelling

Pleun Bonekamp, Niko Wanders, Karin van der Wiel, Arthur Lutz, and Walter Immerzeel

Natural disasters in High Mountain Asia (HMA) are largely induced by precipitation and temperatures extremes. Precipitation extremes will change due to global warming, but these low frequency events are often difficult to analyse using (short) observed time series. In this study we analysed large  ensembles (2000 year) of present day climate and of a 2 °C and 3 °C warmer world produced with the EC-EARTH model. We performed a regional assessment of climate indicators related to temperature and precipitation (positive degree days, accumulated precipitation, (pre- and post-) monsoon precipitation), their sensitivity to temperature change and the change in return periods of extreme temperature and precipitation in a 2 and 3 °C warmer climate.

In general, the 2°C warmer world shows a rather homogeneous response of changes in climate indicators and return periods, while distinct differences between regions are present in a 3C warmer world and it no longer follows a general trend. This non-linear effect can indicate the presence of a tipping point in the climate system. The most affected regions are located in monsoon-dominated regions, where precipitation amounts, positive degree days, extreme temperature, extreme precipitation and compound events are projected to increase the most. Largest changes in climate indicators are found in the Hindu Kush and Himalaya regions. We also found that precipitation increases in HMA in a 3°C warmer world are substantially larger (13%) compared to the global average (5.9%). Additionally, the increase in weather extremes will exacerbate natural hazards with large possible impacts for the mountain people. The results of this study could provide importance guidance for formulating climate change adaptation strategies in HMA.

How to cite: Bonekamp, P., Wanders, N., van der Wiel, K., Lutz, A., and Immerzeel, W.: Shifts in in High-Mountain Asia’s mountain-specific climate indicators derived with large ensemble modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9260, https://doi.org/10.5194/egusphere-egu2020-9260, 2020.

Glaciers are growing in a part of High Mountain Asia (HMA), contrary to the demise of glaciers worldwide. A proposed explanation for this behaviour is the decreasing strength of the "Western Tibetan Vortex" (WTV), a circular motion of air in the troposphere around northwestern High Mountain Asia, which is proposed to drive near-surface temperatures. Here, we show that the WTV is the change of wind field resulting from changes in near-surface temperature, and that it is not unique to northwestern HMA, but is generally applicable to large parts of the globe. Instead, we argue that net radiation is likely the main driver of near-surface temperatures in Western HMA in summer and autumn, and that the WTV is the response of the atmosphere to changes in temperature. The decreasing strength of the WTV, as seen during summer in the 20th century, is thus likely the result of changing net radiation, and not the main driver of cooling itself. We do argue that the WTV is a useful concept to understand large scale climate variability in the region, and that such an approach could yield important insights in other mid-latitude regions as well.

How to cite: de Kok, R. and Immerzeel, W.: The Western Tibetan Vortex as an emergent feature of near-surface temperature variations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-338, https://doi.org/10.5194/egusphere-egu2020-338, 2020.

The characteristics including cloud occurrence frequencies, vertical structure, configuration of cloud type, and microphysical structure of single-layer and multi-layer clouds in Tibetan Plateau (TP) in summer (June-August) during 2007-2010 are investigated based on the CloudSat merged data. The results indicate that cloud over the TP is mainly in the form of single-layer cloud with occurrence frequency of 56.86%, and then followed by the form of double-layer cloud with 24.47%. The spatial distribution of occurrence frequency shows that the single-layer cloud is mainly located in the northern plateau, and fraction of multi-layer cloud decrease gradually from the southeast to the northwest. Single-layer clouds mainly consist of stratocumulus (22.71%), and then followed by altostratus (19.98%) and nimbostratus (19.42%). As for the multi-layer clouds, the upper layers mainly consist of cirrus and altostratus, and the middle layers are mainly dominated by altostratus, cirrus and altocumulus. The lower layers mainly consist of stratocumulus, altocumulus and cumulus. The vertical structure indicates that the averaged cloud thicknesses of single-layer are larger compared with multi-layer clouds. The distributions of microphysical characteristics of multi-level clouds and single-layer clouds are similar, while the averaged values of microphysical characteristics including particle number concentration, cloud water content and effective radius of single-layer are larger. Moreover, the microphysical variable values of upper cloud are lower compared with lower cloud, which are related to the cloud types. The precipitation is mainly in the form of liquid precipitation, and then followed by the solid precipitation, and the drizzle. Furthermore, the drizzle occurs mainly in the multi-layer clouds. The single-layer fraction in the daytime (62.99%) is larger than that at night (51.00%), whereas, multi-layer clouds are opposite. The fraction of liquid precipitation and deep convection are larger during the daytime than those at night. Conversely, the fractions of drizzle and nimbostratus are larger at night. In addition, higher surface temperature, larger surface specific humidity and higher surface pressure is found to be contributed to the formation of multi-layer clouds.

How to cite: pan, X., Fu, Y., and Li, D.: The Characteristics of Multi-layer Clouds in Summer over Tibetan Plateau Based on CloudSat Measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12662, https://doi.org/10.5194/egusphere-egu2020-12662, 2020.

Accurate simulation and prediction of intense precipitation events require better understanding of their physical mechanisms. This study uses Yaan—a place with regional maximum rainfall in central China—to investigate the cause and process of intense precipitation. Hourly rain gauge records and the new ERA5 reanalysis are used to characterize the evolution process of warm season intense regional rainfall events (RREs) in Yaan and its associated three-dimensional circulation. Results show that before the start of the Yaan intense RREs, moderate rainfall amount (frequency) appears northeast of the key region. The rainfall then moves southward in the following several hours along the eastern periphery of the Tibetan Plateau where it reaches peak. It then moves to and end up in the south and southeast Sichuan Basin. The progression of the RREs is found to be associated with a counter-clockwise rotation of anomalous surface winds associated with a developing mesoscale surface low-pressure center, which is further associated with the southeastward progression of a large-scale synoptic scale wave. The easterly phase of the winds in the counter-clockwise rotation causes upslope motion perpendicularly toward the terrain that leads to maximum rainfall. The findings illustrate how large-scale circulations, mesoscale systems, and specific topographic features interact to create the RREs evolution in Yaan.

How to cite: Hu, X.: The Evolution Process of Warm Season Intense Regional Rainfall Events in Yaan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1349, https://doi.org/10.5194/egusphere-egu2020-1349, 2020.

EGU2020-628 | Displays | CL4.17

The Karakoram Predicament

Bibhasvata Dasgupta and Prasanta Sanyal

The anomalous behaviour of Karakoram Glaciers (Hewitt, 2005) in the backdrop of a warming planet has been a decade long debate baffling climatologists worldwide. While a lot of effort has been given to understand this behaviour, very little has been explored with respect to the factors that favour glaciation rates. A fundamental approach to glacial mass budget calculation involves a simplistic assessment of accumulation and melt. Analysis of meteorological datasets over the last 40 years yields conflicting scenarios. On one hand, we have observed a significant negative trend in winter rainfall and snowfall amount coupled with increasing surface temperatures and vertical mixing of atmospheric vapour. On the other hand, parameters that reflect the bulk of a cryospheric reservoir such as snow depth, dry snow/wet snow percentages show stable to increasing trend. Between lower moisture input and potential ablation rates, the steady-state nature of Karakoram glaciers have emulated optimism in the works of climatologists worldwide. In this study, we have tried to formulate an ‘accumulation index’ as a function of moisture input, surface temperature and atmospheric vertical circulation. Precipitation trends are negative yet periodic which suffices a positive accumulation rate. At the same time, local factors such as debris field and wet snow cover area help preserve the accumulated bulk of a given winter through the upcoming warm summers. However, in a potentially warming planet, accumulation rates aren't proportional to ambient temperature. Studies show that the mass balance turns sharply negative at temperatures above -10 °C due to accelerated ablation which overcompensates accumulation. This makes the Karakoram phenomenon a function of global meteorology rather than local factors i.e. debris cover, vorticity, etc. Therefore, we suggest that the Karakoram Glaciers aren’t behaving anomalously, but lagging in phase with central and eastern Himalayan glaciated regions.

How to cite: Dasgupta, B. and Sanyal, P.: The Karakoram Predicament, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-628, https://doi.org/10.5194/egusphere-egu2020-628, 2020.

The Indus River system originates within high mountain ranges of Hindukush, Karakoram and Himalayans (HKH) and contains the largest cryosphere outside the Polar Regions. It assures livelihood of millions of people, before descending into the Arabian Sea. Different processes, which involve complex interplays of contrasting synoptic-scale circulations and regional topography, largely govern precipitation, which varies significantly with space-time and altitudes in upper Indus basin (UIB). In contrast, the Lower Indus (LI) has arid to semi-arid climate and depends heavily on melt-dominated water supply from the UIB. Considering climate hotspot nature of this basin, a pragmatic assessment of future precipitation and temperature changes at basin-scale are fundamental to provide effective policy advice.

However, long-term, reliable and consistent data to effectively simulate orographic climatology within UIB that largely governs the basin hydrology is scarce. Consequently, even the mean direction of regional climate is highly controversial and ranging from rapidly retreating glaciers to the so-called “Karakoram anomaly”. While the provision of additional useful data is still an ongoing process, improvements in simulation methodologies using the available observational network, can still offer some opportunities to reduce uncertainties. One way is to make use of large-scale atmospheric circulations, which are modeled more reliably than precipitation itself. Moreover, the circulation-precipitation relationships can additionally explain governing mechanisms to improve confidence in resulting simulations.

In our study, we modeled observed precipitation and temperature (Tmax and Tmin) dynamics of the entire basin. A seasonally and spatially differentiated analysis was done using improved UIB monitoring, which provide enhanced spatio-altitudinal information. By taking advantage of the recent high-altitudes (HA) installations within UIB, we argue that precipitation at relatively low-altitudes only quantitatively differ from HA rates, but share a significant joint variability at sub-regional scales. Therefore, the low-altitude stations (historic) can provide reasonable inferences about more uncertain orographic structure of UIB. We adapted generalized linear models (GLMs) with Tweedie and Gamma distributions to model precipitation and multiple linear regressions (MLRs) for temperature simulations using time-series of carefully selected regionally representatives, as predictand and principal component scores of different larger-scale dynamical and thermodynamic variables from ERA-Interim reanalysis, as predictors. The final regression models, which were identified through a cross validation framework, showed significant statistical skills and physical consistency to simulate observed seasonal precipitation and temperature variability over larger spatio-altitudinal scales.    

We further used the predictors to identify better performing regional and seasonal CIMP5- GCMs by comparing predictors through Taylor diagrams in the historical period. ERA-Interim predictors served as a basis for evaluation. Reanalysis uncertainties were assessed by using also NCEP-NCAR-II and ERA5 reanalysis. We considered two radiative forcings (RCP4.5 and RCP8.5) to analyze median change signals of precipitation (temperature) during mid (2041-2070) and end of 21st century (2071-2100). The signal to noise ratio was computed to evaluate future changes compared to observed natural variability. 

 

How to cite: Pomee, M. S., Hertig, E., and Ahmad, B.: Precipitation and temperature projections for the Indus River basin of Pakistan during 21st century using statistical downscaling , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5828, https://doi.org/10.5194/egusphere-egu2020-5828, 2020.

EGU2020-3079 | Displays | CL4.17

Elevation-dependent warming in the tropical and subtropical Andes

Osmar Bonfim, Luca Mortarini, Ivan Toro, and Elisa Palazzi

How to cite: Bonfim, O., Mortarini, L., Toro, I., and Palazzi, E.: Elevation-dependent warming in the tropical and subtropical Andes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3079, https://doi.org/10.5194/egusphere-egu2020-3079, 2020.

EGU2020-12093 | Displays | CL4.17

High Resolution Modeling of a Mountain Glacier in the Chilean Patagonia

Héctor Navarrete, Marcelo Somos-Valenzuela, and Ivo Fustos-Toribio

Changes in climate are dramatically shaping the planet, imposing new conditions, and constraints on water systems that are not easy to foresee. The need for an integrated application of methodologies that links advances in climatology with hydrology and water management is now undeniably necessary. Given the latitude of the Chilean Patagonia, the effects of climate change are beginning to show more dramatically. However, there are analogous examples of glaciated systems in other parts of the world that can offer valuable insight into the effects that increases in temperature would have on the evolution of river flows in Patagonia. Where glaciers are present, stream flows are positively/negatively correlated with temperature/precipitation. In equilibrium, glaciers regulate river flows by smoothing the annual streamflow variations.  In the Chilean Patagonia, significant attention has been given to the evaluation of lake formation and the impacts of potential Glacier Lakes Outburst Floods, and studies of glacier melting contribution to sea-level rise. In this study, we will use the Weather Research Forecast Hydro (WRF-Hydro) with the Crocus snow/glacier module to model the Paulina glacier hydrology and to estimate the streamflow in the NEF river basin. We use a nested watershed to study and parameterize the models in high resolution. We carried fieldwork to collect streamflow and climate data to calibrate and correct the model results. We used an Unmanned Aerial Vehicle (UAV) to generate a high-resolution elevation model of the glacier terminal, as well as the use of Landsat imagery to determine changes in the glacier area, snow line, and ASTER imagery to determine changes in thickness.

Our expected result is the quantification of the volume contribution of freshwater from a small mountain glacier. Further, we will use this parameterization at a regional setting to evaluate the potential of transferring parameters from a small glacier watershed to a broader context in the Baker River Basin in the Chilean Patagonia.

How to cite: Navarrete, H., Somos-Valenzuela, M., and Fustos-Toribio, I.: High Resolution Modeling of a Mountain Glacier in the Chilean Patagonia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12093, https://doi.org/10.5194/egusphere-egu2020-12093, 2020.

EGU2020-1924 | Displays | CL4.17

The rain-shadow effect for the Ethiopian Highlands

Bert Van Schaeybroeck, Céline Van den Hende, Jan Nyssen, Sander Van Vooren, Michiel Van Ginderachter, and Piet Termonia

Recent work highlight the ambiguities in the definition and difficulties in quantification of the rain shadow effect. According to this phenomenon  there is a reduced rainfall on the leeward side of the mountains as compared to the windward side. We present a statistical approach to study this effect in case climatological time series of model data are available in geographically complex regions. Our approach requires only gridded rainfall, wind and  model elevation. We disentangle the aspects that contribute to the rainfall enhancement at the windward side. We apply the approach on the summer mountain precipitation (kerimt) over the Ethiopian Highlands based a new 21-year long climate run with the regional climate model ALARO-0 at a resolution of 4 km. There is an overall increased rainfall of 20% for windward events as compared to leeward events, but locally this can exceed 150%. This increase can be attributed to the positive differences between windward and leeward events in their frequency of occurrence, and, in the rainfall quantity during rainfall events. Differences in rainfall frequency, on the other hand, are spatially inhomogeneous and smaller than the spatial variations of the rainfall frequencies themselves.

How to cite: Van Schaeybroeck, B., Van den Hende, C., Nyssen, J., Van Vooren, S., Van Ginderachter, M., and Termonia, P.: The rain-shadow effect for the Ethiopian Highlands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1924, https://doi.org/10.5194/egusphere-egu2020-1924, 2020.

EGU2020-8945 | Displays | CL4.17

Temperature monitoring in mountain regions using reanalyses: Lessons from the Alps

Simon C. Scherrer and Sven Kotlarski

The monitoring of near-surface temperature is a fundamental task of climatology that remains especially challenging in mountain regions. Here we assess the regional monitoring capabilities of modern reanalysis products in the well-monitored northern Swiss Alps during the last 20 to almost 60 years. Monthly and seasonal 2 m air temperature (T2m) anomalies of the global ERA5 and the three regional reanalysis products HARMONIE, MESCAN-SURFEX and COSMO-REA6 are evaluated against high quality in situ observational data for a low elevation (foothills) mean, and a high elevation (Alpine) mean. All reanalysis products show a good year-round performance for the foothills with the global reanalysis ERA5 showing the best overall performance. The high-resolution regional reanalysis COSMO-REA6 clearly performs best for the Alpine mean, especially in winter. Most reanalysis data sets show deficiencies at high elevations in winter and considerably overestimate recent T2m trends in winter. This stresses the fact that even in the most recent decades utmost care is required when using reanalysis data for near-surface temperature trend assessments in mountain regions. Our results indicate that a high-resolution model topography is an important prerequisite for an adequate monitoring of winter T2m using reanalysis data at high elevations in the Alps. Assimilating T2m remains challenging in highly complex terrain. The remaining shortcomings of modern reanalyses also highlight the continued need for a reliable and dense in situ observational monitoring network in mountain regions.

 

How to cite: Scherrer, S. C. and Kotlarski, S.: Temperature monitoring in mountain regions using reanalyses: Lessons from the Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8945, https://doi.org/10.5194/egusphere-egu2020-8945, 2020.

EGU2020-18693 | Displays | CL4.17

An Assessment of Long-Term Temperature Variability in the Sierra de Guadarrama (Spain)

Cristina Vegas Cañas, J. Fidel González Rouco, Jorge Navarro Montesinos, Etor E. Lucio Eceiza, Elena García Bustamante, Inés Álvarez Arévalo, Ernesto Rodríguez Camino, Andrés Chazarra Bernabé, and Félix García Pereira

This work provides a first assessment of temperature variability from interannual to multidecadal timescales in the Sierra de Guadarrama, located in central Spain, from observations and regional climate model (RCM) simulations. Observational data are provided by the Guadarrama Monitoring Network (GuMNet; www.ucm.es/gumnet) at higher altitudes and by the Spanish Meteorological Agency (AEMet) at lower sites. An experiment at high horizontal resolution of 1 km using the Weather Research and Forecasting (WRF) RCM, feeding from ERA Interim inputs, is used. Through model-data comparison, it is shown that the simulations are annually and seasonally highly representative of the observations, although there is a tendency in the model to underestimate observational temperatures, mostly at low altitudes. Results show that WRF provides an added value in relation to the reanalysis, with improved correlation and error metrics relative to observations.

The analysis of long term trends shows no significant temperature trends in the area during the last 20 years. However, when spanning the analysis to the whole observational period, back to the beginning of the 20th century at some sites, significant annual and seasonal temperature increases of ca. 1degC/century develop, most of it happening during de 1970s.

The temporal variability of temperature anomalies in the Sierra de Guadarrama is highly correlated with the temperatures in the interior of the Iberian Peninsula. This relationship can be extended broadly over south-western Europe.

How to cite: Vegas Cañas, C., González Rouco, J. F., Navarro Montesinos, J., Lucio Eceiza, E. E., García Bustamante, E., Álvarez Arévalo, I., Rodríguez Camino, E., Chazarra Bernabé, A., and García Pereira, F.: An Assessment of Long-Term Temperature Variability in the Sierra de Guadarrama (Spain), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18693, https://doi.org/10.5194/egusphere-egu2020-18693, 2020.

EGU2020-9905 | Displays | CL4.17

Alleviation of an arctic sea ice bias in a coupled model through modifications of the subgrid scale orographic parameterization

Guillaume Gastineau, Francois Lott, Juliette Mignot, and Frederic Hourdin

In the IPSL-CM6A-LR model, the subgrid scale orography (SSO) parameterization imposes at low level a blocked flow drag opposed to the local flow and a lift that is perpendicular to the local flow. We suggest that their tuning impacts of the Arctic sea ice coverage and the large scale oceanic circulation in climate models. In forced atmospheric mode, increasing the blocking and reducing the lift leads to an equatorward shift of the Northern Hemisphere subtropical jet, and a reduction of the mid latitude eddy-driven jet. It improves the simulated variability, with a reduced storm-track, and increased blocking frequency over Greenland and Scandinavia. Second, it contributes to cool the polar low-troposphere in winter. We show that the reduction in eddy activity yields a reduction of the poleward heat fluxes in the low troposphere of the mid-latitudes and polar regions. Transformed Eulerian Mean diagnostics also show that there is a reduction of the low-level eddy-driven subsidence in the polar region consistent with the simulated cooling. The changes are amplified in the coupled model, as the eddy-driven jet shift further south. The low-troposphere polar cooling is further amplified by the temperature and albedo feedbacks in link with the Arctic sea-ice. This corrects the warm winter bias and the lack of sea-ice that were present over the Arctic without changing the SSO parameters. This also impacts the ocean, with an equatorward shift of the Northern Hemisphere oceanic gyre, and a weakening of the AMOC.

How to cite: Gastineau, G., Lott, F., Mignot, J., and Hourdin, F.: Alleviation of an arctic sea ice bias in a coupled model through modifications of the subgrid scale orographic parameterization, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9905, https://doi.org/10.5194/egusphere-egu2020-9905, 2020.

EGU2020-4767 | Displays | CL4.17

Three recommendations to improve simulations with the Intermediate Complexity Atmospheric Research (ICAR) model

Johannes Horak, Marlis Hofer, and Alexander Gohm

The output of general circulation models is too coarse to adequately capture the features influencing local climate and weather, particularly in complex topography. To asses the long-term impact of a changing global climate in mountainous regions, regional climate models need to be run on a fine spatial and temporal grid. Here the Intermediate Complexity Atmospheric Research (ICAR) model is a computationally frugal and physics based alternative to full physics regional climate models such as the Weather Research and Forecasting (WRF) model. A sizable portion of the computational efficiency of ICAR stems from its application of linear mountain wave theory to determine the wind field in the domain, thereby avoiding a numerical solution of the Navier-Stokes equations of motion. Heat, moisture and other atmospheric quantities are then advected in this wind field. Microphysical conversion processes between water vapor and various hydrometeor species are handled by a complex microphysics scheme. Altogether ICAR does not require measurements and enables computationally cheap downscaling, particularly in mountainous regions with complex topography, yielding a physically consistent set of atmospheric variables. However, in a real-world application and evaluation of ICAR we observed a strong sensitivity of the model performance to the elevation of the model top (Horak et al., 2019).

We present three recommendations, derived from idealized simulations, that improve different aspects of ICAR simulations. The simulations constitute an idealized ridge experiment with a non-dimensional mountain height of 0.5. The ridge is specified by a witch of Agnesi function and the sounding characterized by a saturated, horizontally and vertically homogeneous atmosphere with constant and stable stratification. The wind field calculated by ICAR is compared to the exact analytical solution. Furthermore, the water vapor, suspended hydrometeor and precipitating hydrometeor fields are used as proxies to identify inconsistencies in the model output, such as the dependence of the results on the elevation of the model top. To highlight the deviations of ICAR results from a full physics model, resulting from non-linearities in the wind field, the ICAR output was additionally compared to that of a WRF simulation. The results of our investigation strongly suggest that ICAR simulations can be significantly improved by (i) calculating the Brunt-Väisälä frequency from the forcing data set instead of the perturbed state of the atmosphere, (ii) setting the model top to an elevation of at least 11.4 km and, (iii) by applying a zero value boundary condition to the water vapor and hydrometeor species at the model top. To our knowledge none of the preceding studies employing ICAR satisfied these three conditions. Overall our investigation deepens the understanding of the ICAR model sensitivity to crucial model components, thereby increasing the potential of the model as a tool for long-term impact studies in data-sparse regions with complex topography.

References
Horak, J., Hofer, M., Maussion, F., Gutmann, E., Gohm, A., and Rotach, M. W. (2019), Assessing the added value of the Intermediate Complexity Atmospheric Research (ICAR) model for precipitation in complex topography. Hydrology and Earth System Sciences, 23(6), 2715-2734. 

How to cite: Horak, J., Hofer, M., and Gohm, A.: Three recommendations to improve simulations with the Intermediate Complexity Atmospheric Research (ICAR) model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4767, https://doi.org/10.5194/egusphere-egu2020-4767, 2020.

EGU2020-12080 | Displays | CL4.17

Topographic effects on longwave and shortwave surface radiation in a kilometre-scale regional climate model

Christian Steger, Jesus Vergara-Temprado, Nikolina Ban, and Christoph Schär

Weather and climate in alpine areas are strongly modulated by complex topography. Besides its influence on atmospheric flow and thermodynamics (such as orographic precipitation and foehn winds), topography also affects incoming surface radiation in various ways. Direct shortwave radiation might be blocked due to shading effects from neighbouring terrain. Diffuse shortwave radiation can be altered by a reduced sky view factor and reflectance of radiation from surrounding terrain. Similar, the net longwave radiation is affected by emissions from neighbouring terrain.

Radiation in virtually all state-of-the-art weather and climate models is only computed in the vertical direction using the column approximation, and the above-mentioned effects are usually not represented. Still, a few models consider topographic effects by correcting incoming radiation fluxes based on topographic parameters like slope aspect and angle, elevation of horizon, and sky view factor. The Consortium for Small-scale Modeling (COSMO) model includes such a scheme, which is currently only used in the Numerical Weather Prediction mode of the model.

In this study, we apply the surface radiation correction scheme in the climate mode of COSMO. To study its impacts in detail, we force COSMO’s land-surface model (TERRA) offline with output from a COSMO simulation, which was run without radiation correction at a horizontal resolution of 2.2 km and for a domain covering the Alps. A useful proxy to study the impact of the correction scheme is snow cover duration (SCD), because snow cover length is, amongst other factors, strongly controlled by incoming surface radiation that drives ablation. A comparison of SCD simulated by COSMO with satellite-derived snow cover data (MODIS and AVHRR) reveals a distinctive bias, where SCD is overestimated for south-facing grid cells and underestimated for north-facing cells. Applying the radiation correction in the offline TERRA simulation shows only a moderate reduction of the bias. One reason for this minor improvement is the fact that the topographic parameters are computed from a smoothed digital elevation model (DEM) – thus the impact of the radiation correction scheme is damped. If topographic parameters are computed from unsmoothed DEM, biases in SCD are further reduced. Currently, further sensitivity experiments are conducted to investigate the effect of computing the topographic parameters from a sub-grid DEM and to assess the energy conservation of the radiation correction scheme.

How to cite: Steger, C., Vergara-Temprado, J., Ban, N., and Schär, C.: Topographic effects on longwave and shortwave surface radiation in a kilometre-scale regional climate model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12080, https://doi.org/10.5194/egusphere-egu2020-12080, 2020.

In fair weather conditions, thermally driven local winds often dominate the wind climatology in deep Alpine valleys resulting in a unique wind climatology for any given valley. The accurate forecasting of these local wind systems is challenging, as they are the result of complex and multi-scale interactions. Even more so, if the aim is an accurate forecast of the winds from the near-surface to the free atmosphere, which can be considered a prerequisite for the accurate prediction of mountain weather.  This study investigates the skill of a high-resolution numerical weather prediction (NWP) model, the most current version of the COSMO-DWD model,  at 1.1 km grid spacing in simulating the thermally driven local winds in the Swiss Alps for a month-long period in September 2016. The study combines the evaluation of the surface winds in several Alpine valleys with a more detailed evaluation of the wind evolution throughout the valley depth for a particular site in the Swiss Rhone valley. The former is based on a comparison with observations from the operational measurement network of MeteoSwiss, while the latter uses data from a wind profiler stationed at Sion airport.

How to cite: Schmidli, J. and Ghasemi, A.: Evaluation of thermally driven local winds in the Swiss Alps simulated by a high-resolution NWP model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5631, https://doi.org/10.5194/egusphere-egu2020-5631, 2020.

EGU2020-8101 | Displays | CL4.17

The impact of large-scale winds on thermally driven flows and exchange processes over mountainous terrain

Jan Weinkaemmerer, Ivan Bašták Ďurán, and Jürg Schmidli

In the convective boundary layer over mountainous regions, the mean values and the fluxes of quantities like heat, mass, and momentum are strongly influenced by thermally induced flows. Several studies have pointed out that the enhanced warming of the air inside a valley can be explained by the valley-volume effect whereas the cross-valley circulation leads to a net export of heat to the free atmosphere. We are interested in the influence of an upper-level wind on the local circulations and the boundary-layer properties, both locally and in terms of the horizontal mean, as this aspect has not yet received much attention. LES are carried out over idealized, two-dimensional topographies using the CM1 numerical model. For the analysis, turbulent, mean-circulation, and large-scale contributions are systematically distinguished. Also, budget analyses are performed for the turbulence kinetic energy and the turbulent heat and mass flux. Based on the first results for periodic topographies, no crucial influence on the horizontally averaged heat-flux and temperature profile can be observed, even though the flow pattern of the thermal wind is qualitatively changed. In addition to that, the impact on moisture transport will be evaluated and simulations over different topographies as well as for different atmospheric conditions and surface properties will be presented.

How to cite: Weinkaemmerer, J., Bašták Ďurán, I., and Schmidli, J.: The impact of large-scale winds on thermally driven flows and exchange processes over mountainous terrain, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8101, https://doi.org/10.5194/egusphere-egu2020-8101, 2020.

EGU2020-4713 | Displays | CL4.17

Eulerian and Lagrangian perspectives on a Foehn event in the Alpine region

Lukas Jansing and Michael Sprenger

Foehn-related research has a long-standing tradition in mountain meteorology. In this context, the reason for Foehn air warming and the factors determining the descent of the air into the valleys have gained particular interest. Here, we readdress those research questions by combining a COSMO model hindcast at 1 km horizontal and 10 min temporal resolution with air parcel trajectories for a South Foehn case study in November 2016. The sub-synoptic situation in the model is studied using horizonal cross sections at different levels. Vertical cross sections in the Po valley and along the axes of major Foehn valleys complement the Eulerian analysis.

The selected event is characterized by its long duration, a far northern extent and exceptionally strong gusts. A low-level jet is discernible west of the Alps and a pronounced north-south pressure gradient develops. A striking feature is the strong tilt of the isentropes downstream of the Alpine crest. Trajectories reveal the versatile pathways of air parcels over major Alpine passes before they descend into the Foehn valleys. Differences with respect to upstream ascent and descent are observed for the different valleys. By tracing meteorological variables along the trajectories, the relative importance of adiabatic and diabatic processes for the Foehn air warming is quantified. The properties of air parcels that descend into the valleys or stay at higher levels are contrasted in order to identify factors that determine the descent.

The case study will set the scene for a forthcoming detailed analysis of Foehn flows based on online trajectories that make use of the wind fields at every model time step. The analysis will be extended to a number of cases representing the different South Foehn varieties. We will trace the temperature tendencies due to all diabatic processes (cloud processes, radiation, turbulence) along the trajectories in order to quantify their respective importance for Foehn air warming. First results in this extended framework will be presented.

How to cite: Jansing, L. and Sprenger, M.: Eulerian and Lagrangian perspectives on a Foehn event in the Alpine region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4713, https://doi.org/10.5194/egusphere-egu2020-4713, 2020.

EGU2020-1708 | Displays | CL4.17

Investigation of sea breeze and foehn in the Dead Sea valley with remote sensing observations and WRF model simulations

Dorita Rostkier-Edelstein, Pavel Kunin, and Pinhas Alpert

The atmospheric dynamics in the Dead Sea Valley has been studied for decades. However, the studies relied mostly on surface observations and simple coarse-model simulations, insufficient to elucidate the complex flow in the area. In this seminar I will present a first study using high resolution (temporal and spatial) and sophisticate both, measurements and modeling tools. We focused on afternoon hours during summer time, when the Mediterranean Sea breeze penetrates into the Dead Sea Valley and sudden changes of wind, temperature and humidity occur in the valley.

An intense observations period in the area, including ground-based remote sensing and in-situ observations, took place during August and November 2014. The measurements were conducted as part of the Virtual Institute DEad SEa Research Venue (DESERVE) project using the KITcube profiling instruments (wind lidars, radiometer and soundings) along with surface Energy Balance Station. These observations enabled analysis of the vertical profile of the atmosphere at one single location at the foothills of Masada, about 1 km west of the Dead Sea shore.

High resolution (1.1 km grid size) model simulations were conducted using the Advanced Research Weather version of the Weather Forecast and Research mesoscale model (WRF). The simulations enabled analysis of the 3D flow at the Dead Sea Valley, information not provided by the observations at a single location. Sensitivity tests were run to determine the best model configuration for this study.

Our study shows that foehn develops in the lee side of the Judean Mountains and Dead Sea Valley in the afternoon hours when the Mediterranean Sea breeze reaches the area. The characteristics of the Mediterranean Sea breeze penetration into the valley and of the foehn (e.g. their depth) and the impact they have on the boundary layer flow in the Dead Sea Valley (e.g. sudden changes in temperature, humidity and wind) are conditioned to the daily synoptic and mesosocale conditions. In the synoptic scale, the depth of the seasonal pressure trough at sea level and the height of inversion layers play a significant role in determining the breeze and foehn characteristics. In the mesoscale, the intensity of the Dead Sea breeze and the humidity brought by it determines the outcomes at the time of Mediterranean Sea breeze penetration and foehn development. Dynamically, the foehn is associated with a hydraulic jump.

Hypothetical model simulations with modified terrain and with warmer Mediterranean Sea surface temperature were conducted to reveal the relative contribution of each of these factors and of their synergism on the observed phenomena. The information provided by the factor separation study can be useful in future climate projections, when a warmer Mediterranean Sea is expected.

The forecasting feasibility of foehn and the sudden changes in the Dead Sea valley 24 hours in advance using WRF is suggested following the present study. These forecasts can be most valuable for the region affected by pollution penetration from the metropolitan coastal zone.

How to cite: Rostkier-Edelstein, D., Kunin, P., and Alpert, P.: Investigation of sea breeze and foehn in the Dead Sea valley with remote sensing observations and WRF model simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1708, https://doi.org/10.5194/egusphere-egu2020-1708, 2020.

EGU2020-13367 | Displays | CL4.17

Blocking, gap flow and mountain waves along the coastal escarpment of South Africa

Deon van der Mescht, Markus Geldenhuys, and Liesl Dyson

A fatal crash of a light aircraft occurred in the complex coastal mountainous terrain along the South African South Cape in December 2015. An investigation of the meteorological conditions on that day revealed the interaction between mountain waves, gap flow and blocking near a cold front and terrain. The crash made it clear that it is necessary to provide forecasters with knowledge of the turbulence that will arise under these circumstances. Against this background, experiments were carried out near the crash site, with automatic weather stations and radio stations to answer this question. Turbulence has been successfully characterized by the Froude number, Froude altitude scale and thermal wind equation. The Bernoulli equation, which classifies the gap flow, was not helpful due to the effect of the upwind blocking area. Phenomena in descending order of the generated wind force were, compression effect above the peak (44.7 ms-1), blocking (26 ms-1) and finally gap flow. The gap flow had a negative impact on the strength of the barrier jet. Phenomena in descending order of the turbulence intensity were; gap flow, mountain wave/rotors and finally blocking. Gap flow generated higher vertical speeds than mountain waves. These mountain waves generated the highest vertical speeds measured in South Africa to date, combined with the waves of the shortest wavelength. A blocking jet with a depth of 600 m and a width of 80 km changed the formation of mountain waves significantly. The blocking jet was so strong, that it extended up to 30 km beyond the end of the mountain range. Most likely, a combination of mountain waves, gap flow and blocking contributed to the crash, which shows that these three features cannot be seen as separate processes.

How to cite: van der Mescht, D., Geldenhuys, M., and Dyson, L.: Blocking, gap flow and mountain waves along the coastal escarpment of South Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13367, https://doi.org/10.5194/egusphere-egu2020-13367, 2020.

EGU2020-9508 | Displays | CL4.17

Evaluating WRF in highly complex terrain – a city surrounded by mountains

Helen Ward, Mathias Rotach, Alexander Gohm, Martin Graus, Thomas Karl, Lukas Umek, Maren Haid, and Thomas Muschinski

Accurate prediction of meteorological conditions is particularly important for cities in mountainous terrain, where populations are frequently exposed to extreme weather and poor air quality. However, the wide range of processes that interact across different scales and considerable spatiotemporal variability in these regions present challenges to measurement and modelling. Analysis of turbulence observations in and around Innsbruck reveals similarities and differences in the climate of this alpine city compared to previously-studied urban sites. In particular, the effect of the wind regime (e.g. thermally-driven circulation, foehn) on the timing and magnitude of the surface energy budget is explored. These observations are then used in a detailed assessment of the performance of the Weather Research and Forecasting (WRF) model (at 1-km grid spacing) including the multi-level urban surface scheme. It is found that WRF captures the valley-wind circulation reasonably well, although underestimates the turbulent kinetic energy both inside and outside the city. Even in this complex mountainous setting, the multi-level urban scheme is able to improve model performance.

How to cite: Ward, H., Rotach, M., Gohm, A., Graus, M., Karl, T., Umek, L., Haid, M., and Muschinski, T.: Evaluating WRF in highly complex terrain – a city surrounded by mountains, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9508, https://doi.org/10.5194/egusphere-egu2020-9508, 2020.

EGU2020-6338 | Displays | CL4.17

small-scale updrafts and snow growth in stratiform orographic clouds

Bart Geerts, Coltin Grasmick, and Robert Rauber

Stratiform clouds over mountains are subject to locally strong updrafts that impact snow growth. These vertical drafts occur at a range of horizontal scales and depth, and include vertically propagating gravity waves, shallow terrain-driven (evanescent) waves, embedded convection, and shear-driven overturning cells. The latter essentially are Kelvin-Helmholtz (KH) waves; we find them to be remarkably common in deep stratiform precipitation systems associated with frontal disturbances over complex terrain, as is evident from transects of vertical velocity and 2D circulation, obtained from a 3-mm airborne Doppler radar. The high range resolution of this radar (~40 m) allows detection and depiction of KH waves in fine detail. These waves are observed in a variety of wavelengths (<100 m to > 1 km), depths, amplitudes, and turbulence intensities. Proximity rawinsonde data confirm that they are triggered in layers where the Richardson number is very small. Complex terrain may locally enhance wind shear, leading to KH instability.  In some KH waves, the flow remains mostly laminar, while in other cases it breaks down into turbulence. KH waves are frequently locked to the terrain, and occur at various heights, including within the free troposphere, at the boundary layer top, and close to the surface. They are observed not only upwind of terrain barriers, as has been documented before, but also in the wake of steep terrain, where the waves can be highly turbulent.  Doppler radar data and flight-level cloud probe data are used to explore the dynamics of KH waves and the response in terms of droplet growth, ice initiation, and snow growth.

How to cite: Geerts, B., Grasmick, C., and Rauber, R.: small-scale updrafts and snow growth in stratiform orographic clouds , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6338, https://doi.org/10.5194/egusphere-egu2020-6338, 2020.

EGU2020-3266 | Displays | CL4.17

Response of Orographic Precipitation to Subsaturated Low-Level Layers

Shizuo Fu, Richard Rotunno, and Huiwen Xue

Orographic precipitation is, on the one hand, an important source of fresh water, and on the other hand, a potential cause of floods and other disasters. Previous studies have focused on the situation where the whole atmosphere is saturated and nearly moist-neutral. However, there are times when subsaturated low-level layers are observed to be below saturated, nearly moist-neutral, upper-level layers.

A series of idealized two-dimensional simulations are performed here to investigate the impact of this subsaturated low-level layer on orographic precipitation. It is found that the impact is mainly controlled by a nondimensional parameter and two competing effects. The nondimensional parameter is N2zt/U, where N2 and zt are, respectively, the dry Brunt–Väisälä frequency and depth of the subsaturated low-level layer, and U the cross-mountain wind speed. When the nondimensional parameter exceeds a critical value, the decelerated region on the upwind side of the mountain moves upwind, resulting in weak surface precipitation near the mountain peak. When it is smaller than the critical value, surface precipitation occurs near the mountain peak.

The two competing effects are: 1) the vapor-transport effect, meaning that increasing zt decreases the amount of vapor transported to the mountain, and hence tends to decrease surface precipitation; and 2) the updraft width effect, meaning that increasing zt enhances flow blocking, producing a wider updraft over the upwind slope, and hence tends to increase surface precipitation. When the vapor-transport effect dominates, surface precipitation decreases with zt. When the updraft-width effect dominates, surface precipitation increases with zt.

How to cite: Fu, S., Rotunno, R., and Xue, H.: Response of Orographic Precipitation to Subsaturated Low-Level Layers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3266, https://doi.org/10.5194/egusphere-egu2020-3266, 2020.

 In the winter season of the Gangwon region, where is located in the mid-eastern part of the Korean Peninsula, easterly wind that is induced by Siberian-high frequently causes heavy snowfall. When dry and cold air mass from continent is advected over the East sea of Korea that is relatively warmer than the continental air mass, thermal instability in the lower troposphere increases, which can induce convective cloud rolls. The clouds accompanied by the snowfall are penetrated to inland by the prevailing easterly wind. The Korean Peninsula has the geographical characteristics that mountain ranges exist along the eastern coastline, that can block easterly wind and induce upward motion over the upstream region. Previous studies presented key factors which can affect the snowfall in Gangwon region are air-sea temperature difference, wind turning layer, Froud number (FN), and the horizontal temperature contrast between land and sea. In this study, the idealized experiment is conducted by utilizing the Weather Research and Forecasting (WRF) model to examine effects of each key factor on the snowfall structure. The individual impact of each key factor is investigated by changing the variables while other factors were controlled. When the height of the wind turning layer is higher than the mountain, the maximum snowfall is located over the mountain ridge in the large FN, whereas the snowfall is limited to the windward area in the small FN. On the other hand, when the wind turning layer is lower than the mountain, it shows that the snowfall cannot cross the mountain regardless of the FN. When the horizontal temperature contrast between the land and the sea is large enough, the snowfall is limited to the seaward area off the coastal line.

How to cite: Yoo, S. and Chang, E.-C.: A Study on the Key Factors of Snowfall structure in mid-eastern region of the Korean Peninsula by Using idealized numerical Experiment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20854, https://doi.org/10.5194/egusphere-egu2020-20854, 2020.

CL4.18 – Global energy and water exchanges: implications for the atmospheric and oceanic circulation

EGU2020-10729 | Displays | CL4.18

Trends and variations in heat uptake of the Arctic climate system

Michael Mayer, Leopold Haimberger, Johannes Mayer, Takamasa Tsubouchi, Steffen Tietsche, and Hao Zuo

A recent assessment of the coupled atmosphere-ocean-sea-ice energy budget of the Arctic using largely independent observational data sources demonstrated a high level of consistency of yearly means and annual cycles of lateral and vertical energy fluxes and storage terms. Moreover, contemporary Arctic regional energy imbalance has been found to be of similar magnitude (~1Wm-2) as Earth’s global energy imbalance. This suggests that Arctic amplification is predominantly a surface phenomenon and its imprint on the vertically integrated energy budget is small. Nevertheless, the annual cycle of the observed Arctic energy budget has amplified over the past two decades, with marked changes in seasonal patterns of energy fluxes and storage. This contribution draws on satellite observations, mooring-derived oceanic fluxes, data from the fifth European Re-Analysis (ERA5), and state-of-the-art ocean reanalyses to examine recent changes in Arctic heat accumulation as well as trends and variability in seasonal energy budgets. Implications for seasonal energy transports from mid-latitudes towards the Arctic will be discussed as well.

How to cite: Mayer, M., Haimberger, L., Mayer, J., Tsubouchi, T., Tietsche, S., and Zuo, H.: Trends and variations in heat uptake of the Arctic climate system, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10729, https://doi.org/10.5194/egusphere-egu2020-10729, 2020.

EGU2020-4104 | Displays | CL4.18

Evidence for atmosphere-ocean meridional energy transport compensation in the past decades

Wilco Hazeleger, Yang Liu, and Jisk Attema

We present evidence of compensation between the atmosphere and ocean's meridional energy transport variations, also known as Bjerknes compensation. Motivated by previous studies with mostly numerical climate models, we analyze compensation using a range of atmosphere and ocean reanalysis datasets. We show that Bjerknes compensation is present at almost all latitudes from 40 degrees North to 70 degrees North in the Northern Hemisphere from interannual to decadal time scales. In contrast to results from some numerical climate models, which attribute the compensation to variations of eddy energy transports in the atmosphere in response to changes of ocean heat transport and sea ice at multi-decadal time scales, we find a response of the zonal mean of poleward energy transport to ocean heat transport variability that leads to compensation. This is apparent in a meridional shift of the Ferrel Cell at midlatitudes at decadal time scales in winter. This shift in the cell itself is driven by changes in the eddy momentum flux and related baroclinicity. The oceanic response to atmospheric heat transport variations associated by the shift is primarily wind driven. In summer, there is hardly compensation and the proposed mechanism is not at work. Interestingly, these results are robust among all reanalysis datasets and can provide a benchmark for climate modelling studies.

How to cite: Hazeleger, W., Liu, Y., and Attema, J.: Evidence for atmosphere-ocean meridional energy transport compensation in the past decades, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4104, https://doi.org/10.5194/egusphere-egu2020-4104, 2020.

How much Earth warms in response to radiative forcing is determined by the net radiative feedback, which quantifies how much more energy is radiated to space for a given increase in surface temperature.  Estimates from present day observations of temperature and earth's energetic imbalance yield a strongly negative radiative feedback, or, equivalently, a very low climate sensitivity, which lies outside the range of climate sensitivity in coupled climate models. This discrepancy in radiative feedbacks can be linked to discrepancies between models and observations in the pattern of historical sea-surface temperature (SST) anomalies driving tropical atmospheric circulation and radiative damping.  Indeed, we find that an atmospheric model (CAM5) forced with observed SSTs yields a net feedback that is consistent with observational estimates, but up to three times more negative than that from the same period (2000-2017) in historical simulations where the same atmospheric model is coupled to a dynamical ocean model (CESM1). 

To understand the role natural variability can play in this discrepancy, we compare the radiative feedbacks generated by the observed pattern of SSTs to those within the CESM1 large ensemble over the same period. The large ensemble produces a wide range of feedbacks due to internal variability alone. Yet, global radiative feedbacks (cloud feedbacks in particular) generated by observed warming patterns are far outside the range of natural variability in the large ensemble. Using both a Green's function approach, as well as a simple metric based on the East-West tropical pacific gradient, we show that none of the control simulations of CMIP5 climate models can generate sufficiently large natural variability to explain the discrepancy between models and observations. We conclude that the discrepancy in SST patterns, and the resulting discrepancy in radiative feedbacks, is caused by an deficiency in models' ability to simulate either natural variabilty or the forced response over the recent historical period. We will also show preliminary analysis from CMIP6 simulations.

How to cite: Proistosescu, C., Dong, Y., Stuecker, M., Armour, K., Wills, R., and Parsons, L.: Discrepancy in radiative feedbacks between models and observations tied to models inability to reproduce historical surface temperature patterns over the tropical Indo-Pacific., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12353, https://doi.org/10.5194/egusphere-egu2020-12353, 2020.

Simulations of global warming in numerical models ranging from full-complexity atmosphere-ocean global climate models (GCMs) to highly idealized, dry, atmospheric GCMs almost invariably feature poleward expansion of the annual-mean Hadley cell extent.  The attendant widening of the subtropical dry zones underlying the Hadley cell descending branches makes understanding this response of the large-scale circulation to climate change of paramount societal and ecological importance.  Two theories, one that neglects the role of large-scale eddy process and one that does not, yield similar but ultimately distinct dependencies of the Hadley cell width on planetary parameters, including those such as the equator-to-pole temperature gradient that also robustly change under global warming.  A common approach, therefore, is to use the responses of these parameters diagnosed from GCM simulations to make arguments about their influence on the Hadley cell widening.  This talk offers a critical examination of that approach.

The approach's key flaw is that the quantities such as the equator-to-pole temperature gradient that appear in the theoretical scalings refer to their values in the *absence* of any large-scale overturning circulation, Hadley cells or eddies, i.e. in the hypothetical state of latitude-by-latitude radiative convective equilibrium (RCE).  This RCE state is what "forces" the Hadley cells, and once the Hadley cells emerge they modify (among others) the equator-to-pole temperature gradient.  Using these theories to understand the Hadley cell response to increased CO2 therefore requires analyzing the responses of the hypothetical RCE state to the increased CO2, which we do via single column model simulations.  In addition, we present a new scaling for the Hadley cell extent applicable to the solsticial seasons that, unlike the existing scalings, does not depend sensitively on the presence or absence of large-scale eddies, which we use in conjunction with solsticial RCE simulations to clarify arguments regarding tropical expansion over the course of the annual cycle in addition to the annual mean.  The implications for these refined theoretical arguments on results from prior studies and on constraining future Hadley cell expansion are discussed.

How to cite: Hill, S., Mitchell, J., and Bordoni, S.: Re-examining inferences from Hadley cell theory on tropical expansion under global warming throughout the seasonal cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11539, https://doi.org/10.5194/egusphere-egu2020-11539, 2020.

EGU2020-11851 | Displays | CL4.18

Cloud-Radiative Impacts On Tropical Circulation Change in GFDL AM4.1

Juho Iipponen and Leo Donner

How to cite: Iipponen, J. and Donner, L.: Cloud-Radiative Impacts On Tropical Circulation Change in GFDL AM4.1, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11851, https://doi.org/10.5194/egusphere-egu2020-11851, 2020.

EGU2020-7761 | Displays | CL4.18

Linking regional changes in the intensity distribution of daily tropical precipitation to changes in large-scale circulation and convective inhibition

Robin Chadwick, Angeline Pendergrass, Segolene Berthou, Lincoln Alves, and Aurel Moise

Global warming is expected to change the intensity distribution of daily tropical precipitation, with an increased frequency of heavy precipitation and reduced frequency of light precipitation. In general, this is likely to increase the risk of flooding, while also increasing the risk of long dry periods. However, on regional scales circulation change plays a major role in modulating this precipitation distribution change in climate model projections, so related climate change impacts will also be regionally dependent.

We propose a simple physical framework based on the dry static energy budget which explains regional daily precipitation distribution change in terms of changes in two physical drivers: large-scale circulation and time-mean convective inhibition (CIN). In this framework, increased CIN under global warming tends to reduce the frequency of convection, leading to a greater ‘recharge’ of instability between convective events, and consequently greater ‘discharge’ of latent heating (precipitation) during each event. Large-scale circulation regulates the speed of this recharge of instability via dry static energy flux convergence or divergence, and its change under warming is very regionally dependent. Changes in regional time-mean tropical precipitation are closely related to changes in large-scale circulation, so this framework also provides a physical link between changes in time-mean precipitation and changes in the daily intensity distribution of precipitation in each tropical region. 

How to cite: Chadwick, R., Pendergrass, A., Berthou, S., Alves, L., and Moise, A.: Linking regional changes in the intensity distribution of daily tropical precipitation to changes in large-scale circulation and convective inhibition, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7761, https://doi.org/10.5194/egusphere-egu2020-7761, 2020.

EGU2020-336 | Displays | CL4.18

The role of water vapor and cloud feedback on the evolution of the Indian summer monsoon over the last 22,000 years

Chetankumar Jalihal, Jayaraman Srinivasan, and Arindam Chakraborty

In the paleo literature, the emphasis has been on the role of insolation in driving monsoons on orbital timescales, but not on the role of feedbacks internal to the climate system. Here, using the energetics framework, we have underscored the effect of water vapor on the Indian summer monsoon over the last 22,000 years in transient climate simulation, called the TraCE-21K. We show that water vapor amplifies the impact of variations in insolation during cold climates like the Last Glacial Maximum. Insolation affects water vapor through its impact on sea surface temperature. During warmer periods like the Holocene, insolation drives monsoon through its influence on the net energy at the top of the atmosphere. Cloud radiative feedbacks are prominent during these periods. Thus, there are two pathways through which insolation drives monsoons. These pathways can be delineated quantitatively using the energetics. We show further that simultaneous variations in greenhouse gases and ice sheets enhance the effect of water vapor on monsoons. Hence, the sensitivity of monsoon to local summer insolation is different during different periods. Our results suggest that feedbacks play a crucial role in the evolution of Indian monsoon on orbital timescales.

How to cite: Jalihal, C., Srinivasan, J., and Chakraborty, A.: The role of water vapor and cloud feedback on the evolution of the Indian summer monsoon over the last 22,000 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-336, https://doi.org/10.5194/egusphere-egu2020-336, 2020.

EGU2020-1098 | Displays | CL4.18

South Asian summer monsoon in warm epochs of Mid-Holocene and end of 21st century; new insights from high resolution simulations

Lekshmi Mudra B, Thazhe Purayil Sabin, and Raghavan Krishnan

The mid-Holocene (MH) was a warmer period, similar to the end of the 21st century climate under high emission realizations. The Indus valley civilization believed to be flourished under the expense of enhanced south Asian summer monsoon precipitation associated with the northward migration of the Inter Tropical Convergence Zone (ITCZ) during the mid-Holocene (MH). However, such an enhanced precipitation is not visible over the northwest India and Pakistan belt in future projection. The role of dynamical and various teleconnection factors behind the enhanced MH precipitation over the Indus valley region is still elusive due to the limitation of course resolution modelling efforts available so far as part of the various phases of Paleoclimate Modelling Intercomparison Projects (PMIP).  To overcome this limitation, we have designed high resolution Paleo-climate simulations using a state-of-the-art variable resolution global climate model (LMDZ: Laboratoire Meteorologie Dynamique and Z stand for zoom) which configured with a 35 km spatial resolution over the South Asian region. We conducted various sensitivity experiments to understand the role of dynamics and teleconnection in enhancing monsoon precipitation over the Indus valley in addition to the MH orbital conditions. Boundary conditions from the PMIP-3, CMIP5 and HadISST datasets utilized for various sensitive experiments. High resolution, clearly demonstrates value addition in simulating the enhanced MH precipitation over Northwest India and adjoining Indus basin associated with the northward migration of the ITCZ and shift in the ascending branch of Hadley cell. We explored the role of various oceanic and atmospheric factors responsible for this enhanced Indus valley precipitation through linearized moisture budget analysis and comparing the relative strength and position of Hadley cell. By further decomposing the thermodynamic and dynamic term into their advection and divergence component, we could demonstrate the role of moisture convergence due to the strengthened atmospheric circulation through the oceanic teleconnection, which additionally  plays a crucial role in enhanced MH precipitation comparing to the dynamical factors. Idealized simulation with the end of 21st century warm condition with the MH orbital forcing and various teleconnection patterns affirms that the thermodynamically induced future precipitation and circulation changes, may not be adequate to make a profound shift in the northern limit of the ITCZ towards its MH locale rather producing enhanced precipitation over the north Indian ocean and localized extreme precipitation over Indian landmass.

Keywords: Indus Valley civilization, Mid-Holocene, Monsoons, Teleconnection, ITCZ and Hadley circulation

How to cite: Mudra B, L., Sabin, T. P., and Krishnan, R.: South Asian summer monsoon in warm epochs of Mid-Holocene and end of 21st century; new insights from high resolution simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1098, https://doi.org/10.5194/egusphere-egu2020-1098, 2020.

EGU2020-1739 | Displays | CL4.18

Equable climates: a meridional flux paradox?

Michiel Baatsen, Anna von der Heydt, Michael Kliphuis, René van Westen, Arthur Oldeman, Aarnout van Delden, and Henk Dijkstra

A commonly found property of warmer climates on Earth is the tendency, principally through polar amplification, towards more equable conditions with reduced meridional temperature contrasts. Numerical climate models historically have had quite some difficulty in reproducing meridional temperature gradients as low as those suggested by various proxies.
It seems self-evident that an equable climate is governed by enhanced meridional fluxes of heat, to sustain mild high latitude temperatures while keeping low latitudes from becoming exceedingly warm. However, a common hypothesis, borrowed from turbulence theory, is that the meridional heat flux is proportional to the meridional temperature gradient. A more equable climate should, therefore, exhibit reduced rather than enhanced meridional heat fluxes, posing a physical paradox.

Here, we use a unique set of long and well equilibrated (~25.000 years combined) climate simulations for various past periods using the CESM1. In terms of complexity and resolution, this climate model is comparable to the CMIP5 suite. Comparing the modelled climates of the Eocene (~40Ma), Oligocene (~30Ma), Pliocene (3Ma), pre-industrial era and present-day equilibrium climate confirms the hypothesis that warmer and more equable states overall feature weaker meridional heat fluxes (Figure 1).
This effectively shows that meridional heat fluxes on a global scale are a result of, rather than the driver of the climate state. It is, therefore, the regional radiative balance that determines the temperature distribution and by extension the meridional heat flux. Still, the different components of that flux (atmospheric vs oceanic; sensible vs latent) are crucial in shaping the climate and these are strongly dependent on the background state. Meanwhile, a strongly divergent behaviour is seen in response to an imposed RCP8.5 future scenario which drives the model far from equilibrium. In this presentation, we will address why all of the cases follow a similar slope (with a different reference) in the considered para-meter space, the roles of related heat flux components, and the processes responsible.

Using appropriate boundary conditions, sufficient resolution and an adequate level of equilibration, the model is able to reproduce the warmer and more equable climates of the past. This gives confidence that the physics determining the modelled climate states under a widely varying external forcing are sound and should help us understand meridional temperature gradients in a future warmer climate.

How to cite: Baatsen, M., von der Heydt, A., Kliphuis, M., van Westen, R., Oldeman, A., van Delden, A., and Dijkstra, H.: Equable climates: a meridional flux paradox?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1739, https://doi.org/10.5194/egusphere-egu2020-1739, 2020.

EGU2020-3944 | Displays | CL4.18

An updated view of Hadley cell expansion from CMIP6 models

Kevin Grise and Sean Davis

            One of the most robust aspects of the atmospheric circulation response to increasing greenhouse gases is the poleward shift in the subsiding branches of the Hadley circulation, potentially pushing subtropical dry zones poleward toward midlatitudes.  Numerous lines of observational evidence suggest that this tropical expansion may have already begun.  Yet, the degree to which the observed tropical widening is anthropogenically forced has remained a topic of great debate, as previous studies have attributed the recent circulation trends to some combination of increasing greenhouse gases, stratospheric ozone depletion, anthropogenic aerosols, and natural variability.  During the past few years, two international working groups have synthesized recent findings about the magnitude and causes of the observed tropical widening, primarily using output from global climate models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5).  In this presentation, we update those findings using the recently released CMIP6 global climate models.

            Over recent decades, the poleward expansion of the Hadley circulation estimated from modern reanalyses is relatively modest (< 0.5 degrees latitude per decade).  The reanalysis trends have similar magnitudes in the annual mean in the Northern Hemisphere (NH) and Southern Hemisphere (SH), but both CMIP5 and CMIP6 models suggest that increasing greenhouse gases should drive 2–3 times larger circulation shifts in the SH.  The reanalysis trends fall within the bounds of the models’ simulations of the late 20th century and early 21st century, although prescribing observed coupled atmosphere-ocean variability allows the models to better capture the observed trends in the NH.  We find two notable differences between CMIP5 and CMIP6 models.  First, both CMIP5 and CMIP6 models contract the NH summertime Hadley circulation equatorward (particularly over the Pacific sector) in response to increasing greenhouse gases, but this contraction is larger in CMIP6 models due to their higher average climate sensitivity.  Second, in recent decades, the poleward shift of the NH annual-mean Hadley cell edge is slightly larger in the historical runs of CMIP6 models.  Increasing greenhouse gases drive similar trends in CMIP5 and CMIP6 models, so CMIP6 models imply a stronger role for other forcings (such as aerosols) in recent circulation trends than CMIP5 models.

How to cite: Grise, K. and Davis, S.: An updated view of Hadley cell expansion from CMIP6 models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3944, https://doi.org/10.5194/egusphere-egu2020-3944, 2020.

EGU2020-4578 | Displays | CL4.18

Effects of tropical precipitation variability on the composition of fluvial sediments from SE Brazil in glacial and interglacial times (MIS 6-5)

Iris Arndt, Silke Voigt, Rainer Petschick, André Bahr, Alicia Hou, and Jacek Raddatz

The present-day hydrological cycle in southeastern Brazil depends on the intensity of the South American Summer Monsoon (SASM) with strong monsoonal precipitation during austral summer (DJF) and weak precipitation during austral winter (JJA). On glacial-interglacial timescales, monsoonal intensity was mainly controlled by precession-forced changes in insolation.

Relatively little is known to date about the spatial distribution of precipitation in the hinterland and coastal areas of SE Brazil and the resulting variability of the fluvial discharge on glacial-interglacial timescales. The Doce River basin is situated at the northern boundary of the present-day South Atlantic Convergence Zone (SACZ), wherefore its run-off and suspension load respond sensitive to changes in both summer monsoon and coastal winter precipitation. The soil and rock distribution of the basin allows for the study of the relative proportions of terrigenous up- and lowland sources among the transported fluvial sediments.

We studied the mineralogical composition and crystallinity of the non-carbonate fine fraction from late Marine Isotope Stage (MIS) 6 to MIS 5 (150-70 ka) in a marine sediment core obtained in the proximity of the Doce river mouth (20° S, 38° W, 2 km water depth). The main non-carbonate mineral content comprises quartz, albite, illite, kaolinite and gibbsite. The relative abundances of the mineral assemblage show distinct changes relative to changes in summer insolation as well as across the MIS 6-5 transition. Thereby, the mineral assemblage shows a distinct end-member pattern, with high contents of illite (80 % 2M-polytype) and high illite crystallinity as a proxy for stronger physical erosion of the parent rocks in the steep upland, and high contents of kaolinite and gibbsite as proxy for intense tropical soil erosion in the lowlands.

During MIS 5, the insolation dependent cyclicity seen in the mineral assemblage shows high illite/kaolinite ratios when austral summer insolation is high and low illite/kaolinite ratios in low insolation phases. This pattern is not visible in late MIS 6, when very low illite/kaolinite ratios are present during high austral summer insolation.

We consider the spatial changes in erosion intensity to be caused by variations in the regional precipitation pattern. Thereby, pronounced upland erosion is caused by severe precipitation and discharge events during a strong SASM. A relatively increased lowland erosion indicates both increased austral winter precipitation due to stronger trade wind forcing and a weaker monsoonal system in the upper discharge area. The lack of a strong insolation-control on illite/kaolinite ratios during MIS 6 is interpreted as an overall weakening of the SASM system during glacial periods, when austral winter precipitation exerted a stronger control on the hydrological budget of the Doce River.

How to cite: Arndt, I., Voigt, S., Petschick, R., Bahr, A., Hou, A., and Raddatz, J.: Effects of tropical precipitation variability on the composition of fluvial sediments from SE Brazil in glacial and interglacial times (MIS 6-5), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4578, https://doi.org/10.5194/egusphere-egu2020-4578, 2020.

EGU2020-5364 | Displays | CL4.18

High-latitude surface-atmosphere radiative coupling in the far-IR: missing physics in climate models and opportunities in future observations

Xianglei Huang, Yi-Hsuan Chen, Ping Yang, Chia-Pang Kuo, and Xiuhong Chen

Far-IR usually refers to the portion of the electromagnetic spectrum with a wavelength longer than 15 microns. For terrestrial atmosphere, water vapor pure rotational absorption is the most important gaseous absorption in the far -IR and ice clouds have a scattering peak around 25 microns. The far -IR consists of ~50% of the infrared energy emitted by our planet to space and, thus, plays a critical role in the earth's radiation budget and related changes in response to future climate change. 

Due to the overwhelming role played by the water vapor absorption in the far-IR, the traditional wisdom that assumes blackbody surface and non-scattering cloud in the longwave radiation scheme are well justified for the tropics and mid-latitude. However, such approximations widely adopted by virtually all the climate models break down in the high-latitude due to small water vapor abundance. As a consequence, the surface-atmosphere longwave coupling is manifested in the high latitudes, with the most prominent impact in the polar winter. Using the NCAR CESM and DoE E3SM models, we quantitatively show the statistically significant and seasonally dependent impact of such longwave coupling on simulated polar climate and surface energy budget. The effect of surface spectral emissivity and longwave scattering is linearly additive to each other, and the dominant contribution is from the far-IR region. Our results show that the longwave scattering and surface spectral emissivity are both necessities for the faithful simulation of polar climate. Climate models should include both of them, which are missing in virtually all the current models.

Accurate and spectrally resolved measurements in the far -IR have been technically challenging. Though the outgoing mid -IR spectra have been routinely observed from space with high accuracy and dense sampling pattern, as of today, we still have had no global spectrally resolved far-IR measurements from space. The last spectrally resolved measurements from space for 15 -25 microns were made a half-century ago in 1970 -1971. Motivated by recent studies, both NASA and ESA have selected missions dedicated to the far-IR radiation measurements, namely PREFIRE by NASA and FORUM by ESA. Both missions will provide us with critically needed observations for characterizing the surface-atmosphere longwave coupling, primarily through retrieved surface spectral emissivity and cloud properties in the far-IR dirty window (16.7-29 microns). We show here some initial results for relevant retrieval algorithm developments and expected uncertainties for the surface spectral emissivity and cloud properties retrieved from such far-IR measurements. 

How to cite: Huang, X., Chen, Y.-H., Yang, P., Kuo, C.-P., and Chen, X.: High-latitude surface-atmosphere radiative coupling in the far-IR: missing physics in climate models and opportunities in future observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5364, https://doi.org/10.5194/egusphere-egu2020-5364, 2020.

