GD – Geodynamics

EGU22-9705 | Presentations | MAL9 | Augustus Love Medal Lecture

Searching for the origin of plate tectonics, leaving no grain unturned 

David Bercovici

The physical cause, or origin, or generation of plate tectonics, especially how it arises from a convecting mantle on Earth (and not apparently on our solar system's other terrestrial planets) is one of the big questions in geophysics, and has  haunted (or taunted) the author  for the last 30+ years.  Although he's tried to drive the question to basic physical causes for plate boundary formation in a cold stiff lithosphere,  he's certainly taken his share of wrong turns.  His earliest attempts to understand these processes from fluid lab experiments (while a postdoc at WHOI) only achieved (1) making gallons of fluids that look much like mucus, and (2) proof that he was a lousy experimentalist.  But in the intervening decades, he's burrowed deeper into smaller and smaller scales to understand how microscale physics of mineral grains influence plate boundary formation at large scales.  This led to the most recent theory of grain damage that allows for formation of weak boundaries, corresponds to field and laboratory observations of mylonitic behavior, and has applications from the onset of early plate tectonics, to passive margin collapse, to slab segmentation and necking.   The most recent theory incorporates how mineral phases (olivine and pyroxene) mix with each other at the grain scale, and this has allowed a close comparison to new rock deformation experiments on grain mixing and shear localization, which opens up many new questions and predictions for more experiments and observations.  

How to cite: Bercovici, D.: Searching for the origin of plate tectonics, leaving no grain unturned, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9705, https://doi.org/10.5194/egusphere-egu22-9705, 2022.

EGU22-13373 | Presentations | GD7.3 | Highlight | GD Division Outstanding ECS Award Lecture

Probing the rheology of the lithosphere using earthquake seismology 

Tim Craig

Earthquakes provide a crucial way of probing the deformation style, strength, and stress state of the lithosphere.  In this talk, I will outline ways in which we can use careful analysis and precise seismological observations of earthquakes, particularly those at moderate magnitudes (M ~5-6), to map out how stress is supported in the lithosphere, and how the rheology of the lithosphere can vary in both space and time, summarising our current understanding of the controls on the distribution of earthquakes.  I will draw on examples from a range of regional studies, and outline what conclusions we can draw about the geological and geodynamic controls on the distribution of earthquakes in each region, and the variation on the style of deformation within the lithosphere.  I will also discuss areas in which our current understanding of the distribution of earthquakes remains unable to explain some observations, and challenges for the future.

How to cite: Craig, T.: Probing the rheology of the lithosphere using earthquake seismology, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13373, https://doi.org/10.5194/egusphere-egu22-13373, 2022.

GD1 – Plate Tectonics and Mantle Dynamics

EGU22-1405 | Presentations | TS6.1

Structure and Morphology of the Mid-Ocean-Ridge in the Red Sea 

Antoine Delaunay, Abdulkader Alafifi, Guillaume Baby, Jakub Fedorik, Paul Tapponnier, and Jérôme Dyment

This presentation describes the structure and morphologies associated with seafloor spreading in the Red Sea inferred from bathymetric, gravity, magnetic and seismic data. We show that the orientation of the structures is consistent with an Arabia-Nubia Euler pole located within the 95% confidence of Ar-Rajehi et al, (2010) Euler pole and with the tectonic model initially proposed by Girdler (1984). At the Red Sea scale, our model shows that a spreading axis extends along its entire length, even though it is mostly covered by allochthonous Middle Miocene salt and Late Miocene minibasins flowing inward from the margins. In the northern Red Sea, oceanic basement is only exposed through small windows within the salt, forming a series of deeps. The seafloor segments symmetrically bisect the new ocean in the south. Right-stepping transform faults that cluster near Jeddah, Zabargad and Ikhwan Islands offset the ridge axis as spreading is getting more oblique towards the Euler Pole. The northern, central and southern Red Sea segments display a well-developed mid-ocean ridge flanked by landward-dipping volcanic basement, typical of slow spreading ridges. In the northern magma poor spreading segment, mantle exhumation is likely at the transition between continental and oceanic crust. Transpression and transtension along transform faults accounts for the exhumation of the mantle on Zabargad Island as well as the collapse of a pull-apart basin in the Conrad deep.

We propose a new structural model for the Red Sea constrained by the geodetic rules of tectonic plates movements on a sphere. Finally, we discuss the effect of the Danakil microplate on the ridge morphology and show that the Arabia-Nubia-Danakil triple junction is likely located further north than previously described, around 18±0.5°N, where we observe a shift in the ridge axis orientation as well as in the spreading orientation.

How to cite: Delaunay, A., Alafifi, A., Baby, G., Fedorik, J., Tapponnier, P., and Dyment, J.: Structure and Morphology of the Mid-Ocean-Ridge in the Red Sea, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1405, https://doi.org/10.5194/egusphere-egu22-1405, 2022.

EGU22-1696 | Presentations | TS6.1

Continental rifts and mantle convection: Insights from the East African Rift and a new model of the West European Rift System 

Laurent Jolivet, Cécile Allanic, Thorsten Becker, Nicolas Bellahsen, Justine Briais, Anne Davaille, Claudio Faccenna, Eric Lasseur, and Barbara Romanowicz

The origin of the Eocene-Oligocene European Cenozoic Rift System (ECRIS) is debated in terms of driving forces, far-field or near field, Alpine slab-pull or active plume. An analysis of residual (non-isostatic) topography over Africa and Europe reveals domains elongated parallel to the absolute motion of plates in a hot-spot reference frame. The East African Rift (EAR) and the ECRIS sit on top of such positive anomalies. A recent whole mantle tomographic model (French et al., 2013; French & Romanowicz, 2015; Davaille & Romanowicz, 2020) shows in addition that the low shear-wave velocity zones of the lower and upper mantle are organized with a bundle of vertical plumes and horizontal fingers pointing in the same direction parallel to the absolute motion of Africa and Eurasia, thus parallel to the main rifts. The case of the EAR and its magmatic extension toward the north across the Arabian Plate is particularly clear with several levels of such fingers. The northward migration of the first volcanism from Ethiopia to Armenia between the Eocene and the Late Miocene suggests that the asthenosphere moves faster than the plates and thus drives plate motion (Faccenna et al., 2013). We propose a simple model where plates are driven by basal drag, following an upwelling from the low-velocity anomalies below Africa and toward subduction zones. The EAR develops as lithospheric weak zones on top of the positive anomalies of residual topography due to the underlying low velocity anomalies elongated parallel to the absolute motion. This indicates an interplay between large-scale convection, a small-scale fingering instability, and lithospheric deformation. The development of the Eocene-Oligocene short-lived ECRIS and its interference with Mediterranean slab dynamics are then discussed in the framework of this simple model.

How to cite: Jolivet, L., Allanic, C., Becker, T., Bellahsen, N., Briais, J., Davaille, A., Faccenna, C., Lasseur, E., and Romanowicz, B.: Continental rifts and mantle convection: Insights from the East African Rift and a new model of the West European Rift System, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1696, https://doi.org/10.5194/egusphere-egu22-1696, 2022.

EGU22-1799 | Presentations | TS6.1

Punctuated propagation of a corrugated extensional detachment offshore West of Ireland 

Gaël Lymer, Conrad Childs, and John Walsh

Corrugated detachments are fundamental crustal structures found in many extensional systems and plate tectonic boundaries, including mid-oceanic ridges and rifted margins. Direct observations of the complete geometry of extensional detachments are rare and our understanding of detachment fault structures and the mechanisms of development of high-angle normal faults and their rotation to lower angles mainly relies on proxy observations, for example seismicity trends, and numerical modelling.

We present interpretations of a high-resolution 3D seismic reflection survey from the hyperextended domain of the Porcupine Basin, Offshore West of Ireland. The 3D data image a highly reflective corrugated surface, the P reflector, that we interpret as an extensional detachment preserved in its slip position that likely developed at the top mantle surface during Jurassic hyperextension of the basin. Within the 3D data, the P reflector covers an area 95 km long and 35 km wide and has a domal shape that is elongate in the N-S direction with a crest at ~6.3 s two way travel time. It is the first time to our knowledge that 3D seismic data has imaged a complete detachment in the hyperextended area of a rifted margin, including its domal shape, the breakaway structures, and the linkage between the steep and shallow segments of the detachment. The resolved texture and geometry of the detachment and its relationship with overlying faults provide a basis for refining current models of detachment formation accommodating extreme extension.

Steep west-dipping faults mark the western frontal margin of the detachment. The steep faults pass eastward into shallower, predominantly west-dipping faults that appear to merge downwards with the P reflector. The P reflector has pronounced E-W corrugations, interpreted to indicate the detachment slip vector. The reflector is also characterised by abrupt changes in dip across N-S transverse ridges. These ridges are spaced on average 10 km apart, they coincide with lines of intersection between the P reflector and large overlying faults, and they often mark the termination of detachment corrugations. We interpret these ridges as recording former locations of the western boundary of the detachment so that they indicate a step-wise westward propagation of the P reflector. While it is generally accepted that detachments develop by oceanward propagation, we suggest that the faceted nature of the detachment indicates that this process is a punctuated one and that the clearly imaged transverse ridges record the oceanward stepping of the detachment with the initiation of a new family of steep faults.

We propose a new concept for the growth of detachments that may be applicable to other detachments that accommodate extreme extension, for example at mid-oceanic slow and ultra-slow spreading ridges.

How to cite: Lymer, G., Childs, C., and Walsh, J.: Punctuated propagation of a corrugated extensional detachment offshore West of Ireland, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1799, https://doi.org/10.5194/egusphere-egu22-1799, 2022.

EGU22-2208 | Presentations | TS6.1 | Highlight

New mapping of the Afar Depression: towards the better understanding of rift dynamics in a hotspot-influenced continental rift zone 

Valentin Rime, Anneleen Foubert, Balemwal Atnafu, and Tesfaye Kidane

The Afar Depression forms a triple junction between three rift systems: the Red Sea Rift, the Gulf of Aden Rift and the Main Ethiopian Rift. Rifting began in the Oligocene after the eruption of the Ethiopian Flood Basalts. It represents a unique modern example of hotspot-influenced continental breakup. Its emerged position allows detailed field and remote sensing investigations. Important mapping efforts in the area during the 60s and 70s provided very valuable input for the understanding of the local geology but also for the development of global tectonic, volcanological and sedimentary concepts in continental rift settings.

This study presents the compilation of a new geological map which covers the complete Afar depression and includes its Phanerozoic sedimentary and magmatic cover. The map is based on extensive literature research, remote sensing and fieldwork. The geological history of the Afar Depression has also been reviewed. The map evidences the complexity of the rift system with the interaction of distinct tectonic plates, blocks, rift segments, sedimentary basins and volcanic areas that evolve through time and space. This integrative geological map and review is used to reassess and discuss aspects of the style, evolution, kinematics and dynamics of this rift system. Studying this unique modern example of active rifting will help in the better comprehension of rift processes and passive margin development worldwide.

How to cite: Rime, V., Foubert, A., Atnafu, B., and Kidane, T.: New mapping of the Afar Depression: towards the better understanding of rift dynamics in a hotspot-influenced continental rift zone, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2208, https://doi.org/10.5194/egusphere-egu22-2208, 2022.

EGU22-2290 | Presentations | TS6.1

Petrological evidence for focussed mid-crustal magma intrusion in the Main Ethiopian Rift 

Kevin Wong, David Ferguson, Penny Wieser, Daniel Morgan, Marie Edmonds, Amdemichael Zafu Tadesse, and Gezahegn Yirgu

Rifting in Ethiopia is predominantly driven by magmatic intrusion into the rifting crust. Unravelling the dynamics of lithospheric melt migration and storage is paramount to understanding the late-stage development of continental rifts. In particular, extensive geophysical observations of the structure and composition of rifting crust must be supported by petrology to provide a complete picture of rift-related magmatism. We present major element, trace element, and volatile element compositional data for olivine-hosted melt inclusions from the Boku Volcanic Complex (BVC), a monogenetic cone field in the north Main Ethiopian Rift. Through combined CO2-density-calibrated Raman spectroscopy and secondary ion mass spectrometry we assess the total CO2 concentrations within the melt inclusions allowing us to estimate pressures of entrapment via CO2-H2O solubility models. Our results show that primitive BVC melts carry up to 0.58 wt% CO2 (mean ~0.2 wt%), with as much as half of the CO2 in the melt inclusion present within shrinkage bubbles. Volatile solubility models suggest that these melts are stored over a narrow range of depths (10-15 km), consistent with geophysical data and implying the existence of focussed zone of magma intrusion at mid-crustal depths. The expansive range of trace element concentrations in the inclusions illustrate that, at the time of entrapment, compositional heterogeneity remains extant, and melts must therefore be stored in discrete magmatic bodies with limited mixing. Our results have implications for understanding the interplay between magma intrusion and extensional tectonics during continental break-up, such as magmatic compensation of crustal thinning and the thermo-mechanical effects of melt emplacement into the rifting crust.

How to cite: Wong, K., Ferguson, D., Wieser, P., Morgan, D., Edmonds, M., Tadesse, A. Z., and Yirgu, G.: Petrological evidence for focussed mid-crustal magma intrusion in the Main Ethiopian Rift, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2290, https://doi.org/10.5194/egusphere-egu22-2290, 2022.

EGU22-3259 | Presentations | TS6.1

Triassic sedimentation on the Eastern Atlantic margin: two examples from Moroccan Meseta and Portugal 

Rachid Essamoud, Abdelkrim Afenzar, and Ahmed Belqadi

The continental deposits of the Triassic basins developed along the eastern margin of the Central and North Atlantic show a similar sedimentological evolution, as those of the western margin resulting from the interaction of various processes.

The examples chosen in this work are those of the Mohammedia-Benslimane-ElGara-Berrechid basin MBEB in the Moroccan meseta that we studied in detail in the field, and that we tried to compare with Portugal which is on the same East Atlantic margin.

At the begininig of the Mesozoic, the northwestern part of the African continent was affected by an initial fracturing associated with the early stages of the opening of the Central Atlantic (Atlantic rift) during which several Moroccan Triassic basins are open.

The Mohammedia-Benslimane-ElGara-Berrechid basin is part of the Moroccan western Triassic province, which corresponds to all the basins of the Moroccan Atlantic margin in direct relation with the Atlantic rift. In this basin, an asymmetric rift is set up on the old Hercynian structures during the Carnien-Norien, the paroxysm is reached at the Trias-Lias passage with the installation of basalts (CAMP: Central Atlantique Magmatic Province).

During rifting (syn-rift stage in the Upper Triassic), the MBEB basin experienced three major phases of sediment filling. The first phase is purely continental, the first deposits to arrive in the opening basin are of proximal fluvial origin. Subsequently, the decrease of the paleopente and the rise of the base level generated paleoenvironmental changes in the basin (2nd phase), and the deposition system evolved towards distal environments. During the third phase, the syn-rift sedimentary series recorded a marine incursion in the late Triassic with saliferous sedimentation. This marine intervention is deduced from the presence of a thick saliferous series with a large lateral extension and whose isotopic ratios of sulfur and bromine contents indicate their marine origin. These marine waters are probably of Tethysian origin and are also linked to the opening of the Proto-Atlantic.

In Portugal, the Upper Triassic is represented by two formations in the north of the Lusitanian basin (Palain, 1976): Silves Fm which is fluvial sandstone and Dagorda Fm which includes first dolomites and then evaporites. In this Portuguese basin, the proximal-distal fluvial transition took place at the Norien-Rhétien limit. This also rift-type basin was filled with continental fluvial and alluvial clastic rocks of the Silves Formation, largely derived from the adjacent Iberian highlands of the Meseta. Locally, black shales are present at the top of the Silves and may represent the first marine incursion into the basin.

The comparison between the two basins shows that they followed a similar evolution at the base and in the middle of the series but at the top the MBEB basin presented thick layers of evaporites while that of Portugal presented mainly dolomites attributed to paralic facies.

Palain, C., 1976. Une série détritique terrigene; 'les grès de silves'; Trias et Lias inférieur du Portugal. Mem. Serv. Geol. Portugal, p. 25 (377 pp.)

How to cite: Essamoud, R., Afenzar, A., and Belqadi, A.: Triassic sedimentation on the Eastern Atlantic margin: two examples from Moroccan Meseta and Portugal, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3259, https://doi.org/10.5194/egusphere-egu22-3259, 2022.

EGU22-4683 | Presentations | TS6.1

The Crust and Uppermost-Mantle Structure of the Turkana Depression: Insights from Surface-Wave Analysis 

Rita Kounoudis, Ian Bastow, Cynthia Ebinger, Christopher Ogden, Atalay Ayele, Rebecca Bendick, Nicholas Mariita, Gladys Kianji, Martin Musila, and Garrett Sullivan

Multiple geoscientific studies along the Main Ethiopian and Eastern rifts have revealed that extension via magma intrusion now prevails over plate stretching as the primary mechanism for strain accommodation throughout the crust and mantle lithosphere. However, problematic in this picture is where the Main Ethiopian and Eastern rifts meet, across the low-lying, broadly-rifted, and as-yet poorly-studied Turkana Depression which separates the elevated Ethiopian and East African plateaus. We have so far revealed through body-wave tomography (Kounoudis et al., 2021), that the Depression does not lack mantle dynamic support in comparison to the plateaus, suggesting a significantly thinned crust, resulting from superposed Mesozoic and Cenozoic rifting, most likely explains its low elevations. Slow uppermost-mantle wavespeeds imply the presence of either melt-intruded mantle lithosphere or ponded asthenospheric material below lithospheric thin-spots induced by the region’s multiple rifting phases. To better illuminate the Depression’s lithosphere-asthenosphere system, we conduct a surface-wave analysis to image crust and uppermost-mantle structure using data from the NSF-NERC funded Turkana Rift Arrays Investigating Lithospheric Structure (TRAILS) project broadband seismic network. In particular, we investigate the presence of melt, whether the lithosphere is melt-rich, melt-poor, and/or if ponded zones of asthenosphere exist below variably thinned lithosphere. Group velocity dispersion curves, measured using data from local and regional earthquakes, yield the first high resolution fundamental mode Rayleigh-wave group velocity maps for periods between 4 and 40s for the Turkana Depression. In collaboration with the ongoing TRAILS GPS project, we explore how these results relate to present-day versus past episodes of extension.

 

Kounoudis, R., Bastow, I.D., Ebinger, C.J., Ogden, C.S., Ayele, A., Bendick, R., Mariita, N., Kiangi, G., Wigham, G., Musila, M. & Kibret, B. (2021). Body-wave tomographic imaging of the Turkana Depression: Implications for rift development and plume-lithosphere interactions. G3, 22, doi:10.1029/2021GC009782.

How to cite: Kounoudis, R., Bastow, I., Ebinger, C., Ogden, C., Ayele, A., Bendick, R., Mariita, N., Kianji, G., Musila, M., and Sullivan, G.: The Crust and Uppermost-Mantle Structure of the Turkana Depression: Insights from Surface-Wave Analysis, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4683, https://doi.org/10.5194/egusphere-egu22-4683, 2022.

EGU22-5758 | Presentations | TS6.1

Evolution of rift systems and their fault networks in response to surface processes 

Derek Neuharth, Sascha Brune, Thilo Wrona, Anne Glerum, Jean Braun, and Xiaoping Yuan

During the formation of rifted continental margins, a rift evolves through a number of stages that produce major sedimentary basins and distinct rifted margin domains. While these domains have been classified based on the resulting structures and crustal thickness seen in geophysical data, the evolution of the fault network that produces these domains is not as well understood. Further, margin architecture may be influenced by erosion and sedimentation. Previous studies have qualitatively examined how faults respond to sedimentation during rifting, but there has not been a quantitative study on how variable surface processes efficiency affects fault network properties and the effect this has on rift evolution.

In this study we use a two-way coupling between the geodynamic code ASPECT (Kronbichler et al., 2012) and the surface processes code FastScape (Braun and Willett, 2013) to run 12 high-resolution 2D rift models that represent asymmetric, symmetric, and wide rift types (Neuharth et al., in review). For each rift type, we vary the surface process efficiency by altering the bedrock erodibility (Kf) from no surface processes to low (Kf = 10-6 m0.2/yr), medium (10-5), and high efficiency (10-4). To analyze these models, we use a novel quantitative fault analysis toolbox that extracts discrete faults from our continuum models and correlates them through space and time (https://github.com/thilowrona/fatbox). This toolbox allows us to track faults and their properties such as the number of faults, their displacement, and cumulative length, to see how they evolve through time, as well as how these properties change given different rifting types and surface processes efficiency.

Based on the evolution of fault network properties, we find that rift fault networks evolve through 5 major phases: 1) distributed deformation and coalescence, 2) fault system growth, 3) fault system decline and basinward localization, 4) rift migration, and 5) continental breakup. Each of these phases can be correlated to the rifted margin domains defined from geophysical data (e.g., proximal, necking, hyperextended, and oceanic). We find that surface processes do not have a large impact on the overall evolution of a rift, but they do affect fault network properties by enhancing strain localization, increasing fault longevity, and reducing the total length of a fault system. Through these changes, they can prolong rift phases and delay continental breakup with increasing surface process efficiency. To summarize, we find that surface processes do not change the overall evolution of rifts, but they do affect fault growth and as a result the timing of rifting.

 

Braun, J., and Willett, S.D., 2013, A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution: Geomorphology, v. 180–181, p. 170–179, doi:10.1016/j.geomorph.2012.10.008.

Kronbichler, M., Heister, T., and Bangerth, W., 2012, High Accuracy Mantle Convection Simulation through Modern Numerical Methods.: Geophysical Journal International, v. 191, doi:doi:10.1111/j.1365-246x.2012.05609.x.

Neuharth, D., Brune, S., Wrona, T., Glerum, A., Braun, J., and Yuan, X.P., (in review at  Tectonics), Evolution of rift systems and their fault networks in response to surface processes, [preprint], doi: https://doi.org/10.31223/X5Q333

How to cite: Neuharth, D., Brune, S., Wrona, T., Glerum, A., Braun, J., and Yuan, X.: Evolution of rift systems and their fault networks in response to surface processes, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5758, https://doi.org/10.5194/egusphere-egu22-5758, 2022.

EGU22-5938 | Presentations | TS6.1

Palaeobathymetric evolution of the Nova Scotia rifted margin during the Central Atlantic Ocean opening 

Julie Tugend, Nick Kusznir, Geoffroy Mohn, Mark Deptuck, Kris Kendell, Fraser Keppie, Natasha Morrison, and Russell Dmytriw

The palaeobathymetric evolution of rifted margins during continental breakup is complex. We investigate the subsidence of Late Triassic to Early Jurassic evaporitic sequences in the proximal and distal parts of the Scotian margin that formed during the opening of the Central Atlantic Ocean.

We use a 3D flexural backstripping technique, which incorporates decompaction and post-breakup reverse thermal subsidence modelling applied to key stratigraphic intervals through the Jurassic down to the Late Triassic base salt. The isostatic evolution of rifted margins depends on crustal thinning, lithosphere thermal perturbation and melt production during rifting and breakup. Quantitative analysis of seismic reflection and gravity anomaly data together with subsidence analysis have also been used to determine crustal thickness variations and ocean–continent transition structure, and to constrain the along strike variability in breakup related magmatism and crustal composition.

Reverse post-breakup subsidence modelling to the Late Triassic base salt restores this horizon at breakup time to near sea level in the proximal domains of the Scotian margin where the continental crust was only slightly thinned during rifting. In contrast, predicted palaeobathymetry of the base salt surface restored to breakup time is greater than 2 to 3 km in the distal parts of the margin where the continental crust was highly thinned (<10km) close to the ocean-continent-transition. One possible interpretation of this is that while the proximal salt underwent post-rift thermal subsidence only, the distal salt was deposited during the latest stage of rifting focused along the distal domains of the Scotian margin, where it underwent additional tectonic subsidence from crustal thinning. This observed difference between the subsidence of proximal and distal salt has been observed elsewhere on the South Atlantic margins (e.g., the Angolan Kwanza margin) and illustrates the complexity of the subsidence and palaeobathymetric evolution of distal rifted margins during breakup.

The deposition of Triassic evaporites occurred before and after the emplacement of the Central Atlantic Magmatic Province (CAMP). The impact of the CAMP on rifting, crustal structure and palaeobathymetric evolution of the Nova Scotia remains to be determined. We do not exclude an additional positive dynamic topography effect at breakup time related to the CAMP magmatic event.

How to cite: Tugend, J., Kusznir, N., Mohn, G., Deptuck, M., Kendell, K., Keppie, F., Morrison, N., and Dmytriw, R.: Palaeobathymetric evolution of the Nova Scotia rifted margin during the Central Atlantic Ocean opening, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5938, https://doi.org/10.5194/egusphere-egu22-5938, 2022.

EGU22-6172 | Presentations | TS6.1

Early Carboniferous rifting in the Southern Urals: New isotopic dating of plutonic and volcanic complexes 

Natalia Pravikova, Alexander Tevelev, Alexey Kazansky, Irina Kosheleva, Ivan Sobolev, Alexandra Borisenko, Egor Koptev, Petr Shestakov, and Jiří Žák

Early Carboniferous igneous rocks are widespread in the Southern Urals. We have obtained new stratigraphic and isotopic data on plutonic and volcanic complexes, allowing us to determine correlation of their age and to construct a new geodynamic model.

The prevailing tectonic setting in the Southern Urals during the Early Carboniferous was sinistral transtension. Volcanic and plutonic complexes in transtensional zones were synchronously formed along large submeridional orogen-parallel strike-slip faults, but are particularly abundant within two N–S-trending zones: Magnitogorsk and East Ural.

The upper Tournaisian–lower Visean sequence in the Magnitogorsk zone consists mainly of moderately alkaline volcanic rocks, basalt and rhyolite are predominant, but pyroclastic, volcano-sedimentary, terrigenous, and carbonate rocks are also widespread. The middle Visean sequence consists of moderately alkaline basalt, andesite, dacite including lavas, tuffs and tuffites. The thickness of the Lower Carboniferous volcanic group varies from 1200 to 5500 m. The age of the volcanic rocks has been proved by findings of foraminifera in limestone interbeds. The oldest volcanic rocks appear in upper Tournaisian, while the youngest are found in the middle upper Visean. New U–Pb zircon dating using SHRIMP is now in progress.

Volcanic rocks in the East Ural zone occur within a few tectonic sheets. The sequence consists of lavas and tuffs of basalt, basaltic andesite, andesite and rhyolite. The total thickness of the sequence varies from 800 to 1500 m. The age of the sequence is determined by findings of fossil plants as middle Visean.

We studied eight plutons in the Magnitogorsk and six in the East Ural zones. Most of them record several intrusive phases. The composition of the rocks varies from gabbro to granodiorites and granites from normal to moderately alkaline series. We combined our new isotopic data on zircons (SHRIMP) with published ages and came to the following conclusions.

  • Two main stages of Early Carboniferous plutonism can be distinguished in the Southern Ural. The first began simultaneously in both zones at the Devonian/Carboniferous boundary (ca. 356–357 Ma) and then changed to volcanic activity at around 346 Ma in the Magnitogosk zone and at around 340 Ma in the East Ural zone, respectively. The second stage began after the termination of volcanic activity and corresponds to 334–327 Ma interval in both zones. So, stages of active volcanism and plutonism alternate in time.
  • Early Carboniferous rifting began with intrusion of plutons, usually associated with transtensional zones under oblique collision. The subsequent volcanic stage corresponds to local extension. The next stage of plutonism began just after volcanism termination and marked a cessation of tectonic activity.

The reported study was funded by RFBR and Czech Science Foundation according to the research project № 19-55-26009. Centre of collective usage ‘Geoportal’, Lomonosov Moscow State University (MSU), provided access to remote sensing data.

How to cite: Pravikova, N., Tevelev, A., Kazansky, A., Kosheleva, I., Sobolev, I., Borisenko, A., Koptev, E., Shestakov, P., and Žák, J.: Early Carboniferous rifting in the Southern Urals: New isotopic dating of plutonic and volcanic complexes, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6172, https://doi.org/10.5194/egusphere-egu22-6172, 2022.

EGU22-7155 | Presentations | TS6.1 | Highlight

Geodynamic Drivers of the East African Rift System 

Anne Glerum, Sascha Brune, and Walid Ben Mansour

The East African Rift System (EARS) is the largest active continental rift on Earth. Inherited lithospheric strength variations have played a large role in forming the system’s current geometry. The partly overlapping eastern and western EARS branches encompass the large Victoria continental microplate that rotates counter-clockwise with respect to Nubia, in striking contrast to its neighboring plates.

Both the forces driving rifting in the EARS as a whole and the rotation of Victoria in particular are debated. Whereas some studies largely ascribe the rifting to horizontal mantle tractions deriving from plume-induced flow patterns (e.g., Ghosh et al., 2013), or to more equal contributions of mantle tractions and gravitational potential energy (e.g., Kendall and Lithgow-Bertelloni, 2016), recent work by Rajaonarison et al. (2021) points to a dominant role for lithospheric buoyancy forces in the opening of the rift system. Similarly, other numerical modeling (Glerum et al., 2020) has shown that Victoria’s rotation can be induced through drag of the major plates along the edges of the microplate transmitted along stronger lithospheric zones, with weaker regions facilitating the rotation, without the need for plume-lithosphere interactions (e.g., Koptev et al., 2015; Calais et al., 2006).

With unprecedented data-driven, regional spherical geodynamic numerical models spanning the EARS and the upper 660 km of mantle, we aim to identify the individual contributions of lithosphere and mantle drivers of deformation in the EARS and of Victoria’s rotation. Observational data informs the model setup in terms of crustal and lithospheric thickness, sublithospheric mantle density structure and plate motions. Comparison to separate observations of the high-resolution model evolution of strain localization, melting conditions, horizontal stress directions, topography and horizontal plate motions allows us to identify the geodynamic drivers at play and quantify the contributions of large-scale upper mantle flow to the local deformation of the East African crust.

 

Calais et al. (2006). GSL Special Publications, 259(1), 9–22.

Ghosh et al. (2013). J. Geophys. Res. 118, 346–368.

Glerum et al. (2020). Nature Communications 11 (1), 2881.

Koptev et al. (2015). Nat. Geosci. 8, 388–392.

Rajaonarison et al. (2021). Geophys. Res. Letters, 48(6), 1–10.

How to cite: Glerum, A., Brune, S., and Ben Mansour, W.: Geodynamic Drivers of the East African Rift System, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7155, https://doi.org/10.5194/egusphere-egu22-7155, 2022.

EGU22-7186 | Presentations | TS6.1

Tectonic control on the reef evolution in the Red Sea syn-rift basin 

Tihana Pensa, Abdulkader Afifi, Antoine Delaunay, and Guillaume Baby

Fossil carbonate reefs are common along rifts and rifted passive margins. They provide valuable paleoecological and paleogeographical information. Moreover, porous reef buildups are targeted as potential oil and gas reservoirs and sites for gas storage.

The Red Sea and Gulf of Suez contain several generations of reef deposits: (1) syn-rift Early and Middle Miocene reefs that formed along the eroded footwalls of normal faults, and (2) post-rift Pliocene-Holocene coastal reefs that split apart, subsided, and aggraded to form carbonate platforms by salt-driven raft tectonics. The Late Miocene lacks reefs due to evaporitic conditions. This study focuses on the uplifted Early-Middle Miocene reef deposits, which outcrop sporadically along the Arabian and African margins of the Red Sea, particularly the northern half, over a distance of ~1000 km. They are exhumed along the coastal plain at elevations of 50-150 meters. We studied several reefs on the Arabian side and carried out age determination implementing a revised planktonic foraminifera zonation and paleoenvironmental interpretation. We also used satellite images to identify and map similar exhumed reefs on the African side.

The Miocene reefs are located along the eroded footwalls of normal fault scarps that form the first or second marginal half grabens, usually sitting unconformably over the basement. The flat reef and back-reef lagoonal facies are often removed by erosion, but the dipping thick fore-reef talus breccias are preserved. The breccias are an unsorted mix of coral reef and back reef debris and also contain basement clasts. The linear fore-reef talus deposits follow along the fault scarps, revealing paleo-valleys incised into the hanging wall. Placing the reef on the basin-scale helps us distinguish the tectonic influence, accompanied by climate and eustatic sea-level variation, on shallow marine carbonates during rifting.

Mapping all published, newly discovered, and inferred outcrops along the African and Arabian coast of the Red Sea allow us to develop a new tectono-sedimentary model for reef evolution in the syn-rift setting. The proposed model explains the absence of the reef outcrops in the southern areas of the Arabian Red Sea and predicts subsurface zones where reef growth possibly took place. Nature of the contact between reef carbonates and the underlying Precambrian basement in conjunction with the consistently preserved fore-reef zone disclose the uplift history and erosion events prior and post reef growth. In addition, following the reef distribution, we developed a syn-rift paleogeographic model of the Red Sea.

How to cite: Pensa, T., Afifi, A., Delaunay, A., and Baby, G.: Tectonic control on the reef evolution in the Red Sea syn-rift basin, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7186, https://doi.org/10.5194/egusphere-egu22-7186, 2022.

EGU22-8003 | Presentations | TS6.1

Evolution of detachment fault systems within necking domains: insights from the Frøya and Gossa Highs, mid-Norwegian margin 

Julie Linnéa Sehested Gresseth, Per Terje Osmundsen, and Gwenn Péron-Pinvidic

Within rifted margins, the necking domain corresponds to the area where drastic reduction in basement thickness leads the crust to attain a wedge-shape. The crustal thinning occurs along detachment fault systems typically recording displacements in the order of 10s of kilometers. These systems commonly shape the crustal taper and eventually the taper break, where crustal thickness is thinned to 10 km or less. In recent years, it has become clear that evolutionary models for detachment fault systems remain unsatisfactory as the well-known principles for smaller magnitude fault systems are not fully applicable to these large-magnitude systems. Consequently, the detailed responses in the foot- and hanging walls and associated basin sedimentation within detachment fault systems and necking domains remain poorly understood compared to those observed in extensional half-graben basins.

We use interpretation of 3D- and 2D seismic reflection data from the Mid-Norwegian rifted margin to discuss the effects of lateral interaction and linkage of extensional detachment faults on the necking domain configuration. We investigate how the structural evolution of these detachment faults interact with the effects of isostatic rollback to produce complex 3D geometries and control the configuration of the associated supradetachment basins. The study area demonstrates how successive incision may induce a complex structural relief in response to faulting and folding. In the proximal parts of the south Vøring and northeastern Møre basins, the Klakk and Main Møre Fault Complexes form the outer necking breakaway complex and the western boundary of the Frøya High. We interpret the previously identified metamorphic core complex within the central Frøya High as an extension-parallel turtleback-structure. The now eroded turtleback is flanked by a supradetachment basin with two synclinal depocenters resting at the foot of the necking domain above the taper break. We attribute footwall and turtleback exhumation to Jurassic-Early Cretaceous detachment faulting along the Klakk and Main Møre Fault Complexes. The study area further demonstrates how detachment fault evolution may lead to the formation of younger, successively incising fault splays locally. Consequently, displacement may occur along laterally linked fault segments generated at different stages in time. Implicitly, the detachment fault system may continue to change configuration and therefore re-iterate itself and its geometry during its evolution.

How to cite: Gresseth, J. L. S., Osmundsen, P. T., and Péron-Pinvidic, G.: Evolution of detachment fault systems within necking domains: insights from the Frøya and Gossa Highs, mid-Norwegian margin, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8003, https://doi.org/10.5194/egusphere-egu22-8003, 2022.

EGU22-8663 | Presentations | TS6.1 | Highlight

Spatio-temporal evolution of rift volcanism driven by progressive crustal unloading 

Gaetano Ferrante, Eleonora Rivalta, and Francesco Maccaferri

Continental rifting can be accompanied by a large amount of volcanism, which is often observed to shift from the inside of the rift basin to its flanks and conversely, but the controls on this variability are still unclear. Maccaferri et al. (2014) proposed that elastic stresses under rifts are dominated by gravitational unloading due to the excavation of the graben. According to this model, off-rift volcanism follows the creation of a stress barrier below the rift that drives dikes diagonally away from the rift axis, or stops their ascent altogether so that they get stuck as lower crustal sills. The Maccaferri et al. (2014) model is however based on simplyfied assumptions that need to be relaxed to further test its validity. In particular, the model neglects the effect of the accumulating crustal intrusions on ascending dikes. Here we build on this model to explain the spatio-temporal evolution of rift volcanism in terms of the reorientation of principal stresses in the crust due to the progressive unloading of a rift basin with time. To do so, we extend the dike propagation boundary element code used by Maccaferri et al. (2014) to account for the stresses generated by previously ascended dikes. We find that volcanism in rift zones starts inside the rift depression for small values of basin depth. The deepening of the rift is accompanied by the development of a stress barrier under the basin which deflects ascending dikes, causing a shift of surface volcanism from the inside to the flanks. The intensification of the barrier due to further deepening of the basin promotes the formation of lower crustal sill-like structures that pile up under the rift, shallowing the depth at which magma is injected. This eventually leads to dikes being injected from above the stress barrier, moving surface volcanism back to the axial part of the rift. We compare the results of our model to observations of evolving volcanism and crustal structure for rifts of different graben width and depth.

How to cite: Ferrante, G., Rivalta, E., and Maccaferri, F.: Spatio-temporal evolution of rift volcanism driven by progressive crustal unloading, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8663, https://doi.org/10.5194/egusphere-egu22-8663, 2022.

EGU22-8715 | Presentations | TS6.1

Continental breakup style of Marginal Seas 

Geoffroy Mohn, Jean-Claude Ringenbach, Michael Nirrengarten, Julie Tugend, Anders McCarthy, and Chao Lei

Marginal Seas are extensional basins formed in a convergent setting near active subduction zones. They are characterized by a short life (<25 Ma), as well as unstable and changing directions of seafloor spreading. However, the underlying processes involved in their formation from rifting to seafloor spreading initiation are still debated (supra-subduction convection/extension, slab-pull). This problem is further compounded by the fact that our understanding of continental breakup is primarily derived from the evolution of magma-poor and magma-rich Continent-Ocean Transitions (COT) of the Atlantic margins.

In this contribution, we characterize the tectono-magmatic processes acting during continental breakup by investigating the COT structures of three main Marginal Seas located in the Western Pacific, namely the South China Sea, the Coral Sea and the Woodlark Basin. All three examples formed under rapid extension rates and propagation of seafloor spreading. Although each marginal basin has its uniqueness, we show that these three marginal basins are characterized by a narrow COT (typically <~20 km), documenting the sharp juxtaposition of continental crust against igneous oceanic crust. The COT of the three basins shows that final extension is accommodated by the activity of one major low-angle normal fault. This extension is contemporaneous with important magmatic activity expressed by volcanic edifices, dykes and sills emplaced in the distalmost part of these margins. Such narrow COT suggests that a rapid shift from rifting to spreading.

The rapid localization of extensional deformation in a narrow area has major implications for partial melting generation. The evolution of extensional structures is controlled by the interplay of lithospheric thinning, asthenosphere upwelling and decompression melting. High extension rate prevents conductive cooling and lead to focus volcanic activity in a narrow area evolving rapidly in space and time to magmatic accretion. Causes for the fast extensions rates of Marginal Sea rifting are likely controlled by kinematic boundary conditions directly or indirectly controlled by nearby subduction zones. Such mode of breakup is probably not limited to marginal Seas but only enhanced in such settings.

How to cite: Mohn, G., Ringenbach, J.-C., Nirrengarten, M., Tugend, J., McCarthy, A., and Lei, C.: Continental breakup style of Marginal Seas, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8715, https://doi.org/10.5194/egusphere-egu22-8715, 2022.

Breakup volcanism along rifted passive margins is highly variable in time and space. The factors controlling magmatic activity during continental rifting and breakup are not resolved and controversial. Here we use numerical models to investigate melt generation at rifted margins with contrasting rifting styles corresponding to those observed in natural systems. Our results demonstrate a surprising correlation of enhanced magmatism with margin width. This relationship is explained by depth-dependent extension, during which the lithospheric mantle ruptures earlier than the crust, and is confirmed by a semi-analytical prediction of melt volume over margin width. The results presented here show that the effect of increased mantle temperature at wide volcanic margins is likely over-estimated, and demonstrate that the large volumes of magmatism at volcanic rifted margin can be explained by depth-dependent extension and very moderate excess mantle potential temperature in the order of 50-80 °C, significantly smaller than previously suggested.

How to cite: Lu, G. and Huismans, R.: Melt volume at Atlantic volcanic rifted margins controlled by depth-dependent extension and mantle temperature, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9420, https://doi.org/10.5194/egusphere-egu22-9420, 2022.

EGU22-9480 | Presentations | TS6.1

Permian-Triassic rifts of the West Siberian basin: evidence of voluminous felsic volcanic activity 

Maria Smirnova, Anton Latyshev, Ivan Panchenko, Petr Kulikov, Alexey Khotylev, and Rustam Garipov

Permian-Triassic rifts of the West Siberian basin compose one of the largest continental rift systems in the world. The Koltogor-Urengoy and Khudosey rifts of meridional strike are the main structures in the eastern part of the basin and are filled mainly by basaltic lavas with clastic sediments. However, in the central part of the West Siberian plate felsic lavas are widespread along with mafic volcanics. Here we present the detailed data on composition of lavas, whole-rock geochemistry, geophysical features and U-Pb ages from the Frolov-Krasnoleninsky region in the central part of the West Siberian basin.

Within the studied region, Permian-Triassic rifts of NW and NE strike are predominant. The main structure is Rogozhnikov-Nazym graben of NW strike, composed of rhyolite-dacitic lavas.  According to the seismic data, this volcanic area comprises multiple local eruptive centers (1-5 km in diameter). Lavas constitute the major part of the volcanic pile, while tuffs are subordinate (up to 15%). Deep boreholes did not reach the base of volcanic sequence, but its thickness exceed 0.5 km.

The main geochemical features of the Rogozhnikov-Nazym volcanics are: 1) acidic composition and increased alkali content; 2) signs of supra-subduction setting: Ta-Nb and Pb anomalies; 3) high ratios of all incompatible trace elements. According to these features, volcanic rocks of the Rogozhnikov-Nazym graben were formed in the setting of post-collisional extension. Furthermore, coeval felsic lavas are widespread in smaller structures of the Frolov-Krasnoleninskiy region and demonstrate similar geochemical characteristics.

We obtained 9 U-Pb (SHRIMP) ages from felsic lavas of the Rogozhnikov-Nazym graben and other rift structures. All samples yielded ages in the range from 254±2 to 248.2±1.3 Ma (Late Permian – Early Triassic). Thus, volcanic activity in the Frolov-Krasnoleninsky region was nearly synchronous to the main phase of Siberian Traps magmatism in the Siberian platform.

Volcanic rocks of the Frolov-Krasnoleninsky region constitute rifts of NW strike (mainly felsic lavas, including the Rogozhnikov-Nazym graben) and NE strike (mainly mafic lavas, geochemically similar to the Siberian Traps basalts). We suggest that orientation of rifts inherits two conjugate strike-slip fault systems, which mark the W-E compression during the preceding collisional event in the Early-Middle Permian, and the mechanism of extension is similar to pull-apart model. The contrasting composition of volcanics can be caused by different-depth zones of magma generation.

The Permian-Triassic volcanics are overlain by continental coal-bearing coarse-grained volcanoclastic sediments of the Chelyabinsk Group (Middle Triassic – Early Jurassic). These deposits fill the local depressions in the paleotopography. The Middle Jurassic clastic Tyumen Formation overlays both volcanic rocks and Chelyabinsk Group, covers almost the entire territory of the Frolov-Krasnoleninsky region and marks the initiation of post-rift subsidence in the West Siberian basin.

How to cite: Smirnova, M., Latyshev, A., Panchenko, I., Kulikov, P., Khotylev, A., and Garipov, R.: Permian-Triassic rifts of the West Siberian basin: evidence of voluminous felsic volcanic activity, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9480, https://doi.org/10.5194/egusphere-egu22-9480, 2022.

EGU22-9962 | Presentations | TS6.1

Crustal architecture under the NE Brazil syn-rift basins from receiver functions: Evidence of deep magmatic processes. 

Jordi Julià, Miro Döring, and Thabita Barbosa

NE Brazil is scarred by a number of aborted rift basins that developed from the same extensional stresses that lead to the opening of the South Atlantic. Extension started in Late Jurassic times, with the formation of an AfroBrazilian Depression south of the Patos Lineament, and continued through the Early Berriasian along two NS trending axes of deformation: Recôncavo-Tucano-Jatobá (RTJ) and Gabon-Sergipe-Alagoas (GSA). In the Late Berriasian - Early Barremian, rifting jumped North of the Pernambuco Lineament to progress along the NE-SW trending Cariri-Potiguar (CP) axis. In the Late Barremian, approximately coinciding with the opening of the Equatorial Atlantic, rifting aborted along the RTJ and CP axes and continued along the GBA trend eventually resulting in continental break-up. Extension-related magmatic activity seems to have been restricted to break-up along the marginal basins, although dyke swarms bordering the Potiguar basin (Rio Ceará-Mirim) seem to be associated to early extension stages in NE Brazil and three subparallel dolerite dykes, with K-Ar dates of 105±9 Ma, were inferred indirectly from aeromagnetic and outcrop data East of the RTJ axis. Aiming at better understanding the structure and evolution of the syn-rift basins of NE Brazil, a total of 20 seismic stations were deployed between October 2018 and January 2021 along the CP and RTJ trends. The deployment, funded by the national oil company Petrobras, included both broadband and short-period stations borrowed from the Pool de Equipamentos Geofísicos do Brasil. These stations complemented a number of permanent broadband stations belonging to the Rede Sismográfica do Brasil. Receiver functions were obtained for each of the seismic stations from teleseismic P-wave recordings and S-wave velocity models were developed from their joint inversion with dispersion velocities from an independent tomographic study. In the RTJ basins, our results show that the crust is about 41 km thick and displays a thick (5-8 km) layer of fast-velocity material (> 4.0 km/s) at its bottom; in the Potiguar basin, our results show a thinner crust of about 30-35 km underlain by an anomalously slow (4.3-4.4 km/s) uppermost mantle. We argue that those anomalous layers are the result of syn-rift and/or post-rift magmatic intrusions, which would have had the effect of increasing velocity at lower crustal levels under the RTJ basins and decreasing velocity at uppermost mantle depths under the Potiguar basin. If correct, ou interpretation would imply that, in spite of an overall lack of evidence at shallow levels, deep magmatic processes have played a role in the formation and evolution of the syn-rift basins of NE Brazil.