The Tibetan Plateau (TP), known as the “World Roof”, has significant influences on hydrological and atmospheric circulation at both regional and global scale. As the Sanjiangyuan Region (SJY) supplies water resources to the adjacent river basin and the TP could exert strong thermal forcing on the atmosphere over Asian monsoon region, adequate understand of the climate change over this region and its underlying mechanisms is of great importance. Based on gridded data provided by China Meteorological Administration (CMA), a continuous warming trend higher than that over elsewhere in China has been observed over the TP during 1985-2014, especially in the cold season (0.69 K/decade) and over the SJY (1.0 K/decade). On the basis of ERA interim reanalysis datasets, this paper analyzed the factors facilitating this warming trend in the SJY from the perspective of energy transport. At first, the local processes involved were investigated by calculating partial temperature changes using the surface energy budget equation. Then the horizontal convection of heat was quantified by summing the heat flux across the boundaries of the SJY. Finally, a Lagrangian heat source diagnostic method was developed to identify the major heat source. As the results indicating, among all the local heat sources, the enhanced downward longwave radiation reflected to surface air and the increasing upward longwave radiation emitted by warmer land surface were responsible for the pronounced surface air warming. However, the changes in surface sensible and latent heat fluxes had a reduced warming effect on the surface air. As for the non-local horizontal heat sources, rising horizontal heat flux from the south, west and east boundaries into the SJY contributed to the higher surface temperature of the SJY. In winter season, the heat flows stemmed from the South Himalayan vein into the SJY played a dominant role. Moreover, the higher the temperature over the SJY was, the more inclined this heat source was to Nepal.

How to cite: Tian, Y. and Zhong, D.: Causes of the 1985-2014 Surface Warming over the Sanjiangyuan Region of the Tibetan Plateau from the Perspective of Energy Transport, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6744, https://doi.org/10.5194/egusphere-egu2020-6744, 2020.

EGU2020-7134 | Displays | CL4.18

Growing multicentennial-scale precipitation variability in Eastern Brazil during the late Holocene

André Bahr, Stefanie Kaboth-Bahr, Andrea Jaeschke, Christiano Chiessi, Francisco Cruz, Janet Rethemeyer, Enno Schefuß, Philipp Geppert, Ana Luiza Spadano Albuquerque, Jörg Pross, and Oliver Friedrich

Eastern Brazil belongs to the ecologically most vulnerable regions on Earth due to its extreme intra- and inter-annual variability in precipitation amount. In order to constrain the driving forces behind this strong natural fluctuations we investigated a high-resolution sediment core taken off the Jequitinhonha river mouth in central E Brazil to reconstruct Holocene river run-off and moisture availability in the river’s catchment. Modern day climate in the hinterland of the Jequitinhonha is influenced by the South American Summer Monsoon (SASM), in particular by the manifestation of the South Atlantic Convergence Zone (SACZ) during austral summer. Variations in the position and strength of the SACZ will have immediate impact on the moisture balance over the continent and hence influence sediment and water delivery. Our multi-proxy records, comprising XRF core-scanning, grain size, mineralogical (XRD), as well as organic biomarker analyses indicate abrupt centennial scale variations between dry and wet conditions throughout the past ~5 kyrs. Our results document a gradual weakening of the SASM over the past ~2,7 kyrs driven by changes in the intertropical heat distribution. This long-term trend is superposed by centennial to millennial-scale spatial shifts in moisture distribution that result from migrations of the SACZ. The combination of both processes caused increasingly pronounced aridity spells in eastern South America over the past 2 kyrs. As the spatial fluctuations were triggered by freshwater anomalies in the North Atlantic, we surmise that enhanced meltwater input into the North Atlantic due to future global warming might severely increase the risk for mega-droughts in tropical South America.

How to cite: Bahr, A., Kaboth-Bahr, S., Jaeschke, A., Chiessi, C., Cruz, F., Rethemeyer, J., Schefuß, E., Geppert, P., Spadano Albuquerque, A. L., Pross, J., and Friedrich, O.: Growing multicentennial-scale precipitation variability in Eastern Brazil during the late Holocene, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7134, https://doi.org/10.5194/egusphere-egu2020-7134, 2020.

EGU2020-10083 | Displays | CL4.18

Impacts of Shifting Subtropical Highs on North American Climate

Daniel Schmidt, Kevin Grise, Dillon Amaya, and Arthur Miller

Numerous observational studies have found that the Hadley cells have expanded poleward in both the Northern and Southern Hemispheres, and model results suggest that such expansion is likely to continue throughout the 21st century as a result of global warming.  This has led to concerns about future impacts of Hadley cell expansion, including a poleward shift of the subtropical dry zone.  However, climatic changes associated with Hadley cell expansion are zonally asymmetric—especially in the Northern Hemisphere—suggesting that a more regional focus may be necessary.  In this study, we consider the influence of the Northern Hemisphere subtropical highs, and contrast this with the influence of Hadley cell expansion. 

Specifically, we consider the North Pacific and North Atlantic subtropical highs and define, for each high, three indices representing longitude, latitude, and strength.  We find that 21st century trends in variables as diverse as precipitation, sea-level pressure, winds, and ocean upwelling in eastern boundary currents are all driven more by the trends of these subtropical high indices than by the expansion of the Hadley cell.  We conclude that 21st century trends in subtropical high positions and strengths are crucial to understanding the future of Northern Hemisphere climate.  Further work will be needed to determine the dynamical drivers of these subtropical high trends.  

How to cite: Schmidt, D., Grise, K., Amaya, D., and Miller, A.: Impacts of Shifting Subtropical Highs on North American Climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10083, https://doi.org/10.5194/egusphere-egu2020-10083, 2020.

EGU2020-10145 | Displays | CL4.18

The poleward shift of the Subtropics in the Northern Hemisphere winter: time of emergence of the climate change signals

Roberta D'Agostino, Ascanio Luigi Scambiati, Johann Jungclaus, and Piero Lionello

Here we consider the areas located below the descending branch of the Hadley cell and characterized by arid or semiarid climate in the northern hemisphere. There are controversial suggestions that they are shifting northwards and this trend will continue during the 21st century.  We investigate the time-of-emergence (ToE) of corresponding climate change signals using  the Max Planck Institute Grand Ensemble (MPI-GE), a model experiment which allows by design to disentangle the role of external forcing from the internal climate variability on climate signals. Here we show that the ToE and the regions where it will occur are strongly dependent on the variable that is adopted for the analysis. For most  variables, ToE of regional subtropical expansion would occur only after the end of the 21st century and only in few irregularly distributed areas. Therefore, in spite of the consensus among projections on the future boreal subtropical broadening, the strong role played by the internal climate variability prevents to consider the observed trends in reanalyses over last decades a robust signal of anthropogenic forcing.

How to cite: D'Agostino, R., Scambiati, A. L., Jungclaus, J., and Lionello, P.: The poleward shift of the Subtropics in the Northern Hemisphere winter: time of emergence of the climate change signals, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10145, https://doi.org/10.5194/egusphere-egu2020-10145, 2020.

EGU2020-11499 | Displays | CL4.18

The relationship of Western Disturbances to precipitation in the upper Indus River basin

Jean-Philippe Baudouin, Michael Herzog, and Cameron A. Petrie

The upper Indus River basin is characterised by heavy precipitation falling near the foothills of the major mountain ranges, during two wet seasons: winter and summer. Winter precipitation is known to be related to the passing of upper-level synoptic systems embedded in the subtropical westerly jet called Western Disturbances. Here, we investigate the precipitation variability in relation to the Western Disturbances at the synoptic scale, using ERA5 reanalysis data. We take advantage of the results of a previous study that showed that the precipitation is mostly triggered by the forced uplift of a low-level moisture-rich southerly flow across the ranges. We show that the low-level southerly wind triggering the precipitation is produced by the interaction of a Western Disturbance with a baroclinic front located between the Iranian plateau and the Arabian Sea. Ahead of the Western Disturbance, low-level winds draw moisture from the extreme north of the Arabian Sea, the Persian Gulf, and to a lower extent, the Red Sea. At the rear, moisture is depleted by the advection of continental dry air in the Indus River basin. However, the balance between moisture drawing and depletion depends on the characteristics of the Western Disturbance, leading to differences in precipitation intensity. We found the jet position and western Russia blockings to play a role in this. These findings offer clues to understand the longer-term precipitation variability in the area.

How to cite: Baudouin, J.-P., Herzog, M., and Petrie, C. A.: The relationship of Western Disturbances to precipitation in the upper Indus River basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11499, https://doi.org/10.5194/egusphere-egu2020-11499, 2020.

EGU2020-12518 | Displays | CL4.18

Mechanisms of delayed monsoon onset with warming

Simona Bordoni and Katrina Hui

Comprehensive general circulation models (GCMs) in the CMIP3/CMIP5 archive project a delay in the timing of monsoon onset, as the climate warms in response to greenhouse gas (GHG) concentration increases. It has been argued that surface latent heat flux, and its differing response to GHG perturbations over land and over ocean, plays an important role in the redistribution of rainfall from early to late in the warm season in monsoon regions. However, similar phase delays in tropical precipitation have been shown to occur even in warming aquaplanet simulations forced by sea surface temperature perturbations. An alternative explanation invokes energetic arguments, in which elevated latent energy demand in the hemisphere warming up seasonally, as dictated by the Clausius–Clapeyron relation, drives a shift of tropical rainfall towards the opposite hemisphere, manifesting itself as a seasonal delay in the onset of the rainy season. 

 

In this study, we explore mechanisms of delayed monsoon onset with warming in aquaplanet simulations with an idealized GCM spanning a wide range of climates. In earlier work, we have in fact shown how monsoons with rapid circulation and precipitation changes at the beginning of the warm season can be simulated even without any land-sea contrast, provided that the lower boundary has sufficiently low thermal inertia. As the climate is warmed, we find that the onset of the monsoon is progressively delayed to later pentads in the summer season, in agreement with results from the comprehensive GCMs. However, the end of the monsoon season varies less strongly with climate, resulting in a progressive shortening of the overall monsoon season as the climate is warmed. The atmospheric energy balance is examined to separate possible influences of changes in surface fluxes, atmospheric energy storage and gross moist stability on the circulation's seasonality. Radiative-convective equilibrium experiments with the same GCM are also examined, to explore if and to what extent the delayed monsoon onset can indeed result from increases in the effective heat capacity of the atmospheric column with warming, through changes in its latent energy component. 

How to cite: Bordoni, S. and Hui, K.: Mechanisms of delayed monsoon onset with warming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12518, https://doi.org/10.5194/egusphere-egu2020-12518, 2020.

EGU2020-12529 | Displays | CL4.18

Long-term variability of shortwave absorption under abrupt-4xCO2 climate forcing and its visible and near-IR contributions

Maria Z. Hakuba, Alejandro Bodas-Salcedo, and Graeme Stephens

While ongoing global warming is largely the result of reduced outgoing longwave radiation (OLR), climate feedbacks associated with changes in atmospheric water vapor and surface albedo are expected to enhance the absorption of shortwave radiation (ASR) and to sustain global warming on centennial time scales beyond the OLR modulations. These feedbacks as well as positive cloud feedbacks reduce the reflected shortwave (SW) flux at the top-of-atmosphere (TOA) and are a result of scattering and absorbing processes that differ by their near-infrared (NIR) and visible (VIS) contributions. Since direct measurements of broadband NIR (~0.7-5 mm) and VIS (~0.2-0.7 mm) radiation flux do not exist, we utilize UKESM1 simulations to study SW, NIR, and VIS climate feedbacks under preindustrial and abrupt-4xCO2 climate forcing.

Besides its global long-term behavior, the spatial variability and key physical controls of ASR are not well characterized either. A prominent example is the unexplained hemispheric symmetry in planetary albedo that is consistently missed by current global climate models yielding unrealistic precipitation and circulation patterns. Although energetically equivalent, the observed hemispheric albedos differ spectrally, reflecting the uneven distribution of clouds and land masses. We use the same UKESM1 simulations to contrast inter-hemispheric differences in SW, NIR and VIS, and their relation to changes in clouds, the gaseous atmosphere and surface properties to shed light on processes relevant to the present-day symmetry, model biases, and potential future changes.

How to cite: Hakuba, M. Z., Bodas-Salcedo, A., and Stephens, G.: Long-term variability of shortwave absorption under abrupt-4xCO2 climate forcing and its visible and near-IR contributions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12529, https://doi.org/10.5194/egusphere-egu2020-12529, 2020.

EGU2020-19224 | Displays | CL4.18

Atmospheric circulation associated with the arrival of sargassum in the Caribbean Sea.

Jose Antonio Salinas, María Eugenia Maya, and Constantina Hernández

The arrival of sargassum in a massive way generates adverse environmental, social and economic impacts. Little is known about its origin and trajectory, as well as the atmospheric and oceanic conditions under which it arrives at the Mexican coasts of the Caribbean. This poster presents a diagnosis of the seasonal, annual and interannual variability of atmospheric circulations in the Atlantic and Caribbean Sea, identifying the atmospheric conditions under which sargassum arrived on the Mexican coasts. 30 years of surface wind data from CFSR (Climate Forecast System Reanalysis) of NCAR on the Atlantic and Caribbean were analyzed, dividing the area into six areas, for each one its seasonal, annual and interannual variability was estimated, as well as its extreme values from 1989 to 2018, focusing the study on both the Caribbean Sea and the Atlantic coast of Brazil.

Once the mean, extreme winds (10th and 90th percentiles) and their correlation with the NAO (North Atlantic Oscillation) were diagnosed interannually, particular years of the recent period were analyzed: from 2010 to 2019 incorporating the wind convergence as a physical process associated with the accumulation of sargassum, surface pressure and sea surface temperature (SST) and also correlating it with the NAO index.

The results show that the atmospheric conditions for transporting sargassum along the Mexican coasts of the Caribbean are more favorable in summer than in winter, besides it, the higher extremes (90th percentile) in the Caribbean favor the transport of sargassum both in winter and in summer. However, "connectivity" with other regions (Central Atlantic) makes summer more favorable, but winter is potentially viable. The atmospheric conditions of recent extreme years are discussed: 2013 (without the arrival of sargassum), medium: 2015 and extreme 2018 (with abundant sargassum) for both summer and winter.

How to cite: Salinas, J. A., Maya, M. E., and Hernández, C.: Atmospheric circulation associated with the arrival of sargassum in the Caribbean Sea., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19224, https://doi.org/10.5194/egusphere-egu2020-19224, 2020.

EGU2020-19233 | Displays | CL4.18

Attribution of uncertainties in predictions of monsoon precipitation using an energy framework

David Ferreira and Roberta D'Agostino

Recent studies on monsoon dynamics have emphasized that monsoon changes are due to local anomalous Net Energy Input (NEI) in the atmospheric column, rather than being associated with land-sea temperature contrasts as in the classical large-scale sea-breeze view of monsoons. In the energy framework, a positive NEI (convergence of energy) must be balanced by a lateral export of moist static energy, which, if achieved by an overturning cell, is associated with moisture import and net precipitation.

This suggests a strong link between monsoonal precipitations and NEI, providing a pathway to understand uncertainties in predictions of past and future monsoon precipitation.

To investigate this, we exploit the CMIP5 and PMIP3 archives (9 models), comparing simulations of Mid-Holocene (~6000 years ago) and future (end of 21st century, RCP8.5 scenario) climates to pre-industrial (PI) control climate.

Precipitation responses to past and future forcing in monsoon regions exhibit a wide spread which is, as expected, significantly (and positively) correlated with NEI changes. Yet, the latter explain at best 40% of the spread in the precipitation response. In fact, the correlation between NEI and precipitation changes hides a more complex picture.

We show that changes in atmospheric stratification and differences in the control climate contribute to the uncertainties, with varying degrees depending on regions and climates: while the southern hemisphere monsoons are linked to changes in both stratification and NEI, the northern hemisphere monsoons are more strongly associated with stratification changes. Meanwhile, changes in the mid-Holocene are more dominated by NEI changes than in the future climate when stratification changes are larger.

How to cite: Ferreira, D. and D'Agostino, R.: Attribution of uncertainties in predictions of monsoon precipitation using an energy framework, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19233, https://doi.org/10.5194/egusphere-egu2020-19233, 2020.

EGU2020-19771 | Displays | CL4.18

Global surface energy and water cycle variability 2001-2011 from satellite data

Bo Dong, Keith Haines, Chris Thomas, Chunlei Liu, and Richard Allan

We derive internally consistent, monthly to interannual, energy and water budgets, with uncertainties, for all the main continents and ocean basins over 2001-2011 based principally on satellite data. An inverse model is used following the Thomas et al (2019) climatology study and the NASA energy and water cycle study (NEWS), L’Ecuyer et al. (2015), Rodell et al. (2015).
Input data include CERES and Cloud_CCI AATSR (radiation), FluxCOM (land turbulent heat fluxes), JOFURO3 (ocean turbulent heat fluxes), GPCP2.3 (Precipitation), GRACE (total water storage), ERA5 (atmospheric water storage), GRUNv1 (land runoff), and we compare these with alternative products to assess component uncertainties. The different components are then brought together and adjusted within respective uncertainties to achieve balanced energy and water budgets.
Preliminary results focus on seasonal and interannual variability over land. Seasonal modifications to the water budget over Eurasia and N America include a delay in spring runoff (and reduced evapotranspiration over Eurasia) as GRACE data indicates retention of water mass over land. Evapotranspiration adjustments to FluxCOM are strongly seasonal and also result in bringing the land seasonal energy budget closer to the DEEPC Liu et al (2015) results demonstrating the value of coupling the energy and water cycles.
Strong correlated interannual variability in African precipitation, runoff and GRACE derived water storage is found, and we assess the relative consistency of different data products, particularly for precipitation, where multiple datasets are available and uncertainties are large. Consistent African precipitation variability is found in the TAMSAT data, which further supports the water cycle change scheme around year 2006 over Africa. Clear ENSO signals are seen, particularly over South America in 2010 and Australia in 2010-11, with correlated variability in rainfall, runoff and water storage distributions. 
Optimisation is sensitive to the uncertainty of each energy and water budget component expressed in their spatial and temporal error covariances.  We introduce spatial error covariance for turbulent heat fluxes between major ocean basins as well as temporal error covariances for all components expressing the expectation of time mean bias adjustments. The results show improved net surface energy flux pattern with larger heat loss over North Atlantic and Arctic Ocean and more heat uptake for other basins and an intensified water cycle, with increased precipitation, evapotranspiration and runoff and stronger ocean-land water transports. 

How to cite: Dong, B., Haines, K., Thomas, C., Liu, C., and Allan, R.: Global surface energy and water cycle variability 2001-2011 from satellite data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19771, https://doi.org/10.5194/egusphere-egu2020-19771, 2020.

EGU2020-21027 | Displays | CL4.18

Holocene ‘megadroughts’ in south-eastern Australia: deciphering regional patterns from lake sediment archives

Jonathan Tyler, Cameron Barr, John Tibby, Asika Dhar, Chapman Andrew, Chloe Dean, Patricia Gadd, Atun Zawadzki, David Child, and Geraldine Jacobsen

Documenting and understanding centennial scale hydroclimatic variability in Australia is significant both to global climate science and to regional efforts to predict and manage water resources. In particular, multidecadal to centennial periods of low rainfall – ‘megadroughts’ – have been observed in semi-arid climates worldwide, however they are poorly constrained in Australia. Here, we bring together multiple, sub-decadally resolved records of hydrological change inferred from lake sediments in western Victoria, Australia. Our analyses incorporate new elemental (ITRAX µXRF) and stable isotope (oxygen, carbon isotopes) geochemical data from West Basin and Lake Surprise, both augmented by high quality radiometric chronologies based on radiocarbon, 210Pb and 239/240Pu analyses. Collectively, the records document a transition towards a more arid and variable climate since the mid-late Holocene, which is comparable to reports of an intensification of the El Nino Southern Oscillation (ENSO) through this period. Furthermore, during the last 2000 years, the records exhibit marked periods of reduced effective moisture which contrast with records of Australian hydroclimate inferred from distal archives, as well those predicted by climate model hindcasts. Our analyses indicate that megadroughts are a natural phenomenon in south-eastern Australia, requiring greater attention in efforts to predict and mitigate future climatic change.

How to cite: Tyler, J., Barr, C., Tibby, J., Dhar, A., Andrew, C., Dean, C., Gadd, P., Zawadzki, A., Child, D., and Jacobsen, G.: Holocene ‘megadroughts’ in south-eastern Australia: deciphering regional patterns from lake sediment archives, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21027, https://doi.org/10.5194/egusphere-egu2020-21027, 2020.

The increase in the Earth's energy balance, due to the surplus of anthropogenic greenhouse gases, has created a warmer earth-based climate regime, widening the excess tropic zone to the poles. The characteristics and rhythms of this climate become unusual, with extreme weather conditions: more frequent heat and cold waves, strong gusts of wind, more severe droughts, and more frequent floods. This is the terrestrial "New Climate".

This situation is characterized by a new thermal distribution: above the ocean, the situation is more in surplus energetic budget, and the land - atmosphere is negative. Warm thermal advection easily reach the Pole, as well as cold advection push deep into Western Mediterranean.

This "New Ground Energy Balance" establishes an atmospheric circulation with an waving character throughout the year, including in winter, characterized by intense energy exchanges latitudinal very active between the surplus and deficit areas on the one hand, and the atmosphere, the ocean and the continent of the other.

The new thermal distribution reorganizes the geography of atmospheric pressure: the ocean energy concentration is transmitted directly to the atmosphere, and the excess torque is pushed northward. The Azores anticyclone is strengthened and is a global lock by the Atlantic ridge at Greenland, which imposes on the jet stream a positive ripple, very strongly marked poleward, bringing cosmic cold advection of polar air masses winter over from Europe to Western Mediterranean. Hence the enormous meridian heat exchanges north-south-north. This is the "New" Meridian Atmospheric Circulation (MAC).

This situation increases the potential evaporation of the atmosphere and provides a new geographical distribution of Moisture: the excess water vapor is easily converted by cold advection to heavy rains that cause floods or snow storms.

Thus, the "New Energy Balance" creates a "New" Meridian-dominated Atmospheric Circulation, which induces excess atmospheric water vapor due to the increase in temperature. Since the hydro-atmospheric capacity has increased, the return to the ground is abundant: It is the "New Water Cycle", which accompanies the “New Energy Balance” of the Earth.

How to cite: Karrouk, M.-S.: New Energy Balance, New Atmospheric Circulation and New Water Cycle in Western Mediterranean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-371, https://doi.org/10.5194/egusphere-egu2020-371, 2020.

CL4.20 – ENSO and Tropical Basins Interactions: Dynamics, Predictability and Modelling

EGU2020-11551 | Displays | CL4.20

Could past changes in El Niño inform its future?

Pedro DiNezio

Paleoclimate records show pronounced changes in the El Niño/Southern Oscillation (ENSO) phenomenon over past climatic intervals, but the application of these results to understand future changes is not straightforward. To address this issue we propose the following mechanism controlling ENSO variability across altered climate states. Numerical simulations show that extreme El Niño – the warm phase of ENSO – could become more frequent in climatic states with a shallower ocean mixed layer, as predicted for the future, and extremely infrequent under climatic states with a deeper mixed layer, typical of glacial intervals. Wind fluctuations involved in the onset of El Niño transfer momentum more efficiently over a thinner ocean mixed layer, thus favoring stronger ocean currents and faster warming during the event. The robustness of this momentum coupling mechanism across climatic states, together with the evidence that ENSO was weaker under glacial conditions, increases our confidence in model predictions of more frequent extreme El Niño under greenhouse warming.

How to cite: DiNezio, P.: Could past changes in El Niño inform its future?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11551, https://doi.org/10.5194/egusphere-egu2020-11551, 2020.

EGU2020-11931 | Displays | CL4.20

ENSO sensitivity to radiative forcing

Evgeniya Predybaylo, Georgiy Stenchikov, Andrew Wittenberg, and Sergey Osipov

To improve El Niño / Southern Oscillation (ENSO) predictions and projections in a changing climate, it is essential to better understand ENSO’s sensitivities to external radiative forcings. Strong volcanic eruptions can help to clarify ENSO’s sensitivities, mechanisms, and feedbacks. Strong explosive volcanic eruptions inject millions of tons of sulfur dioxide into the stratosphere, where they are converted into sulfate aerosols. For equatorial volcanoes, these aerosols can spread globally, scattering and absorbing incoming sunlight, and inducing a global-mean surface cooling. Despite this global-mean cooling effect, paleo data confirm remarkable warming of the eastern equatorial Pacific in the two years after a tropical eruption, with a shift towards an El Niño-like state. To illuminate this response and explain why it tends to occur during particular seasons and ENSO phases, we present a unified framework that includes the roles of the seasonal cycle, stochastic wind forcing, eruption magnitude, and various tropical Pacific climate feedbacks. Analyzing over 20,000 years of large-ensemble simulations from the GFDL-CM2.1 climate model forced by volcanic eruptions, we find that the ENSO response comprises both stochastic and deterministic components, which vary depending on the perturbation season and the ocean preconditioning. For boreal winter eruptions, stochastic dispersion largely obscures the deterministic response, being the largest for the strong El Niño preconditioning. Deterministic El Niño-like responses to summer eruptions are well seen on neutral ENSO and weak to moderate El Niño preconditioning and grow with the eruption magnitude. The relative balance of these components determines the predictability and strength of the ENSO response. The results clarify why previous studies obtained seemingly conflicting results.

How to cite: Predybaylo, E., Stenchikov, G., Wittenberg, A., and Osipov, S.: ENSO sensitivity to radiative forcing, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11931, https://doi.org/10.5194/egusphere-egu2020-11931, 2020.

EGU2020-7763 | Displays | CL4.20

Multi-decadal variability in long-range ENSO predictions (SEAS5-20C)

Antje Weisheimer, Magdalena Balmaseda, and Tim Stockdale

Motivated by the high skill in predicting ENSO on seasonal time scales with ECMWF’s seasonal forecasting system SEAS5 and by previous findings of multi-decadal variability in seasonal forecast skill of extratropical dynamics, we have carried out an extensive set of 24-month long coupled hindcasts from 1901 to 2010. The hindcasts were run with SEAS5 in reduced resolution and are initialised from, and verified against, reanalyses of the 20thCentury. They allow us to analyse ENSO forecast skill beyond the first year, to study how skill varies on decadal time scales and to test sensitivities to atmospheric wind forcings and the assimilation of ocean observations in the initial conditions.

First results show a substantial amount of multi-decadal variability in both ENSO mean state and forecast skill. We find periods in the early-to-mid 20thCentury with much reduced levels of skill, in particular after the spring barrier in the first forecast year. Periods at the beginning and at the end of the Century show broadly similar good performances with substantial skill even after the first year spring barrier. Combined effects of the wind forcing and the assimilation of ocean data on the initial state seem to play a crucial role in understanding this behaviour.

How to cite: Weisheimer, A., Balmaseda, M., and Stockdale, T.: Multi-decadal variability in long-range ENSO predictions (SEAS5-20C), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7763, https://doi.org/10.5194/egusphere-egu2020-7763, 2020.

EGU2020-21603 | Displays | CL4.20

Seasonal-to-multiyear prediction of ENSO using machine deep learning

Jing-Jia Luo, Fenghua Ling, Yoo-Geun Ham, and Jeong-Hwan Kim

Variations in the El Niño/Southern Oscillation (ENSO) are associated with a wide array of regional climate extremes and ecosystem impacts. Robust, long-lead forecasts would therefore be valuable for managing policy responses. But despite decades of effort, forecasting ENSO events at lead times of more than one year remains problematic. Here we show that a statistical forecast model employing a deep-learning approach produces skilful ENSO forecasts for lead times of up to one and a half years. To circumvent the limited amount of observation data, we use transfer learning to train a convolutional neural network (CNN) first on historical simulations and subsequently on reanalysis from 1871 to 1973. During the validation period from 1984 to 2017, the all-season correlation skill of the Nino3.4 index of the CNN model is much higher than those of current state-of-the-art dynamical forecast systems. The CNN model is also better at predicting the detailed zonal distribution of sea surface temperatures, overcoming a weakness of dynamical forecast models. A heat map analysis indicates that the CNN model predicts ENSO events using physically reasonable precursors. The CNN model is thus a powerful tool for both the prediction of ENSO events and for the analysis of their associated complex mechanisms.

How to cite: Luo, J.-J., Ling, F., Ham, Y.-G., and Kim, J.-H.: Seasonal-to-multiyear prediction of ENSO using machine deep learning, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21603, https://doi.org/10.5194/egusphere-egu2020-21603, 2020.

EGU2020-4086 | Displays | CL4.20

A sea surface height perspective on El Niño diversity, ocean energetics and energy damping rates

Jian Shi, Alexey Fedorov, and Shineng Hu

Ocean energetics is a useful framework for understanding El Niño development and diversity; however, its key element, available potential energy (APE), requires accurate ocean subsurface data that are hard to measure. However, sea surface heights (SSH) provide a useful alternative. In this study, we describe an SSH-based index, SSHI, that accurately captures APE variations and can be easily computed from satellite observations. Using SSHI we obtain an observation-based estimate of the APE damping timescale α-1 of approximately 1.7 years, slightly longer than previous ocean reanalysis-based estimates. We further show that SSHI records the relative strength of the thermocline feedback, serving as an indicator for El Niño “flavors”. SSHI demonstrates a clear decadal shift in El Niño-Southern Oscillation (ENSO) properties that occurred in early 2000s, with a more tilted mean thermocline and weaker thermocline slope variations indicative of the dominance of “Central Pacific” El Niño activity during the past two decades.

How to cite: Shi, J., Fedorov, A., and Hu, S.: A sea surface height perspective on El Niño diversity, ocean energetics and energy damping rates, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4086, https://doi.org/10.5194/egusphere-egu2020-4086, 2020.

This study investigates the mechanisms for the Pacific meridional mode (PMM) to influence the development of an ENSO event and its seasonal predictability. To examine the relative importance of several factors that might modulate the efficiency of the PMM influence, we conduct a series of prediction experiments to selected ENSO events with different intensity from a long simulation of the Community Earth System Model (CESM). Using the same coupled model, each of the ensemble prediction is conducted from slightly different ocean initial states but under a common prescribed PMM surface heat flux forcing. In general, the matched PMM forcing to ENSO, i.e., a positive (negative) PMM prior to an El Niño (a La Niña), plays an enhancing role while a mismatched PMM forcing plays a damping role. For the matched PMM-ENSO events, the positive PMM exerts greater influence than its negative counterpart does, with stronger enhancement of positive PMM events on an El Niño than that of negative PMM events on a La Niña. This asymmetry in ENSO influence largely originates from the intensity asymmetry between the positive and negative PMM events in the tropics, which can be explained by the nonlinearity in the growth and equatorward propagation of the PMM-related SST and surface zonal wind anomalies through both wind-evaporation-SST (WES) feedback and summer deep convection (SDC) response. Furthermore, the response of ENSO to an imposed PMM forcing is modulated by the preconditioning of the upper ocean heat content, which provides the memory for the coupled low-frequency evolution in the tropical Pacific.

How to cite: Fan, H., Huang, B., and Yang, S.: Influence of Pacific meridional mode on ENSO evolution and predictability: asymmetric modulation and ocean preconditioning , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6240, https://doi.org/10.5194/egusphere-egu2020-6240, 2020.

EGU2020-10541 | Displays | CL4.20

Nonlinear boosting during extreme El Niño through local air-sea interaction

Soon-Il An and Shang-Ping Xie

The delayed negative feedback is a key process for the turnabout between El Niño and La Niña. Since the intensity of this dynamical negative feedback is determined by itself, the stronger event is supposed be strongly damped during the decaying phase. However, the extreme El Niño actually lived longer than the normal El Niño. Here, we propose that the far-eastward extension of the warm pool promotes the positive SST tendency during the decaying phase of El Niño so disrupting a strong decay. The warm pool expansion accompanies by the expansion of the convective threshold region toward the eastern Pacific. During and after the mature phase of the extreme El Niño, therefore the rainfall band and the enhanced westerly anomalies over the eastern Pacific move to the east, which enhances the upwelling. This eastward migration of surface winds also plays a role of out-of-phase relationship between SST anomaly and subsurface temperature anomaly. All these processes results in the positive SST tendency through the positive nonlinear dynamical heating. This positive SST tendency maintains the warm eastern Pacific until the following summer.

How to cite: An, S.-I. and Xie, S.-P.: Nonlinear boosting during extreme El Niño through local air-sea interaction, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10541, https://doi.org/10.5194/egusphere-egu2020-10541, 2020.

EGU2020-1391 | Displays | CL4.20

Effects of Tropical Cyclones on ENSO

Tao Lian, Jun Ying, and Hong-Li Ren

EGU2020-7024 | Displays | CL4.20

Local and remote causes of the equatorial Pacific cold sea surface temperature bias in the Kiel Climate Model

Yuming Zhang, Tobias Bayr, Mojib Latif, Zhaoyang Song, Wonsun Park, and Annika Reintges

We investigate the origin of the equatorial Pacific cold sea surface temperature (SST) bias and its link to wind biases, local and remote, in the Kiel Climate Model (KCM) with dedicated coupled and stand-alone atmosphere model experiments. In the coupled experiments, the National Centers for Environmental Prediction Climate Forecast System Reanalysis (NCEP/CFSR) wind stress is prescribed over four different spatial domains: globally, over the equatorial Pacific (EP), the northern Pacific (NP) and southern Pacific (SP). The corresponding cold SST bias over the equatorial Pacific is reduced by 94%, 48%, 11% and 22%, respectively. Thus, the equatorial Pacific SST bias is mainly attributed to the wind bias over the EP region, with small but not negligible contributions from the SP and NP regions. Biases in the ocean dynamics cause the EP SST bias, while the atmospheric thermodynamics counteract it.

To examine the origin of wind biases, we force the atmospheric component of the KCM in stand-alone mode by observed SSTs and simulated SSTs from the coupled experiments with the KCM. The results show that wind biases over the EP, NP and SP regions are initially generated in the atmosphere model and further enhanced by the biased SST in the coupled model.

We conclude that the cold SST bias over the equatorial Pacific originates from biases in the ocean circulation that are forced by the biased surface winds over the EP, NP and SP regions. On the other hand, the cold equatorial Pacific SST bias amplifies the wind biases over the EP, NP and SP regions, which in turn enhances the cold SST bias by ocean-atmosphere coupling.

How to cite: Zhang, Y., Bayr, T., Latif, M., Song, Z., Park, W., and Reintges, A.: Local and remote causes of the equatorial Pacific cold sea surface temperature bias in the Kiel Climate Model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7024, https://doi.org/10.5194/egusphere-egu2020-7024, 2020.

EGU2020-8835 | Displays | CL4.20

Walker Circulation controls ENSO Atmospheric Feedbacks in Uncoupled and Coupled Climate Model Simulations

Tobias Bayr, Dietmar Dommenget, and Mojib Latif

Many climate models strongly underestimate the two most important atmospheric feedbacks operating in El Niño/Southern Oscillation (ENSO), the positive (amplifying) zonal surface wind feedback and negative (damping) surface-heat flux feedback (hereafter ENSO atmospheric feedbacks, EAF), hampering realistic representation of ENSO dynamics in these models. Here we show that the atmospheric components of climate models participating in the 5th phase of the Coupled Model Intercomparison Project (CMIP5) when forced by observed sea surface temperatures (SST), already underestimate EAF on average by 23%, but less than their coupled counterparts (on average by 54%). There is a pronounced tendency of atmosphere models to simulate stronger EAF, when they exhibit a stronger mean deep convection and enhanced cloud cover over the western equatorial Pacific (WEP), indicative of a stronger rising branch of the Pacific Walker Circulation (PWC). Further, differences in the mean deep convection over the WEP between the coupled and uncoupled models explain a large part of the differences in EAF, with the deep convection in the coupled models strongly depending on the equatorial Pacific SST bias. Experiments with a single atmosphere model support the relation between the equatorial Pacific atmospheric mean state, the SST bias and the EAF. An implemented cold SST bias in the observed SST forcing weakens deep convection and reduces cloud cover in the rising branch of the PWC, causing weaker EAF. A warm SST bias has the opposite effect. Our results elucidate how biases in the mean state of the PWC and equatorial SST hamper a realistic simulation of the EAF.

How to cite: Bayr, T., Dommenget, D., and Latif, M.: Walker Circulation controls ENSO Atmospheric Feedbacks in Uncoupled and Coupled Climate Model Simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8835, https://doi.org/10.5194/egusphere-egu2020-8835, 2020.

EGU2020-7263 | Displays | CL4.20

A weather system perspective on winter-spring rainfall variability in southeastern Australia during El Niño

Seraphine Hauser, Christian M. Grams, Michael J. Reeder, Shayne McGregor, Andreas H. Fink, and Julian F. Quinting

The El Niño Southern Oscillation (ENSO) is typically associated with below-average rainfall in the winter-spring season in southeastern Australia. However, there is also a large case-to-case variability pointing to the non-linear relationship of El Niño strength and the impact on east Australian rainfall. Despite recent progress in understanding the linkage of remote climate drivers and this variability, the dynamical processes by which the drivers transmit their influence on rainfall are not fully understood. With this study, we aim to advance the dynamical understanding by relating patterns of monthly rainfall anomalies over southeastern Australia to a novel dataset of objectively identified weather systems derived from ERA-Interim reanalyses.

We find 4 rainfall anomaly patterns in the austral winter-spring season (JJASON) with above-average rainfall (Cluster 1), below-average rainfall (Cluster 2), above-average rainfall limited to the East Coast (Cluster 3) and above-average rainfall limited to the South Coast (Cluster 4) in southeastern Australia. Changes in the frequency of weather systems explain partly the rainfall anomalies in the clusters. Results indicate a significant increase of weather system activity in Cluster 1 and a weakening of weather system activity in Cluster 2. In Cluster 3, enhanced blocking favors the development of cut-off lows on its northeastern flank leading to increased rainfall along the East Coast. Positive rainfall anomalies along the South Coast are associated with frontal rainfall due to an equatorward shift of the midlatitude storm track (Cluster 4). Most of the rainfall is produced by warm conveyor belts and cut-off lows but the contributions strongly vary between the clusters. We further find that anomalies in rainfall result from changes in rainfall frequency more than in rainfall intensity. By calculating backward trajectories of warm conveyor belt and cut-off low rainfall, we point to the importance of moist air masses from the Coral Sea and the northwest coast of Australia for wet months. Air parcels, that end up in WCB or cut-off low rainfall, reach southeastern Australia from the dry remote areas to the north and not as one would expect from the Southern Ocean.

How to cite: Hauser, S., Grams, C. M., Reeder, M. J., McGregor, S., Fink, A. H., and Quinting, J. F.: A weather system perspective on winter-spring rainfall variability in southeastern Australia during El Niño, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7263, https://doi.org/10.5194/egusphere-egu2020-7263, 2020.

EGU2020-7527 | Displays | CL4.20

A new perspective on studying ENSO teleconnections

Matyas Herein, Timea Haszpra, and Tamas Bodai

Traditionally we think that climate is a long term average of weather. It is true but only if the climate is stationary. However, in a changing climate, where one or more relevant system parameters are changing in time, there can be no stationarity by definition, whereas stationarity is crucial for the applicability of any temporal averaging techniques. To avoid this problem we redefine climate as the distribution of potential climate realizations characterized by the instantaneous statistics of an ensemble using the so-called snapshot attractor view. In this view, the relevant quantities of the climate system are the statistics taken over an ensemble of possible realizations evolved from various initial conditions. To illustrate the power and applicability of this method we investigate the changes in the El Niño–Southern Oscillation (ENSO) phenomenon and its precipitation-related teleconnections over the Globe under climate change in the Community Earth System Model’s Large Ensemble from 1950 to2100. For the investigation, a recently developed ensemble-based method, the snapshot empirical orthogonal function (SEOF) analysis is used. The instantaneous seasonal ENSO SST pattern is defined as the leading mode of the SEOF analysis carried out at a given time instant over the ensemble. The corresponding principal components (PC1s) characterize the ENSO phases. Considering regression maps, we find that the largest changes in the typical amplitude of SST fluctuations occur in the June–July–August–September (JJAS) season, in the Niño3–Niño3.4 region and in the western part of the Pacific Ocean. At the same time, the increase is also considerable along the Equator in December–January–February (DJF). The Niño3 amplitude shows also an increase of about 20% and 10% in JJAS and DJF, respectively. The strength of the precipitation-related teleconnections of the ENSO is found to be non-stationary, as well. For example, the anti-correlation with precipitation in Australia in JJAS and the positive correlation in Central and North Africa in DJF are predicted to be more pronounced by the end of the 21th century. Half-year-lagged correlations, aiming to predict precipitation conditions from ENSO phases, are also studied. The Australian, Indonesian precipitation and that of the eastern part of Africa in both JJAS and DJF seem to be well predictable based on ENSO phase, while the South Indian precipitation is in relation with the half-year previous ENSO phase only in DJF. The strength of these connections increases with time, especially from the African region to the Arabian Peninsula.

How to cite: Herein, M., Haszpra, T., and Bodai, T.: A new perspective on studying ENSO teleconnections, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7527, https://doi.org/10.5194/egusphere-egu2020-7527, 2020.

EGU2020-11318 | Displays | CL4.20

Transition of the ENSO teleconnection to the Euro-Atlantic region from early to late winter: Role of the Indian Ocean

Muhammad Adnan Abid, Fred Kucharski, Franco Molteni, In-Sik Kang, Adrian Tompkins, and Mansour Almazroui

El Niño Southern Oscillation (ENSO) have a weak influence on the seasonal mean Euro-Atlantic circulation anomalies during the boreal winter (Dec-Feb) season. Therefore, monthly ENSO teleconnections to Euro-Atlantic region were studied during the boreal winter season for the period 1981-2015 using reanalysis and hindcast dataset. It is shown that the ENSO-forced signal to the Euro-Atlantic circulation anomalies does not persist throughout the boreal winter season. During earlier winter, a positive ENSO phase strongly enforces rainfall dipole anomalies in the tropical Indian Ocean, with increased rainfall over the western tropical Indian Ocean, and reduced in the eastern tropical Indian ocean.  This Indian Ocean rainfall dipole weakens in late winter. During early winter, the Indian Ocean rainfall dipole modifies the subtropical South Asian jet (SAJET) which forces a wavenumber-3 response projecting spatially onto the positive North Atlantic Oscillation (NAO) pattern. On contrary, during late winter, the response in the Euro-Atlantic sector is dominated by the well-known ENSO wavetrain from the tropical Pacific region, involving Pacific North American (PNA) pattern anomalies that project spatially on the negative phase of the NAO. Atmospheric General Circulation Model (AGCM) numerical experiments forced with an Indian Ocean heating dipole anomaly support the hypothesis that the Indian Ocean modulates the SAJET that enforces the Rossby wave propagation to the Euro-Atlantic region in early winter. Moreover, the ECMWF-SEAS5 hindcast dataset reproduces the observed ENSO-forced inter-basin tropical teleconnections transition from early to late winter and their response to the Euro-Atlantic circulation anomalies quite well. Therefore, it is important to understand the tropical inter-basin transition, which may lead to improve the sub-seasonal to seasonal variability and predictability of the Euro-Atlantic circulation anomalies. 

How to cite: Abid, M. A., Kucharski, F., Molteni, F., Kang, I.-S., Tompkins, A., and Almazroui, M.: Transition of the ENSO teleconnection to the Euro-Atlantic region from early to late winter: Role of the Indian Ocean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11318, https://doi.org/10.5194/egusphere-egu2020-11318, 2020.

EGU2020-16656 | Displays | CL4.20 | Highlight

Revisiting ENSO Atmospheric Teleconnections and Challenges

Andréa S. Taschetto, Caroline C. Ummenhofer, Malte F. Stuecker, Dietmar Dommenget, Karumuri Ashok, Regina R. Rodrigues, and Sang-Wook Yeh

The warming of the equatorial Pacific associated with the El Niño–Southern Oscillation (ENSO) causes profound impacts on rainfall and temperature in the tropics and extratropics. El Niño drives changes in the Walker and Hadley circulations, warms the tropics and affects the neighboring ocean basins, favoring a short-term rise in global temperatures. We will present an overview of the atmospheric teleconnections driven by ENSO and its diversity focusing on the impacts over land and remote ocean basins. During El Niño, dry conditions are generally observed in the Maritime Continent, northern South America, South Asia and South Africa, while wet weather typically occurs in southwestern North America, western Antarctica, and east Africa. Global effects during La Niña are overall the opposite to El Niño, however this assumption is not true for all regions. ENSO atmospheric teleconnections are non-linear in part due to different locations of the anomalous equatorial warming (Eastern versus Central Pacific events) superimposed on the Pacific mean state, as well as interactions with the annual cycle, off-equatorial regions, remote ocean basins, and other modes of climate variability. Adding to this complex behavior, ENSO teleconnections are non-stationary either due to deterministic low-frequency modulations or stochastic variability, the latter being a factor generally overlooked in the literature. As the world warms in response to greenhouse gas forcing, ENSO atmospheric teleconnections are expected to change, despite large uncertainties in ENSO projections. We will discuss the limitations of climate models in representing realistic teleconnections from the tropical Pacific to remote regions and some of the challenges for future projections.

How to cite: Taschetto, A. S., Ummenhofer, C. C., Stuecker, M. F., Dommenget, D., Ashok, K., Rodrigues, R. R., and Yeh, S.-W.: Revisiting ENSO Atmospheric Teleconnections and Challenges, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16656, https://doi.org/10.5194/egusphere-egu2020-16656, 2020.

EGU2020-8340 | Displays | CL4.20

ENSO amplitude uncertainty under global warming in CMIP5 models

Goratz Beobide, Tobias Bayr, Annika Reintges, and Mojib Latif

The possible change of ENSO amplitude during the 21st century in response to global warming has been analyzed in models participating in the Coupled Model Intercomparison Phase 5 (CMIP5). Three types of uncertainties are investigated: scenario uncertainty, model uncertainty, and uncertainty due to internal variability.

The ENSO response obtained from the CMIP5 models is highly uncertain, leading to an ensemble-mean amplitude change of close to zero until the end of the 21st century, with an uncertainty exceeding 0.3 °C. The internal variability is the main contributor to the uncertainty during the first two decades of the projections. The inter-model differences dominate thereafter, while scenario uncertainty is relatively small throughout the whole 21st century. The zonal wind-SST feedback has been identified as an important factor of ENSO amplitude change: the global warming signal in the ENSO amplitude and zonal wind-SST feedback are highly correlated across the CMIP5 models, with correlation coefficients of 0.87, 0.84 and 0.78 for the RCP4.5, RCP6.0 and RCP8.5 scenarios, respectively.

The CMIP5 models with realistic ENSO dynamics have been analyzed separately. In this sub-ensemble, the global warming signal is strengthened with a mean ENSO amplitude decrease of approximately 0.1°C by the end of the 21st century. When only considering models with large decadal ENSO amplitude variability, the decrease in ENSO amplitude amounts to 0.1°C and 0.2°C for the RCP4.5 and RCP8.5 scenarios, respectively.

How to cite: Beobide, G., Bayr, T., Reintges, A., and Latif, M.: ENSO amplitude uncertainty under global warming in CMIP5 models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8340, https://doi.org/10.5194/egusphere-egu2020-8340, 2020.

EGU2020-8916 | Displays | CL4.20

Future changes in ENSO teleconnections over the North Pacific and North America in CMIP6 simulations

Jonathan Beverley, Mat Collins, Hugo Lambert, and Rob Chadwick

El Niño–Southern Oscillation (ENSO) has major impacts on the weather and climate across many regions of the world. Understanding how these teleconnections may change in the future is therefore an important area of research. Here, we use simulations from the Coupled Model Intercomparison Project Phase 6 (CMIP6) to investigate future changes in ENSO teleconnections in the North Pacific/North America sector.

Precipitation over the equatorial Pacific associated with ENSO is projected to shift eastwards under global warming as a result of greater warming in the east Pacific, which reduces the barrier to convection as the warm pool expands eastwards. As a result, there is medium confidence (IPCC AR5 report) that ENSO teleconnections will shift eastwards in the North Pacific/North America sector. In the CMIP6 models, the present day teleconnection is relatively well simulated, with most models showing an anomalously deep Aleutian low and associated positive temperature anomalies over Alaska and northern North America in El Niño years. In the future warming simulations (we use abrupt-4xCO2, in which CO2 concentrations are immediately quadrupled from the global annual mean 1850 value), in agreement with the IPCC AR5 report, the North America teleconnection and associated circulation change is shifted eastwards in most models. However, it is also significantly weaker, with the result that the positive temperature anomalies in El Niño years over North America are much reduced. This weakening is seen both in models with a projected increase and projected decrease in the amplitude of future El Niño events. The mechanisms related to these projected changes, along with potential implications for future long range predictability over North America, will be discussed.

How to cite: Beverley, J., Collins, M., Lambert, H., and Chadwick, R.: Future changes in ENSO teleconnections over the North Pacific and North America in CMIP6 simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8916, https://doi.org/10.5194/egusphere-egu2020-8916, 2020.

EGU2020-12812 | Displays | CL4.20

Robust expression of ENSO throughout the Last Interglacial

Zoe Thomas, Chris Turney, A. Peter Kershaw, Richard Jones, Ian Croudace, Patrick Moss, Timothy Herbert, Mark Grosvenor, Raphael Wust, Joanne Muller, Malin Kylander, Susan Rule, Sophie Lewis, Sarah Coulter, and Manfred Mudelsee

The El Niño-Southern Oscillation (ENSO) is a driver of global atmosphere-ocean dynamics, but projections of frequency and magnitude in different climate states remain uncertain. Palaeoclimate records offer the potential to improve our understanding of ENSO behaviour but most are fragmentary, suffer low resolution, and/or typically do not cover periods warmer than present day. The Last Interglacial (129-116 kyr BP) was the most recent period during which global temperatures were close to 21st century projections, and potentially provides insights into operation of climate modes of variability in the future. Here we report a continuous, inter-annually resolved record of hydroclimate spanning 220-80 ka from Lynch’s Crater in tropical northeast Australia, a region highly sensitive to ENSO. Our reconstruction is based on a micro-X-ray fluorescence (XRF)-generated elemental profile at 200 µm resolution, combined with loss-on-ignition, magnetic susceptibility, and pollen analysis. We find that during globally warmer periods (including super-interglacial Stage 5e, and 5c), there are significantly larger amplitudes in high-frequency ENSO spectral range (3-8 years), which are absent from the record during the glacial stages MIS6 and MIS4. Our results imply an ENSO dependence on mean climate, with enhanced ENSO variance during interglacials globally warmer than present. These results are consistent with climate model projections for a future slowdown of the Walker circulation and more extreme El Niño events under greenhouse warming.

How to cite: Thomas, Z., Turney, C., Kershaw, A. P., Jones, R., Croudace, I., Moss, P., Herbert, T., Grosvenor, M., Wust, R., Muller, J., Kylander, M., Rule, S., Lewis, S., Coulter, S., and Mudelsee, M.: Robust expression of ENSO throughout the Last Interglacial, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12812, https://doi.org/10.5194/egusphere-egu2020-12812, 2020.

EGU2020-21341 | Displays | CL4.20

Impact of the stratosphere on El Niño-Southern Oscillation

Mario Rodrigo, Javier Garcia-Serrano, Ileana Bladé, Froila M. Palmeiro, and Bianca Mezzina

The European Consortium EC-EARTH climate model version 3.1 is used to assess the effects of a well-resolved stratosphere on the representation of El Niño-Southern Oscillation (ENSO). Three 100-year  long experiments with fixed radiative forcing representative of the present climate are compared: one with the top at 0.01hPa and 91 vertical levels (HIGH-TOP), another with the top at 5hPa and 62 vertical levels (LOW-TOP), and another high-top experiment with the stratosphere nudged to the climatology of HIGH-TOP from 10hPa upwards (NUDG). The differences in vertical resolution between HIGH-TOP and LOW-TOP start at around 100hPa. This study focuses on the canonical ENSO phenomenon, which is the most important source of variability and predictability on seasonal-to-interannual timescales.

 

Preliminary results indicate that EC-EARTH realistically simulates the ENSO SST pattern in the tropical Pacific regardless of vertical resolution, although HIGH-TOP (LOW-TOP) overestimates (underestimates) the SST variability during boreal summer (winter). In both configurations, the SST tongue is narrower meridionally and slightly shifted towards the central-western Pacific compared to observations, a common bias of climate models. Resolving the stratosphere has a clear effect on the power spectrum of the Niño3.4 index: as compared to observations where there is a well-known frequency range of 2-7 years, HIGH-TOP and LOW-TOP have a prominent peak centered at 4-5 years but additionally both simulations display another peak, towards higher (~ 2yrs) and lower (~ 7yrs) frequencies, respectively. Another impact of including a well-resolved stratosphere is to systematically enhance the amplitude of the SST, wind and convective anomalies in the tropical Pacific throughout the entire ENSO cycle. Finally, similar differences are obtained when comparing HIGH-TOP and NUDG, suggesting an active role of the tropical stratospheric variability on ENSO.

How to cite: Rodrigo, M., Garcia-Serrano, J., Bladé, I., Palmeiro, F. M., and Mezzina, B.: Impact of the stratosphere on El Niño-Southern Oscillation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21341, https://doi.org/10.5194/egusphere-egu2020-21341, 2020.

This study evaluates the ability of 35 climate models, which participate in the Coupled Model Intercomparison Project Phase 5 (CMIP5) historical climate simulations, in reproducing the connection between boreal spring Arctic Oscillation (AO) and its following winter El Niño-Southern Oscillation (ENSO). The spring AO-winter ENSO correlations range from -0.41 to 0.44 among the 35 models for the period of 1958-2005. Ensemble means of the models with significant positive and negative AO-ENSO correlations both show strong spring sea surface temperature (SST) cooling in the subtropical North Pacific during a positive phase of spring AO, which is conducive to occurrence of a La Niña event in the following winter. However, the models with positive AO-ENSO relations produce a pronounced spring cyclonic anomaly over the subtropical northwestern Pacific and westerly anomalies over the tropical western Pacific (TWP). These westerly wind anomalies would lead to SST warming and positive precipitation anomalies in the tropical central-eastern Pacific (TCEP) during the following summer, which could maintain and develop into an El Niño-like pattern in the following winter via a positive air-sea feedback. By contrast, the models with negative AO-ENSO connections fail to reproduce the spring AO-related cyclonic anomaly over the subtropical northwestern Pacific and westerly wind anomalies in the TWP. Thus, these models would produce a La Niña-like pattern in the subsequent winter. Difference in the spring AO-associated atmospheric anomalies over the subtropical North Pacific among the CMIP5 models may be attributed to biases of the models in simulating the spring climatological storm track.

How to cite: Zheng, Y.: Diverse influences of spring Arctic Oscillation on the following winter El Niño-Southern Oscillation in CMIP5 models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3983, https://doi.org/10.5194/egusphere-egu2020-3983, 2020.

EGU2020-10693 | Displays | CL4.20

Indian Ocean impact on ENSO evolution 2014-2016 in a set of seasonal forecasting experiments

Michael Mayer and Magdalena Alonso Balmaseda

In 2014 the scientific community and forecasters were expecting a major El Nino event, which was suggested by physical indicators and predicted by several seasonal forecasting systems. However, only moderately warm El Nino – Southern-Oscillation (ENSO) conditions materialized in 2014, but one year later in boreal winter 2015/16, one of the strongest El Ninos on record occurred. Moreover, the 2015/16 El Nino exhibited very unusual energetics: Despite warm conditions in the tropical Pacific in 2014 and especially 2015, its ocean heat content (OHC) did not decrease during that period, which usually is the case during El Nino events. Overall, the 2014-16 evolution of the tropical Pacific was quite different from the evolution during the 1997/98 El Nino, which exhibited exceptionally strong Pacific OHC discharge. This discrepancy was attributed at least partly to the anomalously warm Indian Ocean and the exceptionally weak Indonesian Throughflow transports during 2015-16 that kept Pacific OHC at high levels.

This contribution aims to elucidate the role of the Indian Ocean in the tropical Pacific Ocean evolution during ENSO for the two periods February 1997-1999 and February 2014-2016. For this purpose, we perform initialized two-year predictions using the ECMWF seasonal forecasting system. To isolate the role of the Indian Ocean, we carry out hindcasts with unperturbed ocean initial conditions and hindcasts with swapped Indian Ocean initial conditions, where the 2014 (1997) hindcasts use Indian Ocean initial conditions from 1997 (2014). We first investigate the impact of the Indian Ocean on the strength of the Indonesian Throughflow and the evolution of the tropical Pacific heat budget. Second, we seize these experiments to explore the impact of the Indian Ocean state on two-yearly ENSO evolution, especially on the probability of extreme events, and which role the atmospheric bridge plays versus the oceanic bridge.

How to cite: Mayer, M. and Alonso Balmaseda, M.: Indian Ocean impact on ENSO evolution 2014-2016 in a set of seasonal forecasting experiments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10693, https://doi.org/10.5194/egusphere-egu2020-10693, 2020.

EGU2020-5119 | Displays | CL4.20

A quantitative comparison of ENSO prediction methods

Xinjia Hu, Holger Kantz, and Eberhard Faust

The El Niño Southern Oscillation (ENSO) is one of the most important inter-annual climate phenomena with worldwide impacts. It can influence daily temperature and rainfall, as well as cause extreme weather events and natural disasters. Therefore, early and reliable prediction of the onset and magnitude of ENSO is crucial for different stakeholders. In order to overcome the “spring predictability barrier” in ENSO prediction, recent studies have developed some analysis tools and put forward some forecasting indices based on climate network, claiming they have achieved the long-lead-time (over 6 months) forecasts. However, there are few kinds of research to quantitatively compare the predictive power of these methods. Thus developing a method to measure the quality of these forecasts and compare their predictive power is necessary and meaningful for the improvement of ENSO prediction skills. In these existing researches, in order to set the threshold or estimate the accuracy of the prediction, the standard El Niño indices such as Oceanic Index (ONI), Niño 3.4 Index and etc., are often used to be compared with the invented indices series. In this research, we look into these comparisons and results, and use the receiver operating characteristic curve (ROC) to quantitatively compare these recent analysis tools. Additionally, for demonstrating that the results are not accidental, randomized series obtained by reshuffling the temperature records are analyzed. In this paper, we use the method of surrogate data instead of using shuffle data in the evaluation procedure of the prediction to further improve the evaluation method of the El Nino prediction.

 

(This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 813844.)

How to cite: Hu, X., Kantz, H., and Faust, E.: A quantitative comparison of ENSO prediction methods, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5119, https://doi.org/10.5194/egusphere-egu2020-5119, 2020.

EGU2020-4828 | Displays | CL4.20

Schumann resonance intensity as a precursor for warm ENSO episodes

Gabriella Satori, Tamas Bozoki, Earle Williams, Colin Price, Anirban Guha, Ciaran Beggan, Mariusz Neska, and Mike Atkinson

Schumann resonances (SR) are the global electromagnetic resonances of the Earth-ionosphere cavity and constitute the extremely low frequency (< 100 Hz) radiation of the worldwide lightning activity (Schumann, 1952). The recording of SR intensity at a few distant SR stations is an efficient tool to monitor the global lightning. We present the variations of SR intensity in the transition months preceding the warm ENSO episodes for the two super El Niño events in 1997/98 and 2015/16 as well as for the two medium size El Niño periods in 2001/02 and 2008/09  based on SR observations at multiple locations.: Nagycenk, Hungary (47.6N, 16.7E);  Hornsund, Svalbard (77.0N, 15.6E);  Eskdalemuir, UK (55.3N, 3.2W);  Alberta, Canada (51.9N, 111.5W);  Boulder Creek, USA (37.2N, 122.1W).

A remarkable increase in SR intensity is documented two-three months before or just at the beginning of El Niño episodes as compared with the SR intensity in the same months of the preceding La Niña (or non-ENSO) phase for all cases studied here. The percentage increase in SR intensity depends on the amplitude of the warm ENSO period, and is consistently higher for the two super El Niño events. The enhanced SR intensity indicates a worldwide response of global lightning activity. Increased atmospheric instability due to the land-ocean thermal interaction during the transition interval could be responsible for the intensification of lightning activity. This systematic behavior may have been overlooked in earlier studies that compared lightning activity in the integrated ‘cold’ and the ‘warm’ phases, but without exploring the transitional variation. Our results suggest that the SR intensity variation on the interannual time scale acts a precursor for the occurrence of warm ENSO episode.

How to cite: Satori, G., Bozoki, T., Williams, E., Price, C., Guha, A., Beggan, C., Neska, M., and Atkinson, M.: Schumann resonance intensity as a precursor for warm ENSO episodes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4828, https://doi.org/10.5194/egusphere-egu2020-4828, 2020.

EGU2020-7407 | Displays | CL4.20

Impact of the Pacific mean SST bias to the Atlantic-Pacific teleconnection

Chen Li, Dietmar Dommenget, and Shayne McGregor

A robust eastern tropical Pacific surface temperature cooling trend along with the strengthening of Pacific trade wind is evident across different observations since late 1990s, which is considered as a pronounced contributor to the slowdown in global surface warming. However, most CMIP5 historical simulations failed to reproduce this La Niña-like change. Previous studies have attributed this discrepancy between the multi-model simulations and the observations to the underrepresentation of Pacific low-frequency variability together with the misrepresentation of inter-basin forcing response. The underlying reasons remain unclear. Here, we investigate a hypothesis that common Pacific mean SST bias may diminish the Pacific-Atlantic atmospheric teleconnection and further contribute to the underestimated eastern Pacific cooling. Model results suggest that the CMIP5-like Pacific bias acts to reduce the Atlantic heating response by strengthening the atmospheric stability over the Atlantic region and therefore weaken the trans-basin variability. In addition, the Pacific bias simulation with a strong SST cold tongue substantially undermined the positive zonal wind feedback, which also contributes to the underestimated Pacific cooling response. Future efforts aim at reducing the model mean state biases may significantly help to improve the simulation skills of the trans-basin teleconnection, Pacific decadal variability, and the associated Pacific dynamics.      

How to cite: Li, C., Dommenget, D., and McGregor, S.: Impact of the Pacific mean SST bias to the Atlantic-Pacific teleconnection, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7407, https://doi.org/10.5194/egusphere-egu2020-7407, 2020.

EGU2020-3235 | Displays | CL4.20

Relative contributions of North and South Pacific sea surface temperature anomalies to ENSO

Ruiqiang Ding, Yu-heng Tseng, and Jianping Li

Variations in the sea surface temperature (SST) field in both the North Pacific [represented by the Victoria mode (VM)] and the South Pacific [represented by the South Pacific Quadrapole (SPQ) mode] are related to the state of the El Niño-Southern Oscillation (ENSO) three seasons later. Here, with the aid of observational data and numerical experiments, we demonstrate that both VM and SPQ SST forcing can influence the development of ENSO events through a similar air–sea coupling mechanism. By comparing ENSO amplitudes induced by the VM and SPQ, as well as the percentages of strong ENSO events followed by the VM and SPQ events, we find that the VM and SPQ make comparable contributions and therefore have similar levels of importance to ENSO. Additional analysis indicates that although VM or SPQ SST forcing alone may serve as a good predictor for ENSO events, it is more effective to consider their combined influence. A prediction model based on both VM and SPQ indices is developed, which is capable of yielding skillful forecasts for ENSO at lead times of three seasons.

How to cite: Ding, R., Tseng, Y., and Li, J.: Relative contributions of North and South Pacific sea surface temperature anomalies to ENSO, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3235, https://doi.org/10.5194/egusphere-egu2020-3235, 2020.

EGU2020-6492 | Displays | CL4.20

Mechanism of the Double peaked El Nino

Na-Yeon Shin, Jong-Seong Kug, Felicity S. McCormack, and Neil J. Holbrook

   In the past decades, our understanding of the ENSO phenomenon increased steadily. Especially, one of the most interesting topics was the El Niño type because of the different global impacts. The classic classification is the two types of the El Niño and there are various terms to refer this. The conventional El Niño is called the Cold tongue El Niño or the Eastern pacific El Niño. And the other type of the El Niño is called the Warm pool El Niño, the Central pacific El Niño, the El Niño Modoki or the dateline El Niño. However, in Coupled Model Intercomparison Project version 5 (CMIP5) Coupled General Circulation Models (CGCMs) results, those have been shown the Double peaked El Niño events which are the new type of the El Niño due to the climatological cold tongue bias. Double peaked El Niño events are defined as a positive sea surface temperature anomalies are separated into two centers (in Western and Eastern Pacific) and grow individually and simultaneously, and the peak of SST anomalies exceeds the threshold.

   Double peaked El Niño events are found in not only the models, but also the observations. But there are no dynamical analysis of observations. In this study, the mechanism giving rise to Double peaked El Niño in observation is examined by analyzing the mixed layer heat budget equation and comparing with the Warm Pool El Niño and Cold tongue El Niño.

   The warm SST anomalies of the western peak and the eastern peak are caused by different dynamic mechanism. Western peaks of Double peaked El Niño are similar to the Warm Pool El Niño. Those can be developed by Zonal advection feedback terms and negative anomalous wind speed, whereas eastern peaks of Double peaked El Niño are different from Warm pool El Niño. Thermocline feedback term considerably contribute to the occurrence of eastern peak. Differences of intensity of the precipitation(4-8N, 195-225E) derive other significant differences of the zonal wind stress(5S-5N, 170-200E), sea level(5S-5N, 230-250E) and zonal current(5S-5N, 230-250E). Thus, the process above can induce the eastern peak of the Double peaked El Niño.

How to cite: Shin, N.-Y., Kug, J.-S., McCormack, F. S., and Holbrook, N. J.: Mechanism of the Double peaked El Nino, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6492, https://doi.org/10.5194/egusphere-egu2020-6492, 2020.

EGU2020-17743 | Displays | CL4.20

ENSO and TWC: a multi-model evaluation

Valentina Pivotti, Annalisa Cherchi, Alessio Bellucci, and Bruce Anderson

<p>Previous research has extensively established that, during the last decades, the Trade Wind Charging (TWC) mechanism is a fundamental precursor of El Ni&ntilde;o Southern Oscillation (ENSO). Moreover, recent results suggest that its relevance as an ENSO driver varies when a longer time interval is included the analysis. This article investigates whether TWC is isolated as a significant ENSO precursor; and how the internal variance of their coupling behaves, on a CMIP6 multi model ensemble. In particular, we consider the models participating to the CMIP6 HigResMIP, specifically designed to investigate the role that model resolution plays in simulating climate processes. For each model, we have included in the analysis 100-year long integrations of the present climate that are forced with constant radiative forcing representative of the 1950s at standard and enhanced resolutions.</p>
<p>The analysis follows two steps for each experiment. First, through a combination of Empirical Orthogonal Function (EOF) and Canonical Correlation Analysis (CCA) it isolates ENSO and TWC. Then, in order to study their mutual relation, the combination of EOF and CCA is repeated over shifting time intervals.</p>
<p>The analysis indicates TWC as a strong ENSO precursor for at least one model, and the coupling between the modes shows signs of internal variability. Also, the ways in which the models reconstruct the TWC, in its intensity and shape, and its coupling with ENSO appear to be affected by the changes in resolution. These results provide an insight over the different degrees at which HigResMIP model experiments are able to characterize the features of a fundamental process like ENSO. Moreover, they cast a light over the impacts that a change in oceanic or atmospheric resolution can have when simulating a coupled mode.</p>

How to cite: Pivotti, V., Cherchi, A., Bellucci, A., and Anderson, B.: ENSO and TWC: a multi-model evaluation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17743, https://doi.org/10.5194/egusphere-egu2020-17743, 2020.

EGU2020-21756 | Displays | CL4.20

Multidecadal changes in ENSO properties in the recharge oscillator conceptual model

Lander R. Crespo, Belen Rodriguez-Fonseca, Irene Polo, Noel Keenlyside, and Dietmar Dommenget

We use a simple conceptual recharge oscillator model for the tropical Pacific to identify multidecadal changes in El Niño-Southern Oscillation (ENSO) statistics and dynamics during the observational record. The model, defined by only two variables, sea surface temperature (SST) and warm water volume (WWV), is fitted to the observations for the period 1901-2010. The variability of ENSO has increased during the 20th century. The model simulates similar changes in variance of SST and WWV. The cross-correlation between SST and WWV also shows significant changes during the observational record. From the 1970s onwards, both observations and model output show that the SST drives WWV anomalies with a lead-time of 10 months and the WWV feedbacks onto the SST with a lead-time of about 8 months. The latter is reminiscent of a recharge-discharge mechanism of the upper ocean heat content. Before the 1970s only the impact of SST on WWV, through implied wind changes, is observed and is reproduced by the model. The periodicity of ENSO has also changed; ENSO has become more frequent changing from a 7-yr periodicity in the beginning of 20th century to a 5-yr periodicity in the recent decades. We find that the full recharge-discharge mechanism of the equatorial upper ocean heat content that characterizes the dynamics of the ReOsc model is only observed from the 1970s onwards and is likely to be a consequence of a stronger observed coupling between WWV and SST and of the leading role of the thermocline feedback. The degrading quality in the observations for earlier periods can also partly explain the decadal changes in the ENSO interactions. We find that the Atlantic Multidecadal Variability and global warming can partly explain the observed and simulated multidecadal changes in ENSO properties.

How to cite: Crespo, L. R., Rodriguez-Fonseca, B., Polo, I., Keenlyside, N., and Dommenget, D.: Multidecadal changes in ENSO properties in the recharge oscillator conceptual model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21756, https://doi.org/10.5194/egusphere-egu2020-21756, 2020.

EGU2020-9584 | Displays | CL4.20

The Role of the NECC in a Strong El Niño.

David Webb

An analysis of archived data from the NEMO 1/12th degree global ocean model shows the importance of the North Equatorial Counter Current (NECC) in the development of the strong 1982–1983 and 1997–1998 El Niños.  The model results indicate that in a normal year the coreof warm water in the NECC is diluted by the surface Ekman transport, by geostrophic inflow and by tropical instability waves. During the development of the 1982–1983 and 1997–1998 El Niños, these processes had reduced effect at the longitudes of warmest equatorial temperatures. During the autumns of 1982 and 1997, the speed of the NECC was also increased by a stronger-than-normal annual Rossby wave and other changes in sea level in the western Pacific.  The resulting increased transport of warm water by the NECC resulted in water with temperatures above 28C reaching the eastern Pacific.  This appears to have been a major factor in moving the centre of deep atmospheric convection eastwards across the Pacific.

Note:  This is based on the paper published in Ocean Science.  An oral presentation is possible.

How to cite: Webb, D.: The Role of the NECC in a Strong El Niño., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9584, https://doi.org/10.5194/egusphere-egu2020-9584, 2020.

EGU2020-18388 | Displays | CL4.20

Importance of the non-linearity of the convective response to surface temperature for eastern Pacific El Niños

Srinivas Gangiredla, Jerome Vialard, Takeshi Izumo, Matthieu Lengaigne, and Eric Guilyardi

Understanding the key physical processes involved in the development and diversity of El Niño events is essential to anticipate their multiple impacts. Current El Niño theories generally assume that wind stress responds linearly to El Niño Sea Surface Temperature (SST) anomalies. Yet, the deep atmospheric convection that energizes this wind stress response has obvious nonlinear features. Observations indeed indicate that rainfall (a proxy of the tropospheric heating) increases slowly with SST up to 26.5OC, followed by a sharp increase of rainfall at higher SSTs. In this study, we use that mean observed relation to derive a nonlinear relation between SST and rainfall anomalies, that depends on the background climatological SST. This relation performs much better to explain rainfall anomalies in the eastern Pacific (Niño3 region) than a linear relation, which underestimates rainfall during most extreme El Niños events. On the other hand, it underestimates rainfall anomalies in the western Pacific (Nino4), because it only considers the local SST forcing and neglects the atmospheric convergence feedback. Our observational results are in line with previous modeling studies, who have also underlined the importance of the nonlinearity of the convective response to SST anomalies for large El Niño events in coupled models. We end by discussing other possible sources of nonlinearity in the wind stress and heat flux responses to SST, which play a strong role in the most essential El Niño feedbacks.

How to cite: Gangiredla, S., Vialard, J., Izumo, T., Lengaigne, M., and Guilyardi, E.: Importance of the non-linearity of the convective response to surface temperature for eastern Pacific El Niños, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18388, https://doi.org/10.5194/egusphere-egu2020-18388, 2020.

EGU2020-1163 | Displays | CL4.20

The Importance of the NAO for the ENSO - Tropical Atlantic Teleconnection

Jake Casselman and Daniela Domeisen

El Niño-Southern Oscillation (ENSO) influences the weather around the globe. These so-called ‘teleconnections’ occur on sub-seasonal-to-seasonal timescales, and can be useful for weather and climate predictions. ENSO teleconnections can reach as far as the North Atlantic-European (NAE) region, where ENSO influences remain insufficiently understood. ENSO teleconnections to the NAE region can travel through a range of different pathways, with differences in seasonality for each pathway. We here focus on determining the importance of the North Atlantic Oscillation (NAO) for establishing the connection between the tropical Pacific and the tropical Atlantic, following an ENSO event. We use reanalysis data in combination with a simplified atmospheric global circulation model with ENSO-like sea surface temperature (SST) forcing to investigate both the isolated and combined influences from these different pathways. Initial results suggest that the NAO’s influence onto the tropical Atlantic may play a minor role, as surface wind impacts are likely too far north to contribute to a wind-evaporation-SST (WES) feedback within the tropical Atlantic. Shifts in the longitudinal position of ENSO may, however, cause changes in the influence from the NAO onto the tropical Atlantic. Such changes may help in explaining the presence of significantly different spatial patterns of SST in the tropical Atlantic, following different ENSO flavors.

How to cite: Casselman, J. and Domeisen, D.: The Importance of the NAO for the ENSO - Tropical Atlantic Teleconnection, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1163, https://doi.org/10.5194/egusphere-egu2020-1163, 2020.

In this study the role of an Indian Ocean heating dipole anomaly in the transition of the North Atlantic circulation response to ENSO from early to late winter is analysed using 20th century observations and simulations from the fifth Coupled Model Intercomparison Project (CMIP5). It is shown that in early winter a warm (cold) ENSO even is connected trough an atmospheric bridge with positive (negative) rainfall anomalies in the western and negative (positive) anomalies in the eastern Indian Ocean. The early winter heating dipole teleconnected to a warm (cold) ENSO event can set up a wavetrain emanating from the south Asian subtropical jet region that reaches the North Atlantic and leads to response that spatially projects onto the positive (negative) phase of the North Atlantic Oscillation (NAO). The Indian Ocean heating dipole is partly forced as an atmospheric teleconnection by ENSO, but can also exist independently and is not related to local Indian Ocean SST forcing. The Indian Ocean heating dipole response to ENSO is much weaker in late winter (February and March) and not able to force significant signals in the North Atlantic region. CMIP5 models reproduce the early winter heating dipole reponse to ENSO and the ENSO response transition in the North Atlantic region to some extend, but with weaker amplitude. Generally models that have a strong early winter ENSO heating dipole teleconnection to the Indian Ocean also reproduce the North Atlantic response. If an Indian Ocean vertical velocity dipole index is defined, overall CMIP5 models are able to reproduce the extratropical responses in early winter reasonably well.

How to cite: Kucharski, F., Joshi, M. K., and Abid, M. A.: The role of an Indian Ocean heating dipole in the ENSO teleconnection to the North Atlantic in early winter in the 20th century in observations and CMIP5 simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19162, https://doi.org/10.5194/egusphere-egu2020-19162, 2020.

EGU2020-4187 | Displays | CL4.20

Capturing the influence of ENSO on land surface variables for Tropical South America

Lina M. Estupinan-Suarez, Alexander Brenning, Fabian Gans, Guido Kraemer, Carlos A. Sierra, and Miguel D. Mahecha

The response of tropical vegetation to El Niño Southern Oscillation (ENSO) is considered a main driver of global annual atmospheric CO2 concentrations at inter-annual time scales. ENSO warm and cold phases, El Niño and La Niña respectively, cause contrasting climatic conditions along tropical South America. While some regions experience wetter conditions during El Niño, such as  the Pacific coast, others regions such as the Amazon are exposed to warmer and drier climates. Besides this spatial variation, the biospheric response also differs between ENSO type and intensity, overruling of local conditions and ecosystems types. Due to this complexity, there is a lack of understanding on what ecosystems and regions are systematically affected by ENSO and how biospheric variables respond. Here, we analysed the Northern region of tropical South America covering tropical savannas, forests, and mountainous ecosystems in several countries. To do this, we assessed different land surface (e.g. GPP, NDVI,  FPAR, LST) and climate data streams compiled in the regional Earth System Data Lab (ESDL, https://www.earthsystemdatalab.net/) at 1 km and 10 km pixel size from 2001 to 2015. We applied Isomap, a non-linear dimensionality reduction method in the time domain for high dimensional dynamical systems. Our analysis was constrained to the fourth order continental basins and dominant land cover types. Land use change pixels were disregarded. Further, a comparison of ENSO indexes was conducted among basins. We found that isomap components  are able to capture the biosphere variability related to ENSO in basins that have been historically affected such as Magdalena-Cauca valleys and the Caribbean region. Implementation of non-linear methods increases our understanding of ENSO impacts spatially in regions where events intensity and frequency is increasing, and effective ecosystems management is urgent.

How to cite: Estupinan-Suarez, L. M., Brenning, A., Gans, F., Kraemer, G., Sierra, C. A., and Mahecha, M. D.: Capturing the influence of ENSO on land surface variables for Tropical South America, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4187, https://doi.org/10.5194/egusphere-egu2020-4187, 2020.

CL4.21 – Land–atmosphere interactions and climate extremes

EGU2020-11358 | Displays | CL4.21

Land-atmosphere interactions and agricultural climate impacts

Nathan Mueller

Agricultural climate impact projections routinely rely upon temperature-based statistical models to characterize historical variability and project future crop yields, and exposure to extremely hot temperatures is associated with severe crop losses. However, high temperatures over land can be strongly influenced by land surface conditions, including shifts in evapotranspiration arising from variations in vegetation productivity and soil moisture. This talk will highlight the ways in which such land-atmosphere interactions should be considered in agricultural climate impact assessments. I will show how crop intensification of both rainfed and irrigated production modified extreme temperature trends in the US and around the world. I will then show how the coupling between soil moisture and temperatures can bias climate impact projections based solely on temperature. Shifts in soil moisture-temperature coupling will be examined using earth system models.

How to cite: Mueller, N.: Land-atmosphere interactions and agricultural climate impacts, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11358, https://doi.org/10.5194/egusphere-egu2020-11358, 2020.

EGU2020-16017 | Displays | CL4.21

Effect of forest canopy structure on wintertime Land Surface Albedo: Comparing CLM5 simulations to in-situ observations

Johanna Malle, Nick Rutter, Clare Webster, Giulia Mazzotti, Leanne Wake, and Tobias Jonas

Seasonal snow massively impacts the surface energy budget through its high reflectivity and is therefore an important component of land-atmosphere models. It affects climate through Snow Albedo Feedback (SAF), a positive feedback mechanism between a reduced snow cover extent due to climate warming and the corresponding increase of shortwave absorption, which provokes a further reduction in snow cover extent. SAF has been shown to be the largest climate feedback over the extratropical Northern Hemisphere (NH) during the snow melt period. Yet, large biases in SAF projections are linked to snow-vegetation interactions.

This study aims at investigating uncertainties associated with the representation of wintertime Land Surface Albedo (LSA) of forested environments in global climate models, which is an essential aspect when studying SAF. UAV-based observations of LSA were used to assess corresponding LSA simulations in CLM5, the land component of the NCAR Community Earth System Model. Our measurements capture a wide range of forest structure and species found in seasonally snow covered environments, spanning from Swiss sub-alpine to Finnish boreal forests, and show a strong dependency of LSA on solar angle and canopy density. CLM5 simulations failed to capture a realistic range in LSA and shortcomings were identified particularly with regards to simulations at sparsely forested sites. In these environments, Leaf Area Index as the main descriptor of canopy structure was unable to explain observed LSA differences in space and time. This study emphasizes the need to improve the representation of canopy structure in land surface models with critical implications for simulations of Snow Albedo Feedback strength over the NH extratropics.

How to cite: Malle, J., Rutter, N., Webster, C., Mazzotti, G., Wake, L., and Jonas, T.: Effect of forest canopy structure on wintertime Land Surface Albedo: Comparing CLM5 simulations to in-situ observations , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16017, https://doi.org/10.5194/egusphere-egu2020-16017, 2020.

EGU2020-5041 | Displays | CL4.21

Sensitivity of Summertime Heatwaves to Vegetation Cover in the Northern Hemisphere

Jing Li, Chi-Yung Tam, Amos P. K. Tai, and Ngar-Cheung Lau

Heatwaves are a serious threat to society and can lead to grave consequences. It is well known that persistent large-scale circulation anomalies are the key to generating heatwaves. Vegetation plays a vital role in energy and water exchange between land and atmosphere, through its responses to incoming radiation and emission of longwave radiation, its imposition of surface friction and transpiration. However, its impact on surface energy exchange during heatwaves is largely unknown. In this study, we first analyzed the relationship between summer heatwaves and vegetation cover, based on the Global Heatwave and Warm-spell Record (GHWR) and leaf area index (LAI) products from satellites during 1982-2011. Our results revealed differences in the correlation between heatwave characteristics and summertime LAI in different regions. In particular, lower LAI over Central Europe is associated with more frequent heatwaves locally. Over the south to the southeastern part of North America, a similar negative correlation is found. However, in the northeastern part of the continent, the reverse tends to be true, with higher-than-normal LAI associated with an increase of heatwave occurrence. These findings are in general supported by composite analyses of extreme LAI years in these regions and heatwave characteristics therein.

We speculate that the difference between surface heat flux responses for different vegetation types during heatwaves may explain the results. Focusing on North America, and using various datasets including those generated by the Global Land Data Assimilation System (GLDAS) with three different land surface models (CLM, MOS, NOAH), three reanalysis datasets (MERRA-2, NOAA-CIRES-DOS, NCEP/NCAR), and also observations from an extensive network of flux towers, it was found that over coniferous forests (both boreal and temperate), the sensible heat anomalies increase significantly during heatwaves in high-LAI years. Also, during high-LAI years, over boreal evergreen forests (BEF), changes of latent heat anomalies are much smaller than positive sensible heat anomalies, so that BEF can prolong and amplify heatwaves significantly. On the other hand, for temperate deciduous forests (TDF) and grassland (GSL), both negative sensible heat anomalies and positive latent heat anomalies during heatwaves are found in all datasets; these response act to weaken the heatwave amplitudes. Model experiments were further carried out, in order to test the sensitivity of heatwaves to LAI forcings. It was found that heatwaves are most sensitive to BEF LAI variations, but the response of heatwaves are opposite between middle and high latitudes when BEF LAI increased. For TDF and GSL, heatwaves shortened slightly when LAI increased.

How to cite: Li, J., Tam, C.-Y., Tai, A. P. K., and Lau, N.-C.: Sensitivity of Summertime Heatwaves to Vegetation Cover in the Northern Hemisphere, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5041, https://doi.org/10.5194/egusphere-egu2020-5041, 2020.

EGU2020-4866 | Displays | CL4.21

Unmixing the regional climate response to recent historical land cover changes in Europe

Bo Huang, Xiangping Hu, Geir-Arne Fuglstad, Xu Zhou, Wenwu Zhao, and Francesco Cherubini

Land cover changes (LCCs) influence the regional climate because they alter biophysical mechanisms like evapotranspiration, albedo, and surface roughness. Previous research mainly assessed the regional climate implications of individual land cover transitions, such as the effects of historical forest clearance or idealized large-scale scenarios of deforestation/afforestation, but the combined effects from the mix of recent historical land cover changes in Europe have not been explored. In this study, we use a combination of high resolution land cover data with a regional climate model (the Weather Research and Forecasting model, WRF, v3.9.1) to quantify the effects on surface temperature of land cover changes between 1992 and 2015. Unlike many previous studies that had to use one unrealistic large-scale simulation for each LCC to single out its climate effects, our analysis simultaneously considers the effects of the mix of historical land cover changes in Europe and introduces a new method to disentangle the individual contributions. This approach, based on a ridge statistical regression, does not require an explicit consideration of the different components of the surface energy budget, and directly shows the temperature changes from each land transition.

            From 1992 to 2015, around 70 Mha of land transitions occurred in Europe. Approximately 25 Mha of agricultural land was left abandoned, which was only partially compensated by cropland expansion (about 20 Mha). Declines in agricultural land mostly occurred in favor of forests (15 Mha) and urban settlements (8 Mha). Relative to 1992, we find that the land covers of 2015 are associated with an average temperature cooling of -0.12±0.20 °C, with seasonal and spatial variations. At a continental level, the mean cooling is mainly driven by agriculture abandonment (cropland-to-forest transitions). Idealized simulations where cropland transitions to other land classes are excluded result in a mean warming of +0.10±0.19 °C, especially during summer. Conversions to urban land always resulted in warming effects, whereas the local temperature response to forest gains and losses shows opposite signs from the western and central part of the domain (where forests have cooling effects) to the eastern part (where forests are associated to warming). Gradients in soil moisture and local climate conditions are the main drivers of these differences. Our findings are a first attempt to quantify the regional climate response to historical LCC in Europe, and our method allows to unmix the temperature signal of a grid cell to the underlying LCCs (i.e., temperature impact per land transition). Further developing biophysical implications from LCCs for their ultimate consideration in land use planning can improve synergies for climate change adaptation and mitigation.

 

How to cite: Huang, B., Hu, X., Fuglstad, G.-A., Zhou, X., Zhao, W., and Cherubini, F.: Unmixing the regional climate response to recent historical land cover changes in Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4866, https://doi.org/10.5194/egusphere-egu2020-4866, 2020.

EGU2020-17927 | Displays | CL4.21

Biophysical effects of LULCC in a changing climate

Gregory Duveiller and Alessandro Cescatti

The properties of the type of surface covering the land have a direct effect on their surrounding atmosphere due to biophysical mechanisms. When the land cover type is altered, or when its properties change due to land use management, there can be a repercussion on the climate that goes beyond the associated changes in greenhouse gases. Satellite remote sensing observations have recently been instrumental to quantify and map these biophysical effects across geographical and seasonal gradients. The typical variable that is measured is temperature, as it integrates the combined effects of changes in surface albedo, soil moisture and vegetation state. Up-to-now, studies have generally focused on analyzing the mean response of land use and land cover change (LULCC) assuming a static climate. Here we revisit a proven methodology to infer the potential effects of LULCC on temperature based on a local space-for-time substitution, but we apply it annually across the globe for 15 consecutive years covering changing climate conditions. This opens the possibility to explore the inter-annual variability of the biophysical effects of LULCC, along with changes across climatic gradients. At specific look on extreme events enables us to assess how these dampen or amplify the biophysical effects of different LULCC transitions. Overall, this study establishes a first step towards inferring an observation-driven diagnostic that can provide guidance towards land-based mitigation strategies for a future and changing climate.

How to cite: Duveiller, G. and Cescatti, A.: Biophysical effects of LULCC in a changing climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17927, https://doi.org/10.5194/egusphere-egu2020-17927, 2020.

EGU2020-19613 | Displays | CL4.21

Overview of applications of Remote Sensing Data Records and Reanalysis for the study of surface processes

Joao Martins, Isabel Trigo, Mafalda Silva, Rita Cunha, Frederico Johannsen, Carlos DaCamara, Sofia Ermida, Emanuel Dutra, and Célia Gouveia

The EUMETSAT Land Surface Analysis Satellite Application Facility (LSA-SAF) now offers a wide range of satellite-derived products for land surface monitoring. The catalogue comprises variables quantifying different terms of the surface energy balance (land surface temperature – LST - and emissivity, downwelling radiative fluxes and turbulent fluxes), as well as several vegetation-related indicators, such as the Leaf Area Index, Fraction of Vegetation Cover, Evapotranspiration, Net Primary Production and Fire Radiative Power. The availability of these datasets, especially taking into account that the time series now span nearly two decades,  already allows many interesting applications, overviewed in this presentation.

Comparisons of remote sensing data for land surfaces with corresponding model data have already been useful: the standard L2 (clear sky) LST has been used to diagnose a systematic cold bias of ERA5 skin temperature over the Iberian Peninsula. Offline simulations using H-TESSEL revealed that the bias could be alleviated using a more realistic representation of vegetation than what is currently used in ERA5. A recently developed product by LSA SAF allows LST retrievals for all-weather conditions, using a surface energy balance model to provide estimates under cloudy pixels. This product is compared to ERA5-Land skin temperature, showing that despite the increased level of detail of the latter (with respect to ERA5), it is still not representing the former correctly. ERA5 Land skin temperature shows large biases (of more than 10 K) and phase errors (with the satellite LST warming up prior to ERA-Land during the morning and cooling down earlier in the late afternoon). Comparisons of the different terms of the surface energy balance from ERA5-Land and LSA SAF are currently in progress to identify causes of the biases.

Another interesting application of LSA SAF products is the study of vegetation recovery over wild fire scars. Five wild fire events over Portugal were analyzed in terms of the long term anomalies introduced by the fire in 3 variables: LST, Albedo and Fraction of Vegetation Cover (all provided by LSA SAF). Results suggest that albedo returns to close-to-normal conditions in less than a year, while LST anomalies last much longer.  

Finally, trends in the land-ocean thermal contrast were evaluated over Western Iberia and Northwest Africa (due to its importance in generating coastal mesoscale circulations). The study used long time series from 1) satellite – LST from CM-SAF and SST from GHRSST; 2) ERA5 global reanalysis and 3) UERRA regional reanalysis. The results strongly depend on the used dataset and sub-region, with UERRA showing a sharp decrease of the thermal contrast over Iberia, while ERA5 shows a positive trend.

These results emphasize the need to improve the representation of surface processes in numerical models, particularly over land surfaces. This presentation shows that datasets such as the ones provided by the LSA SAF are key to such improvements.

How to cite: Martins, J., Trigo, I., Silva, M., Cunha, R., Johannsen, F., DaCamara, C., Ermida, S., Dutra, E., and Gouveia, C.: Overview of applications of Remote Sensing Data Records and Reanalysis for the study of surface processes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19613, https://doi.org/10.5194/egusphere-egu2020-19613, 2020.

Flash droughts can cause a short-term but severe devastating impacts to agriculture and the ecosystem. However, the mechanism and characteristics of flash droughts remain unexplored in the monsoon dominating climate over India. Here, we use the hydro-meteorological variables from ERA-5 reanalysis to derive surface vapour pressure deficit (VPD), and soil moisture (SM) from GLEAM to construct a copula based SM-VPD index [named as Evaporative Soil Moisture Index (ESMI)], which is used to identify flash droughts in India. First, we evaluate the land-atmospheric coupling, which suggests that SM-VPD has a strong negative correlation in both monsoon and non-monsoon seasons. Soil Moisture and evapotranspiration (ET) show a strong negative and positive relationship in the monsoon and non-monsoon season, respectively. Our results show that unlike ET based indices (e.g. evaporative stress index), ESMI captures flash droughts in both monsoon and non-monsoon seasons over India. We identified and evaluated six major flash drought that occurred during the 1980-2018 period using ESMI along with their driving mechanism.

How to cite: Mahto, S. S. and Mishra, V.: Mechanism and Characteristics of Flash Droughts in India and their Evaluation Using Evaporative Soil Moisture Index (ESMI), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12616, https://doi.org/10.5194/egusphere-egu2020-12616, 2020.

EGU2020-4313 | Displays | CL4.21

To what degree does land-atmosphere feedback exacerbate drought in South East Australia?

Chiara Holgate, Jason Evans, Albert Van Dijk, and Andy Pitman

South East Australia is characterised by a diverse climate ranging from lush, temperate mountain ranges to hot and arid grasslands. The region is home to Australia's largest river system, the Murray-Darling. The Murray-Darling Basin is an important agricultural region, generating almost 50% of Australia's total irrigated agricultural production in 2018. Rainfall in this region is typically highly variable and subject to severe drought. The Millennium Drought (2001-2009), widely known as the worst drought on record and one of the most severe in the world, has now been superseded by a worse drought (2017-present), setting a new extreme in the drought record. During the current drought, rainfall, root zone soil moisture and water storages have reached record-breaking low levels. High temperatures have also broken historical records on multiple occasions since the drought began. Drought conditions and exceptionally high temperatures have dried the landscape, which has led to intense bushfires that have so far ravaged over 5 million hectares.

Yet the degree to which the land surface exacerbates drought in the Murray-Darling Basin remains unknown. In other words, the relative importance of local versus remote processes affecting rainfall, particularly during drought, is uncertain. Where does the moisture come from, and how strongly do local land surface processes attenuate or amplify this atmospheric moisture to affect local rainfall? Establishing the evaporative source regions that supply moisture for rainfall can help reveal the mechanisms driving anomalously low rainfall. In the case of drought, it can help reveal whether anomalous rainfall was due to a reduction in source evaporation, anomalous atmospheric circulation (i.e., the moisture was generated but transported somewhere else), land surface control on the atmosphere through feedbacks, or a combination of factors.

We used a Lagrangian back-trajectory approach to determine the long-term average evaporative source regions that supply Australia's rainfall, and the level of recycling that rainfall undergoes. The back-trajectory model tracked water vapour from the location of rainfall events backward in time and space and identified the evaporative origin. From this, we calculated the proportion of rainfall falling across the Murray-Darling Basin that originated as evapotranspiration from the Basin itself; that is, the rainfall recycling ratio.

By combining this long-term baseline of source region and rainfall recycling with anomalies of source region evaporation and local atmospheric boundary layer properties, we found that the drivers of low rainfall changed through time during the Millennium Drought. At the peak of the Drought the anomalously low rainfall was driven by a lack of atmospheric moisture advected from the identified typical source region; at other times the low rainfall was due to local conditions unfavorable for the precipitation of available moisture. Overall we found that land surface control on the atmosphere exacerbated the Millennium Drought by approximately 10%.

How to cite: Holgate, C., Evans, J., Van Dijk, A., and Pitman, A.: To what degree does land-atmosphere feedback exacerbate drought in South East Australia?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4313, https://doi.org/10.5194/egusphere-egu2020-4313, 2020.

EGU2020-19581 | Displays | CL4.21 | Highlight

Are the antecedent drought conditions magnifying the summer hot extremes in Australia

Patrícia Páscoa, Célia Gouveia, Ana Russo, and Andreia Ribeiro

The occurrence of extreme climate events such as droughts and heatwaves can have negative economic, environmental and social impacts. The simultaneous or sequential occurrence of these extreme events can increase these impacts, and their frequency is expected to increase in many regions of the world. Moreover, the occurrence of hot days/nights was shown to be correlated to drought conditions in Mediterranean areas. Recently the catastrophic fire seasons of 2019/2020 in Australia has been pointed out to be associated with a drought exacerbation of the summer hot conditions. Additionally, temperature trends In Australia since 1970 are positive in most of the territory, whereas annual precipitation presents a negative trend in the East and a positive trend in the West.

In this work, we propose to analyze the relation between summer hot days/nights and antecedent drought conditions in Australia. The Standardized Precipitation Evapotranspiration Index (SPEI) at time-scales of 1 to 6 months was used to assess drought conditions. The indices Number of Hot Days (NHD) and Number of Hot Nights (NHN) were computed as the number of days on each month that exceed the 90th percentile of maximum and minimum temperatures, respectively. Data to compute these indices were retrieved from the ERA5 climate reanalysis dataset, and from the CRU TS4.03 dataset. Temperature data from the ACORN-SAT dataset was also used. A correlation analysis was performed between SPEI and NHD/NHH, using the concurrent months, and also the SPEI values on the previous 1 to 3 months. Significant negative correlations were obtained in southern regions. A probabilistic approach was also used, using copula functions, which allowed to estimate the joint probability of occurrence of dry and hot events.

Acknowledgements: This work was partially supported by projects FireCast (PCIF/GRF/0204/2017), and IMPECAF (PTDC/CTA-CLI/28902/2017). Andreia Ribeiro thanks FCT for the grant PD/BD/114481/2016.

How to cite: Páscoa, P., Gouveia, C., Russo, A., and Ribeiro, A.: Are the antecedent drought conditions magnifying the summer hot extremes in Australia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19581, https://doi.org/10.5194/egusphere-egu2020-19581, 2020.

EGU2020-20283 | Displays | CL4.21

Differences and similarities between the 2018 and 2003 droughts for the Rhine basin studied in terms of evaporative sources

Imme Benedict, Chiel van Heerwaarden, Eveline van der Linden, Albrecht Weerts, and Wilco Hazeleger

Droughts can be studied from an atmospheric perspective by analysing the large-scale circulation resulting in a lack of water, or from a hydrological perspective by understanding the interaction of precipitation, evaporation, soil moisture and temperature at the land surface. Here, both perspectives are captured as we study the evaporative sources resulting in precipitation over the Rhine basin. These evaporative sources, being continental or oceanic, can give an indication of the vulnerability of a basin to ongoing and future land-use changes. We focus on the anomalous evaporative sources of the Rhine basin during the dry summers of 2018 and 2003, to understand what the contribution is of local recycling of precipitation versus advection of moisture into the basin to the total amount of precipitation over the Rhine basin. We do so by using ERA5 re-analysis data from 1979 to 2018 and the Eulerian moisture tracking model WAM-2layers.

During an average summer, the evaporative sources of the Rhine basin are mostly located over the Atlantic ocean. In addition there is a substantial contribution of continental evaporation, mostly from land regions west of the Rhine basin. During the summer of 2018 a persistent high pressure system (blocking) prevented moisture input from the Atlantic ocean and therefore relative more recycling of moisture over land took place (both continental areas outside the basin and within the Rhine basin). Due to the anti-cyclonic movement around the high pressure area, we also found a larger contribution of evaporative sources from continental regions east of the Rhine basin.

The amount of local recycling can be expressed in the precipitation recycling ratio, the local generated precipitation divided by the total precipitation in a region. We found higher than average recycling ratios during the dry summer months of 2018. Thus, due to the blocking more local evaporation resulted in precipitation over the Rhine basin, indicating the increased dependence on local land-surface processes. In general, we found a clear correlation between higher than normal recycling ratios and lower than normal precipitation in summer. An exception is the end of the dry summer of 2003, when low recycling ratios are found, probably indicating drying out of the soils and therefore lower evaporation rates.

To conclude, although the summer of 2003 and 2018 were both very dry, their characteristics in terms of moisture sources and thereby their dependence on the land surface were found to be rather different. In 2018, local recycling was important, contrasting to 2003 when the drying out of the soils made local recycling less important. These differences between two dry years over the same region highlight the important role of the land surface in precipitation feedbacks.

How to cite: Benedict, I., van Heerwaarden, C., van der Linden, E., Weerts, A., and Hazeleger, W.: Differences and similarities between the 2018 and 2003 droughts for the Rhine basin studied in terms of evaporative sources, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20283, https://doi.org/10.5194/egusphere-egu2020-20283, 2020.

Northeast China (NEC) suffered its worst persistent drought event in recent decades from March to July of 2017 with devastating impacts on the environment and agriculture. Previous drought mechanism studies focused on the atmospheric remote response to Arctic sea ice and ENSO, while less attention was paid to synergistic effects of large-scale teleconnections and local land-atmosphere coupling. Here we show that a strong positive phase of Arctic Oscillation in March triggered the NEC drought, and a quasi-stationary Rossby wave train maintained the drought with an anticyclone located over the area south to Lake Baikal (ASLB) in April-July. By using a land-atmosphere coupling index based on the persistence of positive feedback between boundary layer and land surface, we find that the NEC and ASLB experienced a wet coupling in March while a persistently strengthened dry coupling in April-July. Over ASLB, the dry coupling and sinking motion increased surface sensible heat, decreased cloud cover, and weakened longwave absorption, resulting in a diabatic heating anomaly in the lower atmosphere and a diabatic cooling anomaly in the upper atmosphere. This anomalous vertical heating profile generated a negative anomaly of potential vorticity, indicating that the land-atmosphere coupling had a phase-lock effect on the Rossby wave train originating from upstream areas, and therefore maintained the NEC drought over downstream regions. Numerical simulations with and without surface sensible heating are being conducted to verify the influence of teleconnected land-atmosphere coupling, i.e., dry land conditions over ASLB in May can cause positive height anomaly over ASLB and NEC during June-July through heating the low level atmosphere. Our study suggests that upstream quasi-stationary wave pattern strengthened by land-atmosphere coupling should be considered in diagnosing persistent droughts especially over northern mid-latitudes.

How to cite: zeng, D. and yuan, X.: The Northeast China Persistent Drought in Spring-Summer of 2017: Joint Roles of Teleconnection and Land-atmosphere Coupling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7998, https://doi.org/10.5194/egusphere-egu2020-7998, 2020.

EGU2020-8971 | Displays | CL4.21

The influence of Tibetan Plateau surface warming on climate extremes across South-East Asia

Joshua Talib and Christopher Taylor

With an average height greater than 4500m and an area covering approximately 2.5 million km2, the Tibetan Plateau (TP) plays a crucial role in determining the large-scale atmospheric circulation across South-East Asia. Substantial intraseasonal precipitation variability is observed across TP associated with the subtropical jet location and silk road pattern. A northward shift of the subtropical jet is associated with reduced precipitation over TP. Through analysis of weather station data and satellite observations, a diurnally-varying sensitivity of the land surface to intraseasonal precipitation variability is concluded. For example, a prolonged dry spell is associated with warmer ground temperatures and increased surface sensible heat flux. Using reanalyses the influence of anomalous surface conditions across TP, associated with intraseasonal precipitation variability, on the local and remote circulation is investigated.

During a dry spell increased surface sensible heat flux deepens the planetary boundary-layer and leads to the development of a localised heat low anomaly. In the upper-troposphere surface sensible heating forms an anticyclonic anomaly above TP which induces an upper-level Rossby-wave train. The induced Rossby-wave train is associated with an anomalous cyclonic circulation across central China and a westward extension of the west Pacific subtropical high. These circulation anomalies induced by TP surface warming are associated with climate extremes across South-East Asia including an increased risk of flash drought across central China and higher probabilities of extreme precipitation across southern China. The association between land-atmosphere interactions across TP and climate extremes in South-East Asia highlight the importance of land-atmosphere feedbacks in forecasting climate extremes.

How to cite: Talib, J. and Taylor, C.: The influence of Tibetan Plateau surface warming on climate extremes across South-East Asia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8971, https://doi.org/10.5194/egusphere-egu2020-8971, 2020.

EGU2020-3980 | Displays | CL4.21

How and why has extreme hourly precipitation changed in the major urban agglomerations over China?

Yali Luo, Kalli Furtado, and Hamish Gordon

Understanding changes in sub-daily precipitation extremes and its attribution is critical for urban planners to build more sustainable and reliant cities. Three major urban agglomerations have been formed in China as a result from fast economic development since about the early-1990s, namely, the Pearl River Delta (PRD) in coastal South China, the Yangtze River Delta (YRD) in coastal East China, and the Beijing-Tianjin-Hebei (BTH) region in northern China. In this study, the hourly precipitation data in 1971-2018 from national weather stations are combined with historical land-use change data to investigate changes in extreme hourly precipitation (EXHP) in the three regions. Also, a large ensemble of extreme rainfall events (EXREs) during 2011-18 are analyzed using observations collected by densely-distributed automatic weather stations and radar network combined with reanalysis data. The results suggest that the strong urban heat island (UHI) effect in these urban agglomerations is conducive to intensification of hourly precipitation. However, statistically insignificant changes in EXHP are observed over the BTH region. In contrast, significantly increasing frequency of EXHP occur over the other two coastal urbanized regions, with some distinct features in the evolution of EXHP-producing storms and the relevant synoptic situations between the two regions. The individual and combined effects of land-cover and land-use (LCLU) change and increasing anthropogenic aerosol emission are investigated by use of an integrated modeling approach. An ensemble of convection-permitting simulations is performed, combining two LCLU and aerosol emission scenarios. The influences of these two factors are discussed based on the simulations.

How to cite: Luo, Y., Furtado, K., and Gordon, H.: How and why has extreme hourly precipitation changed in the major urban agglomerations over China?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3980, https://doi.org/10.5194/egusphere-egu2020-3980, 2020.

EGU2020-5671 | Displays | CL4.21

Emergence of opposite trends in daytime and night-time urban heat island intensities in England

Eunice Lo, Dann Mitchell, Sylvia Bohnenstengel, Mat Collins, Ed Hawkins, Gabriele Hegerl, Manoj Joshi, and Peter Stott

Urban environments are known to be warmer than their sub-urban or rural surroundings, particularly at night. In summer, urban heat islands exacerbate the occurrence of extreme heat events, posing health risks to urban residents. In the UK where 90% of the population is projected to live in urban areas by 2050, projecting changes in urban heat islands in a warming climate is essential to adaptation and urban planning.

With the use of the new UK Climate Projections (UKCP18) in which urban land use is constant, I will show that both summer urban and sub-urban temperatures are projected to increase in the 10 most populous built-up areas in England between 1980 and 2080. However, differential warming rates in urban and sub-urban areas, and during day and at night suggest a trend towards a reduced daytime urban heat island effect but an enhanced night-time urban heat island effect. These changes in urban heat islands have implications on thermal comfort and local atmospheric circulations that impact the dispersion of air pollutants. I will further demonstrate that the opposite trends in daytime and night-time urban heat island effects are projected to emerge from current variability in more than half of the studied cities below a global mean warming of 3°C above pre-industrial levels.

How to cite: Lo, E., Mitchell, D., Bohnenstengel, S., Collins, M., Hawkins, E., Hegerl, G., Joshi, M., and Stott, P.: Emergence of opposite trends in daytime and night-time urban heat island intensities in England, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5671, https://doi.org/10.5194/egusphere-egu2020-5671, 2020.

Extreme heat events are rising in nature over the Indian subcontinent under the stressed environmental conditions. Unprecedented event of extreme heat is threatening our socio-economic and ecosystem. April marks the start of summer with a clear sky; agricultural harvesting exposes the large land surface to solar heating, so the drying up of the surface causing loss of soil moisture and vegetations. Temperature anomalies become high during May and June, signifying possible role play local land-surface-atmosphere feedbacks involving dried soils in driving the heat extreme. Thus, the study of extreme heat and surface feedback process is conducted using a combination of ERA5 reanalysis data, GLDAS Noah Land Surface Model data, satellite-based observations (TRMM and MODIS), and in-situ India Metrological Department datasets. To address the bias present in datasets, we make use of IMD Datasets for bias correction. We use 2m air temperature to define the extreme heat events as per the IMD definition for the heatwave from 2001 to 2019. Parameters like surface net solar and thermal radiation and (also, clear sky) heat flux, total precipitation, land surface temperature, land use type and vegetation cover, soil moisture used to study the details of land surface conditions during the heatwave events. The examination of the above datasets in space-time provided the general view of heatwaves and suggest that late April and early May with clear sky increased net solar radiation started drying up the surface. Late May and early June with a clear sky and positive net solar radiation anomaly with positive heat flux anomaly and lack of soil moisture and rainfall developed local forcing on air temperature that catalyzed the heatwave events in terms of intensity and duration. The above conclusion is supported by the satellite-derived land surface temperature and heat flux. The results obtained establish the link between the local surface feedback and extreme heat events during the summer over the Indian subcontinent and can enhance in a dry environment with the large agricultural field with no standing crop barren land or land with dead or no shrubs over India leaving northern Himalayan part.

How to cite: Kumar, S. G. and Goswami, A.: Study of Land Surface feedback in catalysing the intensity and duration of Heatwave over Indian subcontinent, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1103, https://doi.org/10.5194/egusphere-egu2020-1103, 2020.

EGU2020-8913 | Displays | CL4.21

Modeling the effects and feedbacks of irrigation on the regional climate in Northern Italy

Christina Asmus, Peter Hoffmann, Diana Rechid, and Jürgen Böhner

Large parts of the earth’s land surface are modified by humans. Since the land surface and the atmosphere are constantly in energy exchange and in interactions with each other, anthropogenic modifications of the land’s surface can lead to effects on the climate. The objective of this study is to quantify and investigate the effects and feedbacks of irrigation on the local to regional climate. Irrigation is a land use practice, which does not change the land cover type but changes the biophysical properties of the land’s surface and the soil and thus alters energy and moisture fluxes. These local to regional process responses, detectable in different meteorological variables, are investigated using the regional climate model REMO. High resolution simulations at convection permitting scales will be performed in order to particularly investigate irrigation effects on the spatiotemporal behavior of moist convection. Newly developed parameterizations of different types of irrigation are tested on the example of a northern Italian model domain, where cropland and rice paddies are the dominating land cover. The focus of the sensitivity study is on the impact of the parameterizations on the surface moisture and energy balance as well as on heavy rainfall events.

How to cite: Asmus, C., Hoffmann, P., Rechid, D., and Böhner, J.: Modeling the effects and feedbacks of irrigation on the regional climate in Northern Italy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8913, https://doi.org/10.5194/egusphere-egu2020-8913, 2020.

EGU2020-1120 | Displays | CL4.21

Implementing irrigation techniques in CESM2

Yi Yao, Sean Swenson, Dave Lawrence, and Wim Thiery

Several recent studies have highlighted the importance of irrigation-induced changes in climate. Earth system models are a common tool to address this question, and to this end, irrigation is increasingly being represented in their land surface modules. Despite this evolution, currently, none of them considers different irrigation techniques. Here we develop and test a new parameterization that represents irrigation activities in the Community Land Model version 5 (CLM5) and considers three main irrigation techniques (surface, sprinkler and drip irrigation). Using global maps of the areas equipped by different irrigation systems, we will employ version 2 of the Community Earth System Model (CESM2) and its improved irrigation representation to detect the impacts of irrigation on climate. Two control experiments are designed, one with the new irrigation scheme and another with the original one. We will conduct an evaluation by comparing the simulated results against observed surface fluxes and meteorological variables. Subsequently, the differences between the experiments will be analyzed to quantify the impacts of irrigation on climate. We anticipate that our results will uncover whether considering different irrigation schemes is of value for exploring irrigate-induced impacts on climate.

How to cite: Yao, Y., Swenson, S., Lawrence, D., and Thiery, W.: Implementing irrigation techniques in CESM2, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1120, https://doi.org/10.5194/egusphere-egu2020-1120, 2020.

EGU2020-4228 | Displays | CL4.21

BVOC emission simulation for the Vienna region during an extreme heat event.

Heidelinde Trimmel, Paul Hamer, and Thomas Karl

Biogenic volatile organic compounds (BVOC) are emitted by trees. In the presence of NOx they can help to produce tropospheric ozone. During heat waves this can cause a critical additional stress for human wellbeing, especially in areas exhibiting high NOx concentrations. Heat wave intensity and frequency is expected to increase.

To estimate the potential threat, we simulate BVOC emissions over the Vienna region during an extreme heat wave using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al. 2012) in its latest version 3.  We adapted the model to directly ingest the files used and produced by the land surface model SURFEX8.1 (Surface Externalisée, in French) (Boone et al. 2017) and its preprocessors. In this poster we present our methodology and first results showing the spatial distribution and time series of selected BVOCs.

The chosen heat wave covers 5 days during August 2015, with an average daily 2 m air temperature of 36.3 °C, and represents a significant event with a 15 year return period (of the period 1988-2017).

The LAI and soil parameters field capacity and wilting point are taken from the physiographic fields derived from ECOCLIMAP,  soil moisture and temperature from the prognostic SURFEX output fields calculated for urban and non-urban areas, the 2m air temperature from the diagnostic output fields of SURFEX.

The meteorological forcing is used to create daily meteorology parameters and together with LAI maps run the canopy meteorology module. Further we use the soil emission activity module to calculate a soil temperature and soil moisture dependent isoprene soil emission activity factor. Using these datasets the emission activity factors are calculated. Finally, the emission activity factors are converted from 20 to 201 species and lumped according to the RACM2 mechanism. 

First results, show the strong dependence of isoprene emissions on incoming photosynthetically active radiation and LAI. In the course of the
heat wave isoprene emissions decline, which correlates with the decline in soil water availability and consqequent decreased stomatal opening. 

 

Boone, A., Samuelsson, P., Gollvik, S., Napoly, A., Jarlan, L., Brun, E., & Decharme, B. (2017). The interactions between soil–biosphere–atmosphere land surface model with a multi-energy balance (ISBA-MEB) option in SURFEXv8 – Part 1: Model description. Geoscientific Model Development, 10(2), 843–872.

Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. (2012). The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5(6), 1471–1492.

How to cite: Trimmel, H., Hamer, P., and Karl, T.: BVOC emission simulation for the Vienna region during an extreme heat event., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4228, https://doi.org/10.5194/egusphere-egu2020-4228, 2020.

EGU2020-4315 | Displays | CL4.21 | Highlight

Could crop albedo modification reduce regional warming over Australia?

Jatin Kala and Annette Hirsch

Climate observations and projections for Australia show an increase in warm temperature extremes, including the frequency, duration and intensity of heatwaves. Recent global scale studies have suggested that agricultural land-use management options, such as increasing crop albedo, could reducing local warming. Australia has approximately 3,727,210 km2 of cropland agricultural land-use, the majority of which is in southwest Western Australia and southeast Australia. This presents a potential opportunity to reduce regional warming via crop albedo enhancement. We use a regional climate model at 10 km resolution, to show that crop albedo enhancement of up to 0.1 could reduce monthly mean daily maximum temperatures by -1.0°C to -1.2°C, and monthly highest maximum temperatures by up to -1.4°C to -1.6°C during the cropping season. This cooling is approximately 3 times higher over Australia than global climate models predict. We highlight stronger cooling over southwest Western Australia as compared to southeast Australia, the opposite to global model studies which poorly resolve southwestern agricultural regions. The regional cooling was driven by a reduction in surface net shortwave radiation leading to a decrease in both sensible and latent heat flux of up to 50 W m-2 and 20 W m-2 respectively, when albedo is increased by up to 0.1. There were no cloud feedbacks or effects on precipitation. Our results highlight the importance of using regional climate models at a sufficiently high spatial resolution when investigating agricultural land-use management to reduce regional warming.

How to cite: Kala, J. and Hirsch, A.: Could crop albedo modification reduce regional warming over Australia?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4315, https://doi.org/10.5194/egusphere-egu2020-4315, 2020.

EGU2020-5606 | Displays | CL4.21

Tundra Energy Fluxes under Drought and Extreme Summer Rainfall Scenarios

Raleigh Grysko, Elena Plekhanova, Jacqueline Oehri, and Gabriela Schaepman-Strub

The Arctic is undergoing amplified climate change and forecasts predict increased warming and precipitation in the future. How changes in temperature and precipitation affect the partitioning of the Arctic land surface energy budget is not clear, despite the importance of both the Arctic region and the surface energy budget in earth system processes at local, regional, and global scales.

We will investigate the Arctic tundra energy budget and the relative importance of biotic and abiotic drivers. Specifically, we are experimentally testing effects of changing summer precipitation on the partitioning of the surface energy budget by simulating precipitation-based climate extremes – extreme drought and extreme precipitation totals.

We will present a literature-based synthesis of the expected impact of drought and extreme rainfall on the energy budget components of the tundra land surface and a description of the experimental design and treatments. The experiment has been established at a long-term Siberian tundra test site (71°N, 147°E). Extreme drought (precipitation) is being simulated by removing (adding) a predetermined fraction of ambient precipitation from (to) the test plots. Control plots, where ambient precipitation is not modified, are used as a baseline. Plot selection, soil sampling, and installation of below-ground sensors were performed during the past two summers, while setup of shelters and water-addition installations were completed early July 2019.

With our results on energy budget behavior change under future summer precipitation scenarios, we expect to inform mechanistic and statistic modeling of species distributions, ecosystem functions, and climate feedback in the Arctic tundra.

How to cite: Grysko, R., Plekhanova, E., Oehri, J., and Schaepman-Strub, G.: Tundra Energy Fluxes under Drought and Extreme Summer Rainfall Scenarios, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5606, https://doi.org/10.5194/egusphere-egu2020-5606, 2020.

EGU2020-6261 | Displays | CL4.21

Evaluation of Noah-MP land-model uncertainties over sparsely vegetated sites on the Tibet Plateau

Guo Zhang, Fei Chen, Yueli Chen, and Jianduo Li

Uncertainties in the Noah with multiparameterization (Noah-MP) land surface model are assessed through physics ensemble simulations in four sparsely vegetated sites located in the central and western Tibetan Plateau. The simulated hydrological components are evaluated using observations at those sites during the third Tibetan Plateau Experiment from August 1st, 2014 to August 1st, 2015. By using natural selection, the crucial subprocesses impacting the hydrological component simulations are identified. The effects of precipitation uncertainties and soil organic matter on the energy fluxes and water cycles are analyzed through a set of sensitivity experiments based on an optimal scheme set. The uncertainty analyses indicate that the greatest uncertainties are in the subprocesses of runoff (RNF) and groundwater, surface-layer parameterization and frozen soil permeability, along with the subprocesses of snow surface albedo and the lower boundary of soil temperature for the bare ground site but the subprocesses of the canopy resistance and soil moisture limiting factors for evaporation for the three alpine grassland sites. The sensitivity analyses reveal that more precipitation can increase the annual total net radiation (Rn), latent heat flux (LE) and RNF but decrease sensible heat flux (SH). Compared to the insufficient precipitation, the relatively small increase in precipitation results in the LE increase during the growing season at the Amdo and Baingoin sites but an RNF increase at the Nagqu site (sandy soil). However, when more precipitation was added, a greater proportion of the added water was distributed to the RNF at the Nagqu site and to the soil liquid water at the Amdo and Baingoin sites. The organic soil increases the annual total LE but reduces the annual total Rn, SH, and RNF. The effect of the soil organic matter on the LE and RNF at the Nagqu site (sandy soil), is greater than that at the other three sites (sandy loam soil).

How to cite: Zhang, G., Chen, F., Chen, Y., and Li, J.: Evaluation of Noah-MP land-model uncertainties over sparsely vegetated sites on the Tibet Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6261, https://doi.org/10.5194/egusphere-egu2020-6261, 2020.

EGU2020-7094 | Displays | CL4.21

Spatio-temporal analysis of remotely sensed soil moisture and vegetation patterns during recent European droughts

Theresa C. van Hateren, Marco Chini, Patrick Matgen, and Adriaan J. Teuling

Drought occurrence and drought severity are likely to increase in the future due to more extreme weather conditions. Drought preparedness and mitigation can be achieved with the help of skilful drought forecasts and accurate quantifications of both drought severity and drought impact. For that to be possible, we first need to be aware of the spatiotemporal evolution of agricultural droughts and their main effects on vegetation. Therefore, in this study, we evaluated patterns in soil moisture and vegetation during the large scale droughts that occurred in between 2000 and 2018.

Soil moisture data were obtained from the CCI v04.5 dataset. ­­­Vegetation was analysed using (1) the Normalized Difference Vegetation Index (NDVI), a common approach to quantify vegetation cover, and (2) near-infrared reflectance of vegetation (NIRv), which has been shown to strongly correlate to Gross Primary Production (GPP) and canopy development. Both vegetation datasets were derived from MODIS reflectance data. All three datasets were normalized to allow for an in-depth comparison of drought patterns in both space and time.

Correlations were found between soil moisture and vegetation data, and showed the possibility to discern the occurrence of water- and energy- limited vegetation. In both North and South Europe, soil moisture dry anomalies show lower correlation with dry anomalies in vegetation compared to central Europe: the highest correlations were consistently found in between 55-60˚N. In Northern Europe, the lower correlations are likely due to vegetation being energy limited rather than water limited, even during soil moisture drought events. In Southern Europe, on the other hand, it can be argued that the vegetation is better adapted to drought conditions and, as a result, the drought has less impact on vegetation. This analysis shows that drought impacts are not only related to drought severity, but also to latitude and thus climate.

­­In addition, we look at time lags between soil moisture droughts and drought impacts on vegetation, a comparison between the different years in drought over the past two decades and a comparison between drought signatures per precipitation regime. The results of this study will provide insights on the evolution of different droughts and their effects on vegetation. They could be used in future efforts regarding agricultural drought forecasting, because main trends can be predicted.

How to cite: van Hateren, T. C., Chini, M., Matgen, P., and Teuling, A. J.: Spatio-temporal analysis of remotely sensed soil moisture and vegetation patterns during recent European droughts, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7094, https://doi.org/10.5194/egusphere-egu2020-7094, 2020.

EGU2020-7214 | Displays | CL4.21

Sensitivity of soil moisture to climate variability in the Mediterranean region

Louise Mimeau, Yves Tramblay, Luca Brocca, Christian Massari, Stefania Camici, and Pascal Finaud-Guyot

Studies on future precipitation trends in the Mediterranean region show a possible decrease in annual precipitation amounts with an intensification of extreme events in the coming years. A major challenge in this region is to evaluate the impacts of changing precipitation patterns on extreme hydrological events such as droughts and floods. For this, it is important to understand the effects of changing temperature and precipitation on soil moisture since it is a good proxy for drought monitoring and it plays a key role on flood runoff generation. This study focuses on 11 sites located in the South of France, with soil moisture, temperature, and precipitation observations over a 10 year time period. Soil moisture is simulated at the hourly time step for each site using a soil moisture model based on the Green-Ampt infiltration scheme. The elasticity of the simulated soil moisture to different changes in precipitation and temperature is analyzed by simulating the soil moisture response to temperature and precipitation changes, generated using a delta change method for temperature and a stochastic model (Neyman-Scott rectangular pulse model) for precipitation. Results show that soil moisture is more impacted by changes in precipitation intermittence than precipitation intensity and temperature. Although there is variability in the soil moisture response to the considered forcing scenarios, increased temperature combined to increased precipitation intensity and intermittency leads to decreased median soil moisture and an increased number of dry days.

How to cite: Mimeau, L., Tramblay, Y., Brocca, L., Massari, C., Camici, S., and Finaud-Guyot, P.: Sensitivity of soil moisture to climate variability in the Mediterranean region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7214, https://doi.org/10.5194/egusphere-egu2020-7214, 2020.

EGU2020-7281 | Displays | CL4.21

Atmospheric aridity and apparent soil moisture drought in European forest during heatwaves

Ryan Teuling, Eva Lansu, Chiel van Heerwaarden, and Annemiek Stegehuis

Land-atmosphere feedbacks, in particular the response of land evaporation to vapour pressure deficit (VPD) or the dryness of the air, remain poorly understood. Here we investigate the VPD response by analysis of a large database of eddy-covariance flux observations and simulations using a conceptual model of the atmospheric boundary layer. Data analysis reveals that under high VPD, forest in particular reduces evaporation and emits more sensible heat. In contrast, grass increases evaporation and emits less sensible heat. Simulations show that this VPD feedback can induce significant temperature increases over forest of up to 2 K during heat wave conditions. It is inferred from the simulations that the effect of the VPD feedback corresponds to an apparent soil moisture depletion of more than 50%. This suggests that previous studies may have incorrectly attributed the effects of atmospheric aridity on temperature to soil dryness.

How to cite: Teuling, R., Lansu, E., van Heerwaarden, C., and Stegehuis, A.: Atmospheric aridity and apparent soil moisture drought in European forest during heatwaves, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7281, https://doi.org/10.5194/egusphere-egu2020-7281, 2020.

EGU2020-9530 | Displays | CL4.21

A study on implementing catchment-scale rootzone water storage capacities, derived from climatic parameters, in the HTESSEL land surface scheme

Fransje van Oorschot, Andrea Alessandri, Ruud van der Ent, and Markus Hrachowitz

Evaporation is a key flux in both Earth’s water and energy balances. It is largely controlled by the transport of water from the subsurface to the atmosphere, through the roots of vegetation. The water storage capacity in the rootzone is a key parameter in predicting evaporation fluxes in land surface models. Drought predictions are of particular interest because the size of the rootzone-storage-reservoir determines how long into the dry season vegetation is able to evaporate. Whereas climate is the major driver of root development, the storage in the rootzone in the HTESSEL land surface scheme is only dependent on soil type and model soil depth. Moreover, the model describes root parameters by tables based on observations of individual plants that do not represent ecosystem scales. This research analyses the effect of implementing rootzone water storage capacities estimated with catchment-scale mass balances, in the land surface model HTESSEL on water and energy fluxes for 15 Australian river catchments.

This study found that the storage capacity in the vegetation’s rootzone represented in HTESSEL is larger than the mass-balance derived estimates. This leads to an underestimation of river discharge and overestimation of evaporation fluxes by the model, with significantly larger errors in the dry season. Implementation of the climate-based rootzone storage estimates in the current HTESSEL scheme leads to small model improvements regarding long term mean discharge predictions, but larger improvements in dry season discharge predictions. Transpiration fluxes in the dry season are directly linked to the size of rootzone water storage reservoir. The results indicate that inadequate rootzone representation could result in errors in modelled discharge and evaporation fluxes in the land surface model HTESSEL.

This study shows that investigating uncertainties in the representation of the rootzone in the HTESSEL land surface model is paramount. Future research is required to improve the representation of the rootzone in climate models.

How to cite: van Oorschot, F., Alessandri, A., van der Ent, R., and Hrachowitz, M.: A study on implementing catchment-scale rootzone water storage capacities, derived from climatic parameters, in the HTESSEL land surface scheme, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9530, https://doi.org/10.5194/egusphere-egu2020-9530, 2020.

Quantifying contributions of errors in model structure and model parameters to biases in a land surface model (LSM) is critical for model improvement, but has not been done systematically for many global land surface models. This paper investigates the uncertainties in the Noah with multiparameterization (Noah-MP) LSM with dynamic vegetation by examining the interactions between imperfect parameterization schemes (PSs) and improper parameter values (PVs). A number of Noah-MP physical ensemble simulations were conducted at 92 eddy flux sites to quantitatively assess the impacts of the PS uncertainties on model performance, and then the key parameters in the two combinations of schemes with significant differences were calibrated. The results show that five subprocesses—the surface exchange coefficient (SFC), soil moisture threshold, radiation transfer (RAD), runoff and groundwater, and surface resistance to evaporation—have the most significant influence on the performances of simulated sensible heat flux, latent heat flux, net absorbed radiation and gross primary productivity in the Noah-MP LSM with dynamic vegetation, and that the interaction between SFC and RAD contributed up to 80% of the variation in the model performance at some sites. It is also shown that tuning the PSs and optimizing the PVs should be jointly applied to reduce the errors in the Noah-MP LSM, although compared to tuning PSs, parameter optimization happens to make less robust model improvement. Finally, this study emphasizes that reducing the significant uncertainties in soil parameters and exploring the errors caused by missing physical features are crucial to improving LSMs with dynamic vegetation.

How to cite: Li, J. and Chen, F.: Quantifying contributions of uncertainties in physical parameterization schemes and model parameters to overall errors in Noah-MP land modeling using observations from eddy flux sites, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12296, https://doi.org/10.5194/egusphere-egu2020-12296, 2020.

EGU2020-17938 | Displays | CL4.21 | Highlight

Satellites reveal the strongest increase in duration of extreme dry periods in global monsoon regions

Irina Y. Petrova, Diego G. Miralles, and Hendrik Wouters

Drought is arguably the climate phenomenon that most strongly impacts societies worldwide, causing severe socioeconomic and ecologic damage. While models unanimously project an overall increase in aridity and drought occurrence in the future, observational evidence has so far been inconclusive. The discrepancies between the various drought definitions and drought indices has been a major factor contributing to our low confidence in observed dryness trends. In this study we investigate global trends in meteorological dry spells using a simple, unambiguous and intuitive diagnostic: the maximum annual number of consecutive dry days (CDDs). In contrast to popular drought indices, the number of CDDs is a direct measure of the duration of rainfall scarcity, easy to quantify based on rain data, free of parametrizations, and independent from other proxies.

Because the time-span of available satellite-based precipitation data records is constantly increasing, current products are becoming an alternative to in situ rain gauges for studying long-term trends. In particular, the Tropical Rainfall Measuring Mission (TRMM) has now been operational for over twenty years, thus offering a unique opportunity to analyse temporally-coherent, single-platform precipitation data. Here, we use TRMM3B42 3-hourly data for 1998–2018 to calculate and analyse changes in the maximum annual number of CDDs worldwide. The robustness of the identified relationships among observational products is tested using recently-compiled gauge and satellite precipitation data from the Frequent Rainfall Observations on GridS (FROGS) database.

The results reveal that almost 70% of the continental land monitored by TRMM has experienced an increase in duration of the longest annual dry period over the past 20 years, and in 20% of these regions trends are found to be significant (p < 0.01). Agreement among various observational products is regionally dependent. However, most of the data sets suggest that the signal largely originates, not from arid regions (which would support the dry–gets–drier paradigm), but from monsoon areas. Further analysis shows that the same areas experience clear increasing (decreasing) trends in rain seasonality (amount), suggesting a link to the monsoon circulation dynamics. A preliminary analysis confirms this connection and additionally points to the potentially important role of land feedbacks, revealing a tendency for later moisture build up and, hence, a monsoon onset after more prolonged dry seasons. Altogether, our findings emphasize the vulnerability of global monsoon regions to climate change. An increasing length of dry spells as we progress into the future might lead to devastating socioeconomic and ecologic consequences in these regions.

 

How to cite: Petrova, I. Y., Miralles, D. G., and Wouters, H.: Satellites reveal the strongest increase in duration of extreme dry periods in global monsoon regions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17938, https://doi.org/10.5194/egusphere-egu2020-17938, 2020.