How to cite: Julià, J., Döring, M., and Barbosa, T.: Crustal architecture under the NE Brazil syn-rift basins from receiver functions: Evidence of deep magmatic processes., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9962, https://doi.org/10.5194/egusphere-egu22-9962, 2022.

EGU22-10866 | Presentations | TS6.1

Backarc rifting as a response to a crustal collapse at the western Gondwana margin: The Triassic tectonic setting of the Sierra Nevada de Santa Marta, Northern Andes of Colombia 

Michael Andrés Avila Paez, Andreas Kammer, Camilo Andres Conde Carvajal, Alejandro Piraquive Bermudez, and Cristhian Nicolas Gomez Plata

Since the middle Triassic the long-lived convergent margin of western Gondwana evolved from a relatively steeply inclined into a flat lying slab setting that combined an extensional regime on the backarc side with the telescoping of crustal slices at the continental margin. In the Northern Andes the opening of Late Triassic basins is practically contemporaneous with the outwedging of lower crustal slices, that often alternate with intrusive sheets of S-type granites and mark the limit to a  non-metamorphic roof. A tectonic coupling between backarc collapse and the escape of lower crustal slices can be examined in detail in the northwestern flank of the Sierra Nevada de Santa Marta, a northern-most outlier of the North Andean basement. Remnants of a Late Triassic graben fill attest here to a block tilted toward the hinterland. Its tri-partite sedimentary sequence recycled material sourced from external parts of the continental margin. The basement of a more foreland-oriented block of the Sevilla belt is affected by outward-verging folds, which have formed under greenschist facies conditions in its upper and lower amphibolite conditions in its lower part. The succeeding Inner Santa Marta Metamorphic Belt consists of a stack of high-grade metamorphic basement slices separated by siliciclastic wedges metamorphosed under lower amphibolite conditions. The soles of the basement slices consist of migmatites with remobilized granitic pods and resulting folds oriented in a dip-slip direction. These structures are overprinted by a flattening and a second migmatitic event, which records peak P-T conditions of a lowest crustal level. Accordingly, they contain inclusions of ultramafic rocks. The time-equivalent correspondence between a supracrustal  backarc extension and a foreland-directed stacking of crustal slices suggests some similarity to the model  of a low-viscosity channel of a thickened orogenic crust. An important difference of this flat-slab setting resides, however, in a wholesale mobility of a strongly heated crust that constitutes the backarc and frontal position of this active margin.

How to cite: Avila Paez, M. A., Kammer, A., Conde Carvajal, C. A., Piraquive Bermudez, A., and Gomez Plata, C. N.: Backarc rifting as a response to a crustal collapse at the western Gondwana margin: The Triassic tectonic setting of the Sierra Nevada de Santa Marta, Northern Andes of Colombia, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10866, https://doi.org/10.5194/egusphere-egu22-10866, 2022.

EGU22-11260 | Presentations | TS6.1

Rifted margins classification and forcing parameters 

Francois Sapin

Rifted margins are the result of the successful process of thinning and breakup of continents leading to the formation of new oceanic lithosphere. Observations on rifted margins are now integrating an increasing amount of multi-channel seismic data and drilling of several Continent-Ocean Transitions. Based on large scale geometries and domains observed on high-quality long-offset seismic lines, we illustrate a simple classification based on mechanical behavior and magmatic production. Therefore, rifted margins are not divided into opposing types, but described as a combination and continuum that can evolve through time and space from ductile to brittle mechanical behavior on one hand and from magma-poor to magma-rich on the other hand.

For instance, margins such as the Mauritania-Senegal Basin evolve north to south from a magma-poor to a magma-rich margin. Margins such as the Vøring one suffered different rifting episodes evolving from ductile deformation in the Devonian to more brittle and magma-poor rifting in the Cretaceous prior to a final magma-rich breakup in the Paleogene.

Thanks to these examples and to some others, we show the variability of the rifted margins worldwide but also along strike of a single segment and through time along a single margin in order to explore and illustrate some of the forcing parameters that can control the initial rifting conditions but also their evolution through time.

How to cite: Sapin, F.: Rifted margins classification and forcing parameters, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11260, https://doi.org/10.5194/egusphere-egu22-11260, 2022.

The breakup of Pangaea in Early Mesozoic times initiated first in the Central Atlantic region, where Triassic to Early Jurassic lithosphere extension led to continental breakup and oceanic accretion. The Central Atlantic rifted margins of NW Africa and eastern North America exhibit complex along-strike variations in structural configuration, crustal geometries, and magmatic budget at breakup. Quantifying these lateral changes is essential to understand the tectonic and geodynamic processes that dominated rifting and continental breakup. The existing seismic refraction lines along the African side and its American conjugate provide good constraints on the 2D crustal architecture of several Central Atlantic margins. However, they are insufficient to quantify the ambiguous lateral variations.

This work examines the central segment of the Moroccan Atlantic margin, which is named here the Sidi Ifni-Tan Tan margin. Using 2D seismic reflection and well data, we quantify the stratigraphic and structural architecture of the margin. We then use this to constrain 2D and 3D gravity models, to predict crustal thickness and types. Ultimately, our results are integrated with previous findings from the conjugate Nova Scotia margin, on the Canadian side, to propose a rift to drift model for this segment of the Central Atlantic and discuss the tectonic processes that dominated rifting and decided the fate of continental breakup.

How to cite: Gouiza, M.: Rift to drift evolution and crustal structure of the Central Atlantic: the Sidi Ifni-Nova Scotia conjugate margins, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11336, https://doi.org/10.5194/egusphere-egu22-11336, 2022.

EGU22-11973 | Presentations | TS6.1

Spatial and temporal variation of magmatism in the East African Rift System: influence of tectonics and different mantle domains 

Eleonora Braschi, Simone Tommasini, Giacomo Corti, and Andrea Orlando

The East African Rift System (EARS) is the classic example of an active continental rift associated with extension, deformation, lithosphere thinning, and generation of magmas from different mantle domains and depths. Magmatism and tectonics have always been closely linked and their mutual relationships concern many processes such as the kinematics and rates of extension, the passive versus active role of mantle upwelling and magma genesis. In addition, the spatial and temporal variations of the geochemical signature of magmas varies in response to different mantle domains contributing to their genesis (subcontinental lithosphere, asthenosphere and deeper mantle sources).

In this study we carefully screened an exhaustive geochemical database of basalts (including authors’ unpublished data) emplaced in the EARS to decipher the possible connection between different mantle domains, and the evolution and tectonic characteristics of the EARS. The geochemical data were subdivided according to spatial and temporal criteria: from a spatial point of view, the samples were ascribed to five groups, namely Afar, Ethiopia, Turkana depression, Kenya and Tanzania. From a temporal point of view, the magmatic activity of the EARS was subdivided into three main temporal sequences: 45-25 Ma, 25-10 Ma and 10-0 Ma.

The geochemical signature and radiogenic isotopes (Sr, Nd, Pb) of the selected basalts reveal significant spatial and temporal variations and permits to place important constraints on the contribution of subcontinental lithosphere, asthenosphere, and lower mantle in magma genesis

How to cite: Braschi, E., Tommasini, S., Corti, G., and Orlando, A.: Spatial and temporal variation of magmatism in the East African Rift System: influence of tectonics and different mantle domains, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11973, https://doi.org/10.5194/egusphere-egu22-11973, 2022.

EGU22-12619 | Presentations | TS6.1

Passive margin asymmetry and its polarity in the presence of a craton 

Raghu Gudipati, Marta Pérez-Gussinyé, Miguel Andres-Martinez, Mario Neto-Araujo, and Jason Phipps Morgan

When continental lithosphere is extended to break-up it forms two conjugate passive margins. In many instances, these margins are asymmetric: while one is wide and extensively faulted, the conjugate thins more abruptly and exhibits little faulting. Recent studies have suggested that this asymmetry results from the formation of an oceanward-dipping sequential normal fault array and rift migration leading to the observed geometry of asymmetric margins. Numerical models have shown that fault sequentiality arises as a result of asymmetric uplift of the hot mantle towards the hanging wall of the active fault. The preferential localization of strain reinforced by strain weakening effects is random and can happen on either conjugate. However, along the long stretch of the South Atlantic margins, from the Camamu-Gabon to the North Santos-South Kwanza conjugates, the polarity can be very well correlated with the distance of the rift to nearby cratonic lithosphere. Here, we use numerical experiments to show that the presence of a thick cratonic root inhibits asthenospheric flow from underneath the craton towards the adjacent fold belt, while flow from underneath the fold belt towards the craton is favoured. This enhances and promotes sequential faulting and rift migration towards the craton and resulting in a wide faulted margin on the fold belt and a narrow conjugate margin on the craton side, thereby determining the polarity of asymmetry, as observed in nature.

How to cite: Gudipati, R., Pérez-Gussinyé, M., Andres-Martinez, M., Neto-Araujo, M., and Phipps Morgan, J.: Passive margin asymmetry and its polarity in the presence of a craton, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12619, https://doi.org/10.5194/egusphere-egu22-12619, 2022.

EGU22-12955 | Presentations | TS6.1

Relative continent/mid-ocean ridge elevation: a reference case for isostasy in geodynamics 

Thomas Theunissen, Ritske S. Huismans, Gang Lu, and Nicolas Riel

The choice of crustal and mantle densities in numerical geodynamic models is usually based on convention. The isostatic component of the topography is, however, in most if not all cases not calibrated to fit observations resulting in not very well constrained elevations. The density distribution on Earth is not easy to constrain because it involves multiple variables (temperature, pressure, composition, and deformation). We provide a review and global analysis of the topography of the Earth showing that elevation of stable continents and active mid-ocean ridges far from hotspots on average is +400 m and -2750 m respectively. We show that density values for the crust and mantle, commonly used for isostatic modeling result in highly inaccurate prediction of topography. We use thermodynamic calculations to constrain the density distribution of the continental lithospheric mantle, sub-lithospheric mantle, the mid-ocean ridge mantle, and review data on crustal density. We couple the thermo-dynamic consistent density calculations with 2-D forward geodynamic modelling including melt prediction and calibrate crustal and mantle densities that match the observed elevation difference. Our results can be used as a reference case for geodynamic modeling that accurately fits the relative elevation between continents and mid-ocean ridges consistent with geophysical observations and thermodynamic calculations. 

How to cite: Theunissen, T., Huismans, R. S., Lu, G., and Riel, N.: Relative continent/mid-ocean ridge elevation: a reference case for isostasy in geodynamics, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12955, https://doi.org/10.5194/egusphere-egu22-12955, 2022.

EGU22-13043 | Presentations | TS6.1

Characterizing mantle deformation processes during the rift-to-drift transition at magma-poor margins 

Nicholas Montiel, Emmanuel Massini, Luc Lavier, and Othmar Müntener

A holistic understanding of rift initiation, evolution, and variation is made complicated by the difficulties of deep seismic imaging, limited modern examples of continental rifting, and few accessible outcrops of fossil rifted margins. In particular, The temporal structural and rheological evolution of the mantle lithosphere during riftingis poorly constrained. The mantle lithosphere rheology controls lithospheric strength at initiation, but how deformation is partitioned between the crust and mantle,  and how the paths for melt migration from the asthenosphere to the rift surface evolve during rifting is fundamental for our understanding of the rift-to-drift evolution .
Here, we use elastoplastic-viscoelastoplastic modeling in concert with published deep seismic profiles of Atlantic rifted margins and geological insights from the Lanzo peridotite outcrops in the Alps to propose a new mode of extensional tectonics in the subcontinental mantle. We run a series of dynamic models varying initial conditions and mechanisms of deformation localization in the mantle lithosphere consistent with mechanisms of ductile shear zone formation observed at slow spreading centers. Models and geophysical surveys show homologous, sigmoidal reflectors in the mantle, a reversal of fault vergence as seafloor spreading develops, exhumation of the mantle, and increasing magmatic accretion. Geological evidence, along with the coincidence of magmatic accretion and extensional structures in the mantle, suggests that faults in the mantle may serve as conduits for melt, resulting in bright reflectors on seismic profiles.

How to cite: Montiel, N., Massini, E., Lavier, L., and Müntener, O.: Characterizing mantle deformation processes during the rift-to-drift transition at magma-poor margins, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13043, https://doi.org/10.5194/egusphere-egu22-13043, 2022.

EGU22-542 | Presentations | TS6.3 | Highlight

Structural inversion of sedimentary basins: insights from 3D coupled thermo-mechanical and surface processes models and observations from the Mediterranean 

Éva Oravecz, Attila Balázs, Taras Gerya, Dave May, and László Fodor

A common observation in plate tectonics is the successive stages of rifting and associated crustal and lithospheric thinning, and subsequent convergence and inversion of sedimentary basins. Rates and style of inversion often vary across the sedimentary basins, influenced by changing stress and thermal fields, different convergence directions, and also controlled by inherited structures, all of which determine the localization and style of the resulting deformation. However, the dynamic feedbacks between lithospheric tectonics and surface processes, and their 3D expressions have not been studied in details by previous models, even though erosion and sediment distribution exerts a significant control on differential vertical movements and thermal evolution.

In this study, we investigate strain partitioning during extension and subsequent structural inversion, and tackle the coupling between tectonics, mantle melting and surface processes. To do so, we apply the 3D thermo-mechanical code I3ELVIS (Gerya 2015; Munch et al. 2020), which is based on staggered finite differences and marker-in-cell techniques to solve the mass, momentum and energy conservation equations for incompressible media. The models also take into account simplified melting processes, as well as erosion and sedimentation by diffusion.

We compare the modeling results with seismic and well data from the Mediterranean back-arc basins, such as the Alboran, Tyrrhenian and Pannonian Basins. The temporal variation of different plate convergence and slab retreat velocities lead to the extensional formation, recent structural inversion and related differential vertical motions of these basins. In fossil extensional basins, plate convergence has ultimately overprinted the former basin structure, and lead to the rise of young orogens, i.e. the Pyrenees or Great Caucasus.

How to cite: Oravecz, É., Balázs, A., Gerya, T., May, D., and Fodor, L.: Structural inversion of sedimentary basins: insights from 3D coupled thermo-mechanical and surface processes models and observations from the Mediterranean, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-542, https://doi.org/10.5194/egusphere-egu22-542, 2022.

EGU22-957 | Presentations | TS6.3

Anatomy of a dying spreading ridge: paleomagnetic evidence for horizontal axis rotations in the Troodos Ophiolite, Cyprus 

Eldert Advokaat, Marco Maffione, Alex Burton-Johnson, and Mark Dekkers

The Troodos ophiolite of Cyprus hosts a fossil spreading ridge at the Solea graben, whose last magmatic activity has been previously dated to 94.3±0.5 Ma. To study the evolution of a dying ridge, we collected structural geologic data and oriented specimens from the mantle section (serpentinized peridotites, pegmatitic dykes, pyroxenite and wehrlite intrusions) and lower crust (layered gabbros and massive gabbros) for paleomagnetic and rock magnetic analyses. Our results revealed a systematic pattern of horizontal axis rotations (i.e., tilt) in the region to the west of the Solea spreading axis, involving upper crust, lower crust, and upper mantle. Horizontal axis rotations vary in magnitude between ~20° to ~90° within the studied area, with the largest tilts observed to the west of the exposed mantle section at Mt. Olympus, and the smallest tilts observed near the NNW-SSE trending Troodos Forest-Amiandos fault system. This rotation pattern conflicts with previous interpretations considering the Troodos Forest-Amiandos fault as an oceanic detachment, and rather indicates the existence of deep-rooted listric faults that dismembered the Solea spreading ridge after the final phase of spreading.

 

Paleomagnetic directions from serpentinized peridotites indicate that serpentinization occurred both before and during dismemberment of the ridge by listric faulting. As these directions also record a well-studied regional 90° counter-clock-wise rotation of the Troodos ophiolite, we constrained the timing of ridge dismemberment and associated serpentinization between ~94 Ma and the beginning of the regional microplate rotation in the Turonian, hence encompassing a relatively short period of time of 2-4 Myr that well coincides with hydrothermal alteration in nearby plagiogranites dated at ~92–90 Ma.

How to cite: Advokaat, E., Maffione, M., Burton-Johnson, A., and Dekkers, M.: Anatomy of a dying spreading ridge: paleomagnetic evidence for horizontal axis rotations in the Troodos Ophiolite, Cyprus, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-957, https://doi.org/10.5194/egusphere-egu22-957, 2022.

Continental extension at mature rifts systems focuses along spreading segments where dominant magmatic activity, diking and minor faulting assist plate divergence. Such processes make adjacent spreading segments grow but also interact at zones where the spreading is transferred from one segment to another. A great variety of tectonic structures has been observed at transfer zones, encompassing parallel strike-slip faults (bookshelf faulting) or conjugate systems of en-echelon oblique faults. Transfer zones can also become transform plate boundaries once continental breakup occurs. However, the role of magma in influencing the deformation at rift-rift transfer zones is unclear as direct observations are rare. In this study, we address this open question by exploiting high-resolution Pléiades-1 tri-stereo imagery to produce the first 1 m DEM of the Afrera Plain transfer zone, between the Erta Ale and Tat Ali spreading segments in Northern Afar. This dataset has been used to conduct a detailed structural analysis of both tectonic and magmatic features and explore their geometrical and spatial relationships. We observed different trends and kinematics: Dikes opens with an extension oriented ~N65°E, consistent with the regional extension; tectonic features have instead an extensional component with direction varying between ~N46°E and ~N68°E. Riedel shears and measurements of fractures opening directions indicate that tectonic deformation occurs along two families of NW-SE- and NS-striking oblique faults having right-lateral and left-lateral components, respectively. At the same time, spatial relationships between faults and lava flows also indicate that magmatic and tectonic activity co-exist in the transfer zone. We explain these observations by two different strain fields acting in the Afrera Plain during magmatic and amagmatic phases. During magmatic phases, dikes open orthogonal to the spreading direction responding to the regional extension. Conversely, during amagmatic phases, the transfer zone is dominated by the interaction between the two spreading segments with counterclockwise rotations of the strain field and shear motions accommodated by conjugate fault systems.

How to cite: La Rosa, A., Pagli, C., Hurman, G., and Keir, D.: Analysis of high-resolution Digital Elevation Model (DEM) of the Afrera Plain (Afar) reveals relationship between magmatism and tectonics in a rift transfer zone, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1175, https://doi.org/10.5194/egusphere-egu22-1175, 2022.

        The tectonic evolution of the North Atlantic Ocean has been extensively studied using a variety of geological, geophysical, and plate reconstruction techniques. Recently, deformable plate tectonic reconstructions, built using the GPlates software, have become an increasingly used method for studying the plate kinematics, deformation, and subsequent crustal thickness evolution of tectonic regimes. For the North Atlantic Ocean in particular, deformable plate models have proven to be useful for studying the kinematic evolution of continental blocks (e.g. Flemish Cap and Galicia Bank) and the partitioning of strain within sedimentary basins (e.g. Orphan Basin). However, despite these advancements, previously published deformable plate models have included limitations that can be geologically unsatisfying. Some notable examples include, but are not limited to, uniform crustal thickness assumptions at model start times, and the rigid nature of continental blocks and model boundaries that define the limits of where deformation takes place.  

        Using the interplay of GPlates and its python programming module, pyGPlates, we present a new deformable plate modelling strategy and application within the North Atlantic Ocean. In contrast to previous studies, this approach considers deformation within continental blocks and the reconstruction of present day crustal thickness estimates calculated via gravity inversion. In addition, we also demonstrate the minimized impact of rigid landward model boundaries using this approach and the resultant ability to reconstruct rift domain boundaries a priori. The results of this study provide insight into the pre-rift (200 Ma) crustal thickness template of the North Atlantic and the evolution of relevant continental blocks during rift-related deformation. Furthermore, this work also highlights the potential impact of Appalachian and Caledonian terrane boundaries on the distribution and extent of rifting experienced along the Newfoundland, Ireland, and West Iberian offshore rifted margins.  

How to cite: King, M. and Welford, J. K.: Reconstructing deformable continental blocks and crustal thicknesses back through time within the North Atlantic Ocean, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1310, https://doi.org/10.5194/egusphere-egu22-1310, 2022.

With increased geophysical scrutiny of the NE Newfoundland-Irish margin pair (North Atlantic), the previously assumed conjugate relationship and rift-perpendicular extension between the Flemish Cap and Goban Spur are increasingly questioned. We present multichannel reflection profiles along the Flemish Cap, the Porcupine Bank, and the Goban Spur, along which structural domains (proximal, necking, hyperextended, and/or exhumed mantle domains included) are defined. Features of each structural domain along these profiles on the Flemish Cap and the Goban Spur are strikingly different, whereas similar structural features are observed in the necking domains along seismic profiles on the Porcupine Bank and the Flemish Cap. The variability in basement features suggests oblique rifting between the Flemish Cap and the Goban Spur-Porcupine Bank region, as well as a connection between the Porcupine Bank and the Flemish Cap during Early Jurassic rifting. This understanding is consistent with crustal thickness evolution calculated from a deformable plate reconstruction model that is locally updated based on seismic interpretation constraints and previously published plate reconstructions. The updated deformable plate model shows varying extension obliquity between the Porcupine Bank, Goban Spur, and Flemish Cap, which are strongly influenced by inherited Caledonian and Variscan structures, resulting in the conclusion that the Flemish Cap and the Goban Spur were not conjugate margins prior to the opening of the modern North Atlantic Ocean.

How to cite: Yang, P. and Welford, J. K.: Conjugate no more: redefining the pre-rift relationship between the Flemish Cap and the Goban Spur prior to the North Atlantic opening, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2780, https://doi.org/10.5194/egusphere-egu22-2780, 2022.

EGU22-3220 | Presentations | TS6.3

The influence of accretionary orogenesis on rift dynamics 

Zoltán Erdős, Susanne Buiter, and Joya Tetreault

The Wilson Cycle of closing and opening of oceans is often schematically portrayed with ‘empty’ oceanic basins. However, bathymetric and geophysical observations outline anomalous topographic features, such as microcontinents and oceanic plateaus, that can be accreted when oceans close in subduction. This implies that numerous rifted margins have formed in regions characterized by the presence of previously accreted continental terranes. The main factors controlling where and how such continental rifts localize in relation to the inherited compressional structures is yet to be explored properly. Potential factors that can influence the evolution and structural style of a rift in such a tectonic setting include the thermo-tectonic age of the accretionary orogen, the number and type (size, rheology) of accreted terranes, the nature of terrane boundaries, as well as the velocity of rifting.

We use 2D finite-element thermo-mechanical models to investigate how the number and size of accreted terranes as well as the duration of tectonic quiescence between orogenesis and extension (i.e., the amount of time available for the thermal re-equilibration of the thickened lithosphere) affect the style of continental rifting. Our results can further understanding of how rifted margins formed after accretionary orogenesis are influenced by the compressional stage such as the Norwegian rifted margin, where the late-Paleozoic to Mesozoic rifting occurred after the early Paleozoic Caledonian orogeny.

We test two hypotheses. According to our first hypothesis, the location of the rift is dependent on the age of the accretion. If extension directly follows accretion, we expect the thick lithosphere of the orogen to be strong in a brittle sense, causing extension to localise adjacent to the orogen. In contrast, if the onset of extension happens after a period of tectonic quiescence, the accretionary orogen has time to heat up and viscously weaken, allowing it to localize deformation more efficiently. We test this hypothesis by varying the amount of time available for thermal re-equilibration.

Secondly, we hypothesize that the degree to which the compressional structures such as terrane boundaries in the accretionary stack reactivate depends on the size and complexity of the accreted assembly (through the number and size of the accreted terrains) as well as the strength of shear zones. We test this hypothesis by varying the number of terranes accreted prior to rifting.

Our preliminary results show that the subduction interface is reactivated in an extensional regime, but without a period of quiescence the reactivation is temporary and rifting occurs in the unthickened foreland basin area.

How to cite: Erdős, Z., Buiter, S., and Tetreault, J.: The influence of accretionary orogenesis on rift dynamics, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3220, https://doi.org/10.5194/egusphere-egu22-3220, 2022.

EGU22-3597 | Presentations | TS6.3

Analysis of strike-slip tectonics in extensional systems: the case of the Moroccan Atlas system 

Athanasia Vasileiou, Mohamed Gouiza, Estelle Mortimer, and Richard Coliier

The intracontinental belt of the High Atlas is an aborted rift system along NW Africa, which formed during the Mesozoic break-up of Pangaea and was inverted during the Alpine Orogeny. Although the inversion and orogeny build-up have been extensively studied, the Triassic to Jurassic rifting, synchronous to the opening of the Atlantic and the Tethys, is still poorly understood. True orthogonal rifting is proposed to occur in the Triassic to Early Jurassic, while the end of rifting is controversial and believed to be controlled by oblique extension. Restoration of the Atlantic-Tethys triple junction suggests sinistral motion between Iberia and Africa being active during the Middle Jurassic, which reactivated pre-existing NE-SW trending Hercynian weaknesses in transtension mode. This led to the formation of a series of pull-apart basins involving the basement and localised volcanic activity.

The Atlas system is an excellent field analogue to analyse the role of strike-slip tectonics in extensional systems, especially in the early stages of rifting. Despite the late Cenozoic (Alpine) inversion, the well-exposed syn-rift structures and sediments have been weakly affected by the broad contractional event.

Our study aims to investigate the kinematic and geometry of the oblique rifting phase, the strain variation lengthwise in the Atlas rift system, the relationship between the orthogonal rift structures, the strike-slip structures, and the synchronous volcanism. In this contribution, we will highlight the fieldwork results, which we used to constrain the restoration of the rift sytem, quantify extension vs. transtension, and produce a conceptual model of how strike-slip tectonics can influence the early stages of a rift system.

How to cite: Vasileiou, A., Gouiza, M., Mortimer, E., and Coliier, R.: Analysis of strike-slip tectonics in extensional systems: the case of the Moroccan Atlas system, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3597, https://doi.org/10.5194/egusphere-egu22-3597, 2022.

EGU22-6294 | Presentations | TS6.3

Life and Death of Normal Faults: Quantitative Analysis of Fault Network Evolution in 3D Rift Models 

Sascha Brune, Thilo Wrona, Derek Neuharth, Anne Glerum, and John Naliboff

Quantifying the spatial and temporal evolution of fault systems is crucial in understanding plate boundary deformation and the associated seismic hazard, as well as to help georesources exploration in sedimentary basins. During the last decade, 3D lithospheric-scale geodynamic models have become capable of simulating the evolution of complex fault systems, from the onset of rifting to sea-floor spreading. But since these models describe faults as finite-width shear zones within a deforming continuum, additional efforts are needed to isolate and analyse individual faults, so we can understand the entire life span of normal fault networks.

Here we present 3D numerical forward models using the open-source community software ASPECT. Our thermo-mechanical models include visco-plastic rheology, strain softening as well as lithospheric and asthenospheric layers to capture rift evolution from inception to continental break-up. We quantify normal fault evolution at the surface of the model with a method that describes fault systems as 2D networks consisting of nodes and edges. Building on standard image analysis tools such as skeletonization and edge detection, we establish a hierarchical network structure that groups nodes and edges into components that make up individual evolving faults. This allows us to track fault geometries and kinematics through time enabling us to analyse the growth, linkage and disintegration of faults.

We find that the initial fault network is formed by rapid fault growth and linkage, followed by competition between neighbouring faults and coalescence into a mature fault network. At this stage, faults accumulate displacement without a further increase in length. Upon necking and basin-ward localisation, the first generation of faults shrink and disintegrate successively while being replaced by newly emerging faults in the rift centre. These new faults undergo a localisation process similar to the initial rift stage. We identify several of these basin-ward localisation phases, which all feature this pattern. In oblique rift models, where the extension direction is not parallel to the rift trend, we observe strain partitioning between the rift borders and the centre, with strike-slip faults emerging in the centre even at moderate obliquity. Analysing the spatio-temporal evolution of modelled faults thus allows us to map their entire life span to observed stages of rift system evolution.

How to cite: Brune, S., Wrona, T., Neuharth, D., Glerum, A., and Naliboff, J.: Life and Death of Normal Faults: Quantitative Analysis of Fault Network Evolution in 3D Rift Models, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6294, https://doi.org/10.5194/egusphere-egu22-6294, 2022.

EGU22-6886 | Presentations | TS6.3

MARIBNO amphibious project: Structure of the northwestern Iberian margin and role of the inherited tectonics in the Alpine extension and inversion 

Alfonso Muñoz-Martín, Jose-Luis Granja-Bruña, Miguel Angel De la Fuente-Oliver, María Druet, Gerardo De Vicente, Jorge Gallastegui Suárez, and Adolfo Maestro and the MARIBNO WORKING GROUP

The northwestern margin of the Iberian Peninsula (western Bay of Biscay) is a unique place that gathers several outstanding geological features in a relatively reduced area. Here, a former hyperextended continental margin developed in proximity to a triple point, underwent a subsequent partial tectonic inversion yielding the present Cantabrian margin. For all these reasons, the northwest area of ​​Iberia can be considered as a natural laboratory for the study of the role of tectonic inheritance in the evolution of the extensional continental margins and their subsequent inversion. However, and largely due to the lack of interest from exploration companies, the northwestern margin of Iberia presented a great deficit of geophysical and geological information. Both scientific interest and the lack of information provided the main reasons for the MARIBNO amphibious project (2019-2022). This project is being carried out by a multidisciplinary geoscientific team leaded by the Complutense University of Madrid with the acquisition of offshore and onshore data. The main objectives are focused on the study of the crustal structure, the tectonic control by the structure prior to the alpine stages and the mapping and characterization of the crustal domains, combining geological and geophysical criteria.

A one month-long geophysical cruise was carried out aboard the BO Sarmiento de Gamboa (Spanish Research Council, CSIC) in September-October of 2021. Data acquisition was divided in two cruise legs: The WAS Leg consisted in the acquisition wide-angle seismic data (WAS) along 3 transects with simultaneous offshore-onshore recording in 3 component short-period instruments: Transect WAS-1 (∼320 km) recorded in 14 OBS and 11 land seismometers, Transect WAS-2 (∼260 km) recorded in 12 OBS and 10 land seismometers and Transect WAS-3 (∼255 km) recorded in 9 OBS and 12 land seismometers. The seismic source consisted in an airgun array with 4660 ci and 90 seconds of shot interval. The MCS leg consisted in the acquisition of 2D multichannel seismic reflection data (MCS) along 14 transects (∼1500 km) recorded on a digital streamer with a 12.5 m channel-interval. Several streamer configurations were deployed with 480, 240 and 168 channels and the seismic source consisted in an airgun array with 1960 ci. During both legs, continuous marine acquisition of multibeam bathymetry, gravity, geomagnetics and ultra-high resolution seismic data also were carried out. MARIBNO project is still underway, and the data are being processed and interpreted. Acquired information will be complemented and combined with the additional acquisition of onshore gravity and magnetic data and the information from several geological field mapping studies on seismic transects throughout the Cantabrian Mountains. Here we show some preliminary results and the current development of the MARIBNO amphibious project.

How to cite: Muñoz-Martín, A., Granja-Bruña, J.-L., De la Fuente-Oliver, M. A., Druet, M., De Vicente, G., Gallastegui Suárez, J., and Maestro, A. and the MARIBNO WORKING GROUP: MARIBNO amphibious project: Structure of the northwestern Iberian margin and role of the inherited tectonics in the Alpine extension and inversion, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6886, https://doi.org/10.5194/egusphere-egu22-6886, 2022.

EGU22-7480 | Presentations | TS6.3 | Highlight

3D evolution of extensional detachment faults and their effect on the architecture of rifts and rifted margins 

Per Terje Osmundsen, Gwenn Péron-Pinvidic, Julie Linnea Gresseth, and Alvar Braathen

Extensional detachment faults, core complexes and supradetachment basins play major roles in the evolution of 3D rifted margin architecture. The successive incision of basement from early to late stages in the margin evolution is rarely explained in 3D. One reason for this is likely the lack of a unifying model for how very large faults grow and link laterally, and how this, in turn, links to the temporal evolution of the margin. As fault shape exerts a fundamental control on syn-rift basin architecture, the 3D evolution of detachment faults is critical to understand sedimentation in associated basins.

In the proximal margin offshore Norway, one control on lateral variation appears to be the differential exploitation of `extraction´ structures that evolved above the ductile crust. This controlled flips in fault polarity under the proximal margin, and lateral transitions from supradetachment- to half-graben style, Late Paleozoic-Triassic basins. Extensional culminations and core complexes were associated with this deformation pattern at depth.

The growth of an extensional fault past a displacement of a few kilometers will involve a change in 3D fault shape related to the isostatic rollback of parts of the fault plane. As displacement magnitude varies along the fault plane, so will the amount of extensional unloading and associated isostatic compensation. With increasing extension this will enforce a particular shape on the fault plane, with an extensional culmination developing in the area of maximum displacement, and synclinal recesses evolving on the flanks. With continued extension, the culmination evolves into a core complex. Necking domains, where faults propagate into the ductile middle crust appear to be prime locations for this type of faulting. As large-magnitude faults combine into domain-bounding breakaway complexes, this results in intermittent occurrences of core complexes along the main breakaways and lateral transitions into steeper megafaults and fault arrays. At the Mid-Norwegian margin, we interpret the Jurassic-Cretaceous North Møre and south Vøring basins to illustrate this type of evolution. Components of strike-slip may modify this type of pattern, as illustrated by  continental core complexes exposed in areas such as Death Valley and western Norway.

 

How to cite: Osmundsen, P. T., Péron-Pinvidic, G., Gresseth, J. L., and Braathen, A.: 3D evolution of extensional detachment faults and their effect on the architecture of rifts and rifted margins, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7480, https://doi.org/10.5194/egusphere-egu22-7480, 2022.

The Neuquén Basin is a major Mesozoic sedimentary depocenter located in the foreland of the Andes Mountains in Argentina. The basin hosts world renown inversion systems that have been the target of georesource exploration for the last three decades. The Huincul High is a structurally and economically prominent ~270km long, E-W trending feature that formed by the accretion of exotic Paleozoic terranes influencing subsequent Mesozoic deformation in the basin. Exploration in Huincul High has been mainly focused on the shallow part of the inversion structures leaving a limited understanding of  deep structural architecture and early tectonic evolution. With this research, for the first time a set of 4 3D seismic reflection surveys covering an area of 1400km2 have been analysed and integrated with stratigraphic information from 15 exploratory wells to provide new insights into the tectonostratigraphic and kinematic evolution of the western reaches of the Huincul High.

Detailed horizon and fault interpretation revealed Late Triassic, isolated, 10-50km long NE-SW to NW-SE trending half grabens. These extensional systems are attributed to the Late Triassic cessation of the Andean subduction to the west and intraplate extension regime ensuing. Thickness map of the Lower Jurassic Los Molles unit shows the development of an extensive ~50km  long ~15km wide NE-SW depocentre at that time. It is proposed that Andean subduction was renewed at that time, moving the Neuquén Basin into a backarc environment with hotter, weaker continental lithosphere thinned by mantle underflow which might have caused ductile flexural sag and minimal brittle faulting.

Prominent NE-SW cylindrical inversion anticlines ~17km across and well-developed harpoon structures are observed in the hangingwall of reactivated  ~50km long, NE-SW trending, extensional faults. Growth strata analysis shows thinning of Middle to Lower Cretaceous strata over the crest of these folds suggesting a phase of  NW-SE compression at this time. This compressional phase is attributed to the increase in Andean subduction rate and shallowing of the subduction dip, as the Neuquén Basin is moved into a foreland setting. Fault displacement analysis suggests that the reactivated faults were formed as separate fault segments at the time of extension in the Late Triassic. Additionally, analysis indicates that faults segments with increased reactivation show prominent hangingwall inversion anticlines.

Dip-steered coherency extractions along the Early Cretaceous Vaca Muerta Formation showed en echelon NW-SE transtensional faults occurring directly above Late Triassic non inverted faults; decoupled by the underlying shaly and mechanically weak Los Molles unit. These observations point to a post-inversion tectonic event that might coincide with reconfiguration of subducted plates changing the principal stress orientation and causing strike slip reactivation.

These results highlight the importance of  structural inheritance of a pre-existing  fault architecture in the development of  consequent inversion, and how mechanically weak units can inhibit fault propagation during the later compressional events, acting as a decoupling layer.  A detailed evolutionary model is proposed for the western reaches of the Huincul High which envisages crustal weakening and thermal sag to explain the thickening of the Early Jurassic strata previous to the main Cretaceous inversion.

How to cite: Antonov, I., Scarselli, N., and Adam, J.: Tectonic and geometric assessment of inversion systems in the Huincul High, Neuquén Basin (Argentina) – the role of structural inheritance and mechanical stratigraphy, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8244, https://doi.org/10.5194/egusphere-egu22-8244, 2022.

EGU22-8726 | Presentations | TS6.3

Regional-scale proximal to distal footwall scarp-degradation variability of extensional faults 

Candela Martinez, Domenico Chiarella, Christopher A.-L Jackson, and Nicola Scarselli

Footwall fault scarp-degradation produces sediments resulting in gravity-driven syn-rift wedge-shaped deposits located on the immediate hangingwall. To understand which aspects control footwall scarp-degradation we propose a model suggesting where, why, and how degradation occurs. We compare five offshore 3D seismic surveys acquired on the Northern Carnarvon Basin (North West Shelf of Australia) calibrated with well data to assess these questions. Two 3D seismic surveys (i.e., Panaeus 2001 East and Fortuna) are located on the Dampier Sub-basin, proximal to the Western Australia coastline and three (i.e., Thebe, Bonaventure and Agrippina) in a more distal position on the Exmouth Plateau. Data show that degradation is more pronounced on the distal surveys compared to the proximal ones. On the proximal surveys, the sedimentation rate is greater than in the distal ones, and footwall scarp-degradation is less pronounced. Answering these questions will help us to predict the style and the amount of footwall scarp-degradation in similar extensional settings.

How to cite: Martinez, C., Chiarella, D., Jackson, C. A.-L., and Scarselli, N.: Regional-scale proximal to distal footwall scarp-degradation variability of extensional faults, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8726, https://doi.org/10.5194/egusphere-egu22-8726, 2022.

EGU22-10197 | Presentations | TS6.3 | Highlight

A Cenozoic Wilson cycle along the Puysegur Margin, New Zealand: The role of rift architecture and strike-slip dynamics enabling subduction initiation 

Brandon Shuck, Harm Van Avendonk, Sean Gulick, Michael Gurnis, Rupert Sutherland, Joann Stock, and Erin Hightower

Throughout Earth’s history, the movement, suturing, and rifting of tectonic plates in the Wilson cycle often takes advantage of lithospheric weaknesses and pre-existing plate boundaries. Continental rifting and subduction initiation represent arduous phases of this cycle for plate divergence and convergence, respectively, where strain is not yet focused into a narrow and mature plate boundary. Here we present an analysis of the Puysegur margin to demonstrate how past tectonic regimes create inherited lithospheric structures that facilitate subsequent stages of the Wilson cycle.

 

The Puysegur margin is a young subduction zone and forms the northern segment of the Australian-Pacific plate boundary south of New Zealand, which has evolved from divergence to strike-slip and recently to oblique convergence, all in the last ~45 million years. Magnetic anomalies and curved fracture zones located south of the Puysegur segment show the divergent phase involved seafloor spreading and the formation of new oceanic lithosphere. However, these features are not present in the upper Pacific plate at the latitudes of the Puysegur margin, and the lack of quality seismic images in this region hampered our understanding of the local crustal structure, which was assumed to be a northward extension of the oceanic domain. A deep penetrating multichannel reflection (MCS) and ocean-bottom seismometer (OBS) dataset was acquired in 2018 with the R/V Langseth and provided new high-quality seismic images of the crustal structure along the Puysegur margin.

 

Our seismic images reveal that the overriding Pacific plate contains stretched continental crust with magmatic intrusions, which formed from rifting between Zealandia continental plateaus during AUS-PAC plate divergence. This stretching phase was highly asymmetric and resulted in the opening of the Solander Basin. Rifting was more advanced to the south, yet never proceeded to breakup and seafloor spreading as previously thought. A new southern continent-ocean transition is inferred from potential field data, marking the boundary between stretched continental crust and new oceanic crust formed during the extensional phase.

 

Along-strike heterogeneity with mixed continental and oceanic domains and asymmetric rift architecture along the Puysegur margin were critical features for following tectonic regimes. Increasingly oblique plate motions sparked strike-slip motion, which localized near the pre-existing spreading center in the south, but along the western edge of the rift zone in relatively unstretched crust at the Puysegur margin in the north. Translational motion juxtaposed weak ~10 Myr old oceanic lithosphere with buoyant continental crust across the strike-slip boundary. Incipient subduction transpired as oceanic lithosphere from the south forcibly underthrust continent lithosphere at an oblique collision zone.

 

We suggest that subduction initiation at the Puysegur Trench was enabled by inherited buoyancy contrasts and structural weaknesses that were imprinted into the lithosphere during earlier phases of continental rifting and strike-slip along the plate boundary. In the global evolution of plate tectonics, strike-slip might be the key component to achieving the Wilson cycle, as it is the most efficient mechanism to offset terranes and juxtapose lithospheric domains of contrasting properties across broad regions, thus generating advantageous conditions for subduction initiation and subsequent closure of oceanic basins.

How to cite: Shuck, B., Van Avendonk, H., Gulick, S., Gurnis, M., Sutherland, R., Stock, J., and Hightower, E.: A Cenozoic Wilson cycle along the Puysegur Margin, New Zealand: The role of rift architecture and strike-slip dynamics enabling subduction initiation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10197, https://doi.org/10.5194/egusphere-egu22-10197, 2022.

EGU22-11453 | Presentations | TS6.3 | Highlight

Crustal structure and along-strike variations in the Gulf of Mexico conjugate margins: From early rifting to oceanic spreading 

Esther Izquierdo-Llavall, Jean Claude Ringenbach, François Sapin, Thierry Rives, Jean-Paul Callot, and Charlotte Nielsen

The Gulf of Mexico opened as a Late Triassic-Mid Jurassic continental rift that was first largely covered by the Mid-Jurassic Louann Salt and later split apart by a triangular-shaped oceanic crust. Salt in the Gulf of Mexico largely hampers the imaging and interpretation of underlying pre-salt and crustal geometries, which are fundamental for assessing the early kinematic evolution of the margin. To better define these deep geometries and their lateral variations, we built three seismic-based crustal-scale cross-sections across the Florida-Yucatan conjugate margins, in the areas where the Mid-Jurassic salt unit is thinner.

Seismic-based cross-sections image the architecture of rifting and the geometries of the continental and oceanic crusts and the transition between them (ocean-continent transition, OCT). They show a meaningful along-strike variation: the South Florida-East Yucatan area is characterized by a narrower rifted continental crust that evolves sharply to oceanic crust whereas in the North Florida and central-western Yucatan areas, the rifted continental crust is wider and the transition to the oceanic crust corresponds to a narrow magmatic or exhumed mantle domain. In the rifted continental crust, seismic profiles image doubly-verging basement faults organized into decoupled and coupled rift domains. The geometrical and cross-cutting relationships between these basement faults, the Louann Salt and the underlying pre-salt sequence indicates a progressive migration of rifting from proximal to distal domains and from the central and north-eastern to the south-eastern Gulf of Mexico.  

Bulk continental crust extension was determined using the area balancing method. Estimated horizontal extension values vary from a minimum of ∼120 km in the South Florida-East Yucatan conjugate to a minimum of ∼240 km in the North Florida-Central Yucatan conjugate, being systematically larger in the northern margin. Crustal domains identified in the cross-sections were laterally correlated and westwards extended considering gravity and magnetic anomalies data to build a regional-scale, crustal domains map of the Gulf of Mexico. This map, together with the crustal extension estimates, has been used as the reference to carry out a plate-scale reconstruction of the Gulf of Mexico from the early rifting stages to the end of oceanic spreading.

Based on our observations and considering previous models, we propose that the study area evolved from an early rift involving magmatism, to a magma-poor margin, with continental break-up (OCT formation) being characterized by mantle exhumation and associated magmatism along the North Florida and central-western Yucatan areas.

How to cite: Izquierdo-Llavall, E., Ringenbach, J. C., Sapin, F., Rives, T., Callot, J.-P., and Nielsen, C.: Crustal structure and along-strike variations in the Gulf of Mexico conjugate margins: From early rifting to oceanic spreading, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11453, https://doi.org/10.5194/egusphere-egu22-11453, 2022.