EGU2020-20451 | Displays | CL4.21

Drivers of vegetation activity during European summers: A causal inference approach applied to solar-induced fluorescence observations

Brecht Martens, Brianna Pagán, Wouter Maes, Pierre Gentine, and Diego Miralles

 Summer weather in Europe has become more extreme in recent years. Several studies have focused on unraveling the influence that this extreme weather may have on ecosystem dynamics. However, traditional optical indices characterise the state of vegetation in terms of greenness or structure, but fail to capture short term impacts on vegetation activity caused by water or heat stress. Being a byproduct of photosynthesis, solar induced fluorescence (SIF) represents an exception, since its dynamics may reflect an integral of the environmental stressors that have immediate influence on ecosystem water, energy and carbon exchanges during droughts or heatwaves. Spaceborne datasets of SIF have not only been used to monitor crop photosynthetic activity and GPP at global scales, but also as a proxy of transpiration dynamics, or even biogenic volatile organic compound emissions. Additionally, numerous case studies have indicated the potential of using SIF for early drought detection and monitoring of ecosystem impacts. 

However, as with most earth science applications, the majority of previous studies rely on correlations or linear regressions to establish these cause–effect relationships, which implies that the actual drivers of drought and periods of vegetation stress remain largely unresolved.

Here we examine the underlying causality and interactions between vegetation activity (represented by changes in SIF) and potential environmental drivers of vegetation stress over Europe during the summer months. Using satellite observations of  photosynthetically active radiation (PAR) and the fraction of absorbed PAR (fPAR), the SIF signal is decomposed into the component that relates to fPAR and the component that relates to the fluorescence yield, which represent different physical and biochemical responses to vegetation stress. Using recently developed methods for causal inference applications in Earth science (https://causeme.uv.es/), the dynamics of SIF and its deconstructed components are evaluated against satellite observations of soil moisture, vapor pressure deficit and temperatures. Common causal relationships and dynamics are observed when grouping regions by aridity index and fractions of vegetation cover. Results help establish direct and indirect links of potential drivers of vegetation activity during periods of heat and water stress.

How to cite: Martens, B., Pagán, B., Maes, W., Gentine, P., and Miralles, D.: Drivers of vegetation activity during European summers: A causal inference approach applied to solar-induced fluorescence observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20451, https://doi.org/10.5194/egusphere-egu2020-20451, 2020.

EGU2020-19659 | Displays | CL4.21

Drought impacts on the carbon uptake of an old-growth deciduous forest in Central Germany

Lukas Siebicke, Fernando Moyano, and Alexander Knohl

In recent years, Europe has seen hot summers and drought conditions occur with increasing intensity and frequency. Drought and soil water limitations impact on the carbon uptake and release of forests. This study investigates the effect of recent drought events on carbon dioxide exchange of the unmanaged deciduous old-growth forest at the Fluxnet site Hainich (DE-Hai) in the years 2018 and 2019 and compares them to the previous century drought of 2003. During the 2018 event the Hainich site was at the intensity maximum of the Middle European drought event. In combination with shallow soils with low water holding capacity, this lead to severe limitations of available soil water and therefore a to a reduction in carbon fluxes. Comparing the 2003, 2018 and 2019 drought years, we find that anomalies in the annual carbon balances are not only affected by the intensity of the drought events itself but most importantly by the seasonal timing and the balance between anomalies in the carbon uptake and release. 2018 saw a significant reduction in the annual carbon uptake of the forest due to a drought starting early in Spring and limiting fluxes from May and June onwards. Contrary, 2019 experienced a less severe drought, however, the reduction in the annual carbon uptake of about 40% in 2019 was even more extreme than in the previous year. We are able to explain differences between years by two factors: firstly, the uptake deficit during the Summer and Autumn of 2018 was partially compensated by a positive uptake anomaly in Spring and early Summer, and secondly, the severe soil water limitation during the summer of 2018 lead to a decrease of ecosystem respiration, likely dominated by a decrease in soil respiration. Contrary, 2019 saw neither of the two compensating effects and therefore experienced the strongest reduction in net annual carbon uptake of the three drought years investigated. The further development of the carbon sequestration potential of the forest will remain a relevant question given the likely frequent occurence of droughts in the future and the consequences of significant forest damage already observed in 2019.

How to cite: Siebicke, L., Moyano, F., and Knohl, A.: Drought impacts on the carbon uptake of an old-growth deciduous forest in Central Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19659, https://doi.org/10.5194/egusphere-egu2020-19659, 2020.

EGU2020-1248 | Displays | CL4.21

Local biogeophysical effects of deforestation

Steven De Hertog, Inne Vanderkelen, Felix Havermann, Suqi Guo, Julia Pongratz, Iris Manola, Dim Coumou, Edouard Davin, Sonia Seneviratne, Quentin Lejeune, Inga Menke, Carl Schleussner, and Wim Thiery

The impact of deforestation on climate is mostly pronounced through net carbon emissions (biogeochemical effects), leading to a global warming. However, deforestation also alters the water and energy cycles (biogeophysical effects), which can cause a local warming or cooling depending on the region. This can potentially offset or even exacerbate the initial global warming signal caused by the biogeochemical effect. The results of earth system models show a large spread on the magnitude of biogeophysical effects and can even vary on the sign of these impacts for some regions. Thus, uncovering the uncertainty related to the biogeophysical effect of deforestation is crucial, to better understand the potential of afforestation as a means for land-based climate mitigation.

We investigate the biogeophysical effects of deforestation on climate by conducting idealised deforestation experiments consisting of a 150-year simulation. Greenhouse gas forcing is held constant at present-day levels to disentangle between the climatic effects from land use and from those due to anthropogenic climate change. The experiment is conducted by three different Earth System Models (MPI-ESM, EC-EARTH and CESM) to quantify inter-model uncertainty and potentially uncover specific model biases.

A recently-developed checkerboard approach is applied to disentangle the local and non-local effect (i.e. remote impacts of deforestation due to changes in atmospheric dynamics) from deforestation (Winckler et al. 2019). This enables us to better determine the uncertainties across the models as well as to validate the local biogeophysical effects of deforestation using observational datasets. This is the first time that the checkerboard approach is applied on multi-model climate simulations and thus serves as a benchmark for the applicability of this approach.

References:

Winckler, J., Reick, C.H., Luyssaert, S., Cescatti, A., Stoy, P.C., Lejeune, Q., Raddatz, T., Chlond, A., Heidkamp, M., Pongratz, J., Different Response of surface temperature and air temperature to deforestation in climate models, Journal of Earth System Dynamics, doi: https://doi.org/10.5194/esd-2018-66

How to cite: De Hertog, S., Vanderkelen, I., Havermann, F., Guo, S., Pongratz, J., Manola, I., Coumou, D., Davin, E., Seneviratne, S., Lejeune, Q., Menke, I., Schleussner, C., and Thiery, W.: Local biogeophysical effects of deforestation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1248, https://doi.org/10.5194/egusphere-egu2020-1248, 2020.

EGU2020-20915 | Displays | CL4.21

Impact of land use land cover change on East Asia

Ui-Yong Byun and Eun-Chul Chang

  Many socioeconomic changes have occurred in East Asia in recent decades. Due to the economic structural change and economic growth, a large population has been concentrated in the cities, resulting in rapid urban expansion. Besides, the surrounding agricultural land for food resources has also expanded, and deforestation has also been active at the same time. These land use/land cover change (LULCC) significantly alter the energy properties of the land surface. Although land surface characteristics that have vigorous variability over time, it is common in a numerical model to treat the information as a static condition. In a numerical weather prediction model aiming at short-term forecasting, the ground characteristics without temporal change are valid; however, in the numerical climate model integrated over several decades, consideration of such variability is essential.
   In this study, we examine the impact of LULCC using the GRIMs (Global/Regional Integrated Model system), which covered regional climate simulation. Temporal change LULC over East Asia, especially cropland and urban, is constructed based on Land Use Harmonization data. Through the comparison of sensitivity experiments considered the LULCC overtime or not, it is confirmed that land surface effect on regional climate change over East Asia. 

How to cite: Byun, U.-Y. and Chang, E.-C.: Impact of land use land cover change on East Asia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20915, https://doi.org/10.5194/egusphere-egu2020-20915, 2020.

EGU2020-22247 | Displays | CL4.21

Impact of a multi-layer snow scheme on near-surface weather forecasts

Gabriele Arduini, Gianpaolo Balsamo, Emanuel Dutra, Jonathan J. Day, Irina Sandu, Souhail Boussetta, and Thomas Haiden

Snow cover properties have a large impact on the partitioning of surface energy fluxes and thereby on near-surface weather parameters. Snow schemes of intermediate complexity have been widely used for hydrological and climate studies, whereas their impact on typical weather forecast time-scales has received less attention. A new multi-layer snow scheme is implemented in the ECMWF Integrated Forecasting System (IFS) and its impact on snow and 2-metre temperature forecasts is evaluated. The new snow scheme is evaluated offline at well instrumented field sites and compared to the current single-layer scheme. The new scheme largely improves the representation of snow depth for most of the sites considered, reducing the root-mean-square-error averaged over all sites by more than 30%. The improvements are due to a better description of snow density in thick and cold snowpacks, but also due to an improved representation of sporadic melting episodes thanks to the inclusion of a thin top snow layer with a low thermal inertia. The evaluation of coupled 10-day weather forecasts shows an improved representation of snow depth at all lead times, demonstrating a positive impact at the global scale. Regarding the impact on weather parameters, the use of the multi-layer snow scheme improves the simulated daily minimum 2-metre temperature, by decreasing the positive bias and improving the amplitude of the diurnal cycle over snow-covered regions. The analysis indicates that a more realistic representation of snow processes is essential to improve the simulation of low temperature extremes at high latitudes, where snow is a key component of the climate system. The work also highlights that other errors in polar regions still need to be addressed, such as cloud radiative properties, despite the improvements in the responsiveness of snow-covered surfaces with respect to the atmospheric forcing.

How to cite: Arduini, G., Balsamo, G., Dutra, E., Day, J. J., Sandu, I., Boussetta, S., and Haiden, T.: Impact of a multi-layer snow scheme on near-surface weather forecasts, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22247, https://doi.org/10.5194/egusphere-egu2020-22247, 2020.

CL4.24 – Climate change in the Mediterranean region: understanding the processes, assessing the impacts and designing adaptation

EGU2020-5687 | Displays | CL4.24 | Highlight

The Water-Energy Nexus in the Middle East and North Africa under Climate Change

Manfred A. Lange

The region of the Middle East and North Africa (MENA region) encompasses countries of the eastern Mediterranean, the Middle East, and North Africa, from Morocco in the West to the Islamic Republic of Iran in the East and from the Syrian Arab Republic in the North to the Republic of Yemen in the South. It is home to some 500 million inhabitants and is characterized by widely varied political and economic settings and a rich cultural heritage. Stark environmental gradients, as well as significant differences in the provision of ecosystem services, both East to West and South to North, are typical for the MENA Region.

Climate changes in the Mediterranean Basin, in general, and in the MENA countries, in particular, currently exceed global mean values significantly. Numerical model results indicate that this trend will continue in the near future and imply that the number of extreme summer temperatures and heatwaves may increase significantly over the coming decades. At the same time, a decrease in precipitation and a significantly longer dry season for most MENA countries than at present are anticipated. This leads to a significantly increased demand for water and energy. In addition, other factors further exacerbate these demands in the MENA, including the general economic development, extreme population growth and increasing urbanization, changes in lifestyle, shifting consumption patterns, inefficiencies in the use of resources that result from technical and managerial inadequacies and energy and water subsidies in several countries of the region to name but a few.

The impacts of climate change will be particularly severe in urban settings and large cities of the Mediterranean Basin and the MENA region. Cities will see an enhanced heat accumulation compared to the surrounding rural land due to heat-build-up in buildings, transportation infrastructure, and enhanced human activities. Reduced ventilation within cities exacerbates the warming, particularly during summer heatwaves. Consequently, additional, energy-intensive space cooling will be needed in order to maintain acceptable indoor conditions. With regard to water scarcity, the aforementioned decreases in precipitation will reduce available drinking water for city inhabitants and green spaces. This requires the provision of unconventional water sources, e.g., through desalination, which requires significant quantities of energy. Overall, climate change will exacerbate resource demand for water and energy, in general, and in urban settings, in particular.

However, the provision of water and energy are interrelated. In order to maintain water and energy security in the MENA region, these issues need therefore be considered holistically in the framework of the Water-Energy-Nexus (WEN).

The present paper aims to elucidate some of the interrelationships between water and energy resources and their provision and will briefly outline a few of the possible mitigation/adaptation options/strategies to reduce adverse impacts of climate change on the MENA region and its inhabitants.

How to cite: Lange, M. A.: The Water-Energy Nexus in the Middle East and North Africa under Climate Change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5687, https://doi.org/10.5194/egusphere-egu2020-5687, 2020.

EGU2020-10605 | Displays | CL4.24

Unusual Atmospheric-River-like structures coming from Africa induce extreme precipitation over western Mediterranean Sea

Raquel Lorente-Plazas, Alexandre M. Ramos, Juan P. Montávez, Sonia Jerez, Ricardo M. Trigo, and Pedro Jimenez-Guerrero

Long filaments of high integrated water vapor transport (IVT) content, widely known as atmospheric rivers (ARs), play a relevant role in the water cycle being also associated with many extreme flooding events worldwide. In this work, we inspect whether similar structures can be found over the western Mediterranean. The methodology used here to detect these AR-like structures is based on standard ARs detection methods but imposing a strong IVT advection westward component. The ERA5 global reanalysis and Spain02 high resolution gridded observational dataset are used, covering the period 1979-2017, to analyze the composites of mesoscale features and associated impacts on rainfall.

Results show that AR-like structures over the Mediterranean (abbreviated here Med-ARs) have relatively low incidence with an approximately once-per-year frequency. Nevertheless, these rare events are usually associated with extreme precipitation, often amplified by orographic features, contributing to more than 40% to the annual precipitation in some cases (Lorente-Plazas et al., 2020). During a typical Med‐AR, the value of IVT increases significantly due to high horizontal winds and water vapor contents. Med-ARs are always associated to the placement of a cutoff cyclone with the cold core over northwestern Africa and warmer air mass over northern Europe. The vertical structure of Med-ARs suggests an occluded front with a low-level jet in the warmer front where Med‐ARs reside and, moisture penetrating into high atmospheric levels where cold and warm front intersect leading to severe convection. To sum up, long filaments of IVT can be found over the western Mediterranean Sea, traveling in an east-west direction, playing a relevant role in hydrometeorological impacts. Although these structures share some features with ARs over the Pacific/Atlantic Ocean they present so many specific characteristics that can be also considered to constitute a variant of this well-established meteorological phenomenon.

 

Acknowledgments

The author would like to acknowledge the financial support by Fundação para a Ciência e Tecnologia (FCT) through project UIDB/50019/2020 – IDL. A. M. Ramos was supported by the Scientific Employment Stimulus 2017 from FCT (CEECIND/00027/2017).

 

References

Lorente-Plazas, R., Montavez, J. P., Ramos, A. M., Jerez, S., Trigo, R. M., & Jimenez-Guerrero, P. (2019). Unusual Atmospheric-River-like structures coming from Africa induce extreme precipitation over western Mediterranean Sea. Journal of Geophysical Research: Atmospheres, 124. doi: 10.1029/2019JD031280

How to cite: Lorente-Plazas, R., Ramos, A. M., Montávez, J. P., Jerez, S., Trigo, R. M., and Jimenez-Guerrero, P.: Unusual Atmospheric-River-like structures coming from Africa induce extreme precipitation over western Mediterranean Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10605, https://doi.org/10.5194/egusphere-egu2020-10605, 2020.

EGU2020-4499 | Displays | CL4.24

Long term changes in the deep sea: examples from two Mediterranean Channels

Katrin Schroeder, Sana Ben Ismail, Jacopo Chiggiato, Mireno Borghini, and Stefania Sparnocchia

Climate change is one of the key topics of our century. The study of processes related to climate change in the atmosphere, the open ocean, the deep sea or even in shallow coastal waters require sustained long-term observations, often deploying sophisticated and expensive equipment. According to the Deep-Ocean Observing Strategy (DOOS, http://deepoceanobserving.org/), the deep ocean (below 200 m water depth) is the least observed, but largest habitat on our planet by volume and area. With more than 90% of anthropogenic heat imbalance absorbed by the oceans, monitoring long-term changes of its heat content, and over its full depth, is essential to quantify the planetary heat budget.

The Mediterranean Sea is a mid-latitude marginal sea, particularly responsive to climate change as reported by recent studies. Straits and channels divide it into several sub-basins and the continuous monitoring of these choke points allows to intercept different water masses, and thus to document how they changed over time. This monitoring, in many cases, is done under the umbrella of the CIESM Hydrochanges program (http://www.ciesm.org/marine/programs/hydrochanges.htm). Here we report the long-term time series of physical data collected in two of these choke points: the Sardinia Channel (1900 m) and the Sicily Channel (400 m).

The Sardinia Channel allows the Western Mediterranean Deep Water (WMDW) to enter the Tyrrhenian Sea (depths > 3000 m), connecting it with the Algerian Sea (depths > 2500 m). This water mass has experienced a significant increase of heat and salt content over the past decades, due both to a gradual process and to and abrupt event, called Western Mediterranean Transition (WMT). The monitoring at the sill (1900 m) of the Sardinia Channel since 2003 shows this very clearly, and the interannual trends are significantly stronger than the global average trends.

The Sicily Channel (sill at 400 m) separates the Mediterranean in two main basins, the Eastern Mediterranean Sea and the Western Mediterranean Sea. Here the thermohaline properties of the Intermediate Water (IW) are monitored since 1993, showing increasing temperature and salinity trends at least one order of magnitude stronger than those observed at intermediate depths in the global ocean.

We investigate the causes of the observed trends and in particular discuss the role of a changing climate over the Mediterranean, especially in the eastern basin, where the IW is formed. The long-term records in two Mediterranean channels reveal how fast the response to climate change can be in a marginal sea compared to the global ocean, and demonstrates the essential role of long time series in the ocean.

How to cite: Schroeder, K., Ben Ismail, S., Chiggiato, J., Borghini, M., and Sparnocchia, S.: Long term changes in the deep sea: examples from two Mediterranean Channels, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4499, https://doi.org/10.5194/egusphere-egu2020-4499, 2020.

EGU2020-5037 | Displays | CL4.24 | Highlight

Assessment of the future climate potential for tourism over Europe using a combination of downscaling approaches and quantitative impact models

Maria Francisca Cardell, Arnau Amengual, and Romualdo Romero

Europe and particularly, the Mediterranean countries, are among the most visited tourist destinations worldwide, while it is also recognized as one of the most sensitive regions to climate change. Climate is a key resource and even a limiting factor for many types of tourism. Owing to climate change, modified patterns of atmospheric variables such as temperature, rainfall, relative humidity, hours of sunshine and wind speed will likely affect the suitability of the European destinations for certain outdoor leisure activities.

Perspectives on the future of second-generation climate indices for tourism (CIT) that depend on thermal, aesthetic and physical facets are derived using model projected daily atmospheric data and present climate “observations”. Specifically, daily series of 2-m maximum temperature, accumulated precipitation, 2-m relative humidity, mean cloud cover and 10-m wind speed from ERA-5 reanalysis are used to derive the present climate potential. For projections, the same daily variables have been obtained from a set of regional climate models (RCMs) included in the European CORDEX project, considering the rcp8.5 future emissions scenario. The adoption of a multi-model ensemble strategy allows quantifying the uncertainties arising from the model errors and the GCM-derived boundary conditions. To properly derive CITs at local scale, a quantile–quantile adjustment has been applied to the simulated regional scenarios. The method detects changes in the continuous CIT cumulative distribution functions (CDFs) between the recent past and successive time slices of the simulated climate and applies these changes, once calibrated, to the observed CDFs. 

Assessments on the future climate potential for several types of tourist activities in Europe (i.e., sun, sea and sand (3S) tourism, cycling, cultural, football, golf, nautical and hiking) will be presented by applying suitable quantitative indicators of CIT evolutions adapted to regional contexts. It is expected that such kind of information will ultimately benefit the design of mitigation and adaptation strategies of the tourist sector.

How to cite: Cardell, M. F., Amengual, A., and Romero, R.: Assessment of the future climate potential for tourism over Europe using a combination of downscaling approaches and quantitative impact models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5037, https://doi.org/10.5194/egusphere-egu2020-5037, 2020.

EGU2020-21775 | Displays | CL4.24

Critical zone dynamic over the past 2,000 years record in large Mediterranean Lake (Iseo, Italia): Climate versus human impacts

William Rapuc, Pierre Sabatier, Julien Bouchez, Jérôme Gaillardet, Laurent Augustin, Andrea Piccin, Ulrich von Grafenstein, and Fabien Arnaud

Human activities and climate variability have direct impacts on the dynamic of the Critical Zone (CZ) both in quantitative (increase of the flux of organic and mineral matter) and qualitative way (modification of the biogeochemical cycles). Mountainous areas hold a strong CZ dynamic due to their inherent environmental conditions. Among them, European Alps are of prime interest because they have been impacted by human activities over the last millennia. To understand the CZ trajectories, we need to develop long term monitoring far beyond the current instrumental period. To reach this objective we adopt a source-to-sink approach based on geochemical analyses with i) Nd and Sr isotopic composition to trace sediment sources form the watershed and ii) major and traces elements compositions to reconstruct the evolution of  sources weathering states over this period. The watershed of Lake Iseo, located in the Val Camonica (NW Italy) was chosen for its substantial size (1.777km²), its various geological context, helping the identification of the different sources of sediment inputs, and a well-documented anthropization history. 25 samples of fine fluviatile sediments were sampled on the flood plain of the main tributaries of Lake Iseo and were linked to a 15.5m long lake sediment core, retrieved from the deep basin of the lake and covering the last 2,000 years. The fluctuations of the sediment inputs coming from the different sources is discussed from the  Roman period until the recent warming through Medieval Optimum and Little Ice Age period to disentangle the influence of both climate (precipitation, glacial dynamics) and human activity onto the dynamic of the CZ throughout the erosion and the chemical weathering of the soils in this Mediterranean Alpine region.

How to cite: Rapuc, W., Sabatier, P., Bouchez, J., Gaillardet, J., Augustin, L., Piccin, A., von Grafenstein, U., and Arnaud, F.: Critical zone dynamic over the past 2,000 years record in large Mediterranean Lake (Iseo, Italia): Climate versus human impacts, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21775, https://doi.org/10.5194/egusphere-egu2020-21775, 2020.

EGU2020-14958 | Displays | CL4.24

The Holocene Cedrus pollen record from Sierra Nevada (S Spain), a proxy for climate change in N Africa

Gonzalo Jiménez-Moreno, R. Scott Anderson, María J. Ramos-Román, Jon Camuera, Jose Manuel Mesa-Fernández, Antonio García-Alix, Francisco J. Jiménez-Espejo, and José S. Carrión

In this study, we synthesized pollen data from seven sites from the Sierra Nevada in southern Spain to investigate the response of forests in the western Mediterranean area to centennial- and millennial-scale climate changes and to human impact during the Holocene. In particular, here we focused in Cedrus pollen abundances, which most-likely originated from Northern Africa and were carried to Sierra Nevada by wind. Although Cedrus abundances are generally lower than 1% in the studied pollen samples, a comparison with North African pollen records shows similar trends at long- and short-term time-scales. Therefore, this record could be used as a proxy for changes in this forest species in North Africa. A Middle and Late Holocene Cedrus pollen increasing trend has been observed in the Sierra Nevada synthetic record, which seems to be the result of decreasing summer insolation. This would have produced overall cooler annual temperatures in Northern Africa (Atlas and Rif Mountains), benefiting the growth of this cool-adapted montane tree species, and lower summer evaporation, increasing available moisture during the summer, which is critical for this water-demanding species. Millennial- and centennial-scale variability also characterize the Sierra Nevada Cedrus synthetic record. Cedrus abundance oscillations could have been produced by well-known millennial-scale climatic variability that controlled cedar abundance in montane areas of N Africa.  

How to cite: Jiménez-Moreno, G., Anderson, R. S., Ramos-Román, M. J., Camuera, J., Mesa-Fernández, J. M., García-Alix, A., Jiménez-Espejo, F. J., and Carrión, J. S.: The Holocene Cedrus pollen record from Sierra Nevada (S Spain), a proxy for climate change in N Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14958, https://doi.org/10.5194/egusphere-egu2020-14958, 2020.

EGU2020-2864 | Displays | CL4.24

A New Avenue of Research for Improving the Predictability of Weather Extremes - The Eastern Mediterranen as a Case Study

Assaf Hochman, Pinhas Alpert, Hadas Saaroni, Tzvi Harpaz, Joaquim G. Pinto, and Gabriele Messori

Extreme weather events have long been considered challenging to predict. It is likely that global warming will trigger extreme weather in many regions of the globe and especially over the Mediterranean ´hot spot´. Therefore, extreme weather events have been selected as one of the grand challenges of the World Climate Research Program.

The intrinsic predictability of a weather system, or any dynamical system, depends on its persistence and its active number of degrees of freedom. Recent developments in dynamical systems theory allow to compute these metrics for atmospheric configurations (1). In most of the mid-latitudes, synoptic scale patterns exert a strong control on regional weather, thus, stimulating a broad interest, especially in weather forecasting. Recently, we have integrated the dynamical systems approach with a synoptic classification algorithm over the Eastern Mediterranean (2).  It was shown that the dynamical systems perspective provides an extremely informative tool for evaluating the predictability of synoptic patterns and especially of weather extremes.

The novel perspective, which leverages a dynamical systems approach to investigate the predictability of extreme weather events, outlines a new avenue of research that may be fruitfully applied at operational weather and climate forecasting services in the Mediterranean Region and around the globe.

References

How to cite: Hochman, A., Alpert, P., Saaroni, H., Harpaz, T., Pinto, J. G., and Messori, G.: A New Avenue of Research for Improving the Predictability of Weather Extremes - The Eastern Mediterranen as a Case Study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2864, https://doi.org/10.5194/egusphere-egu2020-2864, 2020.

EGU2020-16474 | Displays | CL4.24 | Highlight

Evaluating the influence of climate on the Late Bronze Age collapse in the eastern Mediterranean

Lydia Bowler, Tamar Hodos, Matthew Bosomworth, Matthew Jacobson, Melanie Leng, Hai Cheng, and Dominik Fleitmann

During the 13th and 12th centuries BCE (3.25-3.05 kyrs BP), the prosperous and globalized Late Bronze Age (LBA) world system came to an abrupt end in the eastern Mediterranean (EM). During this time, the EM witnessed the demise of powerful and well-established empires and state systems, including the Hittite empire in Anatolia and the Mycenean palace system in the Aegean (Yakar, 2006; Deger-Jalkotzy, 2008). The end of the LBA also saw the destruction and abandonment of numerous urban centres such as Mycenae, Troy, Ugarit, across an area of approx. 6 million km2 (Knapp and Manning, 2016). The causes of this widespread and critical transition in the EM’s history, often referred to as the LBA “collapse”, have been debated for several decades and remain contentious. Notably, the idea of climate change in the form of widespread drought has been postulated, with the suggestion of a 3.2 kyrs BP ‘megadrought’ event presented in the last decade (Kaniewski et al. (2013; 2015; 2017; 2019a). This PhD project addresses the climate hypothesis, by examining whether climate may have acted as a contributing factor for the LBA collapse and subsequent transition into the Early Iron Age (EIA).

In order to provide a comprehensive assessment of palaeoclimatic conditions during the LBA/IA transition, a review of all existing palaeoenvironmental  records that cover the interval 3.5-2.5 kyrs BP across the EM has been undertaken. As part of this assessment, this study also presents new high-resolution multi-proxy stalagmite records covering this time interval from Kocain and Sofular Caves in Turkey. In total, 83 records were entered into a database for assessment in order to select the key hydroclimatic proxy records to be examined in this study. The resulting assessment of the remaining 14 highly resolved records from across the EM has not provided strong evidence of a major synchronous and widespread climatic event suggestive of the supposed ‘3.2 megadrought event’. Instead, the results of this study present a highly complex picture of palaeoclimatic conditions between 3.5-2.5 kyrs BP, which is partly related to site and sample-specific factors (e.g. chronological uncertainties, cave environment) and the high degree of regional climatic variability. However, a period of increasingly arid conditions from approx. 3.3-3.1 kyrs BP is apparent in several records including Anatolian records from Uzuntarla, Sofular and Kocain Caves. Future work by this team will specifically assess this aridity evidence in the Anatolian stalagmite records, with the aim to further improve the temporal resolution and chronologic control of these records. Additionally, future work will also integrate our palaeoclimatic findings with associated archaeological evidence. Engagement with the archaeological material is critical as integrated studies can provide us with more nuanced discussions, which are needed to capture the true complexity that surrounds both the archaeology and palaeoclimatic reconstruction for this period. Significantly, this archaeological engagement therefore allows us to more accurately assess the impact that increasing aridity and possible drought events may have had on the agriculturally dependent societies of the LBA in Anatolia. 

How to cite: Bowler, L., Hodos, T., Bosomworth, M., Jacobson, M., Leng, M., Cheng, H., and Fleitmann, D.: Evaluating the influence of climate on the Late Bronze Age collapse in the eastern Mediterranean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16474, https://doi.org/10.5194/egusphere-egu2020-16474, 2020.

EGU2020-5676 | Displays | CL4.24 | Highlight

Climate Change risks and adaptation for Mediterranean grapevine production

David Santillan, Luis Garrote, Ana Iglesias, and Vicente Sotes

Traditional Mediterranean crops, such as grapevine, a permanent wood crop, are well adapted to the lack of water and recurrent drought in the Mediterranean region. This study uses grapevine production indicators that are widely used by practitioners, linking science to the tools used by practitioners and therefore encouraging action and innovation among all stakeholders. The study evaluates potential adaptation choices that may contribute to real-time policy analysis and development as national and international policies and agreements in the grapevine production sector. The climate changes scenarios are derived from global datasets. Adaptation efforts are estimated proportionally to the change of the climatic indices and are categorized into low, medium or high, as a function of the excepted changes in climatic indices. The study emphasizes that non-informed adaptation limits future choices in areas severely impacted. The content of the study is based on the results of the iSQAPER (http://www.isqaper-project.eu/) H2020 project and the UPM Adapt project.

How to cite: Santillan, D., Garrote, L., Iglesias, A., and Sotes, V.: Climate Change risks and adaptation for Mediterranean grapevine production , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5676, https://doi.org/10.5194/egusphere-egu2020-5676, 2020.

The coast around Barcelona can be considered a good paradigm of the highly pressured Mediterranean coastal zone. The combination of decreasing river sediment discharges, increasing urbanization and infrastructure development makes this a very sensitive coastline. If we also consider potential effects of SLR, future conditions will significantly worsen and, for urban coastal environments, this will be a significant challenge since natural and anthropic conditions will largely constrain the development and implementation of adaptation measures.

The coastal zone around Barcelona comprises different typologies which are common along the Mediterranean: (i) city front formed by artificial beaches; (ii) longshore transport (Sl) dominated coastline with different barriers and without accommodation space due to intensive urbanization and existing infrastructures (coastal railway); (iii) Sl-dominated coastline with accommodation space; (iv) harbor. This variability determines that current processes and hazards largely vary along the coast, and that expected SLR-induced impacts will also significantly vary. This variability is also found from the socio-economic standpoint, with different stakeholders with different interests and needs. Some examples are: the Barcelona municipality requiring healthy beaches to provide recreation space for beach users, and protection against storm impacts. The railway operator that needs to maintain overtopping rates below a given threshold to maintain train operability. Campsite owners requiring a stable coastline to have enough recreation space for clients (beach users) and to avoid infrastructure damages. In overall, the combination of hazards and stakeholders provides a wide range of (Mediterranean) conditions to be found in urban and periurban coastal environments and, in consequence, it is a good test site to develop general adaptation strategies for this kind of coasts.

Previous works have identified suitable adaptation measures: (i) a sediment management strategy to maintain beaches within a given status; (ii) a new spatial planning to promote the adaptation of uses in areas with existing accommodation space; (iii) accept to “sacrifice” some beaches in highly eroding zones; (iv) structures redevelopment to maintain targeted functionality. In order to develop an efficient and integrated adaptation strategy for the entire coast, it is necessary to build up an adaptation pathway incorporating different measures and their corresponding tipping points (ATP). The goal is to assess adaptation needs with time (to answer stakeholders’ needs), to determine ATPs, and to properly define adaptation measures. For this purpose, it is necessary to have detailed information on expected conditions (forcing, processes and hazards) taking place during the adaptation period. Within this context, this work will present a suitable adaptation pathway to this coastal stretch to SLR to maintain functions currently provided by the coast and considering stakeholders preferences and needs. Presented solutions could be used as an example for other Med urban coastal environments.   

This work was carried out within the framework of the M-CostAdapt (CTM2017-83655-C2-1-R) research project, funded by the Spanish Ministry of Economy and Competitiveness (MINECO/AEI/FEDER, UE).

How to cite: Jiménez, J. A.: Multi-purpose adaptation to SLR in Mediterranean urban coastal environments: the Barcelona case, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7774, https://doi.org/10.5194/egusphere-egu2020-7774, 2020.

EGU2020-6088 | Displays | CL4.24 | Highlight

Potential vulnerability of demersal fisheries to Western Mediterranean warming

Joaquim Tomàs-Ferrer, Marina Sanz-Martín, Gabriel Jordà, M. Pilar Tugores, and Enric Massutí

Western Mediterranean Sea is immersed in a warming process, at least since the beginning of the XX century. Moreover, climate simulations project an accelerated warming at all depths for the next decades. The effects of sea warming on demersal species of high commercial interest is an open question of paramount relevance for the management of their fisheries. Unfortunately, the answer is not simple as it involves a complex chain of interactions between environmental conditions and the different trophic levels. A first limitation is that there is no clear knowledge of the thermal limits of these species, so the direct impact of warming on the individuals cannot be assessed.

 The aim of this study is to establish the thermal limits of 24 selected demersal or benthopelagic species of fishes, crustaceans and cephalopods of commercial interest and the effects of global warming on their distributions in the Western Mediterranean. In particular, we selected Merluccius merluccius, Arsteus antennatus, Parapenaeus longirostris, Octopus vulgaris, Nephrops norvegicus, Mullus barbatus, M. surmuletus, Pagellus erythrinus, P. bogaraveo, Sepia officinalis, Solea solea, Phycis blennoides, Lophius budegassa, L. piscatorius, Illex coindetti, Eledone cirrhosa, E. moschata, Lepidorhombus boscii, Helicolenus dactylopterus, Trachurus trachurus, T. mediterraneus, Aristaeomorpha foliacea, Todarodes sagittatus and Loligo vulgaris. First, we reviewed the literature regarding temperature range where each species has been found. We also used global databases of species distribution and cross them with temperature information to characterise a conservative range of optimal temperatures for each species. Once the thermal ranges were defined, we compared them with the current projections of temperature evolution of Mediterranean waters to describe the future changes in the suitable habitat of the studied species due to ocean warming.

Our results suggest that, under a business-as-usual scenario (RCP8.5), at the end of the century 8 of 19 species will see their potential habitat greatly reduced, 3 of 19 will find a moderate reduction and 8 of 19 will not be directly affected by the warming.

How to cite: Tomàs-Ferrer, J., Sanz-Martín, M., Jordà, G., Tugores, M. P., and Massutí, E.: Potential vulnerability of demersal fisheries to Western Mediterranean warming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6088, https://doi.org/10.5194/egusphere-egu2020-6088, 2020.

EGU2020-11884 | Displays | CL4.24

Observational analysis of Mediterranean decadal hydroclimate variability: role of Atlantic-Mediterranean sea surface temperatures

Roberto Suarez-Moreno, Richard Seager, and Yochanan Kushnir

The Mediterranean region is a semi-arid climate zone, subject to droughts, where water resources are scarce and observational data and climate models suggest a tendency towards greater aridification. Moreover, the Mediterranean region is an area of social and political instability and, in the Middle East, open warfare, which might be further stressed by climate change. The North Atlantic Oscillation (NAO) is the dominant mode of winter climate variability in the North Atlantic sector, playing the leading role in driving Mediterranean hydroclimate variability from seasonal to multidecadal timescales, whereas the influence of sea surface temperatures (SSTs) remains unclear. Nevertheless, the mechanism underlying the NAO is still under debate, and the possibility for coupled ocean-atmosphere decadal interactions, for which several mechanisms have been proposed, would support the role of SST. Based on observations and reanalysis, we conduct a statistical-observational analysis to explore the decadal drivers of Mediterranean hydroclimate variability for the winter half-year (October-to-March) wet season. Our results put forward the uneven intraseasonal influence of the decadal NAO, being the leading driver during the winter peak season (December-to-March), while decadal Atlantic-Mediterranean SST variability exhibit a consistent link for the first months of the wet season (October-to-January). These results emphasize the need to further explore the ocean-atmosphere feedback mechanisms and their possible modulations under climate change. Understanding these mechanisms is essential to improve predictability of hydroclimate in the Mediterranean region, leading to adaptation strategies that mitigate the effect of climate change on the vulnerable population.

How to cite: Suarez-Moreno, R., Seager, R., and Kushnir, Y.: Observational analysis of Mediterranean decadal hydroclimate variability: role of Atlantic-Mediterranean sea surface temperatures, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11884, https://doi.org/10.5194/egusphere-egu2020-11884, 2020.

EGU2020-13478 | Displays | CL4.24

How will climate change affect the planktonic food web and the biogeochemistry of the Mediterranean Sea according to the RCP 8.5 scenario ?

Melika Baklouti, Rémi Pagès, Mohamed Ayache, Nicolas Barrier, Florence Sevault, Samuel Somot, and Thierry Moutin

In recent studies, the Mediterranean region is once again identified as a region particularily sensitive to climate change, with recorded temperature and sea level rises during the last decades exceeding the mean variations recorded at global scale. Moreover, according to climate scenarios, there seems to be some consensus regarding the impact on climate change on some hydrodynamical features, as for example on stratification which should become stronger and more persistant. However, nothing or very few is known about the expected changes nor in the structure and the functionning of the planktonic food web, neither in the main biogeochemical cycles. This study is intended to progress on this issue, using a coupled (one way) physical-biogeochemical model: CNRM-RCSM4/NEMO-MED12/Eco3M-Med. A 110-year simulation over the period 1990-2100 has been run and from 2006, the simulation is forced by a RCP 8.5 regional scenario of the Med Sea (a control simulation has also been run simultaneously). After having verified the model's ability to describe the main characteristics of the marine planktonic food web and biogeochemistry through several comparisons with available data during the historical period, the model outputs have been analyzed. Preliminary results indicate a significant decrease in the annual primary production and the export of organic carbon at 200 and 1000 m in both the eastern and the western basins, associated with changes in the structure of the planktonic community.

How to cite: Baklouti, M., Pagès, R., Ayache, M., Barrier, N., Sevault, F., Somot, S., and Moutin, T.: How will climate change affect the planktonic food web and the biogeochemistry of the Mediterranean Sea according to the RCP 8.5 scenario ?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13478, https://doi.org/10.5194/egusphere-egu2020-13478, 2020.

EGU2020-17652 | Displays | CL4.24 | Highlight

Paleoenvironmental changes, climate and human impact in the Western Mediterranean Sea during the 4.2 Kyr event along a North-South Transect

Nathalie Combourieu-Nebout, Vincent Coussin, Yannick Miras, Aurélie Penaud, Sandra Picard Casal, Odile Peyron, Bassem Jalali, Marie-Alexandrine Sicre, Nathalie Babonneau, and Antonio Cattaneo

The 4.2 ka event is considered a key-period of the Mediterranean climate because of its potential impact on human societies over the Holocene. Numerous records provide a detailed description on its expression in continental and marine archives (e.g. Bini et al, 2019). They generally indicate cold/dry conditions, although not uniformly expressed across the Mediterranean, and summer dryness reinforced by dry winters. Palynological data from the central Mediterranean basin show a complex response of the vegetation during this climatic event that seems to be more pronounced in the southern sites.

In this study, we developed a multidisciplinary approach on two sequences collected in the Western Mediterranean Sea to insight the response of the W-Mediterranean forest along a North-South transect. The two marine records, KSGC-31 (43°N - 3°17.9’E; 60 m water depth, Gulf of Lion margin at 20 km from the coast) and MD04-2801 (36°30.99’ N - 0°30.03’ W, 2067 m water depth, 12km from the Algerian coast) were used to document regional changes in the basin between 5 and 3 kyr BP at a multi-decadal to centennial scale temporal resolution.

Information derived from palynological (pollen, spores, dinocysts, microalgae and non-pollen palynomorphs) and marine proxy data (alkenone-derived SSTs, isotopes...) are combined to evaluate environmental and hydrological changes and how this relate to human activities. Our findings highlight coherent climatic patterns and time-lags along a South-North transect in the Western Mediterranean during the establishment of droughts. They also reveal the first indications of human impact in the two areas. Overall, our study shows the effectively of our approach based on cross-analysis of continental palynological and marine evidences to decipher the chronology of sequence of events embedded in multiproxy records.

Bini, M., Zanchetta, G., Perşoiu, A., et al. : The 4.2 ka BP Event in the Mediterranean region: an overview, Clim. Past, 15, 555–577, https://doi.org/10.5194/cp-15-555-2019, 2019.

How to cite: Combourieu-Nebout, N., Coussin, V., Miras, Y., Penaud, A., Picard Casal, S., Peyron, O., Jalali, B., Sicre, M.-A., Babonneau, N., and Cattaneo, A.: Paleoenvironmental changes, climate and human impact in the Western Mediterranean Sea during the 4.2 Kyr event along a North-South Transect , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17652, https://doi.org/10.5194/egusphere-egu2020-17652, 2020.

EGU2020-751 | Displays | CL4.24

Statistical and Dynamical study of the cold winter spells over the Balkan Peninsula.

Efstathia Tringa, Konstantia Tolika, and Efthimia Kostopoulou

Extreme temperature values are an issue that concerns every society around the world since their impact can cause serious problems even to public health. During the winter months, southeastern Europe and especially the Balkan Peninsula, is characterized by high temperature variability and is often affected by extreme weather events resulting in the creation of serious socio-economic problems. There is therefore a need to further study the causes that contribute to creation of such cold winter spells, so that in the future there will be the possibility of timely forecasting and therefore alerting in order to better prepare each society. The present work provides an extensive climatic analysis of the cold extreme sequences that occurred in the Balkan Peninsula. This climatology includes temporal variations and classification of extreme cold spells according to their source of creation and their characteristics. More specifically, the aim of this work is to study the temporal and spatial variability of the extreme cold spells and to determine the circulation conditions of the occurrences. Daily temperature data from 20 Balkan stations has been collected from the “European Climate Assessment and Datasets” (https://www.ecad.eu/) for the period 1958-2019 (62 years). A cold spell is defined as a sequence of at least 3 cold days, i.e. when the minimum air temperature is below than the 10th percentile of the probability density function from the observation (i.e. Tmin<P10).  After identifying the extreme cold spells, the above parameters are used to describe each event, namely frequency, duration, severity and intensity. The most intense cold spells of have been studied in a synoptic analysis to investigate their fundamental dynamic characteristics and to examine their association with anomalies in the upper layer of the atmosphere. All in all, the proposed study aims to understand the atmospheric circulation conditions that exist in advance and during the extreme cold spells. In addition, the final concept will investigate to identify possible common circulation types associated with their occurrence so that in the future the early indications of such patterns can contribute the early prediction of corresponding extreme cold spells.

How to cite: Tringa, E., Tolika, K., and Kostopoulou, E.: Statistical and Dynamical study of the cold winter spells over the Balkan Peninsula., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-751, https://doi.org/10.5194/egusphere-egu2020-751, 2020.

EGU2020-1592 | Displays | CL4.24

Assessing future temperature and humidity trends using an ensemble of high-resolution simulations for the eastern Mediterranean region

Ioannis Koutsogiannis, Chris G. Tzanis, Kostas Philippopoulos, and Anastasios Alimissis

Climate change is well-established as the major environmental issue of concern by the scientific community and the policy-makers around the globe. In order to examine climate variability both at a global and regional scale, key climatic variables such as temperature and humidity are examined in climate research. A significant temperature rise could lead to unsustainable conditions for the natural and human ecosystems. Additionally, water vapor is  recognized as the most important natural greenhouse gas, playing a principal role in the hydrological cycle. Specific and relative humidity are sensitive to temperature changes and therefore, examining temperature along with humidity variations is considered essential for the deeper understanding of the atmosphere’s thermodynamic and radiative processes. This study focuses on the analysis of future temperature, specific and relative humidity trends at different atmospheric pressure levels over the eastern Mediterranean region based on data from an ensemble of regional climate multi-model simulations for each of the Representative Concentration Pathways, namely RCP4.5, RCP8.5 and RCP2.6. The main purpose of this study is to examine whether statistically significant changes in the climate of the eastern Mediterranean are likely to occur in the future and investigate the relationship between temperature and humidity variations. The results of the monthly, seasonal and annual trend analysis are discussed.

How to cite: Koutsogiannis, I., Tzanis, C. G., Philippopoulos, K., and Alimissis, A.: Assessing future temperature and humidity trends using an ensemble of high-resolution simulations for the eastern Mediterranean region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1592, https://doi.org/10.5194/egusphere-egu2020-1592, 2020.

EGU2020-2712 | Displays | CL4.24

Impacts of model spatial resolution on intense and heavy precipitation events over the Mediterranean region.

Dario Conte, Piero Lionello, and Silvio Gualdi

Dynamical downscaling through coupled regional climate model plays an important role to improve climate information at regional fine-scale, since it modulates information produced by GCM, combining planetary scale processes with regional scale processes.  This study describes the impact of climate change  on rainfall over the Mediterranean region, downscaling, at two different horizontal grid resolutions (0.44 and 0.11 degs), a Global Climate Model (GCM at 0.75 degs) by means of a coupled Regional Climate System Models (RCSM). We analyze the effect of adopting model version with different horizontal resolutions (0.11, 0.44 e 0.75 degs), considering  two climate representative concentration pathways (rcp4.5 and rcp8.5). The spatial pattern on different aspects of precipitation climatology are investigated such as increase/decrease in the intensity of precipitation events, extremes and annual amount of wet days. Moreover, since the grid models cover a wide and complex climate geographic area, the rainfall probability over six sub-regions are calculated: (1) Alps, (2) North-Western coast, (2) South Italy, (3) central part of the Mediterranean sea, (4) Greece Anatolia peninsula and Levantine basin. Although, the evaluation of RCSM downscaling is complex and depends on several factors such as: variables considered, geographic area, topography, model configuration and so on, the results show that it produces an significant improvement, adding information with regards to fine-scale spatial pattern, respect to that provided by GCM.

ACKNOWLEDGEMENT: This contribution is based on work conducted by the authors within the SOCLIMPACT project, that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 776661. The fullname of the project is "DownScaling CLImate ImPACTs and decarbonisation pathways in EU islands, and enhancing socioeconomic and non-market evaluation of Climate Change for Europe, for 2050 and Beyond". The opinions expressed are those of the author(s) only and should not be considered as representative of the European Commission’s official position.

Keywords:  widespread heavy rainfall, coupled numerical models, daily rainfall, climate scenarios, climatology of heavy rainfall.

 

How to cite: Conte, D., Lionello, P., and Gualdi, S.: Impacts of model spatial resolution on intense and heavy precipitation events over the Mediterranean region., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2712, https://doi.org/10.5194/egusphere-egu2020-2712, 2020.

Heat extremes have serious impact on human and agriculture over the world. As one of the prominent climate change “hot spots”, Mediterranean area, especially, its eastern area is expected to be more vulnerable to heat exposure, due to its population density and high rates of urbanization. The Paris Agreement aims to control global warming below +2℃ comparing to pre-industrial level. It is interesting to study how heat extremes would change in Mediterranean area in a +1.5 ℃ and +2 ℃ global warming world and how they impact on human and agriculture.

Based on the high resolution climate scenario data from CORDEX-MED, we calculate several heat waves indices e.g. HWN (the total number of events), HWD (the length of the longest event), HWF (the total number of heat waves days), HWA (the hottest day (amplitude) of the hottest event) and EDD (extreme degree days, 30℃ used to study impact on maize yield). We find that in most Mediterranean areas, both heat waves intensity and frequency have a robust increase in a +1.5 ℃ and +2 ℃ global warming world and cause more people exposure to heat waves in different shared socioeconomic pathways (SSPs). The most prominent areas are central Spain, Italy and Turkey. Also, more maize growing areas in Mediterranean will experience yield losses.

How to cite: Yu, H. and Cui, X.: Risks and impacts of Heat Extremes under 1.5 ℃ and 2 ℃ global warming Over Mediterranean areas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4974, https://doi.org/10.5194/egusphere-egu2020-4974, 2020.

EGU2020-5212 | Displays | CL4.24

Comparison of Holocene and Last Interglacial sapropels in the Gulf of Sirte (eastern Mediterranean)

Kazuyo Tachikawa, Laurence Vidal, José N. Pérez-Asensio, Marta Garcia, Adnya Pratiwi, and Hartmut Schulz

The Mediterranean thermohaline circulation is sensitive to ongoing climate change and generally stagnant circulation is expected by the end of the 21st century. In the past, the eastern Mediterranean Sea has experienced slower ventilation as demonstrated by rhythmic occurrence of organic-rich sediments “sapropels”. The two sapropels S1 (Holocene) and S5 (Last Interglacial) were formed under conditions of excess fresh water inputs via Nile river in relation to insolation-driven African monsoon intensification and deglacial meltwater inputs from the North Atlantic. In addition to the Nile river discharge, the paleodrainage toward Gulf of Sirte off Libya has been proposed although its contribution could be significantly different between S1 and S5 because of distinct monsoon intensification. Since the response of circulation to freshwater forcing could vary with the region of perturbation, comparison of S1 and S5 deposited in the Gulf of Sirte will provide key information on the Mediterranean ventilation sensitivity.

We applied a multi-proxy approach (bulk elemental composition by XRF scanning, redox sensitive elemental concentration, planktonic foraminiferal δ18O and benthic foraminiferal faunal assemblages) to core SL95 (32º46.46N, 19º11.46E; 1390 m water depth) from the eastern side of the Gulf of Sirte. Both S1 and S5 are marked by prominent peaks of Ba/Al and Ba/Ti with more pronounced Ba enrichment for S5. Redox sensitive elements such as U and Mo present enrichment prior to the Ba peaks that can be interpreted as reduced ventilation before sapropel deposition. However, expected reduced oxygenation is not synchronous with benthic foraminiferal faunal changes, suggesting possible remobilisation of the trace elements during sapropel interruption and/or post-sapropel oxygenation. Acquisition of high-temporal resolution data of Globigerinoides ruber δ18O and benthic foraminiferal assemblages is in progress. We will discuss potential influence of (partial) ventilation at intermediate water depths during sapropel interruption in association with 8.2 event and possible different freshwater inputs at S1 and S5 depositions.

How to cite: Tachikawa, K., Vidal, L., Pérez-Asensio, J. N., Garcia, M., Pratiwi, A., and Schulz, H.: Comparison of Holocene and Last Interglacial sapropels in the Gulf of Sirte (eastern Mediterranean), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5212, https://doi.org/10.5194/egusphere-egu2020-5212, 2020.

EGU2020-5942 | Displays | CL4.24

Long-term trends in heating and cooling degree days at Mediterranean cities, in the context of climate change

Ioanna Kaza, Dimitra Founda, Christos Giannakopoulos, and Dionysia Kolokotsa

Nowadays, the global climate change has important impacts on many aspects of human life such as agriculture, economy, health and energy consumption. The issue of climate change has concerned the scientific community as the solutions have to be direct and effective. Studies on energy demands under a climate change environment are particularly useful as they improve our understanding of the impacts of changing climate on energy sector. This research focuses on a very responsive to climate change area, the Mediterranean, and attempts to analyze the climate and energy demand trends, processing historical temperature records from weather stations at seven Mediterranean cities (Nicosia, Athens, Rome, Palma, Montpellier, Madrid and Seville) for the period of 1970 – 2018. Consecutively, cooling degree days (CDD) and heating degree days (HDD) have been estimated according to the given climatic data. These simple indicators are very useful as they point out the amount of energy demand, according to the deviation of a standard temperature value (threshold).

The research has shown a statistically significant increase in the ambient air temperature at all cities, ranging from 0.37 to 0.50 0C per decade on annual basis, but with notably higher increasing trends in summer compared to winter.  Consequently, the energy demand for cooling interior spaces has increased as well.  On the other hand, there is a significant decrease of heating demand. Annual CDDs have increased at rates reaching up to 65 degrees per decade over the study period (Nicosia), while the rate of decrease in HDDs ranges approximately between 55 and 110 degrees per decade at the selected cities. The analysis has been conducted on different timescales (monthly and annual) in order to approach the optimal accuracy. 

 

Further, our results will be used to validate simulations of CDD and HDD from Regional Climate Models downscaled over the areas of interest for a reference period, while future simulations will be realized to find projected trends in CDDs and HDDs at the Mediterranean cities by the end of the century.

How to cite: Kaza, I., Founda, D., Giannakopoulos, C., and Kolokotsa, D.: Long-term trends in heating and cooling degree days at Mediterranean cities, in the context of climate change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5942, https://doi.org/10.5194/egusphere-egu2020-5942, 2020.

EGU2020-6715 | Displays | CL4.24

MOTEDAS Century Database. Thermal amplitude trends in Spanish mainland (1916-2015).

Jose Carlos Gonzalez-Hidalgo, Leire Sandonís-Pozo, Dhais Peña-Angulo, Michele Brunetti, and Santiago Beguería

There exists a debate in the scientific research about the evolution of daily thermal amplitude (DTR) along the 20th century, Id est: if the trend in minimum temperatures (night time) has been more pronounced than that of maximum temperatures (daily time). General speaking it has been accepted that until the 1980´s the trend of the DTR has been negative and then changes to positive ones. Notwithstanding, regional and sub-regional dataset developed during the last decades has shown that DTR behaviour is high variable. It has been suggested that the Iberian Peninsula, because of its geographical location (latitude and position between two contrasted water masses), is one of the places in witch climate research could find results that anticipate future global climate conditions.

The new dataset MOTEDAS_Century (MOnthly TEmperature DAtaset of Spain) combines data from the Spanish national meteorological office (AEMET) archives with data rescued from annual books spanning the first decades of the 20th Century. This dataset allowed us to produce a high resolution (10x10 km) grid of minimum and maximum temperatures spanning over the last century (1916-2015). In the present research we will show a spatial analysis of the DTR (Tmax-Tmin) evolution by using moving windows from the total period (1916-2015) to a minimum time span of twenty years (1996-2015). Trends were calculated at monthly scale at each pixel series by means of a pre-whitened Mann-Kendall test in order to determine the sign and significance of trends.

The main results of the analysis are: i) trends were more pronounced for minimum temperature than maximum temperatures during warm months (July, August and September) in the southern and Mediterranean coastland; ii) the significant increasing trend of DTR disappears since the middle of the 1980´s; iii) at present, we only detect significant trends of DTR in December.

How to cite: Gonzalez-Hidalgo, J. C., Sandonís-Pozo, L., Peña-Angulo, D., Brunetti, M., and Beguería, S.: MOTEDAS Century Database. Thermal amplitude trends in Spanish mainland (1916-2015)., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6715, https://doi.org/10.5194/egusphere-egu2020-6715, 2020.

Extreme climate events such as droughts can have very strong impacts both for society and the environment. In particular, the occurrence of severe droughts can endanger the balance of an ecosystem. While intact woodlands, e.g. the Iberian cork-oak ecosystem, are well adapted to withstand single severe drought events, both competition with invading species and recurrent droughts (i.e. droughts in consecutive years) may drive these systems towards critical limits. This is of crucial importance considering that the frequency, intensity and duration of extreme droughts are projected to increase in future decades in various regions all over the world, including the Mediterranean region.
We evaluate the occurrence and intensity of historical extreme drought events over the Iberian Peninsula for the past decades. Special focus is given to consecutive/recurrent drought events. Our study compares various indices for the identification of droughts, e.g. the SPEI (Standardized Precipitation Evapotranspiration Index), the SPI (Standardized Precipitation Index) or indices from the “Expert Team on Climate Change Detection and Indices” (ETCCDI). All indices are based on precipitation and/or temperature. We analyse different observational (E-OBS V17, V20, IBERIA01) and reanalysis datasets (ERA-Interim, ERA5) at several spatial resolutions, ranging roughly between 10 km and 25 km. The high resolution of the datasets enables the consideration of small-scale processes and local topographic effects which are relevant for extreme droughts, thus enabling a deeper insight on the physical mechanisms associated with droughts in the study area.

How to cite: Moemken, J. and Pinto, J. G.: Recurrence of historical drought events over the Iberian Peninsula in different observational datasets and reanalyses, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6831, https://doi.org/10.5194/egusphere-egu2020-6831, 2020.

EGU2020-7212 | Displays | CL4.24

An objective definition of seasons for the Mediterranean region based on synoptic weather types

George Kotsias, Christos Lolis, Nikolaos Hatzianastassiou, Piero Lionello, and Aristides Bartzokas

An objective definition of seasons for the Mediterranean region is performed based on the intra-annual variation of the frequencies of eight (8) objectively defined synoptic Weather Types (WTs). The data used for the determination of the 8 WTs are daily NCEP/NCAR Reanalysis grid point values of 2m air temperature, total cloud cover, 2m zonal and meridional wind components, 500hPa and 1000hPa geopotential height, 500hPa and 850hPa air temperature, 850hPa specific humidity and precipitable water over the Mediterranean region, for the period 1949-2018. Firstly, Principal Component Analysis (PCA) is applied to the inter-annual variations of the above parameters in order to reduce the dimensionality and then k-means Cluster Analysis (CA) is applied to the resultant Principal Components (PCs) in order to group dates with similar patterns of the above parameters, resulting in 8 synoptic WTs. Then, PCA and CA are applied again, now on the intra-annual variations of the frequencies of the resultant WTs and group dates of the year (seasons) with similar frequency distribution among the 8 WTs. According to the results, four (4) seasons are defined for the 70-year period 1949-2018. The same methodology is applied also for the five overlapping 30-year sub-periods 1949-1978, 1959-1988, 1969-1998, 1979-2008 and 1989-2018, leading to 4 seasons too. Although the characteristics of these seasons generally correspond to the ones of the four conventional seasons, there are differences regarding the onset and cessation dates and the duration. In general, it is found that winter and summer last about 4 months (115 and 114 days respectively), spring has a duration of about 2.5 months (72 days) and autumn lasts about 2 months (64 days). The most remarkable long-term changes of the seasons’ characteristics are: (i) the colder winters and warmer autumns during the last decades, (ii) the shortening of winter and spring due to later onset and earlier cessation dates, respectively, and (iii) the extension of autumn and summer due to later cessation and earlier onset dates, respectively.

How to cite: Kotsias, G., Lolis, C., Hatzianastassiou, N., Lionello, P., and Bartzokas, A.: An objective definition of seasons for the Mediterranean region based on synoptic weather types, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7212, https://doi.org/10.5194/egusphere-egu2020-7212, 2020.

Today, there is a strong scientific consensus that severe weather phenomena and climatic extremes represent an increasing threat in the background of climate change, with profound and unpredictable impacts on the environment, economy and humans.  Heat waves (HWs) in particular, are among the most disastrous phenomena across the globe, imposing significant pressure on human health, with severe heat waves being associated with thousands of excess deaths in the past. Considerable recent research focuses on the study of the main characteristics of HWs (e.g. amplitude, duration or frequency) and their long-term trends, using different approaches and metrics. Such approaches differ with respect to the used climatic index (maximum, minimum, mean air temperature or combination), the use of fixed or dynamic temperature thresholds, the duration and others. The plethora of existing indices in literature and the lack of a universal metric to define HWs is underlined  in most studies.

  This research attempts to investigate how and to what extent are the long-term statistics and trends in HWs characteristics affected by the use of different definitions. The analysis was based on the centennial, uninterrupted records of air temperature of the National Observatory of Athens which constitute a unique material for the study of climatology of HWs in the long-term. Yet, capital cities of the eastern Mediterranean have been assigned as hot spots among other European cities, with respect to future heat-related risk.

The analysis revealed substantial deviations in HWs features among different definitions, as for instance changes in seasonal occurrence of HWs, or an eightfold increase in the number of HWs since the late 19th century, when the six-days minimum duration of HWs was replaced by three-days.

The better understanding of the impact of different HWs indices on their long-term statistics is crucial for better future projections, especially at a vulnerable to heat-related risk area, like the eastern Mediterranean.

 

How to cite: Founda, D., Katavoutas, G., and Pierros, F.: Climatology of heat waves characteristics based on different metrics- Application on a centennial air temperature record of the eastern Mediterranean , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7889, https://doi.org/10.5194/egusphere-egu2020-7889, 2020.

EGU2020-8857 | Displays | CL4.24

Eastern Mediterranean Drying: Projected Changes in Dynamics and Thermodynamics and Their Relation to Large-Scale Processes

Eilat Elbaum, Chaim Garfinkel, Ori Adam, and Efrat Morin

Observations from the past century and projections for the end of this century exhibit a decrease in precipitation over the Eastern Mediterranean Sea and surrounding land areas, but the magnitude of the expected drying is unknown. Changes in precipitation are controlled by both thermodynamic (moist) and dynamic (dry) processes, but the relative contributions of these processes, in particular on regional scales, is not well understood. Previous studies have analyzed the ability of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) multi-model mean to represent the spatial and seasonal patterns of the Mediterranean hydroclimate. A wide spread exists among the individual models, which can be exploited to better understand the factors controlling future climate. Garfinkel et al. (2020)[i] found that large-scale mechanisms contribute about 50% of the model spread in Eastern Mediterranean drying. This study further explores the variance across models in projected changes of the moisture budget by decomposing them into mean dynamic, mean thermodynamic and transient components. These components are then related to the variance across models in projected large-scale processes. Through these analyses, uncertainties regarding future changes in precipitation can be reduced.

[i] Garfinkel, C. I. et al. (2020) ‘The role of zonally averaged climate change in contributing to inter-model spread in CMIP5 predicted local precipitation changes’, Journal of Climate, 33, pp. 1141–1154. doi: 10.1175/JCLI-D-19-0232.1.

How to cite: Elbaum, E., Garfinkel, C., Adam, O., and Morin, E.: Eastern Mediterranean Drying: Projected Changes in Dynamics and Thermodynamics and Their Relation to Large-Scale Processes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8857, https://doi.org/10.5194/egusphere-egu2020-8857, 2020.

EGU2020-11074 | Displays | CL4.24

Climate feedbacks in the Black Sea region

Mirna Matov and Elisaveta Peneva

The Black Sea is a large deep water basin on the border between European and Asian continents lying in the continental mid-latitude climate zone. Due to the prevailing westerlies during the year its climatic influence is better pronounced in the eastern border areas, however the sea is an important climatic factor for all borderline countries (Bulgaria, Romania, Ukraine, Russia, Georgia and Turkey). The open plane in north direction enables the propagation of the Siberian High influence in winter. From the other side, the Mediterranean Sea influence is significant through the Mediterranean cyclones passing frequently the area.

The impact of the Black Sea on the surrounding area is analyzed combining data from several different sources: atmospheric data from climate reanalysis and regular synoptic measurements in coastal meteorological stations, marine observations from in situ autonomous profilers and satellite data on ice coverage in winter time. The aim is to investigate the interannual-to-decadal variability of the thermal regime and the exchange of heat between atmosphere and sea. In addition, the relation to the intensity of the main climate centers of action (Siberian High and Mediterranean Low) is analyzed. The winter severity is defined in the different zones around the sea through the number of cold days and the connection with the sea temperature is studied.

How to cite: Matov, M. and Peneva, E.: Climate feedbacks in the Black Sea region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11074, https://doi.org/10.5194/egusphere-egu2020-11074, 2020.

EGU2020-14062 | Displays | CL4.24 | Highlight

Risk perception and social vulnerability of population in coastal areas subject to climate change in two Mediterranean regions

Loredana Antronico, Roberto Coscarelli, Sebastiano D'Amico, Francesco De Pascale, Dante Di Matteo, and Anton Micallef

Coastal areas are particularly sensitive to climate change. Owing to a significant increase in human activities and pressures, these areas have become particularly susceptible to extreme physical phenomena that increase the exposure and vulnerability of population. The Authorities ought to make strong efforts to: i) take the necessary measures and actions to reduce the negative impacts of the natural phenomena on the coastal areas, which are also due to the climate change; ii) investigate the factors that influence the communities’ perception of natural hazards and the climate change. Indeed, in order to effectively manage the negative impacts of climate change both considerable scientific know-how and of people’s perception of the risk associated to them is paramount.

Within this framework, a Research Project funded under the Agreement on Scientific Cooperation between CNR and the University of Malta (UoM) was developed. The Project is organized in order to synergistically combine the various scientific researches of the two partners (CNR-IRPI and University of Malta) in the context of natural hazards, public knowledge and perception of geo-hydrological risk and climate change. Calabria (Southern Italy) and Malta, the two Mediterranean regions considered as target areas for the Project, show different geomorphological and climatic settings but, although with different exposure levels, they are both affected by extreme physical phenomena and climate change.

The goals of the Project are the following: i) identify the population’s awareness, perception and preparation concerning the effects that climate change has on coastal areas through online and face to face questionnaires; ii) assess the social vulnerability and develop a specific Index of Social Vulnerability in relation to natural hazards in the target areas (Calabria and Malta); iii) propose useful tools to local authorities and to responsible of territory planning and of risk prevision, prevention and management; iv) raise awareness among stakeholders and citizens around the issues linked to the effects of climate change on the increased frequency of extreme natural events. In the first half of the Project, a survey based on questionnaire for analysing population’s perception of geo-hydrological risks and climate change was carried out and the obtained results were analysed. At the end of the Project, the results will help to perform a wider and more thorough risk analysis that takes into account the potential increase in exposure and vulnerability of coastal areas population as a result of climate change in the two Mediterranean regions.

How to cite: Antronico, L., Coscarelli, R., D'Amico, S., De Pascale, F., Di Matteo, D., and Micallef, A.: Risk perception and social vulnerability of population in coastal areas subject to climate change in two Mediterranean regions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14062, https://doi.org/10.5194/egusphere-egu2020-14062, 2020.

EGU2020-15750 | Displays | CL4.24 | Highlight

DROP: a DROught Probabilistic near-real time monitoring tool

Marco Turco, Sonia Jerez, Markus Donat, Andrea Toreti, Sergio M. Vicente-Serrano, and Francisco J. Doblas-Reyes

Accurate and timely information of evolving drought conditions is crucial to take early actions and alleviate their impacts. A number of drought datasets is already available. They cover the last three decades and provide data in near-real time (using different sources), but they are all "deterministic" (i.e. single realisation), and data partly differ between them.  Here we first evaluate the quality of long-term and continuous climate data for timely meteorological drought monitoring considering the Standardized Precipitation Index. Then, by applying an ensemble approach, similarly to weather/climate prediction studies, we develop DROP (DROught Probabilistic; Turco et al. 2020), a new global land gridded dataset to monitor meteorological drought that gathers an ensemble of observation-based datasets providing near-real time estimates with associated uncertainty. This approach makes the most of the available information and brings it to the end-users. DROP, publicly available at https://drop.shinyapps.io/DROP/, is operationally updated every monthly and provides drought information in near-real time, i.e., up to the previous month. The high-quality and probabilistic information provided by DROP is useful for monitoring applications, and may help to develop global policy decisions on adaptation priorities in alleviating drought impacts, especially in countries where meteorological monitoring is still challenging.

 

References

Turco M, Jerez S, Donat M, Toreti M, Vicente-Serrano S M, Doblas-Reyes, F J. (2020). A global probabilistic dataset for monitoring meteorological droughts. Bulletin of the American Meteorological Society. Under review.

 

Acknowledgments

M.T. has received funding from the Spanish Ministry of Science, Innovation and Universities through the project PREDFIRE (RTI2018-099711-J-I00).

 

How to cite: Turco, M., Jerez, S., Donat, M., Toreti, A., Vicente-Serrano, S. M., and Doblas-Reyes, F. J.: DROP: a DROught Probabilistic near-real time monitoring tool , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15750, https://doi.org/10.5194/egusphere-egu2020-15750, 2020.

EGU2020-17373 | Displays | CL4.24

Convulsed western Mediterranean thermohaline circulation during the last glacial-interglacial transition from neodymium isotope ratios

Jaime Frigola, Leopoldo D. Pena, Albert Català, Jose Noel Pérez-Asensio, Ester Garcia-Solsona, Steve L. Goldstein, Fabrizio Lirer, and Isabel Cacho

EGU2020-17722 | Displays | CL4.24

A geochemical approach to reconstructing sediment dynamic and thermohaline circulation in the western Mediterranean over the last deglaciation

Jose Manuel Mesa-Fernández, Francisca Martínez-Ruiz, Marta Rodrigo-Gámiz, and Francisco J. Jiménez-Espejo

The westernmost Mediterranean basins is an exceptional and sensitive region for reconstructing past climate and oceanographic conditions. Geochemical signatures from diverse sediment records in the Alboran Sea and the Balearic basin, in particular, Ti/ca and Fe/Ca ratios, as proxies for the relative abundance of siliciclastic vs. carbonate fraction, have been investigated. These have also been compared with other previously studied records from the western Mediterranean and the Gulf of Cadiz to elucidate the mechanisms triggering the relative variations between the carbonate and siliciclastic fraction. The lithogenic fraction represents around 70% of the sediment in the Alboran basin, which mainly derived from riverine discharge and coastal erosion. Resuspension of fine sediment particles from the slope and the sea floor by bottom-water currents is a relevant process in these basin. The studied records are located between 850 m and 2400 m below the sea level, under the influence of the Western Mediterranean Deep Water (WMDW), which is restricted to a water depth below 500-600 m and to the Moroccan margin. This deep current is formed in the Gulf of Lion, when the superficial and intermediate waters sink by a density increase, and flow out the basin through the Gibraltar Strait, contributing to the Mediterranean Outflow Water (MOW) along with the Levantine Intermediate Water (LIW). The WMDW formation is enhanced during cold and arid periods. The comparison with other previously studied records, support important variations of the mechanisms triggering the relative contribution of carbonate and siliciclastic fractions during the last 20,000 yrs. The, Ti/Ca and Fe/Ca ratios increased during cold and arid periods, such as the Heinrich Event 1 (HE1) and the Younger Dryas (YD). These changes are more prominent in the Balearic basin and the eastern Alboran basin than in the western Alboran basin and the Gulf of Cadiz. Thus, we hypothesized that the increase in the Ti/Ca and Fe/Ca ratios is rather related to the enhanced WMDW production and more remobilization of fine siliciclastic sediments.

How to cite: Mesa-Fernández, J. M., Martínez-Ruiz, F., Rodrigo-Gámiz, M., and Jiménez-Espejo, F. J.: A geochemical approach to reconstructing sediment dynamic and thermohaline circulation in the western Mediterranean over the last deglaciation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17722, https://doi.org/10.5194/egusphere-egu2020-17722, 2020.

EGU2020-19285 | Displays | CL4.24 | Highlight

Climate change vulnerability and impacts assessment in a Mediterranean region for adaptation purposes

Serena Marras, Valentina Bacciu, Valentina Mereu, Antonio Trabucco, Sara Masia, Simone Mereu, Josè Maria Costa Saura, Paola Mercogliano, Giuliana Barbato, Veronica Villani, Gianluca Cocco, Giovanni Satta, and Donatella Spano

Mediterranean region is recognized as an hot spot for negative effects due to climate change. The region is already experiencing an increase in frequency and intensity of extreme weather events (i.e. drought conditions, fire, floods, and heat waves) and climate projections indicate a general exacerbation of such phenomena.

This work, performed in the framework of the Sardinia Region Adaptation Strategy to Climate Change and in collaboration with the LIFE Project Master-ADAPT, analyzed the impacts and the vulnerability to climate change in the Sardinia region (Italy) for three sectors: agricultural-forestry sector, the inland water systems, and the hydrogeological component.

The analysis used the innovative approach of developing "Impact Chains” per each sector and analyzed risk. A selection of indicators has been used (at municipality level) as proxy to assess climate hazard (for past and future conditions) and the exposure, sensitivity and adaptation capacity of the Region. This analysis represents the knowledge base required by local administrations for developing adaptation policies to climate change.

Results allowed to better understand climate vulnerability for the territory, and to guide the process of identifying adaptation objectives and options to face climate risk for each sector. Adaptation to climate change is a priority and local administrations need to work towards climate adaptation objectives and policies in order to strengthen climate resilience, reduce negative impacts due to climate change, and enable more effective management opportunities.

How to cite: Marras, S., Bacciu, V., Mereu, V., Trabucco, A., Masia, S., Mereu, S., Costa Saura, J. M., Mercogliano, P., Barbato, G., Villani, V., Cocco, G., Satta, G., and Spano, D.: Climate change vulnerability and impacts assessment in a Mediterranean region for adaptation purposes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19285, https://doi.org/10.5194/egusphere-egu2020-19285, 2020.

Remote small alpine lakes and wetlands from the Sierra Nevada mountain range (southern Spain) are exceptional ecological sensors of global change and preserve a complete post-glacial Holocene sedimentary record. Several organic and inorganic geochemical analyses carried out in the sedimentary record of the Borreguil de los Lavaderos de la Reina, a small bog located in the north face of the Sierra Nevada at 2421 m, have allowed us to reconstruct climate, vegetation and human interaction in the highest mountain range in southern Iberia in the last 3000 years. This study shows that during the Late Holocene there is a progressive climatic aridification, which produced a reduction in the aquatic environments in Sierra Nevada. The studied peat bog geomorphology and surrounding areas also conditioned the evolution of the local vegetation. An increasing trend in the detrital eolian input from northern Africa, as well as an important anthropic impact in the ecosystems (artificial drainage system among other activities) are observed in the studied record in the last century.

How to cite: López-Avilés, A. J., García-Alix, A., Jiménez-Moreno, G., Toney, J. L., and Anderson, R. S.: A reconstruction of paleoenvironments and climate change during the Late Holocene in Sierra Nevada: the organic and inorganic geochemistry record from the Borreguil de los Lavaderos de la Reina record (southern Iberian Peninsula), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20044, https://doi.org/10.5194/egusphere-egu2020-20044, 2020.

EGU2020-20562 | Displays | CL4.24 | Highlight

Climate change impacts on European wheat and maize yields

Andrea Toreti, Andrej Ceglar, Frank Dentener, Davide Fumagalli, Simona Bassu, Iacopo Cerrani, Stefan Niemeyer, Marian Bratu, and Lorenzo Panarello

Crop yields are influenced and affected by climate conditions and the occurrence of extreme events in critical phenological phases during the growing season. As projected climate change for Europe points to an increase of climate extremes as well as a significant warming together with changes in precipitation regimes, it is essential to assess impacts on key socio-economic sectors such as agriculture. Here, we analyse European wheat and maize yields as projected by a crop model driven by bias-adjusted Euro-CORDEX regional climate model simulations under the RCP4.5 and RCP8.5 scenarios. The main findings highlight as maize will be the most affected crop with limited effects of simple adaptation strategies; while a north-south dipole in the projected changes characterizes wheat yields. In the wheat regions negatively affected by climate change, adaptation strategies will play a key role in counterbalancing the impacts of the projected changes. 

How to cite: Toreti, A., Ceglar, A., Dentener, F., Fumagalli, D., Bassu, S., Cerrani, I., Niemeyer, S., Bratu, M., and Panarello, L.: Climate change impacts on European wheat and maize yields, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20562, https://doi.org/10.5194/egusphere-egu2020-20562, 2020.

EGU2020-20609 | Displays | CL4.24

Modelling the response of Mediterranean maize yields to projected climate change

Simona Bassu, Davide Fumagalli, Andrea Toreti, Andrej Ceglar, Francesco Giunta, Rosella Motzo, and Stefan Niemeyer

Understanding the effects of different combinations of sowing dates and choice of cultivars on maize yield is essential to develop appropriate climate change adaptation strategies. In this study, we explore the maize yield response of two models to changes in sowing dates and cultivars. In particular, we assess whether crop conditions around flowering can explain the variability of irrigated, potential crop yields across sowing dates and cultivars in Mediterranean climatic conditions where high temperatures may change the length of the grain filling period. Then, we investigate these responses under future climate projected conditions till 2060 by using Euro-CORDEX regional climate model simulations.

Main findings show that the approach based on anthesis conditions outperforms the model based on partitioning. This holds both under current and future climate conditions. Finally, both approaches agree on a warmer climate translating into lower yields (13-18%, average reduction with respect to the current climate conditions) than can only be partially offset by changes in phenology and sowing dates.

How to cite: Bassu, S., Fumagalli, D., Toreti, A., Ceglar, A., Giunta, F., Motzo, R., and Niemeyer, S.: Modelling the response of Mediterranean maize yields to projected climate change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20609, https://doi.org/10.5194/egusphere-egu2020-20609, 2020.

According to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, warming of the climate system is unequivocal and in recent decades, changes in climate have caused impacts on natural and human systems on all continents and across the oceans. Surface temperature is projected to rise, and rainfall patterns to change. Freshwater resources could be compromised due to climate change, especially in the Mediterranean region. Moreover, extreme events as droughts or floods are expected to occur more frequently.

For all these reasons, we propose the evaluation and implementation of a climate change adaptation river basin plan with the aim of reducing risks and improve resilience. Indeed, one of the goal 13 targets of the Sustainable Development Goals is strengthening resilience and adaptive capacity to climate-related hazards and natural disasters in all countries. The EU Strategy on adaptation to climate change encourage all members to implement adaptation strategies. For instance, climate change adaptation river basin plans are a reality in France, where basin adaptation plans have been published since 2014.

Evaluating risks and propose measures in order to reduce water vulnerability is needed in Jucar river basin (Eastern Spain) where water system is currently stressed. Jucar climate change adaptation basin plan should evaluate the specific qualities the basin has and the risks and vulnerabilities in order to strength water management. For this evaluation, we propose to assess the impact of the spatial distribution of precipitation and temperature within the case study for identifying the most vulnerability areas. Furthermore, the sea level rise will cause affection in groundwater aquifers that should be included on the proposed analysis.

How to cite: Estrela Segrelles, C. E. and Pérez Martín, M. Á.: Proposing an implementation of a climate change adaptation strategy at river basin scale. Application to the Jucar river basin., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-366, https://doi.org/10.5194/egusphere-egu2020-366, 2020.

EGU2020-408 | Displays | CL4.24

High resolution solar atlas for Greece under climate change

Iason Markantonis, Nadia Politi, Diamando Vlachogiannis, Nikolaos Gounaris, Karozis Stylianos, and Sfetsos Athanasios

Renewable energy (RE) is considered as the most attractive and climate friendly source of energy to mitigate GHG effects. Due to the inherent, “non stationary” nature of climate, it is of paramount importance to be able make risk-informed decisions considering also the future conditions when installing / operating RES in Greece. As the amount of solar energy falling on the earth’s surface is highly influenced by local and large scale atmospheric movement conditions, high resolution simulations should be used to calculate it.

The aim of this research is to generate a climatology atlas of mean yearly and seasonal values for the GHI for the “historic time period” 1980-2009 and compare it against future values in 2020-2050. The current study employs high resolution downscaled climate model data to generate future solar radiation atlases for Greece based on RCP4.5 and RCP8.5 scenarios. Greece is a country with high potential in renewable solar energy. Several studies have mentioned the high amount of sunshine hours in most parts of the country, (e.g. Matzarakis & Katsoulis, 20061, HNMS2).

The data for both historic and future period analyses are produced from WRF 5km downscaled model output with temporal resolution of 6 hours, using as input ERA-INTERIM and EC-EARTH input data, respectively. The study that has produced the atmospheric model dataset is described in Politi, et al. (2018)3. We explore spatio-temporal changes of the GHI climatology and identify those areas which will exhibit considerable changes in the future.

References:

Acknowledgments
This work was supported by computational time granted from the Greek Research & Technology Network (GRNET) in the National HPC facility – ARIS - under project ID HRCOG (pr004020).

How to cite: Markantonis, I., Politi, N., Vlachogiannis, D., Gounaris, N., Stylianos, K., and Athanasios, S.: High resolution solar atlas for Greece under climate change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-408, https://doi.org/10.5194/egusphere-egu2020-408, 2020.

EGU2020-13837 | Displays | CL4.24

Future trends of precipitation extremes in the eastern Mediterranean

George Zittis, Adriana Bruggeman, Panos Hadjinicolaou, and Jos Lelieveld

The broader region of the eastern Mediterranean is a well-known climate change hot-spot. The combined warming and drying of the region’s mean climatic conditions have already been identified by a number of observation and modeled-based studies. Nevertheless, the future evolution of rainfall extremes has not been extensively assessed. Such events can cause severe flooding, damages to infrastructure and human casualties. In the present contribution, we use the output of a regional climate simulation in order to explore changes in the magnitude of such events. The WRF limited area model is used to dynamically downscale the bias-adjusted output of the global CESM1 model in a horizontal resolution of 12-km for the 1981-2100 period. In terms of greenhouse gas emissions and concentrations, a “business-as-usual” scenario (RCP8.5) was considered. Trends of the annual values of maximum daily rainfall are explored by using the non-parametric Sen’s Slope Estimator while the significance of these trends is assessed by applying the Mann-Kendall trend test. Preliminary analysis indicates negative trends for most of the region, with the exception of northern Turkey and parts of the Balkans. Despite these negative trends, the absolute magnitude of the most extreme events is projected to increase in the majority of the grid cells. Results are compared with gridded observations and model output from the EURO-CORDEX database.    

How to cite: Zittis, G., Bruggeman, A., Hadjinicolaou, P., and Lelieveld, J.: Future trends of precipitation extremes in the eastern Mediterranean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13837, https://doi.org/10.5194/egusphere-egu2020-13837, 2020.

EGU2020-15769 | Displays | CL4.24

An up-to-date assessment of temperature extremes over the MENA region from observational and CIMP5 data

Athanasios Ntoumos, Panos Hadjinicolaou, Georgios Zittis, and Jos Lelieveld

We assess observed and modeled temperature extremes over the MENA region during the last four decades. The purpose of our analysis is two-fold: I) provide an up-to-date, observationally based estimation of recent past evolution and ii) evaluate the performance of global climate model simulations. A list of indices of temperature extremes, based on threshold, percentile, heatwave and coldwave characteristics is used, as defined by the Expert Team on Climate Change Detection and Indices (ETCCDI). We derive the indices. We use daily near-surface air (2-metre) temperature (Tmax and Tmin) to derive the extremes indices for the period 1980-2018 from: 1) re-analyses (ERA-Interim, MERRA2) and gridded observational data (Berkeley) and ii) 18 CMIP5 model runs combining historical (1950-2005) and scenario runs (2006-2018 under RCP 2.6, RCP4.5 and RCP8.5). Using these reanalyses, observational and CMIP5 multimodel ensemble data-sets we derived their statistics (climatological average, trends) and produced maps for the MENA region. In addition, the CMPI5 indices were compared with the indices derived from the observational and reanalyses and their biases were revealed through spatial (maps) and temporal (time-series) comparison. It is found, as expected, that the choice of the RCP does not make any difference in the calculations up to 2018 but nevertheless the use of the three “scenarios” provides a better model sample for the evaluation against observations. Finally, the best performing global model realizations for the temperature extremes are revealed by the comparison of individual models with the re-analyses and observational data.

How to cite: Ntoumos, A., Hadjinicolaou, P., Zittis, G., and Lelieveld, J.: An up-to-date assessment of temperature extremes over the MENA region from observational and CIMP5 data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15769, https://doi.org/10.5194/egusphere-egu2020-15769, 2020.

EGU2020-17688 | Displays | CL4.24

Holocene Paleoenvironments in the Western Mediterranean Sea: palynological evidences on the Algerian coast and climatic reconstructions

Vincent Coussin, Aurelie Penaud, Nathalie Combourieu-Nebout, Odile Peyron, Yannick Miras, Marie-Alexandrine Sicre, Nathalie Babonneau, and Antonio Cattaneo

Past and present oceanographic and climatic conditions along the Algerian coast involve complex mechanisms. Atlantic Ocean surface waters enter the Mediterranean Sea by the Gibraltar strait and become the Algerian current flowing along the North African coast forming a succession of eddies. Deep-water upwelling plumes is another recurrent feature of the ocean circulation along the Algerian margin. Past vegetation changes and the role of paleohydrological changes have been poorly described in this region. This work combines palynological (pollen and dinoflagellate cysts) and biomarker data to assess changing environmental and climatic conditions over the past 14 ka BP (late glacial and Holocene) acquired from the marine core MD04-2801 (Algerian coast, 2067 m water depth, Prisma cruise).

A total of 79 samples have been analyzed over the last 14 000 years BP. Palynological and organic biomarker proxy data were used to investigate the links between past sea surface temperature (SSTs) and hydrological changes on the observed regional environmental changes documented at centennial timescale resolution. Our data indicate (i) recurrent upwelling cells during relatively dry climatic conditions of the Younger Dryas (12.7 to 11.7 ka BP), the Early Holocene (11.7 to 8.2 ka BP) and from 6 ka BP onwards, (ii) an increase of fluvial discharges between 8.2 and 6 ka BP during the African Humid Period, and the concomitant colonization of coastlands by the Mediterranean forest. The comparison between our results and other western Mediterranean palynological records underlines the singularity of our results along the Algerian margin in terms of dinocyst assemblages and notably the over-representation of heterotrophic taxa. Palynological data shows direct links between continental dryness and marine hydrological conditions. Finally, we applied the Modern Analogue Technique to our pollen assemblages along the core in order to reconstruct seasonal and annual precipitations and temperatures and compare our local climatic patterns to regional climate signals at basin scale for the Holocene period.

How to cite: Coussin, V., Penaud, A., Combourieu-Nebout, N., Peyron, O., Miras, Y., Sicre, M.-A., Babonneau, N., and Cattaneo, A.: Holocene Paleoenvironments in the Western Mediterranean Sea: palynological evidences on the Algerian coast and climatic reconstructions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17688, https://doi.org/10.5194/egusphere-egu2020-17688, 2020.

EGU2020-20182 | Displays | CL4.24

Decreasing hydrothermalism at Pamukkale- Hierapolis (Anatolia) since the 7th century

Bassam Ghaleb, Claude Hillaire-Marcel, Mehmet Ozkul, and Feride Kulali

The dating of travertine deposition and groundwater / hydrothermal seepages in relation to late Holocene climatic changes can be achieved using short-lived isotopes of the 238U decay series, as illustrated by the present study of the Pamukkale travertine system, at the northern edge of the Denizli and Baklan graben merging area (see Özkul et al., 2013; https://doi.org/10.1016/j.sedgeo.2013.05.018. The strongly lithified self-built channels and modern pools where analysed for their 238U, 234U, 230Th, 226Ra, 210Pb and 210Po contents, whereas 238U, 234U and 226Ra were measured in modern hydrothermal waters. When corrected for detrital contamination, 230Th-ages of travertine samples range from 1215±80 years, in the oldest self-built hydrothermal channels, to the Present (modern pool carbonate deposits) thus pointing to the inception of the existing huge travertine depositional systems during the very late Holocene, probably following the major Laodikeia earthquate of the early 7th century (cf. Kumsar et al., 2016; DOI 10.1007/s10064-015-0791-0). So far, the available data suggest three major growth phases of the travertine system: an early phase (7th to 8th centuries CE), an intermediate phase (~ 14th century CE) and a modern one, less than one century old. A more detailed survey of the travertine system would be needed to strengthen these age clusters, however, worth of mention is the fact they they broadly fit with the timing of humid episodes as reconstructed from a southern Turkey paleolake study (Jones et al., 2006; doi: 10.1130/G22407.1). Despite nearly identical 234U/238U activities in modern waters and travertines (1.132±0.006), the latter show decreasing 226Ra concentrations through time, from ~ 0.2 dpm/g in the oldest shelf-built channels to ~ 0.07 dpm/g in present day pool carbonates, thus pointing to a significant decrease in the hydrothermal activity since the inception of the travertine complex, and raising concerns about the response of the Pamukkale hydrothermal system to the present climatic trend. Indeed, the predicted decrease in precipitation of up to 30% in the forthcoming decades (Lelieveld et al., 2012; DOI 10.1007/s10584-012-0418-4) is likely to result in a lesser meteoritic water recharge of the aquifer system feeding the springs (Dilsiz, 2006; DOI 10.1007/s10040-005-0001-4).

How to cite: Ghaleb, B., Hillaire-Marcel, C., Ozkul, M., and Kulali, F.: Decreasing hydrothermalism at Pamukkale- Hierapolis (Anatolia) since the 7th century, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20182, https://doi.org/10.5194/egusphere-egu2020-20182, 2020.

EGU2020-21402 | Displays | CL4.24

Impact of climate change on steppe environments around Lake Sevan in Armenia during the Holocene

Mary Robles, Odile Peyron, Guillemette Ménot, Elisabetta Brugiapaglia, Vincent Ollivier, Petros Tozalakyan, Khachatur Meliksetian, Lilit Sahakyan, and Sébastien Joannin

Armenia is located in the Caucasus Mountains and today, its vegetation is largely dominated by steppes closely linked with human practices. Armenian human history roots back to the Neolithic period, which questions long human influences on steppe and therefore climate reconstructions from vegetation data. Moreover, vegetation records from this region are often low resolution and do not cover the entire Holocene. Pollen-based climate reconstruction coupled to independent climate reconstructions appear necessary to fully understand climate forcing in the region during the Holocene. In this study, we introduce high-resolution pollen, geochemical analyses and temperature reconstruction based on pollen and branched glycerol dialkyl glycerol tetraethers (brGDGTs) from Vanevan peat in Armenia. The wetland studied show major ecological changes observed through aquatic vegetation and sediment composition (XRF data). At the beginning of the Holocene, the study site is expected to be integrated in a larger Lake Sevan, then it became an independent lake and finally a peatland at 5700 cal BP. A drying phase is also attested around 4.2 kyrs, probably corresponding to the 4.2 ka climate event. Along the sequence, the vegetation is characterized by steppes dominated by Poaceae, Artemisia and Chenopodiaceae. However, forests composed of Quercus, Betula, Carpinus betulus and Ulmus, are more developed on slopes between 7600 cal BP and 5500 cal BP. Agriculture is observed since 5700 cal BP and correlates with occupation periods reported in archeological studies. Over this 10000 yrs-long record, we suppose that differences in response of wetland and vegetation to climate might be linked to ecological processes and human influence. The comparison between pollen-based climate reconstruction and temperature obtained with brGDGT calibrations promisingly illustrate these differences. Finally, we contextualize these results with other regional records to understand the impact of climate change on steppe vegetation in the Caucasus at a larger scale.

How to cite: Robles, M., Peyron, O., Ménot, G., Brugiapaglia, E., Ollivier, V., Tozalakyan, P., Meliksetian, K., Sahakyan, L., and Joannin, S.: Impact of climate change on steppe environments around Lake Sevan in Armenia during the Holocene, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21402, https://doi.org/10.5194/egusphere-egu2020-21402, 2020.

EGU2020-22217 | Displays | CL4.24

Investigation of the Climate Change Effects on the Mediterranean Region with the Hypothetical inclusion of the Istanbul Isthmus

Elcin Tan

EGU2020-22359 | Displays | CL4.24

Classification of ligneous vegetation into Plant Functional Types for a dynamic reconstitution of Neolithic vegetation cover in Occitania Mediterranean seashores

Mehdi Saqalli, Marianne Cahierre, Odile Peyron, Julien Azuara, Nathalie Combourieu-Nebout, Marie-Alexandrine Sicre, and Laurent Lespez

Formalizing the connections existing between socio-ecosystem components implies establishing the dynamical links between both societies and vegetation cover types along time and space. In order to synthesize knowledge of Mediterranean paleo-environments and populations, the MISTRALS PaleoMex program aims at developing a step by step multidisciplinary and spatialized model of the climate, vegetation and human implantations in the Mediterranean seashores of Occitania Province (France) during the Neolithic Eras. The first step is to reconstruct the vegetation covers in the absence of humans. For this, 95 tree and bush species known to have grown in the region in Neolithic times are considered, which combining present-time species, historical data and pollen sequences. These species are then grouped in Plant Functional Types (PFTs) according to their tolerance to three factors: the mean annual temperature, the pH and the soil water balance. Two clustering methods were first tested: HCA (Hierarchical Clustering Analysis) and k-means based on the species’ tolerance interval for each factors. The resulting PFTs were well-defined enough to statistically explain the total ecological variance but were misleading botanically speaking, by failing in identifying clearly well-known PFTs such as the pioneer groups. A third method was thus assessed based on group species’ overlap of their tolerance intervals. Only 80% of the total variance was explained but the resulting 8 PFTs are more representative of natural species associations including a well-identified pioneer species PFT. Further investigations may be pursued to reach a total of 11 PFT groups in order to explain 95% of the total local variance. This PFT stock will be assessed using a virtual spatialized cellular automaton model with a 1ha spatial resolution and seasonal timescale. Elevation, pedology and dynamic climatology for each season and hectare will allow deciphering the spatial and dynamic evolution of the vegetation cover as a localized repartition of these PFTs.

How to cite: Saqalli, M., Cahierre, M., Peyron, O., Azuara, J., Combourieu-Nebout, N., Sicre, M.-A., and Lespez, L.: Classification of ligneous vegetation into Plant Functional Types for a dynamic reconstitution of Neolithic vegetation cover in Occitania Mediterranean seashores, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22359, https://doi.org/10.5194/egusphere-egu2020-22359, 2020.

CL5.1 – Geochronological tools for environmental reconstructions

Quaternary records provide an opportunity to examine how regional climates and vegetation reflect global climate changes comparable in magnitude and velocity to those expected during the 21st century.  The Dansgaard-Oeschger (D-O) cycles of the last glacial period provide the best documented examples of such rapid climate warmings (Greenland interstadials, GIs). However, the age models of pollen records that document regional responses to D-O events are, in general, poorly constrained beyond the radiocarbon timescale. Here we use a pattern-recognition approach, based on matching oscillations in palaeoclimate records to a template of D-O events seen in the Greenland record, to provide better constrained age models. We create a series of templates of Greenland Interstadials (GIs) and compare these to a normalised and detrended time series from a target record using a sliding window and measuring goodness-of-fit using Euclidian distance. We show that this approach can identify D-O events in well-dated records, including reproducing the Greenland record itself. We then apply this approach to the less well-constrained pollen records from the last glacial period from southern Europe. The re-aligned age models permit a more robust comparison of the reconstructed vegetation and climate changes through time and across sites, allowing for regional differences in the response to individual GIs to be identified.

How to cite: Turner, M. and Harrison, S.: Improving age models for abrupt climate changes during the last glacial by pattern recognition, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2691, https://doi.org/10.5194/egusphere-egu2020-2691, 2020.

Understanding the mechanisms that formed past climatic and environmental changes is essential in order to produce models of future climatic trends. Climatically highly sensitive areas like the Eastern Mediterranean are characterized as key sites for those studies and can imprint regional and large-scale atmospheric patterns as well as the impact of those changes into early human societies. Still, the distinction between regional and global climatic signals is challenging, due to variations between chronological control and environmental factors occurring in each study site. Annually laminated sediments assist to that problem since they can provide information on temperature fluctuations, precipitation, volcanism, solar activity etc, up to seasonal scale through coherent varve chronology. In this study, we present a multi-proxy climate reconstruction of eastern Mediterranean over the last 12000 years, based on a non-continuous varved sediment core from Vouliagmeni lake, located in the eastern part of Gulf of Corinth, Greece. The compiled dataset consists of: (a) grain size analysis and magnetic susceptibility measurements, (b) high-resolution X-ray fluorescence data, (c) mineralogical analysis, (d) Computed Tomography (CT) and μCT analysis (e) AMS radiocarbon dating correlated with varve counting, (f) isotopic composition (δ18O, δ13C) on selected samples and (g) diatom analysis. For the determination of lamination boundaries and thickness, standard Computed Tomography was conducted with the highest possible resolution (0.3 mm) and combined with μCT results from selected sections from the core. Sedimentological changes were also documented through the 2D Haunsfield model that was constructed for the core and further correlated with the other studied proxies. The chronological framework of the core was established at 12,500 cal BP through a combination of Bayesian age-depth modelling and varve counting. Accumulation rates change drastically at around 3000 cal BP at the approximate time of extensive urban growth in the study area, as indicated from historical reports. Different precipitation/temperature and runoff patterns for the catchment area were recognized, through the different proxies examined, providing signals of long scale and regional climatic anomalies. The covariation of δ13Ccarb and δ18O characterizes the lake system as evaporatively dominant, whereas elemental ratios and isotopic data determine wet (1200-1800 cal BP, 2200-300 cal BP, 4500-4800 cal BP, 5800-6600 cal BP, 9500-10500 cal BP) and arid phases (3000-3200 cal BP, 3800 cal BP, 7100 cal BP) that correspond also to changes in water level, stratification and the formation of laminations. Addressing the fact that laminated sediments in Eastern Mediterranean that extend in 12 ka years are scarce, Vouliagmeni lake seems to present a very promising geoarchive.

How to cite: Emmanouilidis, A., Unkel, I., Seguin, J., and Avramidis, P.: Eastern Mediterranean climate reconstruction over the last 12,000 yrs based on a non-continuous varve sediment record from Vouliagmeni lake, Gulf of Corinth (Greece), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7718, https://doi.org/10.5194/egusphere-egu2020-7718, 2020.

EGU2020-10019 | Displays | CL5.1

Refining chronologies by dating pollen concentrates – new approach of separating pollen using flow cytometry

Christoph Steinhoff, Nadine Pickarski, and Thomas Litt

Radiocarbon dating of terrestrial plant-remains is a traditional method for precise age estimations of lake sediments. The absence of sufficient large plant macrofossils required for AMS dating in continental records, especially large lakes, demands for a satisfactory alternative, such as carbon-containing microfossils. Due to their ubiquitous presence in sedimentary archives pollen grains may be considered for dating. Nevertheless, the isolation and enrichment of pollen without a significant carbon contamination is still challenging. Even though commonly applied separation techniques can be used to remove the predominant portions of foreign particles, the undesirable transfer of these particles into the pollen concentrate cannot be excluded, yet. However, flow cytometry, as a highly promising alternative, offers the possibility to sort huge quantities of particles in a short period of time and to generate pure pollen concentrates from heterogeneous samples suitable for AMS radiocarbon dating.

In this study we present the approach to sort limnic sediment samples using flow cytometry. We are able to unequivocally identify pollen populations in the heterogeneous composition of the sediments and isolate them. The sediments analyzed were taken from the continental record of Lake Van (Eastern Anatolia). Annually laminated layers from the Holocene section of the sediment cores allow a precise temporal classification and validation of generated radiocarbon ages derived from fossil pollen. Although it is now possible to produce pollen concentrates without the contamination of foreign particles, the isolation of a sufficient quantity of pollen grains to generate reliable radiocarbon ages is still difficult. An increase pollen yield is required. Due to the limitation of the initial material, it is therefore especially necessary to improve the efficiency during the cytometric analysis.

Our results show the importance to steadily optimize the processing steps during chemical pretreatment, cytometric analysis as well as the radiocarbon dating itself. This facilitates the handling of the ultra-small samples and ensures precise age estimations of the pollen concentrates. Furthermore improving the laboratory routine for the enrichment of pollen will allow the analysis of vast amounts of samples in a short period of time. In consequence, dating pollen concentrates generated by flow cytometry can be used as a robust contribution and independent time control for existing chronologies in continental climate records.

How to cite: Steinhoff, C., Pickarski, N., and Litt, T.: Refining chronologies by dating pollen concentrates – new approach of separating pollen using flow cytometry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10019, https://doi.org/10.5194/egusphere-egu2020-10019, 2020.

EGU2020-10917 | Displays | CL5.1

Cosmogenic Be-10 surface exposure data from the Sub-Antarctic Kerguelen Archipelago

Henriette Linge, Jostein Bakke, Talin Tuestad, Philip Deline, Ludovic Ravanel, and Jesper Olsen

The Kerguelen archipelago (around 49°S 69°E) is the emerged part of the Kerguelen Plateau, a large igneous province in the southwestern Indian Ocean. Information on past climatic and environmental conditions in the region is vital for understanding the past behaviour of the southern westerly winds. The cross-disciplinary project SOUTHSPERE seeks to investigate past variations in this weather system through reconstruction of temporal and spatial glacier variability from lake records and glacial landforms N and NE of the Cook Ice Cap. Reliable and accurate chronological control is crucial in this context.

Surface exposure dating of glacial geomorphological features S and SE of the Cook Ice Cap has previously been done using in situcosmogenic Cl-36 [1, 2]. Solifluction and gelifraction processes appear very active in our field area, as do aeolian erosion. Also, highly variable geochemical composition of the basalts and associated intrusions, as well as the degree and type of metamorphosis, lead to strong lithology-dependant weathering and erosion rates, as evident from differential weathering reliefs on cm and m scales. The very active surface environment constitutes a challenge for obtaining accurate surface exposure ages.

In the NW part of the archipelago, basaltic lava units altered by meteoric-hydrothermal fluids contain a wide variety of secondary silicate and carbonate minerals [3]. In settings where quartz-filled geodes and fractures in the basalt are located in favourable positions on bedrock and boulder surfaces, analysis of Be-10 in euhedral and microcrystalline quartz offers a means of validating in situ Cl-36 surface exposure ages. Moreover, multi-nuclide analysis would open up for a wide range of process and landscape development studies on this young archipelago. Percolation of hydrothermal fluids in fractures and geodes is probably related to the intrusion of younger (15-5 Ma) subvolcanic rocks [see 3 and references therein]. A meteoric source of the fluids would imply that the secondary silicates contain meteoric Be-10. As meteoric production is greater than in situ production, this may represent a problem for utilising in situ Be-10 for surface exposure dating. If secondary silicate formation occurred early, rather than late in the intrusive phase, complete radioactive decay of the meteoric Be-10 component is expected prior to surface exposure.

110 rock samples were collected for surface exposure dating with in situ cosmogenic nuclides during a field campaign in November and December 2019. Here we present the first Be-10 data from rock surfaces of glacially transported boulders and exposed bedrock.

[1] Jomelli et al. 2017. Quaternary Science Reviews 162, 128-144.

[2] Jomelli et al. 2018. Quaternary Science Reviews 183, 110-123.

[3] Renac et al. 2010. European Journal of Mineralogy 22, 215-234.

How to cite: Linge, H., Bakke, J., Tuestad, T., Deline, P., Ravanel, L., and Olsen, J.: Cosmogenic Be-10 surface exposure data from the Sub-Antarctic Kerguelen Archipelago, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10917, https://doi.org/10.5194/egusphere-egu2020-10917, 2020.

EGU2020-11817 | Displays | CL5.1

Constraining post-glacial temperatures of rock avalanche deposits in the Yosemite Valley with cosmogenic noble gas and luminescence paleothermometry

Nathan Brown, Marissa Tremblay, Maura Uebner, Greg Stock, Greg Balco, and David Shuster

Yosemite Valley is renowned for its striking topography, with many sheer granite cliffs carved during past glaciations. At the base of these cliffs many large rock avalanche deposits can be found that were deposited since ice retreated from Yosemite Valley. Cosmogenic 10Be measurements indicate that there are at least 10 different rock avalanche deposits that range in age from 13 to ~1 ka.

In this study, we estimate the time-averaged temperatures experienced by rocks from five of these rock avalanche deposits using cosmogenic noble gas and luminescence paleothermometers. These two systems yield independent estimates of valley floor temperatures during the Holocene, information that is useful for reconstructing the local environmental conditions since deglaciation.

Cosmogenic noble gas paleothermometry utilizes the fact that cosmogenic noble gases like 3He experience thermally-activated diffusive loss at Earth surface temperatures in minerals like quartz. The concentration of cosmogenic 3He in quartz relative to a cosmogenic nuclide that does not experience diffusive loss should therefore be a function of a rock’s thermal history over the duration of its exposure to cosmic ray particles. Apparent 3He boulder exposure ages from these five rock avalanche deposits are 58 to > 98% younger than the corresponding 10Be exposure ages. Preliminary models that combine these 3He observations and sample-specific diffusion parameters indicate that effective diffusion temperatures (EDTs) recorded by 3He in quartz are similar to or higher than the modern EDT from the instrumental record.

Like with the cosmogenic 3He system, thermoluminescence (TL) paleothermometry of K-feldspars also relies upon the balance between steady signal build-up and thermally-activated loss. The difference is that TL derives from trapped electronic charge at defect sites within the feldspar crystal lattice that accumulates in response to natural background radiation. K-feldspar TL signals comprise a range of stabilities. The least stable sites will experience diffusive loss even at temperatures below 0 °C and the most stable sites will accumulate at upper crustal temperatures. By monitoring which sites are occupied and how long those sites have been accumulating charge, we estimate both the ambient temperature and the time spent at that temperature.

We compare and discuss the history of rock temperatures estimated from these two systems with implications for the post-glacial climate of Yosemite Valley.

How to cite: Brown, N., Tremblay, M., Uebner, M., Stock, G., Balco, G., and Shuster, D.: Constraining post-glacial temperatures of rock avalanche deposits in the Yosemite Valley with cosmogenic noble gas and luminescence paleothermometry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11817, https://doi.org/10.5194/egusphere-egu2020-11817, 2020.

EGU2020-20791 | Displays | CL5.1

Yet another in-situ cosmogenic 10-Be local production rate for the British Isles : Llyn Arenig Fach, North Wales

David Fink, Philip Hughes, Reka Fulop, Klaus Wilcken, Patrick Adams, and Peter Ryan

Cosmogenic production rates (PRs) are the essential conversion factor between AMS cosmogenic concentrations and absolute exposure ages. The accuracy of cosmogenic glacial chronologies and reliability in their comparison to other plaeoclimate systems  is largely contingent on the precision and accuracy of the adopted production rate. This is particularly critical in determining past glacial geochronologies at the scale of millennial temporal resolution. Most PR calibrations are carried out at deglaciation sites where radiocarbon provides the independent chronometric control usually based on calibrated 14C ages in basal sediments or varves  from lake or bog cores which is assumed to represent the minimum age for glacial retreat. Under these conditions PRs should be considered as maximum-limiting values. Given that today most AMS facilities can deliver 10-Be, 26-Al and 36-Cl data with analytical errors less than 2%, the accuracy of a PR for a given scaling method (ie transfer function of the site-specific production rate to a reference sea-level high latitude (SLHL) PR) remains largely dependent  on the error in the independent chronology and accuracy of AMS standards. The history over the past 20 years of the ever-changing value of  SLHL 10-Be cosmogenic spallation PRs  with a continual decreasing value from initial estimates of about 7 atoms/g/a to the current  ‘accepted ‘ value of ~4 atoms/g/a,   is an interesting story in itself and demonstrates the complexity in such determinations.  

Today there are both global (average) SLHL PRs and also regional-specific PR values (referenced to SLHL). For the British Isles, there are a number of 10-Be ‘British Isles’ choices that, for the Lm scaling scheme, range between 3.92±0.11  atoms/g/a  (Putnam et al., QG, v50, 2019) to 4.41±0.25 atoms/g/a (Small et al., JQS, v30, 2015). This range in 10-Be spallation PRs has recently raised some debate and challenges for the assumed extent and timing of the local-LGM and demise of the British Ice Sheet. This work provides a new  British Isles site specific 10-Be PR from the  Arenig Mountains in North Wales. We have measured 10-Be concentrations in 13 selected moraine boulders that are tentatively mapped as outer and inner Younger Dryas deglacial deposits hugging a cirque lake,  Llyn Arenig Fach,  just below the head wall  at  Arenig Fach.   Radiocarbon dating of basal sediments from a number of intermorainal core bogs has provided independent age control.  We will present our results and compare them to the current collection of other British Isles 10-Be production rates.  

How to cite: Fink, D., Hughes, P., Fulop, R., Wilcken, K., Adams, P., and Ryan, P.: Yet another in-situ cosmogenic 10-Be local production rate for the British Isles : Llyn Arenig Fach, North Wales, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20791, https://doi.org/10.5194/egusphere-egu2020-20791, 2020.

EGU2020-468 | Displays | CL5.1

Using high-resolution portable OSL (POSL) profiling to characterize Holocene beach ridges at Lake Schweriner See, NE-Germany

Marie-Luise Adolph, Reinhard Lampe, Sebatian Lorenz, and Torsten Haberzettl

Beach ridges are a promising geoarchive to study lake-level variations as they indicate former lake-level maxima. Detecting paleo-shorelines and knowing their elevation, inner structure and age. This helps to quantify lake-level highstands, the duration of elevated lake levels as well as to reconstruct sedimentation processes as important indicators of either external forcing (e.g., higher precipitation/lower evaporation) or anthropogenic impacts (e.g., mill stowage) in the past. In this study, a quantitative paleohydrological reconstruction of lake Schweriner See, NE-Germany, should be achieved by a combination high-resolution multi-proxy analysis on sediment cores from both distal and littoral but also from onshore parts. This poster focuses on the onshore part of the eastern shoreline where a succession of beach ridges is located within a distance of up to 600 m away from the recent shoreline and up to 1.5 m above today’s lake level. This indicates both a greater extension and a higher water level in the past. Here we examine these beach ridges using high-resolution luminescence profiling (POSL, 5-15 cm intervals) with a SUERC portable OSL unit combined with full OSL dating (coarse grain quartz SAR protocol) and independent radiocarbon dating to obtain ages of lake-level maxima as well as a (relative) age distribution within and between individual beach ridges. We measured the water content, loss-on-ignition and grain size variation to characterize the beach ridges and their depositional processes but also to estimate the influences of these parameters on the luminescence signal.

The sandy beach ridges are deposited on peat, which overlays mainly lacustrine silty and calcareous sediment. The upper 20-40 cm are enriched in humus. This stratigraphy demonstrates a silting-up sequence and development of a wetland, which was affected by a dynamic lake-level development.The dominating grain size within the ridges is coarse grained sand with small gravel and occasionally thin organic layers in between. The initial results of full OSL dating gives a hint that all beach ridges were deposited during the Holocene. The luminescence profiles typically show an increase in photon counts with depth in the upper part, which was influenced by humus enrichment. The luminescence in the otherwise mainly organic and lime free sands below behave differently with depth in each beach ridge. The total photon count either 1) decreases perhaps influenced by a higher groundwater table in the past or reworking of older nearby beach ridges, 2) increases, offering the possibility to extract relative sedimentation rates, but sometimes has leaps to smaller values or 3) fluctuates around a mean value indicating a potential rapid sediment accumulation. Fluctuating values might also occur due to bioturbation.

In this study, high resolution POSL profiling in combination with grain-size analysis proved to be a promising tool to investigate lacustrine beach ridges and their depositional processes. The method turned out to be valuable to not only select the right sample for OSL dating but also to get a better understanding of beach ridge deposition at Schweriner See.

How to cite: Adolph, M.-L., Lampe, R., Lorenz, S., and Haberzettl, T.: Using high-resolution portable OSL (POSL) profiling to characterize Holocene beach ridges at Lake Schweriner See, NE-Germany , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-468, https://doi.org/10.5194/egusphere-egu2020-468, 2020.

EGU2020-715 | Displays | CL5.1

Tephra anchored floating varve chronology covering ca. 19.0-11.0 ka BP in new core from Lake Lago Grande di Monticchio: preliminary results

Xueru Zhao, Sabine Wulf, Markus J. Schwab, Rik Tjallingii, and Achim Brauer

The high-resolution Monticchio (MON) sediment record has been demonstrated to be a key archive for reconstructing climate and environmental changes in the central Mediterranean for the last glacial-interglacial cycle. New sediment cores have been retrieved in April 2016 to investigate particularly the transition from the Last Glacial Maximum into the Holocene with a new high-resolution methodological approach. A floating varve chronology spanning ca. 8,000 years has been established by varve counting on thin sections using a petrographic microscope and layer thickness based sedimentation rate estimates for non- or poorly varved intervals. Varve counting is based on detailed seasonal deposition models of five different varve types. The resulting floating chronology consist of 66.6% individually counted varves and 33.4% interpolated years. The uncertainty estimate of the floating chronology has been determined by double counting and amounts to ±5.8%.

The floating chronology is anchored to an absolute chronology using the Agnano Pomici Principali tephra, dated at 11,999±52 cal yrs BP from paleosols overlying proximal tephra (Bronk Ramsey et al. 2015), is a suitable anchoring point to cross correlation. The resulting varve-based chronology has been compared with several other marker tephras dated elsewhere including the Soccavo 4 tephra (11,700±150 cal yrs BP), the Neapolitan Yellow Tuff (NYT; 14,194±172 cal yrs BP) and the Greenish tephra (19226±104 cal yrs BP). Further comparison with published (Hajdas et al. 1997) and new radiocarbon dates from different terrestrial macro remains are discussed in this paper. This study presents an independent chronology for the last glacial/interglacial transition for a comparison of MON data with high-resolution lake records western and central Europe.

References

Bronk Ramsey, C., P. G. Albert, S. P. E. Blockley, M. Hardiman, R. A. Housley, C. S. Lane, S. Lee, I. P. Matthews, V. C. Smith & J. J. Lowe (2015) Improved age estimates for key Late Quaternary European tephra horizons in the RESET lattice. Quaternary Science Reviews, 118, 18-32.

Hajdas, I., G. Bonani, B. Zolitschka, A. Brauer & J. Negendank (1997) 14C Ages of Terrestrial Macrofossils from Lago Grande Di Monticchio (Italy). Radiocarbon, 40, 803-807.

How to cite: Zhao, X., Wulf, S., Schwab, M. J., Tjallingii, R., and Brauer, A.: Tephra anchored floating varve chronology covering ca. 19.0-11.0 ka BP in new core from Lake Lago Grande di Monticchio: preliminary results, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-715, https://doi.org/10.5194/egusphere-egu2020-715, 2020.

In addition to 14C-data, sedimentary excesses in 230Th  (230Thxs) in central Arctic Ocean cored sequences yielded critical time constrains and sedimentation rates estimates, at least, at sites characterized by very low sedimentation rates (<< 1cm/ka). Closer to the Russian margin, where higher accumulation rates are recorded based on 14C-ages, the setting of a reliable stratigraphy based on 230Thxs reveals more challenging, as illustrated here, based on the analysis of  a gravity core raised from the southern Mendeleev Ridge (core ARC7-E25; -179.4°E, 79.0°N; 1200 m water depth; 320 cm long). Subsamples were collected at a 4 to 8 cm interval. Measurements included: AMS 14C in foraminifera, grain size, bulk Xray mineralogy, clay mineralogy, geochemistry (Corg, Cinorg,13Corg, 238U, 234U, 230Th, 226Ra, 210Pb). Data indicate that some sediment were lost at core top. Nevertheless, 14C and 230Thxs  data allow estimating a mean sedimentation rate of about 6 to 7 mm/ka during the last two climatic cycles. A comparison of the 230Thxs inventory and distribution pattern with those from other cores allows identifying important parameters involved in the cycling of the water column-produced 230Th in this basin and its sporadic sedimentary accumulation, in particular linkages with sea-ice production over shelves, thus sea-levels, sea-ice rafting routes, grain-size and mineralogy, potential winnowing of fine fractions, role of brines and relative duration of intervals with reduced or nil sedimentation preceding 230Thxs-accumulation intervals.

How to cite: Song, T., Hillaire-Marcel, C., and Liu, Y.: 230Th-excess inventory and distribution in a southern Mendeleev Ridge core (Arctic Ocean): linkage with late Quaternary sedimentological and paleogeographical changes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-824, https://doi.org/10.5194/egusphere-egu2020-824, 2020.

EGU2020-5377 | Displays | CL5.1

Evidence for solar-flare and other cosmic-ray events in the 14C record in tree rings: New information and a cautionary tale.

Anthony Jull, Irina Panyushkina, Fusa Miyake, Matthew Salzer, Chris Baisan, Mihaly Molnar, Tamas Varga, Lukas Wacker, Nicholas Brehm, and Willy Tegel

Excursions in the radiocarbon (14C) record, which are rapid changes on a scale of a few years are presumed to be caused by an increase of incoming cosmic rays. The excursions at AD 774-775AD and 993-994AD have generated widespread interest and have been reproduced in many different tree-ring records (Miyake et al. 2012, 2013, 2017; Büntgen et al. 2018).  Similar structures have also been detailed, such as at 660BC (Park et al. 2017; O’Hare et al. 2019). Other types of change in 14C production may be due to a mix of SPE and different phenomena, such as around 5480BC (Miyake et al. 2017) and 815BC (Jull et al. 2018). We note that a proposed SPE event about 3371BC (Wang et al. 2018) is currently unconfirmed and this emphasizes the need for an anchored dendro-record to determine possible events. Timing of these events is important to understand the underlying recurrence intervals. A considerable number of processes can affect the cosmic-ray flux, including solar events, gamma-ray bursts, geomagnetic shifts and relatively close supernovae. Such studies are providing a wealth of new information through which to characterize new ‘events’ in 14C structure and to begin to understand the processes behind them. These effects also have introduced more complexity to the international radiocarbon calibration curve.

This research was supported in part by the European Union and the State of Hungary, co-financed by the European Regional Development Fund in the project of GINOP-2.3.2-15-2016-00009 ‘ICER’.

References: Büntgen et al. 2018. Nature Communications 9: 3605; A. J. T. Jull et al. 2014. Geophysics Research Letters 41: 3004-3010; F. Miyake et al. 2012. Nature 486: 282-284; F. Miyake et al. 2013. Nature Communications 4: 1748; F. Miyake et al. 2017. PNAS 114: 881-884; P. O’Hare et al. 2019. PNAS 116: 5961-5966; J. Park et al. 2017. Radiocarbon 59: 1147-1156; F. Y. Wang et al. Nature Communications 18: 1487.

How to cite: Jull, A., Panyushkina, I., Miyake, F., Salzer, M., Baisan, C., Molnar, M., Varga, T., Wacker, L., Brehm, N., and Tegel, W.: Evidence for solar-flare and other cosmic-ray events in the 14C record in tree rings: New information and a cautionary tale., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5377, https://doi.org/10.5194/egusphere-egu2020-5377, 2020.

EGU2020-8894 | Displays | CL5.1

CryptoTEPHras in the ICDP Dead Sea deep core to synchronise past eastern MEditerranean hydroclimate (TEPH-ME)

Ina Neugebauer, Markus J. Schwab, Simon Blockley, Christine S. Lane, Birgit Plessen, Rik Tjallingii, Sabine Wulf, and Achim Brauer

The hypersaline Dead Sea is a key palaeoclimate archive in the south-eastern Mediterranean region, situated at a critical position between more humid Mediterranean climate and the hyper-arid Saharo-Arabian desert belt. The ca 450 m long ICDP drill core 5017-1, recovered from the deepest part of the Dead Sea, spans the last ~220,000 years as constrained by radiocarbon, U-Th dating and floating δ18O stratigraphy methods. Nevertheless, an independent dating method is much needed because (i) radiocarbon dating is limited to the last ~40,000 years; (ii) U-Th dating of authigenic carbonates requires a complex correction procedure leading to large age uncertainties; and (iii) wiggle matching of oxygen isotope data is not independent and, hence, does not allow the identification of lead- and lag-phase relationships of changing hydroclimate in comparison to other palaeoclimate records.

Tephrochronology has been demonstrated a powerful tool for dating and synchronisation of palaeoclimate records for regional and global comparison. Due to a lack of visible tephra layers in the Dead Sea sediment record, direct links with the eastern Mediterranean tephrostratigraphical lattice are still absent. Recently, the first cryptotephra ever identified in Dead Sea sediments has been associated with the early Holocene S1-tephra from central Anatolia. This discovery encouraged a systematic search for tephra time-markers in the ICDP deep-basin core 5017-1, with the aim of improving the chronology of the deep record significantly and providing a tool for precise regional synchronisation of proxy records.

In the first phase of the TEPH-ME project focusing on the early last glacial (ca 100-110 ka) and lateglacial (ca 11-15 ka) time intervals in the ICDP core, we have identified more cryptotephra layers than expected. First glass geochemical data suggest that the majority of volcanic ash in the Dead Sea sediments originates from Anatolian volcanic provinces. Even though proximal Anatolian tephra data for comparison are still limited, the identification of cryptotephra in the long Dead Sea record provides novel opportunities to advance the tephrostratigraphical framework in this region, e.g. through synchronising the Dead Sea and Lake Van (eastern Anatolia) sediment records, but also with archaeological and palaeoenvironmental sites that are currently investigated in the Levant and in Arabia.

How to cite: Neugebauer, I., Schwab, M. J., Blockley, S., Lane, C. S., Plessen, B., Tjallingii, R., Wulf, S., and Brauer, A.: CryptoTEPHras in the ICDP Dead Sea deep core to synchronise past eastern MEditerranean hydroclimate (TEPH-ME), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8894, https://doi.org/10.5194/egusphere-egu2020-8894, 2020.

EGU2020-9336 | Displays | CL5.1

Statistical approaches and tools for IntCal20

Christopher Bronk Ramsey, Timothy Heaton, Maarten Blaauw, Paul Blackwell, Paula Reimer, Ron Reimer, and Marian Scott

The construction of the new IntCal20 calibration curve was undertaken using a number of new statistical approaches (Heaton et al. 2020), when compared to previous versions.  This was partly due to the nature of some of the new datasets; partly to improve the robustness of the curve; and partly to address particular aspects of radiocarbon within the Earth System such as reservoir effects, incorporation of geological carbon in speleothems, and the uncertainties associated with different timescales.  Here the main approaches taken are summarised with a perspective on their strengths and potential weaknesses.

In particular, the high-resolution extensions to the Hulu speleothem radiocarbon record (Cheng et al. 2018) allow it to be used to anchor the chronology for other key records (Suigetsu, Cariaco, and the Pakistan and Iberian Margins), providing a coherence in the timescale not possible before.  Further, for the first time, we incorporate time varying marine reservoir ages, constrained by the Hamburg Large Scale Geostrophic Ocean General Circulation Model (LSG OGCM)(Butzin et al. 2020).  In addition, work on the relationship to the Greenland ice core timescales (Adolphi et al. 2018) enables us to make direct comparison between radiocarbon dated records and the ice core timescale and here we report on tools to assist with this.

Along with the update to the calibration curve itself, the associated tools for calibration, age-depth modelling and Bayesian modelling have also been updated to make best use of the new resolution and characteristics of the curve.  Here we summarise updates to Bacon, Calib and OxCal.

Heaton, TJ. et al (2020) The IntCal20 approach to radiocarbon calibration curve construction: A new methodology using Bayesian splines and errors-in-variables Radiocarbon: in review.

Cheng, H. et al. (2018) Atmospheric 14C/12C changes during the last glacial period from Hulu Cave. Science, 362(6420), pp.1293-1297. doi:10.1126/science.aau0747

Adolphi, F. et al. (2018) Connecting the Greenland ice-core and U/Th timescales via cosmogenic radionuclides: Testing the synchronicity of Dansgaard-Oeschger events. Climate of the Past, 14, pp.1755-1781. doi:10.5194/cp-2018-85

Butzin, M. et al. (2020) A short note on marine reservoir age simulations used in IntCal20. Radiocarbon: in press.

How to cite: Bronk Ramsey, C., Heaton, T., Blaauw, M., Blackwell, P., Reimer, P., Reimer, R., and Scott, M.: Statistical approaches and tools for IntCal20, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9336, https://doi.org/10.5194/egusphere-egu2020-9336, 2020.

EGU2020-13827 | Displays | CL5.1

The potential of ingrowth 226-Ra as a new dating tool for late Holocene carbonate deposits

Marie-Louise Froeschmann, Denis Scholz, Hubert Vonhof, Klaus Peter Jochum, Cees W. Passchier, and Gül Sürmelihindi

One of the most commonly used methods for dating carbonate deposits, such as speleothems or calcareous sinter deposits, is the 230Th/U-disequilibrium method. With this approach, ages up to 500 ka can be obtained. However, especially for late Holocene samples, substantial detrital contamination may represent a major problem for radiometric dating. The high 232Th content, which is an indicator for the amount of detrital contamination, leads to elevated U/Th-ages and generally larger uncertainties, which limit the potential of the corresponding samples for paleoclimate reconstructions. Ingrowth 226Ra shows the potential to be used as an alternative dating method. In combination with Ba, U and Th, it is possible to date samples with ages up to 8 ka.

In general, there are three sources of 226Ra in carbonate samples. (i) excess 226Ra incorporated during deposition of the material, (ii) detrital material present in the carbonate, and (iii) ingrowth 226Ra produced by the radioactive decay of its parent 230Th. Due to the geochemically similar behavior of Ra and Ba, it is possible to correct for the amount of excess 226Ra. As for the 230Th/U-disequilibrium method, 232Th can be used to correct for detrital contamination.

To test our new method, we applied it to several calcareous sinter samples from different Roman aqueducts, which supplied drinking water to ancient cities such as Jerash or Cordoba . The separation of Ra, Ba, U and Th from the matrix of the samples is performed using a single aliquot of material and different ion exchange resins. Prior to the separation process, a calibrated mixed Ra-Ba-Th-U spike solution was added and equilibrated with the sample solution. The results are not only compared to model simulations for the new system, but also to ages obtained with the conventional 230Th/U-method.

How to cite: Froeschmann, M.-L., Scholz, D., Vonhof, H., Jochum, K. P., Passchier, C. W., and Sürmelihindi, G.: The potential of ingrowth 226-Ra as a new dating tool for late Holocene carbonate deposits, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13827, https://doi.org/10.5194/egusphere-egu2020-13827, 2020.

Determining the geographic footprint of past climate events is a fundamental step in identifying the mechanisms that drive and propagate these changes around the globe. Glacial deposits are a particularly robust source of such data; glaciers are sensitive indicators of climate that leave records of their past fluctuations on the landscape. Given precise chronologic control, glacial deposits can be used to reconstruct past climate variability. Recent advances in cosmogenic nuclide surface-exposure dating have established past glacial fluctuations as a key climate proxy. However, uncertainties in the application of cosmogenic nuclide production-rate-scaling frameworks hinder efforts to compare past glacial fluctuations with other records of past climate conditions. Production-rate scaling is particularly uncertain in the tropics, where the theorized impacts of changing magnetic field strength on the incoming cosmic ray flux are greatest. Here we present results in-progress from the CoNTESTA [Cosmogenic Nuclide Temporal and Elevation Scaling: Testing and Application] Project, which seeks to establish multiple nuclide production-rate calibration sites of varying age from the low latitudes in order to assess directly the impacts of changing magnetic field strength on nuclide production over time. We also report new data that address empirically the impacts of elevation on nuclide production. The results of this project will strengthen our understanding of cosmogenic nuclide production globally and will improve surface-exposure age calculations from all regions. This in turn will enable more robust assessment of the global phasing of glacial fluctuations and will forward our understanding of landscape dynamics and Earth surface history. 

How to cite: Jackson, M., Bromley, G., Blard, P.-H., and Hemming, S.: The CoNTESTA Project: Impacts of geomagnetic field changes on cosmogenic nuclide production-rate variability and implications for surface-exposure dating, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13991, https://doi.org/10.5194/egusphere-egu2020-13991, 2020.

EGU2020-16588 | Displays | CL5.1

Towards a revision of 234U and 230Th decay constants

Inga Kristina Kerber, Sophie Warken, Axel Gerdes, and Norbert Frank

The quality of uranium-series ages depends on the accuracy and precision at which the decay constants of 234U, 230Th and 238U are determined. Here, we present intermediate results for a revision of the decay constants of 234U and 230Th. Therefore, we examined a selection of different materials in secular equilibrium using isotope dilution multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). New approaches of our study in particular concern the characterization of routines for measuring all isotopes on Faraday cups, i. e. low abundance isotopes on cups with 10^13 Ohm amplifiers, and a different selection of materials in comparison to previous studies.  λ_234 could be determined so far at a precision of 24 ε and agrees with the latest literature value of Cheng et al. (2013) within its error margins.

How to cite: Kerber, I. K., Warken, S., Gerdes, A., and Frank, N.: Towards a revision of 234U and 230Th decay constants, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16588, https://doi.org/10.5194/egusphere-egu2020-16588, 2020.