EGU22-11778 | Presentations | TS6.3

Preservation of the necking domain in orogens: a case study of the Mont-Blanc massif (Western Alps, France) 

Nicolas Dall'asta, Guilhem Hoareau, Gianreto Manatschal, and Charlotte Ribes

Rift-related inheritance plays a key role in orogenic building, by controlling the thermal state and the position of major sedimentary and crustal decollement levels. As recognized by various authors, a switch from thin- to thick-skinned style of deformation in reactivated rifted-margin during convergence occurs where the necking domain of the margin is involved in the subduction. This is observed in the External Crystalline Massifs (Aar, Mont-Blanc, Belledonne, Pelvoux, Argentera) located at the transition between the external and the internal domains of the western Alps corresponding also to the proximal-distal transition (necking domain) of the former Jurassic margin. Necking reactivation during Alpine convergence is accommodated by shear zones, rooted in the ductile middle crust, propagating  the deformation toward the external domain.  This Alpine overprint, which led to a lower greenschist metamorphism (ca. 330°C) in the External Crystalline Massifs, raise the question of the preservation of the rift-related, pre-alpine structures in the western Alps, and their use as fossil-analogues of present-day necking domains.

A case study is the internal Mont-Blanc massif, where preserved pre-rift to syn-rift (Triassic to Mid-Jurassic) cover is observed below the internal nappes, and on top the crustal basement (Mont-Blanc granite). The contact between these deposits and the underlying basement is a fault zone, made of a cataclastic basement overlaid by a black gouge. Above the contact, remnants of allochthonous pre-rift deposits and delaminated carbonates are observed. The syn-rift sandstones (Grès Singuliers Fm), which are either in contact with the fault or located above the pre-rift deposits, contain reworked clasts of cataclasite. Above the contact, in the cataclastic basement, some crinoid-rich sediments of likely Pliensbachian age fill open cracks. Taken together, these observations strongly point to the preservation of a pre-alpine, rift-related detachment fault of Jurassic age.

The petrographical and geochemical analysis of the exhumed fault indicates strong hydration-assisted deformation. In the cataclasite, feldspars breakdown and important element transfer (especially Ba, F, Si, Pb, Zn and REE) suggest fluid circulation in an open system. The black gouge matrix is mostly made of illite, likely recrystallized during the Alpine overprint. In addition, different generations of syn-kinematic veins are observed in the detachment. The first type, composed of graphite precipitated at ~400°C in the cataclasite. Syn-kinematic quartz and quartz hyalophane (Ba-rich feldspars) in the cataclasite and gouge were formed from a fluid above 170°C a salinity of ~9 wt.% NaCl-equivalent. The mobilized elements are the same as those involved in pre-alpine Pb-Zn (Ba-F) ore-deposits of the internal Mont-Blanc (Amône, Mont-Chemin, Catogne), suggesting a genetic link between rift-related faults and mineralisations.

Despite partial Alpine metamorphic overprint, the early tectonic, sedimentary and geochemical records of this rift-related detachment fault are very well preserved, making a good analogue of present-day necking domains. The example of Mont-Blanc massif gives an opportunity to study all these aspects in detail, in particular to understand fluid-mediated element mobility during rifting. Finally, it can be used to better understand the final stages of reactivation of the necking domain in a mature orogenic system.

How to cite: Dall'asta, N., Hoareau, G., Manatschal, G., and Ribes, C.: Preservation of the necking domain in orogens: a case study of the Mont-Blanc massif (Western Alps, France), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11778, https://doi.org/10.5194/egusphere-egu22-11778, 2022.

GD2 – Mantle Dynamics and Surface Connection (in partnership with PS and GMPV)

EGU22-226 | Presentations | GD2.1

Exhumation signals and forcing mechanisms in the Southern Patagonian Andes (Torres del Paine and Fitz Roy plutonic complexes) 

Veleda Astarte Paiva Muller, Christian Sue, Pierre Valla, Pietro Sternai, Thibaud Simon-Labric, Joseph Martinod, Matias Ghiglione, Lukas Baumgartner, Frédéric Herman, Peter Reiners, Cécile Gautheron, Djordie Grujic, David Shuster, and Jean Braun

Late Miocene calc-alkaline intrusions in the back-arc of Southern Patagonia mark an eastward migration of the arc due to accelerated subduction velocity of the Nazca plate or slab flattening preceding active ridge subduction. Amongst these intrusions are the emblematic Torres del Paine (51°S) and Fitz Roy (49°S) plutonic complexes, crystalised at ca. 12.5 and ca. 16.5 Ma, respectively (Leuthold et al., 2012; Ramírez de Arellano et al., 2012). Both intrusions are located at the eastern boundary of the Southern Patagonian Icefield and form prominent peaks with steep slopes that are ~3 km higher in elevation than the surrounding low-relief foreland. Their exhumation has been proposed as a response to glacial erosion and associated glacial rebound since ca. 7 Ma (Fosdick et al., 2013), and/or by regional dynamic uplift between 14 and 6 Ma due to the northward migration of subducting spreading ridges (Guillaume et al., 2009). Here we present a new data set of apatite and zircon (U-Th)/He from both plutonic complexes, numerically modelled to unravel their late-Neogene to Quaternary thermal histories. Our results show three rapid cooling periods for the Fitz Roy intrusion: at ca. 9.5 Ma, at ca. 7.5 Ma, and since ca. 1 Ma. For Torres del Paine, inverse thermal modelling reveals short and rapid cooling at ca. 6.5 Ma followed by late-Quaternary final cooling. The 10 Ma cooling signal only evidenced in the northern plutonic complex (Fitz Roy) may represent an exhumation response to the northward migrating subduction of spreading ridge segments, causing localized dynamic uplift. Thus, the absence of exhumation signal before 6.5 Ma in the southern part (Torres del Paine) suggest that the spreading ridge subduction must have occurred before its 12.5 Ma emplacement. On the other hand, rapid cooling by similar magnitude in both plutonic complexes between ca. 7.5–6.5 Ma, likely reflects the onset of late-Cenozoic glaciations in Southern Patagonia. Finally, the late-stage Quaternary cooling signals differ between Torres del Paine and Fitz Roy, likely highlighting different exhumation responses (i.e. relief development vs. uniform exhumation) to mid-Pleistocene climate cooling. We thus identify and distinguish the causes of rapid exhumation periods in the Southern Patagonian Andes, and propose a first Late Miocene exhumation pulse due to subduction of spreading ridge dynamics, and two Late Cenozoic exhumation episodes due to regional climate changes that have shaped alpine landscapes in this region.

References:

Leuthold J., et al. 2012. Time resolved construction of a bimodal laccolith (Torres del Paine, Patagonia). EPSL.

Ramírez de Arellano C., et al. 2012. High precision U/Pb zircon dating of the Chaltén Plutonic Complex (Cerro Fitz Roy, Patagonia) and its relationship to arc migration in the southernmost Andes. Tectonics.

Fosdick J. C., et al. 2013. Retroarc deformation and exhumation near the end of the Andes, southern Patagonia. EPSL.

Guillaume B. 2009. Neogene uplift of central eastern Patagonia: Dynamic response to active spreading ridge subduction? Tectonics.

How to cite: Paiva Muller, V. A., Sue, C., Valla, P., Sternai, P., Simon-Labric, T., Martinod, J., Ghiglione, M., Baumgartner, L., Herman, F., Reiners, P., Gautheron, C., Grujic, D., Shuster, D., and Braun, J.: Exhumation signals and forcing mechanisms in the Southern Patagonian Andes (Torres del Paine and Fitz Roy plutonic complexes), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-226, https://doi.org/10.5194/egusphere-egu22-226, 2022.

EGU22-354 | Presentations | GD2.1 | Highlight

Constraining Neogene Mantle Dynamics of Western Mediterranean Region Encompassing Iberia by Quantitative Modeling of Basalt Geochemistry 

Chia-Yu Tien, Nicky White, John Maclennan, and Benedict Conway-Jones
Dynamic topography is the surface expression of sub-plate mantle convective processes. In recent years, there has been considerable interest in combining a wide range of geophysical, geological and geomorphic observations with a view to determining the amplitude, wavelength and depth of mantle thermal anomalies. Here, we are interested in exploring how quantitative modelling of major, trace and rare earth elements can be used to constrain the depth and degree of asthenospheric melting for a mantle peridotitic source. Our focus is on a region that encompasses the Iberian Peninsula where previous research suggests that long-wavelength topography is supported by a significant sub-plate thermal anomaly which is manifest by reduced shear-wave velocities. Stratigraphic and fluvial studies imply that this dynamic support is a Neogene phenomenon. We analyzed 48 Neogene basaltic rocks that were acquired from Iberia in September 2019 and combined these analyses with previously published datasets. Both major element thermobarometry and rare earth element inverse modelling are used to determine the asthenospheric potential temperature and lithospheric thickness. These values are compared with those estimated from calibrated shear-wave tomographic models. Our geochemical results indicate that potential temperatures and lithospheric thicknesses are 1300-1375 °C and 50-80 km, respectively. These values broadly agree with calibrated tomographic models which yield values of 1300-1360 °C and 45-70 km. We conclude that a region encompassing Iberia is dynamically supported by a combination of warm asthenosphere and thinned lithosphere.

How to cite: Tien, C.-Y., White, N., Maclennan, J., and Conway-Jones, B.: Constraining Neogene Mantle Dynamics of Western Mediterranean Region Encompassing Iberia by Quantitative Modeling of Basalt Geochemistry, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-354, https://doi.org/10.5194/egusphere-egu22-354, 2022.

EGU22-373 | Presentations | GD2.1

Dynamic Topography of the Australian Continent and its Margins 

Philippa Slay, Nicholas White, and Simon Stephenson

Mantle convection generates transient vertical motion at the surface, which is referred to as dynamic topography. The bulk of topography and bathymetry is isostatically supported by variations in the thickness and density of both the crust and the lithosphere which means that dynamic topography generated by sub-plate density anomalies needs to be isolated from these dominant isostatic signals. Australia’s isolation from plate boundaries and its rapid northwards translation suggest that long-wavelength dynamic topography is primarily controlled by the interplay between plate motion and sub-plate convection. Along the eastern seaboard of Australia, the coincidence of elevated topography, positive long-wavelength free-air gravity anomalies and Cenozoic basaltic magmatism imply that a combination of asthenospheric temperature anomalies and thinned lithosphere generate and maintain regional topography. Distributions of onshore and offshore intraplate magmatism reflect both plate motion and convective instabilities. Compilations of deep seismic reflection profiles, wide-angle surveys and receiver function analyses are used to determine crustal velocity structure across Australia. Residual (i.e. dynamic) topographic signals are isolated by isostatically correcting local crustal structure with respect to a reference column that sits at sea level. The resultant pattern of dynamic topography is consistent with residual bathymetric anomalies from oceanic lithosphere surrounding Australia. Significant positive dynamic topography occurs along the eastern seaboard and in southwest Australia (e.g. Yilgarn Craton). These signals are corroborated by independent geologic evidence for regional uplift.

How to cite: Slay, P., White, N., and Stephenson, S.: Dynamic Topography of the Australian Continent and its Margins, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-373, https://doi.org/10.5194/egusphere-egu22-373, 2022.

Lithosphere removal beneath orogenic plateaus are transient events that must often be inferred from the absence of evidence: for example, unexplained topographic uplift in the geologic record, or the absence of high-velocity mantle lithosphere. Even when foundering events do leave traces of their occurrence on the surface, the low preservation potential of such evidence leaves incomplete and ambiguous records. Distinctive features include isotopically juvenile magmatism and transient surface subsidence that form localized, internally drained hinterland basins and playas. However, basaltic volcanism and related lacustrine sediments are rarely well preserved, and this limits our ability to evaluate the role of lithosphere removal in orogenesis to only select localities. To develop a more comprehensive record of this process, and facilitate comparisons between regions with copious surface and/or geophysical evidence of lithospheric foundering with regions where the evidence is scant, whether poorly preserved or not yet recognized, we present the detrital record from young strata in internally-drained hinterland basins as a proxy for foundering-related magmatism. The detrital samples include unconsolidated to poorly consolidated lacustrine sediment of the Bidahochi paleolake from the Colorado Plateau, which is associated with the isotopically juvenile (positive epsilon Nd) Hopi Buttes Volcanic field; Oligocene siltstone from the Pamir Plateau with juvenile isotopic signature (positive epsilon Hf); and Eocene-Oligocene sandstone from several localities on the Tibetan Plateau. Integration of isotope geochemistry, trace element geochemistry, and thermochronology of detrital zircon and apatite presents a promising approach to reconstruct a continuous record of low-volume magmatism, both eroded and preserved. Ti-in-zircon thermometry, Ce-U-Ti oxybarometry, and REE proxies for depth of magmatic differentiation potentially provide a means of distinguishing zircon crystals associated with hinterland magmatism from that associated with arc magmatism. Using these datasets, we consider whether lithospheric foundering can be associated with recognizable patterns that are similar across orogens, and whether geochemical shifts in hinterland magmatism reveal first-order differences in the temporal scale of lithosphere removal in different orogens. 

How to cite: He, J. and Kapp, P.: Evaluating scant surface evidence of deep lithosphere removal: Towards a more comprehensive record, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-443, https://doi.org/10.5194/egusphere-egu22-443, 2022.

EGU22-2113 | Presentations | GD2.1

Imaging the meso-scale structure of the upper mantle beneath the southern and central Atlantic ocean 

Barbara Romanowicz, Federico Munch, Max Rudolph, and Sujoy Mukhopadhyay

Although seismic tomography has provided important constraints on the long-wavelength structure of the mantle and its planform of convection, much is yet not well understood about the dynamic interaction of tectonic plates and deep mantle circulation at intermediate wavelengths (i.e., below plate-scale). In particular, a better understanding of the seismic structure of the oceanic upper mantle could potentially help unraveling the relationships between different scales of mantle convection, hotspot volcanism, and surface observables (e.g., MORB geochemistry, gravity gradients and bathymetry). We here present a new tomographic model of the shear-wave velocity and radial anisotropy structure beneath the central and southern Atlantic ocean constructed from the inversion of surface and body waves waveforms down to 30s period. Preliminary results confirm the existence of quasi-periodically distributed low-velocity regions in the upper mantle (200–350 km depth) organized in horizontally elongated bands some of which are parallel to the direction of absolute plate motion, as previously found in a lower resolution global tomographic models SEMum2 (French et al., 2013) and SEMUCB_WM1 (French and Romanowicz, 2014). Many of these elongated structures overlie vertically elongated plumelike conduits that appear to be rooted in the lower mantle, located, when projected vertically to the surface, in the vicinity of major hotspots.  However, there is no direct vertical correspondence between the imaged plumelike conduits and hotspots locations suggesting a complex interaction between the upwelling flow and the lithosphere/asthenosphere system. We discuss possible relations of this structure with trace element geochemistry of the corresponding hotspots.

How to cite: Romanowicz, B., Munch, F., Rudolph, M., and Mukhopadhyay, S.: Imaging the meso-scale structure of the upper mantle beneath the southern and central Atlantic ocean, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2113, https://doi.org/10.5194/egusphere-egu22-2113, 2022.

EGU22-3461 | Presentations | GD2.1

Widely-spaced Double Hotspot Chains due to Forked Plumes sample Lower Mantle Geochemical Structure 

Maxim Ballmer and Valerie Finlayson

Age-progressive volcanic “hotspot” chains result from the passage of a tectonic plate over a thermochemical mantle plume, thereby sampling the otherwise-inaccessible lowermost mantle. A common feature in oceanic hotspot tracks is the occurrence of two parallel volcanic chains with an average separation of ~50 km (e.g., Loa and Kea chains in Hawaii). Some other tracks (including Tristan-Gough, Shona, the Line Islands, Wake seamounts, Tuvalu and Cook-Austral) feature a 200-400 km spacing, but the origin of such widely-spaced melting zones in the mantle remains unknown. Here, we explore 3D Cartesian geodynamic models of thermochemical plume ascent through the upper mantle. We explore various distributions of intrinsically-dense eclogitic material across the plume stem. For a wide range of eclogite distributions, the plume pools in the depth range of 300~410 km, where the excess density of eclogite is greater than above and below, as also predicted by Ballmer et al., EPSL 2013. This “Deep Eclogitic Pool” then splits up into two lobes that feed two separate shallow plumelets, particularly at high eclogite contents in the center of the underlying plume stem. The two plumelets feed two separate melting zones at the base of the lithosphere, which are elongated in the direction of plate motion due to interaction with small-scale convection. This “forked plume” morphology can account for hotspot chains with two widely-spaced (250~400 km) tracks and with long-lived (>5 My) coeval activity along each track. Forked plumes may also provide an ideal opportunity to study geochemical zonation of the lower-mantle plume stem, as each plumelet ultimately samples the opposite side of a deep plume conduit that potentially preserves spatial heterogeneity from the lowermost mantle. We compare this model to geochemical asymmetry evident along the Wake, Tuvalu and Cook-Austral double-chain segments, which make up the extensive (>100 Ma) Rurutu-Arago hotspot track. The preservation of a long-lived NE-SW geochemical asymmetry along the Rurutu-Arago double chain indicates a deep origin, likely from the southern boundary of the Pacific large low shear-velocity province. Our findings highlight the potential of the hotspot geochemical record to map lower-mantle structure over space and time, complementing the seismic-tomography snapshot.

How to cite: Ballmer, M. and Finlayson, V.: Widely-spaced Double Hotspot Chains due to Forked Plumes sample Lower Mantle Geochemical Structure, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3461, https://doi.org/10.5194/egusphere-egu22-3461, 2022.

EGU22-3756 | Presentations | GD2.1 | Highlight

Large-scale drainage disequilibrium in central Australia 

Gregory Ruetenik, John Jansen, Mike Sandiford, and Robert Moucha

It has been hypothesized that Australia is experiencing long-wavelength uplift and subsidence in response to intraplate stresses and/or dynamic topography (e.g. Beekman et al., 1997; Czarnota et al., 2013). In central Australia, intraplate stresses are of particular interest due to the presence of several enigmatically long-lived (500+ Myr) Bouguer anomalies of magnitude + 150 mgal. Additionally, a recent study by Jansen et al. (2022) showed that the Finke river, which drains away from a large gravity high, is actively responding to cyclic changes in uplift. Here, transient uplift and subsidence of up to ~150 m may be driven by the the flexural response to variable in-plane stresses in the presence of large loads embedded within the lithosphere.  The in-plane stress changes may be associated with shear at the base of the lithosphere and therefore inherently linked to plate velocity and mantle dynamics.
     Here, we explore mechanisms of uplift in central Australia and investigate their signatures within the geomorphic record through numerical modeling and χ analysis. We observe strong χ variations across drainage divides associated with gravity anomalies, which we link to episodic transitions from exorheic to endorheic drainage during periods of uplift and subsidence.  Landscape evolution models that incorporate flexural uplift in response to time-transient variations in horizontal stresses suggest that depositional patterns, spatial χ variations, and river profiles can be explained by this uplift mechanism.  In a more general sense, these results demonstrate that the cyclic loss and gain of drainage area during periods of endorheism and exorheism can result in drastic, sudden changes in χ which correspond to waxing and waning of basinal areas.

How to cite: Ruetenik, G., Jansen, J., Sandiford, M., and Moucha, R.: Large-scale drainage disequilibrium in central Australia, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3756, https://doi.org/10.5194/egusphere-egu22-3756, 2022.

EGU22-5259 | Presentations | GD2.1

Plume conduits rooted at the core-mantle boundary beneath the Réunion hotspot 

Mathurin Dongmo Wamba, Barbara Romanowicz, Jean-Paul Montagner, and Frederik Simons

Mid-plate volcanoes are well known as hotspots. They represent the surface signature of mantle plumes, nevertheless their origin and their role in geodynamics are still a challenge in the Earth sciences. Even though plate tectonics and mantle plumes were discovered at the same time, the latter cannot be explained by the former. Plumes’ birth, life and death play a fundamental role on the evolution of life on Earth and on plate-tectonic reorganization. La Réunion hotspot is known as one of the largest on the Earth, that created the Deccan volcanic traps in India (almost 2 million km2) and the death of more than 90% of life on the Earth including dinosaurs ~65Ma ago. So far the origin of the mantle plumes and their role in geodynamics are still unclear in Earth sciences. In that respect, we use the dataset from the French-German RHUM-RUM experiment around La Réunion hotspot (2012-2013), from IRIS data center and FDSN to extensively investigate the deep structure of the plume along its complete track from its birth to its present stage, as well as from the upper mantle to the lowermost mantle. Several shear-wave anomalies are resolved underneath Indian Ocean and the upper mantle beneath this region is fed by mantle plume rising from the core-mantle boundary. The lower mantle thermochemical dome associated to the South-African Large Low-Shear Velocity Province (LLSVP) is found to be composed of several conduits. Plume branches are highlighted at ~900 km depth. Thermal instability and thermochemical heterogeneities in the D" layer are likely the principal reasons of the plumes birth at the core-mantle boundary, and therefore an indicator of long-life of the Réunion hotspot.

How to cite: Dongmo Wamba, M., Romanowicz, B., Montagner, J.-P., and Simons, F.: Plume conduits rooted at the core-mantle boundary beneath the Réunion hotspot, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5259, https://doi.org/10.5194/egusphere-egu22-5259, 2022.

EGU22-5561 | Presentations | GD2.1

Investigating the effects of plate-driving forces on observed surface deformation using global mantle flow models 

Arushi Saxena, Juliane Dannberg, and Rene Gassmoeller

Geodynamic models based on seismic tomography have been utilized to understand a wide range of physical processes in the Earth's mantle ranging from lithospheric stress states to plate-mantle interactions. However, the influence of various model components and the associated physical properties of the mantle on the observed surface deformation is still an open question and requires further research. In this study, we develop global mantle flow models based on high-resolution seismic tomography to quantify the relative importance of the plate driving and resisting forces on the surface motions. Our models include temperature and density variations based on seismic tomography, lithospheric structure, and the observed locations of subducted slabs, using the geodynamics software ASPECT. We use a diffusion/dislocation creep rheology with different parameters for the major mantle phases. To facilitate plate-like deformation, we prescribe weak plate boundaries at the locations given by global fault databases. We resolve the resulting strong viscosity variations using adaptive mesh refinement such that our global models have a minimum resolution of <10 km in the lithosphere. We analyze the influence of slab viscosity, plate boundary friction, asthenospheric viscosity, and plate boundary geometry on reproducing the observed GPS surface velocities. Our parameter study identifies model configurations that have up to 85% directional correlation and a global velocity mean within 10% difference with the observed surface motions. Our results also suggest that the modeled velocities are very sensitive to the plate boundary friction, particularly to variations in viscosity, dip angles, and the plate boundary geometry, i.e., open vs closed boundaries, or localized vs. diffused deformation zones. These models show the relative influence of plate-driving forces on the surface motions in general, and in particular the importance of using accurate models of plate boundary friction for reproducing observed plate motions. In addition, they can be used as a starting point to separate the influences of lithospheric structure and mantle convection on surface observables like strain rate, stress field, and topography.

How to cite: Saxena, A., Dannberg, J., and Gassmoeller, R.: Investigating the effects of plate-driving forces on observed surface deformation using global mantle flow models, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5561, https://doi.org/10.5194/egusphere-egu22-5561, 2022.

EGU22-5992 | Presentations | GD2.1 | Highlight

Mantle dynamics and intraplate orogeny: The Atlas of Morocco 

Riccardo Lanari, Claudio Faccenna, Claudio Natali, Ebru Sengul, Giuditta Fellin, Thorsten Becker, Oguz Gogus, Nasser Youbi, and Sandro Conticelli

Most orogenic belts are close to convergent plate margins. However, some orogens are formed far away from plate boundaries, as a result of compressional stress propagating within plates, basal loading, or a combination of thereof. We focus on the Atlas of Morocco, which is such an intraplate orogeny and shows evidence of mantle driven uplift, and plume-related volcanism. How these processes interact each other is still poorly constrained and it provides clues about intraplate stress propagation, strain localization, and lithospheric weakening due to mantle dynamics. 

We present three sets of observations constructed by integrating previous data with new analyses. Crustal and thermal evolution constraints are combined with new analyses of topographic evolution and petrological and geochemical data from the Anti-Atlas volcanic fields. Our findings reveal that: i) crustal deformation and exhumation started during middle/late Miocene, contemporaneous with the onset of volcanism; ii) volcanism has an anorogenic signature with a deep source; iii) a dynamic deep mantle source supports the high topography. Lastly, we conducted simple numerical tests to investigate the connections between mantle dynamics and crustal deformation. This leads us to propose a model where mantle upwelling and related volcanism weaken the lithosphere and favor the localization of crustal shortening along pre-existing structures due to plate convergence.

How to cite: Lanari, R., Faccenna, C., Natali, C., Sengul, E., Fellin, G., Becker, T., Gogus, O., Youbi, N., and Conticelli, S.: Mantle dynamics and intraplate orogeny: The Atlas of Morocco, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5992, https://doi.org/10.5194/egusphere-egu22-5992, 2022.

EGU22-6571 | Presentations | GD2.1 | Highlight

Parallel volcanic chains generated by plume-slab interaction 

Ben Mather, Maria Seton, Simon Williams, Joanne Whittaker, Rebecca Carey, Maëlis Arnould, Nicolas Coltice, Angus Rogers, Saskia Ruttor, and Oliver Nebel

Deep mantle plumes are buoyant upwellings rising from the Earth’s core-mantle boundary to its surface, and describing most hotspot chains. Mechanisms to explain dual chains of hotspot volcanoes for the Hawaiian-Emperor and Yellowstone chains fail to explain the geochemical similarity and large distances between contemporaneous volcanoes of the Tasmantid and Lord Howe chains in the SW Pacific. Using numerical models of mantle convection, we demonstrate how slab-plume interaction can lead to sustained plume branching over a period of >40 million years to produce parallel volcanic chains that track plate motion. We propose a three-part model: first, slabs stagnate in the upper mantle, explaining fast upper mantle P-wave velocity anomalies; second, deflection of a plume conduit by a stagnating slab splits it into two branches 650-900 km apart, aligning to the orientation of the trench axis; third, plume branches heat the stagnating slab causing partial melting and release of volatiles which percolate to the surface forming two contemporaneous volcanic chains with slab-influenced EM1 signatures. Our results highlight the critical role of long-lived subduction on the evolution and behaviour of intraplate volcanism.

How to cite: Mather, B., Seton, M., Williams, S., Whittaker, J., Carey, R., Arnould, M., Coltice, N., Rogers, A., Ruttor, S., and Nebel, O.: Parallel volcanic chains generated by plume-slab interaction, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6571, https://doi.org/10.5194/egusphere-egu22-6571, 2022.

EGU22-9038 | Presentations | GD2.1

Quaternary magmatism above a slab tear, Northern Andes of Colombia 

Camilo Conde-Carvajal, Andreas Kammer, Michael Avila-Paez, Sofia Cubillos, Alejandro Piraquive, and Albrecht von Quadt

The north Andean block evidences by its shallow to intermediate seismicity a juxtaposition of a southern, relatively steeply dipping slab segment with a correlating volcanic arc and a northern flat slab domain, where a margin-parallel volcanic arc became extinct since the Late Miocene. The clear-cut offset of the seismic pattern suggests the presence of a slab tear, which has its correlative morphological expression by a distinct lineament in the Cauca Valley and separates, within the Eastern Cordillera of Colombia, a southern narrow antiformal cordilleran tract from a northern composite belt with an axial depression that constitutes the High Plain of Bogotá. Faults are consistently blind and associated with tight, basement-cored folds with inverted limbs at the mountain front and distinct domes separated by marginal synclines. These structures belong to a young deformation phase as they were superposed on older cylindrical fold trains. Their ductile deformation style may be associated with a thermal anomaly as evidenced by abnormally high Ro data. In order to assess the age of this folding we extracted zircons from a rhyolitic dike that straddles a marginal syncline of a major dome. U-Pb age data indicate a recycling of these crystals from a Neoproterozoic volcanoclastic sequence that composes the basement of this marginal part of the Cordillera. Euhedral overgrowths yield, however, Quaternary ages that we tentatively associate to the advance of the outer bend of the flat slab to its present position.

How to cite: Conde-Carvajal, C., Kammer, A., Avila-Paez, M., Cubillos, S., Piraquive, A., and von Quadt, A.: Quaternary magmatism above a slab tear, Northern Andes of Colombia, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9038, https://doi.org/10.5194/egusphere-egu22-9038, 2022.

EGU22-9199 | Presentations | GD2.1

Plume-Fracture Zone interactions in the NE Atlantic 

Lea Beloša, Carmen Gaina, Sara Callegaro, Adriano Mazzini, Christine Meyzen, Stephane Polteau, and Michael Bizimis

Typically, the change in lithospheric thickness associated with fracture zones relates directly to the vigor of secondary convection or mantle flow patterns. Therefore, one might expect that mantle flow considerably boosted by the presence of a mantle plume would easily overcome the lithospheric steps created at fracture zone locations. However, to date, there are no studies to verify this assumption. Numerical models based on an example from the SW Indian Ridge suggest that the axial flow driven by a plume (the Marion plume) is indeed likely to be curtailed by the long-offset fracture zones1.

We have investigated the interactions between the Jan Mayen fracture zone and Iceland mantle plume in the NE Atlantic by considering (a) the lithospheric and asthenospheric regional configuration and (b) the geochemistry of rocks produced by submarine volcanism.

Several global lithospheric models indicate a thinning of the lithosphere on both sides of the Jan Mayen Fracture transform, despite the difference in age of the two adjacent oceanic basins. However, the tomographic models indicate a gap in the asthenospheric flow at the lithosphere-asthenosphere depth under Jan Mayen transform fault, and only a narrow northward channel of this flow is visible under the westernmost part of the fracture zone.

Vesteris seamount is an alkaline seamount placed in the central part of the Greenland Basin, located ca. 480 km west from slow-spreading Mohn's ridge and ca. 250 km north from the Jan Mayen Fracture Zone. Vesteris is a solitary volcanic center far away from an active ridge regime with an eruptive age ranging from 650 – 10 ka 2. Here we report new results from geochemical analysis of several samples dredged during the East Greenland Sampling campaign EGS-2012 from the flanks of Vesteris. Whole-rock major and trace elements, together with isotopes and olivine phenocryst mineral data, are used to decipher the source of volcanism at Vesteris Seamount.

The Sr-Nd-Pb isotopic signatures indicate that Vesteris volcanism is unrelated to the Iceland mantle plume. Low NiO concentrations in highly forsteritic olivines from Vesteris alkali basalt suggest that the source was dominantly peridotitic. Rare Earth Elements profiles indicate very low degrees of partial melting of a deep mantle source in the presence of residual garnet.

Vesteris seamount was formed in a location of a relatively steep gradient of the lithospheric-asthenospheric boundary and close to the northward mantle flow that is carving the Greenland thick lithosphere. The results suggest that the Iceland mantle flow may not have crossed the Jan Mayen Transform Fault; instead, the seamount tapped into a mantle reservoir in the Greenland Basin that preserved the complex history of the Greenland craton and adjacent terranes.   REFS. (1) Georgen and Lin, 2003, Plume-transform interactions at ultra-slow spreading ridges: Implications for the SW Indian Ridge, G-cubed, doi:10.1029/2003GC000542; (2) Mertz & Renne, 1995, Quaternary multi-stage alkaline volcanism at Vesteris Seamount (Norwegian—Greenland Sea): evidence from laser step heating 40Ar/39Ar experiments, Journal of Geodynamics, doi:10.1016/0264-3707(94)E0001-B.

How to cite: Beloša, L., Gaina, C., Callegaro, S., Mazzini, A., Meyzen, C., Polteau, S., and Bizimis, M.: Plume-Fracture Zone interactions in the NE Atlantic, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9199, https://doi.org/10.5194/egusphere-egu22-9199, 2022.

EGU22-12422 | Presentations | GD2.1

Plume push force: a relevant driver of plate tectonics that can be constrained by horizontal and vertical plate motions 

Ingo Stotz, Berta Vilacís, Jorge N. Hayek, Hans-Peter Bunge, and Anke M. Friedrich

Earth's surface moves in response to a combination of tectonic forces from the thermally convective mantle and plate boundary forces. Plate motion changes are increasingly well documented in the geologic record and they hold important constraints. However, the underlying forces that initiate such plate motion changes remain poorly understood. I have developed a novel 3-D spherical numerical scheme of mantle and lithosphere dynamics, aiming to exploit information of past plate motion changes in quantitative terms. In order to validate the models and single out those most representative of the recent tectonic evolution of Earth, model results are compared to global plate kinematic reconstructions. Additionally, over the past years a pressure driven, so-called Poiseuille flow, model for upper mantle flux in the asthenosphere has gained increasing geodynamic attention–for a number of fluid dynamic arguments. This elegantly simple model makes a powerful testable prediction: Plate motion changes should coincide with regional scale mantle convection induced elevation changes (i.e., dynamic topography). For this the histories of large scale vertical lithosphere motion recorded in the sedimentary record holds important information.

Here, I will present analytical results that help to better understand driving and resisting forces of plate tectonics – in particular the plume push force. Moreover, numerical results indicate that mantle convection plays an active role in driving plate motions through pressure driven upper mantle flow. Altogether, theoretical and observational constrains provide powerful insights for geodynamic forward and inverse models of past mantle convection.

How to cite: Stotz, I., Vilacís, B., Hayek, J. N., Bunge, H.-P., and Friedrich, A. M.: Plume push force: a relevant driver of plate tectonics that can be constrained by horizontal and vertical plate motions, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12422, https://doi.org/10.5194/egusphere-egu22-12422, 2022.

EGU22-13092 | Presentations | GD2.1

Dynamic topographic observations of Antarctica and its fringing oceanic basins 

Aisling Dunn, Nicky White, Megan Holdt, and Robert Larter

Constraining the dynamic topography of Antarctica and its surrounding seas is required in order to gauge the pattern of mantle convection beneath this continent. However, such studies are limited by this continent’s geographical remoteness, by the lack of bedrock exposure and by extensive glaciation. Oceanic residual depth measurements provide a well-established proxy for offshore dynamic topography. Here, over 400 seismic reflection profiles have been interpreted to calculate residual depth measurements throughout the oceans that surround Antarctica. These measurements have been carefully corrected for sedimentary loading and, where possible, for crustal thickness variations. When combined with previous global compilations, these new residual depths significantly improve spatial resolution across the region, providing excellent constraints on dynamic topographic basins and swells. In the continental realm, an improved understanding of dynamic topography will help to quantify temporal and spatial variations in ice sheet stability. Volcanism and slow shear wave velocity anomalies beneath the continent indicate dynamic support.  By mapping offshore dynamic topography to a higher resolution, greater context is provided for future onshore studies.

How to cite: Dunn, A., White, N., Holdt, M., and Larter, R.: Dynamic topographic observations of Antarctica and its fringing oceanic basins, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13092, https://doi.org/10.5194/egusphere-egu22-13092, 2022.

First 40Ar/39Ar isotopic age data for gold hydrothermal veinlet-vein mineralization of the late Mesozoic Ketkap-Yuna igneous province (KYuIP) of the Aldan shield (AS) confirm the geological relation of this type of mineralization with the early Cretaceous sub-alkali magmatism. The combination of geological characteristics and U-Pb dating of magmatites indirectly enabled us to determine the age and highly productive bi-metasomatic «massif-skarn» type of mineralization associated with sub-alkali magmatogenic formations of the province.

Isotopic datings of magmatites and gold mineralization of the KYuIP and other late Mesozoic igneous provinces of the Aldan shield show age conformity of ore-bearing magmatites and ores accompanying them (fig. 1, 2). A relative, in comparison to provinces of the tectonic-magmatic activation (TMA) of the Western and Central Aldan, delay in time of occurrences of the KYuIP late Mesozoic magmatism and gold mineralization related to it, and the difference in volume ratios of formational types of magmatic formations in different provinces can be explained by the characteristics of tectonic structure of the region.

We have distinguished two large areas of the late Mesozoic TMA of the AS differing in the timing of polyformational magmatism and concomitant mineralization of different types, and in dominating formational type of magmatites: Western–Central-Aldan on the one hand, and Eastern-Aldan on the other (fig. 1-3). The first is characterized by a long-term development of magmatic activity from the Berriasian to the early Albian (≈ 30 Ma), and prevalence of leucitite–alkali(foid)-syenite formation; the second is characterized by occurrences of magmatism in a period twice as smaller (≈ 15 Ma), and domination of subalkaline diorite-granodiorite-granite formation.

The termination of the late Mesozoic magmatism in both areas was sub synchronous. The “set” of magmatogenic formations within them is also similar: leucitite–alkali(foid)-syenite with alkali granites, monzonite(subalkaline shonkinite)-syenite and subalkaline diorite-granodiorite-granite. A typical feature of the Eastern-Aldan area of the TMA consists in Coniacian-Santonian burst of alkali volcanoplutonism, which manifested in the KYuIP after a long (about 30 Ma) period of amagmatism.

 

How to cite: Polin, V., Zvereva, N., Travin, A., and Ponomarchuk, A.: Ketkap-Yuna igneous province gold mineralization age, ore-bearing complexes formational types, and different occurrence time of the late Mesozoic magmatism in different parts of the Aldan shield, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-163, https://doi.org/10.5194/egusphere-egu22-163, 2022.

The results of studying the granulite belts of the Earth show the presence of two types of granulite metamorphism in them: high-pressure and high-temperature ones.

     High-pressure granulites are characterized by P-T trends in the form of clockwise curves. According to widespread opinion,  the granulite metamorphism with such trends characterizes the areas that were formed as a result of the tectonic thickening of the crust due to continent-continent collisions that correspond to the model of the Himalayan type.

     High-temperature granulites are characterized by counterclockwise trends. For the formation of such granulites, researchers involve the mechanism of mantle underplating or the introduction of large volumes of intrusions under stretching. This model requires a mantle plume, which transports hot mantle material to the base of the crust.

  Thus, granulites with contrasting P-T trends, "orogenic" and "anorogenic" may be present inside the same belt. High-temperature granulites are superimposed on the dominant high-pressure ones. The time interval between these discrete events is not clearly defined and can be estimated in several tens of millions of years.

      Let's consider these two types of metamorphism against the background of the events of the supercontinental cycle (SC). Its structure consists of two stages: proper-continental (one continent-one ocean) and intercontinental (several continents-several oceans). In turn, the stages divide into phases. The first agglomeration phase of the proper-continental stage is characterized by compaction of already collected continental fragments. After the supercontinental culmination, the next, destruction phase begins, which precedes and prepares the break-up of the supercontinent. Its main content is continental rifting and the formation of the basic intrusions. The content of the first phase of the second stage consists of the break-up of the supercontinent, the formation of spreading zones and passive margins of young oceans. The next convergent phase of this stage is the assembly of the new supercontinent, the formation of subduction zones and the closure of young oceans as a result of numerous collisions.

     Based on the collision model of high-pressure granulite metamorphism, it is obvious that its formation will occur in this convergent phase of the SC, when, as a result of continent-continent collisions, a new supercontinent is assembled.

     Conditions for high-temperature granulite metamorphism in a tension environment arise in the phases of destruction and break-up of this supercontinent when plume processes are actively manifested as a result of the heat blanket effect.

      The analysis of the modern world factual material on supercontinental cyclicity for 3 billion years of the Earth history, conducted by the author, generally confirms the above correlation of the evolution of metamorphism during the development of granulite belts with events of SC.

Thus, these two types of granulite metamorphism, which fit into the structure of the super continental cycle, are indicators of geodynamic conditions of the corresponding stages and phases of the SC and show a complex interaction in the course of their manifestation of two geodynamic styles - the tectonics of lithospheric plates and mantle plumes.

 

How to cite: Bozhko, N.: On the manifestation of two types of granulite metamorphism during supercontinental cyclicity, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-362, https://doi.org/10.5194/egusphere-egu22-362, 2022.

EGU22-379 | Presentations | GD2.4 | Highlight

Sulfide inclusions in alkali basalt-associated garnet megacrysts shed light on the mysterious megacryst nature 

Anna Aseeva, Aleksandr Ignatyev, Aleksandr Karabtsov, Aleksey Ruslan, Anton Sinev, Tatyana Velivetskaya, Sergey Vysotskiy, and Maria Ushkova

We have carefully studied an unusual sulfide-bearing garnet megacryst from the ever-surprising Cenozoic Shavaryn-Tsaram basaltic cone (Tariat Platou, Mongolia). Similar sulfide inclusions in minerals constituting mantle xenoliths and clinopyroxene megacrysts related to alkali basalts were already known (Peterson and Francis, 1977, Chaussidon et al, 1989, Ionov et al, 1992) but they have never been found in garnet megacrysts. Since these garnets are believed to be mantle-derived material, their sulfide inclusions provide information on the deep sulfur cycle.

The sulfide-rich garnet megacryst from Shavaryn Tsaram pyroclastic strata is a chip of a large (up to 3 cm) cracked and partly quenched glassy crystal (fig. 1A, fig.1B) with melt pockets (Aseeva et al, 2021) inside (fig. 1C).

 

Sulfide inclusions are primary, isometric, elongated, and orientated towards crystal growth with a distinctive arrangement (3D X-ray images, Skyscane, fig. 2A). Swarms of inclusions contour the growth planes typical for the deltoidal icositetrahedron (fig. 2B).

Sulfide inclusions mainly consist of Ni-bearing pyrrhotite (1.66-2), scarce chalcopyrite (fig.3A and B), and rarely of pentlandite. Incompletely crystallized droplets of MSS (monosulfide solid solution) occur periodically as thin crystal pyrrhotite and pentlandite intergrowths (fig. 3C). These MSS inclusions are thought to be a product of the sulfide melt exsolution caused by undercooling (Chaudison et all, 1989).

The multi-isotope sulfur composition of these sulfide inclusions has been studied to define whether the sulfur source is crustal or mantle-derived. Thus, their δ34S values account for 0.2-0.4‰, δ33S for 0.1-0.2‰, and Δ33S for 0.00-0.03‰, which is characteristic of mantle, meteoric, MORB, and volcanic settings. As for the host garnet, its oxygen isotope composition (Δ18О 5.4 to 5.8‰) also suggests the volcanic origin of these sulfides.

Submicron surface analysis (Bruker Dimension Icon and Solver NT-MDT) reveals the linear-globular structure of garnet (fig. 4A). Being probable nuclei, nearly 1 μm globules compose layers of garnet. We assume that garnet crystal formed via epitaxial growth from the gas phase. Garnet megacryst linear structures consisting of globules differ significantly from the metamorphic garnet crystal lattice (fig. 4B). Sulfur redundancy causes sulfide droplets, immiscible with silicate material (fig. 4C), to gather and form bulbs on top of a growing crystal due to surface tension (fig. 4C). 

The following conclusions may be drawn: 1. Sulfide inclusions in alkali basalt-associated garnet megacrysts are primary. 2. Sulfides hosted in garnet are mantle-derived according to isotopic data. 3. Garnet megacryst formation was caused by epitaxial growth.

How to cite: Aseeva, A., Ignatyev, A., Karabtsov, A., Ruslan, A., Sinev, A., Velivetskaya, T., Vysotskiy, S., and Ushkova, M.: Sulfide inclusions in alkali basalt-associated garnet megacrysts shed light on the mysterious megacryst nature, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-379, https://doi.org/10.5194/egusphere-egu22-379, 2022.

EGU22-516 | Presentations | GD2.4 | Highlight

A relatively pristine C-like component in the eastern Anatolian asthenosphere 

Alican Aktağ, Kaan Sayit, Bradley J. Peters, Tanya Furman, and Jörg Rickli

Eastern Anatolia (Eastern Turkey) resides in the Alpine-Himalayan orogenic belt and hosts the Eastern Anatolian Volcanic Province (EAVP), one of the volumetrically most important volcanic provinces within the circum-Mediterranean region. Previous studies have revealed that the predominant portion of EAVP is composed of the products of the sub-continental lithospheric mantle (SCLM) metasomatized during subduction of the Neo-Tethyan slab. The wide distribution of the lithospheric signatures in EAVP lavas has led to the availability of a large number of geochemical information regarding the regional SCLM in eastern Anatolia. In contrast, the nature of the asthenospheric mantle of eastern Anatolia remains poorly constrained due to scarcity of the asthenosphere-derived melts and lack of detailed information on the source components it comprises. Hence, this study aims primarily to put constraints on the chemical nature of asthenosphere beneath eastern Anatolia by a detailed characterization of its end-members.  

In this study, we provide new trace element and Sr-Nd-Hf-Pb isotope data from Quaternary Elazığ volcanism. This volcanism, entirely represented by mafic alkaline basaltic rocks, is one of the most recent members of EAVP, and its chemistry provides compelling evidence for a predominate asthenosphere origin. Modellings suggest that these mafic volcanics are largely free of crustal assimilation; their geochemical signatures, hence, closely reflect their source regions. Their trace element and Sr-Nd-Hf-Pb isotope systematics are consistent with derivation from an asthenospheric mantle source domain containing approximately 70% recycled oceanic lithologies with the characteristics of the C-like mantle component. However, minor contributions from depleted component (DM; ca. 20%) and an enriched component representing metasomatically modified SCLM (ca. 10%) are also needed to explain their total range of isotope data. With these findings, we propose that the C-like material is dispersed within the asthenosphere, and has mixed with the depleted mantle matrix beneath eastern Anatolia. The SCLM domains, on the other hand, occur as detached pods, following the lithospheric delamination in the region. Having triggered by the extensional dynamics during Quaternary, upwelling of the hot asthenosphere resulted in the melting of the C-DM and SCLM domains. Subsequently, the C-DM melts interacted with the SCLM-type melts, eventually generating the Elazığ volcanism.

How to cite: Aktağ, A., Sayit, K., Peters, B. J., Furman, T., and Rickli, J.: A relatively pristine C-like component in the eastern Anatolian asthenosphere, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-516, https://doi.org/10.5194/egusphere-egu22-516, 2022.