EGU2020-18900 | Displays | CL5.1

Reconstruction of a floodplain area over the last 40.000 years (Tisza river, Hungary) – comparative case study of 14C and OSL methods

Titanilla Gréta Kertész, Botond Buró, Katalin Hubay, György Sipos, and Mihály Molnár

Reconstruction of a floodplain area over the last 40.000 years (Tisza, Hungary)

              – comparative case study of 14C and OSL methods

Titanilla Gréta Kertész 1 * , Buró Botond 1 , Hubay Katalin 1 , Sipos György 2 , Molnár Mihály 1

1Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research   

  H-4026, Bem tér 18/c, Debrecen, Hungary

2Szegedi University, Department of Physical Geography and Geoinformatics

   H-6722, Egyetem str. 2-6, Szeged, Hungary

*Correspondence to: Titanilla Gréta Kertész; e-mail: kertesz.titanilla@atomki.mta.hu

  Keywords: Tisza, Jászság-basin, radiocarbon AMS dating, OSL  

 

Abstract

14C and OSL results of the 5 parallel, neighbouring cores (avg. depth 19 to 20 meters) were compared for a flood basin area (Jászság-basin). Four major sedimentary horizons were identified: meadow soil on the top; silty clay as the second horizon; a clay-silt section; and fine sand. 14C and OSL data were integrated into a consolidated age model by BACON software package. Formation of the recent top meadow soil (the upper 1-1.5m) falls in the Holocene. The mean conventional apparent radiocarbon age (940 ± 420 years) was used for correction of the radiocarbon reservoir effect of soil bulk ages. The SubAtlantic + SubBoreal section show increasing apparent deposition rates (~11 cm / ka). The silty-clay strata represents the whole Würm (Weichselian) Last Glacial to Upper Pleniglacial period (aDR ~6.3 cm/ka). The Ságvár-Lascaux interstadial climate period section was apparently much slower (aDR decreases from ~4.2 to ~1.6 cm / ka). About 10 to 60 cms of sediment must be missing from this section. The next part of the section is a very long period (~10 kyrs) with a stable, much greater aDR than even at the end of the Holocene (~20-25 cm/ky). The clayey silt layers fall into the Late Pleistocene / Middle Pleniglacial period, a period of nearly 7.000 years of sedimentation resulting in deposits with a thickness of ~9 m, shown a very high apparent deposition rate (aDR) about ~0.12 m/ka.

The research was supported by the European Union and the State of Hungary, co-financed by the European Regional Development Fund in the project of GINOP-2.3.2-15-2016-00009 ‘ICER’.

 

How to cite: Kertész, T. G., Buró, B., Hubay, K., Sipos, G., and Molnár, M.: Reconstruction of a floodplain area over the last 40.000 years (Tisza river, Hungary) – comparative case study of 14C and OSL methods , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18900, https://doi.org/10.5194/egusphere-egu2020-18900, 2020.

EGU2020-19650 | Displays | CL5.1

Radiocarbon dating of various pyrogenic carbon pools in series of buried Podzols (case study from the north of European Russia)

Elya Zazovskaya, Dmitry Petrov, Andrey Dolgikh, and Nikita Mergelov

Pyrogenic carbon constitutes a significant portion of organic carbon in soils of the planet, and in some soils its share raises to 30%. The charcoal-rich archives of forest paleofires are often localized in the geomorphological traps that reveal numerous profiles of pyrogenic soils buried due to the repeated post-fire episodes of erosion and accumulation. The paleokarst and active karst landscapes provide a unique matrix that records pyrogenic and depositional events of the past at the local scale. Polypyrocyclical Podzols of the karst landscapes at the north of the Arkhangelsk region (Russia) are the objects of this study. The fields of closed karst funnels (n x 10 m in diameter, 1–5 m elevation difference) demonstrate accumulative and denudation models of soil formation that are realized at the close distance with the pyrogenic soil archives of the bottoms, slopes and high flat sides of the funnels complementary to each other. This regular grid of archives contains information on pyrogenic events and stages of soil formation throughout the Holocene. We report and discuss here 42 radiocarbon dates (AMS) obtained both for the charcoal material and the total organic carbon (TOC) of the soil organic matter. The 14C age (conventional) of charcoal from the lowest horizons was as old as 9115±30 BP - 8770±30 BP, and the charcoal material of the top pyrogenic horizons was as young as 325±20 BP - 45±20 BP. The 14C age of the soil TOC was in general younger than the age of charcoal enclosed in this soil material. We combine the study of soil horizons morphology and stratigraphy with the set of 14C data to experiment with the several age-depth models explaining post-pyrogenic sedimentation rates on various geomorphological elements of the karst landscape. This study is supported by the Russian Foundation for Basic Research, Project No. 19-29-05238.

How to cite: Zazovskaya, E., Petrov, D., Dolgikh, A., and Mergelov, N.: Radiocarbon dating of various pyrogenic carbon pools in series of buried Podzols (case study from the north of European Russia) , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19650, https://doi.org/10.5194/egusphere-egu2020-19650, 2020.

EGU2020-21298 | Displays | CL5.1

Dating of impure carbonates – Utilizing laser ablation MC-ICPMS to reconstruct initial 230Th/232Th ratios

Julius Förstel, Sophie Warken, Andrea Schröder-Ritzrau, and Norbert Frank

Uranium series dating is a valuable and well-established tool for age determination of carbonates in paleoclimatology. However, detrital contamination can alter results. A correctional term is commonly used to account for additional Th introduced into the sample material as detritus. This correction requires to make assumptions about the initial 230Th/232Th ratio of the detrital material, since it is not possible to extract it from an individual measurement. Laser ablation multi collector ICPMS equipped with multiple ion counting detectors offers the possibility to use an isochrone technique to extract the initial 230Th/232Th value from heterogeneous samples with a high detrital content. This decreases systematic errors and uncertainties introduced by the detrital correction term and therefore improves the possibility of dating impure carbonates.

How to cite: Förstel, J., Warken, S., Schröder-Ritzrau, A., and Frank, N.: Dating of impure carbonates – Utilizing laser ablation MC-ICPMS to reconstruct initial 230Th/232Th ratios, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21298, https://doi.org/10.5194/egusphere-egu2020-21298, 2020.

EGU2020-22193 | Displays | CL5.1

Old lime kilns buried in Val Chavagl (Swiss National Parc)

Irka Hajdas, Christian Schlüchter, Ruedi Haller, and Kurt Nicolussi

Mass movements in the mountains can result in some unexpected discoveries. On September 10, 2017, strikingly white components were found in the western slope of the Val Chavagl, Swiss national Parc. The first inspection identified this as residual material of a lime kiln. Strikingly, the remains of the lime kiln were stuck in the slope, i.e., they were part of the material that built up the scarp and were not merely attached or transported from above. The rest of an old, former lime kiln is part of the terrace. Vast amounts of sediment covered this lime kiln following a storm around the Munt Chavagl - Munt la Schera.

Of interest to the studies of past and most recent mass movements and catastrophic flooding is the timing of the operation and destruction. The age of the lime kiln can be estimated based on historical documents and inventory of lime kilns in the region, where the oldest known so far dates to 1560 CE (Parolini 2012). No charcoal was found in the remains of the newly discovered lime kiln; therefore, another approach was proposed i.e., dating organic remains embedded in deposits of catastrophic flooding. Larch trees, which were discovered at 1840 -1860 m asl, allowed for dendrochronology and radiocarbon analysis. The results obtained indicate that the trees died in the mid 17th century, at the latest. Moreover, our chronology sets Terminus ante quem TAQ for the construction and operation of the lime kiln. Our results are relevant for understanding natural hazards as well as reconstruction and protection of cultural heritage in the region of the Swiss National Parc.

 

Parolini, J.D., 2012. Vom Kahlschlag zum Naturreservat: Geschichte der Waldnutzung im Gebiet des Schweizerischen Nationalparks. Haupt.

How to cite: Hajdas, I., Schlüchter, C., Haller, R., and Nicolussi, K.: Old lime kilns buried in Val Chavagl (Swiss National Parc), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22193, https://doi.org/10.5194/egusphere-egu2020-22193, 2020.

EGU2020-22250 | Displays | CL5.1

Optical dating of arid coastline deposits – the challenge of dating evaporitic sediments

Andreas Lang, Mohammad Alsuwaidi, and Barbara Mauz

The Arabian Gulf is a small shallow marginal sea of the Indian Ocean. Its Pleistocene-Holocene sea-level history is of great interest for reconstructing human migration routes into Mesopotamia as well as for better understanding the recent convergence rate between the Arabian and Eurasian plates. For establishing the sea-level history, the ages of past shoreline deposits must be known.

Here we present the optical dating procedure of intertidal carbonate deposits sampled in the coastal area south of Abu Dhabi city (United Arab Emirates). We focus on the challenge of determining a reliable dose rate of samples that are in secular disequilibrium and compare our results with age data obtained from AMS 14C dating.

For optical dating quartz grains of 90-150 mm were extracted and the equivalent dose was determined from 1 mm aliquots using a standard single-aliquot regenerative dose protocol. Data analysis employed statistical analysis to approximate the palaeodose assuming that all grains measured were sufficiently bleached at time of deposition. For determining the dose rate the radionuclide activities were first quantified by simulating the radiation field of the chemically and physically described samples using gamma spectrometry. These modern activities were then taken to back calculate the activities using well-described double differential equations for open systems. This approach leads to multiple solutions.

We show details of the approach and discuss on the basis of the solutions reasonable open-system assumptions for various sedimentary environments.

How to cite: Lang, A., Alsuwaidi, M., and Mauz, B.: Optical dating of arid coastline deposits – the challenge of dating evaporitic sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22250, https://doi.org/10.5194/egusphere-egu2020-22250, 2020.

EGU2020-22554 | Displays | CL5.1

First Holocene floating varve chronology in Central Asia from the Lake Chatyr Kol sediment record (Kyrgyz Republic)

Julia Kalanke, Jens Mingram, Stefan Lauterbach, Ryskul Usubaliev, and Achim Brauer

We present the first floating varve chronology in arid Central Asia of a finely laminated lake sediment record from the high-mountain Lake Chatyr Kol (Kyrgyz Republic). The record was retrieved from the deepest part (~20m) of the lake basin and comprises seasonal laminations (varves) from 11,619 ± 603 years BP to 360 ± 40 BP years. The identification of varves is based on seasonal deposition models established from continuous thin section analyses of the entire sediment profile. The varves comprise a complex pattern of six different micro-facies types throughout the Holocene. All varve types include a pronounced clastic-detrital sublayer, but the composition of their summer sublayers varies between organic, diatom, calcite, and aragonite sublayers. Based on replicate varve counts on overlapping petrographic thin sections an uncertainty of ± 5 % has been calculated for the varve chronology. The chronology is floating because in the uppermost part of the sediment profile varves have been only occasionally formed or preserved which prevented from continuous varve counting in this interval. Instead, the non-varved interval has been dated with 210Pb and 137Cs γ-spectrometry providing an age for anchoring the floating chronology to the absolute time scale. The resulting chronology is supported by two 14C ages obtained from terrestrial plant macrofossils. In contrast, radiocarbon dating of aquatic materials showed significantly older ages and prove reservoir effects. Through comparison with the varve chronology changes in reservoir effects throughout the Holocene have been determined. We find a stepwise decline of reservoir ages from up to ~6150 years in the early Holocene to lowest reservoir ages of less than 1000 years in the late Holocene. In addition to their value as chronological tool, changes in varve thickness and seasonal sublayer composition are used as proxies for hydro-climatological reconstruction of Holocene climate evolution.

This is a contribution to the CAHOL project, part of the BMBF-funded and integrated project CAME II.

How to cite: Kalanke, J., Mingram, J., Lauterbach, S., Usubaliev, R., and Brauer, A.: First Holocene floating varve chronology in Central Asia from the Lake Chatyr Kol sediment record (Kyrgyz Republic), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22554, https://doi.org/10.5194/egusphere-egu2020-22554, 2020.

EGU2020-21250 | Displays | CL5.1

New chronology for the Ardèche river Upper Pleistocene evolution: relationships to glacial/interglacial cycles

Kim Genuite, Jean-Jacques Delannoy, Jean-Jacques Bahain, Marceau Gresse, Stéphane Jaillet, Edwige Pons-Branchu, Pierre Voinchet, and André Revil

The Ardèche river canyon (Ardèche, France), is famous for its deep ingrown meanders and represent one of the most touristic assets of the region. It is also a central place of Upper Paleolithic human occupancy with numerous caves containing some of the most ancient and impressive rock art ever discovered like in the Chauvet cave, located at the canyon entrance, which artwork was dated at more than 36000 years cal BP (Quilès et al., 2016). The highly elaborated artwork of the cave, dated at more than 36000 years cal BP (Quilès et al., 2016), was kept in an exceptional state because of successive rock collapses of the cliff overhanging the cave that led to the complete closing of the entrance about 21,000 years ago (Sadier et al., 2012). 

However, the late Quaternary river evolution remains poorly constrained as no absolute dating was conducted on the alluvial deposits, nor in other rivers of the Central Massif mountain eastern margin.

We present here the results of two independent dating campaigns based on the karst / river base level relationship and geomorphological observations conducted in both environments. We conducted topographical and geophysical surveys in the Ardèche river meanders and floodplains in order to map the different alluvial banks generations. Geomorphological observations were also conducted inside the canyon cavities and were compared to external observations on an altitudinal grids ranging from the current river thalweg to the + 45 m alluvial deposits.

We exploited U/Th dating method on some cave speleothems located along the river and sampled corresponding alluvial sediments for ESR dating, at the same altitudes. Results were thus compared to a relative chronological model in order to deliver a bayesian statistical model for the Upper Pleistocene deposits of the Ardèche river.

Chronological modelling can thus be compared to long term Pleistocene climatic evolution and show correlations with glacial/interglacial Upper Pleistocene cycles, and landscape modifications like meander shortcuts.

How to cite: Genuite, K., Delannoy, J.-J., Bahain, J.-J., Gresse, M., Jaillet, S., Pons-Branchu, E., Voinchet, P., and Revil, A.: New chronology for the Ardèche river Upper Pleistocene evolution: relationships to glacial/interglacial cycles, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21250, https://doi.org/10.5194/egusphere-egu2020-21250, 2020.

CL5.3 – Radiocarbon and the carbon cycle – novel techniques and applications

EGU2020-12768 | Displays | CL5.3

On new developments in accelerator mass spectrometry and how they promote our understanding of global carbon cycle dynamics during the last deglaciation

Julia Gottschalk, Robert F. Anderson, David A. Hodell, Alfredo Martinez-Garcia, Alain Mazaud, Elisabeth Michel, Luke C. Skinner, Anja Studer, Sönke Szidat, Lena M. Thöle, and Samuel L. Jaccard

Ocean-atmosphere 14C disequilibria of the surface and deep ocean reflect past changes in the efficiency of ocean-atmosphere CO2 exchange and ocean mixing, while it may also be related to variations in global-ocean respired carbon content. A full assessment of the oceanic mechanisms controlling deglacial changes in atmospheric CO2 is complicated by a lack of high-resolution 14C ventilation age estimates from the Southern Ocean and other key regions due to low foraminiferal abundances in marine sediments in those areas. Here we present high-resolution deglacial 14C ventilation age records from key sites in the Atlantic and Indian Sector of the Southern Ocean obtained by radiocarbon analyses of small benthic and planktic foraminiferal samples (<1 mg CaCO3) with the UniBe Mini-Carbon Dating System (MICADAS). Our analyses specifically circumvent foraminiferal sample size requirements related to “conventional” accelerator mass spectrometer analyses involving sample graphitization (>1 mg CaCO3 in most laboratories). Complementing multi-proxy analyses of sea surface temperature (SST) changes at these sites allow the construction of a radiocarbon-independent age model through a stratigraphic alignment of SST changes to Antarctic (ice core) temperature variations. We demonstrate the value of refining the age models of our study cores on the basis of high-resolution sedimentary U- and Th flux estimates, which allows an improved quantification of surface ocean reservoir age variations in the past. The resulting deep-ocean ventilation age changes are compared against qualitative and quantitative indicators of bottom water [O2] variations, in order to assess the role of Southern Ocean overturning dynamics in respired carbon changes at our study sites. We discuss the implications of our new radiocarbon- and bottom water [O2] data for the ocean’s role in atmospheric CO2 changes throughout the last deglaciation, and evaluate down-stream effects of southern high-latitude surface ocean reservoir age anomalies.

How to cite: Gottschalk, J., Anderson, R. F., Hodell, D. A., Martinez-Garcia, A., Mazaud, A., Michel, E., Skinner, L. C., Studer, A., Szidat, S., Thöle, L. M., and Jaccard, S. L.: On new developments in accelerator mass spectrometry and how they promote our understanding of global carbon cycle dynamics during the last deglaciation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12768, https://doi.org/10.5194/egusphere-egu2020-12768, 2020.

EGU2020-3581 | Displays | CL5.3

Rapid and high precision C-14 analysis in small DIC seawater samples and its future application as an ocean tracer

Núria Casacuberta, Maxi Castrillejo, Anne-Marie Wefing, Silvia Bollhalder, Kayley Kündig, Hans-Arno Synal, and Lukas Wacker

Carbon isotopic measurements in oceanic dissolved inorganic carbon (DIC) contribute to many oceanographic fields. For instance, radiocarbon (14C) has been essential to elucidate aspects related to ocean circulation, air-sea exchange, carbon cycling and biogeochemistry. Despite its importance as a tracer in oceanography, oceanic 14C has been less well studied than other tracers (e.g. CFCs) as disentangling the natural from the artificial component is not trivial. Another major limitation was the large volume seawater samples required for the decay counting of 14C. Advances in Accelerator Mass Spectrometry (AMS) allowed the reduction of the sample volume to a couple of liters, permitting to obtain spatially better resolved distributions of oceanic 14C during repeated GO-SHIP sections. Yet, methods for sample preparation were borrowed from decay counting and not optimized for AMS. Here, we present a method that we recently developed in the Laboratory of Ion Beam Physics (ETHZ) that allows the rapid (<5 hours) measurement of DI14C in small seawater samples with unprecedented precision (<2‰) (Casacuberta et al., 2019). The setup consists of an automated sampler designed to extract DI14C from 50 - 60 ml samples, by sparging the acidified seawater with helium gas to extract CO2. The fully automated method is controlled via a LabVIEW program that runs through all consecutive steps: catalyst preconditioning, CO2 extraction, CO2 trapping and thermal CO2 release from the trap into the reactor for graphitization, which is performed simultaneously for 7 samples. The method is optimized by introducing a Cu-Ag furnace that improves and accelerates the graphitization to less than 2 hours. As a proof of principle, we will show two sections of 14C corresponding to two recent expeditions carried out in the North Atlantic (OVIDE section) and the Fram Strait in 2018. The high precision of the results allows for the characterization of different water masses in the subpolar North Atlantic Ocean, which reflect the export of anthropogenic carbon to the abyssal waters as a result of deep-water formation in the Iceland-Scotland Overflow Water and the Denmark Strait Overflow Water. Results will be also compared to previously published oceanic Δ14C data in those regions. These studies already demonstrate the potential to use Δ14C as a powerful and cost-efficient tool to resolve oceanic circulation patterns, especially with respect to ventilation of the water column.

Casacuberta, N., Castrillejo, M., Wefing, A.-M., Bollhalder, S., & Wacker, L. (2019). High Precision 14C Analysis in Small Seawater Samples. Radiocarbon, 00(00), 1–12. https://doi.org/10.1017/rdc.2019.87

How to cite: Casacuberta, N., Castrillejo, M., Wefing, A.-M., Bollhalder, S., Kündig, K., Synal, H.-A., and Wacker, L.: Rapid and high precision C-14 analysis in small DIC seawater samples and its future application as an ocean tracer, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3581, https://doi.org/10.5194/egusphere-egu2020-3581, 2020.

EGU2020-4727 | Displays | CL5.3

Deglacial 14C reservoir ages of surface waters at the northern boundary of Peruvian coastal upwelling

Nicolaas Glock, Michael Sarnthein, Kristin Doering, Gesine Mollenhauer, and Renato Salvatteci

To constrain the accurate age of a marine sediment record, the radiocarbon (14C) ages need to be corrected for short-term and small-scale changes in planktic 14C reservoir ages (Rplank). Nevertheless, accurate records of past changes in Rplank are scarce. Here we present a high-resolution record of deglacial 14C ages measured on Globigerina bulloides in sediment core M77/2-59-1 from the northern boundary (~4°S, 997 m) of the Peruvian upwelling zone. The fine structure of jumps and plateau boundaries in the 14C record were tuned to synchronous, thus global structures in the atmospheric 14C record of Lake Suigetsu (Bronk Ramsey et al., 2012) and used as tie points for an age model with semi-millennial resolution, moreover to reconstruct deglacial changes in Rplank from 17 to 11 cal. ka. In our record, Rplank drops from 1250 14C yr prior to 14 cal. ka to ~600 – 450 14C yr until the plateau named Top of Younger Dryas. The drop suggests a major decrease in coastal upwelling, possibly the result of a southward (poleward) expansion of the Intertropical Convergence Zone and related shift in the southeastern trade wind belt during the Bølling-Allerød. Subsequent to 14 cal. ka our Rplank values are roughly similar to values obtained for thermocline waters near the equator from the age difference between 14C ages of wood chunks and 14C of G. ruber (Zhao & Keigwin, 2018). Prior to 14 cal. ka our Rplank are ~800 14C yr higher, which corroborates the presumed latitudinal shift of coastal upwelling. Our 14C ages measured on G. bulloides differ in part from paired 14C ages of Neogloboquadrina dutertrei, indicating their habitat in different water masses prior to 14 cal. ka, in support of the upwelling affinity of G. bulloides. In addition, we used our Rplank values to accurately derive past ventilation ages of intermediate waters near 1000 m depth based on the difference of paired benthic and planktic 14C ages, which is important to constrain centennial to millennial scale changes in circulation influencing the extent of the Peruvian oxygen minimum zone.

References:

Bronk Ramsey, C., et al., Science, 338, 370–374, 2012.

Zhao & Keigwin, Nature communications, 9, 3077, 2018.

How to cite: Glock, N., Sarnthein, M., Doering, K., Mollenhauer, G., and Salvatteci, R.: Deglacial 14C reservoir ages of surface waters at the northern boundary of Peruvian coastal upwelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4727, https://doi.org/10.5194/egusphere-egu2020-4727, 2020.

EGU2020-7682 | Displays | CL5.3

Marine radiocarbon simulations carried out with a global multi-resolution ocean model

Martin Butzin, Dmitry Sidorenko, and Peter Köhler

Radiocarbon (14C) is an ideal tracer to study the uptake of carbon dioxide by the seas and the ocean circulation during the past 50,000 years. However, there are various issues impeding a straightforward interpretation of marine 14C records. The spatial and temporal variability of marine 14C records is superimposed by a systematic isotopic depletion of the sea surface with respect to the atmosphere. This effect is frequently expressed as Marine Reservoir Age (MRA), ranging from ~400 years in subtropical oceans to more than 1000 years in polar seas during the late Holocene. Prior to the Holocene, MRAs are poorly constrained through reconstructions. Moreover, the entire database of marine 14C records gets increasingly patchy and sparse the further one steps backwards in time. Model simulations provide a valuable interpretation tool and can help to fill spatial and temporal gaps. However, 14C paleorecords typically originate from continental margins, marginal seas, or tropical lagoons. These regions are not properly resolved by default coarse-resolution ocean models, which may result in regional model and hence interpretation biases. The alternative are marine 14C simulations with high(er) resolution, but the conventional approach involving uniform meshes results in computational costs which are prohibitive in most cases. To overcome these issues, we have implemented 14C into the state-of-the-art ocean model FESOM2 which employs unstructured meshes with variable resolution. This approach permits zooming into certain regions of interest while keeping the model resolution in other areas sufficiently moderate. Here, we present first simulation results considering the Anthropocene, the late Holocene, and the Last Glacial Maximum, focusing on the evolution of Marine Reservoir Ages.

How to cite: Butzin, M., Sidorenko, D., and Köhler, P.: Marine radiocarbon simulations carried out with a global multi-resolution ocean model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7682, https://doi.org/10.5194/egusphere-egu2020-7682, 2020.

EGU2020-11118 | Displays | CL5.3 | Highlight

Radiocarbon in tree-rings reveals the solar 11-yr cycle over the last millennium

Lukas Wacker, Nicolas Brehm, Alex Bayliss, Marcus Christl, Hans-Arno Synal, Florian Adolphi, Jürg Beer, Bernd Kromer, Raimund Muscheler, Sami K. Solanki, Ilya Usoskin, Niels Bleicher, Silvia Bollhalder, and Cathy Tyres

The influence of solar variability on the Earth’s climate is a major subject of interest for understanding past and predicting future climate changes. While the observational record of solar activity (e.g. sunspots) covers only the last about 400 yr, cosmogenic nuclides stored in tree rings (14C) or ice cores (10Be, 36Cl) are used as proxies for solar activity and allow solar reconstructions reaching much further back in time 1-3. Major drawbacks of cosmogenic nuclide based solar reconstructions are the presence of weather-induced noise (e.g. 10Be in ice cores) or the low temporal resolution of long precisely dated records (14C in tree rings). Here, we present a continuous, annually resolved 14C record from precisely dated tree rings covering the past about 1’000 yr (969-1933 AD) comprising almost 1’300 highest-precision 14C measurements. The annually resolved 14C record adds significantly to the radiocarbon calibration curve4, which has hitherto been based mainly on decay counting measurements. A multi box carbon cycle model is used to extract annual 14C production changes from the tree ring data. The resulting high-resolution record of 14C production is then used to reconstruct the solar modulation parameter over the last millennium. The comparison of solar modulation with global temperature provides evidence that low solar activity could have caused the temperature reduction during the Little Ice Age. The 14C record further reveals for the first time the presence of the eleven-year solar cycle over the past 1’000 yr. The amplitude of this so called Schwabe cycle is found to correlate with the general level of the solar modulation with high amplitudes during periods of strong solar modulation and vice versa.

 

1 Bard, E., Raisbeck, G., Yiou, F. & Jouzel, J. (2000) Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus Series B-Chemical and Physical Meteorology 52, 985-992.

2 Muscheler, R. et al. (2007) Solar activity during the last 1000 yr inferred from radionuclide records. Quaternary Science Reviews 26, 82-97.

3 Usoskin, I.G. (2017) A history of solar activity over millennia, Living Rev. Sol. Phys. 14, 3.

4 Reimer, P. J. et al. (2013) Intcal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years Cal Bp. Radiocarbon 55, 1869-1887.

How to cite: Wacker, L., Brehm, N., Bayliss, A., Christl, M., Synal, H.-A., Adolphi, F., Beer, J., Kromer, B., Muscheler, R., Solanki, S. K., Usoskin, I., Bleicher, N., Bollhalder, S., and Tyres, C.: Radiocarbon in tree-rings reveals the solar 11-yr cycle over the last millennium, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11118, https://doi.org/10.5194/egusphere-egu2020-11118, 2020.

EGU2020-10075 | Displays | CL5.3

Radiocarbon incubations of archived soils: insights into drying/rewetting effects and constraining soil C models

Jeffrey Beem Miller, Marion Schrumpf, Georg Guggenberger, and Susan Trumbore

Radiocarbon measurements of heterotrophically respired C (∆14C-CO2) in laboratory soil incubations provide information about the age and source of microbially-available soil organic matter. However, due to the influence of “bomb” radiocarbon (from nuclear weapons testing in the mid-20th century), measurements of 14C at a single time point can yield multiple solutions when modeling soil C cycling rates. Measuring ∆14C-CO2 on archived soils would provide additional time points to assess which solution is appropriate. We had two hypotheses regarding the effect of archiving on ∆14C-CO2: 1) long-term storage does not affect ∆14C-CO2, and 2) drying and rewetting effects on ∆14C-CO2 are limited to CO2 released immediately following rewetting, without significant effects on CO2 released after respiration rates equilibrate.

To address the first hypothesis, sample splits of soils collected at nine grassland and 21 forest sites (n=30) between 2004 and 2011 (for which ∆14C-CO2 had been previously measured) were incubated again in 2018 after undergoing air-drying and storage. The difference in ∆14C-CO2 measured before and after archiving was significant (p < 0.05); however, in line with our hypothesis, the number of years archived was not a significant predictor of the difference in a regression analysis.

To test the second hypothesis we first collected and analyzed ∆14C-CO2 following the “pre-incubation” period, i.e. the period immediately following rewetting, as well as after the equilibrium respiration period for the subset of samples (six grassland, six forest) for which we had data on the original pre-incubation period. In this subset we observed different responses in forest versus grassland soils in the equilibrium respiration period: ∆14C-CO2 decreased from the original value by 12.7 (±4.5) per mille in forests (p = 0.08), but increased by 22.2 (±6.7) per mille in grasslands (p < 0.05) (errors are twice the standard error of the mean difference). In contrast to our second hypothesis the ∆14C of the CO2 released immediately following rewetting was not significantly different from the ∆14C of the CO2 respired under equilibrium respiration conditions, despite the much higher rate of respiration following rewetting. A final incubation experiment comparing freshly collected soils that were dried but not archived was conducted to distinguish conclusively between rewetting and storage effects, but we are still awaiting the data.

In conclusion, the drying/rewetting effect appears to drive the differences between ∆14C-CO2 measured in incubations before and after archiving, rather than duration of storage. The radiocarbon incubation technique for archived samples is promising: the 12 to 22 per mille differences observed are not insignificant, but in many cases should be within the range of acceptable error in a modeling context. The wider implication of our results is that drying and rewetting soils appears to mobilize a different pool of soil organic matter than would otherwise be available to microbes, an effect that persists throughout an incubation and affects grassland and forest soils differently. This effect applies to radiocarbon incubations in general and warrants further investigation.

How to cite: Beem Miller, J., Schrumpf, M., Guggenberger, G., and Trumbore, S.: Radiocarbon incubations of archived soils: insights into drying/rewetting effects and constraining soil C models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10075, https://doi.org/10.5194/egusphere-egu2020-10075, 2020.

EGU2020-8876 | Displays | CL5.3

Mathematical Reconstruction of Land Carbon Models From Their Numerical Output: Computing Soil Radiocarbon From 12C Dynamics

Holger Metzler, Qing Zhu, William Riley, Alison Hoyt, Markus Müller, and Carlos Sierra

Radiocarbon (14C) is a powerful tracer of the global carbon cycle that is commonly used to assess carbon cycling rates in various Earth system reservoirs and as a benchmark to assess model performance. Therefore, it has been recommended that Earth System Models (ESMs) participating in the Coupled Model Intercomparison Project Phase 6 report predicted radiocarbon values for relevant carbon pools. However, a detailed representation of radiocarbon dynamics may be an impractical burden on model developers. Here, we present an alternative approach to compute radiocarbon values from the numerical output of an ESM that does not explicitly represent these dynamics. The approach requires computed 12C stocks and fluxes among all carbon pools for a particular simulation of the model. From this output, a time‐dependent linear compartmental system is computed with its respective state‐transition matrix. Using transient atmospheric 14C values as inputs, the state‐transition matrix is then applied to compute radiocarbon values for each pool, the average value for the entire system, and component fluxes. We demonstrate the approach with ELMv1‐ECA, the land component of an ESM model that explicitly represents 12C, and 14C in 7 soil pools and 10 vertical layers. Results from our proposed method are highly accurate (relative error <0.01%) compared with the ELMv1‐ECA 12C and 14C predictions, demonstrating the potential to use this approach in CMIP6 and other model simulations that do not explicitly represent 14C.

How to cite: Metzler, H., Zhu, Q., Riley, W., Hoyt, A., Müller, M., and Sierra, C.: Mathematical Reconstruction of Land Carbon Models From Their Numerical Output: Computing Soil Radiocarbon From 12C Dynamics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8876, https://doi.org/10.5194/egusphere-egu2020-8876, 2020.

EGU2020-17774 | Displays | CL5.3

Detection of solar proton events by using radiocarbon in tree-rings

Nicolas Brehm, Marcus Christl, Hans-Arno Synal, Raimund Muscheler, Florian Adolphi, Alex Bayliss, Timothy Knowles, Emanuelle Casanova, Kurt Nicolussi, and Lukas Wacker

Our Sun erratically expels large amounts of energetic particles into the interplanetary space and towards Earth, which can be observed as so-called solar proton events (SPE). A strong SPE might cause major damage to satellites and could even disrupt transformers at the ground1. This rises the questions how often strong SPEs occur. Since direct observations of SPEs are limited to the last decades, cosmogenic radionuclides can be used to detect such events further back in time. The production rate of cosmogenic nuclides, such as radiocarbon, is primarily dependent on the incoming flux of highly energetic galactic cosmic rays (GCR). Under normal conditions, the Sun’s magnetic field carried by the (low energy) solar protons shields us from (high energy) GCRs, resulting in a lower production of cosmogenic radionuclides when the Sun is active. During a SPE, however, the sudden and drastic increase of high the energy solar protons themselves may lead to an elevated production of cosmogenic radionuclides on Earth. Only recently, such sharp increases in cosmogenic nuclide production occurring within less than one year have been detected in several radionuclide records (10Be, 36Cl, 14C) from ice core and tree ring records, and have been attributed to SPEs2,3.

Until now, only three SPE could confidently be detected in cosmogenic radionuclide records1,4,5. The reason for this is a general lack of accurately dated and annually resolved radionuclide records and/or the strong dampening of the production signal e.g. by the carbon cycle. To find and identify such events we measured radiocarbon in tree ring records at annual resolution with accelerator mass spectrometry (AMS). In this new, accurately dated and annually resolved 14C record spanning the past about 1000 yr we found several new candidates for SPEs. Their timing and amplitude in terms of cosmogenic nuclide production was characterized by using a global carbon cycle box model. Once unambiguously identified such spiked production increases recorded in the absolutely dated tree ring record have a great potential to be used as a global tool to synchronize other not well dated (climate) records with cosmogenic radionuclides (e.g. 10Be, 36Cl).

1              Schrijver, C. J. et al. (2012) Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records. Journal of Geophysical Research: Space Physics 117

2              Miyake, F., Masuda, K. & Nakamura, T. (2013) Another rapid event in the carbon-14 content of tree rings. Nature communications 4, 1748

3              Mekhaldi, F. et al. (2015) Multiradionuclide evidence for the solar origin of the cosmic-ray events of ᴀᴅ 774/5 and 993/4. Nature Communications 6, 8611

4              Miyake, F., Nagaya, K., Masuda, K. & Nakamura, T. A (2012) signature of cosmic-ray increase in AD 774-775 from tree rings in Japan. Nature 486, 240-242

5              O'Hare, P. et al. (2019) Multiradionuclide evidence for an extreme solar proton event around 2,610 B.P. ( approximately 660 BC). Proc Natl Acad Sci U S A 116, 5961-5966

How to cite: Brehm, N., Christl, M., Synal, H.-A., Muscheler, R., Adolphi, F., Bayliss, A., Knowles, T., Casanova, E., Nicolussi, K., and Wacker, L.: Detection of solar proton events by using radiocarbon in tree-rings, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17774, https://doi.org/10.5194/egusphere-egu2020-17774, 2020.

EGU2020-8784 | Displays | CL5.3

Purification of Organic Compounds Using Microsublimation for 14C Analysis

Christian Heusser, Caroline Welte, Bodo Hattendorf, Daniel Montluçon, Detlef Günther, and Timothy Ian Eglinton

The decrease in required sample sizes for radiocarbon (14C) analysis by accelerator mass spectrometry (AMS), which now is on the order of ten micrograms carbon or less provides the opportunity for precise dating of single specific compounds. However, background contamination associated with sample purification presents a major limitation to precise 14C dating at these low sample sizes. Many key target compounds are amenable to isolation using preparative chromatographic methods. Using preparative GC, for example, column bleed has been reported as the main contamination source. Although this contamination may be at sub-microgram levels[1], removal is favorable for accurate dating of ultra-small samples. In synthetic and analytical chemistry, sublimation is a well-established approach for purification of semi-volatile compounds, and here we test it as an approach for purification of selected compounds for microgram-level 14C analysis. As commercial sublimation equipment usually is not designed for such small sample sizes, a custom-built micro-sublimation apparatus has been developed and tested for the purification of organic compounds in the sub-milligram range. The design of the microsublimation apparatus, which has been optimized to enable a streamlined protocol that minimizes contamination risks, will be presented. Experiments were performed with a range of different compound types, including fatty alcohols, alkanes and vanillin. Reproducibility with yields of up to 90% have been achieved. Stability of isotopic measurements and contamination sources will be discussed along with possible other application areas in the future.

 

[1]      E. Casanova, T. D. J. Knowles, C. Williams, M. P. Crump, R. P. Evershed, Anal. Chem. 2017, 89, 7090–7098.

How to cite: Heusser, C., Welte, C., Hattendorf, B., Montluçon, D., Günther, D., and Eglinton, T. I.: Purification of Organic Compounds Using Microsublimation for 14C Analysis , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8784, https://doi.org/10.5194/egusphere-egu2020-8784, 2020.

EGU2020-9495 | Displays | CL5.3

Rapid, continuous radiocarbon analysis of carbonate archives using laser ablation

Melina Wertnik, Caroline Welte, Lukas Wacker, Christiane Yeman, Bodo Hattendorf, Joachim Koch, Marcus Christl, Jens Fohlmeister, Hans-Arno Synal, and Timothy I. Eglinton

While high-precision radiocarbon (14C) measurements of carbonaceous samples using Accelerator Mass Spectrometry (AMS) have become routine, achieving a continuous radiocarbon record for carbonate archives (e.g. speleothems, corals) still requires labor-intensive and time-consuming sample preparation. By feeding laser ablation (LA) generated CO2/CO online into a gas source AMS, however, these archives can be sampled continuously and with minimal preparation efforts.

The LA-AMS setup installed in 2013 at ETH Zurich [1] has recently been improved in order to achieve higher signal intensities and consequently higher measurement precision as well as simpler instrumental maintenance. By redesigning the sample cell and reducing the optical path length of the laser, the fluence on the sample could be increased from previously 1-2 J cm-1 to now 8-23 J cm-1, leading to more efficient generation of gaseous carbon from CaCO3. The laser spot size was reduced from 110 μm x 680 μm to 75 μm x 140 μm, improving the overall spatial resolution of the setup. The background level of the method has been determined to have a F14C of 0.009 ± 0.002 and reaches a precision of less than 1% for modern samples.

To fully exploit the advantages of this unique technique, a LA-AMS specific data analysis software to disentangle [2] the quasi-continuous data stream is being developed. Features implemented include correlation of data with sampling location and plotting of all relevant measurement parameters as a function of sampling location (F14C,

How to cite: Wertnik, M., Welte, C., Wacker, L., Yeman, C., Hattendorf, B., Koch, J., Christl, M., Fohlmeister, J., Synal, H.-A., and Eglinton, T. I.: Rapid, continuous radiocarbon analysis of carbonate archives using laser ablation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9495, https://doi.org/10.5194/egusphere-egu2020-9495, 2020.

EGU2020-8265 | Displays | CL5.3

Investigation of carbon isotope ratio variations caused by natural and anthropogenic processes in lacustrine ecosystems

Justina Šapolaitė, Žilvinas Ežerinskis, Rūta Barisevičiūtė, Vytautas Rakauskas, Laurynas Butkus, Andrius Garbaras, Tomas Virbickas, Evaldas Maceika, Algirdas Pabedinskas, and Vidmantas Remeikis

The difference of radiocarbon (14C) concentration between terrestrial and aquatic samples is called the freshwater reservoir effect (FRE). The FRE is a potential issue for archaeologists dating fish bones, shells, human bones, or food crusts on pottery from sites near rivers or lakes. Studies on the FRE showed its variability in space and time, significant variations within one river or lake, different aquatic plants, and animals, or even single fish species of the lake [1, 2 and the references therein]. Therefore, dating the artifacts, it is very important to understand the nature of the FRE by studying processes that determine the redistribution of carbon isotopes in water ecosystems. It is important to obtain new knowledge on temporal variation of the FRE of a water system as due to climate change and anthropogenic activities it could be completely different at ancient times since such periods as Mesolithic, Neolithic and Early Bronze Age when aquatic resources were an important contribution to human nutrition are relatively poorly studied. The objective of the research was to examine how known anthropogenic factors affected carbon cycling in the lake systems, including how these changes are reflected in carbon isotope variations as well as the FRA of lake sediments and different species of fish.

Two completely different lake systems of eastern Lithuania were studied. Lake Tapeliai belongs to the huge drainage system and is permanently affected by hydrological changes. When Lake Drūkšiai served as a cooling pond for the Ignalina Nuclear Power Plant, its average temperature increased by 3-4 °C. Results revealed that over the last century the estimated radiocarbon freshwater reservoir age (FRA) in sediments of Lake Tapeliai varied from 1136±112 y to 5733±122 y. These changes were caused by old organic carbon import to the lake from a neighboring peat bog. The FRA in samples of different fish species differed by up to 500 y, whereas the variations in the FRA measured in samples of the same species reached up to 300 y. Radiocarbon activity measurements in the samples of fish caught in Lake Drūkšiai during the operation of the nuclear power plant were performed. During 1984-1999 years measurements showed that 14C activity in fish slightly exceeded (up to 5 pMC) atmospheric activity. However, during 2000-2009 it exceeded by 40 pMC. Unfortunately, no information about increased activity levels of aquatic effluents or different chemical agents used could be found in INPP reports. Data of the fish scales 14C activity measurements are in good agreement with the data of the humic acid fraction of lake bottom sediments.

This data clearly indicates that there was an event in the year 2000 when substances from NPP with elevated 14C content were introduced into the lake, although not exceeding the permissible levels.

 

This research was funded by a grant (No. S-MIP-19-16) from the Research Council of Lithuania

 

References

[1] Heritage Science (2013) 1(1), 1–622.

[2] Quaternary Science Reviews (2012) 48: 67–79.

How to cite: Šapolaitė, J., Ežerinskis, Ž., Barisevičiūtė, R., Rakauskas, V., Butkus, L., Garbaras, A., Virbickas, T., Maceika, E., Pabedinskas, A., and Remeikis, V.: Investigation of carbon isotope ratio variations caused by natural and anthropogenic processes in lacustrine ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8265, https://doi.org/10.5194/egusphere-egu2020-8265, 2020.

Abstract

Dissolve black carbon (DBC) has been recently recognized as an important fraction of dissolved organic carbon (DOC) in both rivers and ocean. It is estimated that about 10% of the riverine DOC transported by the world rivers could be DBC. The sources and fate of DBC in both rivers and ocean, however, is not well known. In this study, we present radiocarbon (14C) and stable carbon isotope (13C) measurements of DBC in several large rivers in China, and in coastal and open ocean waters. DBC was concentrated using solid phase extraction (SPE) method and quantified by chemothermal oxidation (CTO) method.

Concentrations of DBC varied in rivers depending on the drainage basin of the river and accounted for 3.7-7.6% of the riverine DOC pool. DBC was slightly lower, accounted for 2.9-5.9% of DOC in coastal and open oceans. Carbon isotope results indicate that DBC δ13C values were all slightly enriched (by 2-3‰) than the values of DOC in both rivers and ocean. The DBC Δ14C values varied largely in rivers and the values were significantly higher than DOC Δ14C values in rivers but similar to DOC Δ14C values in the ocean. Using a two-end member isotope mass balance model, we calculated that the most DBC (80%) with relatively young 14C ages in the rivers was derived from biomass burning. Laboratory incubation studies also found that DBC released from recent charcoal was able to be utilized by bacteria, supporting the speculation that river transported DOC could be decomposed during estuaries mixing. Our study suggests that DBC is cycled in the same time scales with the DOC pool in the ocean and no extremely older DBC was identified as reported in other studies previously.

How to cite: Wang, X.: Sources and cycling of dissolved black carbon (DBC) in rivers and ocean revealed by carbon isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2047, https://doi.org/10.5194/egusphere-egu2020-2047, 2020.

EGU2020-5683 | Displays | CL5.3

Independent verification of age tie points and planktic reservoir ages deduced for two marine sediment records at the Chilean continental margin by 14C plateau tuning

Kevin Küssner, Michael Sarnthein, Frank Lamy, Elisabeth Michel, Gesine Mollenhauer, Giuseppe Siani, and Ralf Tiedemann

On the basis of 14C plateau tuning we established a robust centennial-scale age control for last glacial-to-deglacial sediment sections in two marine sediment cores MD07-3088 and PS97-137 from the upper Chilean continental margin to facilitate a precise stratigraphic correlation between short-term changes in South Pacific oceanography and global paleoclimate signals recorded in ice cores from Antarctica and elsewhere (Küssner et al., in prep.). Age tie points and reservoir ages were derived from tuning a suite of planktic 14C plateaus to a suite of pertinent atmospheric 14C plateaus defined at Lake Suigetsu (Sarnthein et al., 2015). Off central Chile four tephra layers in Core MD07-3088 provide independent proof both for the age assignment and for short-term changes in planktic reservoir age we deduced by means of 14C plateau tuning. Reservoir ages derived from 14C plateau tuning at 11–16.5 cal. ka closely match, one-by-one, four reservoir ages that have been deduced from the difference between the 14C ages of planktic foraminifera associated with the tephra layers in marine sediments and the atmospheric 14C ages of plants associated with paired tephras analyzed nearby on land (Siani et al. 2013). – In Core PS97-137, near to the southern tip of Chile, sediments of the Last Glacial Maximum show a section with distinct lamination of 5-7 layers / cm depth, associated with atmospheric 14C Plateau 6a by plateau tuning. A rough count of the layers in the 160 cm long sediment section of the planktic 14C Plateau 6a gives a number that comes extremely close to the ~900 year-long time span of the atmospheric 14C Plateau 6a, thus provides independent proof for both the accuracy of the time interval assigned to correlated atmospheric ‘Plateau 6a’ and the approach of plateau tuning in general.

 

Küssner et al., Paleoceanography, in prep.,

Sarnthein et al., Radiocarbon, 2015, 57 (1), 129–151.

Siani et al., 2013, Nature comm., 4, 2758.

How to cite: Küssner, K., Sarnthein, M., Lamy, F., Michel, E., Mollenhauer, G., Siani, G., and Tiedemann, R.: Independent verification of age tie points and planktic reservoir ages deduced for two marine sediment records at the Chilean continental margin by 14C plateau tuning, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5683, https://doi.org/10.5194/egusphere-egu2020-5683, 2020.

EGU2020-8732 | Displays | CL5.3

Radiocarbon analysis of isoprenoid and branched Glycerol Dialkyl Glycerol Tetraethers in soils and fluvial sediments

Hannah Gies, Daniel Montluçon, Maarten Lupker, Tessa van der Voort, Frank Hagedorn, Negar Haghipour, and Timothy Eglinton

Glycerol dialkyl glycerol tetraethers (GDGTs), membrane lipids synthesized by archaea (isoprenoid GDGTs) and bacteria (branched GDGTs), form the basis of a suite of molecular proxies used in terrestrial as well as marine environments. Compound-specific radiocarbon analysis has provided valuable insights into the sources and yielded constraints on transport dynamics of different biomarkers in the context of carbon cycle processes. To complement the existing biomarker radiocarbon toolbox, and to shed new light on the sources and fate of GDGTs, we developed a new method to measure GDGT radiocarbon compositions in natural samples.

Isoprenoid and branched GDGTs are isolated using two UHPLC silica columns in series coupled to a fraction collector set to eluent recovery at different time intervals. The accuracy of the method was tested using a modern and a radiocarbon-dead reference material. Procedural blanks show that the separation procedure adds less than 3 µg carbon with a Fm of 0.64.

The method is first applied to determine the Δ14C composition of isoprenoid and branched GDGTs in two soil core profiles from a temperate and subalpine forest ecosystem in order to explore the range of typical values encountered in natural systems.  The cores, which reach a depth of 80 cm and 40 cm respectively, have previously been analyzed with respect to radiocarbon characteristics of long-chain n-alkanes and fatty acids as well as bulk particulate and dissolved organic carbon (OC) [1]. For each core, GDGTs were separated and analyzed from 3 different depth intervals. The Δ14C of both isoprenoid and branched GDGTs decreases, at a similar rate as the bulk, by -350‰ and -200‰ along the temperate and the subalpine core respectively, hence confirming their potential for constraining transport-dynamics of soil-derived matter in rivers.

The radiocarbon age of GDGTs in a suite of fluvial sediments is older than expected under the assumption that topsoil-derived organic matter is the main source of the compounds. Potentially, this offset could be caused by rapid degradation of the compounds during transport and therefore alter the proxy signal on the way to sedimentary archives.

 

[1] van der Voort, T. S., et al., 2017 - Geophysical Research Letters 44, 23

How to cite: Gies, H., Montluçon, D., Lupker, M., van der Voort, T., Hagedorn, F., Haghipour, N., and Eglinton, T.: Radiocarbon analysis of isoprenoid and branched Glycerol Dialkyl Glycerol Tetraethers in soils and fluvial sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8732, https://doi.org/10.5194/egusphere-egu2020-8732, 2020.

Rapid changes in ocean circulation and polar temperature variability have been observed in glacial and deglacial paleoclimate records from marine and ice core archives. However, an obstacle to progress in understanding the ice-ocean-bedrock-climate interactions on centennial-millennial timescales is due to the paucity of sediment records with precise chronologies. The sediment archive along the continental margin of Dronning Maud Land provides an excellent opportunity for high resolution 14C dating as it contains sufficient amounts of planktonic foraminifers. We dated a 7 m long sediment sequence from core PS111/13 by means of 14C plateau tuning (Sarnthein et al., 2015) to produce a solid chronological framework for multi-proxy reconstructions of climate and environmental change from 7000 to 30,000 years that can be linked to ice core chronologies.

Sarnthein et al., Radiocarbon, 2015, 57 (1), 129–151.

How to cite: Tiedemann, R., Müller, J., Lembke-Jene, L., and Mollenhauer, G.: Precise dating of centennial-millennial scale climate variations in sediment archives from the Antarctic continental margin off Dronning Maud Land by 14C plateau tuning, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6636, https://doi.org/10.5194/egusphere-egu2020-6636, 2020.

EGU2020-11983 | Displays | CL5.3

The reliability of radiocarbon dates of different carbon fractions in the Australian tropical savannas: A case study from Sanamere Lagoon, northeast Australia

Maria Rivera-Araya, Michael Bird, Cassandra Rowe, Sean Ulm, and Vladimir Levchenko

The selection and pre-treatment of a reliable organic fraction from which to acquire radiocarbon dates is fundamental to obtain accurate chronologies. Sampling from tropical lakes is particularly challenging given the adverse preservation conditions and diagenesis in these environments. Our research is the first to examine and quantify the differences between the radiocarbon date results from different carbon fractions and pretreatments from the same depths from a tropical lake sediment core (1.72 m long) located in north Australia to assess which one(s) are more reliable. Six different organic fractions (bulk organics, pollen concentrate, cellulose, stable polycyclic aromatic carbon (SPAC), charcoal >250 um and charcoal >63 um), for a total of 27 radiocarbon dates, were compared in six different depths along the core. Acid-base-acid (ABA), modified ABA (30 % hydrogen peroxide + ABA), 2chlorOx (a novel cellulose pre-treatment method) and hydrogen pyrolysis (hypy) were used to pre-treat the correspondent organic fractions. The oldest date is 31,295 calibrated years before present (cal yr BP) and the youngest is 2,048 cal yr BP, spanning 29,247 years. The smallest offset between the minimum and the maximum age in a given depth was found to be 975 years (between SPAC and charcoal >63 um) and the largest 16,527 years (between pollen concentrate and SPAC). The SPAC fractions pre-treated with hypy consistently yielded older ages compared to all other fraction in most cases, while bulk organics yielded consistently younger ones. The magnitude and consistency of the offsets and the physical and chemical properties of the tested organic fractions suggest that SPAC is the most reliable fraction to date in tropical lake sediments and that hypy successfully removes contamination sourced from exogenous carbon.

How to cite: Rivera-Araya, M., Bird, M., Rowe, C., Ulm, S., and Levchenko, V.: The reliability of radiocarbon dates of different carbon fractions in the Australian tropical savannas: A case study from Sanamere Lagoon, northeast Australia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11983, https://doi.org/10.5194/egusphere-egu2020-11983, 2020.

EGU2020-1495 | Displays | CL5.3

Sea shells record large biases from the marine bomb-14C curve in NW European seawater between the late 1960s and 2019

Maxi Castrillejo, Christopher A. Richardson, Rob Witbaard, Rob Dekker, Caroline Welte, Lukas Wacker, Christiane Yeman, Núria Casacuberta, Hans-Arno Synal, and Marcus Christl

The Northeast Atlantic alone has received 1.2 PBq of 14C as liquid and gaseous releases from European nuclear fuel reprocessing plants (NRPs) between the 1950s and present. The input of reprocessing-14C has the potential to elevate the regional 14C content of seawater, sediments and marine biota above the ambient levels expected from the bomb-14C. Yet, a comprehensive assessment of the time evolution of F14C in seawater is still missing for the Northwestern European Seas. Moreover, the least-well studied period of time (1990’s onward) corresponds to the largest liquid 14C releases reported by the Sellafield and La Hague NRPs. In this study, we aim at better constraining the temporal changes of F14C between the late 1960s and 2019, and to delimit the area of influence of reprocessing discharges with regard to 14C. To this end, we combine Accelerator Mass Spectrometry techniques and a novel archive of bivalve shells that inhabited the Irish Sea, the North Sea, Norway and the Bay of Biscay throughout the main period of reprocessing-14C discharge. The shells are made of aragonite, and thus, they can be used as an analogue of the past seawater F14C. The shell-based F14C data can be accurately placed in the temporal context because the animals have a known capture date and short lifespan of two years. The reconstructed F14C values vary between ~1 and ~3 after the 1970s. This range of F14C values is even larger than the one displayed by the atmospheric bomb peak (1 - 1.9). To investigate if the excess 14C is related to the reprocessing releases, we use a simple box model that simulates the seawater F14C by mixing bomb and reprocessing-14C, as well as the naturally occurring 12,14C. In shells from the southern North Sea, the F14C increases 0.1-0.4 above ambient levels after the mid-1990s in response to increased discharge rates of liquid 14C from the La Hague plant. Similarly, the shells collected in the Irish Sea show two consecutive peaks in the mid-1990s (F14C ~ 2.0) and 2000s (F14C ~ 2.2) that can be attributed to peak discharge rates of liquid 14C reported by Sellafield. The F14C in shells from the eastern coast of the UK and Norway are within the range of the ambient values, which indicates the expected rapid dilution of the reprocessing signal with open ocean waters. In previous studies, the bomb-14C marine curve has been used as a benchmark, among others, to estimate the age and growth rate of calcifying animals, to date marine sediments, and to investigate water mass mixing and circulation timescales. Given the biases from the marine bomb-14C curve unraveled by the shell data, we suggest that liquid releases from the NRPs should not be disregarded when applying 14C as a chronological or circulation tool to marine samples collected in the Irish Sea and parts of the North Sea over the last 5 decades.

How to cite: Castrillejo, M., Richardson, C. A., Witbaard, R., Dekker, R., Welte, C., Wacker, L., Yeman, C., Casacuberta, N., Synal, H.-A., and Christl, M.: Sea shells record large biases from the marine bomb-14C curve in NW European seawater between the late 1960s and 2019, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1495, https://doi.org/10.5194/egusphere-egu2020-1495, 2020.

EGU2020-7298 | Displays | CL5.3

Laser Ablation radiocarbon analysis of a high alpine stalagmite - a hint to an old organic carbon pool?

Caroline Welte, Jens Fohlmeister, Lukas Wacker, Melina Wertnik, Christoph Spötl, Christiane Yeman, Bodo Hattendorf, Marcus Christl, Timothy I. Eglinton, and Hans-Arno Synal

A novel technique making use of laser ablation coupled online to accelerator mass spectrometry (LA-AMS) allows analyzing the radiocarbon concentration (F14C) in carbonate samples at a spatial resolution down to ~100 µm within very short analysis times [1]. This new technique can provide radiocarbon data close to the spatial resolution of stable carbon isotope measurements and, thus, can help to interpret δ13C signatures, which otherwise are difficult to understand [2]. Conventional analytical methods applied to stalagmite samples for 14C analysis, where a micro-sample is drilled or milled and carbon is liberated by the addition of phosphoric acid provide exclusively the isotope composition of the CaCO3, but not of organic matter also captured in stalagmites. LA-AMS allows accessing the 14C concentration of both materials opening up new opportunities for gaining insights into vegetation and soil dynamics.

SPA-127 is a stalagmite from Spannagel cave (W Austrian Alps) that grew between 8500 and 2500 a BP at an average rate of 25 μm/a [3]. δ13C and 14C were analyzed with high resolution along the full range of the 15 cm long specimen. During LA-AMS 14C analysis, positive anomalies in ion currents were observed in the older stalagmite section. These comparably higher CO2 conversion efficiencies are associated with organic materials compared to CaCO3 during LA. Lower F14C were observed along with these anomalies. The signal structure could be reproduced both after removing ~0.5 mm of the carbonate surface layer and on the stalagmite’s archive slab making possible contamination unlikely. So far, we deduce that the observed anomalies are caused by several flushing events in the early Holocene, in which 14C dead organic components (acids) entered the cave and were incorporated into the stalagmite matrix. Due to the high elevation of the cave and cold conditions during the glacial, the ancient organic acids most likely stem from the Eemian and were stored in the host rock.

[1] C. Welte, et al., (2016). Anal. Chem., 88, 8570– 8576.

[2] F. McDermott, (2004). Quat. Sci. Rev., 23, 901-918.

[3] Fohlmeister J. et al., (2013). Holocene, 23, 749–754.

 

How to cite: Welte, C., Fohlmeister, J., Wacker, L., Wertnik, M., Spötl, C., Yeman, C., Hattendorf, B., Christl, M., Eglinton, T. I., and Synal, H.-A.: Laser Ablation radiocarbon analysis of a high alpine stalagmite - a hint to an old organic carbon pool?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7298, https://doi.org/10.5194/egusphere-egu2020-7298, 2020.

EGU2020-11431 | Displays | CL5.3

14C estimation of soil C02 turnover rates in Ultisols with different land use

Alexander Cherkinsky, Ravi Prasad, Hong Sheng, Zachary Brecheisen, and Daniel Richter

The CO2 flux from soil is a large and significant flux in most ecosystems and can account for more than 2/3 of total ecosystem respiration. In many cases, CO2 flux from soil is estimated by the eddy covariance technique or by classical chamber method with measures of bulk concentration and isotopic composition of carbon dioxide. Whereas most these studies estimated CO2 flux from the soil surface, we analyzed its concentration and isotope composition directly in soil profiles down to 5m depth.

This experiment was conducted in Sumter National Forest by NSF Calhoun CZO research program. A 10cm diameter auger was used to core up to 5 m depth and capped PVC pipe segments of 750 cm3 volume serve as gas reservoirs, each with two gas impermeable tubes that connected the gas reservoirs. Soil gas reservoirs are installed at 5m, 3m, 1.5m, and 0.5m depths from the soil surface. On a three-week interval, soil gases were extracted with a pump and analyzed in the field for CO2 and O2 concentration with samples collected in Tedlar bags for analysis. The samples were collected in summer 2016 under 3 different land uses: hardwood stands that are taken to be never cultivated; old-field pine stands, which had been used for growing cotton in 19th century and then abandoned; and cultivated sites which were used growing cotton, but for the last 50-60 years for growing corn, wheat, legume, sorghum, and sunflowers.

The radiocarbon analyses in the soil CO2 profile were conducted for the first time. It was discovered that concentration of 14C increased with depth and Δ14C changed from 40-60%o in the top 0.5m to about 80-140 ‰ at 5m depth depending on land use.

 

How to cite: Cherkinsky, A., Prasad, R., Sheng, H., Brecheisen, Z., and Richter, D.: 14C estimation of soil C02 turnover rates in Ultisols with different land use , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11431, https://doi.org/10.5194/egusphere-egu2020-11431, 2020.

Changes in the geometry of ocean Meridional Overturning Circulation (MOC) are crucial in controlling changes of climate and the carbon inventory of the atmosphere. However, the accurate timing and global correlation of short-term glacial-to-deglacial changes in the MOC of different ocean basins still present a major challenge. The suite of jumps and plateaus in the record of past atmospheric radiocarbon (14C) concentrations offers a unique opportunity of age control and global correlation. The upper and lower boundaries of atmospheric 14C plateaus in the 14C records of both tree rings and Lake Suigetsu (age calibrated on the basis of Hulu U/Th model ages)­ provide a detailed stratigraphic ’rung ladder’ of ~30 age tie points from 29 to 10 ka that can be used for dating of planktic 14C records and an age correlation, by now employed to ~20 sediment cores obtained from key locations of MOC all over the global ocean. The age difference between paired planktic and benthic 14C ages provides an estimate of the ventilation age of deep waters since their last contact with the atmosphere. 14C ventilation ages of Last Glacial Maximum (LGM) deep waters reveal coeval opposed geometries of Atlantic and Pacific MOC. Similar to today, LGM Atlantic deep-water formation went along with an estuarine inflow of old abyssal waters from the Southern Ocean up to the northern North Pacific and an outflow of upper deep waters. Vice versa, low 14C ventilation ages of N.E. Pacific deep waters suggest a reversed, anti-estuarine MOC during early Heinrich Stadial 1 with a ~1500 year-long flushing of the deep North Pacific up to the South China Sea, when the North Atlantic was marked by an estuarine circulation geometry, gradually starting near 19 ka. Elevated 14C ventilation ages of LGM deep waters reflect a major drawdown of atmospheric carbon. Subsequent massive age drops accompanying changes in MOC reflect major events of carbon release to the atmosphere as recorded in Antarctic ice cores. These contemporaneous features of the MOC and the carbon cycle offer a great test case for comparison with model simulation.

How to cite: Sarnthein, M. and Grootes, P. M.: 14C Ventilation ages suggest a brief reversal of ocean Meridional Overturning Circulation during deglacial ‘Heinrich Stadial 1’, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5354, https://doi.org/10.5194/egusphere-egu2020-5354, 2020.

EGU2020-5778 | Displays | CL5.3

Pervasive influence of fine silt sediments on the radiocarbon age of bulk sedimentary OC, alkenones and GDGTs via hydrodynamic mineral sorting processes in continental margins.

Blanca Ausin, Elena Bruni, Negar Haghipour, Caroline Welte, Hannah Gies, Stefano M. Bernasconi, and Timothy I. Eglinton

Since Ohkouchi et al. (2002) pioneering work, compound specific radiocarbon (14C) dating has been largely used to explore 14C age discrepancies between co-deposited sedimentary components in a wide range of depositional settings. Older 14C ages of bulk organic carbon (OC) and alkenones relative to co-deposited planktonic foraminifera have been mainly attributed to lateral sediment transport processes by means of organic matter (OM)-mineral associations.

Definitive evidence for this hypothesis requires in-depth investigations at the mineral grain-size level. Here, we examine the radiocarbon signatures of OC and two molecular biomarkers widely used as paleothermometers (i.e., alkenones and glycerol diakyl glycerol tetraether (GDGTs)) associated to discrete sediment grain-size fractions collected from a range of continental margin settings. Our results evidence the pervasive influence of hydrodynamically-driven sorting processes on the OM content and composition of continental margin sediments, manifested in the 14C age variability of OC, alkenones and GDGTs residing in bulk sediments corresponding grain-size fractions. We find that OC and both, alkenones and GDGTs, preferentially reside within the fine silt fraction, which accounts for a substantial fraction of the bulk sediment mass. Therefore, fine silt exerts a strong influence on the 14C ages of these three components in bulk sediments. Given the propensity to resuspension and advection of fine silt under strong currents, the extent of its impact on the paleotemperature signal recorded by alkenones and GDGTs is also assessed. 

 

Ohkouchi, N., Eglinton, T.I., Keigwin, L.D., Hayes, J.M., 2002. Spatial and Temporal Offsets Between Proxy Records in a Sediment Drift. Science 298, 1224-1227.

How to cite: Ausin, B., Bruni, E., Haghipour, N., Welte, C., Gies, H., Bernasconi, S. M., and Eglinton, T. I.: Pervasive influence of fine silt sediments on the radiocarbon age of bulk sedimentary OC, alkenones and GDGTs via hydrodynamic mineral sorting processes in continental margins., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5778, https://doi.org/10.5194/egusphere-egu2020-5778, 2020.

EGU2020-11654 | Displays | CL5.3

Tree-ring radiocarbon reveals reduced solar activity during Younger Dryas cooling

Adam Sookdeo, Bernd Kromer, Florian Adolphi, Jürg Beer, Nicolas Brehm, Ulf Büntgen, Marcus Christl, Timothy Eglinton, Micheal Friedrich, Giulia Guidobaldi, Gerd Helle, Raimund Muscheler, Daniel Nievergelt, Maren Pauly, Frederick Reinig, Willy Tegel, Kerstin Treydte, Chris Turney, Hans-Arno Synal, and Lukas Wacker

The Younger Dryas stadial (YD) was a return to glacial-like conditions in the North Atlantic region that interrupted deglacial warming around 12900 cal BP (before 1950 AD). Terrestrial and marine records suggest this event was initiated by the interruption of deep-water formation arising from North American freshwater runoff, but the causes of the millennia-long duration remain unclear. To investigate the solar activity, a possible YD driver, we exploit the cosmic production signals of tree-ring radiocarbon (14C) and ice-core beryllium-10 (10Be). Here we present the highest temporally resolved dataset of 14C measurements (n = 1558) derived from European tree rings that have been accurately extended back to 14226 cal BP (±8, 2-σ), allowing precise alignment of ice-core records across this period. We identify a substantial increase in 14C and 10Be production starting at 12780 cal BP is comparable in magnitude to the historic Little Ice Age, being a clear sign of grand solar minima. We hypothesize the timing of the grand solar minima provides a significant amplifying factor leading to the harsh sustained glacial-like conditions seen in the YD.

How to cite: Sookdeo, A., Kromer, B., Adolphi, F., Beer, J., Brehm, N., Büntgen, U., Christl, M., Eglinton, T., Friedrich, M., Guidobaldi, G., Helle, G., Muscheler, R., Nievergelt, D., Pauly, M., Reinig, F., Tegel, W., Treydte, K., Turney, C., Synal, H.-A., and Wacker, L.: Tree-ring radiocarbon reveals reduced solar activity during Younger Dryas cooling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11654, https://doi.org/10.5194/egusphere-egu2020-11654, 2020.

CL5.6 – Climate Data Compilations, Homogenization and Analysis of Variability, Trends and Extremes

EGU2020-20229 | Displays | CL5.6

Extending the CM SAF global satellite-based climate data record of cloud properties

Irina Solodovnik, Diana Stein, Jan Fokke Meirink, Karl-Göran Karlsson, and Martin Stengel

Global data records of cloud properties are an important part for the analysis of the Earth's climate system and its variability. One of the few sources facilitating such records are the measurements of the satellite-based Advanced Very High Resolution Radiometer (AVHRR) sensor that provides spatially homogeneous and high resolved information in multiple spectral bands. This information can be used to retrieve global cloud properties covering multiple decades, as, for example, composed as part of the CM SAF Cloud, Albedo, Radiation data record based on AVHRR (CLARA) series.

In this presentation we introduce the edition 2.1 (CLARA-A2.1) of this record series, which is the temporally extended version of CLARA-A2. This extension includes three and a half more years at the end of the data record, which now covers the time period January 1982 to June 2019 (37.5 years). CLARA-A2.1 includes a comprehensive set of cloud parameters: fractional cloud cover, cloud top products, cloud thermodynamic phase and cloud physical properties, such as cloud optical thickness, particle effective radius and cloud water path. Cloud products are available as daily and monthly averages and histograms (Level 3) on a regular 0.25°×0.25° global grid and as daily, global composite products (Level 2b) with a spatial resolution of 0.05°×0.05°. Time series analyses of the CLARA-A2.1 cloud products show the homogeneity and stability of the extension.

In addition to the general characteristics of the CLARA-A2.1 record, we will summarize the results of the thorough evaluation efforts that were conducted by validation against reference observations (e.g. SYNOP, DARDAR, CALIOP) and by comparisons to similar well established data records (e.g. Patmos-X, ISCCP-H and MODIS C6.1). CLARA-A2.1 cloud products show generally a very good agreement with all the compared data sets and fulfil CM SAF's accuracy, precision and decadal stability requirements. As an additional aspect, we will touch upon the CLARA Interim Climate Data Record (ICDR) concept that will soon be used for extending CLARA-A2.1 in near-real-time mode.

How to cite: Solodovnik, I., Stein, D., Meirink, J. F., Karlsson, K.-G., and Stengel, M.: Extending the CM SAF global satellite-based climate data record of cloud properties, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20229, https://doi.org/10.5194/egusphere-egu2020-20229, 2020.

EGU2020-12489 | Displays | CL5.6

Inception of a global atlas of Holocene sea levels

Nicole Khan, Erica Ashe, Robert Kopp, and Ben Horton and the HOLSEA working group

Determining the rates, mechanisms and geographic variability of sea-level change is a priority science question for the next decade of ocean research. To address these research priorities, the HOLocene SEA-level variability (HOLSEA) working group is developing the first standardized global synthesis of Holocene relative sea-level data to: (1) estimate the magnitudes and rates of global mean sea-level change during the Holocene; and (2) identify trends in spatial variability and decipher the processes responsible for geographic differences in relative sea-level change.

Here we present the efforts of the working group to compile the database, which includes over 12,000 sea-level index points and limiting data from a range of different indicators across seven continents from the Last Glacial Maximum to present. We follow a standard protocol that incorporates full consideration of vertical and temporal uncertainty for each sea-level index point, including uncertainties associated with the relationship of each indicator to past sea-level and the methods used to date each indicator. We highlight important challenges overcome to aggregate the standardized global synthesis, and discuss those that still remain. Finally. we apply a spatio-temporal empirical hierarchical statistical model to the database to estimate global sea-level variability and spatial patterns in relative sea level and its rates of change, and consider their driving mechanisms. Long-term, this effort will enhance predictions of 21st century sea-level rise, and provide a vital contribution to the assessment of natural hazards with respect to sea-level rise.

How to cite: Khan, N., Ashe, E., Kopp, R., and Horton, B. and the HOLSEA working group: Inception of a global atlas of Holocene sea levels, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12489, https://doi.org/10.5194/egusphere-egu2020-12489, 2020.

EGU2020-20563 | Displays | CL5.6

The 17-year ROM SAF radio occultation climate data record

Kent B. Lauritsen, Hans Gleisner, Johannes K. Nielsen, and Stig Syndergaard

The Radio Occultation (RO) technique is based on measurements of phase shifts of GNSS radio waves by an instrument onboard a low-Earth orbiting satellite. The processing of the measurements yields the refractive index of the Earth’s atmosphere, from which the temperature, pressure, and humidity fields can be retrieved. It is a limb-sounding technique, with a high vertical resolution, and with observational information retrieved from near-surface to the upper stratosphere. Numerous studies have demonstrated the accuracy of GNSS Radio Occultation (RO) data, and their usefulness as a stable climate reference. Homogeneity of the data records are obtained by reprocessing of the data using uniform processing software and a priori data throughout the length of the climate record. We here present results from a validation of the 17-year ROM SAF RO Climate Data Record (CDR), based on a new reprocessing of Metop, CHAMP, GRACE, and COSMIC data using excess-phase and amplitude data from EUMETSAT (the Metop mission) and UCAR/CDAAC (the CHAMP, GRACE, COSMIC, and Metop missions).

A central issue for the generation of RO-based CDRs is whether data from different satellite missions can be combined to form long time series of multi-mission data. This presentation explores the consistency of gridded monthly-mean data from different RO missions through comparison with ERA-Interim reanalysis data, and through a study of mission differences during mission overlap periods. It is shown that within a core region from the upper troposphere to the middle stratosphere, roughly 8 to 35-40 kilometers (depending on latitude and geophysical variable), there is a high consistency amongst the RO missions, allowing for the construction of long-term stable data sets for use in climate studies and climate monitoring.

How to cite: Lauritsen, K. B., Gleisner, H., Nielsen, J. K., and Syndergaard, S.: The 17-year ROM SAF radio occultation climate data record, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20563, https://doi.org/10.5194/egusphere-egu2020-20563, 2020.

EGU2020-17588 | Displays | CL5.6

Evaluation of a novel non-parametric approach to identify Time of Emergence (ToE) of climate signals

Eric Pohl, Christophe Grenier, and Mathieu Vrac

The time when a climate signal permanently exceeds its natural variability is called time of emergence (ToE). ToE shall serve policy makers as an indication of when to expect the climate and the environment to undergo significant changes. Identifying ToE, however, is challenging, primarily because of the lack of a standard to quantify exceedance, which, in turn, requires a definition of a natural background variability. Existing approaches often rely on a high level of arbitrary parameter values, e.g. selecting a specific number of times the standard deviation of a reference period as natural variability, selecting specific moving window widths to smooth a signal, or the arbitrary choice of a significance level for a statistical test. Such choices of course have a large influence on the final results and would in theory require exhaustive sensitivity analyses and discussion.

In order to minimize the level of parameterization for ToE estimates, we have developed a novel approach. It assesses exceedance of a climate signal by measuring distances between probability density functions (PDF) of the signal at different times (reference vs. target periods), using the Hellinger distance (HD) metric. The HD metric can be understood as the geometrical overlap of the respective PDFs and we adjusted it to describe the emergence as dissimilarity (0%-100%). In order to derive the PDFs, we use a kernel density estimator (KDE). This, however, introduces the KDE-bandwidth hyperparameter, which determines how smoothly the PDF is generated. Together with the choices for the length of the target and reference periods, and the end of the reference period, a set of less numerous but unavoidable hyperparameters are present that affect the outcome of ToE estimates. We present an extensive sensitivity analysis and highlight strengths and shortcomings of our approach with respect to the frequently used Kolmogorov–Smirnov (KS) test, and the used distance metric within it. We consider a set of synthetic datasets that show similar features as climate model temperature time series. In these datasets, we control the onset of change, variability levels, or trends in the data. Results show that our approach can more precisely identify the changes as compared to the KS-based approach. In particular when the changes in the signal are of low amplitude and sample sizes are small, our approach performs superior. The sensitivity of our approach in the considered tests to varying KDE-bandwidths is less than 5%. The approach has so far been applied on time-series of annual temperature and precipitation. Changes in the distribution of various other climate variables are potential fields of application. Associated challenges with non normally-distributed data, for example high temporal resolution precipitation data, are discussed.

How to cite: Pohl, E., Grenier, C., and Vrac, M.: Evaluation of a novel non-parametric approach to identify Time of Emergence (ToE) of climate signals , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17588, https://doi.org/10.5194/egusphere-egu2020-17588, 2020.

Despite the importance of the Yellow River to China, regional climate change over the middle reach of the Yellow River Basin (YRB) is much less assessed than other regions. This work focuses on historical and future spatiotemporal changes in mean and extreme temperature and precipitation over the upper and middle reaches of the YRB. The future mean and extreme climates for near-term (2021−2040), mid-term (2041−2060), and far-term (2081−2100) in relation to the historical (1976−2005) period are investigated based on the latest REgional MOdel (REMO). REMO driven by three CMIP5 GCMs under historical and future (RCP 2.6 and 8.5) forcings, following the Coordinated Regional Climate Downscaling Experiment (CORDEX) protocol for the East Asia domain at a spatial resolution of 0.22°, are provided by the Climate Service Center Germany (GERICS). The results show that REMO reproduces the historical mean climate state and six selected climate extreme indices reasonably well, although cold and wet biases still exist. For the far-term, mean temperature rise in winter is most remarkable, with an average of 5.9 °C under RCP8.5. As expected, future temperatures of the warmest day and the coldest night would increase and the number of frost days (FD) would decline considerably. Further, high altitude region would experience a higher mean temperature increase than low altitude region, which is likely caused by the snow-albedo feedback. The decline in FD would increase with elevation, especially under a higher emission. A substantial precipitation increase (32%) would occur in winter under RCP8.5 for the far-term period. Precipitation projections in summer and autumn vary spatially, decrease under RCP2.6 whereas increase under RCP8.5 in the whole YRB for the far-term period. Meanwhile, interannual variability of mean precipitation is expected to increase over most parts of the YRB. Future precipitation extremes, such as the daily intensity and maximum five-day precipitation are projected to increase, and the number of consecutive dry days would decline by the end of the 21st century under the RCP8.5 scenario. The results highlight that the pronounced warming in the high-altitude region together with more intense rainfall extremes could lead to increased future flood risk in the middle and lower reaches of the YRB if the high GHGs emission pathway will be followed.

How to cite: Wang, X., Chen, D., Pang, G., and Yang, M.: Historical and future climates over the Upper and Middle Reaches of the Yellow River Basin revealed by a regional climate model in CORDEX, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18557, https://doi.org/10.5194/egusphere-egu2020-18557, 2020.

EGU2020-959 | Displays | CL5.6

A continental perspective on the timing of the last glacial maximum in Australia - utilising methods for integrating multiple time-uncertain, variable resolution proxy records.

Haidee Cadd, Lynda Petherick, Jonathan Tyler, Annika Herbert, Timothy Cohen, Kale Sniderman, Jamie Schulmeister, Timothy Barrows, and Jasper Knight

Many palaeoclimate and palaeoenvironmental records have low sampling resolution, few age constraints, and are based on climate proxies that may reflect an uncertain mixture of local and regional influences. Objective spatial and temporal comparisons of multiple palaeo records and identification of regional scale trends can therefore be difficult.. Low resolution palaeo records are often excluded from regional syntheses due to low dating or sample density, however such records can contribute meaningful information to regional syntheses if their inherent uncertainties are considered. Explicitly incorporating the age uncertainties allows for a more robust interpretation of synchronous periods of change.

Here we discuss the use of a method for determining the timing of palaeoclimate events using multiple time-uncertain palaeo records. This method allows for the incorporation of a variety of records, regardless of proxy type or sampling resolution. We demonstrate the power of this method using a case study from the SHeMax project (Southern Hemisphere Last Glacial Maximum project), aiming to understanding the nature and timing of the LGM in Australia. Further expansion of our analyses will allow the incorporation of both continuous and discontinuous climate archives, interrogation of spatial and temporal synchronicity and coherency of climate changes across broad regions.

An extended LGM period, characterised by multiple distinct stages that varied regionally and in its timing and evolution, has been suggested to have occurred in Australia; however this hypothesis has yet to be tested objectively. Comparisons during this time period have been hampered by the limited number, low resolution, and age-uncertainty of terrestrial archives. In order to gain a greater understanding of the spatial and temporal patterns of climate change during MIS2, we have compiled all available proxy records of climate and envrionmental variability from across Australia for the period 35 – 15 ka (n=40). Analysing age-uncertainty in time series requires an approach that treats all data consistently. For each record, a revised age-depth model was developed using the SH13 calibration curve and Bayesian age-depth modelling techniques. Complex records (e.g. pollen records) were reduced to Principal Curves, in order to provide a one-dimensional summary of patterns of change in each data-set. Monte-Carlo change point analysis was then used to identify the timing of major changes within each record, along with the uncertainty around each change point. We assess the spatial heterogeneity of the timing of the major climatic changes during the 35 – 15 ka period and determine the probability of common timing of change across Australia. We find the onset of an extended period of relative aridity in Australia occurred synchronously (within uncertainty) at ca. 28 ka. Dry and cool conditions persisted at most sites until ca. 15 – 18 ka, with the onset of more humid conditions occurring along a latitudinal gradient. The occurrence of a millennial scale episode of increased moisture balance between ca. 25 – 21 ka is evident only in the most highly resolved records.

How to cite: Cadd, H., Petherick, L., Tyler, J., Herbert, A., Cohen, T., Sniderman, K., Schulmeister, J., Barrows, T., and Knight, J.: A continental perspective on the timing of the last glacial maximum in Australia - utilising methods for integrating multiple time-uncertain, variable resolution proxy records., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-959, https://doi.org/10.5194/egusphere-egu2020-959, 2020.

EGU2020-9133 | Displays | CL5.6

Constructing paleoclimate networks from annually laminated lake sediments – the VARDA database

Arne Ramisch, Alexander Brauser, Mario Dorn, Cecile Blanchet, Brian Brademann, Matthias Köppl, Jens Mingram, Ina Neugebauer, Norbert Nowaczyk, Florian Ott, Sylvia Pinkerneil, Birgit Plessen, Markus J. Schwab, Rik Tjallingii, and Achim Brauer

Reconstructing global patterns of past climate change requires large-scale networks of paleoclimatic archives. Generating paleoclimatic networks relies on precise synchronization of individual records with robust age control. The detailed age constrains of continuous varved lake sediments and the good preservation of isochrones from supra-regional extreme events make these records ideal for constructing large scale continental paleoclimatic networks. Yet, a global synthesis of varved lake archives is missing.

Here we present the VARved sediments DAtabase 1.0 (VARDA 1.0), the first global data compilation for varve chronologies and associated palaeoclimatic proxy records. VARDA 1.0 uses a connected data model provided by a state-of-the-art graph database, enabling custom generations of synchronized paleoclimatic networks. We report on compilation strategies for the identification of varved lakes and assimilation of high-resolution chronologies. Existing chronologies have been re-assessed and harmonized using a novel approach that infers information on sedimentation rates enclosed in varve thickness records. This information provides detailed information on the priors required for Bayesian age-depth modelling and strongly improves these results. Additionally, a synthesis of tephra layers from volcanic eruptions provides supra-regional isochrones for synchronizing even distant varved lake records. The current version (VARDA 1.0) comprises 261 datasets from 95 varved lake archives, including chronological information from 14C dating and varve thickness measurements, but also palaeoclimatological proxy data. We further explore potential applications of such networks in paleoclimatic studies, such as identifying leads and lags of regional climate change, large-scale model-data comparisons or differentiated proxy responses between archives. The VARDA graph-database and user interface can be accessed online at https://varve.gfz-potsdam.de.

How to cite: Ramisch, A., Brauser, A., Dorn, M., Blanchet, C., Brademann, B., Köppl, M., Mingram, J., Neugebauer, I., Nowaczyk, N., Ott, F., Pinkerneil, S., Plessen, B., Schwab, M. J., Tjallingii, R., and Brauer, A.: Constructing paleoclimate networks from annually laminated lake sediments – the VARDA database, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9133, https://doi.org/10.5194/egusphere-egu2020-9133, 2020.

EGU2020-9239 | Displays | CL5.6

Comparison of anomalies and trends in IGRA, RHARM, and ERA5 temperature, humidity and wind time series

Fabio Madonna, Souleymane Sy, Francesco Amato, Luigi Franco, Simone Gagliardi, Fabrizio Marra, Monica Proto, Marco Rosoldi, and Emanuele Tramutola

Upper-air radiosounding observations of temperature, relative humidity and wind are a of the primary data source for climate studies. Nevertheless, historical radiosounding time series are affected by several systematic uncertainties due to change in the measurement sensors. 

In the frame of the Copernicus Climate Change Service (C3S), a novel approach, named RHARM (Radiosounding HARMonization), has been developed to homogenize temperature, humidity and wind radiosounding profile time series available from the the Integrated Global Radiosonde Archive (IGRA) and provide an estimation of the total uncertainty for each single profile. RHARM is an alternative to the few existing approaches.

RHARM is applied to daily (0000 and 1200 UTC) radiosonde data on 16 standard pressure levels (10, 20, 30, 50, 70, 100, 150, 200, 250, 300, 400, 500, 700, 850, 925, 1000 hPa) for the IGRA data from 1978 onward. Relative humidity (RH) adjustments is limited to 300 hPa owing to pervasive sensor performance issues at greater altitudes. The bias adjustments are estimated at mandatory levels only but they are also interpolated to the significant levels reported within each individual ascent profile.

This paper discusses the comparison of the monthly anomalies and trends estimated at different latitudes and pressure levels for ERA5, IGRA and RHARM. Trends are esitmated using a robust least absolute deviation method. ERA5 is the latest climate reanalysis produced by ECMWF providing hourly data on on regular latitude-longitude grids at 0.25° x 0.25° resolution, with atmospheric parameters on 137 pressure levels (available on https://cds.climate.copernicus.eu).

Differences in the comparisons among the three datasets will be discussed along with the analysis of the trends observed in the considered time series. To evaluate its homogeneity and stability, the uncertainty estimation provided in RHARM will be also compared with O-B field obtained using the to ECWMF operational forecast model as the background.

How to cite: Madonna, F., Sy, S., Amato, F., Franco, L., Gagliardi, S., Marra, F., Proto, M., Rosoldi, M., and Tramutola, E.: Comparison of anomalies and trends in IGRA, RHARM, and ERA5 temperature, humidity and wind time series, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9239, https://doi.org/10.5194/egusphere-egu2020-9239, 2020.

EGU2020-1397 | Displays | CL5.6

Automation of the interactive mode of the homogenisation software HOMER for climatological applications

Magnus Joelsson, Nils Slättberg, Alicia Carnebring, Christophe Sturm, and Erik Engström

The homogenisation software HOMER has proven to be a reliable tool for the homogenisation of temperature and precipitation observation series. The homogenisation with HOMER requires the interaction of an operator, which makes the procedure time consuming, sensitive to arbitrary choices or error by the operator, and difficult to reproduce.

HOMER uses three methods for the detection of homogeneity breaks: A pairwise comparison method (PRODIGE) for break detection on annual, seasonal or monthly basis, a two-factor model for joint-detection (ANOVA), and an ACMANT style method for the detection of homogeneity breaks in the amplitude of the seasonal cycle. The operator reviews the results of the different methods and confirms or rejects suggested breaks. HOMER can also be run in a automatic mode, where all suggested breaks from the joint-detection and the ACMANT style detection methods are confirmed and all suggested breaks from the pairwise method are rejected. Note, that also the automatic mode of HOMER requires some interactions, such that nor this mode is suitable for batch processing. 

The homogenisation with HOMER of temperature observations at SMHI has previously been performed with a set of criteria for the confirmation of a suggested homogeneity break. These criteria has been implemented in the HOMER (interactive mode) source code by assigning the break signals from the methods different weights and applying a threshold for the sum of the weighted break signals each year for the confirmation of a break year. The user can chose to adjust these threshold and weights to fit their needs. All user interactions are removed to enable batch processing.

The new automatic mode of HOMER are applied on the synthetic benchmark data set INDECIS and to Swedish observational data from 80 coupled weather stations over the time period from 1860 to 2018. For the INDECIS data set, the positions of the breaks are known and a corresponding data set without breaks are available. Current default settings and settings optimised to minimise the deviation of the homogenised data from the INDECIS clean data are used. The results are compared with results of the interactive and standard automatic mode of HOMER, and other state-of-art homogenisation tools along with known potential homogeneity breaks from meta data.

How to cite: Joelsson, M., Slättberg, N., Carnebring, A., Sturm, C., and Engström, E.: Automation of the interactive mode of the homogenisation software HOMER for climatological applications , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1397, https://doi.org/10.5194/egusphere-egu2020-1397, 2020.

EGU2020-5365 | Displays | CL5.6

Uncertainty of Climatol adjustment algorithm for daily time series of additive climate variables

Oleg Skrynyk, Enric Aguilar, José A. Guijarro, and Sergiy Bubin

Before using climatological time series in research studies, it is necessary to perform their quality control and homogenization in order to remove possible artefacts (inhomogeneities) usually present in the raw data sets. In the vast majority of cases, the homogenization procedure allows to improve the consistency of the data, which then can be verified by means of the statistical comparison of the raw and homogenized time series. However, a new question then arises: how far are the homogenized data from the true climate signal or, in other words, what errors could still be present in homogenized data?

The main objective of our work is to estimate the uncertainty produced by the adjustment algorithm of the widely used Climatol homogenization software when homogenizing daily time series of the additive climate variables. We focused our efforts on the minimum and maximum air temperature. In order to achieve our goal we used a benchmark data set created by the INDECIS* project. The benchmark contains clean data, extracted from an output of the Royal Netherlands Meteorological Institute Regional Atmospheric Climate Model (version 2) driven by Hadley Global Environment Model 2 - Earth System, and inhomogeneous data, created by introducing realistic breaks and errors.

The statistical evaluation of discrepancies between the homogenized (by means of Climatol with predefined break points) and clean data sets was performed using both a set of standard parameters and a metrics introduced in our work. All metrics used clearly identifies the main features of errors (systematic and random) present in the homogenized time series. We calculated the metrics for every time series (only over adjusted segments) as well as their averaged values as measures of uncertainties in the whole data set.

In order to determine how the two key parameters of the raw data collection, namely the length of time series and station density, influence the calculated measures of the adjustment error we gradually decreased the length of the period and number of stations in the area under study. The total number of cases considered was 56, including 7 time periods (1950-2005, 1954-2005, …, 1974-2005) and 8 different quantities of stations (100, 90, …, 30). Additionally, in order to find out how stable are the calculated metrics for each of the 56 cases and determine their confidence intervals we performed 100 random permutations in the introduced inhomogeneity time series and repeated our calculations With that the total number of homogenization exercises performed was 5600 for each of two climate variables.

Lastly, the calculated metrics were compared with the corresponding values, obtained for raw time series. The comparison showed some substantial improvement of the metric values after homogenization in each of the 56 cases considered (for the both variables).

-------------------

*INDECIS is a part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Union (Grant 690462). The work has been partially supported by the Ministry of Education and Science of Kazakhstan (Grant BR05236454) and Nazarbayev University (Grant 090118FD5345).

How to cite: Skrynyk, O., Aguilar, E., Guijarro, J. A., and Bubin, S.: Uncertainty of Climatol adjustment algorithm for daily time series of additive climate variables, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5365, https://doi.org/10.5194/egusphere-egu2020-5365, 2020.

EGU2020-4691 | Displays | CL5.6

Near-surface mean and gust wind speed in ERA5 across Sweden: towards an improved gust parametrization

Lorenzo Minola, Fuqing Zhang, Cesar Azorin-Molina, Amir Ali Safaei Pirooz, Richard Flay, Hans Hersbach, and Deliang Chen

Driven by the twenty-century surface air temperature rise, extreme wind events could change in their frequency and magnitude of occurrence, with drastic impacts on human and ecosystems. As a matter of fact, windstorms and extreme wind conditions contribute to more than half of the economic losses associated with natural disasters in Europe. Across Scandinavia, the occurrence of wind gust events can affect aviation security, as well as damage buildings and forests, representing severe hazards to people, properties and transport. Comprehensive extreme wind datasets and analysis can help improving our understanding of these changes and help the society to cope with these changes. Unfortunately, due to the difficulty in measuring wind gust and the lack of homogeneous and continuous datasets across Sweden, it is challenging to assess and attribute their changes. Global reanalysis products represent a potential tool for assessing changes and impact of extreme winds, only if their ability in representing observed near-surface wind statistics can be demonstrated.

In this study the new ERA5 reanalysis product has been compared with hourly near-surface wind speed and gust observations across Sweden for 2013-2017. We found that ERA5 shows better agreement with both mean wind speed and gust measurements compared to the previous ERA-Interim reanalysis dataset. Especially across coastal regions, ERA5 has a closer agreement with observed climate statistics. However, significant discrepancies are still found for inland and high-altitude regions. Therefore, the gust parametrization used in ERA5 is further analyzed to better understand if the adopted gust formulation matches the physical processes behind the gust occurrence. Finally, an improved formulation of the gust parametrization is developed across Sweden and further tested for Norway, which is characterized by more complex topography.

How to cite: Minola, L., Zhang, F., Azorin-Molina, C., Safaei Pirooz, A. A., Flay, R., Hersbach, H., and Chen, D.: Near-surface mean and gust wind speed in ERA5 across Sweden: towards an improved gust parametrization, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4691, https://doi.org/10.5194/egusphere-egu2020-4691, 2020.

EGU2020-4730 | Displays | CL5.6

Global Near-Surface Wind Speed Trends in Observation and CMIP6 Historical Simulation for 1850–2014

Kaiqiang Deng, Cesar Azorin-Molina, Lorenzo Minola, and Deliang Chen

The changes in near-surface (10-m height) wind speed have direct impacts on human society, such as utilization of wind energy, air pollution dispersion and dust storm frequency, which requires comprehensive assessment and improved understanding. Based on ground-based observations and multiple atmospheric reanalysis datasets, previous research revealed significant negative and positive trends in wind speed over land and oceans, respectively. In this study, we used Coupled Model Intercomparison Project Phase 6 (CMIP6) historical simulations to investigate the association between global mean wind speed changes and human-induced forcing. It is found that both unforced pre-industrial control run and historical natural forcing experiments failed in reproducing the observed trends in land and ocean wind speeds. However, the CMIP6 historical greenhouse gas forcing successfully simulated the increasing trend in ocean wind speed, while the CMIP6 historical aerosol forcing and experiments with land use changes seemed to have caused a decreasing trend in wind speeds over both land and ocean, suggesting that anthropogenic forcings are crucial drivers for the recent changes in global wind speed. Further attribution studies are needed to better understand wind speed variability under a warming climate.

How to cite: Deng, K., Azorin-Molina, C., Minola, L., and Chen, D.: Global Near-Surface Wind Speed Trends in Observation and CMIP6 Historical Simulation for 1850–2014, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4730, https://doi.org/10.5194/egusphere-egu2020-4730, 2020.

EGU2020-3045 | Displays | CL5.6

MOTEDAS Century database, Part 1: temperature evolution in Spanish Mainland (1916-2015).

Dhais Peña-Angulo, Leire Sandonís-Pozo, Michele Brunetti, Santiago Beguería, and José Carlos Gonzalez-Hidalgo

We have finished the complete digitalization of Annual Books from the Spanish meteorological service (AEMET) between 1916 to 1949. Data retrieved included monthly means of maximum and minimum temperature. In the present contribution we are going to show the new MOTEDAS_Century dataset (MOnthly TEmperature Dataset of Spain century) which has been performed matching data from the annual books and data from the national climate data bank of AEMET. The amount of stations with temperature data vary from a minimum of 228 (1938) and 2.030 (1994). This length of the time series is sometimes very short. Since we aim to analyse the information with a highest spatial density as possible we decided, instead of reconstructing series, to reconstruct monthly fields independently by using all the information available month to month between 1916 and 2015. Monthly interpolated data were converted to a high-resolution grid (10x10 km) using the Angular Distance Weighting method, resulting into a 5000 pixels grid.

 

The time series of annual mean temperature in Spanish mainland from 1916 to 2015 shows the well-known pattern of increase during the first decades, a slowdown in the middle of the 20th century, and the final rise since the 1970´s, including a final stage without significant trend for the last three decades.

 

MOTEDAS_Century´s annual temperature average series has been compared with other analogous series from BEST (Berkelay Earth Surface Temperature) and SDAT (Spanish Daily Adjusted Temperature Series) datasets, as well as the twentieth century reanalysis for the Iberian Peninsula. The different versions resemble the global pattern, although differences exist particularly during the last three decades. The comparison of the annual mean temperature series with their counterparts in the BEST, AEMET and SDAT databases suggests that processing the newly retrieved information does not modify the behaviour patterns of mean annual temperatures in the Spanish mainland, and that the difference observed among the various sources can be attributed to a combination of effects from the different number of weather stations examined, which is very much higher in MOTEDAS_century, to the local characteristics of stations. The MOTEDAS_century grid in the anomalies format is available on request from the authors and will be in future on the website of the CLICES Project (http://clices.unizar.es).

How to cite: Peña-Angulo, D., Sandonís-Pozo, L., Brunetti, M., Beguería, S., and Gonzalez-Hidalgo, J. C.: MOTEDAS Century database, Part 1: temperature evolution in Spanish Mainland (1916-2015)., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3045, https://doi.org/10.5194/egusphere-egu2020-3045, 2020.

 Climate change assessment plays a pivotal role in impact assessment studies for better planning and management in different areas. A three-steps-integrated approach is used for climate change assessment. In the first step, homogeneous climatic zones were developed by combining two statistical approaches, cluster analysis and L-moment on the basis of Reconnaissance Drought Index (RDI).  A set of GCMs was selected for each climate zone by incorporating Bayesian Model Averaging (BMA), using the outputs of fourteen GCMs for maximum, minimum temperature and precipitation. The seven best GCMs were downscaled to higher resolution using statistical methods and considered for climate extremes assessment for each zone. The performances of GCMs are different for different climate variables, however, in some cases there is coincidence. Climate extremes were analyzed for the baseline and future periods F1 (2011-2040), F2 (2041-2070) and F3 (2071-2100) for the Representative Concentration Pathways (RCPs) 4.5 and 8.5. For precipitation under the RCP4.5, most of climate extremes have decreasing/increasing trends. Further, zone-01, zone-02, and zone-03 show increasing trends while zone-04 and zone-05 have mixed (decreasing/increasing) trends in climate extremes for all periods. For temperature, sixteen climate extreme indices were considered, some important indices are: GSL, SU25, TMAXmean, TMINmean, TN10p, TN90P, TX10p, TX90P, TNN, TNX, TXN, TXX. GSL has mixed trend (increasing/decreasing) depending on cold or hot climate zones. Similarly, TN10P and TN90P also show decreasing and increasing trends, respectively, while TX10P and TX90P have decreasing and increasing trends, respectively, in RCP4.5. TNN, TNX have mixed trends and TXN, TXX have mostly increasing trends except of few time periods in which they have decreasing and insignificant trends. The overall precipitation does not show significant changes, however, the projected intensities and frequencies are changing in future and require special consideration to save infrastructure, prevent casualties and other losses. More importantly, this study will help to address different Sustainable Development Goals of the United Nation Development Program related to climate change, hunger, environment, food security, and energy sectors.

How to cite: Khan, F., Pilz, J., Ali, S., and Muhammad, S.: Twenty First Century Climate Extremes Projection and Climate Vulnerability Risk Assessment in Homogeneous Climatic Zones using high Resolution Climate Data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-206, https://doi.org/10.5194/egusphere-egu2020-206, 2020.

Surface wind speed (SWS) from meteorological observation, global atmospheric reanalysis, and geostrophic wind speed (GWS) calculated from surface pressure were used to study the stilling and recovery of SWS over China from 1960 to 2017. China experienced anemometer changes and automatic observation transitions in approximately 1969 and 2004, resulting in SWS inhomogeneity. Therefore, we divided the entire period into three sections to study the SWS trend, and found a near zero annual trend in the SWS in China from 1960 to 1969, a significant decrease of -0.24 m/s decade-1 from 1970 to 2004, and a weak recovery from 2005 to 2017. By defining the 95th and 5th percentiles of monthly mean wind speeds as strong and weak winds, respectively, we found that the SWS decrease was primarily caused by a strong wind decrease of -8 % decade-1 from 1960 to 2017, but weak wind showed an insignificant decreasing trend of -2 % decade-1. GWS decreased with a significant trend of -3 % decade-1 before the 1990s, during the 1990s, GWS increased with a trend of 3 % decade-1 whereas SWS continued to decrease with a trend of 10 % decade-1. Consistent with SWS, GWS demonstrated a weak increase after the 2000s. After detrended, both of SWS and GWS showed synchronous decadal variability, which is related to the intensity of Aleutian low pressure over the North Pacific. However, current reanalyses cannot reproduce the decadal variability, and can not capture the decreasing trend of SWS either.

How to cite: Zhang, Z. and Wang, K.: Stilling and Recovery of the Surface Wind Speed Based on Observation, Reanalysis, and Geostrophic Wind Theory over China from 1960 to 2017, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2501, https://doi.org/10.5194/egusphere-egu2020-2501, 2020.

EGU2020-3491 | Displays | CL5.6

Digitization of historical wind speed observations at the Swedish Meteorological and Hydrological Institute

Erik Engström, Cesar Azorin-Molina, Lennart Wern, Sverker Hellström, Christophe Sturm, Magnus Joelsson, Gangfeng Zhang, Lorenzo Minola, and Deliang Chen

This contribution presents the first work package (WP1) of the project “Assessing centennial wind speed variability from a historical weather data rescue project in Sweden”, funded by FORMAS – A Swedish Research Council for Sustainable Development (ref. 2019-00509); previously reported in EGU2019-17792-1. Under a warming climate, one of the major uncertainties on the causes driving the climate variability of winds over land (i.e., the “stilling” phenomenon and the recent “recovery” since the 2010s) is mainly due to short availability (i.e. since the 1960s) and low quality of observed wind records as stated by the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC).

In this study we present the first steps of a joint initiative between the Swedish Meteorological and Hydrological Institute (SMHI) and the University of Gothenburg aimed at filling the key gap of short availability and low quality of wind datasets, and improve the limited knowledge on the causes driving wind speed variability in a changing climate across Sweden. The aim of the WP1 is to rescue historical wind speed series available in the old weather archives at SMHI for the 1920s-1930s. 13 stations with daily wind speed data (in meters per second) during the period 1925-1938 have been selected for digitization; i.e., spanning back our records 2 decades more. To get wind observations from paper to screen we will follow the “Guidelines on Best Practices for Climate Data Rescue” of the World Meteorological Organization. Our protocol will consist on (i) designing a template for digitization; (ii) digitizing papers by an imaging process based on scanning and photographs; and (iii) typing numbers of wind speed data into the template. WP2 will ensure the quality and homogeneity of wind speed series rescued.

How to cite: Engström, E., Azorin-Molina, C., Wern, L., Hellström, S., Sturm, C., Joelsson, M., Zhang, G., Minola, L., and Chen, D.: Digitization of historical wind speed observations at the Swedish Meteorological and Hydrological Institute, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3491, https://doi.org/10.5194/egusphere-egu2020-3491, 2020.

EGU2020-5056 | Displays | CL5.6

Overview of the IBER-STILLING project: Assessment and attribution of wind speed and wind gust variability

Cesar Azorin-Molina, Manola Brunet, Enric Aguilar, Jose A. Guijarro, Amir A. Safaei Pirooz, Richard G.J. Flay, Lorenzo Minola, Gangfeng Zhang, Joan-Albert Lopez-Bustins, Tim R. McVicar, and Deliang Chen

In a context of global climate change, the scientific community has evidenced a significant decrease in wind speed, a phenomenon known as «stilling». This climate trend has mainly been observed over mid-latitude continental surfaces since the 1980s. On the contrary, other studies have detected an increase in wind speed over ocean surfaces; and there is little conclusive scientific evidence on trends in wind speed across the troposphere. Furthermore, a reversal in global terrestrial stilling has recently been documented in few regional and global studies since the 2010s. The causes associated with the climate variability of wind speed have not yet been resolved and there are many uncertainties behind the «stilling» and «recovery» phenomenon because neither the quantity nor the quality of wind speed observations is adequate. This contribution shows an overview of the IBER-STILLING project (RTI2018-095749-A-I00) funded by the Spanish Ministry of Science, Innovation and Universities.  This project aims to move forward on the assessment of wind speed and wind gusts variability and underlying causes globally, with emphasis on the Spanish territory and surrounding ocean (Atlantic) and sea (Mediterranean) surfaces. The IBER-STILLING project will collect and generate climate information of wind speed from different data sources; climate data will be subject to a comprehensive protocol for quality control and homogenization. The statistical analysis of these climate databases will allow characterizing trends and climatic cycles of wind speed, allowing a pioneering global analysis of wind speed over continental and ocean surfaces, and across the boundary layer and the entire troposphere. The project will also conduct wind-tunnel experiments to quantify biases introduced by anemometers devices. 

How to cite: Azorin-Molina, C., Brunet, M., Aguilar, E., Guijarro, J. A., Safaei Pirooz, A. A., Flay, R. G. J., Minola, L., Zhang, G., Lopez-Bustins, J.-A., McVicar, T. R., and Chen, D.: Overview of the IBER-STILLING project: Assessment and attribution of wind speed and wind gust variability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5056, https://doi.org/10.5194/egusphere-egu2020-5056, 2020.

EGU2020-6247 | Displays | CL5.6

Possible Effects of Climate Change on New Zealand Design Wind Speeds

Amir Ali Safaei Pirooz, Richard G.J. Flay, Richard Turner, and Cesar Azorin-Molina

The climate is changing, and as a result, the Earth could experience more severe extreme weather events. Growing interest and concern about the effects of climate change on cities, infrastructures and people’s lives raises the question “how are design wind speeds influenced by different climate change scenarios?”. This study aims at (i) analysing the gust wind records of four meteorological stations across New Zealand for the period 1972-2017; (ii) investigating whether or not the long-term wind gust series have changed significantly; and (iii) how these changes can be considered in the estimation of design wind speeds to ensure the safety and reliability of the future structures.

Historical hourly and daily gust wind speed series recorded at the four selected stations were subjected to a robust quality control and homogenisation protocol to ensure all the artificial inhomogeneities resulting from factors like station relocations, anemometer height changes, instrumentation malfunctions, instrumentation changes, different sampling intervals, and observation environment changes, have been eliminated prior to any subsequent analyses. Then, annual and seasonal trends in both magnitudes and frequencies of the extreme winds were evaluated as to whether the observed trends are statistically significant or not by calculating p-values. From the derived gust trends, some recommendations are proposed for consideration in regard to revising the design wind speeds for calculating the wind loads on structures. In addition, the findings of the study are compared with gust wind speed trends in several other countries and also with IPCC 5th assessment projections for New Zealand [1].

The main findings of this research are summarised as follows:

  • The magnitude and frequency of wind gust showed negative (significant for some stations and seasons) trends.
  • This result suggests that at this stage no extra multiplier is required to be applied to the New Zealand design wind speeds.
  • Additional analyses of the long-term wind gust trends at more stations across New Zealand are needed.

 

Reference

[1] Ministry for the Environment 2018. Climate Change Projections for New Zealand: Atmosphere Projections Based on Simulations from the IPCC Fifth Assessment, 2nd Edition. Wellington: Ministry for the Environment.

How to cite: Safaei Pirooz, A. A., Flay, R. G. J., Turner, R., and Azorin-Molina, C.: Possible Effects of Climate Change on New Zealand Design Wind Speeds, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6247, https://doi.org/10.5194/egusphere-egu2020-6247, 2020.

EGU2020-12298 | Displays | CL5.6

Effects of Sensor Response and Gust Duration on Maximum Wind Gust Measurements and Data Homogenisation

Amir Ali Safaei Pirooz, Richard G.J. Flay, Lorenzo Minola, Cesar Azorin-Molina, and Deliang Chen

Wind speed data recorded using different signal-processing procedures can introduce errors in the wind speed measurements. This study aims to assess the effects of a set of various moving average filter durations and turbulence intensities on the recorded maximum gust wind speeds. For this purpose, a series of wind-tunnel experiments was carried out at the University of Auckland, New Zealand, on the widely-used Vaisala WAA151 cup anemometer. The variations of gust and peak factors, and turbulence intensities measured by the cup anemometer as a function of the averaging duration and turbulence intensity are presented. The wind-tunnel results are compared with values computed from a theoretical approach, namely random process and linear system theory, and the results were also validated against values reported in the literature where possible.

To summarise, the major findings of this experimental study are:

  1. The results show that increasing the effective gust duration reduces both the gust and peak factors, resulting in an underestimation of maximum gust wind speeds and an overestimation of minimum gust wind speeds.
  2. The maximum difference between gust factors obtained for high (e.g. 3-s to 5-s) and low (raw, unfiltered measurements) gust durations reached values of 25% – 30% for the high turbulence conditions, and up to 5% – 10% for low turbulence intensities.
  3. Gust factor ratios, an important parameter that allow the measurements from a specific gust duration to be converted to other gust durations of interest, are reported for various gust durations as a function of turbulence intensity.
  4. The differences and gust factor ratios computed in this study can be applied directly to full-scale measurements, and can be used in several research areas, including analysing and homogenisation of historical wind speed time series, comparing gust climatologies of countries where different gust durations have been adopted, and so on. These factors clearly play an essential role in meteorological, climatological and wind engineering studies.

How to cite: Safaei Pirooz, A. A., Flay, R. G. J., Minola, L., Azorin-Molina, C., and Chen, D.: Effects of Sensor Response and Gust Duration on Maximum Wind Gust Measurements and Data Homogenisation , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12298, https://doi.org/10.5194/egusphere-egu2020-12298, 2020.

EGU2020-13005 | Displays | CL5.6

Impact of rapid urbanization on the observed daily maximum wind speed variability: a case study in Yangtze River Delta (China)

Gangfeng Zhang, Cesar Azorin-Molina, Xuejia Wang, Peijun Shi, Deliang Chen, Tim R. McVicar, and Jose A. Guijarro

Typhoon and windstorm induced extreme winds (e.g., daily maximum wind speed, DMWS) cause enormous economic losses and deaths in China every year, and rapid urbanization increased surface roughness might play a key role in extreme wind speed variability. Here, observed near-surface (at 10 m height) DMWS from 115 meteorological stations and combined DMSP/OLS (Defense Meteorological Satellite Program/Operational Linescan System) and NPP/VIIRS (Suomi National Polar-orbiting Partnership/Visible Infrared Imaging Radiometer Suite) nighttime light data from 1992-2016 in Yangtze River Delta, a rapidly urbanized area of China, were used to analyze the impact of urbanization on DMWS variability. Raw wind speed observations were subject to a robust quality control and homogenization protocol using the Climatol package. The stations were firstly classified into six urbanized groups by the difference of nighttime light indices of each station between 1992 and 2016. The results show that DMWS in Yangtze River Delta has significantly (p < 0.05) declined by -0.209m s-1 decade-1 annually, with negative trends in most seasons, particularly in winter (-0.470 m s-1 decade-1, p < 0.05) and autumn (-0.300 m s-1 decade-1, p < 0.05), followed by spring (-0.178 m s-1 decade-1, p > 0.10), while a weak increase in summer DMWS was found (+0.002 m s-1 decade-1, p > 0.10). The stations in the highly urbanized group show a higher magnitude in the decline of annual DMWS, indicating the key role of urbanization in weakening DMWS. Further, this is confirmed by the regional climate model (RegCM4) sensitive experiments conducted with different land use and cover data, that is, DMWS in 1992 was higher in the experiment using the real land use and cover data than in the experiment using the land use and cover data in 2016.

How to cite: Zhang, G., Azorin-Molina, C., Wang, X., Shi, P., Chen, D., McVicar, T. R., and Guijarro, J. A.: Impact of rapid urbanization on the observed daily maximum wind speed variability: a case study in Yangtze River Delta (China), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13005, https://doi.org/10.5194/egusphere-egu2020-13005, 2020.

EGU2020-19111 | Displays | CL5.6

WiSED: A Quality-Controlled Surface Wind European Database

Cristina Rojas-Labanda, J. Fidel González-Rouco, Elena García-Bustamante, Jorge Navarro, Etor E. Lucio-Eceiza, Gerard Van de Schrier, and Frank Kaspar

Surface wind is a fundamental meteorological variable that is relevant for a wide array of topics (e.g., crop growth, extreme events, power generation). Yet, for many regions, there is still a scarcity of good quality observational datasets and the uncertainties within data sources like reanalysis products and between those and observational databases are large, limiting the understanding of this variable and hampering the accuracy of subsequent analyses.

In order to address this need and within the frame of the NEWA's (New European Wind Atlas) project, a quality-controlled Wind Surface European Database (WiSED) is created. WiSED feeds from eight different datasets, provided by different institutions and with varying levels of quality control. This initial version is then submitted to a Quality Control (QC) process structured into six phases that deal with the detection of various issues in data quality: 1) compilation; 2) duplication errors; 3) physical consistency in the ranges of recorded values; 4) temporal consistency, regarding abnormally high/low variability in the time series; 5) detection of medium-term biases; and 6) removal of isolated records. The first three phases deal with issues often related to data storage and management, whereas the last three phases deal with measurement errors related to problems in the instruments, calibration procedures or siting.

The improved quality of the data and the high temporal and spatial resolution, as well as its spatial coverage, represents an added value over previous products available for the same region. 

This work summarises the application of the quality control, showing the results of different steps throughout it. Additionally, a preliminary analysis of the surface wind behaviour over Europe is presented.

With a maximum timespan of about 100 years, the creation of such database will allow for analyzing different aspects of both wind speed and direction variability over Europe from intra-daily to multidecadal timescales. Within the potentially relevant applications, it is worth to mention: the identification of subregions in Europe with homogeneous wind behaviour (regionalization), statistical downscaling exercises, analyses of wind extremes, wind power assessment and evaluation of climate model, both global and regional, simulations.

How to cite: Rojas-Labanda, C., González-Rouco, J. F., García-Bustamante, E., Navarro, J., Lucio-Eceiza, E. E., Van de Schrier, G., and Kaspar, F.: WiSED: A Quality-Controlled Surface Wind European Database, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19111, https://doi.org/10.5194/egusphere-egu2020-19111, 2020.

EGU2020-3055 | Displays | CL5.6

MOTEDAS Century Database, Part 2: spatial variation of temperature trends: the UP-TO-DATE effect.

Leire Sandonis, Dhais Peña-Angulo, michele Bruneti, Santiago Beguería, and José Carlos Gonzalez-Hidalgo

We have finished the complete digitalization of Annual Books from the Spanish meteorological service (AEMET) between 1916 to 1949. Data retrieved included monthly means of maximum and minimum temperature. In the present contribution we are going to show the new MOTEDAS_Century dataset (MOnthly TEmperature Dataset of Spain century) which has been performed matching data from the annual books and data from the national climate data bank of AEMET. The amount of stations with temperature data vary from a minimum of 228 (1938) and 2.030 (1994). This length of the time series is sometimes very short. Since we aim to analyse the information with a highest spatial density as possible we decided, instead of reconstructing series, to reconstruct monthly fields independently by using all the information available month to month between 1916 and 2015. Monthly interpolated data were converted to a high-resolution grid (10x10 km) using the Angular Distance Weighting method, resulting into a 5000 pixels grid.

The time series of annual mean temperature in Spanish mainland from 1916 to 2015 shows the well-known pattern of increase during the first decades, a slowdown in the middle of the 20th century, and the final rise since the 1970´s, including a final stage without significant trend for the last three decades.

MOTEDAS_Century´s annual temperature average series has been compared with other analogous series from BEST (Berkelay Earth Surface Temperature) and SDAT (Spanish Daily Adjusted Temperature Series) datasets, as well as the twentieth century reanalysis for the Iberian Peninsula. The different versions resemble the global pattern, although differences exist particularly during the last three decades. The comparison of the annual mean temperature series with their counterparts in the BEST, AEMET and SDAT databases suggests that processing the newly retrieved information does not modify the behaviour patterns of mean annual temperatures in the Spanish mainland, and that the difference observed among the various sources can be attributed to a combination of effects from the different number of weather stations examined, which is very much higher in MOTEDAS_century, to the local characteristics of stations. The MOTEDAS_century grid in the anomalies format is available on request from the authors and will be in future on the website of the CLICES Project (http://clices.unizar.es).

How to cite: Sandonis, L., Peña-Angulo, D., Bruneti, M., Beguería, S., and Gonzalez-Hidalgo, J. C.: MOTEDAS Century Database, Part 2: spatial variation of temperature trends: the UP-TO-DATE effect., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3055, https://doi.org/10.5194/egusphere-egu2020-3055, 2020.

EGU2020-9801 | Displays | CL5.6

Trends in intra-seasonal temperature variability in Europe

Tomas Krauskopf

While long-term changes in measures of central tendency of climate elements, i. e. mean temperature, are well acknowledged, studies of trends in measures of their variability are much less common. This is despite the fact that trends in variability can have higher effect on climate extremes than trends in mean. Here, three measures of intra-seasonal variability are examined: 1) standard deviation of mean daily temperature 2) mean absolute value of day-to-day temperature change, 3) the range between the 90th and 10th quantile of mean daily temperature. ECA&D daily data from 180 stations and linear regression method are utilized to calculate trends of these characteristics in period from 1961 to 2012. Spatial distribution of trends in individual variability characteristics in Europe together with long-term change in mean and autocorrelation of mean temperature are demonstrated in maps. Significant trends (positive and negative) in all examined variability characteristics were found with substantial differences between seasons as well as between regions. On this basis, Europe is divided into 6 regions and trends are assessed in each reagion separately. While the most significant decrease in variability is observed in Northern Scandinavia and Iceland in winter, the most substantial increase is detected in Central and Western Europe in spring. Our results are accompanied by comparing the probability density function of daily temperature between periods 1961 – 1986 and 1987 – 2012 in each region showing how the shape of distribution of daily temperature has changed and if it could affect the changing number and value of temperature extremes.

How to cite: Krauskopf, T.: Trends in intra-seasonal temperature variability in Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9801, https://doi.org/10.5194/egusphere-egu2020-9801, 2020.

EGU2020-17976 | Displays | CL5.6

Constructing gridded hourly air temperature dataset

Alexandru Dumitrescu and Sorin Cheval

Air temperature is one of the most important meteorological element, with major impact on the earth-atmosphere energy balance. The characteristics of the surface air temperature in locations without surface meteorological measurements are usually acquired by employing spatial statistics methods. Gridded surface meteorological data are essential for evaluating the performance of climatological models, for applying statistical downscaling methods and as input data for hydrological and agrometeorological models.

In this work, we tested two categories of statistical methods (spatial and spatio-temporal) used for interpolating ground-based hourly air temperature data. The main input dataset used in this work was the quality controlled and homogenized hourly air temperatures measured between 2016 and 2017, obtained from four networks: Romanian National Meteorological Administration (ANM), National Network for Monitoring Air Quality (RNMCA), Regional Basic Synoptic Network (RBSN), and Meteorological Terminal Aviation Routine Weather Report network (METAR). 

The principal covariate used in the spatial interpolation procedures was the gap filled hourly LST data over Romania, available between 2016 to 2017, based on MSG-Seviri satellite images, which is an operational product of the Land Surface Analysis – Satellite Application Facility (LSA-SAF).  The other predictors were derived from SRTM (Shuttle Radar Topography Mission) data and from CORINE Land Cover 2018 product. The gridding was performed in a Romanian National Grid (Stereo 70), at 1000 m × 1000 m spatial resolution.

The results of the tested methods show that the mean absolute errors (MAE) and root mean square errors (RMSE) of space–time predictions are considerably lower than those of the pure spatial estimation.

This work was supported by a grant of Ministry of Research and Innovation, Romania, CNCS - UEFISCDI, project number PN-III-P1-1.1-PD-2016-1579, within PNCDI III.

How to cite: Dumitrescu, A. and Cheval, S.: Constructing gridded hourly air temperature dataset, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17976, https://doi.org/10.5194/egusphere-egu2020-17976, 2020.

EGU2020-19970 | Displays | CL5.6

Indices for daily temperature and precipitation based on quality controlled and homogenized data in Madagascar

Luc Yannick Andréas Randriamarolaza, Enric Aguilar, and Oleg Skrynyk

Madagascar is an Island in Western Indian Ocean Region. It is mainly exposed to the easterly trade winds and has a rugged topography, which promote different local climates and biodiversity. Climate change inflicts a challenge on Madagascar socio-economic activities. However, Madagascar has low density station and sparse networks on observational weather stations to detect changes in climate. On average, one station covers more than 20 000 km2 and closer neighbor stations are less correlated. Previous studies have demonstrated the changes on Madagascar climate, but this paper contributes and enhances the approach to assess the quality control and homogeneity of Madagascar daily climate data before developing climate indices over 1950 – 2018 on 28 synoptic stations. Daily climate data of minimum and maximum temperature and precipitation are exploited.

Firstly, the quality of daily climate data is controlled by INQC developed and maintained by Center for Climate Change (C3) of Rovira i Virgili University, Spain. It ascertains and improves error detections by using six flag categories. Most errors detected are due to digitalization and measurement.

Secondly, daily quality controlled data are homogenized by using CLIMATOL. It uses relative homogenization methods, chooses candidate reference series automatically and infills the missing data in the original data. It has ability to manage low density stations and low inter-station correlations and is tolerable for missing data. Monthly break points are detected by CLIMATOL and used to split daily climate data to be homogenized.

Finally, climate indices are calculated by using CLIMIND package which is developed by INDECIS* project. Compared to previous works done, data period is updated to 10 years before and after and 15 new climate indices mostly related to extremes are computed. On temperature, significant increasing and decreasing decade trends of day-to-day and extreme temperature ranges are important in western and eastern areas respectively. On average decade trends of temperature extremes, significant increasing of daily minimum temperature is greater than daily maximum temperature. Many stations indicate significant decreasing in very cold nights than significant increasing in very warm days. Their trends are almost 1 day per decade over 1950 – 2018. Warming is mainly felt during nighttime and daytime in Oriental and Occidental parts respectively. In contrast, central uplands are warming all the time but tropical nights do not appear yet. On rainfall, no major significant findings are found but intense precipitation might be possible at central uplands due to shortening of longest wet period and occurrence of heavy precipitation. However, no influence detected on total precipitation which is still decreasing over 1950 - 2018. Future works focus on merging of relative homogenization methodologies to ameliorate the results.

-------------------

*INDECIS is a part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Union (Grant 690462).

How to cite: Randriamarolaza, L. Y. A., Aguilar, E., and Skrynyk, O.: Indices for daily temperature and precipitation based on quality controlled and homogenized data in Madagascar, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19970, https://doi.org/10.5194/egusphere-egu2020-19970, 2020.

EGU2020-17816 | Displays | CL5.6

Climatology of the relative humidity in the Carpathian Valley

Anikó Cséplő, István Geresdi, and Ákos Horváth

The reports about the climate change mostly focus about the trend of the temperature or precipitation. However, the relative humidity is also an important characteristic of the atmosphere, e.g. it impacts both the cloud and fog formation. The trends of the relative humidity in the changing climate have been found to be rather uncertain.  In this research the climatological trend of the relative humidity in the Carpathian Valley was studied. Analysis of the long-term observed database from eight meteorological stations was used to present the annual and seasonal trends of the relative humidity. The annual trend was found to be between 2-3% in every meteorological station. The results show that the relative humidity has decreased every season but in autumn, when the trend of it has not been consistent. While the most significant decrease has been occurred during spring, the decrease was negligible during autumn.

How to cite: Cséplő, A., Geresdi, I., and Horváth, Á.: Climatology of the relative humidity in the Carpathian Valley, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17816, https://doi.org/10.5194/egusphere-egu2020-17816, 2020.

EGU2020-17807 | Displays | CL5.6

Are the short and intense precipitations in North of Italy affected by a significant trend?

Luigi Cesarini and Mario L.V. Martina

The upward trend of temperatures is acknowledged and well documented, this increase in temperature is strictly connected to the rate of change in saturation vapour pressure as described by the Clausius-Clapeyron equation. According to this relationship for every rise of 1°C in the temperature, 7% more water vapour is contained in the saturated air that under the right circumstances may turn into rainfall, enhancing an increase in precipitation intensity.

This study scope is to identify any statistically significant trend in extreme rainfall and its spatial and temporal patterns and detect which morphological and climatic variables are the main drivers of the variation in the frequency and intensity of extreme rainfall events. The study focuses on the northern part of Italy, this area is of particular interest given by the diverse orography of the territory. After quality checks on the data (record length, missing  values and presence of outliers), 382 meteorological stations were selected that provided annual maximum rainfall series (AMS) for different durations, 1,3,6,12 and 24 hours over the period spanning from 1930 to 2017. Trying to maximize the reliability of the data and focusing on the period during which the global warming seems to rise markedly, we decided to focus the analysis on the period of observation going from 1960 to 2017. Also, the date of occurrence of each observation were retrieved enabling the possibility to perform a seasonality analysis on the precipitation extremes.

The presence and the significance of trends was investigated through a modified version of the non-parametric test Mann-Kendall that takes into account the effect of autocorrelation in the time series. The magnitude of the trend is instead quantified with the Theil -Sen estimator, a reliable method insensitive to outliers. The trend was also assessed through the innovative trend analysis, a graphical method able to detect also non-linear trend.

A preliminary assessment of the results returned by the Mann-Kendall test displayed an overall  larger presence of stations exhibiting increasing trend rather than decreasing (ratio 4:1). Moreover, the difference between the number of statistically significant increasing and decreasing trends seems to grow with the duration. These results are, in the vast majority of the cases, in accordance with the outcome returned by the ITA. The relationship between trend and elevation of the stations was investigated through means of scatterplots and non-linear tools, every technique adopted confirmed no correlation between the increasing trend in annual maxima and the altitude of the rain-gauge.  The seasonality was studied through boxplots and by observing the frequency of occurrences in each month.  At first glance, no clear trend or shift in the period of occurrences are observed. Instead, it is pretty clear how the dates of occurrence of shorter events (i.e. 1,3 hours) are concentrated in the summer months (convective events), while for longer duration the frequency of occurrence move towards the autumn months. Lastly, temperature data are getting gathered in order to investigate the possible link between annual maxima series of extremes precipitation and temperature as suggested by the Clausis-Clapeyron relationship.

How to cite: Cesarini, L. and Martina, M. L. V.: Are the short and intense precipitations in North of Italy affected by a significant trend? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17807, https://doi.org/10.5194/egusphere-egu2020-17807, 2020.

The recent decades have been characterized by a noticeable warming over most of the globe. This warming has been accompanied by a global increase in precipitation, although many regions are projected to evolve towards a dryer climate. This is the case for the flanks of the subtropical dry regions, such as the Mediterranean and, more specifically, the Iberian Peninsula

In this contribution, we use climate normal extracted from the E-OBS 20.0 gridded temperature and precipitation datasets E-OBS 20.0, from the EU-FP6 project UERRA (http://www.uerra.eu) and the Copernicus Climate Change Service, and the data providers in the ECA&D project (https://www.ecad.eu), with a resolution of 0.1 deg, to assess the evolution across three 20-year periods (1951-1970; 1971-1990 and the slightly shorter 1991-2018) of the extension occupied by the Köppen-Geiger climate types. In consonance with the observed and projected climate change, we observe an increase in the Iberian Peninsula of the extension of the dry (B) types, as replacement of the colder varieties by warmer ones.

The analysis with the gridded dataset is compared to station records corresponding to the areas which swap climate-types for validation purposes.     

 

This work has been funded by the INDECIS project. INDECIS is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Union Grant 690462).

 

How to cite: Aguilar, E.: Changes in Köppen-Geiger Climate Types in the Iberian Peninsula using the e-OBS dataset (1950-2018). , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21292, https://doi.org/10.5194/egusphere-egu2020-21292, 2020.

EGU2020-17211 | Displays | CL5.6

Comparing methods for gap filling in historical snow depth time series

Johannes Aschauer, Mathias Bavay, Michael Begert, and Christoph Marty

Switzerland has a unique dataset of long-term manual daily snow depth time series ranging back more than 100 years for some stations. This makes the dataset predestined to be analyzed in a climatological sense. However, there are sometimes shorter (weeks, months) or longer (years) gaps in these manual snow depth series, which hinder a sound climatological analysis and reasonable conclusions. Therefore, we examine different methods for filling data gaps in daily snow depth series. We focus on longer gaps and use different methods of spatial interpolation, temperature index models and machine learning approaches to fill the data gaps. We assess the performance of the different methods by creating synthetic data gaps and set the applicability of the methods in relation to the density of the available neighboring stations, elevation and climatic setting of the target station.

How to cite: Aschauer, J., Bavay, M., Begert, M., and Marty, C.: Comparing methods for gap filling in historical snow depth time series, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17211, https://doi.org/10.5194/egusphere-egu2020-17211, 2020.

EGU2020-19228 | Displays | CL5.6

Towards a long term global snow climate data record from satellite data generated within the Snow Climate Change Initiative

Gabriele Schwaizer, Lars Keuris, Thomas Nagler, Chris Derksen, Kari Luojus, Carlo Marin, Sari Metsämäki, Lawrence Mudryk, Kathrin Naegeli, Claudia Notarnicola, Arnt-Borre Salberg, Rune Solberg, Andreas Wiesmann, Stefan Wunderle, Richard Essery, David Gustafsson, Gerhard Krinner, and Anna-Maria Trofaier

Seasonal snow is an important component of the global climate system. It is highly variable in space and time and sensitive to short term synoptic scale processes and long term climate-induced changes of temperature and precipitation. Current snow products derived from various satellite data applying different algorithms show significant discrepancies in extent and snow mass, a potential source for biases in climate monitoring and modelling. The recently launched ESA CCI+ Programme addresses seasonal snow as one of 9 Essential Climate Variables to be derived from satellite data.

In the snow_cci project, scheduled for 2018 to 2021 in its first phase, reliable fully validated processing lines are developed and implemented. These tools are used to generate homogeneous multi-sensor time series for the main parameters of global snow cover focusing on snow extent and snow water equivalent. Using GCOS guidelines, the requirements for these parameters are assessed and consolidated using the outcome of workshops and questionnaires addressing users dealing with different climate applications. Snow extent product generation applies algorithms accounting for fractional snow extent and cloud screening in order to generate consistent daily products for snow on the surface (viewable snow) and snow on the surface corrected for forest masking (snow on ground) with global coverage. Input data are medium resolution optical satellite images (AVHRR-2/3, AATSR, MODIS, VIIRS, SLSTR/OLCI) from 1981 to present. An iterative development cycle is applied including homogenisation of the snow extent products from different sensors by minimizing the bias. Independent validation of the snow products is performed for different seasons and climate zones around the globe from 1985 onwards, using as reference high resolution snow maps from Landsat and Sentinel- 2as well as in-situ snow data following standardized validation protocols.

Global time series of daily snow water equivalent (SWE) products are generated from passive microwave data from SMMR, SSM/I, and AMSR from 1978 onwards, combined with in-situ snow depth measurements. Long-term stability and quality of the product is assessed using independent snow survey data and by intercomparison with the snow information from global land process models.

The usability of the snow_cci products is ensured through the Climate Research Group, which performs case studies related to long term trends of seasonal snow, performs evaluations of CMIP-6 and other snow-focused climate model experiments, and applies the data for simulation of Arctic hydrological regimes.

In this presentation, we summarize the requirements and product specifications for the snow extent and SWE products, with a focus on climate applications. We present an overview of the algorithms and systems for generation of the time series. The 40 years (from 1980 onwards) time series of daily fractional snow extent products from AVHRR with 5 km pixel spacing, and the 20-year time series from MODIS (1 km pixel spacing) as well as the coarse resolution (25 km pixel spacing) of daily SWE products from 1978 onwards will be presented along with first results of the multi-sensor consistency checks and validation activities.

How to cite: Schwaizer, G., Keuris, L., Nagler, T., Derksen, C., Luojus, K., Marin, C., Metsämäki, S., Mudryk, L., Naegeli, K., Notarnicola, C., Salberg, A.-B., Solberg, R., Wiesmann, A., Wunderle, S., Essery, R., Gustafsson, D., Krinner, G., and Trofaier, A.-M.: Towards a long term global snow climate data record from satellite data generated within the Snow Climate Change Initiative, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19228, https://doi.org/10.5194/egusphere-egu2020-19228, 2020.