Most researchers believe that large igneous provinces (LIPs) are formed by adiabatic melting of heads of ascending mantle plumes. Because the LIPs have existed throughout the geological history of the Earth (Ernst, 2014), their rocks can be used to probe the plume composition and to decipher the evolution of deep-seated processes in the Earth’s interior.

The early stages of the LIPs evolution are discussed by the example of the eastern Fennoscandian Shield, where three major LIP types successively changed each other during the early Precambrian: (1) Archean LIP composed mainly of komatiite-basaltic series, (2) Early Paleoproterozoic LIP made up mainly of siliceous high-Mg series, and (3) Mid-Paleoproterozoic LIP composed of picrites and basalts similar to the Phanerozoic LIPs (Sharkov, Bogina, 2009). The two former types of LIPs derived from high-Mg depleted ultramafic material practically were extinct after the Mid-Paleoproterozoic, whereas the third type is survived till now without essential change. The magmas of this LIP sharply differed in composition. Like in Phanerozoic LIPs, they were close to E-MORB and OIB and characterized by the elevated and high contents of Fe, Ti, P, alkalis, LREE, and other incompatible elements (Zr, Ba, Nb, Ta, etc.), which are typical of geochemically enriched plume sources.

According to modern paradigm (Maruyama, 1994; Dobretsov, 2010; French, Romanowiсz, 2015, etc.), formation of such LIPs is related to the ascending thermochemical mantle plumes, generated at the mantle-liquid core boundary due to the percolation of the core’s fluids into overlying mantle. Thus, these plumes contain two types of material, which provide two-stage melting of the plume’s heads: adiabatic and fluid-assisted incongruent melting of peridotites of upper cooled margins (Sharkov et al., 2017).

These data indicate that the modern setting in the Earth’s interior has existed since the Mid Paleoproterozoic (~2.3 Ga) and was sharply different at the early stages of the Earth’s evolution. What was happened in the Mid Paleoproterozoic? Why thermochemical plumes appeared only at the middle stages of the Earth’s evolution? It is not clear yet. We suggest that this could be caused by the involvement of primordial core material in the terrestrial tectonomagmatic processes.  This core survived from the Earth’s heterogeneous accretion owing to its gradual centripetal warming accompanied by cooling of outer shells (Sharkov, Bogatikov, 2010).

References

Dobretsov, N.L. (2008). Geological implications of the thermochemical plume model. Russian Geology and Geophysics, 49 (7), 441-454.

Ernst, R.E. (2014). Large Igneous Provinces. Cambridge Univ. Press, Cambridge, 653 p.

French, S.W., Romanowicz, B. (2015). Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature, 525, 95-99.

Maruyama, S. (1994). Plume tectonics. Journal of Geological Society of Japan, 100, 24-49.

Sharkov, E.V., Bogina, M.M. (2009). Mafic-ultramafic magmatism of the Early Precambrian (from the Archean to Paleoproterozoic). Stratigraphy and Geological Correlation, 17, 117-136.

Sharkov, E.V., Bogatikov, O.A. (2010). Tectonomagmatic evolution of the Earth and Moon // Geotectonics 44(2), 83-101.

Sharkov, E., Bogina, M., Chistyakov, A. (2017). Magmatic systems of large continental igneous provinces. Geoscience Frontiers 8(4), 621-640

How to cite: Sharkov, E.: The Late Cenozoic global activation of tectonomagmatic processes as a result of physico-chemical processes in the solidifying Earth’s core?, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-968, https://doi.org/10.5194/egusphere-egu22-968, 2022.

EGU22-1176 | Presentations | GD2.4

The multistage metasomatized mantle beneath Alakit: evidence from mantle xenoliths from Komsomolskaya kimberlite pipe, Yakutia, stages of mantle evolution 

Igor Ashchepkov, Theodoros Ntaflos, Nikolai Medvedev, Denis Yudin, Igor Makovchuk, and Ravil Salikhov

More than 200 metasomatised peridotite xenoliths containing phlogopite, amphibole and ilmenite from the Komsomolskaya pipe are garnet and spinel harzburgites or dunites, and clinopyroxene-enriched lherzolites with garnets (up to 12.5 wt.% Cr2O3) and clinopyroxenes (up to 5 wt.% Na2O). Low-Cr varieties are Fe-enriched pyroxenites, phlogopite metasomatic veins and type A, B eclogites. Minerals were studied by electron microprobe and LA-ICP-MS which revealed their geochemical groupings and their distribution in the mantle section.

     Results indicate that the lithospheric mantle beneath the Komsomolskaya pipe is layered and relatively heated. Heated peridotites at the lithosphere base (7-6 GPa) are enriched in Fe and are porphyroclastic, deformed types and rare polymict breccias. The cold group at 6.0-5.5 GPa (34 mW/m2) are depleted peridotites with sub-Ca garnets. Cpx-fertilized varieties belong to the middle part of the mantle section. Amphiboles range from Cr-hornblendes to edenites (2-6 GPa), showing K-Ti enrichment. Picroilmenites yield two pressure intervals from 6.5 to 5.0 GPa and from 5.0 to 4.0 GPa, forming two differentiation branches. Eclogites are mainly related to the lower part of the section with a peak at pressures of 4-6 GPa.

Trace elements of melts that formed harburgitic garnets-pyroxenes rever to oceanic MORB like melt interaction with peridotites. The subcalcic S-type garnets are similar to subduction-related melts (S-type REE) with troughs in HFSE. Adakite-like hybrid metasomatism formed Na, Al-rich pyroxenes with peaks in Sr and HFSE. K-bearing pyroxenes and amphiboles refer to shoshonitic metasomatism.

Trace elements for Cpx of re-fertilized mantle peridotites have high LREE, Nb-Ta troughs and peaks in Zr, Th, Sr, U and are related to carbonatite –alkaline melts. Protokimberlite (essentially carbonatitic) interaction produced HFSE-enrichment. Type B eclogites show more subduction-related features with HFSE troughs while type A eclogites are closer to hybrid and peridotitic signatures. We suggest six types of major metasomatic agents.  The 40Ar/39Ar ages of phlogopites are in the 440-690 Ma range, with some at 1.6 Ga, suggesting multistage metasomatism.  Supported by  RFBR grant 19-05-00788

 

 

 

How to cite: Ashchepkov, I., Ntaflos, T., Medvedev, N., Yudin, D., Makovchuk, I., and Salikhov, R.: The multistage metasomatized mantle beneath Alakit: evidence from mantle xenoliths from Komsomolskaya kimberlite pipe, Yakutia, stages of mantle evolution, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1176, https://doi.org/10.5194/egusphere-egu22-1176, 2022.

EGU22-1260 | Presentations | GD2.4 | Highlight

Manifestation of various stages PGE mineralization in the different locations Ospa-Kitoy ophiolite massif (East Sayan, Russia). 

Olga Kiseleva, Evgeniya Ayriants, Dmitriy Belyanin, and Sergey Zhmodik

A study of chrome-spinels and PGE mineralization (PGM) from the podiform chromitites has been carried out on the area of four locations of the Ospa-Kitoy ophiolite massif (northern and southern branches East Sayan ophiolite). It has been established that different PGM assemblages formed at different stages of formation of the Ospa-Kitoy ophiolite massif, at various temperature and fluid regimes, are present at four sites. The chromite pods show both disseminated and massive structures. There are veins of massive chromitites, 0.01-0.5 m thick and 1-10 m long, rarely disseminated, schlieren, and rhythmically banded ores, which are discordant to the host ultramafic rocks. (Os-Ir-Ru) alloys occur as inclusions in the Cr-spinel or intergrowth with them (fig 3a). In addition, FePt3 alloys are found in the PGM assemblage. In such grains, decomposition structures of solid solutions represented by osmium lamellas can be observed. Polyphase PGM assemblage: (Os, Ir, Ru), (Ni, Fe, Ir),  (Ir, Ru, Pt)AsS, CuIr2S4, (Os, Ru)As2, Rh-Sb,  PtCu, and Pd5Sb2 are localized in serpentine, in close association with sulfides, sulfoarsenides, arsenides of nickel.

Figure 1. Chromitite bodies and PGE mineralization in Ospa-Kitoy ophiolite massif: 1 – Harh mountain (north branch of the ophiolites); 2 –  lake Sekretnoye (apically Zun-Ospa river); 3 – stream Zmeevikovyi (south branch of the ophiolites); 4 – Harh-Ilchir site (south flank Harh mountain).

Figure 2. Composition of  Os-Ir-Ru alloys: 1 – Harh mountain, 2 – lake Sekretnoye site, 3 – stream Zmeevikovyi.

Based on chemical and microtextural features of the PGM´s and assemblage with magmatic and hydrothermal minerals in the chromitites, it is established that each studied location of chromitites at different stages of PGM formation are exhibited. High-temperature magmatic Os-Ir-Ru alloys are widely exhibited in the Harh and Zmeevikovyichromitites. In the Harh-Ilchir site, there is no magmatic PGM and are established sulfoarsenides and arsenides Ru, Ir, which are formed from the residual fluid phase in the late magmatic stage. Chromitites in the lake Sekretnoye MPG are contained high-temperature magmatic (Os-Ir-Ru) alloys, and there are signs of PGE remobilization with Os0 , Ru0 , (Ir-Ru) alloys. Remobilization processes during serpentinization and fluid interaction of peridotites and chromitites.

In addition, it should note that the PGM assemblage of the Zmeevikovyi and Harh-Ilchir locations has been undergone by influence metamorphogenic fluids with increased activity of O2, As, Sb. and these minerals can be formed directly in hypergenic environments. PGM҆'s such as (Ru, Rh, Pt)Sb, Rh-Sb were created at this stage.

Figure 3. BSE images of primary and secondary PGM: Harh location: а) individual grain of magmatic (Os-Ir-Ru) with microinclusion native Os; b) remobilized polyphase aggregate native Os, (Ir-Ru) (CuIr2S4); location Sekretnoye lake: с) inclusion magmatic (Os-Ir-Ru) in the chromite grain; d) remobilized polyphased aggregate (Ir-Ru), (Rh-Sb); location stream Zmeevikovyi: e) idiomorphic magmatic grain (Os-Ir) replaced by (Ir,Ru)AsS, with separation remobilized (Os,Ir);  Harh-Ilchir site: f) inclusion of Pd5Sb2 in the heazlewoodite (Hzl).

Analytics  made in Analytical Centre SB RAS. Supported by RFBR  19-05-00764а and  Russian Ministry of Education and Science.

 

 

How to cite: Kiseleva, O., Ayriants, E., Belyanin, D., and Zhmodik, S.: Manifestation of various stages PGE mineralization in the different locations Ospa-Kitoy ophiolite massif (East Sayan, Russia)., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1260, https://doi.org/10.5194/egusphere-egu22-1260, 2022.

EGU22-1306 | Presentations | GD2.4

Mantle transects in South and Central Africa according to data of mantle xenocrysts and diamond inclusions.   

Igor Ashchepkov, Vladimir Zinchenko, Alexander Ivanov, and Alla Logvinova

We designed the mantle transects using the PTXFO2 diagrams  (Ashchepkov et al., 2010; 2013; 2017) constructed (Fig. 1) for mantle columns beneath kimberlites of  Kaapvaal and the Congo-Kasai cratons.

The PTXFO2 diagrams (Ashchepkov et al., 2013) in South Africa were constructed using mainly analyses of garnets, eclogitic minerals and inclusions in diamonds in open publications. The sub-calcic type garnets mainly refer to the ancient low-temperature geotherms (35 mv/m2) and higher-temperature inclusions of eclogite-pyroxenite type, giving convective geotherms crossing conductive ones, which reflects the migration process of apparently hybrid melts. 

Roberts Victor is a Mesozoic pipe 95Ma  famous due to the abundance of various eclogite xenoliths. Many eclogites in the SCLM show P-Fe# trends that are typical of ascending and differentiating magmas. Such “basaltic eclogites” may show typical features of their magmatic origin (Fig.1A). They may create channels within the peridotitic lithosphere starting from the deep subduction stages.  These irregularities formed during subduction stages and due to later plumes could explain the irregular distribution of eclogites in kimberlite pipes and abundance in  Roberts Victor (Jacob et al., 2005; Huang et al., 2014) and practical absence in others.

 In the mantle of Luaxe and Cuilo pipes (Fig.1 B, C) the minerals give highly variable conditions representing the multistage metasomatic processes. The oxygen conditions are good for diamonds  The mantle column reveals a long ilmenite trend and the presence of abundant eclogites (Zinchenko et al., 2021; Nikitina et al., 2014; Ashchepkov et al., 2012).

In the sub-meridional mantle transect through the South Kaapvaal and Zimbabwe cratons, mainly dunitic at the basement ancient cores of cratons like in Lesotho and Central part of  Zimbabwe mantle is relatively depleted and low temperature.   In the marginal parts like near Premier pipe, Venetia in Limpopo and Orapa in Magondi belt the amount of the pyroxenitic and eclogitic materials drastically rises and the temperature regimes and oxidation state rise because these zones are more transparent for the melts. These zones are often highly diamondiferous and the largest diamonds are occurring in these regions and pipes (Fig. 2).

In the mantle section through the pipes of the so-called diamond-bearing corridor of the Lucapa within the northeastern part of the Congo craton (Fig. 3), the immersion of the least oxidized and more productive horizon represented mainly by depleted peridotite material and much less oxidized is gradually thinking and in the to the southwest is recorded in the lower part. The temperatures in the lower part are also decreasing. This determines the sharp increase in the diamond grades of kimberlite pipes in this direction. But commonly this transect represents a relatively smooth homogeneous structure, the lithosphere of the craton's mantle distinguishes outflow clusters corresponding to thickenings of pips and kimberlite clusters that have arisen within the limits of separately permeable zones that occur at the intersection of deep faults.

RFBR grant 19-05-00788.  Supported by Ministry of Science and Higher Education.

How to cite: Ashchepkov, I., Zinchenko, V., Ivanov, A., and Logvinova, A.: Mantle transects in South and Central Africa according to data of mantle xenocrysts and diamond inclusions.  , EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1306, https://doi.org/10.5194/egusphere-egu22-1306, 2022.

The system CaCO3-MgCO3 has been used since the '60s for reconstructing the petrogenesis of carbonated lithologies, notably of carbonatite magmas possibly generated in the Earth's mantle. Yet, experimental results at high temperatures and pressures remain contradictory, and a thermodynamic model for the carbonate liquid in this binary is still lacking.

We experimentally investigated the melting of aragonite and magnesite to pressures of 12 GPa, and of calcite-magnesite mixtures at 3 and 4.5 GPa, and at variable Mg/(Mg+Ca) (XMg). Results show that the melting of aragonite, and of magnesite have similar slopes, magnesite melting ≈ 30 °C higher than aragonite. The minimum on the liquidus surface is at XMg ≈ 0.35-0.40, 1200 °C at 3 GPa, and 1275 °C at 4.5 GPa, which, when combined with data from Byrnes and Wyllie (1981) and Müller et al. (2017), imply that minimum liquid composition remains approximately constant with pressure increase. We present the first thermodynamic model for CaCO3-MgCO3 liquids, retrieved from the experimental data available. Although carbonate liquids should be relatively simple molten salts, they display large non-ideality and a three-component (including a dolomite component), pressure dependent, asymmetric solution model is required to model the liquidus surface. Attempts to use an end-member two-component model fail, invariably generating a very wide magnesite-liquid loop, contrary to the experimental evidence.

The liquid model is used to evaluate results of experimentally determined phase relationships for carbonated peridotites modelled in CaO-MgO-SiO2-CO2 (CMS-CO2), and CaO-MgO-Al2O3-SiO2-CO2 (CMAS- CO2). Computations highlight that the liquid composition in the CMS-CO2 and CMAS-CO2 and in more complex systems do not represent "minimum melts" but are significantly more magnesian at high pressure, and that the pressure-temperature position of the solidus, as well as its dP/dT slope, depend on the bulk composition selected, unless truly invariant assemblages occur. Calculated phase relationships are somewhat dependent on the model selected for clinopyroxene, and to a lesser extent of garnet.

Byrnes A.P. and Wyllie P.J. (1981) Subsolidus and melting relations for the join CaCO3-MgCO3 at 10 kbar. Geochim. Cosmochim. Acta 45, 321-328

Müller I.A., Müller M. K., Rhede D., Wilke F.D.H. and Wirth R. (2017) Melting relations in the system CaCO3-MgCO3 at 6 GPa. Am. Mineral. 102, 2440-2449.

How to cite: Poli, S., Zhao, S., and Schmidt, M. W.: An experimental determination of the liquidus in the system CaCO3-MgCO3 and a thermodynamic analysis of the melting of carbonated mantle melting, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1531, https://doi.org/10.5194/egusphere-egu22-1531, 2022.

EGU22-1932 | Presentations | GD2.4

In situ low-degree melts in peridotite xenolith from Majuagaa kimberlite, West Greenland 

Ekaterina S. Kiseeva, Vadim S. Kamenetsky, and Troels F. D. Nielsen

Mantle xenoliths provide a clear evidence of interaction with low-degree mantle melts, however, this evidence is mostly geochemical, manifested by incompatible element enrichment, or mineralogical, manifested by already crystallised phases (e.g. amphibole, phlogopite) as a result of this interaction.

Despite decades of research, the composition of low-degree melts generated in lithospheric mantle are still not very well-known. In situ characterisation of such melts is hampered due to their modification during the ascent as well as rapid alteration and weathering at the surface, while experiments are hampered by difficulties to produce and analyse very low-degrees (<2-3%) melts.

In this study we report a rare sample of well-preserved low-degree melts within a peridotite xenolith GGU473178 from Majuagaa kimberlite in West Greenland. We report alkali-carbonatitic-chloride melt pools and veins that may represent primary low-degree partial melts and products of their in situ crystallisation.

Melt pools are largely composed of carbonate (predominantly dolomite) and contain spinel, apatite, phlogopite as well as minor amounts of Fe-Ni sulphides, barite and halite.

Euhedral crystals of spinel present in these melt pools contain large usually round aggregates of mineral inclusions, which we explain as former melt pools captures by spinel. Mineral assemblage found in these spinel inclusions is consistently composed of ferropericlase, dolomite, alkali-rich carbonate and apatite, which is indicative of a strongly silicate-undersaturated alkali-carbonatitic melt that contains chlorine and phosphorous. Due to the almost complete absence of SiO2, ferropericlase (instead of olivine) crystallises in equilibrium with dolomite and alkali-rich carbonate, implying incredibly low degrees of melting, when essentially only carbonated component is melted, or carbonate-silicate liquid immiscibility, previously reported for spinel lherzolite and garnet wehrlite xenoliths (Frezzotti et al., 2002; Soltys et al., 2016).

References

Frezzotti, M. L., Touret, J. L. R., and Neumann, E. R., 2002, Ephemeral carbonate melts in the upper mantle: carbonate-silicate immiscibility in microveins and inclusions within spinel peridotite xenoliths, La Gomera, Canary Islands: European Journal of Mineralogy, v. 14, no. 5, p. 891-904.

Soltys, A., Giuliani, A., Phillips, D., Kamenetsky, V. S., Maas, R., Woodhead, J., and Rodemann, T., 2016, In-situ assimilation of mantle minerals by kimberlitic magmas — Direct evidence from a garnet wehrlite xenolith entrained in the Bultfontein kimberlite (Kimberley, South Africa): Lithos, v. 256-257, p. 182-196.

How to cite: Kiseeva, E. S., Kamenetsky, V. S., and Nielsen, T. F. D.: In situ low-degree melts in peridotite xenolith from Majuagaa kimberlite, West Greenland, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1932, https://doi.org/10.5194/egusphere-egu22-1932, 2022.

EGU22-2177 | Presentations | GD2.4

Ages of micas from xenoliths and xenocrysts of kimberlites of the Siberian Craton determined by 39Ar/40Ar method 

Denis Iudin, Igor Ashchepkov, and Alexei Travin

Plateaus and isochronous and integral ages of 39Ar/40Ar xenocrysts and phlogopite grains from kimberlite xenoliths can be used to determine the ages of mantle processes (Hopp et al., 2008) and decipher the genesis of diamond-forming processes. Dating of deep xenoliths of kimberlites of the Siberian craton reveals a significant spread (Pokhilenko et al., 2012; Ashchepkov et al., 2015) from the Archean to the time close to the age of the host kimberlites, mainly Devonian. The most ancient ages for Udachnaya Daldyn fields for phlogopites from xenoliths of spinel harzburgites of the highest level belong to the late Archean (2.6-2.0) - early Proterozoic 1.7 -1.5 Ga. In the Alakite field, all ages are younger from 1,87 – 1,05- 0,928 - 0,87 Ga and belong to the metasomatic history of the Rodinia continent mantle. Close dates are set for xenoliths from the Obnazhennaya pipe (Kalashnikova et al. 2017).

Fig.1 PT  Udachnaya pipe. Symbols: Op: ToC(Brey, Kohler, 1990)-P(GPa)(McGregor, 1974). Cpx: 2.ToC-P(GPa)(Nimis, Taylor, 2000); 3.ToC (Nimis, Taylor, 2000 with ed. author)–P(GPa)(Ashchepkov et al., 2011); 4. eclogites ; 5. inclusions in diamond; Gar: 6.ToC (O'Neill, Wood, 1979) -P(GPa) (Ashchepkov et al., 2010Gar), 7. For eclogite garnets Chromite: 8,  inclusions in diamond; 9. chromite ToC (O'Neill, Well, 1987)-P(GPa) (Ashchepkov et al., 2010Gar), 7. For eclogite garnets Chromite: 8, inclusions in diamond; 9. chromite ToC (O'Neill, Well, 1987)-P(GPa) (Ashchepkov et al ., 2010Chr); 10 the same for inclusions in diamond; 11. Film Tom (Taylor et al., 1998)- P(GPa) (Ashchepkov et al., 2010 ilm)

Our data on micas by the 39Ar/40Ar method often reveal complex configurations of spectra. The micas of the xenocrysts of the Alakite field give several peaks, ranging from the most high-temperature and ancient, which corresponded to the upper Proterozoic - Vendian and Paleozoic, and only the lowest temperature peaks with a high Ca/K ratio corresponded to the ages of kimberlite introduction. Some peaks may be associated with the thermal effects of the Vilyusky plume (Kuzmin et al., 2012). The lowest temperature peaks, which are close in age to the time of kimberlite formation, which is confirmed by the high 38Ar/39Ar ratios of the gas released at the low-temperature stage, can be used very approximately for dating kimberlites, however, the release of other gases at low-temperature stages significantly increases the measurement error. All of them correspond to the interval 440 -320 Ma. The pipes Mir, Internationalnaya, Ukrainianskaya - 420, Yubileynaya -342, Botuobinskaya -352 Ma). Some definitions practically coincide with Rb/Sr ages (Griffin et al., 1999, Agashev et al., 2005, Kostrovitsky et al., 2008; Zaitsev, Smelov, 2010) and probably represent mixing lines. For many xenocrysts (Feinsteinovskaya, Ukrainskaya, Yubileynaya, Krasnopresnenskaya tr.), the interval from 600 to 500 Ma is manifested, which corresponds to the stage of the Laurasia supercontinent breakdown. The presence of relatively low-temperature plateaus with ancient ages, and high-temperature young ones implies that some stages can be correlated with the mantle history of the mineral.  RFBR grant 19-05-00788.  Supported by Ministry of Science and Higher Education.

Fig.2 PT  Sytykanskaya pipe

How to cite: Iudin, D., Ashchepkov, I., and Travin, A.: Ages of micas from xenoliths and xenocrysts of kimberlites of the Siberian Craton determined by 39Ar/40Ar method, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2177, https://doi.org/10.5194/egusphere-egu22-2177, 2022.

EGU22-3014 | Presentations | GD2.4

Precise calculations of Nickel content in pyropes 

Alexandr Ivanov

The nickel content in pyropes interested researchers due to the possibility to create an algorithm for calculating the temperature boundaries of its joint crystallization with diamonds. Griffin proposed such a calculation algorithm, which was named the diamond-bearing corridor with his name [1]. Determination of nickel content in pyropes on microanalysts is difficult for several reasons. The first reason is the limit of detection of nickel in pyropes, which is very high for the determination of this element on electron microscopes (at least 15 ppm). And then, such an analysis is possible at a quantitative level with a probe beam current of 300nA and an analysis time of 3 minutes. The study of the correlation ratios of nickel with other elements in pyropes allowed us to determine two elements that have a significant correlation with the nickel content in pyropes - these are titanium and manganese and their content in pyropes is acceptable for quantitative determination. On the ion microanalyzer, more than two hundred analyses were performed for pyropes from the kimberlite pipes Botuobinskaya and Nyurbinskaya, the remaining determinations were made from kimberlites tr. Jubilee and tr. Victory with the use of a new technique for the determination of nickel in pyropes in the microanalyzer JXA-8230. In total, 443 definitions of nickel in pyropes were performed at the quantitative level. Such definitions made it possible to calculate the functional dependence of nickel contents on titanium and manganese contents. The STATISTICS program is used for such calculations (Fig. 1).

Fig. 1. Map of level lines (nickel manganese titanium for 443 definitions) with the calculation of functional dependence

The calculation of nickel contents in pyropes makes it possible to fully use the Griffin geothermometer to determine the number of pyrope grains from the diamond-bearing corridor area.

  • Griffin W.L., Ryan C.G. Trace elements in indicator minerals: Area selection and target evaluation in diamond exploration. J. Geochem. Explor., 1995. Vol. 53., pp, 311-357

How to cite: Ivanov, A.: Precise calculations of Nickel content in pyropes, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3014, https://doi.org/10.5194/egusphere-egu22-3014, 2022.

EGU22-3284 | Presentations | GD2.4

Seismogenesis in granite under brittle-plastic transition condition 

Jae Hoon Kim and Jin-Han Ree

Most of earthquakes occur below 10-km depth in the Korean Peninsula. For example, the focal depth of the Mw 5.5 Gyeongju Earthquake in 2016, the largest instrumental earthquake in South Korea since scientific earthquake monitoring started in 1978, is about 14 km with hypocentral basement rocks of granitoid and temperature of 370°C (thus, brittle-plastic transition condition). A study on ancient granitoid shear zones with the similar temperature condition will aid in understanding the seismogenesis in the brittle- plastic transition regime. The Yecheon shear zone is an NE- to NNE-striking right-lateral shear zone cross-cutting Mesozoic granitoid belt in South Korea. The deformation temperature of the main shear zone was estimated to be about 350 ℃. In the southeastern margin of the shear zone, protomylonites change gradually into mylonites and then abruptly into ultramylonites toward southeast. Quartz and feldspar grains both of protomylonite and mylonite deform by dislocation creep and brittle fracturing, respectively. Greenish ultramylonite consists of quartz-, feldspar-, muscovite- and epidote-rich layers within matrix of quartz, muscovite and epidote. The protomylonite commonly displays a composite S-C foliation. The deflecting S-foliation of mylonite toward ultramylonite is sharply truncated by the boundary between mylonite and ultramylonite. Thin (several mm to several cm) greenish layers occur in protomylonite subparallel to mylonitic foliation or cross-cutting the foliation at a low angle. They also show injection structure with flow banding and cataclastic deformation along the protomylonite boundary. The greenish layer consists of fragments of protomylonite and matrix of very fine-grained quartz, feldspar, muscovite and epidote. Epidote grains of ultramylonite and greenish layers replace phengitic mica, biotite and plagioclase and show graphic texture. Together with epidote formation, chloritization of biotite and albitization of K-feldspar are prominent in the greenish layers. The growth of hydrothermal minerals including epidote and chlorite within the greenish layers and shear band along the C-foliation indicates fluid circulation in the layers. We interpret the greenish layers were generated during seismic events in fluid-rich conditions and thus seismic event may be caused by pore pressure build up. Once the greenish layers develop, deformation was localized along the layers due to much reduced grain size in interseismic periods, and the greenish layers became ultramylonite with further grain-size reduction.

How to cite: Kim, J. H. and Ree, J.-H.: Seismogenesis in granite under brittle-plastic transition condition, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3284, https://doi.org/10.5194/egusphere-egu22-3284, 2022.

EGU22-3326 | Presentations | GD2.4

Deep seismic reflection profile with big-size dynamite shots reveals Moho and mantle reflection: tracking continental evolution 

Mingrui Li, Rui Gao, Jianbo Zhou, Simon A Wilde, Hesheng Hou, Xiaomiao Tan, and Yanlin Zhu

The deep structure of orogenic belts and cratons has become an important part to track evolution and innovation of tectonics. The extremely thick crust and overlying deposition bring obstacles to the deep structure of the orogenic belt and ancient block. Deep seismic reflection profile is globally regarded as an advanced technology to perspective the fine structure of the crust and the top of the upper mantle, especially using large-size dynamite shots. In the 1990s, international scholars used deep seismic reflection profiles to find inclined reflections penetrating from the lower crust to the upper mantle (Calvert et al., 1995; Cook et al., 1999). They believe that these reflections are related to ancient subduction events(or fossil subduction). At the beginning of this century, Chinese scholars began to carry out similar experiments in the Tibet Plateau, Sichuan Basin and Songliao basin. Using big-size dynamite shots, they also found the Moho under the extremely thick crust of the Tibet Plateau and the mantle reflection under the ancient block (Gao et al., 2013, 2016; Zhang et al., 2015). In 2016, with the support of China Geological Survey Project,we arranged a seismic reflection profile around the Scientific Deep Drilling SK-2 Well in the middle of Songliao basin. According to the data processing results of all five big-size dynamite shots and four medium-size dynamite shots of the profile, we obtained a 127.3km long single-fold reflection profile, revealing the reflection characteristics of the lower crust, Moho and its upper mantle in the study area. The Moho structure distributed nearly horizontally at a depth of 33km (estimated by the average crustal velocity of 6km/s) is clearly obtained, and the mantle reflection extending obliquely from Moho to 80km-depth is found. We believe that this dipping mantle reflection represents an ancient subduction relic under the Songnen block.

 

Calvert, A. J., Sawyer, E. W., Davis, W. J., & Ludden, J. N.  Archaean subduction inferred from seismic images of a mantle suture in the Superior Province. Nature,1995, 375(6533), 670–674.

Cook,F. A., van der Velden, A. J., Hall, K. W., Roberts, B. J.Frozen subduction in Canada’s Northwest Territories: lithoprobe deep lithospheric reflection profiling of the western Canadian Shield. Tectonics 1999,18, 1–24.

Gao R, Chen C, Lu Z W, et al.New constraints on crustal structure an d Moho topography in Central Tibet revealed by SinoProbe deep seismic reflection profiling. Tectonophysics, 2013, 606:160 - 170.

Gao, R., Chen, C., Wang, H. Y., Lu, Z. W., et al.Sinoprobe deep reflection profile reveals a neo-Proterozoic subduction zone be neath Sichuan basin. Earth & Planetary Science Letters, 2016,454(18):86-91

Zhang, X. Z.,Zheng, Z.,Gao, R., et al. Deep reflection seismic section evidence of subduction collision between Jiamusi block and Songnen block. Journal of Geophysics, 2015,58 (12): 4415-4424

How to cite: Li, M., Gao, R., Zhou, J., Wilde, S. A., Hou, H., Tan, X., and Zhu, Y.: Deep seismic reflection profile with big-size dynamite shots reveals Moho and mantle reflection: tracking continental evolution, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3326, https://doi.org/10.5194/egusphere-egu22-3326, 2022.

EGU22-3368 | Presentations | GD2.4

Possible sources of the alluvial diamonds Udzha basin, northern Anabar region near kimberlite Tomtor field, Yakutia. 

Mikhail Vavilov, Valentine Afanasiev, Igor Ashchepkov, Leonid Baranov, and Egorova Vera

The NE of the Siberian platform in Udzha and Anabar river locate the richest alluvial placers of diamonds Since the discovery of placers > 700 were found, but no industrial bodies. A study of kimberlite magmatism has established that there are kimberlites of three ages on the territory of the North-East of the Siberian platform – middle Paleozoic (single), lower Triassic (few) and Jurassic-Cretaceous (prevailing). The latter are almost non-diamond-bearing.

The nearest kimberlite fields of Kuranakh and Tomtor are poor in diamonds. Some placers in the basin of the Udzha river, the right tributary of the Anabar, contain Cr-rich (≤14 wt.% Cr2O3) sub-calcic pyrope garnet associated with diamond. Comparison of kimberlite indicator minerals (KIMs) from the basins of Udzha and Chemara (its right tributary) shows similarity and a large diversity of pyropes, mostly of lherzolitic type. Cr- diopsides found in the Devonian collector suggest a close kimberlite source.

Mainly eclogitic placer diamonds are abundant in the upper reaches of the Chimara river in the northeastern part of the region. They occur in Permian, Jurassic, and Neogene rocks and in Quaternary alluvium where they coexist with pyrope and ilmenite. The diamonds in this region have mostly eclogitic features (Shatsky et al., 2015).

Reconstructions using monomineral thermobarometry (Ashchepkov et al., 2010) for the sources of pyrope and diamond show that the areas of the Anabar and Udzha placers share the similarity in the structure of mantle roots since 7.5 GPa, with a convective branch at the base.

The P-Fe trend for the Jurassic is slightly inclined, which is typical of the Kuranakh field. For the Devonian kimberlites, non-inclined trends are typical. The subcontinental lithospheric mantle (SCLM) beneath the Udzha basin is rich in pyroxenitic garnets as typical for the Anabar region.

There are 3 intermediate collectors of pyropes and associated diamonds: Permian, Jurassic and Neogenic and alluvium.  A study of the chemistry and thermobarometry of the kimberlite indicator minerals show some variations which possibly indicate different kimberlite sources ( Fig.1).

The detailed trace element geochemistry of the KIM from Udzha and Chemyra rivers show high variations and systematic differences.

Fig.1. PTX diagrams for kimberlite indicator minerals (KIM) from three correctors in the Udzha basin.

Fig.2 TRE distributions for KIM from Udzha alluvium

Fig.3 TRE distributions for KIM from Udzha alluvium

Supported by  RBRF grant 19-05-00788.

 

 

How to cite: Vavilov, M., Afanasiev, V., Ashchepkov, I., Baranov, L., and Vera, E.: Possible sources of the alluvial diamonds Udzha basin, northern Anabar region near kimberlite Tomtor field, Yakutia., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3368, https://doi.org/10.5194/egusphere-egu22-3368, 2022.

EGU22-3753 | Presentations | GD2.4

Inhomogeneity of the composition of lithospheric mantle beneath the Yakutian kimberlite province 

Sergey Kostrovitsky, Dmitry Yakovlev, Igor Ashchepkov, and Sebastian Tappe

For the first time, such an indicator as the Ti content in garnets was used as a criterion for the study of heterogeneity of the lithospheric mantle (LM) beneath the Yakutian kimberlite province (YaKP). Comparison of the compositions of garnet from pipes of most fields (18 out of 21) of YaKP was carried out. The study was based on representative collections of garnets from kimberlite concentrates, as well as literature and own data on the composition of garnets from mantle xenoliths from the Upper Muna pipes and northern fields adjacent to the Anabar shield, as well as from the Udachnaya, Dal’nyaya and Obnajennaya pipes. Three groups of YaKP fields with different Ti content (Fig. 1) and Mg# values ​​in garnets have been identified - 1) southern diamondiferous fields - high TiO2 content (0.26-0.50 wt%) and high Mg# value (80.6-82.6%); an exception is the Mirninsky field (0.13 wt.% TiO2); 2) the dominant number of northern fields (10 in total) is a low TiO2 content (0.06-0.26 wt%) (Fig. 2) and a relatively high value of Mg# (78.8-81.7%, middle - 80.2%); 3) three northern fields (Chomurdakh, Ogoner-Yuryakh and Toluopka) - high TiO2 content (0.53-0.78 wt.%) (Fig. 3) and low Mg# (76.9-78.3%). The trace element composition of garnets from the third group testifies to their mainly equilibrium magmatic crystallization (Fig. 4). It is assumed that the garnet-bearing rocks, due to the relatively low lithospheric mantle (LM) thickness in the marginal part of the Siberian Craton, were subjected to almost complete metasomatic processing by melt-fluids of the asthenospheric mantle. The obtained data on the composition of garnets allowed the authors to clarify the reason for the different compositions of kimberlites in the southern and northern fields of YaKP. The authors believe that the predominantly high-Ti composition of the kimberlites of the northern fields, despite the low-Ti composition of the LM rocks, reflects the primary composition of the kimberlite melt-fluid of asthenospheric origin. The relatively small thickness of the LM beneath the northern fields limited the degree of assimilation by kimberlite melt of high-Mg rocks of LM and initiated an increase in asthenosphere activity, which led to the formation of high-Ti kimberlites, high-Ti alkaline basalts, and alkaline-carbonatite massifs here. Supported by RBRF grant 19-05-00788

 

 

How to cite: Kostrovitsky, S., Yakovlev, D., Ashchepkov, I., and Tappe, S.: Inhomogeneity of the composition of lithospheric mantle beneath the Yakutian kimberlite province, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3753, https://doi.org/10.5194/egusphere-egu22-3753, 2022.

EGU22-3997 | Presentations | GD2.4

Zonation in garnets from the Udachnaya pipe: heating and melt infiltration in the lithospheric mantle of the Siberian craton 

Konstantin Solovev, Igor Sharygin, and Alexander Golovin

Xenoliths in kimberlites and other volcanic rocks are our best window into the subcranotic lithospheric mantle. Chemical overprinting associated with melt-rock interactions is almost ubiquitous in these mantle xenoliths [1]. Such local changes in chemistry may be recorded by the formation of compositional zoning in minerals. Studies of major and trace element zoning provide important information about the nature and time scales of metasomatic processes and thermal events in the upper mantle.

Usually, garnets from peridotite xenoliths have pronounced zoning, whereas olivine and pyroxenes are homogeneous. Currently, only zoning in garnets of sheared and coarse peridotite xenoliths from kimberlites of the Kaapvaal craton (southern Africa) and the minette neck The Thumb (North American craton) has been studied in detail (e.g., [2,3]). There is no detailed study on major-, minor- and trace-element zoning in garnets of peridotite xenoliths from kimberlites of the Siberian craton.

In our study, we provide a detailed description of complex major- and trace-element zoning patterns in garnets of two unique fresh sheared peridotites from the Udachnaya kimberlite pipe (Siberian craton). The mantle residence pressure and temperature of the peridotites UV-3/05 (lherzolite) and UV-33/04 (harzburgite) are 6.4 GPa and 1350°C [4] and 6.0 GPa and 1320°C [5], respectively.

The profiles of minor and major elements are complex and symmetric. The profiles change their slope signs (positive/negative) several times. It should be noted that the Ni content increases from the cores to the rims. The chondrite-normalized REE patterns show a continuous change from the cores to the rims. The cores display sinusoidal patterns (LREE enrichment peaking at Sm), whereas patterns of the rims are ‘normal’ (with HREE enriched by 15–19× chondrite abundances for Gd through Lu).

The profiles are consistent with the formation of garnet overgrowths and increasing temperature, followed by diffusive equilibration between the rims and cores over hundreds or thousands of years. Using melt-garnet distribution coefficients of trace elements, we showed that the metasomatic melt, which caused the formation of the garnet overgrowths, had a genetic link to the kimberlite magmatism that formed the Udachnaya pipe. The profile lengths of Zr, Ce, Sm, Eu, Gd, and Hf are longer than the profile lengths of Tb, Dy, Ho, Er, Tm, Yb, and Lu. This indicates that the composition of the melt changed (from composition in equilibrium with upper mantle peridotite to kimberlitic composition) during its percolation through the mantle, as predicted by the theory proposed by Navon and Stolper (1987).

This study was supported by the Russian Science Foundation (grant No 18-77-10062).

References: [1] Pearson, D.G. and Wittig, N., 2014, Treatise on Geochemistry, 255-292. [2] Griffin et al., 1989, Geochim. Cosmochim. Acta, 53(2), 561-567. [3] Smith et al., 1991, Contrib. Mineral. Petrol., 107(1), 60-79. [4] Golovin et al., 2018, Chem. Geol., 261-274. [5] Agashev et al., 2013, Lithos, 160, 201-215. [6] Navon, O. and Stolper, E., 1987, J. Geol., 95(3), 285-307.

How to cite: Solovev, K., Sharygin, I., and Golovin, A.: Zonation in garnets from the Udachnaya pipe: heating and melt infiltration in the lithospheric mantle of the Siberian craton, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3997, https://doi.org/10.5194/egusphere-egu22-3997, 2022.

EGU22-4994 | Presentations | GD2.4

Low He content of the high 3He/4He Afar mantle plume: Origin and implications of the He-poor mantle 

Ugur Balci, Finlay M. Stuart, Jean-Alix Barrat, and Froukje M. van der Zwan

Basalts from high flux intra-plate volcanism (Iceland, Hawaii, Samoa) are characterised by 3He/4He that are significantly higher than those from the upper mantle sampled at mid-ocean ridges.  The prevailing paradigm requires that a largely undegassed deep Earth is enriched in primordial noble gases (3He, 20Ne) relative to degassed convecting upper mantle.  However, the He concentration and 3He/20Ne ratio of high 3He/4He oceanic basalts are generally lower than mid-ocean ridge basalts (MORB). This so called ‘He paradox’ has gained infamy and is used to argue against the conventional model of Earth structure and the existence of mantle plumes.  While the paradox can be resolved by disequilibrium degassing of magmas it highlights the difficulty in reconstructing the primordial volatile inventory of the deep Earth from partially degassed oceanic basalts.

Basalts from 26 to 11°N on the Red Sea spreading axis reveals a systematic southward increase in 3He/4He that tops out at 15 Ra in the Gulf of Tadjoura (GoT). The GoT 3He/4He overlaps the highest values of sub-aerial basalts from Afar and Main Ethiopian Rift and is arguably located over modern Afar plume.  The along-rift 3He/4He variation is mirrored by a systematic change in incompatible trace element (ITE) ratios that appear to define two-component mixing between E-MORB and HIMU.  Despite some complexity, hyperbolic mixing relationships are apparent in 3He/4He-K/Th-Rb/La space.  Using established trace element concentrations in these mantle components we can calculate the concentration of He in the Afar plume mantle.  Surprisingly it appears that the upwelling plume mantle has 5-20 times less He than the convecting asthenospheric mantle despite the high 3He/4He (and primordial Ne isotope composition). This contradicts the prevailing orthodoxy but can simply be explained if the Afar mantle plume is itself a mixture of primordial He-rich, high 3He/4He (55 Ra) deep mantle with a proportionally dominant mass of He-poor low 3He/4He HIMU mantle. This is consistent with the narrow range of Sr-Nd-Os isotopes and ITE ratios of the highest 3He/4He Afar plume basalts, and is in marked contrast to high 3He/4He plumes (e.g. Iceland) that do not have unique geochemical composition. The HIMU signature of the Afar plume basalts implies origin in recycled altered oceanic crust (RAOC). Assuming that no He is recycled and using established RAOC U and Th concentrations, the low He concentration (< 5 x 1013 atoms/g He) of the He-poor mantle implies that the slab was subducted no earlier than 70 Ma and reached no more than 700 km before being incorporated into the upwelling Afar plume. We suggest that the Afar plume acquired its chemical and isotopic fingerprint during large scale mixing at the 670 km transition zone with the Tethyan slab, not at the core-mantle boundary.

This study implies that large domains of essentially He-poor mantle exist within the deep Earth, likely associated with the HIMU mantle compositions. Further, it implies that moderately high-3He/4He (< 30 Ra) mantle plumes (e.g. Reunion) need not contain a significant contribution of deep mantle, thus cannot be used a priori to define primitive Earth composition.

How to cite: Balci, U., Stuart, F. M., Barrat, J.-A., and van der Zwan, F. M.: Low He content of the high 3He/4He Afar mantle plume: Origin and implications of the He-poor mantle, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4994, https://doi.org/10.5194/egusphere-egu22-4994, 2022.

EGU22-5450 | Presentations | GD2.4

Exotic magmatism from the western branch of the East African Rift: insights on the lithospheric mantle source. 

Francesca Innocenzi, Sara Ronca, Stephen F. Foley, Samuele Agostini, and Michele Lustrino

The northernmost sector of the western branch of the East African Rift (EAR) includes the young (~40-50 ka [1]) volcanic province of Toro Ankole, characterized by the presence of exotic volcanic products such as carbonatites, melilitites, kamafugites and foidites [2]. Among these, the occurrence of kamafugites (kalsilite-bearing volcanic rocks [3]) is noteworthy, as Toro Ankole represents the type locality for these compositions, found in only two other localities worldwide. The Toro Ankole volcanic province developed along the margin of the Archean Tanzanian craton, and its magmatic products show the influence of metasomatic processes and phases developed in the thick continental lithosphere. Indeed, MARID-like metasomatism is proposed in literature, with the formation of a veined mantle [4].

A multidisciplinary approach, based on a detailed petrographic, mineral chemical, geochemical and isotopic (Sr, Nd, Pb and B) study, has been carried out on 53 samples, which include not only lavas and tuffs, but also holocrystalline and wall rock xenoliths. Two types of lava may be identified: the first is represented by carbonatites and silico-carbonatites, characterized by low SiO2 (4.89-21.78 wt%) and low alkali (0.44-2.03 wt%) and high CaO (25.17-47.57 wt%), while the second most peculiar lithotypes is represented by kamafugites; katungites (melilite-rich kalsilite-olivine-bearing volcanic rocks), mafurites (kalsilite-rich melilite-olivine-bearing) and ugandites (olivine-rich kalsilite-melilite-bearing). The kamafugites are strongly SiO2-undersaturated and moderately ultrabasic, potassic to ultrapotassic volcanic rocks, with high MgO (6.08-22.20 wt%) and CaO (up to 15.46 wt%). They consist of phenocrysts of clinopyroxene and olivine set in a hypo-holocrystalline fine-grained groundmass made up of microliths of clinopyroxene, olivine, perovskite, kalsilite, nepheline, leucite, melilite, phlogopite, carbonates and opaques.