EGU2020-8807 | Displays | CL5.6

Homogenization of long-term snow observations

Gernot Resch, Barbara Chimani, Roland Koch, Wolfgang Schöner, and Christoph Marty

Climate data contains vital information about the global climate system. To get the desired information out of measurements, they have to be homogenous, where the variability of a time series is only caused by variations in weather and climate and not due to external influences.

Snow is an important component of this system, treated as one of the most obvious visual evidences of climate change and important for countries with mountainous environments. But most of the existing tools and algorithms that are being used for homogenization have been developed for air temperature and precipitation, whereas their application to snow depth measurements has only been rarely attempted. Until now, there have only been smaller efforts to develop methods and tools for snow series.

We are trying to break new ground by developing innovative methods that can be applied to the homogenization of longterm snow observations, as well as to demonstrate the impact of the developed adjustments on climatologies and trends. For that, we are using daily longterm snow measurements of the two most frequently measured parameters, snow depth (HS) and new snow height (HN) from the Swiss-Austrian domain.

As a first approach, we are applying the existing methods PRODIGE for the detection of multiple inhomogeneities and INTERP for the calculation of corrections with a quantile-mapping approach on a seasonal basis on selected time series.

How to cite: Resch, G., Chimani, B., Koch, R., Schöner, W., and Marty, C.: Homogenization of long-term snow observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8807, https://doi.org/10.5194/egusphere-egu2020-8807, 2020.

EGU2020-10692 | Displays | CL5.6

PATMOS-x v6.0: Improvements to AVHRR Cloud Climate Record and Analysis of the Updated Data
not presented

Coda Phillips, Michael Foster, and Andrew Heidinger

Since 1978, an Advanced Very-High-Resolution Radiometer (AVHRR) has flown onboard 17 polar-orbiting satellites. Together, they are the longest global record from a homogeneous set of satellite sensors. The Pathfinder Atmosphere’s Extended (PATMOS-x) dataset is a long-term cloud record derived from the AVHRR radiances, and suitable for climate analysis. It has demonstrated intersensor stability and has been rigorously compared with other cloud datasets.

However, the AVHRR alone has only limited spectral information, so cloud detection during nighttime or over ice is challenging. Therefore, performance degrades over regions with extreme diurnal patterns or low temperatures such as the poles, despite our interest.

The next production version of PATMOS-x will include numerous algorithmic changes as well as the use of High-resolution Infrared Radiation Sounder (HIRS) spectral channels to improve detection accuracy in previously difficult conditions. The low-resolution HIRS soundings are upsampled to match the AVHRR pixels through an edge-preserving process called “fusion”. The higher-resolution AVHRR imagery guides the upsampling and the resulting combination is spectrally consistent with the AVHRR and has a high spatial resolution.

For cloud detection, the difference between the AVHRR and HIRS 11μm and HIRS 6.7μm brightness temperatures has been added as a feature in the naive Bayesian cloud detector. The effect on cloud precision is seen especially in the Antarctic where false-positive cloud detections have decreased dramatically.

Other cloud properties can be improved with the new spectral channels. For example, the new cloud phase algorithm uses the HIRS 6.7μm to determine cloud phase and the AVHRR and HIRS 11μm-13.3μm beta ratio identifies overlapping clouds. Also, the 11μm, 12μm, and HIRS 13.3μm are used in the new cloud height algorithm.

We report on the development of this new version of the PATMOS-x cloud climate dataset, and the methods used to calibrate and homogenize the participating sensors. Finally, observed trends in the improved dataset will be examined and related to the old dataset. In particular, attention will be given to whether high-latitude analysis of climatic trends is finally possible on the new dataset.

How to cite: Phillips, C., Foster, M., and Heidinger, A.: PATMOS-x v6.0: Improvements to AVHRR Cloud Climate Record and Analysis of the Updated Data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10692, https://doi.org/10.5194/egusphere-egu2020-10692, 2020.

EGU2020-14019 | Displays | CL5.6

Challenges in creating and exemplary applications of two cross-repository data compilations on sedimentary pollen and permafrost soil temperature

Mareike Wieczorek, Birgit Heim, Thomas Böhmer, Nadine Gebhardt, Annett Bartsch, and Ulrike Herzschuh

Large scale analyses of climatic or ecological data are important to understand complex relationships. Often, such data are available in open repositories or national measurement programmes, others are only made available via the responsible researcher. However, merging data from various sources is often not straightforward, due to issues with the data itself or the metadata. Nevertheless, the application of such compilations offers various possibilities. In our working group, two large-scale compilations are currently constructed and applied. The Northern Hemispheric Pollen Compilation consists of data from NEOTOMA, European Pollen Database (EPD), PANGAEA and various authors. With the help of this compilation, we reconstruct climate and vegetation of large spatial and temporal scales. The circumpolar soil temperature dataset consist of data from the Global Terrestrial Network for Permafrost (GTN-P), Roshydromet, PANGAEA, Nordicana D and the National Science Foundation (NSF) Arctic Data Center. In its first version, the compilation has already been successfully applied to validate the ESA CCI Permafrost soil temperature map.

The various sources of errors and problems will be shown by the two compilations of (i) sedimentary pollen data and (ii) soil temperature data. The most general problem and error source are wrong or inaccurate coordinates. These errors arise out of coordinates provided with two decimals only, wrong conversion of DMS to decimal format, wrong coordinates etc. For most analyses, the most exact geographic position is a prerequisite, as e.g. lake size is an important parameter when reconstructing vegetation out of sedimentary pollen data. Sedimentary pollen records not located in a lake according to their given location thus need manual reposition according to the main researcher of a dataset or satellite maps. Further challenges concerning the pollen dataset pose various naming conventions or variable resolution in time. Furthermore, taxonomic resolution varies between datasets, making homogenization necessary.

But also for the soil temperature dataset, extensive checks were necessary, as even quality checked data comprise erroneous values. Furthermore, measured depths vary between datasets. For easy comparisons of soil temperature simulations against data, standardized depths were extracted. In a future step, interpolations between measured depths will help the end-users to extract the exactly needed depths and a compilation of available metadata on e.g. surrounding vegetation and borehole stratigraphy shall be provided.

All compilations will be made available on public repositories.

How to cite: Wieczorek, M., Heim, B., Böhmer, T., Gebhardt, N., Bartsch, A., and Herzschuh, U.: Challenges in creating and exemplary applications of two cross-repository data compilations on sedimentary pollen and permafrost soil temperature, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14019, https://doi.org/10.5194/egusphere-egu2020-14019, 2020.

EGU2020-19368 | Displays | CL5.6

Performance assessment of data reconstruction and correction in meteorological timeseries

Mathias Bavay, Joel Fiddes, and Johannes Aschauer

Models that consume meteorological data have often requirements that are quite incompatible with the realities of continuously measured data: they require gapless data when datasets have gaps, they require sampling rate matching the phenomena of interest when datasets use a sampling rate dictated by energy and storage capacities, they require ‘perfect’ data when sensors have flaws.

 

The MeteoIO library [1] has been designed to solve this discrepancy as a meteorological data pre-processing library for numerical models (as well as other applications consuming such data), able to read measured data from a variety of sources and to standardize it into a unique representation (parameters naming and units) as well as filter, correct, resample and spatially interpolate it according to the end user’s configuration. From its very beginning, it aimed to be a toolbox that allows the user to choose from a large panel of published methods for each of the processing steps

 

Unfortunately, until now there has been no systematic assessment of the performance of the available methods nor recommendations on best strategies. Based on an extensive network of Automatic Weather Stations (AWS) located around Davos, Switzerland, we present our preliminary recommendations for data reconstruction and corrections. Artificially degraded data allow us to compare the reconstruction with the original data, either exclusively based on the local data or by using neighboring stations. The high quality instruments available at Davos Weissfluhjoch (2536m a.s.l.) similarly allow us to compare various correction methods applied to the simpler kind of sensors normally found on regular AWS.

 

 

[1] Bavay, M. and Egger, T., "MeteoIO 2.4.2: a preprocessing library for meteorological data", Geosci. Model Dev., 7, 3135-3151, doi:10.5194/gmd-7-3135-2014, 2014.

How to cite: Bavay, M., Fiddes, J., and Aschauer, J.: Performance assessment of data reconstruction and correction in meteorological timeseries, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19368, https://doi.org/10.5194/egusphere-egu2020-19368, 2020.

CL5.7 – Climate Services - Underpinning Science

EGU2020-19725 | Displays | CL5.7 | Highlight

C3S: current status and future plans

Carlo Buontempo

This years marks the end of the first delegation agreement between the Eurpean Commission and ECMWF for the implementation of the Copernicus Climate Change Service. In the last five years the service was first established, then opened the Climate Data Store and finally became operational attracting the attention of over 30.000 users from all over the world who access tens of global dataset and dowload data at a rate of 50 TB/day to develop climate services.

The paper presents the current status of the implementation of the programme and illustrate some of the options -including changes in the portfolio of the programme- that are currently being considered for the evolution of the service in the future.

How to cite: Buontempo, C.: C3S: current status and future plans, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19725, https://doi.org/10.5194/egusphere-egu2020-19725, 2020.

EGU2020-21808 | Displays | CL5.7

Climate monitoring products for Europe based on Surface in-situ Observations

Else van den Besselaar, Gerard van der Schrier, Ole Einar Tveito, Francesco Isotta, Phil Jones, Barbara Chimani, Monika Lakatos, Peter Bissolli, and Petr Stepanek

This C3S service provides various observational surface in-situ datasets for Europe. Its core builds on the European Climate Assessment and Dataset (ECA&D) and the gridded E-OBS daily datasets for Europe. The pan-European E-OBS datasets for temperature, precipitation and sea level pressure are now available as ensemble datasets. Additional gridded datasets for other Essential Climate Variables are developed, like global radiation, wind speed and relative humidity. Next to the pan-European datasets, regional datasets for the Nordic, Alpine and Carphatian regions are available.

Climate monitoring products such as the indices defined by the Expert Team on Climate Change Detection and Indices (ETCCDI) are
available. Within this service, uncertainty estimates are provided as well for the pan-European datasets and indices.

All the information from these datasets and indices will flow into monthly State of the Climate reports which are available around the
25th of the next month from the dedicated portal for this service. The annual State of the Climate reports are created more centrally within
C3S and this service provides input for that report as well.

 

How to cite: van den Besselaar, E., van der Schrier, G., Tveito, O. E., Isotta, F., Jones, P., Chimani, B., Lakatos, M., Bissolli, P., and Stepanek, P.: Climate monitoring products for Europe based on Surface in-situ Observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21808, https://doi.org/10.5194/egusphere-egu2020-21808, 2020.

As basis of climate change adaptation, good quality climate data and information is required, however, they are very often costly or difficult to access. The Climate Data Store (CDS) developed within Copernicus Climate Change Service aims to bridge the gap between data providers and users by ensuring a freely available, quality-assured information about the past, present and future climate. In order to make users familiar with the CDS, a national training event was organized in Hungary that contained two online webinars and a face-to-face workshop (October 2019). Researchers, lecturers, consultants and stakeholders from the field of agriculture, forestry, water management and environmental engineering have learned how climate data can be properly selected, analyzed and interpreted to address their climate change adaptation challenges. For their own adaptation case studies they tested the applicability of CDS and discussed the experiences in multidisciplinary teams.

Main feedbacks of the participants are:

  • The concept of CDS is welcome and relevant to their work. Provided climate variables are easily accessible and well documented.
  • For sectoral application, the country specific adaptation issues would require high spatial resolution (regional and local scale time series) and bias corrected model results instead of the currently available GCM outputs.
  • The Toolbox associated with the CDS should be more user friendly. At the moment (October 2019) high programming skills are essential to derive praxis-based extreme indices and create country-scale maps and graphs.
  • The e-learning material on the Learning Experience Platform contains carefully structured background knowledge to the sources, characteristics and proper application of climate data.

Further toolbox improvements driven by the user needs and the ongoing development of Sectoral Information Systems will significantly increase the applicability of the CDS for climate risk analyses and adaptation support in Hungary.

 

Acknowledgements: the training event was supported by the European Union Copernicus Climate Change Service and the Hungarian Meteorological Service.

How to cite: Gálos, B. and Lehoczky, A.: Copernicus Climate Data Store: ready for application in adaptation case studies? – experiences of the training workshop in Hungary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7417, https://doi.org/10.5194/egusphere-egu2020-7417, 2020.

EGU2020-8926 | Displays | CL5.7

Co-developing climate services with local agents: The INDECIS Snow Tourism Index

Jon Xavier Olano Pozo, Anna Boqué Ciurana, Alba Font Barnet, Antonio Russo, Òscar Saladié Borraz, Salvador Anton-Clavé, and Enric Aguilar

Meteorological conditions determine the viability and competitiveness of socio-economic activities of any territory for many sectors, like those earmarked as priority areas in the Global Framework for Climate Services (GFCS). Yet, although the tourist sector is not one of those, the INDECIS project does include it.

Climate services, understood as the transmission of processed information from meteorological and climatological data in a way that becomes useful for the end-user in the decision-making process, should be useful to trigger actions that adapt tourism activity to long-term trends and sudden changes of the competitive context, or else mitigate the effects that tourism generates on climatic conditions.

In the framework of INDECIS project, researchers have been carried out different workshops for co-designing climate services in five European tourism destinations. The destination cases have the purpose of responding to the design of climate services taking into account the participation of different stakeholders in vulnerable destinations to Climate Change.  As the main output, it has been developed different sectoral tourism indexes, which allow defining the optimum conditions to carry out tourism activities (snow tourism, sun & beach tourism, cultural tourism and outdoor tourism).

The present research shows the preliminary results of the INDECIS Snow tourism Index (ISTI) through the case study of Jacetania’s County (Aragon Pyrenees).  The ISTI has been co-created with the participation of local stakeholders, the Destination Management Organization (DMO), companies and end-users. Meanwhile, the economic value has been tested with tourism data from the destination, specifically offer and supply regarding the snow tourism activities. 

In this sense, the STI is made of three-dimensional perspectives: definition of meteorological conditions that condicionate the snow tourism (1), inclusion of other local variables, such as accessibility, infrastructures and characteristics of the ski stations (2), and consideration of the dynamics and seasonality of the destination (3). The first facet is essential for all users while the second facet is giving value specifically to skiers and the third facet is very useable as a planning tool for DMOs.

The results allow validating the used methodology for the co-creation of climate services in the tourism sector. Concretely, the STI is a sectorial meteorological index for snow tourism in the Pyrenees’ Region. This index, that complements the Tourism Climate Index (TCI) and Holiday Climate Index (HCI), is based on the qualitative data received from the local agents and quantitatively transformed into a three-dimensional index for different users.

Acknowledgments: INDECIS is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Union Grant 690462).

How to cite: Olano Pozo, J. X., Boqué Ciurana, A., Font Barnet, A., Russo, A., Saladié Borraz, Ò., Anton-Clavé, S., and Aguilar, E.: Co-developing climate services with local agents: The INDECIS Snow Tourism Index , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8926, https://doi.org/10.5194/egusphere-egu2020-8926, 2020.

EGU2020-8455 | Displays | CL5.7

Best practises and lessons learnt from AQUACLEW

Christiana Photiadou, Lorna Little, Peter Berg, Rafael Pimentel, Maria Jose Polo, Torben Sonnenborg, Ernesto Pasten-Zapata, Vazken Andréassian, Johaness Lückenkötter, Philip Kruse, David Leidinger, Andreas Huber, Stefan Achleitner, Andrea Lira Loarca, and Berit Arheimer

AQUACLEW (Advancing Data Quality for European Water Services) is an ERA4CS project with the overall goal to improve quality of climate services. The project brings together nine European organisations, with different experience and expertise in developing climate services, providing data and collaborating with users. The project aims to investigate how to increase user uptake in a broad community using general information from a web interface, as well as tailored user-specific decision-support in seven case studies across Europe. Additionally, we track our ‘climate friendliness’ throughout the project.

AQUACLEW uses innovative research techniques and integrated co-development with users to advance the quality and usability of climate services for a number of water related sectors. We pose the following research questions: 1) how do we improve co-development to better incorporate multiple user feedbacks along the entire climate service production chain, from research to production, service use and decision making? 2) How should data, quality-assurance metrics and guidance be tailored along the whole data-production chain to closer meet user requirements, including resolution and precision?

Firstly, initial results show that the iterative approach between providers and users of data, demands confidence building through active engagement and involvement of experts to think on different pathways of action for users to interact with climate services and to integrate climate projections into their practice. To facilitate this interaction a number of online activities were designed:  a guided-tour for the climate service, feedback loops, and game-like activities were included in the meetings with focus groups.

Secondly we focused on investigating how data, quality-assurance metrics and guidance could be tailored along the whole data-production chain to closer meet user requirements, through three different experiments following different protocols. Protocols were developed for differentiated split sample testing in hydrological models and bias adjustment methods, and an expert elicitation. All three protocols were applied across four of seven case studies that had common factors to test the improvements of data production. The protocols had a strong impact through improved data quality in impact assessments for climate change adaptation in water management, thus decision-making can be better supported.

Lastly, we found preliminarily that ‘climate friendly’ efforts have provoked regular discussions within the consortium, suggestions for new ways to be climate friendly, challenges to travel by train and to find online solutions.

How to cite: Photiadou, C., Little, L., Berg, P., Pimentel, R., Jose Polo, M., Sonnenborg, T., Pasten-Zapata, E., Andréassian, V., Lückenkötter, J., Kruse, P., Leidinger, D., Huber, A., Achleitner, S., Lira Loarca, A., and Arheimer, B.: Best practises and lessons learnt from AQUACLEW, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8455, https://doi.org/10.5194/egusphere-egu2020-8455, 2020.

EGU2020-1532 | Displays | CL5.7

Options and challenges for collaboration on climate service related activities at KNMI and KMI

Janette Bessembinder and Rozemien De Troch

National meteorological institutes have generally a longstanding scientific expertise in climate research, climatological observations, and state-of-the-art climate modelling. In the context of climate change this expertise and service provision of climatic data, information and knowledge is of crucial importance to meet the societal needs. Furthermore, in each country the provision of climate services is generally arranged differently and strongly determined by governance, the official strategy and tasks of the meteorological institutes, as well as financing.

To better align the activities between national climate service providers, the Royal Netherlands Meteorological Institute and the Royal Meteorological Institute of Belgium successfully applied for the ERA4CS action for the exchange of staff, aiming to contribute to the alignment of R&D programmes, tools/instruments and/or climate related agendas of both countries.

In the context of climate services, previous interactions between both institutes are mainly related to sporadically contacts between scientists in need of climatological data or information on methods for the definition of e.g. climate scenarios. However, Belgium and the Netherlands are neighbouring, both small countries, and climate change doesn’t stop at the border. Furthermore, coastal and inland regions along the borders are yet very sensitive to the impacts of climate change, and thus might cause cross-border issues in the future.

Therefore, a two-way visit of senior staff responsible for climate services in both institutes is planned for early 2020. The visits aim to identify the differences and similarities on how climate services are currently provided and the broader context in which climate services are developed and delivered (legal mandate, what other organisations deliver climate services, relation with policy e.g. National Adaptation Strategies). More specifically, the services related to both current and future climate conditions (i.e. climate scenarios), the respective impact sectors and users/stakeholders of the climate services and the interaction with them, the used tools and methods for the creation of climate services, and the outreach and communication strategies for climate services will be discussed through informal interactions, meetings and presentations.

An overview of these discussions together with conclusions on how climate-service related actions can be aligned and consolidated within future collaborations, will be presented.

How to cite: Bessembinder, J. and De Troch, R.: Options and challenges for collaboration on climate service related activities at KNMI and KMI, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1532, https://doi.org/10.5194/egusphere-egu2020-1532, 2020.

EGU2020-10071 | Displays | CL5.7

How to co-produce climate services in collaboration with users? Insights from a story map development process.

Bente Vollstedt, Jana Koerth, and Athanasios Vafeidis

The actual use of climate services depends on the identification of real user needs and their integration into the service. Thus, for the production of climate services user involvement is a vital component. Descriptions of practical approaches in the scientific literature are rare but necessary in order to gain better user insights and to improve the user-provider interface. In the frame of the ERA4CS project EVOKED, we apply the user-centered Living Lab approach to develop climate services with the objective to support the coastal adaptation process in Flensburg, a city vulnerable to coastal flooding due to sea-level rise. The aim is to transform climate information into valuable and useable climate services for users. In the beginning of the project we identified the climate service user needs of the community. Thereafter, we co-produced a web-based story map in collaboration with the users, as an information tool for the general public. The story map includes information on sea-level rise and its potential impacts and displays information on relevant adaptations options. For the production process of the story map we started with a compilation phase by drafting a first version of the story map from the providers’ perspective, followed by a demonstration and online feedback phase with user involvement. Based on the received feedback, we adjusted the story map to meet user needs. Results showed the need for clearer visualization of e.g. exposed locations in the city and more detailed information on adaptation measures. Preliminary findings indicate that the active provider-user interaction for the climate service may lead to long-term adaptation action.

How to cite: Vollstedt, B., Koerth, J., and Vafeidis, A.: How to co-produce climate services in collaboration with users? Insights from a story map development process. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10071, https://doi.org/10.5194/egusphere-egu2020-10071, 2020.

EGU2020-19882 | Displays | CL5.7

ICEWISE: A game to test the effects of sea ice forecast reliability on voyage planners’ confidence

Berill Blair, Malte Muller, Cyril Palerme, Rayne Blair, David Crookall, and Machiel Lamers

A group of scientists in a multi-national consortium have worked together to improve climate services for maritime actors in Arctic waters. The consortium under the project Enhancing the Saliency of climate services for marine mobility Sectors in European Arctic Seas (SALIENSEAS) running 2017-2020, has aimed to coproduce improved (sub)seasonal sea ice forecast and iceberg detection services. The project involved metservice experts and end users to collaboratively explore ways in which forecast services can reduce uncertainties for stakeholders.

However, direct questioning about perceived risks and uncertainties during operations do not always lend themselves well to traditional inquiries such as self-report surveys. Stakeholders can and do experience difficulty accurately recalling and rating past perceptions and connecting them to varying environmental conditions. As an alternative, experiential approaches such as participatory simulation are able to furnish a reliable environment that facilitates replication, experimenting and learning.

We present a novel approach with which to explore effects from the reliability of sub-seasonal sea ice forecasts on the user’s perception of uncertainties. Our methods combine anticipatory methods through the use of scenarios with participatory simulation in a computerized simulation/game called ICEWISE. In our paper we will:

  • introduce the game and the newly developed seasonal sea ice forecast
  • present results from a gaming workshop conducted with experts in Arctic marine operations
  • discuss the role of full and structured debriefing in maximizing the learning that takes place during gaming sessions

To conclude, we reflect on the upcoming stages of data collection, which will culminate in an exploratory model. The model will serve to inform sea ice service providers about the potential mediating effects deriving from the reliability of sea ice forecasts on the user’s own perceived confidence in successful voyage planning.   

How to cite: Blair, B., Muller, M., Palerme, C., Blair, R., Crookall, D., and Lamers, M.: ICEWISE: A game to test the effects of sea ice forecast reliability on voyage planners’ confidence, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19882, https://doi.org/10.5194/egusphere-egu2020-19882, 2020.

EGU2020-8553 | Displays | CL5.7

Singular Extreme Events and Their Attribution to Climate Change: A Climate Service–Centered Analysis

Aglae Jezequel, Vivian Dépoues, Hélène Guillemot, Amélie Rajaud, Mélodie Trolliet, Mathieu Vrac, Jean-Paul Vanderlinden, and Pascal Yiou

Extreme event attribution (EEA) proposes scientific diagnostics on whether and how a specific weather event is (or is not) different in the actual world from what it could have been in a world without climate change. This branch of climate science has developed to the point where European institutions are preparing the ground for an operational attribution service. In this context, the goal of this article is to explore a panorama of scientist perspectives on their motivations to undertake EEA studies. To do so, we rely on qualitative semi-structured interviews of climate scientists involved in EEA, on peer-reviewed social and climate literature discussing the usefulness of EEA, and on reports from the EUCLEIA project (European Climate and Weather Events: Interpretation and Attribution), which investigated the possibility of building an EEA service. We propose a classification of EEA’s potential uses and users and discuss each of them. We find that, first, there is a plurality of motivations and that individual scientists disagree on which one is most useful. Second, there is a lack of solid, empirical evidence to back up any of these motivations.

How to cite: Jezequel, A., Dépoues, V., Guillemot, H., Rajaud, A., Trolliet, M., Vrac, M., Vanderlinden, J.-P., and Yiou, P.: Singular Extreme Events and Their Attribution to Climate Change: A Climate Service–Centered Analysis , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8553, https://doi.org/10.5194/egusphere-egu2020-8553, 2020.

EGU2020-151 | Displays | CL5.7

Climate Services for Improving Society's Resilience in China

Yujie Wang and Lianchun Song

EGU2020-152 | Displays | CL5.7

Climate Services for Meteorological Disaster Risk Reduction in China

Lianchun Song and Yujie Wang

EGU2020-1624 | Displays | CL5.7

Developing Prototype Climate Services in CSSP China

Jennifer Weeks, Stacey New, Tyrone Dunbar, Nicola Golding, and Chris Hewitt

There is an increasing demand for tailored climate information to feed into decision making. At the UK Met Office, we are responding to this need through work in the Climate Science for Services Partnership (CSSP) China, a scientific research programme in collaboration with the China Meteorological Administration and the Institute of Atmospheric Physics at the Chinese Academy of Sciences. We are applying a full cycle of prototyping to a range of new and existing climate services for priority sectors in China, such as food security and urban hotspot satellite mapping, using leading climate research to co-develop useful and useable climate services.

Recent research in food security has produced a toolkit for risk to crop production across multiple regions in China. We are now evolving the accessibility and communication of this information with decision-makers to enable delivery of this service to the appropriate end-user groups. We are also working to tailor urban hotspot satellite data to specific users, for instance the health sector, to identify and inform vulnerable populations. Through appropriate user engagement, such as workshops, surveys and interviews, we are exploring specific stakeholder requirements to pull-through science to services. This work has wider implications in having the potential to feed into important adaptation decisions and to demonstrate the effectiveness of the cycle of prototyping.

How to cite: Weeks, J., New, S., Dunbar, T., Golding, N., and Hewitt, C.: Developing Prototype Climate Services in CSSP China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1624, https://doi.org/10.5194/egusphere-egu2020-1624, 2020.

EGU2020-11564 | Displays | CL5.7

Climate services for water resources – the Australian experience

Louise Wilson, Chantal Donnelly, Pandora Hope, Elisabeth Vogel, Wendy Sharples, Justin Peter, Sri Srikanthan, Ulrike Bende-Michl, Margot Turner, Vjeko Matic, Julien Lerat, Robert Pipunic, Andrew Frost, Ashkan Shokri, Alison Oke, and Jannatun Nahar

Climate change is already impacting on Australian water resources with step changes in rainfall regimes, changes in catchment functioning and drier, hotter conditions creating major challenges for water resource management.  Water resources in most parts of the country are influenced by high interannual variability. Thus Australia's operational water management, as well as water policy and infrastructure development decisions require high resolution information that realistically defines this variability both for the past, at seasonal scales, and into the future.

In Australia, water information accounting for climate change that is available to planners and resource managers, exists for limited geographical regions such as single catchments, urban regions or states. It is typically sourced from multiple regional downscaling efforts and using different methods to interpret this data for hydrological impacts. These regional downscaling and hydrological impact data collections are either not application-ready or tailored for specific purposes only, which poses additional barriers to their use across the water and other sectors. The needs of the water sector in managing this resource over vast river basins which cross jurisdictional boundaries, such as the Murray Darling Basin, have provided a challenge for providers of climate projection information and climate services. Consistent, agreed upon approaches across impacts at the national scale are yet to be developed. However, an accessible and consistent set of climate projections for water will help ensure that climate change risks are properly factored into decision-making in the water sector.

The Australian Bureau of Meteorology is developing a seamless national landscape water service, combining historical data on water availability with forecast products, as well as hydrological impact projections. This system uses a consistent methodology based upon the Australian Water resources Assessment (AWRA-L) hydrological model across all time scales. Once delivered, these new products will contribute towards comparable water services for the water, agricultural, energy, and other sectors, providing data across timescales. From a user's perspective the service will facilitate understanding of both past and future variability across multiple timescales of interest including the associated impacts of a changing climate. Providing a seamless service will improve operational decision making by putting short- and medium-term forecasts in the context of the past and future climate variability. Operational decision making can therefore be better integrated with longer-term strategic decision making on climate change.

For services to meet user needs they must be designed in consultation with these users. An extensive user centred design (UCD) process underpins the scope and nature of the new service. Insights will be shared from the UCD outcomes including user-defined data requirements of past and future variability. Users clearly expressed needs for guidance material and information about skill, confidence and uncertainty to accompany and contextualise climate information which is a major focus of this seamless water service. To engage users and ensure useful outputs, co-design principles are being employed as part of the confidence and uncertainty assessment process to be undertaken as part of the hydrological projections service, which will underpin development of guidance to assist users navigate multiple datasets.

How to cite: Wilson, L., Donnelly, C., Hope, P., Vogel, E., Sharples, W., Peter, J., Srikanthan, S., Bende-Michl, U., Turner, M., Matic, V., Lerat, J., Pipunic, R., Frost, A., Shokri, A., Oke, A., and Nahar, J.: Climate services for water resources – the Australian experience, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11564, https://doi.org/10.5194/egusphere-egu2020-11564, 2020.

EGU2020-12024 | Displays | CL5.7

System for supporting detailed implementation plan on measures for adaptation to climate change of local governments

Huicheul Jung, Jaeuk Kim, Insang Yu, and Sung-Hun Lee

It is mandatory to establish a detailed implementation plan on measures for adaptation to climate change of local governments, based on the Article 48 of the Framework Act on Low Carbon, Green Growth and Article 38 of the Enforcement Decree of the same Act of South Korea. However, it is difficult for local governments to establish such detailed implementation plan due to high budget spending, lack of experts in climate change field and the shift in cyclical positions of government officials. The Korea Adaptation Center for Climate Change(KACCC) has developed a system for supporting local governments to overcome the difficulties. The system provides integrated data regarding climate change adaptation, such as general information, current status and prospect of climate change, climate change impact analysis, vulnerability and risk assessment to climate change using VESTAP (Vulnerability Assessment Tool to Build Climate Change Adaptation Plan) for each region. Based on the integrated information regarding adaptation to climate change, local governments conduct a survey targeting general public, civil servants, experts, etc. using the questionnaire on adaptive awareness provided by the system. Each local government can analyze the information and inventory of adaptation measures and diagnose the policies to establish detailed implementation plans for each sector. By establishing the system, it is expected to support government officials’s task through standardization and automation of detailed implementation plans and reduce budget and time required for data collection and analysis. It is possible to improve the quality and maintain the consistency of plans by local governments. The system also supports decision making by rapid and reasonable adaptation measures leading to establishing highly effective and managed implementation plans for local governments.

※ This work was supported by Korea Environment Industry & Technology Institute(KEITI) through Climate Change Correspondence Program, funded by Korea Ministry of Environment(MOE)(2018001310004).

How to cite: Jung, H., Kim, J., Yu, I., and Lee, S.-H.: System for supporting detailed implementation plan on measures for adaptation to climate change of local governments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12024, https://doi.org/10.5194/egusphere-egu2020-12024, 2020.

EGU2020-20393 | Displays | CL5.7

From climate projections to climate change services in Australia – retrospective and future directions

John Clarke, Karl Braganza, Geoff Gooley, Michael Grose, and Louise Wilson

Australia is the World’s driest inhabited continent. It is highly exposed to the impacts of climate change: surrounded by sensitive marine ecosystems including the Great Barrier Reef, vulnerable to tropical cyclones and changing monsoonal patterns in the north, experiencing declining rainfall and runoff in the heavily populated southern and eastern parts of the country, and subject to increasingly severe bushfires. The ever-present flood, drought and bushfire cycles have historically motivated government investment in programs that aim to understand the nation’s climate and its drivers, and to inform adaptation planning and disaster risk management.

Accordingly, the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Bureau of Meteorology (BoM) have been at the forefront of understanding Australia’s past and future climate for four decades.

The most recent national climate projections were published in 2015. These focussed on the needs of the natural resource management sector and represented a first step towards delivery of climate change services tailored to the sector’s needs. Products included decision support tools and provision of training for capacity building. A key component of the research program was stakeholder engagement from inception. The resultant Climate Change in Australia website (www.climatechangeinaustralia.gov.au) and Help Desk represented the most ambitious steps to date towards a comprehensive Australian climate change service, and were a first attempt at user-driven information delivery.

Now five years on, users' needs have evolved substantially. Key drivers of this include: (1) the Paris Agreement (2015) to limit global temperature rise to below 2.0°C (ideally below 1.5°C) above pre-industrial levels, (2) implications of the Taskforce for Climate-related Financial Disclosures (TCFD, 2017), and (3) IPCC Special Reports. This has occurred on top of a trend towards increasingly sophisticated uses of climate projections datasets for decision-making. Existing products do not meet all user needs. There is a pronounced ‘pull’ from users of climate projections for sector-specific "decision-relevant" information for risk-management decisions. The cross-jurisdictional impacts of climate change have also resulted in a need for authoritative, standardized and quality-assured climate scenarios for the entire country, to facilitate whole of sector, cross-agency and multi-sector responses and adaptation. As Lourenco et al (2016) said, climate change services for Australia need to shift from “science-driven and user informed services to user-driven and science informed services.”

There is increased emphasis on sector-specific tools that aim to provide decision-relevant information and underpinning datasets. An ongoing challenge is the need to enable the uptake of climate information in decision-making. This necessitates a skill uplift on the user side. To date, efforts have focused on the water, finance, energy, and indigenous land management sectors. Increasingly, the focus within Australia is on working together across jurisdictional boundaries to provide nationally consistent information; with enhanced transparency drawing upon climate science resources within universities and all levels of government. Strong partnerships with the private sector are also needed in order to deliver to burgeoning demand. Success will require genuine co-design, co-production and co-evaluation of sector-specific products with a suite of support services appropriate to the needs of diverse users.

How to cite: Clarke, J., Braganza, K., Gooley, G., Grose, M., and Wilson, L.: From climate projections to climate change services in Australia – retrospective and future directions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20393, https://doi.org/10.5194/egusphere-egu2020-20393, 2020.

EGU2020-7046 | Displays | CL5.7

Turn climate information into value for the Mediterranean wine sector: the MED-GOLD potential

Alessandro Dell'Aquila and the the MED-GOLD Wine Service Team

MED-GOLD is an EU-funded Horizon 2020 project (https://www.med-gold.eu/) whose main objective is to demonstrate the proof-of-concept for climate services in agriculture by developing case studies for three staples of the Mediterranean food system: grapes, olives and durum wheat.

MED-GOLD will propose climate services deploying forecast information at seasonal (next 6 months) and long-term (next 30 years). This information will be provided at higher spatial resolution than what is currently available. To provide the highest value for decision-making, the services will be co-developed with professional users from each sector.

For the wine sector, the project objective is to use the most recent state-of-the-art climate models outputs to produce user-oriented predictions of essential climate variables, bioclimatic indicators  and ad-hoc implemented compound risk indices. All of these indices  are relevant for viticulture at large scales, and more specifically for the MED-GOLD focus region of the Douro valley (Portugal). The indices  will be readily available for users in the grape and wine sector under several different formats and visualizations, allowing for easy, quick and seamless integration into critical decision-making.

Timely warnings of when climate change might impose a disruptive pressure upon wine production systems offers stakeholders a chance to act proactively both at seasonal (operational campaign planning) and decadal (strategic business planning) time-scales, making the wine sector more resilient to the impacts of climate change.

How to cite: Dell'Aquila, A. and the the MED-GOLD Wine Service Team: Turn climate information into value for the Mediterranean wine sector: the MED-GOLD potential, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7046, https://doi.org/10.5194/egusphere-egu2020-7046, 2020.

EGU2020-20694 | Displays | CL5.7

Yield prediction of durum wheat: the added value of MED-GOLD climate services products

Riccardo Dainelli, Sandro Calmanti, Massimiliano Pasqui, Edmondo Di Giuseppe, Chiara Monotti, Cesare Ronchi, Marco Silvestri, Chihchung Chou, Nube Gonzalez, Raul Marcos, and Piero Toscano

Early within-season weather conditions forecast and yield prediction can provide useful information to improve farmers' management decisions and to create a unique opportunity for implementing new solutions to specifically address key aspects of agricultural systems.

Within the aims of the EU funded Horizon 2020 MED-GOLD project (https://www.med-gold.eu/), a durum wheat case study has been established to assess an innovative climate service tools for the management of climate risks and to increase yield and reduce potential risk.

In this study, the added value of seasonal forecast was assessed by looking at the historical yield data and by comparing the data provided by climate service tool with traditional crop forecasting systems.

For three hot spot areas (Ravenna, Ancona, and Foggia), the skills of the ECMWF-System5 seasonal time-scale forecasting provided through the Copernicus Data Store (CDS) were evaluated as a driver to the crop modeling system DELPHI, to test their added value to durum wheat yield prediction.

Initially, the DELPHI model was run with observed daily weather data from sowing to harvest to obtain the reference yield. Then, yield predictions were calculated at a monthly time step, starting from February 1st and April 1st, by feeding the model with synthetic weather scenarios based on historical observations (dry, average, wet scenario - current mode) and with weather seasonal forecast (new tool) until the end of the growing season. Results for yield prediction on the basis of the current DELPHI System (historical scenarios) and on the basis of seasonal forecast (25 ensembles) were compared against reference yield.

For Foggia and Ancona, in low yielding crop years and 4 months before harvest, the mean yield prediction based on the new DELPHI System tool show lower normalized root mean square error values (nRMSE) than yield predictions based on the current DELPHI system, while the latter performs better 2 months before harvest. The opposite conditions arise for the Ravenna area: lower nRMSE for the current DELPHI system 4 months before harvest and lower nRMSE for the new DELPHI system 2 months before harvest.  In high yielding crop years, the new DELPHI system performs better than the current one in all the study areas both 4 and 2 months before harvest, except in Foggia where the current DELPHI system shows lower nRMSE 2 months before harvest. In general, the availability of unbiased data slightly improved the yield forecast, with the best result achieved for the high yielding crop year in Ancona, where 2 months before harvest the nRMSE dropped from 20.3% (biased) to 9.3% (unbiased). Based on these first promising results this benchmarking framework will be extended over a wider study area and for the full reanalysis temporal coverage.

How to cite: Dainelli, R., Calmanti, S., Pasqui, M., Di Giuseppe, E., Monotti, C., Ronchi, C., Silvestri, M., Chou, C., Gonzalez, N., Marcos, R., and Toscano, P.: Yield prediction of durum wheat: the added value of MED-GOLD climate services products, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20694, https://doi.org/10.5194/egusphere-egu2020-20694, 2020.

EGU2020-21609 | Displays | CL5.7

Valuing climate services: experiences from the CLARA project

Elisa Delpiazzo and Francesco Bosello

This presentation aims to discuss some issues regarding the role of the economic evaluation of climate services in the context of the Horizon 2020 CLARA project.

CLARA provides 14 innovative services based on a co-development approach involving service producers and specific final users. In this context, the first issue is the role of the evaluation in the co-development framework. Our understanding suggests that it cannot be one of the last steps in the process, but a preliminary evaluation should be presented in the co-design of the service. For this reason, we advise the use of the “maximum likely value” as a signal for both developers and users. It derives from a comparison between the values of two alternative knowledge sources (i.e. one other than the climate service and the other as a 100% skill climate service). The “maximum likely value” provides a benchmark against which to compare the final product. It gives insights to the producer how to improve the service, while the final user has a direct and understandable measure of likely benefits from climate service adoption. This directly supports a higher engagement of the final user, whose participation is essential in developing the service as well as in gathering information for the evaluation.

Moreover, the final user’s participation has a strong impact in assessing how the services enter the decision- making process that is sometimes an obscure issue in the internal dynamic of the organizations. Recognizing a benefit stimulate the discussion on how the tool may be used internally. This sometimes leads to changes in the service design to meet better the users’ requirements. Another critical issue is the final user’s ability to translate into actions the signals of the climate services as well as to predict and quantify costs and benefits of actions based on climate services forecasts.

All these issues are discussed presenting examples from the CLARA project, especially from a set of services related to renewable energy production and water management.

How to cite: Delpiazzo, E. and Bosello, F.: Valuing climate services: experiences from the CLARA project, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21609, https://doi.org/10.5194/egusphere-egu2020-21609, 2020.

EGU2020-21184 | Displays | CL5.7

Seasonal predictions of energy-relevant Essential Climate Variables through Euro-Atlantic Teleconnections

Irene Cionni, Llorenç Lledó, Franco Catalano, and Alessandro Dell’Aquila

Accurate and reliable information from climate predictions at seasonal time-scales can have an essential role to anticipate climate variability affecting supply of renewables energy and to stabilize and secure the energy network as a whole. A number of recognized modes of variability -often called teleconnections- explain a large part of Earth’s climate variations and represent an important source of climate predictability. The leading atmospheric variability modes in the Euro-Atlantic sector (EATC) affect surface variables such as 2 meters temperature, solar radiation downward, and surface wind anomalies in Europe.

Characterizing EATC in observations and assessing their simulation and prediction and their impact on the energy sector can help to better understand patterns of seasonal-scale inter annual variability in renewables resources and to consider to what extent this variability might be predictable up to several months in advance. Furthermore EATC can be used to formulate empirical prediction of local climate variability (relevant for the energy sector) based on the large scale atmospheric variability modes predicted by the forecast systems.

To achieve this goal we analyze reanalysis dataset ERA5 and the multi-system seasonal forecast service provided by the Copernicus Climate Data Store (C3S).

Geopotential height anomalies at 500 hPa have been employed to compute the four Euro-Atlantic teleconnections North Atlantic Oscillation, East Atlantic, Scandinavian and East Atlantic-West Russian. The impacts of those four variability modes on the energy - relevant  essential climate variables have been assessed in both observed and predicted system. We have found that the observed relationship between EATC patterns and surface impacts is not accurately reproduced by seasonal prediction systems. This opens the door to employ hybrid dynamical-statistical methods. The idea consists in combining the dynamical seasonal predictions of EATC indices with the observed relationship between EATCs and surface variables.  We reconstructed the surface anomalies for multiple seasonal prediction systems and benchmarked these hybrid forecasts with the direct variable forecasts from the systems and also with the climatology. The analysis suggest that predictions of energy relevant Essential Climate Variables are improved by the hybrid methodology in almost all Europe. 

How to cite: Cionni, I., Lledó, L., Catalano, F., and Dell’Aquila, A.: Seasonal predictions of energy-relevant Essential Climate Variables through Euro-Atlantic Teleconnections, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21184, https://doi.org/10.5194/egusphere-egu2020-21184, 2020.

The practice of surf is extended around the Iberian Peninsula’s coast. Surf-spots are the specific nearshore locations where surfing occurs. This coastal sport needs specific environmental conditions to be done. Knowing which is the distribution of surfing days around the Iberian Peninsula is a complex task. This is because good surfing conditions are the result of different climatological, geomorphological and oceanographical variables. Moreover, data collected used to define the distribution of surfing days is registered far away from the shore. Thus, the conditions registered – in the location of the buoys- will change somehow once arrive to the shore where surfers try to perform their best.

Research has explored the advancements of climate services in multiple fields but the determination of frequency of surfing days around the Iberian Peninsula by attributing data from oceanographic buoys to surf-spots was not done before. Atmospheric variability modulates in different temporal scales occurrence and severity of the waves. In this way knowing how the climate works, how the atmosphere exchanges energy with the ocean or how is transferred and how this affects to low pressures and high pressures is fundamental for understanding the conditions for surfing.

In this sense, Climate Services can provide the knowledge of the expected surfing days on surf-spots in the Iberian Peninsula by the methodology created in this study. The aim of this method is to identify the main variables which will make a good day for surfing or not. Into this context is important to know that surfing days are the result of two main factors: the influence of travelling low pressures from the ocean/sea to the specific shore (1) and the local conditions of each specific surf-spot -- thermal winds and beach orientation-- (2). The way of attributing these two factors is using buoys data to know the influence of travelling low pressures from the ocean to the shore by knowing significant wave height in open sea-. Then the form in which are attributed the local conditions is by knowing the specific favourable swell direction needed in each surf-spot and matching the direction of the swell that is registered by the buoys.  In this way, it is made an attribution from the buoy data in the open sea to the surf-spots conditions located on the shore. The main results show the distribution of the expected days for surfing in the Iberian Peninsula based on historical data.

Acknowledgments:

Puertos del Estado from Ministry of Development in Spain and Instituto Hidrográfico marinha Portugal provided the data for doing this study.

How to cite: Boqué Ciurana, A. and Aguilar, E.: How Climate Services can provide the knowledge of the expected surfing days on surf-spots in the Iberian Peninsula, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9440, https://doi.org/10.5194/egusphere-egu2020-9440, 2020.

EGU2020-6231 | Displays | CL5.7

Climate services for the development plan of the Yellow River Basin in China

Chan Xiao and Lianchun Song

The Yellow River Basin is the place where Chinese civilization originated, known as the mother river of the Chinese nation. The Yellow River originates from the Bayan Kara Mountain in the Qinghai Tibet Plateau. It flows through Qinghai, Sichuan, Gansu, Ningxia, Inner Mongolia, Shanxi, Shaanxi, Henan and Shandong provinces, with a total length of 5464 kilometers, a drainage area of 795000 square kilometers and a population of 110 million. It has an important position in China's economic development. Now the development plan of the Yellow River Basin has been promoted to the level of national strategy. In order to better serve the economic development planning of the Yellow River Basin, the climate characteristics and climate risks of the upper, middle and lower reaches of the Yellow River Basin were analyzed. The topography of the Yellow River Basin is high in the West and low in the East, with great difference in topography and complex climate. It is sensitive to climate change and prone to drought and flood, extreme drought and rainstorm and flood. With global warming, the upstream tends to warm and humid, which has an important impact on the ecosystem, the middle and lower reaches tend to warm and dry, which has an important impact on pollution control and flood control. The impact of climate change must be considered in the development plan of the Yellow River Basin.

How to cite: Xiao, C. and Song, L.: Climate services for the development plan of the Yellow River Basin in China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6231, https://doi.org/10.5194/egusphere-egu2020-6231, 2020.

EGU2020-18979 | Displays | CL5.7

Building a climate service to support an Εarly Warning System for the West Nile Virus disease in Greece

Eleni Katragkou, Maria Chara Karypidou, Stergios Kartsios, Sandra Gewehr, and Spiros Mourelatos

According to the National Public Health Organization in Greece, cases of West Nile Virus (WNV) infection in humans and animals have been recorded in various areas over Greece during the years 2010-2014 and 2017-2019 (https://eody.gov.gr). In this work we present a climate service which supports an Early Warning System (EWS) for the mosquito-borne WNV disease, operated for the first time over the Region of Central Macedonia in Greece. The EWS is based on a platform fed by time-dependent data (climate information and mosquito population data (Culex sp.)) and time invariant data (topography, density of mosquito breeding sites taken from field campaigns and distance to water-related land cover categories). The climate data are produced on a daily basis by the WRF-AUTH-MC weather forecast model over a 2x2 Km grid covering the Region of Central Macedonia, which operates from April to October (mosquito circulation period). Mosquito samples are collected every 2 weeks by the company ECODEVELOPMENT, using CO2 mosquito traps. The mosquito data along with the climatic and static environmental information are utilized within a Generalized Linear Model (GLM). Based on an empirical relationship derived from the GLM, the overall environmental suitability for the Culex mosquito is assessed over the study region. The work is performed in the framework of the German-Greek bilateral project “Establishment of an Early Warning System for mosquito borne diseases” (http://www.wnvalert.eu/), which is focusing on improved measures on proactive mosquito control and disease prevention activities.

How to cite: Katragkou, E., Karypidou, M. C., Kartsios, S., Gewehr, S., and Mourelatos, S.: Building a climate service to support an Εarly Warning System for the West Nile Virus disease in Greece, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18979, https://doi.org/10.5194/egusphere-egu2020-18979, 2020.

EGU2020-20133 | Displays | CL5.7

Assessing the quality of climate information for adaptation.

Marina Baldissera Pacchetti, Suraje Dessai, Seamus Bradley, and David A Stainforth

There are now a plethora of data, models and approaches available to produce climate information intended to inform adaptation to a changing climate. There is, however, no analytical framework to assess the epistemic issues concerning the quality of these data, models and approaches. An evaluation of the quality of climate information is a fundamental requirement for its appropriate application in societal decision-making. By integrating insights from the philosophy of science, environmental social science and physical climate science, we construct an analytical framework for “science-based statements about future climate” that allows for an assessment of their quality for adaptation planning. We target statements about local and regional climate with a lead time of one to one hundred years. Our framework clarifies how standard quality descriptors in the literature, such as “robustness”, “adequacy”, “completeness” and “transparency”, rely on both the type of evidence and the relationship between the evidence and the statement. This clarification not only provides a more precise framework for quality, but also allows us to show how certain evidential standards may change as a function of the purpose of a statement. We argue that the most essential metrics to assess quality are: Robustness, Theory, Completeness, Adequacy for purpose, Transparency. Our framework goes further by providing guidelines on when quantitative statements about future climate are warranted and potentially decision-relevant, when these statements would be more valuable taking other forms (e.g. qualitative statements), and when statements about future climate are not warranted at all.

How to cite: Baldissera Pacchetti, M., Dessai, S., Bradley, S., and Stainforth, D. A.: Assessing the quality of climate information for adaptation., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20133, https://doi.org/10.5194/egusphere-egu2020-20133, 2020.

EGU2020-21628 | Displays | CL5.7

Metrology for Climate Sciences: The European Metrology Network for Climate and Ocean Observation

Emma Woolliams, Paola Fisicaro, Nigel Fox, Céline Pascale, Steffen Seitz, Christian Monte, Olav Werhahn, David Gorman, Miruna Dobre, and Thomas Damitz

Environmental observations of essential climate variables (ECVs) and related quantities made by satellites and in situ observational networks are used for a wide range of societal applications. To identify a small climate trend from an observational record that is also sensitive to changes in weather, to seasonal effects and to geophysical processes, it is essential that observations have a stable basis that holds for multiple decades, whilst still allowing for changes in the observation instrumentation and operational procedures. To achieve this, all aspects of data collection and handling must be underpinned by robust quality assurance. The resultant data should also be linked to a common reference, with well-understood uncertainty analysis, so that observations are interoperable and coherent; in other words, measurements by different organisations, different instruments and different techniques should be able to be meaningfully combined and compared.    

Metrology, the science of measurement, can provide a critical role in enabling robust, interoperable and stable observational records and can aid users in judging the fitness-for-purpose of such records. In addition to Global Climate Observing System (GCOS) monitoring principles, metrology’s value, and the role of National Metrology Institutes (NMI) in observations, has been recognised in initiatives such as the Quality Assurance Framework for Earth Observation (QA4EO) established by the Committee on Earth Observation Satellites (CEOS) and in the implementation plans of the World Meteorological Organization’s (WMO’s), Global Atmosphere Watch and the European Ocean Observing System.  

The European Association for National Metrology Institutes (EURAMET) has recently created the “European Metrology Network (EMN) for Climate and Ocean Observation” to support further engagement of the expert communities with metrologists at national metrology insitutes and to encourage Europe’s metrologists to coordinate their research in response to community needs. The EMN has a scope that covers metrological support for in situ and remote sensing observations of atmosphere, land and ocean ECVs (and related parameters) for climate applications. It also covers the additional economic and ecological applications of ocean Essential Ocean Variable (EOV) observations. It is the European contribution to a global effort to further enhance metrological best practice into such observations through targeted research efforts.  

In late 2019 and early 2020 the EMN carried out a survey to identify the need for metrology within the observational communities and held a webinar workshop to prioritise the identified needs. Here we present the results of the survey and discuss the role that metrology can play in the climate observing system of the future. 

How to cite: Woolliams, E., Fisicaro, P., Fox, N., Pascale, C., Seitz, S., Monte, C., Werhahn, O., Gorman, D., Dobre, M., and Damitz, T.: Metrology for Climate Sciences: The European Metrology Network for Climate and Ocean Observation , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21628, https://doi.org/10.5194/egusphere-egu2020-21628, 2020.

The German national metrology institute Physikalisch-Technische Bundesanstalt (PTB) is organized in typical different sections and divisions, each of them bringing in their own portfolio on specific calibration and measurement capabilities. Customer are being served on various fields of work and metrological SI-traceability strategies are developed for all the units of measurements. However, despite many third-party projects driven by individual PTB groups [1], as for example within the European Metrology Programme for Innovation and Research (EMPIR, [2]) and its different Environmental calls, PTB has never been seen itself as a climate research institute. With the foundation of the European Metrology Network for Climate and Ocean Observation (EMN) [3], PTB has now brought its various expertise on metrology for climate research to a new level of combination.

The presentation highlights the input from three different working groups of PTB to the EMN related to its sections “Atmosphere”, “Ocean”, and “Land” as being addressed by the groups for Spectrometric Gas Analysis [4], Electrochemistry [5], and Infrared Radiation Thermometry [6], respectively. With those expertise PTB seeks to support the idea of the EMN bringing in measurement techniques like in situ laser spectroscopy-based species quantification, FTIR-based analysis of atmospheric gases and related spectral line parameters of key greenhouse gases and offering its consulting services to the EMN in the “Atmosphere” section. On the “Ocean” section of the EMN PTB offers its expertise based on ph-measurements, salinity definitions and respective calibration and measurement capabilities, whereas the “Land” section of the EMN is benefitting from PTB’s application-specific traceability concepts for infrared radiation thermometry and infrared radiometry and for quantitative thermography and for emissivity measurements in the field of satellite-, aircraft- and ground-based optical remote sensing of the atmosphere and Earth (-90 °C to 100 °C).

Examples for all three working groups will be presented and discussed in view of there benefit to the EMN. Collaboration with European partners will be shown.

Acknowledgements:

Parts of the work has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme. PTB acknowledges the collaboration with all partners in the EMN for Climate and Ocean Observation.

 

References:

[1] EMPIR 16ENV05 MetNO2 (http://empir.npl.co.uk/metno2/), EMPIR 16ENV06 SIRS (https://www.vtt.fi/sites/SIRS/), EMPIR 16ENV08 (http://empir.npl.co.uk/impress/)

[2] European Metrology Programme for Innovation and Research, https://www.euramet.org/research-innovation/research-empir/?L=0

[3] European Metrology Network for Climate and Ocean Observation, https://www.euramet.org/european-metrology-networks/climate-and-ocean-observation/?L=0

[4] PTB working group Spectrometric Gas Analysis, https://www.ptb.de/cms/en/ptb/fachabteilungen/abt3/fb-34/ag-342.html

[5] PTB working group Electrochemistry, https://www.ptb.de/cms/en/ptb/fachabteilungen/abt3/fb-31/ag-313.html

[6] PTB working group Infrared Radiation Thermometry https://www.ptb.de/cms/en/ptb/fachabteilungen/abt7/fb-73/ag-732.html

 

How to cite: Werhahn, O., Monte, C., and Seitz, S.: PTB for Climate Sciences: Combined efforts supporting the European Metrology Network for Climate and Ocean Observation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21384, https://doi.org/10.5194/egusphere-egu2020-21384, 2020.

EGU2020-21584 | Displays | CL5.7

Introducing the beta version of ISIpedia, the open climate-impacts encyclopaedia

Burcu Yesil, Quentin Lejeune, Inga Menke, Kaylin Lee, Barbara Templ, Mahé Perrette, Matthias Mengel, Stefan Lange, Robert Gieseke, and Katja Frieler

Despite the existing ample amount of scientific knowledge on the impacts of climate change, this information is often not conveyed in a way that is relevant and useful to decision makers. If designed correctly, climate services can bridge the gap between the knowledge providers and users. The ISIpedia project aims at developing an online encyclopedia  that provides policy-relevant, user-driven climate impact information based on the data and scientific knowledge generated by the Inter-Sectoral Impact Model Inter-comparison Project (ISIMIP,) community. In order to ensure that the information provided is accessible and understandable, ISIpedia has facilitated a dialogue between modellers and stakeholders through a number of stakeholder engagement activities.

 

The ISIpedia portal will deliver national- and global- level assessments of impacts of climate change across different sectors to the identified end-users that range from climate adaptation planners (e.g. involved in National Adaptation Plans) and practitioners, regional knowledge hubs, trans- and interdisciplinary scientists to regional climate experts from the private and public sectors. The portal is also characterised by an intuitive and user-friendly interface for better dissemination and application of this knowledge.

 

Through an interactive exploration of the ISIpedia portal, during this session we will not only introduce the beta version of ISIpedia but also discuss in detail how our stakeholder engagement processes have shaped the portal’s current functionalities and its design. More specifically, the audience will get a chance to create country-specific climate impact assessments and test the legibility of the content, which includes interactive graphs and maps as well as method descriptions. We will also explore how different inter-sectoral indicators, some of which were derived from our workshops in Eastern Europe (Poland, November 2018) and West Africa (Burkina Faso, February 2019), can be applied to managing climate risks, vulnerabilities and planning adaptation and/or larger political contexts, such as the Sustainable Development Goals or Disaster Risk Reduction and what new indicators can be developed. Additionally, we will present other functional and design features, such as the glossary, data download functions and news, that we identified as added values to the portal during diverse stakeholder engagement activities.

 

The inputs gathered from the EGU conference, along with the ones from the planned feedback workshops in Southeast Asia (April 2020), Eastern Europe (June 2020) and West Africa (October 2020), will be taken into account for further improvement of the portal until its final release in the fall of 2020. Furthermore, a reflection on the successes and challenges of our co-development process will be shared.

How to cite: Yesil, B., Lejeune, Q., Menke, I., Lee, K., Templ, B., Perrette, M., Mengel, M., Lange, S., Gieseke, R., and Frieler, K.: Introducing the beta version of ISIpedia, the open climate-impacts encyclopaedia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21584, https://doi.org/10.5194/egusphere-egu2020-21584, 2020.

EGU2020-19121 | Displays | CL5.7

Broadening access to supercomputers for CMIP6 and CORDEX multimodel comparisons

Stephan Kindermann and Maria Moreno

We will present a new service designed to assist the users of model data in running their analyses in world-class supercomputers. The increase of data volumes and model complexities can be challenging for data users with limited access to high performance computers or low network bandwidth. To avoid heavy data transfers, strong memory requirements, and slow sequential processing, the data science community is rapidly moving from classical client-side to new server-side frameworks. Three simple steps enable server-side users to compute in parallel and near the data: (1) discover the data you are interested in, (2) perform your analyses and visualizations in the supercomputer, and (3) download the outcome. A server-side service is especially beneficial for exploiting the high-volume data collections produced in the framework of internationally coordinated model intercomparison projects like CMIP5/6 and CORDEX and disseminated via the  Earth System Grid Federation (ESGF) infrastructure. To facilitate the adoption of server-side capabilities by the ESGF users, the infrastructure project of the European Network for Earth System Modelling (IS-ENES3) is now opening its high performance resources and data pools at the CMCC (Italy), JASMIN (UK), IPSL (France), and DKRZ (Germany) supercomputing centers. The data pools allow access to results from several models on the same site and the data and resources are locally maintained by the hosts. Besides, our server-side framework not only speeds the workload but also reduces the errors in file format conversions and standardizations and software dependencies and upgrade. The service is founded by the EU Commission and it is free of charge. Find more information here: https://portal.enes.org/data/data-metadata-service/analysis-platforms. Demos and tutorials have been created by a dedicated user support team. We will present several use cases showing how easy and flexible it is to use our analysis platforms for multimodel comparisons of CMIP5/6 and CORDEX data. 

How to cite: Kindermann, S. and Moreno, M.: Broadening access to supercomputers for CMIP6 and CORDEX multimodel comparisons, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19121, https://doi.org/10.5194/egusphere-egu2020-19121, 2020.

EGU2020-19623 | Displays | CL5.7

Global climate model evaluation and selection using the interactive tool GCMeval

Kajsa Parding, Oskar A. Landgren, Andreas Dobler, Carol F. McSweeney, Rasmus E. Benestad, Helene B. Erlandsen, Abdelkader Mezghani, Hilppa Gregow, Olle Räty, Elisabeth Viktor, Juliane El Zohbi, Ole Bøssing Christensen, and Harilaos Loukos

We present the interactive web application GCMeval, available at https://gcmeval.met.no. The tool is a useful resource for climate services by illustrating how model selection affects representation of future climate change. GCMeval was developed in a co-design process engaging users. Based on a thorough analysis of user demands, needs and capabilities, two different user groups were defined: Data users with lots of experience with data processing and Product users with a strong focus on information products. The available data, information, and user interface in GCMeval are tailored to the requirements of the data users.

In the tool, the user can select all or a subset of models from the CMIP5 and CMIP6 ensembles and assign weights to different regions, seasons, climate variables, and skill scores. The tool provides visualizations of the spread of future changes in temperature and precipitation which allows the user to study how the sub-ensemble fits in relation to the full multi-model ensemble and to compare climate model results for different regions of the world. A ranking of individual model performance for recent past climate is also provided. The tool can be used to aid in model selection for climate or impact studies, or to illustrate how an already existing selection represents the range of possible future climate outcomes.

How to cite: Parding, K., Landgren, O. A., Dobler, A., McSweeney, C. F., Benestad, R. E., Erlandsen, H. B., Mezghani, A., Gregow, H., Räty, O., Viktor, E., El Zohbi, J., Bøssing Christensen, O., and Loukos, H.: Global climate model evaluation and selection using the interactive tool GCMeval, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19623, https://doi.org/10.5194/egusphere-egu2020-19623, 2020.

EGU2020-22552 | Displays | CL5.7

High-Quality Global Data Management Framework for Climate: A Collaboration Framework for Assessing, Validating and Sharing Datasets for Climate Monitoring

William Wright, Christina Lief, Ge Peng, Omar Baddour, Peter Siegmund, Dominique Berod, Robert Dunn, Anny Cazenave, and Manola Brunet

In recognition of the need for data used in climate-related activities to be reliably and transparently managed, the World Meteorological Organization (WMO[1]) Congress adopted a High-Quality Global Data Management Framework for Climate (HQ-GDMFC) at its eighteenth session in June 2019. The HQ-GDMFC enables effective standards-based development and exchange of high-quality climate data.  The scope of the HQ-GDMFC includes all of the Essential Climate Variables under WMO auspices, as described in WMO Resolution 60 (Cg-17).  This includes observational data as well as data derived from climate analysis, reanalysis, predictions and projections.  The framework of collaboration incorporates the National Meteorological and Hydrological Services’ Data Management units, Regional Climate Centers, international data centers, climate research bodies, certain Government agencies, academia and any other institution dealing with climate data archival, management, analysis and exchange. An International Expert Group on Climate Data Modernization (IEG-CDM2) was established in 20183, involving subject matter experts from several WMO programs and international data centers to guide the development of practical tools required for assessing data maturity for climate purposes.

We present here the structure, elements and associated guidance and tools of the HQ-GDFMC. The essential components are: (1) The standards and recommended best practices for climate data management and stewardship are encapsulated in a regulatory manual called the Manual on HQ-GDMFC (WMO-No 1238). (2) A guidance booklet provides guidance on maturity assessment of climate datasets that contribute to the computation and analysis of climate indicators supporting climate policy-relevant information. (3) A climate data catalogue in support of climate change monitoring has been established, with the aim of providing a living list of datasets, with a primary focus on climate indicators. It is recommended that the maturity of such datasets be assessed; a maturity rating provides users with information on the level of maturity in documentation, archival, access, data quality assurance, data integrity and more, for each of the datasets.


[1] The World Meteorological Organization (WMO) is a United Nations’ specialized agency in the field of weather, water and climate. As part of its activities, WMO fosters international collaboration to develop technical guidance and standards for the collection, processing, and management of data and forecast products.

 

2 The International Expert Group on Climate Data Modernization (IEG-CDM) is an Ad-Hoc group run with the support of the World Meteorological Organization (WMO).

 

3 The participants of the 2018 workshop implicitly formed the membership of the Ad-Hoc IEG-CDM team. (Reference report)

 

 

 

How to cite: Wright, W., Lief, C., Peng, G., Baddour, O., Siegmund, P., Berod, D., Dunn, R., Cazenave, A., and Brunet, M.: High-Quality Global Data Management Framework for Climate: A Collaboration Framework for Assessing, Validating and Sharing Datasets for Climate Monitoring , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22552, https://doi.org/10.5194/egusphere-egu2020-22552, 2020.

CC BY 4.0