The xenolith cargo shows wide range of compositions, varying from clinopyroxenite to glimmerite, with low modal abundance of opaques and perovskite in agreement with the literature data that generally report a lack of olivine and orthopyroxene in the mineral assemblage [5]. The common presence of phlogopite, abundant clinopyroxene and carbonate-rich veins indicate the presence of veined lithosphere [6]. This is consistent with the isotopic data for lavas and xenoliths (87Sr/86Sr = 0.70480-0.70563 and 143Nd/144Nd = 0.512515-0.512575), which outlines an enriched and complex mantle source. 206Pb/204Pb is extremely variable, with values from the holocrystalline xenolith (19.99-19.27) being slightly higher than lava samples (19.28-19.63). The d11B values for lavas and xenoliths, show a wide range, varying from DMM-like values (-6 and -8‰) to more variable OIB-like values (down to -12 and up to -3‰; [7]), through to positive values (up to +6.6‰ in the lavas). These latter also exhibit the highest Sr isotopic ratios of the dataset, pointing to the possible occurrence of old and altered oceanic crust and/or serpentinite in the mantle source.

Bibliography

[1] Boven et al., 1998, J. Afr. Earth Sci., 26, 463-476.

[2] Holmes and Harwood, 1932, Quarterly J. Geol. Soc., 88, 370-442.

[3] Le Maitre, 2002, Cambridge University Press.

[4] Rosenthal et al., 2009, Earth Planet. Sci. Lett., 284, 236-248.

[5] Link et al., 2008, 9th Int. Kimb. Conf., 1-3.

[6] Foley, 1992, Lithos, 28, 435-453.

[7] Agostini et al., 2021, Sci. Rep., https://doi.org/10.1038/s41598-021-90275-7.

How to cite: Innocenzi, F., Ronca, S., Foley, S. F., Agostini, S., and Lustrino, M.: Exotic magmatism from the western branch of the East African Rift: insights on the lithospheric mantle source., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5450, https://doi.org/10.5194/egusphere-egu22-5450, 2022.

Spinel peridotite xenoliths have been found in Cenozoic basalts from the Nuomin and Keluo areas in the northern Daxinganling. The Mg content of olivine in the mantleperidotite indicates that the upper mantle in the study area is partially refractory. According to the olivine content and Fo diagram, a part of peridotite xenoliths fell in the Archean and Proterozoic mantle regions, which reveals that there are remnants of ancient lithospheric mantle in the lithospheric mantle of the study area. In the study area, harzburgite and lherzolite show high oxygen fugacity values (FMQ + 1.95-3.15), which is in sharp contrast to the low oxygen fugacity values of the relatively reduced ancient lithospheric mantle. It is possible that the Paleozoic paleo Asian Ocean and Mesozoic paleo Pacific subducted successively under the Xingmeng orogenic belt, resulting in the oxidation of the lithospheric mantle at that time. K 2O (1% ~ 6%) is found in the reaction edge of mantle xenoliths. It is considered that the mantle in the study area has experienced multiple periods of K-rich meltactivity, and the source of K-rich melt may be related to the crust source material recycled by subduction.

How to cite: Liu, J. and Li, H.: Oxygen fugacity characteristics of lithospheric mantle peridotite in northern Xingmeng orogenic belt, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5941, https://doi.org/10.5194/egusphere-egu22-5941, 2022.

The Tuva-Mongolian microcontinent and Khamardaban terrane are known as major tectonic units accreted to the Siberian paleocontinent. We report 207Pb/206Pb ages of 2.44–2.22 Ga for sources of Late Cenozoic volcanic rocks from the Tunka volcanic zone and of 1.63–1.31 Ga for those from the Khamardaban zone. The new ages are consistent with Precambrian geological events that are characteristic of the area and contradict the existing opinion about the Early Paleozoic collisional connection between these tectonic units inferred from dating of syn-collisional granites.

On the one hand, we constrain ore-forming processes in the Gargan block of the Tuva-Mongolian microcontinent and in the south of the Siberian paleocontinent between 2.45 and 1.4 Ga and between 1.3 and 0.25 Ga, respectively [Rasskazov et al., 2010]. The latest Pb-separating event in the Gargan block was followed by the generation of restite ultrabasic Ilchir belt that bounds the block from the south [Kiseleva et al., 2020]. So, we trace the boundary between the Gargan block and Ilchir belt to magma sources of the Tunka and Khamardaban zones that reasonably denote the root part of the Khamardaban terrane, accreted to the Tuva-Mongolian microcontinent and Siberian paleocontinent 1.63–1.31 Ga ago (Figure). On the other hand, we emphasize the importance of ore-forming events in the Gargan block, launched about 2.45 Ga, simultaneously with source generation in the Tunka zone. Basalts of this zone include xenoliths of fassaitic clinopyroxenites that show wide variations in the oxidation–reduction state. We suggest that fassaite (diopside) mineralization was due to interaction between orthopyroxene and calcite: (Mg, Fe)2Si2O6 + CaCO3 → (Mg, Ca)2Si2O6 + CO2 + FeO. Orthopyroxene of high-Mg spinel harzburgite xenoliths from Khobok River lavas (Tunka basin) shows SiO2 content as high as 58.7 wt. %, while fassaite from pyroxenite xenoliths has SiO2 content as low as 49 wt. %. Fassaitization of orthopyroxenites and harzburgites, obviously, releases both iron and silica. These components are found as amorphous Fe–Si phases in metasomatite xenoliths with low Mg/Si and Al/Si ratios [Ailow et al., 2021]. From data obtained, we speculate that fassaitization was an effective crust-mantle process of 2.4–2.2 Ga that could provide both the deep-seated Fe–Si mineralization and the generation of ferruginous quartzites displayed in the Great Oxidation Event.

Ailow Y. et al. // Lithosphere. 2021. V. 21, No. 4. P. 517–545.

Kiseleva O.N. et al. // Minerals. 2020. V. 10. P. 1077.

Rasskazov S.V. Brandt S.B., Brandt I.S. Radiogenic isotopes in geologic processes. Springer, 2010. 306 p.

How to cite: Rasskazov, S., Chuvashova, I., Saranina, E., Yasnygina, T., and Ailow, Y.: Crustal versus mantle events of 2.44–2.22 and 1.63–1.31 Ga at the junction between Khamardaban terrane, Tuva-Mongolian microcontinent, and Siberian paleocontinent: Petrogenetic consequences, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6686, https://doi.org/10.5194/egusphere-egu22-6686, 2022.

EGU22-6723 | Presentations | GD2.4

Deep ultra-hot melting in cratonic mantle roots 

Carl Walsh, Balz Kamber, and Emma Tomlinson

The persistence of Archaean cratons for >2.5Ga was aided by thick, mechanically strong, and cool lithospheric mantle keels up to 250km deep. It is widely accepted that the cratonic mantle, dominated by depleted harzburgite, lherzolite and dunite, was formed by extensive melt extraction from originally fertile mantle peridotite. Models seeking to explain the formation of deep cratonic mantle in the garnet and diamond stability fields, initially sought to answer how such rocks could form in-situ at high temperatures and pressures and envisaged large-scale thermochemical plume upwellings. More recently, mineralogical and geochemical observations, namely the high Cr content of garnet and low whole rock HREE concentrations in cratonic harzburgites, have led to the conclusion that the deep cratonic mantle couldn’t have originally melted in the garnet stability field.  Mechanical stacking of shallowly depleted oceanic lithosphere was therefore proposed to have thickened the depleted lithosphere cratonic roots. In this process, the spinel facies minerals are envisaged to transform into the garnet stability field.

Here we present the first results of combined thermodynamic and geochemical modelling at temperatures high enough to reconcile the very refractory residues. We found that the requirement for initially shallow melting is no longer supported. Deep (150-250km), ultra-hot (>1800°C), incremental melting can produce the mineralogical and geochemical signatures of depleted cratonic harzburgites. The modelling also implies a link between areas of extreme depletion in the deep lithospheric mantle and the genesis of Earth’s hottest lavas (Al-enriched komatiite) by re-melting depleted harzburgite. Diamond inclusion minerals have a well-documented skew to the most refractory compositions found in cratonic peridotite. We propose that these ultra-depleted, highly reducing regions of the lithospheric root possess the highest diamond formation and preservation potential.

How to cite: Walsh, C., Kamber, B., and Tomlinson, E.: Deep ultra-hot melting in cratonic mantle roots, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6723, https://doi.org/10.5194/egusphere-egu22-6723, 2022.

EGU22-6724 | Presentations | GD2.4 | Highlight

Lateral change of  ELMU–LOMU sources for Cenozoic volcanic rocks from Southeast Mongolia and North China: Tracing zonation of solidified Hadean magma ocean 

Irina Chuvashova, Sergei Rasskazov, Yi-min Sun, Tatiana Yasnygina, and Elena Saranina

In terms of Pb isotope ratios, melting anomalies of Central and East Asia show no high μ (HIMU, high 238U/204Pb) signature that was generated on the Earth about 2 Ga ago and was caused by sulfide sequestration of Pb from the mantle to the core [Hart and Gaetany, 2006]. In such particular environment, we use Pb isotope data on Late Phanerozoic volcanic rocks to develop general systematics of their sources through definition of initial viscous protomantle reservoirs with low μ and elevated μ signatures (LOMUVIPMAR and ELMUVIPMAR, respectively) that imply a solidification time of the mantle in the Hadean magma ocean between 4.54 and 4.44 Ga ago. We suggest that the protomantle reservoirs retained specific Pb isotope signatures in the early, middle, and late epochs of the Earth's evolution (4.54–3.6, 2.9–1.8, and  <0.7 Ga ago, respectively) [Rasskazov et al., 2020]. In this presentation, we report the first representative Pb isotope data on the ELMU signature of Late Cenozoic rocks from the Dariganga volcanic field, Southeast Mongolia. Pb isotope secondary-isochron patterns of volcanic rocks show protomantle material that was not differentiated between 4.474 and 4.444 Ga (i.e. directly ascended from a deep mantle reservoir in the Cenozoic). In addition, the material was also differentiated in the deep mantle at about 3.69, 2.16, and 1.74 Ga. Pb isotope data on volcanic fields of North China are indicative for lateral change from the ELMU to LOMU signature (Figure). We infer that sources of volcanic rocks from Southeast Mongolia and North China display the primary inhomogeneity of the deep mantle that was generated in the Hadean magma ocean from its initial solidification as early as 4.54 Ga to its final respond of 4.44 Ga.   

Hart, S.R. &  Gaetani, G.A. (2006). Mantle paradoxes: the sulfide solution. Contrib. Mineral. Petrol., 152, 295–308.

Rasskazov, S., Chuvashova, I., Yasnygina, T., & Saranina, E. (2020). Mantle evolution of Asia inferred from Pb isotopic signatures of sources for Late Phanerozoic volcanic rocks. Minerals, 10 (9), 739. 

How to cite: Chuvashova, I., Rasskazov, S., Sun, Y., Yasnygina, T., and Saranina, E.: Lateral change of  ELMU–LOMU sources for Cenozoic volcanic rocks from Southeast Mongolia and North China: Tracing zonation of solidified Hadean magma ocean, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6724, https://doi.org/10.5194/egusphere-egu22-6724, 2022.

The method of cluster (R and G methods) analysis of the allocation of the cluster (CG) and chemical-generic (CGG) groups of average values of the compositions of diamond indicator minerals (DIM) (Ivanov, 2017) was used, supplemented with data on the frequency of occurrence (FO) of habitus forms, twins and clusters of diamond crystals of three kimberlite pipes of Angola – Catoca, Luele and Txiuzo (Ganga et al., 2021). Clustering of MSDS by their chemical composition was carried out on the basis of chemical-genetic classifications of Dowson J. and Soboleva N.V. for garnets (Dowson et al., 1975; Sobolev, 1973) and Garanin V. K. for Cr-diopsides, of ilmenite and chromite (Garanin et al., 1991).

It is found that FO CG/СGG of МSD are indirect and inverse significant correlation with FO habitus forms, twins and adhesion of diamond crystals of these kimberlite pipes. This is demonstrated by histograms of the joint distribution of CG DIM and habitus forms, twins and splices of diamond crystals from geological samples of kimberlites at their deposits (Fig. 1).

The fractions of octahedra (O) and transition habit crystals (OD) decrease in parallel with a decrease in the proportions of CG G9, G10 pyropes and an increase in G1 and G2a, an increase in the proportions of CGG 2b and 4b picroilmenites. The shares of rhombododecahedron, including dodecahedrons (RD), grow with the growth of the shares of CG pyropes G1a, G2a, as well as CGG picroilmenites 2b and CGG Cr-diopsides S2 and S5. The shares of twins (Tw), splices (Agr) and polycrystalline bead (PC) decrease in the studied tubes with a decrease in the shares of CG pyropes G10, G10a and an increase in the shares of CGG picroilmenites 2b and 4b and CGG Cr-diopsides S2 and S5 (Fig. 1). The presence of Ti and Fe compounds, which are part of DIM in elevated concentrations, in the process/medium of diamond crystal formation contributes to the formation of habitus forms OD and RD (D - dodecahedrons) during dissolution associated with low-chromium pyropes CG G1 and G2. Medium-high chromium pyropes CG G10 and G10a are associated with octahedral habitus (O) diamond crystals and their spinel counterparts (TwSp), whose shares they control.

Petrogenetic affiliation of CG/CGG MSD to various associations of deep mantle rocks allows us to identify the most favourable conditions and environments for the origin and growth of diamonds (high FO of O+TwSp+Tw) and environments (conditions) of their dissolution (high FO of OD+RD+Th+C). Interesting that the diamond grade calculated diamond deposits (Ct /T) is positively correlated with FO (Ar g+Tw), SGG S6 picroilmenites and SG G10 garnets, but the FO (RD+OD) has a negative effect on diamond grade, which allows determining the degree of the fertility of the mantle sources by DIM diamond.

How to cite: Zinchenko, V. and Ivanov, A.: Correlation of habitus forms, twins and aggregates of diamond crystals with the composition of its indicator minerals from kimberlite pipes of Angola, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6809, https://doi.org/10.5194/egusphere-egu22-6809, 2022.

EGU22-6844 | Presentations | GD2.4

Reconstruction of the composition of the kimberlite melt of the Bultfontein pipe, Kaapvaal craton 

Alexey Tarasov, Alexander Golovin, and Igor Sharygin

Information about the compositions of primitive kimberlite melts is important for understanding the petrogenesis of kimberlites. Reconstruction of the composition of these melts is very difficult because the melts greatly changed their compositions via assimilation of mantle and crust xenogenic materials and degassing during ascent.

To reconstruct the composition of the kimberlite melt of the Bultfontein pipe (Kaapvaal craton, South Africa), the mineral assemblage of secondary melt inclusions in olivines of mantle peridotite xenoliths from the pipe has been studied. The depths of equilibrium of the studied peridotites range from 120 to 150 km.

The inclusions occur along the healed cracks in the olivine grains. Twenty-five daughter minerals were found in the inclusions by Raman spectroscopy and scanning electron microscopy. Liquids and gases were not detected. The inclusions are mainly made up of carbonates (calcite CaCO3, magnesite MgCO3, dolomite CaMg(CO3)2, eitelite Na2Mg(CO3)2, nyerereite Na2Ca(CO3)2, gregoryite (Na,K,Ca)2CO3, K-Na-Ca-carbonate (K,Na)2Ca(CO3)2, shortite Na2Ca2(CO3)3) or carbonates with additional anions (nahcolite NaHCO3, bradleyite Na3Mg(PO4)(CO3), northupite Na3Mg(CO3)2Cl, burkeite Na6CO3(SO4)2, tychite Na6Mg2(CO3)4(SO4)). Halides (halite NaCl, sylvite KCl), sulfates (glauberite Na2Ca(SO4)2, thenardite Na2SO4, aphthitalite K3Na(SO4)2), phosphate (apatite Ca5(PO4)3(F,Cl,OH)), oxides (rutile TiO2, magnetite FeFe2O4), sulfide (heazlewoodite Ni3S2) and silicates (phlogopite KMg3AlSi3O10(F,Cl,OH), tetraferriphlogopite KMg3FeSi3O10(F,Cl,OH), richterite Na2Ca(Mg,Fe,Mn,Al)5[Si4O11](OH,F)2) are also present in the inclusions.

These inclusions are considered to be relics of a near‐primary or primitive kimberlitic melt that later formed the Bultfontein pipe. The observed mineral assemblage indicates that the captured melt had an alkali-carbonatitic composition and was rich in Cl and S.

This work was supported by the Russian Foundation for Basic Research (grant No. 20-35-70058).

How to cite: Tarasov, A., Golovin, A., and Sharygin, I.: Reconstruction of the composition of the kimberlite melt of the Bultfontein pipe, Kaapvaal craton, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6844, https://doi.org/10.5194/egusphere-egu22-6844, 2022.

EGU22-7771 | Presentations | GD2.4

Zhidoy Alkali-Ultramafic Rock and Carbonatite Massif: GeochemicalFeatures, Its Sources And Ore-Bearing 

Irina Sotnikova, Nikolai Vladykin, and Natalia Alymova

The article considers the geological position of the Zhidoy massif and its age. The scheme of magmatism of the massif has been developed. The graphs of paired correlations of petrogenic elements in massif rocks which had a consistent trend in composition are given for validation purposes. The present article provides graphs of REE spectra and the spider diagram of rare elements concentration in the massif rocks. Pyroxenites are the early rocks of the massif, which are the ores for titanium. Titanium is concentrated in three minerals: titanium magnetite, ilmenite and perovskite. The main type of titanium ores, perovskite, is known only in the Zhidoy massif. A conclusion about the mantle sources of the primary magma of the massif
is drawn based on the geochemistry of the isotopes Sr and Nd.

Fig. 1 Spectra of rare-earth elements in rocks of the Zhidoy massif (chondrite-normalized).
Symbols: 1−pyroxenite, 2−ijolite, 3−syenite, 4−phenite

 

Fig. 2 Spider-diagram of the Zhidoy massif rocks

Conclusions
1. Three varieties of ore pyroxenites have been defined−titanium-magnetite, ilmenite and perovskite ore.
2. The petrochemical diagrams show a common trend in the composition of rock- forming elements, indicating the homomorphism of the rocks and their crystallization from a single primary magma.
3. Geochemical data also confirm the genetic relation of the Zhidoy massif.
4. Mantle source, the depurated mantle for the primary magma of the Zhidoy massif, has been determined on the basis of isotope data.

How to cite: Sotnikova, I., Vladykin, N., and Alymova, N.: Zhidoy Alkali-Ultramafic Rock and Carbonatite Massif: GeochemicalFeatures, Its Sources And Ore-Bearing, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7771, https://doi.org/10.5194/egusphere-egu22-7771, 2022.

International Ocean Discovery Program (IODP) Expedition 357 drilled 17 shallow sites spanning ~10 km in the spreading direction (from west to east) across the Atlantis Massif oceanic core complex (OCC, Mid-Atlantic Ridge, 30°N). Exposed mantle in the footwall of the Atlantis Massif OCC is predominantly nearly wholly serpentinized harzburgite and subordinate dunite. Altered peridotites are subdivided into: (I) serpentinites, (II) melt-impregnated serpentinites, and (III) metasomatized serpentinites. Type I serpentinites show no evidence of melt-impregnation or metasomatism apart from serpentinization and local oxidation. Type II serpentinites have been intruded by gabbroic melts and are distinguishable in some cases based on macroscopic and microscopic observations, e.g., mm-cm scale mafic-melt veinlets, rare plagioclase (˂0.5 modal % in one sample) or by the local presence of secondary (replacive) olivine after orthopyroxene; in other cases, ‘cryptic’ melt-impregnation is inferred on the basis of incompatible element enrichment. Type III serpentinites are characterized by silica metasomatism manifest by alteration of orthopyroxene to talc and amphibole, anomalously high anhydrous SiO2, and low MgO/SiO2. Two fundamental features of the mantle serpentinites are identified: (1) A pattern of increasing melt-impregnation from west to east; and (2) a link between melt-impregnation and metamorphism. In regard to (1), whereas a dominant fluid- rock alteration (mostly serpentinization) is distinguished in the western serpentinites, a dominant mechanism of melt-impregnation is recognized in the central and eastern serpentinites. Melt-impregnation in the central and eastern sites is characterized by enrichment of incompatilble elements, Cr-spinel with anomalously high TiO2 (up to 0.7 wt.%) and olivine forsterite (Fo) compositions that range to a minimum of Fo86.5.  With respect to (2), in contrast to unmetamorphosed Cr-spinel of western site Type I serpentinized peridotites, spinel of the melt-dominated central and eastern peridotites record metamorphism, which ranges from sub-greenschist (<500°C) to lower amphibolite (>600°C) facies. Low grade, sub-greenschist facies metamorphism resulted in Mg and Fe2+ exchange between Cr-spinel and olivine resulting in Cr-spinel with anomalously low Mg# (cationic Mg/(Mg+Fe2+)). Higher grade amphibolite facies metamorphism resulted in Al-Cr exchange and the production of Fe-chromite and Cr-magnetite. Heat associated with magma injection and subsequent melt-impregnation resulted in localized contact metamorphism. High degrees of melt extraction are evident in low whole-rock Al2O3/SiO2 and low concentrations of Al2O3, CaO, and incompatible elements. Estimates of the degree of melt extraction based on Cr# (cationic Cr/Cr+Al, up to ~0.4) of unaltered Cr-spinel and modeled whole rock REE patterns, suggest a maximum of ~18-20% non-modal fractional melting. As some serpentinite samples are ex-situ rubble, the magmatic histories at each site are consistent with derivation from a local source (the fault zone) rather than rafted rubble that would be expected to show more heterogeneity and no spatial pattern. In this case, the studied sites may provide a record of enhanced melt-rock interactions with time, consistent with proposed geological models for OCC formation.  

How to cite: Whattam, S. A.: Spatial patterns of fluid- and melt-rock processes and link between melt-impregnation and metamorphism of Atlantis Massif peridotites (IODP Expedition 357), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9186, https://doi.org/10.5194/egusphere-egu22-9186, 2022.

EGU22-9214 | Presentations | GD2.4 | Highlight

Mantle-derived cargo vs. magmatic growth: ascent path, dynamics of the Udachnaya kimberlite and interactions with the Siberian sub-cratonic lithosphere 

Federico Casetta, Rainer Abart, Theodoros Ntaflos, Igor Ashchepkov, and Massimo Coltorti

Unravelling the processes taking place during the genesis of kimberlites, their ascent through the sub-cratonic mantle and their emplacement in the crust is challenging, as kimberlites are mixtures of mantle-derived and magmatic components, rarely preserving pristine evidence of their original nature. Furthermore, their intense state of alteration makes it difficult to access the textural-compositional record of information engraved in the phase constituents. In this study, fresh samples of kimberlites and related mantle-derived xenocrysts-xenoliths from the Udachnaya pipe (Siberia) were investigated to reconstruct the pressure-temperature-time-composition (P-T-t-X) framework of the sub-cratonic lithosphere at the time of kimberlite emplacement. Routine and high-precision electron microprobe analyses of olivine, phlogopite and spinel from different facies of the Udachnaya pipe (intrusive coherent, hypabyssal and pyroclastic, sensu Scott Smith et al., 2013) showed that specific phase assemblages are associated with each evolutionary stage of the kimberlite. Olivine composition, in particular, is extremely variable, ranging from high-Fo and high-Ni (Fo93; NiO = 0.45 wt%) to low-Fo and low-Ni (Fo85; NiO = 0.10 wt%), but also to high-Fo and low-Ni (Fo>93; NiO <0.05 wt%) terms, often encompassing the whole compositional spectrum in a single sample and/or showing marked zoning within the individual crystals. 
A comparison between the main constituents of the Udachnaya kimberlite and those of the mantle xenoliths sampled during ascent, complemented by detailed major-trace element profiles on olivine crystals, was put forward to: (i) discriminate between the mantle-derived xenocryst cargo and the magmatic assemblage; (ii) model the P-T-fO2 path of kimberlites; (iii) speculate about their ascent rate; (iv) model the interactions between kimberlite-related fluid/melts and the Siberian sub-cratonic lithosphere.

REFERENCES
Scott Smith, B.H., Nowicki, T.E., Russell, J.K., Webb, K.J., Mitchell, R.H., Hetman, C.M., ... & Robey, J.A. (2013). Kimberlite terminology and classification. In Proceedings of 10th international kimberlite conference (pp. 1-17). Springer, New Delhi.

How to cite: Casetta, F., Abart, R., Ntaflos, T., Ashchepkov, I., and Coltorti, M.: Mantle-derived cargo vs. magmatic growth: ascent path, dynamics of the Udachnaya kimberlite and interactions with the Siberian sub-cratonic lithosphere, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9214, https://doi.org/10.5194/egusphere-egu22-9214, 2022.

EGU22-9813 | Presentations | GD2.4

The architecture of the lithospheric mantle controlled the emplacement of the Central Atlantic Magmatic Province 

Andrea Boscaini, Andrea Marzoli, Hervé Bertrand, Massimo Chiaradia, Fred Jourdan, Manuele Faccenda, Christine Meyzen, Sara Callegaro, and Lina Serrano Durán

Large Igneous Provinces (LIPs) represent exceptionally brief (<1 Ma) voluminous magmatic events that punctuate Earth history, frequently leading to continental break-up, global climate changes and, eventually, mass extinctions. Most LIPs emplaced in continental settings are located near cratons, begging the question of a potential control of thick lithosphere on mantle melting dynamics. In this study we discuss the case of the Central Atlantic Magmatic Province (CAMP), emplaced in the vicinity of the thick lithospheric keels of the Precambrian cratons forming the central portion of Pangea prior to the opening of the Central Atlantic Ocean. In particular, we focus on CAMP magmas of the Prevalent group, ubiquitous all over the province, and of the Tiourjdal and High-Ti groups, emplaced (respectively) at the edges of the Reguibat and Leo-Man shields in north-western Africa, and the Amazonian and São Luis cratons in South America. As imaged by recent tomographic studies, there is a strong spatial correlation between most CAMP outcrops at surface and the edges of the thick cratonic keels. Geochemical modelling of trace element and isotopic compositions of CAMP basalts suggests a derivation by partial melting of a Depleted MORB Mantle (DMM) source enriched by recycled continental crust (1-4%) beneath a lithosphere of ca. 80 km. Melting under a significantly thicker lithosphere (>110 km) cannot produce magmas with chemical compositions similar to those of CAMP basalts. Therefore, our results suggest that CAMP magmatism was produced by asthenospheric upwelling along the deep cratonic keels and subsequent decompression-induced partial melting in correspondence with thinner lithosphere. Afterwards, lateral transport of magma along dykes or sills led to the formation of shallow intrusions and lava flows at considerable distances from the source region, possibly straddling the edges of the cratonic lithosphere at depth. Overall, the variations of the lithospheric thickness (i.e., the presence of stable thick cratonic keels juxtaposed to relatively thinner lithosphere) appear to play a primary role for localizing mantle upwelling and partial melting during large-scale magmatic events like the CAMP.

How to cite: Boscaini, A., Marzoli, A., Bertrand, H., Chiaradia, M., Jourdan, F., Faccenda, M., Meyzen, C., Callegaro, S., and Serrano Durán, L.: The architecture of the lithospheric mantle controlled the emplacement of the Central Atlantic Magmatic Province, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9813, https://doi.org/10.5194/egusphere-egu22-9813, 2022.

EGU22-10951 | Presentations | GD2.4

Age and geochemistry of the Kamthai carbonatites, Rajasthan, western India 

Milan Kumar Mahala and Jyotiranjan S. Ray

The Kamthai carbonatites form part of the Sarnu-Dandali alkaline complex (SDAC) of Rajasthan, western India. The SDAC is one of several alkaline intrusive complexes emplaced prior to the Deccan continental flood basalt eruptions. Considered as one of the earliest Deccan-Reunion plume related magmatic activities, the rocks of the complex hold clues to many tectonomagmatic processes such as plume-lithosphere interaction, mantle melting prior to flood basalt volcanism, and carbonatite-plume relationship, apart from the outstanding questions pertaining to the origin of carbonatites themselves, and their association with alkaline silicate rocks. To understand some of these processes vis-à-vis the evolution of the complex, we have carried out a detailed field, petrographic, geochronological (40Ar/39Ar), geochemical, and Sr-Nd-Pb-C-O isotopic investigation. Phlogopites from carbonatites yield an age of 68.6 Ma, identical to the ages determined for the three associated phonolite dykes. Interestingly, an earlier study reports the presence of older (89-86 Ma) subvolcanic and volcanic bodies in the complex, thus suggesting recurrent alkaline magmatism. Carbonatites of Kamthai occur as veins, dykes, and small plugs, along with dykes/plugs of ijolite, nephelinite, syenite and phonolite etc. The SDAC intrudes into the basement made up of Malani Rhyolites. The stable C-O isotopic compositions of unaltered carbonatites (δ13CPDB= -6.6 to -4.6 ‰; δ18OSMOW=5.5 to 9.5 ‰), which are predominantly calcite carbonatites, not only confirm the magmatic nature of the rocks but also show evidence of fractional crystallization. The chondrite-normalized rare-earth element patterns of the carbonatites and alkaline silicate rocks show LREE enriched patterns, with the former possessing abnormally high contents of LREE. The average (87Sr/86Sr)i and εNd(t=68.5 Ma) for carbonatites are 0.7043±0.0001 and 2.4±0.2, respectively, which are indistinguishable from those for the alkaline silicate rocks (87Sr/86Sr)i= 0.7045±0.0003; εNd(t)=2.4±0.4), which suggests common parentage. All these data point towards a petrogenetic link between the 68.6 Ma carbonatites and alkaline silicate rocks of the SDAC, either through liquid immiscibility or fractional crystallization of a common parental magma. Overlapping initial Sr-Nd isotopic ratios of these rocks with those of the least contaminated Deccan lava flows and the Reunion island rocks suggest a possible genetic link between the SDAC and the Deccan-Reunion plume. 

How to cite: Mahala, M. K. and Ray, J. S.: Age and geochemistry of the Kamthai carbonatites, Rajasthan, western India, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10951, https://doi.org/10.5194/egusphere-egu22-10951, 2022.

EGU22-10980 | Presentations | GD2.4

Composition of the kimberlite melt of the Komsomolskaya-Magnitnaya pipe (Upper Muna field, Siberian craton) 

Anastasiya Kalugina, Igor Sharygin, Konstantin Solovev, Alexander Golovin, and Anna Dymshits

Reconstruction of kimberlite melt composition is especially important to understand the processes of mantle-derived magmatism and the Earth’s mantle evolution. This task seems to be very complicated because mantle melts during ascent and emplacement changed their initial characteristics due to degassing and contamination by both mantle and crustal xenogenic materials. Moreover, mantle magmatic rocks are often subjected to secondary alteration. Melt inclusions in minerals of mantle xenoliths can preserve information about the initial characteristics of mantle melts.

Here, we present the results of a study on secondary crystallized melt inclusions in olivines in two partially serpentinized xenoliths of sheared peridotites (AKM-42n and AKM-56) from the Komsomolskaya-Magnitnaya pipe (Upper Muna field, Siberian craton). The mantle residence P–T conditions of AKM-42n and AKM-56 are 6.4 GPa and 1380°C, and 6.7 GPa and 1395°C, respectively.

We identified twenty-one daughter minerals in the melt inclusions using confocal Raman spectroscopy and scanning electron microscopy coupled with energy-dispersive X-ray microanalysis. The minerals within the inclusions are presented by chlorides (sylvite KCl and halite NaCl), silicates (tetraferriphlogopite KMg3Fe3+Si3O10(OH,F)2, phlogopite KMg3AlSi3O10(OH,F)2, olivine (Mg,Fe)2SiO4, clinopyroxene (Ca,Mg,Fe)2Si2O6, and monticellite Ca(Mg,Fe)SiO4), carbonates (nyerereite (Na,K)2Ca(CO3)2, shortite Na2Ca2(CO3)3, eitelite Na2Mg(CO3)2, dolomite CaMg(CO3)2, calcite CaCO3, and magnesite MgCO3), carbonates with additional anions (burkeite Na6CO3(SO4)2 and tychite Na6Mg2(CO3)4(SO4)), sulphates (aphthitalite K3Na(SO4)2 and thenardite Na2SO4), fluorapatite Ca5(PO4)3F, sulfides (pyrrhotite Fe1-xS and djerfisherite K6(Fe,Ni,Cu)25S26Cl) and magnetite FeFe2O4.

The studied melt inclusions are considered to be relics of a near‐primary or primitive kimberlite melt that formed the Komsomolskaya-Magnitnaya pipe. The assemblage of the daughter minerals indicates that the melt had an alkali-carbonatitic composition and was enriched in Cl and S.

This work was supported by the Russian Foundation for Basic Research (grant No. 20-35-70058) and the Russian Science Foundation (grant No 18-77-10062).

How to cite: Kalugina, A., Sharygin, I., Solovev, K., Golovin, A., and Dymshits, A.: Composition of the kimberlite melt of the Komsomolskaya-Magnitnaya pipe (Upper Muna field, Siberian craton), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10980, https://doi.org/10.5194/egusphere-egu22-10980, 2022.

EGU22-11936 | Presentations | GD2.4

Garnets from xenolith in Mir kimberlite pipe: chemical composition and genesis 

Tatiana Kalashnikova, Sergey Kostrovitsky, Lidia Solovieva, Konstantin Sinitsyn, and Elvira Yudintseva

The problem of the lithospheric mantle structure under ancient cratons and their evolution attracts researchers in connection with the question of the diamond genesis. The petrological way is based on the mineral composition studying in xenoliths from the mantle depths. The Mirny kimberlite field belongs to the diamond-bearing kimberlite fields in the center of the Siberian craton. The authors studied a collection of mantle xenoliths from the Mir pipe (57 samples). The samples were classified as peridotites (Grt lherzolites) and pyroxenites (Grt websterites, Grt clinopyroxenites and eclogites).

Lherzolites from the Mir pipe are characterized by a high degree of alteration; olivine and orthopyroxene are replaced by serpentine in many samples (up to 50–70%). Websterite rocks are different by the presence of orthopyroxene and clinopyroxene, while clinopyroxene may contain lamellae of exsollution structures. Garnet websterites are distinguished by orange-reddish color of garnet, dark green color of pyroxene and dominanting medium-large-grained hypidiomorphic-granular textures; porphyroblastic and granoblastic textures (up to mosaic) are also observed. In garnet clinopyroxenites rutile is usually present in the form of thin (5–20 µm) needles in garnet and clinopyroxene. Eclogites are characterized by orangish or pinkish garnet color and granoblastic structure.

Garnets from lherzolites and websterites are also characterized by a relatively high Mg# content (75–83) and low TiO2 contents (up to 0.2 wt %). It belongs to the lherzolite paragenesis by content CaO (3.68 - 5.35 wt.%) and Cr2O3 (0.07-3.7 wt.%). Eclogites are characterized by high-calcium (3.78 - 9.46 wt.%) and high-iron (7.77 - 17.20 wt.%) composition of garnet getting into the ​​wehrlite paragenesis area. None of the garnet studied compositions belongs to the high-chromium dunite - harzburgite paragenesis. Also garnets from the lithospheric mantle under the Mirny kimberlite field are characterized by a low-Ti garnet composition (up to 0.7 wt.%). Thus, the lithospheric mantle under the Mirny kimberlite field differs from the lithospheric mantle under other diamondiferous fields (for example, Udachnaya kimberlite pipe). The Mirny mantle xenoliths are characterized by the pyroxenites widespread development (up to 50%), the low-Ti composition and deformed lherzolites absence. These features indicate the minimal silicate metasomatic alteration in the lithospheric mantle under the Mirny field (in contrast to the center of the Siberian craton). The isotopic oxygen composition in garnet and clinopyroxene was also determined. The δ18O value varies in Cpx from 5.7-5.8‰ in clinopyroxenites and 6.1-6.1‰ in eclogites. On the whole, minerals from pyroxenites demonstrate δ18O values exceeding mantle values, which suggests a wide development of melting processes in the lithospheric mantle in the south of the Siberian craton Craton and the formation of megacrystalline pyroxene cumulates. In some cases, metamorphic recrystallization leads to oxygen isotope equilibrium between garnet and clinopyroxene. For minerals from eclogites higher values ​​of δ18O are noted, which may indicate the origin of eclogites from subducted oceanic crust, the presence of a subduction component in the process of formation of the lithospheric mantle.

The research was supported by Russian Science Foundation grant №20-77-00074.

How to cite: Kalashnikova, T., Kostrovitsky, S., Solovieva, L., Sinitsyn, K., and Yudintseva, E.: Garnets from xenolith in Mir kimberlite pipe: chemical composition and genesis, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11936, https://doi.org/10.5194/egusphere-egu22-11936, 2022.

EGU22-13248 | Presentations | GD2.4

Source and evolution of metasomatizing liquids in orogenic peridotites: evidence from multiphase solid inclusions 

Jana Kotkova, Renata Čopjaková, and Radek Škoda

Orogenic garnet peridotites exhumed in ultrahigh-pressure-ultrahigh-temperature terranes represent windows into material transfer in deep subduction zones. Multiphase solid inclusions (MSI) trapped in garnet proved to be important tracers of metasomatism by crustal-derived fluids. Our study of the MSI from the Saxothuringian basement in the Bohemian Massif, European Variscan Belt, allowed identifying the source and evolution of the liquids metasomatized the mantle rocks. As the MSI could not be re-homogenized due to a high content of volatiles, their bulk composition was estimated considering the proportions, phase densities and chemical composition of the constituent minerals.

The MSI occur in an annulus at garnet rim of garnet lherzolite and harzburgite, and throughout garnet in garnet pyroxenite. The major phases of the MSI include amphibole, barian mica and carbonate (dolomite, magnesite). Minor phases are clinopyroxene, orthopyroxene, garnet II, spinel, apatite, monazite, thorianite, graphite, pentlandite, scheelite and sulphides. The proportion of hornblende systematically decreases from pyroxenite and close harzburgite and lherzolite to more distal mantle rocks, where clinopyroxene and garnet II occur instead. By contrast, the amount of barium-bearing phases (barian mica, Ba-Mg carbonate norsethite, barian feldspar) and carbonates increases in the same direction.

Major element composition of garnet pyroxenite, including enrichment in alkalies and barium, approaches carbonate-silicate melts similar to kimberlites.  Trace element signatures indicate that it is a rare example of low-degree supercritical liquid derived from a mixed crust-mantle source frozen in the mantle. The MSI hosted by garnet in pyroxenite represent a residual solute-rich liquid after high-pressure fractional crystallization of the parental melt, enriched in alkalies (Na, K), highly incompatible elements (LILE – Ba, Sr; Th, U), LREE, Ti, W and volatiles (CO2, Cl, F, P). The MSI in peridotites allow tracing the changes of this metasomatizing liquid during its reactive infiltration into peridotite through silicate crystallization as well as interaction with mantle minerals distinct in lherzolite and harzburgite (garnet±clinopyroxene). The liquid evolved from more silicic, solute-rich to more diluted carbonate-rich, with gradual enrichment in LILE (K, Ba) and volatiles (CO2, Cl) and LREE fractionation, similar to evolution of kimberlitic to carbonatitic melts through differentiation by fractional crystallization.  

Here we demonstrate that the MSI trapped in garnet can be used as a unique tool for tracing chemical evolution of the liquids metasomatizing the mantle wedge. Importantly, these results are valid even in the case of the interaction of the trapped material (MSI) with the host garnet, as this potential contamination mainly concerns Al, Si and Cr while majority of the other elements used for petrogenetic implications remained unaffected

How to cite: Kotkova, J., Čopjaková, R., and Škoda, R.: Source and evolution of metasomatizing liquids in orogenic peridotites: evidence from multiphase solid inclusions, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13248, https://doi.org/10.5194/egusphere-egu22-13248, 2022.

EGU22-345 | Presentations | GD2.5 | Highlight

Constraining global dynamic topography using a revised observational database 

Megan Holdt, Nicky White, and Simon Stephenson

Earth’s topography is supported by both crustal and sub-crustal density variations. Dynamic topography results from the vertical displacement of the Earth’s surface due to processes operating within the mantle. Thus, isolating and quantifying observable dynamic topography can yield valuable information about mantle dynamics. An observationally-based approach can be used to investigate dynamic topography by calculating residual depth anomalies in the oceanic realm and residual topographic anomalies on the continents. To constrain the residual topographic contribution that arises from sub-crustal processes it is necessary to correct for crustal and sedimentary loading. We identify and correct for both forms of loading by exploiting a variety of seismologic datasets that include seismic reflection profiles, wide-angle/refraction surveys and receiver functions. We present a revised global compilation of oceanic residual depth measurements (n = 10,846) and continental residual topographic measurements (n = 3,897). This compilation represents a significant improvement in terms of the quantity and spatial distribution of measurements. In the oceanic realm, the correction methodology has been revised in two ways, which has improved resolution and accuracy. First, the crustal correction now accounts for variations in bulk density as a function of crustal thickness. Secondly, the quartz and clay content of the sedimentary column has been adjusted, which improves the quality of the sedimentary correction. The revised global compilation is used to generate a spherical harmonic representation of observable dynamic topography out to degree 40 (i.e. ~ 1000 km). The resultant power spectrum demonstrates that dynamic topography varies linearly with inverse wavenumber. Our global results are consistent with independent geologic markers of uplift and subsidence.

How to cite: Holdt, M., White, N., and Stephenson, S.: Constraining global dynamic topography using a revised observational database, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-345, https://doi.org/10.5194/egusphere-egu22-345, 2022.

EGU22-524 | Presentations | GD2.5

Destruction and Regrowth of Lithospheric Mantle by Emplacement of Large Igneous Provinces 

Simon Stephenson and Patrick Ball

The growth of the lithospheric mantle following tectonic thinning of the plate is well understood and is a primary consequence of the conductive cooling that is a key driver of mantle convection. However, it is less well understood how the lithosphere interacts with and responds to sub-plate temperature anomalies within the the underlying convecting mantle. Here, we investigate the evolution of the lithospheric mantle during and after intraplate magmatism. First, we examine the thickness of lithosphere beneath oceanic intraplate magmatic provinces that are < 10 Ma in age. Modelling of major oxide and rare earth element concentrations, alongside seismic tomography, indicate that these provinces lie upon lithosphere that is significantly thinner than expected given the age of underlying lithosphere. For example, Hawaii overlies lithosphere that is 50–80 km thick, despite the age of the plate suggesting a thickness of > 100 km. Next, we explore the lithospheric thickness beneath ancient intraplate magmatic provinces that have a record extending back to Jurassic times. Geochemical modelling demonstrates that, like recent magmatism, these provinces were also erupted atop thinner than expected lithosphere. Seismic tomography provides a further constraint on the thickness of the lithosphere by constraining the thermal structure of the upper mantle. By exploiting these tomographic images we show that the lithospheric mantle beneath ancient seamounts gets progressively thicker as a function of their eruption age. Importantly however, the lithosphere is consistently thinner by up to 40 km than would be expected if the plate cooled and thickened from a mid ocean ridge without perturbation. Finally, we extend our analysis to ancient continental large igneous provinces (LIPs). LIPs are massive accumulations (>100,000 km3) of magmatic material that are emplaced within a short period of geological time (1-2 Ma). We show that the lithospheric thickness beneath ancient continental LIPs increases as a function of time since eruption, following a similar relationship to oceanic LIPs. Our results suggest that the emplacement of LIPs causes ubiquitous thinning of the lithospheric mantle to thicknesses of 40–80 km, followed by systematic, progressive re-thickening via conductive cooling. Furthermore, they suggest that continental lithospheric mantle re-thickens to depths of > 200 km, supporting the idea that cratons can be destroyed by LIP emplacement and reformed following the end of eruption. Thinning and re-thickening of the lithospheric mantle during and after intraplate magmatism demonstrates that the lithosphere-asthenosphere boundary is routinely perturbed by sub-plate mantle convection. An understanding of LIP formation and its effect on the lithospheric mantle is necessary to reveal causal links with mass extinctions, continental break-up, and regional epeirogenic events.

How to cite: Stephenson, S. and Ball, P.: Destruction and Regrowth of Lithospheric Mantle by Emplacement of Large Igneous Provinces, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-524, https://doi.org/10.5194/egusphere-egu22-524, 2022.

EGU22-815 | Presentations | GD2.5

Global 3D model of mantle attenuation using normal modes 

Sujania Talavera-Soza, Laura Cobden, Ulrich H. Faul, and Arwen Deuss

Seismic tomographic models based only on wave velocities have limited ability to differentiate between a compositional or temperature origin for the Earth's 3D structure variations. Complementing wave velocities with attenuation (conversion of energy to heat) can help make that distinction, which is fundamental to understand mantle convection evolution. For example, a thermal origin for the lower mantle large low shear velocity provinces (LLSVPs) will point to them being short-lived anomalies, whereas a compositional origin will point to them being long-lived, forming stable 'anchors' and influencing the pattern of mantle convection. So far, only global 3D attenuation models built using seismic body waves and surface waves have been available for the upper mantle. Here, we use whole Earth oscillations or normal modes to measure 3D variations in mantle attenuation, which allow us to include focussing and scattering without the need for approximations. We achieve this by jointly measuring 3D variations in velocity and attenuation using splitting functions, which are depth-averaged models of how a mode 'sees' the Earth. 

Splitting functions are linearly dependent on heterogeneous structure and can be easily incorporated in tomographic models. We measured 14 anelastic splitting functions and used those to build a 3D global model of attenuation for the whole mantle. For comparison purposes, we have also constructed a 3D shear-velocity model using the same number of modes and model parametrization. In the upper mantle, we find high attenuation in the low velocity spreading ridges, which suggests a thermal origin and agrees with previous surface wave studies. In the lower mantle, we find the highest attenuation in the 'ring around the Pacific' high velocity region, which is thought to be the 'graveyard' of subducted slabs, and not in the LLSVPs beneath Africa and the Pacific. We compare our 3D attenuation model to the wave-speeds and attenuation predictions of a laboratory-based viscoelastic model. Our comparison indicates that the higher attenuation seen in the slab regions can be explained by a small grain-size in combination with cold temperatures, while the lower attenuation in the LLSVPs can be explained by a large grain-size in combination with high temperatures. Grain-size is related to viscosity in diffusion creep, which would mean that the LLSVPs have larger viscosity making them long-lived stable features, while the graveyard of slabs would have a lower viscosity making them shorter lived. 

How to cite: Talavera-Soza, S., Cobden, L., Faul, U. H., and Deuss, A.: Global 3D model of mantle attenuation using normal modes, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-815, https://doi.org/10.5194/egusphere-egu22-815, 2022.

EGU22-963 | Presentations | GD2.5

Continental Rifting Advances Using 3D Computational Modeling of Lithospheric Deformation, Asthenospheric Flow, and Deep Melt Generation with ASPECT 

D. Sarah Stamps, Emmanuel Njinju, Asenath Kwagalakwe, John Naliboff, and Tahiry Rajaonarison

Continental rifting processes are influenced by viscous coupling of the deforming lithosphere to asthenospheric flow, as well as magma that migrates upward from the upper asthenosphere. Over the past few decades, significant advances have been made in finite element numerical methods that enable modeling of lithospheric deformation, viscous coupling to asthenospheric flow, and melt generation in the upper asthenosphere. In this work, we present new developments based in the NSF Computational Infrastructure for Geodynamics finite element code ASPECT (Advanced Solver for Problems in Earth’s Convection) that allow users to investigate lithospheric deformation, asthenospheric flow, and melt generation in the upper asthenosphere. Users have the options to constrain their initial temperature and density conditions with laterally varying lithospheric thickness, layers of crustal thickness, and shear wave seismic velocity models in the sublithospheric mantle. We present case studies from regions along the East African Rift System that demonstrate these capabilities. 

How to cite: Stamps, D. S., Njinju, E., Kwagalakwe, A., Naliboff, J., and Rajaonarison, T.: Continental Rifting Advances Using 3D Computational Modeling of Lithospheric Deformation, Asthenospheric Flow, and Deep Melt Generation with ASPECT, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-963, https://doi.org/10.5194/egusphere-egu22-963, 2022.

EGU22-1226 | Presentations | GD2.5

Asthenospheric flow estimates in the Atlantic realm based on Poiseuille/Couetteflow models 

Zhirui Wang, Hans-Peter Bunge, Ingo Stotz, Berta Vilacis Baurier, Jorge Nicolas Hayek Valencia, and Anke Friedrich

Mantle convection has profound effects on the Earth’s surface, such as inducing vertical motion, which is commonly termed dynamic topography. Sophisticated mantle convection models have been used to study current and past dynamic topography. But many input parameters, like complex rheologies and thermo-chemical flow properties remain poorly known, requiring ad-hoc model parameterization and long range extrapolation. This makes it attractive to explore simple analytic models of upper mantle flow. The existence of a weak asthenosphere allows one to explore upper mantle in the context of Poiseuille/Couette flow. The latter provides an geodynamically plausible link between flow properties and dynamic topography. Here we construct simple upper mantle flow models parameterized in terms of sources/sinks (plumes/slab) of Poiseuille/Couette flow. Our approach provides physical insight into the pattern of upper mantle flow, makes it easy to assess uncertainties of key model parameters, such as poorly resolved asthenospheric thickness and viscosity, and can be extended back in time, given first-order estimates of plume and subduction flux deduced from geological records. Importantly, it demands low computational cost relative to a time dependent geodynamic models. We present results for the Atlantic realm, and link our estimates of upper mantle flow history to Base Hiatus Surfaces (BHS) recently developed by Friedrich etal., (2018), Vibe etal., (2018), Carena etal., (2019),  Hayek metal., (2020) and Hayek metal., (2021). The latter serve as proxy for inferring past dynamic topography variations. We also relate our calculations to seismically inferred anisotropy, as a further proxy for upper mantle flow. Our results indicate that asthenospheric flow pattern can be explained through the concept of source to sink and that this flow type is testable against first order seismic and geologic observables.

 

References: 

Carena, S., Bunge, H. P., & Friedrich, A. M. (2019). Analysis of geological hiatus surfaces across Africa in the Cenozoic and implications for the timescales of convectively-maintained topography. Canadian Journal of Earth Sciences, 56(12), 1333-1346.

Friedrich, A. M., Bunge, H. P., Rieger, S. M., Colli, L., Ghelichkhan, S., & Nerlich, R. (2018). Stratigraphic framework for the plume mode of mantle convection and the analysis of interregional unconformities on geological maps. Gondwana Research, 53, 159-188.

Hayek, J. N., Vilacís, B., Bunge, H. P., Friedrich, A. M., Carena, S., & Vibe, Y. (2020). Continent-scale Hiatus Maps for the Atlantic Realm and Australia since the Upper Jurassic and links to mantle flow induced dynamic topography. Proceedings of the Royal Society A, 476(2242), 20200390.

Hayek, J. N., Vilacís, B., Bunge, H. P., Friedrich, A. M., Carena, S., & Vibe, Y. (2021). Correction: Continent-scale Hiatus Maps for the Atlantic Realm and Australia since the Upper Jurassic and links to mantle flow-induced dynamic topography. Proceedings of the Royal Society A, 477(2251), 20210437.

Vibe, Y., Friedrich, A. M., Bunge, H. P., & Clark, S. R. (2018). Correlations of oceanic spreading rates and hiatus surface area in the North Atlantic realm. Lithosphere, 10(5), 677-684.

How to cite: Wang, Z., Bunge, H.-P., Stotz, I., Vilacis Baurier, B., Hayek Valencia, J. N., and Friedrich, A.: Asthenospheric flow estimates in the Atlantic realm based on Poiseuille/Couetteflow models, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1226, https://doi.org/10.5194/egusphere-egu22-1226, 2022.

EGU22-3343 | Presentations | GD2.5

Complex strain accommodation mechanisms during rift linkage: an example from the central Afar, East Africa 

Ameha Muluneh, Sascha Brune, Tesfaye Kidane, Carolina Pagli, Derek Keir, and Giacomo Corti

The Afar rift, at the northern part of the East African Rift System (EARS), is a classic natural laboratory to study the formation of sea-floor spreading centers. Several geo-physical monitoring studies have been conducted mainly following the 2005 Dabbahu-Manda Harraro (DMH) and the 1978 Asal segments volcano-seismic crises. The two segments are located at the tips of the Red Sea and the Gulf of Aden rifts, respectively, hence how the two segments propagate towards each other is crucial to our understanding on deformation during rift linkage. To this end, we use GPS data from central Afar to model the strain and rotation rates in the region. Our results show that both the DMH and Asal segments are characterized by high shear strain and rotation rates, in agreement with independent geophysical and geological observations. No significant strain concentration occurs between the two rift propagators. By combining our results with previous geophysical observations, we suggest that linkage between the DMH and Asal segments occurs via ∼E-W oriented strike-slip fault at the tip of DMH and a broad region of NW-SE oriented normal fault bounded en echelon grabens, which are almost parallel to the Asal segment. Our preliminary results show that the style of deformation in the central Afar region is more complex and distributed than at ocean ridges where rift segments connect with localized transform faults. However, our results may inform on how transform faults initiate. 

How to cite: Muluneh, A., Brune, S., Kidane, T., Pagli, C., Keir, D., and Corti, G.: Complex strain accommodation mechanisms during rift linkage: an example from the central Afar, East Africa, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3343, https://doi.org/10.5194/egusphere-egu22-3343, 2022.

EGU22-4069 | Presentations | GD2.5 | Highlight

Global geologic and geomorphic observations of mantle convection 

Gareth G. Roberts and Victoria Fernandes

This presentation examines how the growing inventory of geologic, geophysical and geomorphic observations constrains amplitudes, wavelengths and histories of mantle convection. Ocean age-depth residuals have become a cornerstone in understanding loci, amplitudes and wavelengths of modern sub-plate support of Earth’s oceanic lithosphere. Improvements in mapping lithospheric structure, especially from seismology, means that quantifying modern sub-plate support of continents is increasingly tractable. The continents offer a great opportunity to constrain temporal and spatial evolution of sup-plate support because of the plethora of available geologic and geomorphic observations. A challenge is to disentangle, often dominant, lithospheric processes that generate uplift or subsidence (e.g. shortening, extension) to extract information about histories of sub-plate processes from geologic and geomorphic observations. This presentation focusses on how data and theory can be combined to quantify [1] modern and recent sub-plate support of the continents, [2] evolution of sub-plate support through time, and [3] test geodynamic models that predict dynamic topography.

 

Highlights from recent work include the use of collocated long wavelength gravity and shear wave velocity anomalies, mafic magmatism and drainage patterns to identify tracts of uplifted continental topography that are maintained by sub-plate support. These observations indicate that chemical and sedimentary fluxes through drainage networks are likely governed by sub-plate support in many places. Observational and theoretical constraints on uplift and subsidence histories of continents and their margins are presented. These include global paleobiological observations of uplifted marine rock, backstripped stratigraphy (e.g. New Jersey margin, Mauritanian basin), inversion of drainage patterns (e.g. North America, Africa) and landscape evolution modelling. This work indicates that re-assessment of the longevity and evolution of Earth’s surface topography, basin formation and histories of glacio-eustasy is required. Reasons for why large-scale vertical lithospheric motions, often associated with dynamic support, are likely to be recorded in modern and ancient continental landscapes are explored using spectral analysis of drainage patterns and physics-based modelling of erosional thresholds. Examples of how seismology, anelastic parameterisations, thermobarometry, geodesy, stratigraphy and geomorphic observations can be reconciled to constrain Cenozoic to Recent histories of upper mantle support are presented. Finally, examples of using geologic observations to test predictions from geodynamic models are given. Opportunities and challenges associated with assessing contributions of sub-plate support to evolution of Earth’s surface, particularly those associated with crust and lithospheric mantle densities, are discussed. Available observations show that Cenozoic mantle convection has been a significant, in places dominant, driver of continental evolution. It has generated and maintains epicontinental seaways, sedimentary basins, continental plateaux, and has determined routing of water and sediment across continents and biodiversity. It is an important driver of Earth surface evolution and is extremely likely to have left its trace throughout the geologic and geomorphic record.

How to cite: Roberts, G. G. and Fernandes, V.: Global geologic and geomorphic observations of mantle convection, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4069, https://doi.org/10.5194/egusphere-egu22-4069, 2022.

EGU22-4206 | Presentations | GD2.5

Mid-Cenozoic absolute plate motion changes in the South Atlantic from relative plate motion analyses. 

Valentina Espinoza and Giampiero Iaffaldano

Absolute plate motion (APM) estimates are key to understand the driving forces of plates, particularly the role of the sublithospheric mantle flow, which has recently gained renewed recognition as a dominant driver. Tectonic plates that lack a subducting boundary (e.g., South America and Nubia) are prime examples of dynamics governed by mantle flow. Both the aforementioned plates, however, lack the hotspot space/age coverage required for high-resolution, well-constrained APM estimates. Here we resort to highly-resolved data sets of relative plate motions (RPM) across a number of spreading ridges in order to extract information on APM changes through geological time. Our analyses involve first mitigating the impact of noise in RPM data sets via Bayesian inference. This allows us to identify time periods that feature a relatively high probability of staging RPM changes. By extending these analyses to several neighboring plates, we can assess whether any of them is likely to feature an APM change through geological time. We apply such a method to RPM data sets in the Atlantic realm and identify three time-intervals for changes in the APMs of the Nubia and South America plates. Our analyses are complemented by a quantitative assessment of the forces required to generate such APM changes.

How to cite: Espinoza, V. and Iaffaldano, G.: Mid-Cenozoic absolute plate motion changes in the South Atlantic from relative plate motion analyses., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4206, https://doi.org/10.5194/egusphere-egu22-4206, 2022.

EGU22-5307 | Presentations | GD2.5

The interplay between recycled and primordial heterogeneities: constraints on Earth mantle dynamics via numerical modeling 

Matteo Desiderio, Anna J. P. Gülcher, and Maxim D. Ballmer

A quantitative understanding of Earth's deep compositional structure remains elusive. Geophysical and geochemical observations illuminate heterogeneous features on various scales in the lower mantle: however, the origin and interaction of such heterogeneities are not yet fully explained in the context of global mantle dynamics. Conversely, numerical geodynamic models predict a wide range of viable scenarios of mantle convection and heterogeneity preservation. In the "marble cake" end-member mantle model, slabs of Recycled Oceanic Crust (ROC) are subducted and deformed but never fully homogenized in the convecting mantle. In the "plum pudding" model, MgSiO3-rich primordial material may resist convective entrainment due to its intrinsic strength. Only few geodynamic studies have explored the effects of subducted ROC properties on mantle dynamics while also accounting for the influence of primordial heterogeneity. Furthermore, predictions from numerical models need to be tested against geophysical data. However, current imaging techniques poorly resolve the lower mantle and may be unable to distinguish between both end-member models above.

Here, we use the finite-volume code StagYY to model mantle convection in a 2D spherical-annulus geometry. We investigate the style of heterogeneity preservation as a function of two parameters: the intrinsic density and the intrinsic strength (viscosity) of basalt at lower-mantle conditions.  Additionally, we employ the thermodynamic code Perple_X and the spectral-element code AxiSEM to compute, respectively, seismic velocities and synthetic seismograms from the predictions of our models.

We obtain two main regimes of mantle convection: low-density basalt leads to a well-mixed, "marble cake"-like mantle, while dense basalt aids the preservation of primordial blobs at mid-mantle depths as in a "plum pudding". Intrinsically viscous basalt also promotes the preservation of primordial material. These trends are well explained by smaller convective vigour of the mantle as intrinsically dense (and viscous) piles of basalt shield the core. In order to test these model predictions, we convert model temperatures and compositions to thermoelastic properties for two characteristic models of each regime. These are then used to compute synthetic seismic velocity models, through which we simulate wave propagation using AxiSEM. Finally, we  discriminate between these two end-members by comparing statistical properties of the corresponding ensembles of synthetic seismograms. Our results highlight how the interaction of mantle materials drives the long-term thermochemical evolution of terrestrial planets. Furthermore, they provide a framework for relating the style of heterogeneity preservation in the Earth's lower mantle with specific features of the seismic waveforms.

How to cite: Desiderio, M., Gülcher, A. J. P., and Ballmer, M. D.: The interplay between recycled and primordial heterogeneities: constraints on Earth mantle dynamics via numerical modeling, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5307, https://doi.org/10.5194/egusphere-egu22-5307, 2022.

EGU22-6182 | Presentations | GD2.5 | Highlight

A tree of Indo-African mantle plumes imaged by seismic tomography 

Maria Tsekhmistrenko, Karin Sigloch, Kasra Hosseini, and Guilhem Barruol

Mantle plumes are commonly envisioned as thin, buoyant conduits rising vertically from the core-mantle boundary (CMB) to the earth's surface, where they produce volcanic hot spots. Most hotspots are located in the sparsely instrumented oceans, creating poor prospects for the seismic resolution of thin conduits in the deep mantle. 

The RHUM-RUM experiment remedied this issue around the hotspot island of La Réunion by instrumenting 2000x2000 km2 of seafloor for 13 months with 57 broadband ocean-bottom seismometers (OBS). We present a 3-D P-wave tomography model computed from the RHUM-RUM waveform data, supplemented by a global data set of P-diffracted measurements and a selection of ISC picks. Multifrequency travel times were measured on the waveforms and inverted in a finite-frequency framework. We achieve high image resolution beneath the Indian Ocean hemisphere, and especially beneath La Réunion, from upper mantle to CMB.

We observe the Large Low-Velocity Province (LLVP) rising 800 km above the CMB, forming a cusp beneath South Africa. A low-velocity branch undulates obliquely from this cusp region towards the uppermost mantle beneath La Réunion. Hence La Réunion's connection to the lower mantle is more complex than previously envisioned, being neither a thin vertical conduit nor projecting down to an edge of the LLVP. The deep-mantle connections of the Afar and Kerguelen hotspots emerge from the same LLVP cusp beneath South Africa and extend towards the surface through tilted low-velocity branches. 

Our results provide the first high-resolution image of a western Indian Ocean plume cluster from the surface to the CMB. This represents a key advance for linking geophysical, geodynamic and geochemical observations.

How to cite: Tsekhmistrenko, M., Sigloch, K., Hosseini, K., and Barruol, G.: A tree of Indo-African mantle plumes imaged by seismic tomography, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6182, https://doi.org/10.5194/egusphere-egu22-6182, 2022.

EGU22-7608 | Presentations | GD2.5

Narrow, fast, and "cold" mantle plumes on Earth explained by strain-weakening rheology in the lower mantle 

Anna Gülcher, Gregor Golabek, Marcel Thielmann, Maxim Ballmer, and Paul Tackley

The rheological properties of­­­ Earth’s lower mantle materials are key for mantle dynamics and  planetary evolution. The main rock-forming minerals in the lower mantle are bridgmanite (Br) and smaller amounts of ferropericlase (Fp). Bridgmanite minerals are intrinsically much stronger than ferropericlase minerals, resulting in significant variations in lower-mantle rheological behavior depending on the quantity and degree of interconnectivity of the weak phase. The resulting effective bulk rock viscosity decreases with accumulating strain when the weaker Fp minerals become elongated and eventually interconnected. This implies that strain localization may occur in Earth’s lower mantle, which would in turn influence the pattern of mantle flow and could potentially aid the preservation of compositionally distinct, “hidden” reservoirs. So far, there have been no studies on global-scale mantle convection in the presence of such strain-weakening (SW) rheology.

Here, we present 2D numerical models of thermo-chemical convection in spherical annulus geometry including a new strain-weakening (SW) rheology formulation for lower-mantle materials. This macro-scale SW rheology is based on micro-scale rheological behavior found in prior studies, and combining rheological weakening and healing terms. We determine the effects of SW rheology on the planform of mantle flow, the mixing of chemical reservoirs, and the dynamics of mantle plumes.

We find that, in particular, plume conduits are weakened and act as lubrication channels which allow for the rapid ascent of mantle material. Their thermal anomalies and geometries are significantly different than those of mantle plumes which are not rheologically weakened. Moreover, larger thermochemical piles at the base of the mantle are stabilized by SW rheology, with implications for preservation of chemically-distinct materials over long timescales. Finally, we put our results into context with observations and existing hypotheses on the style of Earth's mantle convection and mixing. Most importantly, we suggest that the new kind of plume dynamics may explain the discrepancy between expected and observed thermal anomalies of deep-seated mantle plumes on Earth.

How to cite: Gülcher, A., Golabek, G., Thielmann, M., Ballmer, M., and Tackley, P.: Narrow, fast, and "cold" mantle plumes on Earth explained by strain-weakening rheology in the lower mantle, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7608, https://doi.org/10.5194/egusphere-egu22-7608, 2022.

EGU22-8883 | Presentations | GD2.5

Normal Mode Constraints on Anelastic Structures in the Earth's Lower Mantle 

Lisanne Jagt, Sujania Talavera-Soza, and Arwen Deuss
Free oscillations, or normal modes, of the Earth provide important constraints on large-scale structures in the mantle, both elastic and anelastic. In addition to shear-wave (Vs), compressional-wave velocity (Vp) and density (ρ), normal modes are sensitive to perturbations in attenuation, or loss of energy. Attenuation is key in imaging partial melt, water, grain size differences and temperature. Surface waves have imaged the upper mantle attenuation, but lower mantle attenuation is still unknown. Normal mode observations of attenuation in the lower mantle provide constraints on the origin and nature of the two lower mantle Large Low Shear wave Velocity Provinces (LLSVPs). Scattering and focussing, which are hard to separate from intrinsic attenuation in the case of body waves, are included by cross-coupling between normal modes. 
 
Here, we will use normal mode spectra to make tomographic models of 3D variations in shear-wave velocity and shear attenuation qμ = 1/Qμ. Normal mode spectra can be inverted in two ways, using either 1) a direct spectrum one-step inversion or 2) a two-step inversion with splitting function measurements as intermediate step. We will image attenuation using the first method. In synthetic tests, we are able to recover Vs and Qμ structure very well. In our real data inversions, we find anti-correlation in the upper mante, i.e. strong attenuation in low-velocity zones, agreeing with the idea of ridges being hotter and containing melt. In the lower mantle, we find weak attenuation in the center of LLSVPs, and stronger attenuation in the ring around them, which is in agreement with results for the two-step splitting function inversion. 

How to cite: Jagt, L., Talavera-Soza, S., and Deuss, A.: Normal Mode Constraints on Anelastic Structures in the Earth's Lower Mantle, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8883, https://doi.org/10.5194/egusphere-egu22-8883, 2022.

EGU22-8964 | Presentations | GD2.5

Mantle Flow Trajectories in the Presence of Poorly Constrained Initial Conditions: Analysis of an Ensemble of Models 

Ayodeji Taiwo, Hans-Peter Bunge, and Bernhard Schuberth

A crucial goal in geodynamics is the development of time-dependent earth models so that poorly known mantle convection parameters can be tested against observables gleaned from the geologic record. To this end one must construct model trajectories to link estimates of the current heterogeneity state to future or past flow structures via forward or inverse mantle convection models. Unfortunately, the current heterogeneity state which is derived from seismic imaging methods is subject to substantial uncertainty due to the finite resolution of seismic tomography. These uncertainties are likely to considerably affect the computed flow trajectory, in what is known as the butterfly effect. Here we study mantle convection models to assess the effects of varying initial conditions on the evolution of mantle flow. We perform twin experiments (Lorenz 1965), that is, we compute convection calculations with identical flow parameters but different initial temperature fields. A base temperature field is generated by allowing a mantle convection calculation to evolve until a statistical steady state is reached. This temperature field is then used to initialize our reference case. We proceed to modify this reference temperature field in a number of different forms to reflect tomographic choices of damping and smoothing. In all cases we track the divergence of the perturbed models from the reference model. Furthermore, we test the efficiency of surface velocity assimilation, following from the work of Colli et al (2015), in locking two convecting systems and driving their divergence to a minimum.

 

We also introduce a framework for the comparison of model output with geological observables. To this end, we perform a comparison between the dynamic topography maps of our reference and perturbed models. We calculate simple traditional metrics such as RMSE, correlation, difference fields and Taylor diagrams. Such traditional grid-point based error measures, however, suffer from the “double-penalty” problem and as such we introduce scale-decomposition methods that allow a computation of correlation, RMSE and ratios of variances for every spatial scale (see Surcel et al (2015), Casati et al (2005) for examples). Furthermore, we introduce object-based verification measures that identify and match uplift and subsidence objects in the dynamic topography maps for both reference and perturbed models similar to what a human observer would identify. Borrowing from the wealth of work in meteorology, we calculate SAL scores (Wernli et al 2008) and a Critical Success Index (Schaefer 1990). Finally, for successfully matched objects, a Procrustes shape analyis (Michaes et al 2007) is performed to compare the similarities in area, shape, orientation and intensity, after which a final score is calculated based on these properties. We believe that the measures introduced here represent the next step in geodynamics as mantle convection models become increasingly complex and more focus is placed on matching model observations with the geological record.

How to cite: Taiwo, A., Bunge, H.-P., and Schuberth, B.: Mantle Flow Trajectories in the Presence of Poorly Constrained Initial Conditions: Analysis of an Ensemble of Models, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8964, https://doi.org/10.5194/egusphere-egu22-8964, 2022.

EGU22-9794 | Presentations | GD2.5 | Highlight

Tracing upper mantle flow patterns through continent-scale hiatus surfaces in the Indo-Atlantic Realms since the Upper Jurassic 

Berta Vilacís, Jorge N. Hayek, Hans-Peter Bunge, Anke M. Friedrich, and Sara Carena

Mantle convection is a fundamental driving force of plate tectonics. It is commonly perceived that mantle convection is difficult to constrain directly. However, the convection process affects the Earth surface imprints the geological record. In particular, the positive surface deflections driven by mantle convection create erosional/non-depositional environments, which induce gaps in the stratigraphic record (i.e., an absence or thinning of a sedimentary layer). Modern digital geological maps allow us to map the largest of such un/-conformable surfaces at continental scale systematically.
We report our continent-scale hiatus mapping in geological series across America, Europe, Africa, and Australia, from the Upper Jurassic onward. We find significant differences in the spatial extent of hiatus patterns across and between continents, which is on the order of 2000 – 3000 km in diameter. These surfaces change at geological series, ten to a few tens of millions of years (Myrs). This duration is significantly shorter than the timescale of mantle convection of about 100 – 200 Myrs, implying that different timescales for convection and topography in convective support must be an integral component of time-dependent geodynamic Earth models. Our results call for intensified collaboration between geodynamicists and geologists to test geodynamic Earth models by assembling relevant geological observations at continental scales.

How to cite: Vilacís, B., Hayek, J. N., Bunge, H.-P., Friedrich, A. M., and Carena, S.: Tracing upper mantle flow patterns through continent-scale hiatus surfaces in the Indo-Atlantic Realms since the Upper Jurassic, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9794, https://doi.org/10.5194/egusphere-egu22-9794, 2022.

EGU22-9966 | Presentations | GD2.5

Proxies for the presence of post-perovskite in the lowermost mantle based on seismic tomography and geodynamic modelling 

Paula Koelemeijer, Ana Pagu, Bernhard Schuberth, and Rhodri Davies

The post-perovskite (pPv) phase is often invoked as an explanation for seismic observations of discontinuities, anisotropy and anti-correlation between velocities in the lower mantle. Accurate interpretations of these features in terms of pPv are important, as the phase transition provides a much-needed temperature probe in the lowermost mantle. Robust observations of this phase transition have the potential to constrain the temperature of and heat flow across the core-mantle boundary and thus provide estimates of the heat budget and thermal evolution of the Earth.

Traditionally, the presence of post-perovskite (pPv) has been inferred from observations of seismic discontinuities in the lowermost mantle. However, these only give a very patchy image of lateral variations in the presence of pPv due to the heterogeneous coverage of seismic data. In addition, interpretations are complicated by the fact that the properties and stability field of pPv remain uncertain from a mineral physics point of view.

Here, we describe different proxies for the presence of post-perovskite, proposed based on global seismic tomography. To investigate their accuracy, we utilize synthetic tomography models derived from geodynamic modelling in combination with mineral physics and we compare the predicted presence to the true occurrence of pPv in the model. By using both high-resolution geodynamic models as well as filtered models that have been corrected for the limited resolution of seismic tomography, we can investigate whether a proxy works in theory (on the high-resolution versions) and also in practice (on the filtered models). We will discuss how we may be able to constrain the stability field of pPv based on comparisons with published tomographic models and make recommendations as to what has to improve in seismic tomography to make different proxies work.

How to cite: Koelemeijer, P., Pagu, A., Schuberth, B., and Davies, R.: Proxies for the presence of post-perovskite in the lowermost mantle based on seismic tomography and geodynamic modelling, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9966, https://doi.org/10.5194/egusphere-egu22-9966, 2022.

EGU22-11433 | Presentations | GD2.5

Geodynamic predictions of seismic structure and discontinuity topography of the mantle transition zone 

Isabel Papanagnou, Bernhard S.A. Schuberth, and Christine Thomas

The mantle transition zone (TZ) is expected to influence convective flow, but neither its structural characteristics nor dynamic effects have been conclusively constrained. Lateral temperature variations modulate the topography of associated seismic discontinuities at approximately 410 and 660 km depth (‘410’ and ‘660’). These discontinuities are related to mineral phase transitions and thus also sensitive to composition. Consequently, discontinuity topography can potentially provide insight on temperature and even phase composition at depth. It has been recognized that, in addition to phase transitions in olivine polymorphs, the transition of garnet to lower mantle minerals may impact particularly the ‘660’ at higher temperatures. However, the volume of material affected by this garnet transition and its dynamic implications have not yet been quantified.

We address this question by predicting synthetic seismic structure and discontinuity topography of the TZ based on the temperature field of a 3-D mantle circulation model (MCM) for a range of relevant bulk compositions and associated mineralogy models. The models differ in complexity in terms of the number of incorporated oxide-components and include pyrolite, depleted mantle and mechanical mixing (MM) models. We thus create a suite of relevant hypothetical realizations of TZ seismic structure and major discontinuities.

Our theoretical approach allows us to systematically investigate the effects of varying mineralogy, in combination with a dynamically constrained temperature field, on TZ structure. We explicitly relate major phase transitions as given by the mineralogical tables to specific topographic features of the ‘410’ and ‘660’ and quantify the relative impact of the different phases. Analyzing a number of statistical measures for our synthetic discontinuity topographies provides theoretical predictions on possible distribution and magnitude of real-world depth variations. Our study thus provides a framework for dynamically informed interpretations of seismically derived TZ structure in terms of mantle temperature and composition. It moreover gives insights on the potential dynamic behavior of the TZ by constraining the importance of garnet in our theoretical models.

We find that garnet only occurs in regions with excess temperatures above 150 - 300 K, depending on phase composition. This leads to ~ 3 % garnet at the ‘660’ in a pyrolite mantle and ~ 1 % in MM. Absolute base temperatures could however be higher (or lower) than predicted by the MCM’s geotherm. For different plausible background temperature fields the garnet proportion at the ‘660’ could vary between ~ 1 and 39 % in pyrolite, while remaining largely unaffected in MM. Since not all warmer than average but only the hottest mantle regions see the garnet transition, dynamic effects of the ‘660’ might be even more complex than previously assumed.

How to cite: Papanagnou, I., Schuberth, B. S. A., and Thomas, C.: Geodynamic predictions of seismic structure and discontinuity topography of the mantle transition zone, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11433, https://doi.org/10.5194/egusphere-egu22-11433, 2022.

EGU22-11623 | Presentations | GD2.5

Stratoids flood basalt volcanism at the Afar rift: new insights from trace elements geochemistry 

Gianmaria Tortelli, Anna Gioncada, Carolina Pagli, Eleonora Braschi, Ermias Gebru, and Derek Keir

In this work we investigate the genesis of widespread continental basaltic volcanism and the transition to localised magmatic segments at the Afar Rift-Rift-Rift triple junction. Basing on major and trace elements we investigated the thick (up to 1500m) and widespread (~55.000 km2) Lower (4.5-2.6 Ma) and Upper Stratoids (2.6-1.1 Ma) Series and the subsequent, less voluminous and focalised, Gulf Series (1.1-0.6 Ma). Our results, together with published geophysical and stratigraphical evidence, allow us to interpret the evolution of the Red Sea rift and the associated break-up process in Southern and Central Afar. The three Series are characterised by E-MORB magmatism and residual amphibole (K, Rb trough and Ba, Nb-Ta peak), with subordinately pyroxenite (Rb peak, Ba trough and MREE fractionation), in their mantle source, suggesting partial melting of the diffusely metasomatized sub-continental mantle. Marked differences in garnet-compatible trace elements reveal a deeper melting column for the Upper Stratoids (TbN/YbN > 1.7) with respect to the Lower Stratoids and the Gulf Series (TbN/YbN < 1.7), indicating distinct mantle sources for the three Series. Lower values of the incompatible element ratios Th/Nb, Th/Zr and LaN/SmN of the Gulf Series with respect to the Upper Stratoids indicate a higher degree of partial melting for the Gulf Series mantle source. The spatial variation in the volume and sources of Afar magmatism between 4.5-0.6 Ma correlates well with spatial changes in the locus of strain with two distinct episodes of rifting: (1) The late Miocene rifting episode (7-2.6 Ma), associated with thinned lithosphere and the Hadar Basin formation (3.8-2.9 Ma), erupted the Lower Stratoids in South Afar; (2) The Pleistocene rift (2.6-0.01 Ma), relocated in Central Afar, erupted the Upper Stratoids first (~2.6-1.1 Ma) and, subsequently, along with the stretching of the lithosphere and focalization of the rift, the Gulf Series (~1.1 Ma). Accordingly, our data supports the interpretation that the Afar strain localisation and associated magmatism migrated north-eastward from South to Central Afar through time, potentially in response to triple junction tectonics.

How to cite: Tortelli, G., Gioncada, A., Pagli, C., Braschi, E., Gebru, E., and Keir, D.: Stratoids flood basalt volcanism at the Afar rift: new insights from trace elements geochemistry, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11623, https://doi.org/10.5194/egusphere-egu22-11623, 2022.

EGU22-11686 | Presentations | GD2.5

The relevance of full 3D-wavefield simulations for the tomographic filtering of geodynamic models 

Roman Freissler, Bernhard S.A. Schuberth, and Christophe Zaroli

Tomographic-geodynamic model comparisons are a key component in studies of the present-day thermodynamic state of the mantle. A fundamental prerequisite for quantitatively meaningful comparisons is “tomographic filtering” of the geodynamic model. This means that geodynamically predicted mantle structures have to be modified to account for the spatially variable resolving power of tomographic images, i.e. to mimic the effects of uneven data coverage and regularization. Different approaches for tomographic filtering are available, but it is so far unclear which one will be the method of choice in the context of computationally demanding retrodictions of past mantle flow.

Here, we investigate the impact of the possible filtering approaches in a fully synthetic framework. For the first time in a mantle circulation model (MCM), we simulate 3D-wavefields and seismograms for an entire tomographic earthquake catalogue with over 4,200 events using SPECFEM3D_GLOBE. We use both classic filtering with the resolution operator R, as well as the recently introduced “generalized inverse projection” (GIP; Freissler et al. 2020) to generate tomographically filtered versions of the MCM.

In the GIP method, the generalized inverse operator of a given tomographic image is applied to synthetic seismic data predicted from the geodynamic model, as well as to potential data errors, to obtain the filtered MCM plus the propagated error. Important to note, the same generalized inverse operator is applied to an observed data set to build the tomographic model. A physically accurate prediction of synthetic data, here realized with the seismograms from numerical wave propagation, thus enables GIP filtering to consistently reproduce the tomographic imaging process. This is an important methodological advantage over classic filtering with R, where an unphysically reparametrized version of the MCM is filtered directly in model space and seismic data errors can not be considered.

In our study, GIP-filtered models are computed with cross-correlation S-wave traveltime residuals from the synthetic seismograms, as well as with banana-doughnut kernel and ray-theoretical traveltime predictions. The differently filtered models are compared against each other using statistical measures. By taking the GIP-filtered model that is based on the 3D-wavefield simulations as a reference, we can quantify the impact of reparametrization in classic filtering versus the lack of exact wave physics when using less accurate methods for traveltime predictions in the GIP filtering. Additionally, all filtered models can be compared to the underlying original structure of the MCM.

Detailed knowledge of tomographic filtering effects with different strategies is required prior to efforts on the associated uncertainty quantification in data-driven geodynamic retrodictions of mantle evolution.

How to cite: Freissler, R., Schuberth, B. S. A., and Zaroli, C.: The relevance of full 3D-wavefield simulations for the tomographic filtering of geodynamic models, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11686, https://doi.org/10.5194/egusphere-egu22-11686, 2022.

EGU22-12414 | Presentations | GD2.5

Earth's free-oscillation spectrum as a tool to assess mantle circulation models 

Bernhard Schuberth, Dominik Strutz, and Anna Schneider

Geodynamic inverse models that aim at retrodicting past mantle evolution require accurate estimates of its thermodynamic present-day state. Tomographic models are in principle well suited to provide this information. However, a fundamental problem that impacts the quality of the retrodiction arises from their inherently limited resolving power and the fact that the magnitudes of seismic heterogeneity are difficult to constrain owing to the necessity to regularize the inversions (e.g. by norm damping). To get a better understanding of the magnitudes of heterogeneity in the mantle, one option is to predict seismic velocity variations from the temperature field of forward mantle circulation models (MCMs) in combination with thermodynamic models of mantle mineralogy.  Temperature is not a free parameter in these models, but rather constrained by the underlying conservation equations and relevant input parameters. If the geodynamic models are run at earth-like Rayleigh number, temperature variations are expected to feature realistic magnitudes, which, together with the mineralogical mapping, should lead to realistic magnitudes of seismic heterogeneity. This has been investigated in previous studies by computing secondary predictions for the MCMs, such as seismic body wave traveltimes and geoid undulations. A complicating factor, however, is the trade-off between thermal and compositional variations that both may affect the seismic velocities. A further complexity arises from the fact that the elastic velocities of the mineralogical model need to be corrected for the effects of anelasticity, the parameters of which are poorly known.  Thus, a range of seismic velocity values may still be possible for a given temperature. 

Here, we explore the possibility to use Earth's normal mode spectrum to narrow the range of plausible magnitudes of seismic heterogeneity in the mantle. To this end, we compute free-oscillation spectra with full coupling of modes below 3.5 mHz in our geodynamic models.  In our analysis, we consider different measures to investigate whether the normal mode data may provide complementary information to earlier assessments of MCMs based on body waves. In addition to the direct misfit between spectra of real and synthetic data, the variance of a large number of stacked multiplets can be used to constrain the even degree covariance of lateral heterogeneity under certain assumptions. Using different realizations of seismic MCM structure that differ in terms of the anelastic temperature to velocity mapping, we will analyse the potential of normal mode data to put tighter constraints on the magnitudes of heterogeneity.

How to cite: Schuberth, B., Strutz, D., and Schneider, A.: Earth's free-oscillation spectrum as a tool to assess mantle circulation models, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12414, https://doi.org/10.5194/egusphere-egu22-12414, 2022.

EGU22-199 | Presentations | GMPV2.1

Evaluation of elastic geobarometry of spinel inclusions in olivine and its application to mantle xenoliths 

Yuuki Hagiwara, Ross Angel, Mattia Gilio, Junji Yamamoto, and Matteo Alvaro

The determination of the pressure and temperature (P-T) history experienced by mantle xenoliths, especially the pressure, is essential for elucidating the physicochemical layering structure of the uppermost mantle. However, the lack of continuous reactions between solid solution minerals with large volume changes in spinel-lherzolites makes it difficult to apply conventional geobarometry based on mineral chemistry. Here, elastic geobarometry (Angel et al., 2014; Angel et al., 2017), a complementary technique for determining equilibrium P-T conditions of rocks, was applied to spinel inclusions in olivine in a spinel-lherzolite xenolith.

To utilize elastic geobarometry, reliable equations of state (EoS) for the host mineral and inclusion are essential. Although the EoS for mantle olivine is well constrained by Angel et al. (2018), detailed studies on the EoS for spinel are scarce. Therefore, we firstly conducted a comprehensive review of previous studies investigating the temperature and/or pressure dependence of volume, bulk modulus, and heat capacity, and then determined the EoS for end member spinel using EoSfit7c (Milani et al., 2017).

Next, using Raman spectroscopy, we attempted to estimate the residual pressure of spinel inclusions (Pinc) trapped in olivine in a mantle xenolith from Ennokentiev, Sikhote-Alin, Far Eastern Russia (see Yamamoto et al. (2012) for the chemical composition of the sample). As a result, the peaks of the spinel inclusions were always shifted to higher wavenumbers than those of the unstrained reference spinel crystal from the same xenolith, but only Eg (~410 cm-1) and A1g (~750 cm-1) peak positions could be measured with sufficient accuracy for quantitative analysis of residual pressure. When Pinc was estimated using relation between spinel peak position and pressure reported by Chopelas and Hofmeister (1991), the data obtained from the center of the inclusion showed positive Pinc from both A1g and Eg peaks, and they agreed within error. However, it is desirable to use the A1g peak for the calculation of Pinc because 1) the Eg peak has low Raman scattering intensity, 2) depending on the crystal orientation of the host olivine, the Eg peak of spinel could interfere with the B3g peak of olivine, and 3) the Eg peak is expected to be sensitive to the differential stress because the Pinc calculated from the Eg peak obtained from the edge of the inclusion is unusually higher than that calculated from the A1g peak. Since positive residual pressures were obtained from all the inclusions investigated, by combining the EoS of spinel constrained in this study and measured Pinc, spinel inclusions trapped in olivine can be expected to be a new method for estimating the depth provenance of spinel-bearing peridotite.

 

References

Angel et al. (2014) Am Mineral, 99, 2146-2149; Angel et al. (2017) Am Mineral, 102, 1957-1960; Angel et al. (2018) Phys Chem Miner, 45, 95-113, Chopelas and Hofmeister (1991) Phys Chem Miner, 18, 279-293; Milani et al. (2017) Am Mineral, 102, 851-859; Yamamoto et al. (2012) Tectonophysics, 554-557, 74-82.

How to cite: Hagiwara, Y., Angel, R., Gilio, M., Yamamoto, J., and Alvaro, M.: Evaluation of elastic geobarometry of spinel inclusions in olivine and its application to mantle xenoliths, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-199, https://doi.org/10.5194/egusphere-egu22-199, 2022.

EGU22-328 | Presentations | GMPV2.1

New constraints on the origin of metal enrichment at the crust-mantle boundary from the Ivrea-Verbano Zone, NW Italy 

Bartosz Pieterek, Jakub Ciążela, Riccardo Tribuzio, Magdalena Matusiak-Małek, Andrzej Muszyński, Harald Strauss, Marina Lazarov, Stefan Weyer, Ingo Horn, Thomas Kuhn, and Izabella Nowak

Copper deposits or sulfide enrichment have been found along the crust-mantle transition zones in ophiolites and along the oceanic Moho. However, scarcity of suitable exposures limits our knowledge on the migration of chalcophile metals across the subcontinental crust-mantle boundary. This study aims to provide new constraints on the migration of sulfide-associated chalcophile metals at the transition between the subcontinental mantle peridotites of the Balmuccia massif and lower crustal gabbronorites of the Mafic Complex (Ivrea-Verbano Zone, NW Italy).

An ~80-m-thick zone composed of interlayered pyroxenites and gabbronorites (Contact Series; CS) showing igneous contact with the mantle peridotites was sampled along the Val Sesia river, near the Isola village. We investigated a transect from the mantle peridotites (rich in pentlandite) through the CS to the lower crustal gabbronorites (rich in pyrrhotite or pyrite). The CS zone comprises three sampling sites located 0–5 m (CS1), 65–70 m, and 75–80 m from the mantle peridotites and is characterized by the along-transect Mg# variations (Mg# of 71–57). The mantle peridotites are sulfide poor (average of 0.12 vol.‰), in contrast to the CS rocks (up to 7.8 vol.‰). The enhanced sulfide abundances in mafic rocks of the CS correlate with higher S, Cu, Ag, and Cd contents. This sulfide- and chalcophile-rich metal zone within the CS ends ~75 m away from the margin of mantle peridotites implying a probable thickness of the enrichment zone. Sulfides from mantle peridotites and CS1 are pyrrhotite-(troilite)-chalcopyrite-(cubanite)-pentlandite assemblages of magmatic origin, which is supported by δ34S ranging from –0.6‰ to +1.8‰ (average of 0.0‰; cf., Oeser et al., 2012 – Chemical Geology).

The in-situ Fe isotope signatures of polyphasic sulfide grains from CS1 show a strong fractionation between the various phases. The δ56Fe values of pyrrhotites are negative ranging from –0.8‰ to 0.0‰, whereas chalcopyrite exhibit positive values of 1.3–1.7‰. The mass balance calculations of the δ56Fe for the bulk composition of the sulfide grains from CS1 show unfractionated (magmatic or mantle) values of 0.0 ± 0.2‰ (cf., Craddock et al., 2013 – EPSL).

The stagnant melts at the crust-mantle boundary extensively react with the mantle yielding enrichment in sulfides and chalcophile elements, which is known to yield enrichment in sulfides (Ciazela et al., 2018 - GCA; Patkó et al., 2021 - Lithos). However, the contact between the Balmuccia mantle peridotites and the lower continental crust of the Mafic Complex is highly heterogeneous with alternating layers of pyroxenites and gabbronorites. These layers may have formed from distinct magma batches as suggested by the along-transect Mg# variations. Therefore, the mechanism of observed enrichment in sulfides and chalcophile elements probably involves several stages of melt-peridotite and melt-pyroxenite reactions. These might explain the exceptionally large ~75-m-thick sulfide-rich horizon observed at the CS. Our results indicate that substantial chalcophile metal inventory is trapped at the CS. Assuming they behave the same at the Moho level, this would explain the relative deficit of these elements in the continental crust when compared its bulk composition to the composition of primitive mantle melts.

This research was funded by the NCN Poland (2018/31/N/ST10/02146)

How to cite: Pieterek, B., Ciążela, J., Tribuzio, R., Matusiak-Małek, M., Muszyński, A., Strauss, H., Lazarov, M., Weyer, S., Horn, I., Kuhn, T., and Nowak, I.: New constraints on the origin of metal enrichment at the crust-mantle boundary from the Ivrea-Verbano Zone, NW Italy, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-328, https://doi.org/10.5194/egusphere-egu22-328, 2022.

EGU22-517 | Presentations | GMPV2.1

Metal migration and ore minerals across the crust-mantle transition zone (Oman DP ICDP holes CM1A, CM2B) 

Dariusz Marciniak, Ciążela Jakub, Jesus Ana, Pieterek Bartosz, Koepke Jürgen, Strauss Harald, Lazarov Marina, Horn Ingo, Słaby Ewa, Prell Marta, and Blutstein Konrad

Holes CM1A and CM2B of the International Continental Scientific Drilling Program (ICDP) Oman Drilling Project (OmanDP, https://www.omandrilling.ac.uk/)  drilled  through  the Moho  Transition  Zone  (MTZ).  CM1A is composed  of layered gabbro (0–160 meters below surface, mbs), dunite (160–310 mbs), and harzburgites (310–405 mbs), whereas CM2B contains dunite (20–120 mbs) and harzburgites (120–300 mbs). The drillholes provided an unprecedented opportunity to study the behavior of metals in the MTZ, where arriving primitive MORB melts  extensively  react  with  the  mantle.  Here,  melts, typically  enriched  with  sulfur and  chalcophile  elements,  are supposed to enrich the mantle and lower crust with sulfides (Gonzalez-Jimenez et al., 2020 – Ore Geol. Rev.; Ciążela et al., 2018 - GCA).          

            Modal sulfide content increases downwards the gabbro sequence from ~0.004 vol.‰ to ~1.0 vol.‰ but decreases again from 0.8 vol.‰ to 0.01 vol.‰ in the lower part of the MTZ and in the harzburgite of the upper mantle. This is reflected in the S concentration increasing from 341 ± 17 ppm, 2sd (standard deviation = σ) to  832  ±  37  ppm,  2sd,  in  the  gabbro  section  and  decreasing  downwards  from  the middle part of  Moho into harzburgites from 475 ± 21, 2sd ppm to 63 ± 3 ppm, 2σ. The sulfides in olivine gabbro from MTZ are mostly (56–87% of all sulfides) pyrrhotite-pentlandite-chalcopyrite assemblages indicating the magmatic origin. Sulfides in layered gabbro sequence are consisted of similar magmatic assemblages (36-100%) with minor chalcopyrite, bornite, heazlewoodite, chalcocite, millerite, siegenite and sphalerite with secondary origin. In dunite and harzburgite sequences sulfides are exclusively hydrothermal.

Based on EMPA and LA-ICPMS measurements, Zn, Co and Cu seem to reach their maximum concentrations in magmatic sulfides from the MTZ. Although, no significant differences are observed between the Fe isotope signatures in magmatic pyrrhotites from the lower crust (–0.73 to –0.24, 2sd [‰] of δ56Fe) and the MTZ (–0.73 to –0.53, [‰] of δ56Fe), we found different δ56Fe for pyrrhotite (–0.24‰) and chalcopyrite +0.36‰ within the same sulfide grain. The bulk signature of δ56Fe for this grain is –0,12‰ being in accordance with the mass balance calculated δ56Fe 0.025‰ ± 0.025‰ of the mantle (Craddock et al., 2013 – Earth Planet. Sci. Lett).

            The  enrichment in sulfides and selected metals (Zn, Co, Cu) towards the  MTZ  might  result  from  melt-mantle  reaction  as  we  proposed previously for the slow-spread oceanic lithosphere based on the Kane Megamullion Ocean Core Complex (Ciążela et al., 2018 - GCA).  In the CM1A/2B ultramafic rocks: dunites and harzburgites, most sulfides are, however, secondary, formed by the same secondary fluids which caused the pervasive serpentinization. To verify whether these sulfides replaced the primary magmatic sulfides or were brought from late-stage seawater-derived fluids, we plan to measure sulfur in whole-rocks and in situ and more iron isotopes in sulfides in situ. Preliminary δ56Fe signature isotope data give us evidence for magmatic origin of the sulfides from upper part of the MTZ section.

How to cite: Marciniak, D., Jakub, C., Ana, J., Bartosz, P., Jürgen, K., Harald, S., Marina, L., Ingo, H., Ewa, S., Marta, P., and Konrad, B.: Metal migration and ore minerals across the crust-mantle transition zone (Oman DP ICDP holes CM1A, CM2B), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-517, https://doi.org/10.5194/egusphere-egu22-517, 2022.

In the Alpine orogen of the north Aegean region, the eastern Rhodope Zone consists of widespread high-grade metamorphic basement exposed in Bulgaria and Greece. In this high-grade basement, the lithologically variegated upper unit contains meta-ultramafic bodies, which are considered as dismembered Precambrian meta-ophiolite association (Kozhoukharova 1984). In the same unit, the voluminously predominant amphibolites, having mafic igneous precursors of boninitic-tholeiitic affinity, are in turn considered of Precambrian-Paleozoic island arc origin (Haydoutov et al. 2004), or part of the amphibolites of Ordovician age have back-arc origin (Bonev et al. 2013). The upper unit, together with the overlying Circum-Rhodope belt Jurassic ophiolite, constitutes the hanging wall of the Eocene extensional system consisting of meta-granitoids with Carboniferous protoliths in the footwall. Here, we report on the geochemistry of the amphibolites from the upper unit in Bulgaria and Greece, and discuss their composition and tectonic setting, which might shed a light on the mid-late Paleozoic-early Mesozoic tectonic architecture of the region.

The amphibolites occur intercalated with para- and ortho-metamorphic lithologies within the upper unit. Texturally, they are represented mainly by massive or banded amphibolite and garnet-bearing amphibolite. The bulk mineral assemblage contains amphibole and plagioclase ± quartz ± garnet ± epidote-clinozoisite ± chlorite ± sphene ± rutile, which resulted from the main metamorphic overprint in amphibolite-facies and variable retrogression to greenschist-facies. The meta-mafic rocks cover the range of basalt to andesite composition, with elevated MgO, variable alkali and low-K contents, having mainly tholeiitic to weak calc-alkaline affinity. The range of TiO2 defines two groups of high-Ti (>1%) and low-Ti (<1%) meta-mafic rocks. Mostly flat to slightly LREE-depleted chondrite-normalized patterns characterize the high-Ti group, which overlaps N-MORB and E-MORB compositions. The low-Ti group exhibits pronounced LREE-depleted and fractionated REE patterns, rarely U-shaped boninitic-like pattern. N-MORB-normalized trace element profiles define high LILE/HFSE ratios, moderate to strong HFSE and HREE depletion of the low-Ti group, and close to N-MORB to slightly enriched HFSE-HREE trend of the high-Ti group. A negative Nb anomaly characterizes part of the low-Ti group, whereas other samples from both groups show no Nb anomalies and have contents higher than N-MORB. On various trace element discrimination diagrams the majority of high-Ti group meta-mafic rocks display clear MORB affinity and few samples plot in the WPB field of oceanic island tholeiites, whereas low-Ti meta-mafic rocks show island arc tholeiite (IAT) affinity or have transitional MORB/IAT signature. 

The compositional diversity of the meta-mafic rocks from the upper unit with MORB, transitional MORB/IAT and IAT affinity, in turn call for the origin of the protoliths in a paired ocean ridge-island arc environment, and thus could hints their supra-subduction zone origin in an island arc/back-arc setting.

 

References

Bonev, N., Ovtcharova-Schaltegger, M., Moritz, R., Marchev, P., Ulianov, A. 2013. Geod Acta 26, 3-4, 207-229.

Haydoutov, I., Kolcheva, K., Daieva, L., Savov, I., Carrigan, Ch.  2004. Ofioliti, 29, 2, 145-157.

Kozhoukharova, E. 1984. Geologica Balc., 14, 4, 9-36.

 

Acknowledgements: The study was supported by the NSF Bulgaria KP-06-N54/5 contract.

How to cite: Bonev, N., Dotseva, Z., and Filipov, P.: Geochemistry and tectonic significance of meta-ophiolitic mafic rocks in the high-grade metamorphic basement of the eastern Rhodope Zone, Bulgaria-Greece, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1863, https://doi.org/10.5194/egusphere-egu22-1863, 2022.

EGU22-1865 | Presentations | GMPV2.1

Preliminary data on mantle xenoliths from the Wum maar, Oku Volcanic Group, Cameroon Volcanic Line (West Africa) 

Jacek Puziewicz, Sonja Aulbach, Mary-Alix Kaczmarek, Anna Kukuła, Theodoros Ntaflos, Magdalena Matusiak-Małek, Sylvin S. T. Tedonkenfack, and Małgorzata Ziobro-Mikrut

The Wum maar is located in the Oku Volcanic group, part of continental sector of the Cameroon Volcanic Line (CVL) in west Africa, which consists of volcanoes active from Eocene to recent. The continental part of the CVL is located on the metamorphic-igneous basement of the Neoproterozoic Central African Orogenic Belt (CAOB), which originated during Gondwana assembly. Some of the CVL lavas contain spinel-facies peridotite and pyroxenite xenoliths giving insight into the mantle lithosphere underlying the CAOB.

We studied xenolith suite (19 xenoliths) from the Wum maar, comprising 14 lherzolites and 5 websterites. The half of lherzolites (7) consist of minerals with fertile composition (olivine Fo89, orthopyroxene Al 0.16-0.19 atoms per formula unit, clinopyroxene Al 0.28-0.31 a pfu, spinel Cr# 0.08-0.13). Clinopyroxene is REE-depleted and has 87Sr/86Sr ratios of 0.7017-0.7021. A reconnaissance study of crystal preferred orientation (CPO) by EBSD shows that at least in part of the rocks the clinopyroxene fabric is very weak, suggesting that its crystallization post-dates the primary deformation event recorded by the olivine-orthopyroxene framework. A smaller part of lherzolites (5) contains clinopyroxene the CPO of which fits that of the olivine-orthopyroxene framework, is LREE-enriched and has 87Sr/86Sr ratios of 0.7027-0.7028. One of these lherzolites contains amphibole (pargasite), which forms aggregates and schlieren and texturally is later than olivine-pyroxene host. CPO of amphibole, ortho- and clinopyroxene is decoupled from that of olivine in that rock. Two lherzolites have slightly depleted mineral compositions (olivine Fo90-91, orthopyroxene Al 0.15 apfu, clinopyroxene Al 0.25 a pfu, spinel Cr# 0.18).

Websterites are dominated by orthopyroxene (Al 0.20-0.21 a pfu) whereas clinopyroxene (Al 0.30-0.31) is subordinate, and is characterized by LREE-depletion and 87Sr/86Sr ratios of 0.7019-0.7020. Spinel occurring in websterites is aluminous (Cr# 0.04-0.06), in some samples subordinate olivine (Fo90) occurs. One of the xenoliths consists of millimetric monomineral layers of pyroxenes and olivine chemically identical to those occurring in websterites.  

The mineral chemical data coupled with mineral fabrics suggest that lherzolites with LREE-depleted clinopyroxene could have originated by late crystallization caused by melt metasomatism. The metasomatic agent is probably best represented by websterites, which contain LREE-depleted clinopyroxene with similar, depleted 87Sr/86Sr of 0.7019-0.7020 (compare to DM value of 0.7026, Workman and Hart 2005), confirming earlier findings of refertilization of the regional lithospheric mantle by highly depleted melts (Tedonkenfack et al. 2021). The addition of amphibole was connected with recrystallization of ortho- and clinopyroxene and with significant change of its 87Sr/86Sr signature to more radiogenic values.

Funding. This study originated thanks to the project of Polish National Centre of Research NCN 2017/27/B/ST10/00365 to JP. The bilateral Austrian-Polish project WTZ PL 08/2018 enabled extensive microprobe work.

References:

Tedonkenfack SST, Puziewicz J, Aulbach S, Ntaflos T., Kaczmarek M-A, Matusiak-Małek M, Kukuła A, Ziobro M: Lithospheric mantle refertilization by DMM-derived melts beneath the Cameroon Volcanic Line – a case study of the Befang xenolith suite (Oku Volcanic Group, Cameroon). Contributions to Mineralogy and Petrology 176: 37.

Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters 231: 53-72.

How to cite: Puziewicz, J., Aulbach, S., Kaczmarek, M.-A., Kukuła, A., Ntaflos, T., Matusiak-Małek, M., Tedonkenfack, S. S. T., and Ziobro-Mikrut, M.: Preliminary data on mantle xenoliths from the Wum maar, Oku Volcanic Group, Cameroon Volcanic Line (West Africa), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1865, https://doi.org/10.5194/egusphere-egu22-1865, 2022.

EGU22-2217 | Presentations | GMPV2.1

Metal enrichment in refertilized subcontinental lithospheric mantle: insight from the ultramafic xenoliths from the volcanic rocks of the Oku Volcanic Group (Cameroon) 

Hubert Mazurek, Magdalena Matusiak-Małek, Jakub Ciazela, Bartosz Pieterek, Jacek Puziewicz, and Sylvin S.T. Tedonkenfack

Sulfides hosted by peridotites from Befang (Oku Volcanic Group, Cameroon) xenolith suite can play an important role in tracking migration of strategic metals such as Au, Ag, or Cu through the subcontinental lithospheric mantle (SCLM) beneath the Central African Orogenic Belt. Most peridotites are lherzolites, which are subdivided into two main groups differing by crystallographic preferred orientation (CPO) and rare-earth element (REE) composition of clinopyroxene. Group I is characterized by light REE (LREE)-depleted clinopyroxene (re-)crystallized during percolation of metasomatic melt. Group II contains LREE-enriched clinopyroxene with the CPO representing deformation before percolation of the melt (Tedonkenfack et al., 2021). Lherzolites of group I  are interpreted to be metasomatized by MORB-like melts coming from  Depleted MORB Mantle (DMM). Peridotites of  group II are interpreted to be a protolith for the group I ones.

The sulfides form oval to slightly elongated grains enclosed usually in orthopyroxene, or rarely in clinopyroxene and olivine. They are composed of pyrrhotite (Po), pentlandite (Pn), and chalcopyrite (Ccp). Pyrrhotite is mostly predominant, whereas Pn forms exsolution lamellae in Po or massive crystals separating Po from Ccp. Chalcopyrite is present on the rims of grain or penetrates through the entire grain, occasionally containing cubanite exsolutions. The Group I lherzolites contain more sulfides (up to 0.031 vol.‰), with larger grains (range: 14−250 µm, 57 µm on average) compared to the Group II sulfides (up to 0.002 vol.‰, range: 12−45 µm, 27 µm on average respectively). Sulfides from Group I are richer in Po, and especially Ccp (Po77Pn12Ccp11 on average) compared to Group II (Po72Pn23Ccp4 on average). Ni/(Ni+Fe) in pyrrhotite from Group I (0.14–0.43) is more heterogeneous compared to group II (0.20–0.37).

Enrichment in Po and Ccp in the Befang Group I xenoliths suggests a significant role of melts in transporting sulfur and metals. Observed refertilization by DMM-derived melts may affect the chalcophile and highly siderophile metal budget of the SCLM. The degree of refertilizaton seems to depend on temperature and therefore is moderate in Befang (up to 0.031 vol.‰) with moderate temperatures of orthopyroxene-clinopyroxene equilibration (938–997°C; Tedonkenfack et al, 2021). In lower temperatures of Opx-Cpx equilibration (810–970°C), we observe higher sulfide abundances (up to 0.062 vol.‰), whereas in higher temperatures (1010–1120°C) lower sulfide abundances (up to 0.00048 vol.‰; Mazurek et al., 2021).

 

This study was supported by the Diamond Grant project 093/DIA/2020/49.

 

References

Mazurek, H., Ciazela, J., Matusiak-Małek, M., Pieterek, B., Puziewicz, J., Lazarov, M., Horn, I., Ntaflos, T.: Metal enrichment as a result of SCLM metasomatism? Insight from ultramafic xenoliths from SW Poland., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15992, https://doi.org/10.5194/egusphere-egu21-15992, 2021

Tedonkenfack SST., Puziewicz J., Aulbach S., Ntaflos T., Kaczmarek M-A., Matusiak-Małek M., Kukuła A., Ziobro M.: Lithospheric mantle refertilization by DMM-derived melts beneath the Cameroon Volcanic Line – a case study of the Befang xenolith suite (Oku Volcanic Group, Cameroon). Contributions to Mineralogy and Petrology, 176: 37.

How to cite: Mazurek, H., Matusiak-Małek, M., Ciazela, J., Pieterek, B., Puziewicz, J., and Tedonkenfack, S. S. T.: Metal enrichment in refertilized subcontinental lithospheric mantle: insight from the ultramafic xenoliths from the volcanic rocks of the Oku Volcanic Group (Cameroon), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2217, https://doi.org/10.5194/egusphere-egu22-2217, 2022.

EGU22-3733 | Presentations | GMPV2.1

Basaltic rocks from the Vardar ophiolite (North Macedonia): new insights on the metasomatism of sub-arc upper mantle using geochemical and stable isotope data 

Valentina Brombin, Edoardo Barbero, Emilio Saccani, Nicola Precisvalle, Sonja Lepitkova, Ivica Milevski, Igor Ristovski, Igor Milcov, Gorgi Dimov, Costanza Bonadiman, and Gianluca Bianchini

In the upper mantle, volatiles control its composition, partial melting conditions, as well as the ascent rate of the formed melts. As consequence, volatile composition of the mantle is, in turn, recorded in the melts and, therefore, in the erupted basaltic rocks. Despite their importance, origin, budget, and fluxes of the volatiles in the upper mantle are poorly constrained. It is well known that the main input of mantle volatiles, such as carbon (C) and sulphur (S), represents components released from the subducting slab, e.g., oceanic rocks and sediments, whose have characteristic isotopic signatures. In this view, studies of isotopic ratios of volatiles of subduction-related magmatic rocks could be used to identify the chemical components released by the subducting slab metasomatizing the upper mantle. To confirm this hypothesis, we investigated the major and trace element composition, as well as the C and S elemental contents and isotopic ratios of subvolcanic and volcanic rocks of the Vardar ophiolites of North Macedonia, which represent remnants of the Mesozoic Tethyan oceanic lithosphere formed in supra-subduction zone tectonic settings.

The ophiolites were sampled at Lipkovo and Demir Kapija localities, in the northern and southern part of North Macedonia, respectively. Based on whole-rock major and trace element composition, two main groups of rocks can be distinguished: i) Group 1 rocks, which are subalkaline basalts with backarc affinity and ii) Group 2 rocks, which are calc-alkaline basalts with arc affinity. The petrogenetic modelling based on trace and Rare Earth Elements, indicates that Group 1 mantle sources were affected by limited metasomatic processes by slab-released components, in particular aqueous fluids and sediment melts, whereas the Group 2 mantle sources were strongly metasomatized by sediment melts and adakitic melts. Accordingly, the Group 1 rocks exhibit C-enriched and S-depleted isotopic signature, indicating a minor involvement of melts from the subducting sediments. On the other hand, the C-depleted and S-enriched isotopic signatures of the Group 2 rocks suggest a major involvement of melts derived from the subducting sediments rich in organic matter and sulphate phases Therefore, both geochemical and isotopic data of the subvolcanic and volcanic samples of the North Macedonia ophiolites show that the sub-arc mantle sources are more affected by slab-released fluids than those of the backarc basin, which are more distal from the trench. Thus, combining the geochemical and isotopic data of subvolcanic and volcanic samples of complex geological framework can contribute to reconstruct the geodynamic scenarios, such as that of the Vardar ophiolites in the Dinaric-Hellenic belt. In addition, this approach may be useful to better understand the global geodynamic cycles of volatiles reconstructing their origin, budget, and isotopic composition, and understand the impacts on climate and environment from local to global scale.

How to cite: Brombin, V., Barbero, E., Saccani, E., Precisvalle, N., Lepitkova, S., Milevski, I., Ristovski, I., Milcov, I., Dimov, G., Bonadiman, C., and Bianchini, G.: Basaltic rocks from the Vardar ophiolite (North Macedonia): new insights on the metasomatism of sub-arc upper mantle using geochemical and stable isotope data, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3733, https://doi.org/10.5194/egusphere-egu22-3733, 2022.

EGU22-3865 | Presentations | GMPV2.1

Formation of corona structures from the troctolitic gabbros of Chainigund, Kargil, Ladakh, NW Himalayas, India: Petrological implications 

Shivani Harshe, Mallika Jonnalagadda, Raymond Duraiswami, Mathieu Benoit, Michel Grégoire, and Nitin Karmalkar

Well-developed corona structures are observed and described in detail in the cumulate troctolites from Chainigund village, Kargil. The gabbro-troctolite unit is situated 5 km NW of Kargil city and consists of gabbros, troctolites, and anorthosites with doleritic dykes cross-cutting the unit at places. The host gabbros are fresh and display both fine and coarse-grained varieties. Troctolites occur as pods and veins within the gabbro and are composed of plagioclase (77-80 vol%), olivine (10-16 vol%), pleonaste spinel (6-8 vol%), amphiboles (2 -3 vol%) and opaques (0.5-2vol %). Both olivines and plagioclases are unzoned with spectacular coronas around the olivines (Fo 74.9-76.7) at the contact with plagioclase feldspar (An90.6-95.2). From center outwards, the discontinuous reaction series consists of the following members: Olivine, enstatitic orthopyroxene, magnesio-hornblende (Amph1) enclosed by a symplectitic rim of pargasite (Amph2) and pleonaste spinel and concludes at the plagioclase interface i.e. Ol-Opx-Amph1-Amph2-Spl-Plg. The mineral textures of the corona structure indicate formation in the presence of an interstitial fluid trapped between cumulus olivine and plagioclase. The reaction of this fluid with the olivine resulted in a rim of peritectic orthopyroxene around olivine which was subsequently replaced to form Amph 1 between the orthopyroxene and plagioclase. This is evident by the horse-shoe shaped outline and intermingling boundary shared by orthopyroxene and Amph 1. The formation of outer Amph 2 and spinel symplectite layers could be attributed to the replacement of precursor clinopyroxene and plagioclase at high temperatures (1050-1150° C ± 40° C). The Amph-Spl symplectites, presence of oxidizing conditions (magnetite and ilmenite), discontinuous reactions and local or short-range diffusion phenomena thus indicate that the corona structures are a result of metasomatic interaction of cooling magma with the previously formed minerals.

Keywords: Corona structures; troctolite gabbro; olivine- plagioclase contact; Kargil; Ladakh; India.

How to cite: Harshe, S., Jonnalagadda, M., Duraiswami, R., Benoit, M., Grégoire, M., and Karmalkar, N.: Formation of corona structures from the troctolitic gabbros of Chainigund, Kargil, Ladakh, NW Himalayas, India: Petrological implications, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3865, https://doi.org/10.5194/egusphere-egu22-3865, 2022.

EGU22-4351 | Presentations | GMPV2.1

Preliminary characteristics of mantle xenoliths from Mt. Briançon (Massif Central, France) - missing information about the lithospheric mantle beneath Devès volcanic field 

Małgorzata Ziobro-Mikrut, Jacek Puziewicz, Sonja Aulbach, Theodoros Ntaflos, and Magdalena Matusiak-Małek

The 3.5-0.5 Ma Devès volcanic field consists mainly of nepheline basanite rocks. The underlying Variscan basement is a part of the western Moldanubian Zone (an allochton of the European Variscan orogen, probably the Gondwana margin). The Devès volcanic field is located in the “southern” mantle domain of Massif Central (MC), which consists of fertile lithospheric mantle (LM) little affected by partial melting [1]. These characteristics probably resulted from intense metasomatism by melts coming from the upwelling asthenosphere [2].

Despite the rich literature dealing with the LM beneath the Devès volcanic field, some textural and geochemical details remain obscure. We studied a large xenolith population (n – 21) from Mt.Briançon (NW of the Devès volcanic field) with extensive use of EMPA and LA-ICP-MS in order to obtain a comprehensive and representative data set, and here present the preliminary findings.

The Mt.Briançon xenoliths are typically oval in shape and vary in size from 4 to 13 cm. The host rocks are tuff and scoria deposits. The xenoliths are mostly anhydrous spinel lherzolites rich in clinopyroxene (cpx, modal content up to 28%) and scarce harzburgites. One xenolith consists of olivine clinopyroxenite in contact with peridotite. The peridotites exhibit serial texture or different stages of porphyroclastic texture. In some xenoliths elongated spinel is arranged in streaks.

Most of the three major phases in the peridotites are homogenous at the grain and xenolith scale. Olivine Fo is typically 88.5-90.4% in the whole suite, and NiO content is 0.35-0.43 wt.%. Orthopyroxene (opx) has Mg# 0.89-0.91 and 0.128-0.217 atoms of Al per formula unit (apfu). Cpx has Mg# 0.88-0.91 and Al content of 0.208-0.316 apfu and spinel Cr# is highly variable in the whole suite (0.09-0.28). In contrast, one harzburgite (sample 4025) has olivine with higher Fo (~91.2%), opx with higher Mg# (~0.92) and lower Al content (0.111-0.116 apfu), cpx with Mg# ~0.92 and Al content of ~0.145 apfu, and spinel Cr# of ~0.43 and Mg# of ~0.75.

The main observed REE pattern in peridotite cpx is relatively flat Lu-Eu and slightly, but variably depleted in lighter REE. In several xenoliths cpx exhibits various REE patterns, transitioning from LREE-depleted to relatively flat or slightly LREE-enriched, while a few samples contain cpx with REE abundances moderately increasing Lu-Sm and steeply increasing towards La. The majority of peridotite opx REE patterns are moderately decreasing in Lu-Sm and more steeply decreasing towards La, whereas a less common opx pattern is similar to the previous one in Lu-Nd, but much less depleted in lighter REE. This opx coexists with LREE-rich cpx.

This study confirms that the LM beneath Mt.Briançon is mostly lherzolitic and quite fertile in terms of major elements. Ongoing work, utilizing the diversity of lithologies and pyroxene REE patterns, combined with detailed major-element and REE thermometry and with textural observations, will provide detailed insights into the microstructural, thermal and metasomatic history of the LM beneath the MC.

 

This study was funded by Polish National Science Centre to MZM (UMO-2018/29/N/ST10/00259).

 

References

[1] Uenver-Thiele L. et al. (2017). JPetrol 58, 395–422.

[2] Puziewicz J. et al. (2020). Lithos 362–363, 105467.

How to cite: Ziobro-Mikrut, M., Puziewicz, J., Aulbach, S., Ntaflos, T., and Matusiak-Małek, M.: Preliminary characteristics of mantle xenoliths from Mt. Briançon (Massif Central, France) - missing information about the lithospheric mantle beneath Devès volcanic field, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4351, https://doi.org/10.5194/egusphere-egu22-4351, 2022.

EGU22-4679 | Presentations | GMPV2.1

Deciphering multiple metasomatism beneath Mindszentkálla (Bakony-Balaton Highland Volcanic Field, western Pannonian Basin) revealed by upper mantle peridotite xenoliths 

Levente Patkó, Zoltán Kovács, Nóra Liptai, László E. Aradi, Márta Berkesi, Jakub Ciazela, Károly Hidas, Carlos J. Garrido, and István J. Kovács

The Bakony-Balaton Highland Volcanic Field (BBHVF), where Neogene alkali basalts and their pyroclasts host a great number of upper mantle xenoliths, is situated in the western part of the Pannonian Basin. One of the barely investigated xenolith localities of the BBHVF is Mindszentkálla. In the BBHVF, most of the xenoliths have lherzolitic modal composition, however, the Mindszentkálla locality is dominated by harzburgites. In addition to the homogeneous coarse-grained harzburgite xenoliths, we collected composite and multiple composite (with more than two different domains) xenoliths that represent small-scale heterogeneities. Harzburgite, interpreted as the host rock, is crosscut by dunitic, orthopyroxenitic, apatite-bearing websteritic, and amphibole-phlogopite-bearing veins.

To understand the evolution of the conspicuously complex mantle beneath Mindszentkálla, in situ major and trace element analyses were carried out on all rock-forming minerals. The major element chemistry of silicate minerals in the harzburgite wall rock and dunite veins show lower basaltic element (Fe, Mn, Ti, Na) contents with respect to the orthopyroxenitic and websteritic veins. The rare earth elements display flat or spoon-shaped patterns in the harzburgitic clinopyroxenes, whereas the websteritic clinopyroxenes and the amphiboles of the amphibole-phlogopite vein are enriched in light rare earth elements.

The observed textural and geochemical features indicate that the Mindszentkálla xenoliths could have gone through significant mineralogical and compositional modifications in at least two events. During the first event, the lherzolitic mantle was metasomatized most likely by a silica-rich melt, which could have resulted in orthopyroxene-rich peridotitic lithology. The metasomatizing Si-rich melt is likely related to a former subduction event.

The second metasomatic event led to the formation of dunite, orthopyroxenite, apatite-bearing websterite, and amphibole-phlogopite-bearing veins. These lithologies are likely the products of interactions between volatile-enriched, asthenosphere-derived basaltic melts and the peridotite wall rock, or they represent the high-pressure crystallization of such melts. The ascent of these mafic melts may have happened shortly before the xenolith entrapment during the Neogene basaltic volcanism.

How to cite: Patkó, L., Kovács, Z., Liptai, N., Aradi, L. E., Berkesi, M., Ciazela, J., Hidas, K., Garrido, C. J., and Kovács, I. J.: Deciphering multiple metasomatism beneath Mindszentkálla (Bakony-Balaton Highland Volcanic Field, western Pannonian Basin) revealed by upper mantle peridotite xenoliths, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4679, https://doi.org/10.5194/egusphere-egu22-4679, 2022.

EGU22-5414 | Presentations | GMPV2.1

Magmatic processes at rifted margins: Preliminary results from peridotites of the Diamantina zone (SW Australia) 

Mélanie Ballay, Marc Ulrich, and Gianreto Manatschal

Keywords: magma-poor rifted margin, refertilization, partial melting, mantle-melt interaction

Although magmatic processes are of primary importance for the understanding of lithospheric breakup, many first order questions remain, such as: how, when, where and how much magma is produced during final rifting; what are the conditions and controlling processes of magma production; how does magma percolate and interact with the lithospheric mantle; and how and when does magma focus, how is it extracted and how does it interact with the extensional processes during final rifting and breakup? Answering to these questions is a prerequisite to understand lithospheric breakup and formation of a new plate boundary, which is among the least understood plate tectonic processes at present.

In this study we present preliminary petrological results from mantle rocks dredged from the SW Australia ocean-continent transition (OCT, Diamantina zone). We analyzed pyroxene and spinel compositions from these peridotites to identify mantle domains and mantle-melt reactions during rifting and breakup. The chemical composition of clinopyroxenes shows two distinct populations: a first generation characterized by low (Sm/Yb)N ratios and no Eu anomalies, while a second generation shows interstitial textures and flat HREE patterns with a deep negative Eu anomaly. These two populations of clinopyroxenes suggest that the peridotites from the Diamantina zone record two distinct events: a first cooling event that is followed by magma infiltration. This is further supported by equilibrium temperatures calculated on the two clinopyroxene generations showing that the first population equilibrated at lower temperatures (900°C ± 30°C) corresponding to a subcontinental geotherm, while the second generation equilibrated at higher temperatures (1100°C ± 100°C), and was likely liked to the entrapment of MORB-type melts in the plagioclase stability field at low pressure (~5kbar) during magma infiltration.  

The exhumation path of the Diamantina peridotites determined in our study is similar to those of refertilized peridotites from the present-day Iberia and fossil Alpine Tethys OCTs, suggesting that refertilisation processes occurring at magma-poor rifted margins during final rifting and breakup are not dependent from the inherited nature of the subcontinental mantle.

How to cite: Ballay, M., Ulrich, M., and Manatschal, G.: Magmatic processes at rifted margins: Preliminary results from peridotites of the Diamantina zone (SW Australia), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5414, https://doi.org/10.5194/egusphere-egu22-5414, 2022.

EGU22-5617 | Presentations | GMPV2.1

Kilometre-scale isotopic heterogeneity in abyssal peridotites from the Doldrums Fracture Zone (Mid Atlantic Ridge, 7-8ºN). 

Camilla Sani, Alessio Sanfilippo, Alexander A. Payve, Felix Genske, and Andreas Stracke

In Nd-Hf isotopic space the great majority of the global abyssal peridotites plot in the field defined by global MORBs. However, Hf isotope ratios by far exceeding those in ridge basalts, are locally observed in abyssal peridotites showing that the Earth’s mantle is more heterogeneous that inferred from ridge basalts [1]. Mantle peridotites exposed at the Doldrums Fracture Zone at the Mid Atlantic Ridge (7-8° N) reveal that such heterogeneity coexists on a kilometre-scale. Abyssal peridotites from the northern part of the Doldrums FZ domain can be grouped into residual peridotites and melt-modified (refertilized) samples [2]. New Nd-Hf isotopic data show that the refertilized peridotites preserve highly radiogenic Hf values (εHf up to 101) associated with MORB-like Nd isotopes (εNd up to 12), reflecting partial resetting of ancient highly depleted mantle by recent melt-rock interaction. On the other hand, despite a very depleted incompatible element compositions, the residual peridotites have Nd-Hf isotope ratios similar to the local MORB (εNd = 7-12 and εHf =12-19). They most likely reflect highly depleted mantle that has been entirely reset by reaction with extracted or retained melts, and hence developed with only modest incompatible element depletion until recent melting at the Mid Atlantic ridge axis, which led the strong incompatible element depleted of these peridotites. The kilometre-scale association of such isotopically heterogeneous domains suggests that the upper mantle exposed in this portion of Atlantic formed by a combination of ancient melting and melt-rock reaction processes, preceding its emplacement below the present-day Mid Atlantic ridge axis.

 [1] Stracke, A., et al., 2011. Abyssal peridotite Hf isotopes identify extreme mantle depletion. Earth and Planetary Science Letters, 308(3-4), pp.359-368. [2] Sani, C., et al., 2020. Ultra-depleted melt refertilization of mantle peridotites in a large intra-transform domain (Doldrums Fracture Zone; 7–8° N, Mid Atlantic Ridge). Lithos, 374, p.105698.

How to cite: Sani, C., Sanfilippo, A., Payve, A. A., Genske, F., and Stracke, A.: Kilometre-scale isotopic heterogeneity in abyssal peridotites from the Doldrums Fracture Zone (Mid Atlantic Ridge, 7-8ºN)., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5617, https://doi.org/10.5194/egusphere-egu22-5617, 2022.

EGU22-6901 | Presentations | GMPV2.1

Melt metasomatism and enrichment in metals in the uppermost Earth’s mantle 

Jakub Ciazela, Bartosz Pieterek, Dariusz Marciniak, Hubert Mazurek, Levente Patko, and Ewa Slaby

Cu-rich sulfide deposits of economic importance in ophiolites such as Troodos in Cyprus or Semail in Oman often occur along the crust-mantle transition zones (e.g. Begemann et al., 2010). Although secondary sulfides formed during serpentiniztion now prevail, the relicts of primary magmatic sulfides indicate the igneous nature of enrichment in sulfides at the oceanic Moho level. Crust-mantle transition zones in situ in the oceans are suggested to be enriched in sulfides and many chalcophile (e.g. Cu, Zn, Pb, Se, Te) metals via melt-mantle reaction (Ciazela et al., 2017; 2018). The enrichment in sulfides seems to be ubiquitous along the crust-mantle transition zone (Ciazela et al., 2018) and might be expected even at the continental Moho. This is possible as sulfides precipitate during melt-mantle reaction independently on pressure. The process seems to work at low pressures of the oceanic crust-mantle transition zone (0.1–0.2 GPa) (Marciniak et al., this session; Ciazela et al., 2018), medium pressures of the continental crust-mantle transition zone (~1.0 GPa) (Pieterek et al., this session), and in high pressures related to various melt-metasomatized mantle xenoliths (up to 2.5 GPa) (Mazurek et al., this session; Patkó et al., 2021). Metal refertilization due to variable melt-peridotite reactions at the crust-mantle transition zone and along melt channels in the upper mantle may affect the local, regional, and even global metal mass balance of the oceanic and continental lithosphere. The distribution of mantle sulfides is heterogeneous. The zones of enrichment in metals occur mostly at the crust-mantle transition or in melt-modified mantle rocks along melt channels in the upper mantle. These zones are important for subsequent ore formation in secondary processes. In the oceans, especially along slow-spreading ridges, shallow magmatic sulfide horizons are penetrated by hydrothermal fluids operating along faults to form massive sulfides on the seafloor. On land, the re-mobilization of the mantle sulfides horizons by sulfide-undersaturated melts or by buoyant CO2 bubbles can contribute to the formation of porphyry and related epithermal mineral deposits.

Begemann F., Hauptmann A., Schmitt-Strecker S. and Weisgerber G. (2010) Lead isotope and chemical signature of copper from Oman and its occurrence in Mesopotamia and sites on the Arabian Gulf coast. Arab. Archaeol. Epigr. 21, 135–169.

Ciazela J., Dick H. J. B., Koepke J., Pieterek B., Muszynski A., Botcharnikov R. and Kuhn T. (2017) Thin crust and exposed mantle control sulfide differentiation in slow-spreading ridge magmas. Geology 45, 935–938.

Ciazela J., Koepke J., Dick H. J. B., Botcharnikov R., Muszynski A., Lazarov M., Schuth S., Pieterek B. and Kuhn T. (2018) Sulfide enrichment at an oceanic crust-mantle transition zone: Kane Megamullion (23°N, MAR). Geochim. Cosmochim. Acta 230, 155–189.

Patkó L., Ciazela J., Aradi L. E., Liptai N., Pieterek B., Berkesi M., Lazarov M., Kovács I. J., Holtz F. and Szabó C. (2021) Iron isotope and trace metal variations during mantle metasomatism: In situ study on sulfide minerals from peridotite xenoliths from Nógrád-Gömör Volcanic Field (Northern Pannonian Basin). Lithos 396397, 106238.

How to cite: Ciazela, J., Pieterek, B., Marciniak, D., Mazurek, H., Patko, L., and Slaby, E.: Melt metasomatism and enrichment in metals in the uppermost Earth’s mantle, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6901, https://doi.org/10.5194/egusphere-egu22-6901, 2022.

Uncommon Ba-Cl-rich phases including Ba-Cl micas and Cl-phosphates have been found in garnet pyroxenites as a part of the matrix or in polyphase inclusions in garnets. Polyphase inclusions are rich in carbonates (dolomite, magnesite, norshetite), phosphates (Cl-apatite, goryainovite (Ca2PO4Cl), monazite) and other silicates (spinel, amphibole, orthopyroxene, clinopyroxene, margarite, aspidolite, scapolite, cordierite). The inclusions appear as chains crosscutting garnet crystals and their presence is not linked with any chemical zoning in the host garnet.

The Ba-Cl-rich mica has composition ranging from Ba-rich phlogopite to chloroferrokinoshitalite and to oxykinoshitalite. The mica present in the matrix correspond to Ba-rich phlogopite with low Cl contents and occur together with celsian and low-Cl hydroxyl apatite. The mica in the polyphase inclusions ranges to almost pure chloroferrokinoshitalite and oxykinoshitalite endmembers and coexists either with Cl-apatite (Cl = 1.2 apfu) or rarely goryainovite containing up to 2.5 wt% of SrO. This is second world occurrence of goryainovite and first evidence that Ca can be partially replaced by Sr in this mineral.

Special attention was paid to the composition trends of the Ba-Cl-rich micas. These are mainly related to the XFe ratio, which correlates positively with Cl, Ba, and Al and negatively with Si and Na. Positive correlation of Cl with Ba and XFe leads to the formation of mica with composition Ba0.95K0.03Fe2.69Mg0.37Al1.91Si2.02Cl1.98, XFe0.88, which is the most Cl-rich mica so far described from natural samples (10.98 wt% Cl) and is very close to the theoretical formula of chloroferrokinoshitalite BaFe3Al2Si2O10Cl2. The positive correlation of Ba with Al and their negative correlation with Si and K is corresponding to the coupled substitution Ba1Al1K-1Si-1 linking the composition of phlogopite and kinoshitalite. Composition trend related with the Ti-content shows that Ti correlates positively with Ba but negatively with Cl, XFe, and with the sum of Mg and Fe. It implies that Ti is incorporated into mica in coordination with O (Ti1O2(Mg,Fe2+)-1(OH)-2) and it leads to the formation of oxykinoshitalite (BaMg2TiSi2Al2O12). Since the incorporation of either Cl or Ti + O correlates with XFe content of mica, XFe ratio can be the crucial factor controlling the ability of mica to incorporate Cl into its crystal lattice. In some cases, two micas with contrasting composition corresponding closer to chloroferrokinoshitalite or oxykinoshitalite coexist in one polyphase inclusion, demonstrated by distinct content of XFe, Ti and Cl (for example: XFe0.20:0.77, Ba0.48:0.63, Ti0.35:0.02, Cl0.27:1.45). This could imply the existence of an immiscibility between the composition trends of chloroferrokinoshitalite and oxykinoshitalite .

Such Ba, Cl and K-rich phases are atypical for garnet pyroxenite. Their presence may be caused by the injection of fluid/melt of crustal source during subduction and subsequent exhumation processes or may be related to earlier mantle metasomatism. The presence of Cl-rich phases together with carbonates indicates extremely high activity of Cl and CO2 in the metasomatizing fluid/melt that interacted with garnet pyroxenites.

How to cite: Zelinková, T., Racek, M., and Abart, R.: Compositions of Ba-Cl-rich micas and other uncommon phases related to metasomatism of garnet pyroxenite (Gföhl unit of the Moldanubian Domain, Bohemian Massif), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7935, https://doi.org/10.5194/egusphere-egu22-7935, 2022.

EGU22-9103 | Presentations | GMPV2.1

Features of the composition and structure of the lithospheric mantle of the Upper Muna field. 

Igor Iakovlev, Vladimir Malkovets, and Anastasia Gibsher

Peridotite xenoliths are of great interest for research, since their composition is closest to the simulated compositions of the upper mantle, and they also make it possible not only to determine the conditions for the formation of these rocks, but also the degree of metasomatic processing of the diamondiferous keel, as well as the thickness and distribution area of diamondiferous rocks in the lithospheric mantle.

The Middle Paleozoic (D3-C1) diamondiferous kimberlite pipe Komsomolskaya-Magnaya was chosen as the object of research. This is one of the diamondiferous pipes of the Siberian platform, which contains many unchanged xenoliths of peridotite rocks.

We studied a collection of 180 peridotite xenoliths of the Komsomolskaya-Magnitnaya pipe, of which 104 belong to dunite-harzburgite paragenesis, 74 to lherzolite and 4 websterites. Also, we studied a large number of minerals from the concentrate material of the Komsomolskaya-Magnitnaya kimberlite pipe.

A high proportion (~ 30%) of peridotites with high magnesian olivines (Mg #> 93 mol%) indicates the presence of a block of highly depleted rocks in the lithospheric mantle.

We noted a high proportion of garnets with S-shaped REE distribution spectra (~ 60%), as well as garnets belonging to the harzburgite-dunite paragenesis in accordance with the CaO-Cr2O3 diagram. It indicates a moderate role of metasomatic changes associated with silicate melts, as well as interaction with carbonatite melts enriched in LREE.

In addition, kimberlite indicator minerals (KIM) (garnets, chrome spinels, ilmenites) were studied, sampled directly from 7 geophysical anomalies, 6 new kimberlite bodies, and kimberlite pipes Interkosmos, Kosmos-2, 325 years of Yakutia, belonging to the Upper Muna field. These data provide more information on the composition of the lithospheric mantle within the entire Upper Muna field.

For several kimberlite bodies, a high proportion of KIM of the diamond association is noted, however, for most kimberlite bodies, signs of a high degree of secondary metasomatic processes are noted, which negatively affect the preservation of diamond in the lithospheric mantle.

Cr-spinels from various kimberlite bodies of the Upper Muna field attract special attention. In addition to the typical peridotite Cr-spinels, there are Cr-spinels that follow the magmatic trend (Sobolev, 1974) and have extremely low contents of aluminum and titanium. The genetic identity of these Cr-spinels is still unknown.

Was done precise pressure (P)-temperature (T) estimation using single-clinopyroxene thermobarometry (Nimis, Ta). Was obtained mantle paleogeotherm.  Data was received about surface heat flux ~34–35mW/m2, 225–230 km lithospheric thickness, and 110–120 thick “diamond window” for the Upper Muna field (Dymshits et al, 2020).

  • Dymshits A. M., Sharygin I. S., Malkovets V. G., Yakovlev I. V., Gibsher A. A., Alifirova T. A., Vorobei S. S., Potapov S. V., Garanin V. K. Thermal state, thickness, and composition of the lithospheric mantle beneath the Upper Muna kimberlite field (Siberian Craton) constrained by clinopyroxene xenocrysts and comparison with Daldyn and Mirny fields // Minerals. 2020. V. 10. P. 549.
  • Sobolev N.V., Deep inclusions in kimberlites and the problem of the composition of the upper mantle // Novosibirsk: Nauka, 1974.

How to cite: Iakovlev, I., Malkovets, V., and Gibsher, A.: Features of the composition and structure of the lithospheric mantle of the Upper Muna field., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9103, https://doi.org/10.5194/egusphere-egu22-9103, 2022.

EGU22-9331 | Presentations | GMPV2.1

Mantle metasomatism recorded upon bimodal chromitites (E. Chalkidiki, Greece): a tool to unravel metasomatic processes 

Petros Koutsovitis, Alkiviadis Sideridis, Pavlos Tsitsanis, Federica Zaccarini, Basilios Tsikouras, Christoph Hauzenberger, Tassos Grammatikopoulos, Luca Bindi, Giorgio Garuti, and Konstantin Hatzipanagiotou

Nea Roda and Gomati ultramafic bodies (east Chalkidiki, north Greece) consist of both Cr- and Al- podiform chromitites, which are highly altered. Their PGE geochemistry and subsequently PGE-mineralogy (PGM) demonstrate abnormal element concentrations with an enrichment in PPGE (Pd, Pt), leading to high Pd/Ir ratios. Secondary PGM and base metal assemblages are dominated by Sb and As, whereas primary phases form sulphides. At a more mature stage, desulphurization of the aforementioned phases led to formation of native metals. Diopside hosted within diopsidite and chromitite show both an alkaline melt- and a fluid- rock interaction, depicted by LREE enrichment. The temperature of the metasomatic fluids was lower than 600oC, as recorded by chlorite and garnet geothermometry. A raise in fluid mobile elements (FME: B, Sb, Li, As, Cs, Pb, U, Ba and Sr) is noted in the whole rock and clinopyroxene analysis. All these characteristics along with the distinctive spinel textures (porous, zoned grains) point to a metasomatic event during subduction that led to the post-magmatic modification of the chromitites and the mantle section causing a LREE, Pb, As, Sb, Pd and Pt enrichment. 

How to cite: Koutsovitis, P., Sideridis, A., Tsitsanis, P., Zaccarini, F., Tsikouras, B., Hauzenberger, C., Grammatikopoulos, T., Bindi, L., Garuti, G., and Hatzipanagiotou, K.: Mantle metasomatism recorded upon bimodal chromitites (E. Chalkidiki, Greece): a tool to unravel metasomatic processes, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9331, https://doi.org/10.5194/egusphere-egu22-9331, 2022.

EGU22-9457 | Presentations | GMPV2.1

Composition of lithospheric mantle beneath southern margin of East European Craton evidenced by peridotitic xenoliths from Scania, S Sweden. 

Magdalena Matusiak-Małek, Jakub Mikrut, Jacek Puziewicz, Anna Kukuła, Theodoros Ntaflos, Sonja Aulbach, Leif Johansson, and Michél Grégoire

Southern Sweden (Scania region) is located in the peripherical parts of the East European Craton (EEC). In the Mesozoic, up to three pulses of volcanic activity took place between 191 and 110 Ma (Bergelin et al., 2006, IJES; Tappe et al., 2016, GCA). Some of the alkali basaltoids carry ultramafic, mafic and felsic xenoliths (Rehfeldt et al, 2007, IJES). In this study, we focused on the evolution of the lithospheric mantle sampled by anhydrous, spinel-facies lherzolites, harzburgites, and subordinate dunites.

Based on the Fo content in olivine, the peridotites were classified into three groups. Group X peridotites are characterized by Ca-rich olivine (890-1470 ppm) with Fo=91.1-91.7.  Enstatite has Mg#=91.5-91.9 and Al=0.16-0.22 atoms per formula unit (apfu), while the Cr-augite has Mg#= 90.8-91.2 and Al=0.21-0.28 apfu. Clinopyroxene is chemically homogenous in terms of trace elements and is LREE-enriched with positive Eu-anomaly. The Nd and Sr isotopic ratios in clinopyroxene are 143Nd/144Nd=0.512548 (εNd=2.63) and  87Sr/86Sr=0.704237, respectively. Olivine in group Y peridotites is Ca-poor (<951 ppm) and has Fo=89.5-91.1, enstatite has Mg#=89.7-91.7, and Al content of 0.084-0.169 apfu. The Cr-diopside has Mg#=90.8-93.5 and Al=0.118-0.232 apfu. Trace element patterns in clinopyroxene allow subdivision of this group into two subgroups: subgroup Y1 – with heterogeneous LREE-enriched clinopyroxene, and subgroup Y2 – with homogenous LREE-enriched clinopyroxene; both groups are characterized by a positive Eu anomaly, but in subgroup Y1 it is significantly more pronounced. The Nd and Sr isotopic ratios in clinopyroxene from subgroup Y1 are 143Nd/144Nd=0.512624–0.512644 (εNd=4.13-4.52) and 87Sr/86Sr=0.703027–0.703100, therefore significantly more depleted than group X. In group Z peridotite the Fo content in olivine is 88.1-89.1, the Mg# in enstatite is 89.1-89.5 and its Al content is 0.19-0.20 apfu. The Mg# of Cr-diopside is 88.5-89.4 and the Al content is 0.24-0.25 apfu. The trace elements contents in clinopyroxene is homogenous and the REE pattern is flat at values double that in the primitive mantle.         

 The highest equilibration temperatures were estimated for the group X xenoliths, where TWES=1101-1110 °C (Witt-Eickschen and Seck, 1991, CMP) and TBK=1214-1241 °C (Brey and Köhler, 1990, JoP).  The temperatures calculated for group Y xenoliths are TWES=875-1033 °C and TBK=872-1027 °C and do not significantly differ between subgroups. Temperatures recorded by the group Z sample are TWES=1040-1056 °C and TBK=1065-1081 °C.

The composition of group X peridotites suggests their metasomatism by a high-temperature mafic melt resembling the basaltoids from Scania. Alternatively, they may represent high-pressure cumulates, as suggested by their coarse-grained texture. The group Y peridotites record cryptic metasomatism of a significantly depleted peridotite (melt extraction ranging typically between 25 and 30%) by a carbonatitic melt. The carbonatitic metasomatic agent was fractionating chromatographically from REE-, Th- and U-rich in subgroup Y2 to -poor in those elements in subgroup Y2. The group Z peridotite possibly represents depleted peridotite which was further metasomatized by a mafic melt. The lithospheric mantle beneath the marginal part of EEC has a complex composition, which is however different from a typical cratonic mantle.

 

Founded by Polish National Science Centre grant no. UMO-2016/23/B/ST10/01905 and WTZ PL 08/2018.

How to cite: Matusiak-Małek, M., Mikrut, J., Puziewicz, J., Kukuła, A., Ntaflos, T., Aulbach, S., Johansson, L., and Grégoire, M.: Composition of lithospheric mantle beneath southern margin of East European Craton evidenced by peridotitic xenoliths from Scania, S Sweden., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9457, https://doi.org/10.5194/egusphere-egu22-9457, 2022.

EGU22-9560 | Presentations | GMPV2.1

Preliminary insights into lithological and chemical diversity in Mirdita Ophiolite peridotite massifs – Kukes and Puka case studies 

Jakub Mikrut, Magdalena Matusiak-Małek, and Jacek Puziewicz

The Mirdita Ophiolite in northern Albania forms a ~240 km long and ~40 km wide zone within Dinaric-Hellenic belt. It marks suture after Neo-Tethyan Ocean closure. The chemical diversity of volcanic crustal rocks led to its division into two zones: the eastern one is interpreted to have Supra-Subduction Zone (SSZ) origin, whereas the western zone exhibits Mid-Ocean Ridge (MOR) affinity. More than a dozen of ultramafic massifs occur along the entire length of the ophiolite.

In this study we focus on chemical diversity of peridotites from two adjacent massifs, Kukes and Puka, which have SSZ and MOR affinities, respectively. The Kukes Massif is composed of a sequence from harzburgites at its base to clinopyroxene-poor dunites at the top, followed by pyroxenitic and peridotitic cumulates at the mantle/crust transition zone. The Puka massif is a mantle dome, composed of harzburgites and plagioclase/amphibole lherzolites (locally mylonitzed) and it is interpreted as a former oceanic core complex (OCC; Nicolas et al. 2017). Both massifs are pervasively penetrated by pyroxenitic and gabbroic veins and are serpentinised to variable degree.

Chemical composition of minerals varies between samples and lithologies, as well as between massifs. Olivine from the Kukes harzburgites has higher Fo values and NiO contents than that from dunites (Fo89.5-92 and NiO 0.31-0.52 wt.% vs. Fo88.1-91.2 and NiO 0.15-0.30 wt.%, respectively). Clinopyroxene has Mg#92.5-95.1 and Al=0.03-0.08 apfu in harzburgite, while interstitial dunite clinopyroxene has Mg#94-98 and Al below 0.03 apfu. Harzburgite orthopyroxene has Mg#90.1-91.8 and Al=0.03-0.08 apfu. Chromian-spinel has Cr#0.55-0.72 and Mg#0.46-0.56 in harzburgites and Cr#0.63-0.86 and Mg#0.25-0.48 in dunites, moreover in dunites it often exhibits chemical zonation with Cr# increasing to core. Chemical composition of minerals changes gradually in the scale of single outcrop, with Fe content increasing toward veins.

The Puka peridotites have more enriched composition. Olivine has Fo87.8-90.8 and NiO=0.25-0.43 wt. %, clinopyroxene has Mg#90.1-93.3 and Al=0.05-0.15 apfu, orthopyroxene has Mg#88.5-91.0 and Al=0.03-0.1 apfu, while spinel has Cr#0.38-0.55 and Mg#0.42-0.57, with single sample of Cr#0.60-0.75 and Mg#0.33-0.52. Plagioclase is Ca-rich (77-95 An), amphibole – occurring in some lherzolites – has composition of pargasite-tremolite.

Differences in lithological and chemical composition are visible between peridotites from both massifs, which correspond with diversity of crustal rocks and suggest that also mantle sections of the ophiolite record different origin. Peridotites from Kukes are harzburgites and dunites pointing to their refractory nature. The depleted peridotites were further affected by intensive magmatic veining. Infiltration of the melt triggered gradual enrichment in Fe of the silicates and chemical zonation of spinel. This process is well visible in dunites, where changes of Fe contents can be followed on distances of few meters. As metasomatic modification has a limited range, most of chemical differences have to be related with different protolith, but further studies are required to reconstruct rocks evolution.

Protolith of Puka peridotites is more fertile compared with Kukes, but reaction between veins and host lherzolite was not observed, and mylonitization led to Al depletion in pyroxenes.

This study was financed from scientific funds for years 2018-2022 as a project within program “Diamond Grant” (DI024748).

How to cite: Mikrut, J., Matusiak-Małek, M., and Puziewicz, J.: Preliminary insights into lithological and chemical diversity in Mirdita Ophiolite peridotite massifs – Kukes and Puka case studies, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9560, https://doi.org/10.5194/egusphere-egu22-9560, 2022.

EGU22-13175 | Presentations | GMPV2.1

Xenolith-based thermal and compositional lithospheric mantle profile of the central Siberian craton 

Dmitri Ionov, Zhe Liu, Paolo Nimis, Yigang Xu, and Alexander V. Golowin

Many aspects of structure and thermal state of >200 km thick cratonic lithospheric mantle (CLM) remain unclear because of insufficient sampling and uncertainties of pressure (P) and temperature (T) estimates. An exceptionally detailed record of equilibration temperature and composition for the central Siberian craton in the 60–230 km depth range was obtained using new and published petrographic and in-situ chemical data for ~200 garnet peridotite xenoliths from the Udachnaya kimberlite. The thermal profile is complex with samples between 35 and 40 mW/m2 model conductive geotherms as well as hotter layers in the middle and at the base (190–230 km) of the CLM. A previously unknown mid-lithospheric zone includes rocks up to 150° hotter than ambient geotherm, with high modal garnet and cpx, low-Mg# and melt-equilibrated REE patterns. We posit that hot domains with enriched compositions may form at depths where ascending melts stall (e.g., due to loss of volatiles and/or redox change) and react with wall-rock harzburgites. By contrast, we find no rocks rich in volatile-rich metasomatic amphibole, mica or carbonate, nor layers composed of peridotites with distinct melt-extraction degrees. The CLM base contains both coarse and variably deformed rocks heated and re-worked (Mg#Ol down to 0.86) by localized interaction with asthenospheric melts.

How to cite: Ionov, D., Liu, Z., Nimis, P., Xu, Y., and Golowin, A. V.: Xenolith-based thermal and compositional lithospheric mantle profile of the central Siberian craton, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13175, https://doi.org/10.5194/egusphere-egu22-13175, 2022.

EGU22-13428 | Presentations | GMPV2.1

Transition from “orogenic-like” to “anorogenic” geochemical affinity in Mesozoic post-collisional magmatism: evidence from alkali-rich dykes from Ivrea-Verbano Zone (Southern Alps) 

Abimbola Chris Ogunyele, Tommaso Giovanardi, Mattia Bonazzi, Maurizio Mazzuccheli, Alessandro De Carlis, Anna Cipriani, and Alberto Zanetti

Dyke swarms intruding the mantle–continental crust transition of the Adria plate as documented by the Ivrea-Verbano Zone (IVZ, Southern Alps) represent a unique opportunity to investigate the evolution of mantle melts from Late Paleozoic to Mesozoic in the post-collisional Variscan realm. Thus, we present new petrological and geochemical data of dyke swarms cropping out in the Finero Phlogopite Peridotite mantle unit. Dykes are from a few cm to >1 m thick and cut at a high angle the mantle foliation.

The dyke swarms are composed of cumulus phlogopite-bearing amphibole peridotite, hornblendite, diorite and anorthosite. Many dykes are composite, showing variable proportions of melanocratic and leucocratic layers. Volatiles overpressure during the late magmatic stage is testified by plastic flow and development of a porphyroclastic structure by deformation of early cumulates and by the widespread segregation of a fine-grained mica matrix. The dyke swarms show mineralogical and geochemical features varying between two end-member series.

A dyke series is characterized by Al-rich pargasite (Al2O3 up to 18 wt.%) and phlogopite, associated with apatite, calcite, sulphides and sometimes sapphirine. The amphiboles show i) large LILE and LREE contents, ii) negative Nb, Ta, Zr and Hf anomaly and iii) isotopic oxygen composition heavier than the mantle interval, which support the occurrence of recycled continental crust components in the parent melts and impart an overall “orogenic” affinity.

The second series mainly consists of Al-poorer pargasite, phlogopite and albite (An 8-10), associated with apatite, monazite, ilmenite, zircon, Nb-rich oxides and carbonates. Mineral compositions and assemblages indicate that the parent melts were strongly enriched in Fe, Na, H2O, P and C. Amphiboles are still enriched in LILE and LREE, but show extreme enrichments in Nb, Ta, Zr and Hf. As a whole, the petrochemical features point to an “anorogenic” alkaline affinity. Zircons from the “anorogenic” dykes are mostly anhedral, with homogenous internal structure or sector zoning. The strongly positive εHft (average of +10) of zircons and the Sr isotopic composition of amphiboles (0.7042) point to a derivation of such “anorogenic” melts from mildly enriched mantle sources. Concordant 206Pb/238U zircon ages for “anorogenic” dykes vary from 221 ± 9 Ma to 192 ± 8 Ma. Some dykes show both “orogenic” and “anorogenic” affinities, thus recording different pulses of mantle melts and metasomatic overprinting. As a whole, the dyke swarms show a transition from “orogenic” to “anorogenic” affinity indicating re-opening of dykes’ conduits for the melt ascending, pointing to a progressive change of the mantle sources of the Mesozoic magmatism of the Southern Alps.

How to cite: Ogunyele, A. C., Giovanardi, T., Bonazzi, M., Mazzuccheli, M., De Carlis, A., Cipriani, A., and Zanetti, A.: Transition from “orogenic-like” to “anorogenic” geochemical affinity in Mesozoic post-collisional magmatism: evidence from alkali-rich dykes from Ivrea-Verbano Zone (Southern Alps), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13428, https://doi.org/10.5194/egusphere-egu22-13428, 2022.

EGU22-50 | Presentations | G3.3

Towards an improved understanding of vertical land motion and sea-level change in eastern North America 

Soran Parang, Glenn A. Milne, Makan A. Karegar, and Lev Tarasov

Many coastal cities are an early casualty in climate-related coastal flooding because of processes resulting in land subsidence and thus enhanced relative sea-level (RSL) rise. Much of the Atlantic coast of North America has been sinking for thousands of years, at a maximum rate of ~20 cm per century as a consequence of solid Earth deformation in response to deglaciation of the Laurentide ice sheet (between ~18,000 and ~7,000 years ago) [e.g. Love et al., Earth's Future, 4(10), 2016]. Karegar et al. [Geophysical Research Letters, 43(7), 2016] have shown that vertical land motion along the Atlantic coast of the USA is an important control on nuisance flooding. A key finding in this study is that while glacial isostatic adjustment (GIA) is the dominant process driving land subsidence in most areas, there can be large deviations from this signal due to the influence of anthropogenic activity impacting hydrological processes. For example, between Maine (45°N) and New Hampshire (43°N), the GPS data show uplift while geological data show long-term subsidence. The cause of this discrepancy is not clear, but one hypothesis is increasing water mass associated with the James Bay Hydroelectric Project in Quebec [Karegar et al., Scientific Reports, 7, 2017].

The primary aim of this study is to better constrain and understand the processes that contribute to contemporary and future vertical land motion in this region to produce improved projections of mean sea-level change and nuisance flooding. The first step towards achieving these aims is to determine a GIA model parameter set that is compatible with observations of past sea-level change for this region. We make use of two regional RSL data compilations: Engelhart and Horton [Quaternary Science Reviews, 54, 2012] for northern USA and Vacchi et al. [Quaternary Science Reviews, 201, 2018] for Eastern Canada, comprising a total of 1013 data points (i.e., sea level index points and limiting data points) over 38 regions distributed throughout our study region. These data are well suited to determine optimal GIA model parameters due to the magnitude of other signals being much smaller, particularly in near-field regions such as Eastern Canada. We consider a suite of 32 ice history models that is comprised mainly of a subset from Tarasov et al. [Earth and Planetary Science Letters, 315–316, 2012] as well as the ICE-6G and ANU models. We have computed RSL for these ice histories using a state-of-the-art sea-level calculator and 440 1-D Earth viscosity models per each ice history model to identify a set of Earth model parameters that is compatible with the observations.

How to cite: Parang, S., Milne, G. A., Karegar, M. A., and Tarasov, L.: Towards an improved understanding of vertical land motion and sea-level change in eastern North America, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-50, https://doi.org/10.5194/egusphere-egu22-50, 2022.

EGU22-852 | Presentations | G3.3

The inclusion of ice model uncertainty in 3D Glacial Isostatic Adjustment modelling: a case study from the Russian Arctic 

Tanghua Li, W. Richard Peltier, Gordan Stuhne, Nicole Khan, Alisa Baranskaya, Timothy Shaw, Patrick Wu, and Benjamin Horton

The western Russian Arctic was partially covered by the Eurasian ice sheet complex during the Last Glacial Maximum (~26 ka BP) and is a focus area for Glacial Isostatic Adjustment (GIA) studies. However, there have been few GIA studies conducted in the Russian Arctic due to the lack of high quality deglacial relative sea-level (RSL) data. Recently, Baranskaya et al. (2018) released a quality-controlled deglacial RSL database for the Russian Arctic that consists of ~400 sea-level index points and ~250 marine and terrestrial limiting data that constrain RSL since 20 ka BP. Here, we use the RSL database to constrain the 3D Earth structure beneath the Russian Arctic, with consideration of the uncertainty in ice model ICE-7G_NA, which is assessed via iteratively refining the ice model with fixed 1D Earth model to achieve a best fit with the RSL data. Also, the uncertainties in 3D Earth parameters and RSL predictions are investigated.

 

We find an optimal 3D Earth model (Vis3D) improves the fit with the deglacial RSL data compared with the VM7 1D model when fixed with the ICE-7G_NA ice model. Similarly, we show improved fit in the White Sea area, where 1D model shows notable misfits, with the refined ice model ICE-7G_WSR when fixed with VM7 Earth model. The comparable fits of ICE-7G_NA (Vis3D) and ICE-7G_WSR (VM7) implies that the uncertainty in the ice model might be improperly mapped into 3D viscosity structure when a fixed ice model is employed. Furthermore, fixed with refined ice model ICE-7G_WSR, we find an optimal 3D Earth model (Vis3D_R), which fits better than ICE-7G_WSR (VM7), and the magnitude of lateral heterogeneity decreases significantly from Vis3D to Vis3D_R.  We conclude that uncertainty in the ice model needs to be considered in 3D GIA studies.

How to cite: Li, T., Peltier, W. R., Stuhne, G., Khan, N., Baranskaya, A., Shaw, T., Wu, P., and Horton, B.: The inclusion of ice model uncertainty in 3D Glacial Isostatic Adjustment modelling: a case study from the Russian Arctic, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-852, https://doi.org/10.5194/egusphere-egu22-852, 2022.

EGU22-918 | Presentations | G3.3

Regional GIA: modelling choices and community needs 

Riccardo Riva

GIA is a global process, because of gravitational effects, its interplay with earth rotation, and the large spatial extent of ice-sheet and ocean loading. However, mainly due to the presence of heterogeneities in the structure of crust and upper mantle, modelling of GIA signals often requires a regional approach. This is particularly true in the light of continuous advances in earth observation techniques, that allow increasingly accurate determination of land deformation, coastal sea level change, and mass balance of glaciers and ice sheets.

This talk will address a number of open issues related to regional GIA models, such as the effect of transient and non-linear rheologies, and the complementary role of forward and semi-empirical approaches, with an eye on the needs of the geodetic, sea level and cryosphere communities.

How to cite: Riva, R.: Regional GIA: modelling choices and community needs, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-918, https://doi.org/10.5194/egusphere-egu22-918, 2022.

EGU22-1343 | Presentations | G3.3

Resolving the Influence of Ice Stream Instability on Postglacial Relative Sea-Level Histories: the case of the St Lawrence River Channel Ice Stream 

Richard Peltier, Tanghua Li, Gordan Stuhnne, Jesse Velay-Vitow, Matteo Vacchi, Simon Englehart, and Benjamin Horton

A challenge to understanding Late Quaternary glaciation history is the mechanism(s) responsible for the asymmetry in an individual glaciation cycle between the slow pace of glaciation and the more rapid pace of deglaciation (e.g., Broecker and Van Donk, 1970). It is increasingly clear that a major contributor to the rate of global deglaciation is the instability of marine terminating ice streams. Recent analyses by Velay-Vitow et al. (2020) suggest that these instabilities were often triggered by ocean tides of anomalously high amplitude. Examples include the Hudson Strait Ice Stream responsible for Heinrich Event 1 (H1) and the Amundsen Gulf Ice Stream. Here, we analyse the instability of the Laurentian Channel and St Lawrence River Channel ice stream system. Our analysis begins with the recognition of highly significant misfits of up to 60 m at ~9,000 calendar years ago between deglacial relative sea-level histories inferred by Vacchi et al. (2018) at sites along the St Lawrence River Channel and those predicted by the ICE-6G_C (VM5a) and ICE-7G_NA (VM7) models of the Glacial Isostatic Adjustment process. We suggest that these disagreements between models and data may be due to the St Lawrence River Channel ice stream becoming unstable during the deglaciation of the Laurentide Ice Sheet (LIS) due to the hypothesized tidal mechanism for ice stream destabilization. We investigate a sequence of scenarios designed to provide a best estimate of the timing of this event. Since this ice stream penetrated deeply into the interior of the LIS and was connected to the Laurentian Channel ice stream, the instability of the latter was required in order for destabilization of the St Lawrence River channel ice stream to be possible. We explore the consistency of the implied sequence of events with the observational constraints.

How to cite: Peltier, R., Li, T., Stuhnne, G., Velay-Vitow, J., Vacchi, M., Englehart, S., and Horton, B.: Resolving the Influence of Ice Stream Instability on Postglacial Relative Sea-Level Histories: the case of the St Lawrence River Channel Ice Stream, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1343, https://doi.org/10.5194/egusphere-egu22-1343, 2022.

EGU22-1447 | Presentations | G3.3 | Highlight

Benchmark of numerical GIA codes capable of laterally heterogeneous earth structures 

Volker Klemann, Jacky Austermann, Meike Bagge, Natasha Barlow, Jeffrey Freymueller, Pingping Huang, Erik R. Ivins, Andrew Lloyd, Zdeněk Martinec, Glenn Milne, Alessio Rovere, Holger Steffen, Rebekka Steffen, Wouter van der Wal, Maryam Yousefi, and Shijie Zhong

During the last decade there has been an increasing demand to improve models of present-day loading processes and glacial-isostatic adjustment (GIA). This is especially important when modelling the GIA process in tectonically active regions like the Pacific Northwest, Patagonia or West Antarctica. All these regions are underlain by zones of low-viscosity mantle. Although one-dimensional earth models may be sufficient to model local-scale uplift within these regions, modeling of the wider-scale deformation patterns requires consideration of three-dimensional viscosity structure that is consistent with other geophysical and laboratory findings. It is this wider-scale modeling that is necessary for earth-system model applications as well as for the validation or reduction of velocity fields determined by geodetic observation networks based on GNSS, for improving satellite gravimetry, and for present-day sea-level change as paleo sea-level reconstructions.

There are a number of numerical GIA codes in the community, which can consider lateral variations in viscoelastic earth structure, but a proper benchmark focusing on lateral heterogeneity is missing to date. Accordingly, ambiguity remains when interpreting the modelling results. The numerical codes are based on rather different methods to solve the respective field equations applying, e.g., finite elements, finite volumes, finite differences or spectral elements. Aspects like gravity, compressibility and rheology are dealt with differently. In this regard, the set of experiments to be performed has to be agreed on carefully, and we have to accept that not all structural features can be considered in every code.

We present a tentative catalogue of synthetic experiments. These are designed to isolate different aspects of lateral heterogeneity of the Earth's interior and investigate their impact on vertical and horizontal surface displacements, geocenter and polar motion, gravity, sea-level change and stress. The study serves as a follow up of the successful benchmarks of Spada et al. (2011) and Martinec et al. (2018) on 1D earth models and the sea-level equation. The study was initiated by the PALSEA-SERCE Workshop in 2021 (Austermann and Simms, 2022) and benefits from discussions inside different SCAR-INSTANT subcommittees, the IAG Joint Study Group 3.1 “Geodetic, Seismic and Geodynamic Constraints on Glacial Isostatic Adjustment", the IAG Subcommission 3.4 “Cryospheric Deformation" and PALSEA.

References:

Austermann, J., Simms, A., 2022 (in press). Unraveling the complex relationship between solid Earth deformation and ice sheet change. PAGES Mag., 30(1). doi:10.22498/pages.30.1.14

Martinec, Z., Klemann, V., van der Wal, W., Riva, R. E. M., Spada, G., Sun, Y., Melini, D., Kachuck, S. B., Barletta, V., Simon, K., A, G., James, T. S., 2018. A benchmark study of numerical implementations of the sea level equation in GIA modelling. Geophys. J. Int., 215:389-414. doi:10.1093/gji/ggy280

Spada, G., Barletta, V. R., Klemann, V., Riva, R. E. M., Martinec, Z., Gasperini, P., Lund, B., Wolf, D., Vermeersen, L. L. A., King, M. A. (2011). A benchmark study for glacial isostatic adjustment codes. Geophys. J. Int., 185:106-132. doi:10.1111/j.1365-246X.2011.04952.x

How to cite: Klemann, V., Austermann, J., Bagge, M., Barlow, N., Freymueller, J., Huang, P., Ivins, E. R., Lloyd, A., Martinec, Z., Milne, G., Rovere, A., Steffen, H., Steffen, R., van der Wal, W., Yousefi, M., and Zhong, S.: Benchmark of numerical GIA codes capable of laterally heterogeneous earth structures, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1447, https://doi.org/10.5194/egusphere-egu22-1447, 2022.

EGU22-1479 | Presentations | G3.3

Peripheral and near field relative sea-level predictions using GIA models with 3D and regionally adapted 1D viscosity structures 

Meike Bagge, Volker Klemann, Bernhard Steinberger, Milena Latinovic, and Maik Thomas

Glacial isostatic adjustment (GIA) describes the viscoelastic response of the solid Earth to ice-sheet and ocean loading. GIA models determine the relative sea-level based on the viscoelastic deformations of the Earth interior including self-gravitation due to the loading of the water redistribution between ocean and ice and rotational effects. Choosing an Earth structure that adequately reflects the viscoelastic behavior of a region remains a challenge. For a specific region, the viscosity stratification can be inferred from present-day geodetic measurements like sea-level, gravity change and surface displacements or from paleo observations of former sea level. Here, we use a suite of geodynamically constrained 3D Earth structures that are derived from seismic tomography models and create regionally adapted 1D Earth structures to investigate to what extent regional, radially symmetric structures are able to reproduce the solid Earth response of a laterally varying structure. We discuss sea-level variations during the deglaciation in the near field (beneath the former ice sheet) and peripheral regions (surrounding the ice sheet) with focus on North America and Antarctica as well as Oregon and Patagonia. The suite of 3D Earth structures vary in transfer functions from seismic velocity to viscosity, i.e., in Arrhenius law and viscosity contrast between upper mantle and transition zone. We investigate how the relative sea-level predictions of the model suite members are affected due to the simplification of the Earth structure from 3D to 1D.

In general, our results support previous studies showing that 1D models in peripheral regions are not able to reproduce the 3D models’ predictions, because the response depends on the deformational behavior beneath the adjacent ice sheet and the local structure (superposition). Furthermore, the analysis of the model suite members shows different response behaviors for the 1D and 3D cases, e.g., suite members with weaker dependence of viscosity on seismic velocity can predict lowest RSL for the 3D case, but largest RSL for the 1D case. This indicates the relevance of the 3D structure in peripheral regions. 1D models in the near field are more capable to reproduce 3D model response behavior. But also here, deviations indicate that the lateral variations in the Earth structure beneath the ice sheet influence local relative sea-level predictions. 

How to cite: Bagge, M., Klemann, V., Steinberger, B., Latinovic, M., and Thomas, M.: Peripheral and near field relative sea-level predictions using GIA models with 3D and regionally adapted 1D viscosity structures, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1479, https://doi.org/10.5194/egusphere-egu22-1479, 2022.

Further understanding of Antarctic Ice Sheet responses to global climate changes requires an accurate and continuous reconstruction of the AIS changes. However, the erosive nature of ice-sheet expansion and sea-level drop and the difficulty of accessing much of Antarctica make it difficult to obtain field-based evidence of ice-sheet and sea-level changes before the Last Glacial Maximum. Limited sedimentary records from the Indian Ocean sector of East Antarctica demonstrate that the sea level of Marine Isotope Stage 3 was close to the present level despite the global sea-level drop lower than −40 m. Although previous GIA-derived sea levels hardly explain these sea-level observations, we demonstrate glacial isostatic adjustment modeling with refined Antarctic Ice Sheet loading histories. Our experiments reveal that the Indian Ocean sector of the Antarctic Ice Sheet would have been required to experience excess ice loads before the Last Glacial Maximum in order to explain the observed sea-level highstands during Marine Isotope Stage 3. We also conduct a sensitivity test of the small Northern American Ice Sheet during Marine Isotope Stage 3, suggesting that this small ice sheet is not enough to achieve sea-level highstands during Marine Isotope Stage 3 in the Indian Ocean sector of East Antarctica. As such, we suggest that the Indian Ocean sector of the East Antarctic Ice Sheet reached its maximum thickness before the global Last Glacial Maximum.
 
Reference
Ishiwa, T., Okuno, J., and Suganuma, Y., 2021. Excess ice loads in the Indian Ocean sector of East Antarctica during the last glacial period. Geology, 49, 1182–1186. https://doi.org/10.1130/g48830.1

How to cite: Ishiwa, T., Okuno, J., and Suganuma, Y.: Excess ice loads prior to the Last Glacial Maximum in the Indian Ocean sector of East Antarctica derived from sea-level observations and GIA modeling, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1568, https://doi.org/10.5194/egusphere-egu22-1568, 2022.

EGU22-1807 | Presentations | G3.3

Three-dimensional velocity variations due to ice mass changes in Greenland – Insights from a compressible glacial isostatic adjustment model 

Rebekka Steffen, Holger Steffen, Pingping Huang, Lev Tarasov, Kristian K. Kjeldsen, and Shfaqat A. Khan

The lithospheric thickness beneath and around Greenland varies from a few tens of kilometres in offshore regions to several tens of kilometres (up to 200 – 250 km) in land areas. But, due to different datasets and techniques applied in geophysical studies, there are large differences between the different geophysical lithosphere models. As an example, lithosphere models from seismological datasets show generally larger values (above 100 km), while models using gravity or thermal datasets tend to be thinner (values mostly below 100 km). To model the deformation associated with the melting of the Greenland Ice Sheet a detailed lithosphere model is required. Nevertheless, seismologically obtained lithosphere models are the ones usually applied in these so-called glacial isostatic adjustment (GIA) models. Besides, GIA models can be used to provide additional constraints on the lithospheric thickness.

Results from most 3D GIA models are compared to observed vertical velocities only, while horizontal velocities are known to be sensitive to the lateral variations of the Earth (e.g., lithospheric thickness). But, horizontal velocities from incompressible GIA models, which are commonly used, are not suitable due to the neglect of material parameter changes related to the dilatation. Compressible GIA models in turn can provide more accurate estimates of the horizontal and vertical viscoelastic deformations induced by ice-mass changes. Here, we use a variety of lithospheric thickness models, obtained from gravity, thermal, and seismological datasets, in a three-dimensional compressible GIA Earth model. The GIA model will be constructed using the finite-element software ABAQUS (Huang et al., under review in GJI) and applying recent ice history models Huy3 and GLAC-GR2a for Greenland in combination with the Little Ice Age deglaciation model by Kjeldsen et al. (2015). We will compare various lithosphere models, including their impact on the modelled 3D velocity field, and compare these against independent GNSS (Global Navigation Satellite System) observations.

References:

Huang, P., Steffen, R., Steffen, H., Klemann, V., van der Wal, W., Reusen, J., Wu, P., Tanaka, Y., Martinec, Z., Thomas, M. (under review in GJI): A finite element approach to modelling Glacial Isostatic Adjustment on three-dimensional compressible earth models. Geophysical Journal International. Under review.

Kjeldsen, K., Korsgaard, N., Bjørk, A. et al. (2015): Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature 528, 396–400, https://doi.org/10.1038/nature16183.

How to cite: Steffen, R., Steffen, H., Huang, P., Tarasov, L., Kjeldsen, K. K., and Khan, S.: Three-dimensional velocity variations due to ice mass changes in Greenland – Insights from a compressible glacial isostatic adjustment model, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1807, https://doi.org/10.5194/egusphere-egu22-1807, 2022.

EGU22-4475 | Presentations | G3.3

The effect of uncertain historical ice information on GIA modelling 

Reyko Schachtschneider, Jan Saynisch-Wagner, Volker Klemann, Meike Bagge, and Maik Thomas

When inferring mantle viscosity by modelling the effects of glacial isostatic adjustment (GIA) a necessary constraint is the external forcing by surface loading. Such forcing is usually provided by a glaciation history, where the mass-conserving sea-level changes are considered solving the sea-level equation. The uncertainties of glaciation history reconstructions are quite large and the choice of a specific history strongly influences the deformation response obtained by GIA modelling. The reason is that any history is usually based on a certain Earth rheology, and mantle viscosity inversions using such models tend to resemble the viscosity structure used for the glaciation history (Schachtschneider et al., 2022, in press). Furthermore, uncertainties of glaciation histories propagate into the respective GIA modelling results. However, to quantify the impact of glaciation history on GIA modelling remains a challenge.

In this study we investigate the effect of uncertainties in glaciation histories on GIA modelling. Using a particle-filter approach we study the effect of spatial and temporal variations in ice distribution as well as the effect of total ice mass. We quantify the effects on a one-dimensional viscosity stratification and derive measures to which extent changes in sea-level pattern and surface deformation depend on variations in ice loading.

 

References:

Schachtschneider, R., Saynisch-Wagner, J., Klemann, V., Bagge, M., Thomas, M. 2021. Nonlin. Proc. Geophys., https://doi.org/10.5194/npg-2021-22

How to cite: Schachtschneider, R., Saynisch-Wagner, J., Klemann, V., Bagge, M., and Thomas, M.: The effect of uncertain historical ice information on GIA modelling, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4475, https://doi.org/10.5194/egusphere-egu22-4475, 2022.

EGU22-4969 | Presentations | G3.3 | Highlight

Sea level response to Quaternary erosion and deposition in Scandinavia 

Gustav Pallisgaard-Olesen, Vivi Kathrine Pedersen, Natalya Gomez, and Jerry X. Mitrovica

The landscape in western Scandinavia has undergone dramatic changes through numerous glaciations during the Quaternary. These changes in topography and in the volumes of offshore sediment deposition, have caused significant isostatic adjustments and local sea-level changes, owning to erosional unloading and de- positional loading of the lithosphere. This geomorphic mass redistribution also has the potential to perturb the geoid, resulting in additional sea-level changes. However, the combined sea-level response from these processes is yet to be investigated in detail for Scandinavia.

In this study we estimate the total sea-level change from i) late Pliocene- Quaternary onshore bedrock erosion and erosion of sediments on the coastal shelf and ii) the subsequent deposition in the Norwegian Sea, northern North Sea and the Danish region. We use a gravitationally self-consistent global sea- level model that includes the full viscoelastic response of the solid Earth to surface loading and unloading. In addition to total late Pliocene-Quaternary geomorphic mass redistribution, we also estimate transient sea-level changes related specifically to the two latest glacial cycles.

We utilize existing observations of offshore sediment thicknesses of glacial origin, and combine these with estimates of onshore glacial erosion and of erosion on the inner shelf. Based on these estimates, we define mass redistribution and construct a preglacial landscape setting as well as approximate a geomorphic history of the last two glacial cycles.

Our results show that erosion and deposition has caused a sea-level fall of ∼50-100 m along the southern coast of Norway during the last two glacial cycles reaching ∼120 m in the offshore Skagerak region. The total relative sea-level fall during the Quaternary reach as much as ∼350 m in Skagerak. This highlights the importance of accounting for geomorphic sediment redistribution in glacial isostatic-adjustment modelling when interpreting ice sheet histories and glacial rebound.

How to cite: Pallisgaard-Olesen, G., Pedersen, V. K., Gomez, N., and Mitrovica, J. X.: Sea level response to Quaternary erosion and deposition in Scandinavia, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4969, https://doi.org/10.5194/egusphere-egu22-4969, 2022.

EGU22-5146 | Presentations | G3.3

The use of Non-Linear Geometry (NLGEOM) and gravity loading in flat and spherical Finite Element models of Abaqus for Glacial Isostatic Adjustment (GIA) 

Jesse Reusen, Pingping Huang, Rebekka Steffen, Holger Steffen, Caroline van Calcar, Bart Root, and Wouter van der Wal

In geodynamic studies, most Finite-Element (FE) models in the commercial FE software Abaqus use elastic foundations at internal boundaries. This method works well for incompressible and so-called material-compressible material parameters but it is unclear if it works sufficiently well for implementing compressibility, especially in a 3D spherical model. The latter is of importance in investigations of glacial isostatic adjustment (GIA). A possible alternative method is based on a combination of explicit gravity loading with non-linear geometry (NLGEOM parameter in Abaqus) (Hampel et al., 2019). This method would remove the need to make a stress transformation to get the correct GIA stresses, and automatically accounts for the change in internal buoyancy forces that arises when allowing for compression, according to the Abaqus Documentation. We compared the method for (in)compressible flat (~half-space) FE models with existing numerical half-space and spherical (in)compressible codes and tested the applicability of this method in a spherical FE model. We confirm that this method works for multi-layer incompressible flat FE models. We furthermore notice that horizontal displacement rates of incompressible flat FE models match those of spherical incompressible GIA models below the current GNSS (Global Navigation Satellite System) measurement accuracy of 0.2-0.3 mm/a, but only for ice sheets that are smaller than 450 km in extent. For compressible models, disagreements in the vertical displacement rates are found between the flat NLGEOM model and the compressible Normal Mode code ICEAGE (Kaufmann, 2004). An extension of the NLGEOM-gravity method to a spherical FE model, where gravity must be implemented in the form of body forces combined with initial stress, leads to a divergence of the solution when viscous behaviour is turned on. We thus conclude that the applicability of the NLGEOM method is so far limited to flat FE models, and in GIA investigations for flat models the applicability further depends on the size of the load (ice sheet, glacier).

References:

Hampel, A., Lüke, J., Krause, T., & Hetzel, R., 2019. Finite-element modelling of glacial isostatic ad-
justment (GIA): Use of elastic foundations at material boundaries versus the geometrically non-linear
formulation, Computers & geosciences, 122, 1–14.

Kaufmann, G. (2004). Program Package ICEAGE, Version 2004. Manuscript. Institut für Geophysik der Universität Göttingen.

How to cite: Reusen, J., Huang, P., Steffen, R., Steffen, H., van Calcar, C., Root, B., and van der Wal, W.: The use of Non-Linear Geometry (NLGEOM) and gravity loading in flat and spherical Finite Element models of Abaqus for Glacial Isostatic Adjustment (GIA), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5146, https://doi.org/10.5194/egusphere-egu22-5146, 2022.

EGU22-6013 | Presentations | G3.3 | Highlight

A finite element approach to modelling Glacial Isostatic Adjustment on three-dimensional compressible earth models 

Pingping Huang, Rebekka Steffen, Holger Steffen, Volker Klemann, Wouter van der Wal, Jesse Reusen, Yoshiyuki Tanaka, Zdeněk Martinec, and Maik Thomas

A new finite element method called FEMIBSF is presented that is capable of modelling Glacial Isostatic Adjustment (GIA) on compressible earth models with three-dimensional (3D) structures. This method takes advantage of the classical finite element techniques to calculate the deformational and gravitational responses to the driving forces of GIA (including body forces and pressures on Earth’s surface and core-mantle boundary, namely CMB). Following Wu (2004) and Wong & Wu (2019), we implement the GIA driving forces in the commercial finite element software Abaqus and solve the equation of motion in an iterative manner. Different from those two studies, all formulations and calculations in this study are not associated with spherical harmonics but are performed in the spatial domain. Due to this, FEMIBSF is free from expanding the load, displacement, and potential into spherical harmonics with the short-wavelength components (of high degree and order) neglected. We compare the loading Love numbers (LLNs) generated by FEMIBSF with their analytical solutions for homogeneous models and numerical solutions for layered models calculated by the normal-mode approach/code, ICEAGE (Kaufmann, 2004), the iterative body force approach/code, IBF (Wong & Wu, 2019) and the spectral-finite element approach/code, VILMA-C (Martinec, 2000; Tanaka et al., 2011). We find that FEMIBSF agrees well with analytical and numerical LLN results of these codes. In addition, we show how to compute the degree-1 deformation directly in the spatial domain with the finite element approach and how to implement it in a GIA model using Abaqus. Finally, we demonstrate that the CMB pressure related to the gravitational potential change in the fluid core only influences the long-wavelength surface displacement and potential such as the degree-2 component.

 

References

 

Kaufmann, G. (2004). Program Package ICEAGE, Version 2004. Manuscript. Institut für Geophysik der Universität Göttingen.

 

Martinec, Z. (2000). Spectral–finite element approach to three-dimensional viscoelastic relaxation in a spherical earth. Geophysical Journal International142(1), 117-141.

 

Tanaka, Y., Klemann, V., Martinec, Z. & Riva, R. E. M. (2011). Spectral-finite element approach to viscoelastic relaxation in a spherical compressible Earth: application to GIA modelling. Geophysical Journal International184(1), 220-234.

 

Wong, M. C. & Wu, P. (2019). Using commercial finite-element packages for the study of Glacial Isostatic Adjustment on a compressible self-gravitating spherical earth–1: harmonic loads. Geophysical Journal International217(3), 1798-1820.

 

Wu, P. (2004). Using commercial finite element packages for the study of earth deformations, sea levels and the state of stress. Geophysical Journal International, 158(2), 401-408.

 
 
 

How to cite: Huang, P., Steffen, R., Steffen, H., Klemann, V., van der Wal, W., Reusen, J., Tanaka, Y., Martinec, Z., and Thomas, M.: A finite element approach to modelling Glacial Isostatic Adjustment on three-dimensional compressible earth models, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6013, https://doi.org/10.5194/egusphere-egu22-6013, 2022.

EGU22-6236 | Presentations | G3.3

Identifying geographical patterns of transient deformation in the geological sea level record 

Karen M. Simon, Riccardo E. M. Riva, and Taco Broerse

In this study, we examine the effect of transient mantle creep on the prediction of glacial isostatic adjustment (GIA) signals. Specifically, we compare predictions of relative sea level change from GIA from a set of Earth models in which transient creep parameters are varied in a simple Burgers model to a reference case with a Maxwell viscoelastic rheology. The model predictions are evaluated in two ways: first, relative to each other to quantify the effect of parameter variation, and second, for their ability to reproduce well-constrained sea level records from selected locations. Both the resolution and geographic location of the relative sea level observations determine whether the data can distinguish between model cases. Model predictions are most sensitive to the inclusion of transient mantle deformation in regions that are near-field and peripheral relative to former ice sheets. This sensitivity appears particularly true along the North American west coast in the region of the former Cordilleran Ice Sheet, which experienced rapid sea-level fall following deglaciation between 14-12 kyr BP. Relative to the Maxwell case, Burgers models better reproduce this rapid phase of regional postglacial sea level fall. As well, computed goodness-of-fit values in this region show a clear preference for models where transient deformation is present in the whole or lower mantle, and for models where the rigidity of the Kelvin element is weakened relative to the rigidity of the Maxwell element. In contrast, model predictions of relative sea-level change in the far-field show little or weak sensitivity to the inclusion of transient deformation.

How to cite: Simon, K. M., Riva, R. E. M., and Broerse, T.: Identifying geographical patterns of transient deformation in the geological sea level record, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6236, https://doi.org/10.5194/egusphere-egu22-6236, 2022.

EGU22-6829 | Presentations | G3.3

Dependence of GIA-induced gravity change in Antarctica on viscoelastic Earth structure 

Yoshiya Irie, Jun'ichi Okuno, Takeshige Ishiwa, Koichiro Doi, and Yoichi Fukuda

The Antarctic ice mass loss is accelerating due to recent global warming. Changes in Antarctic ice mass have been observed as the gravity change by GRACE (Gravity Recovery and Climate Experiment) satellites. However, the gravity signal includes both the component of the ice mass change and the component of the solid Earth response to surface mass change (Glacial Isostatic Adjustment, GIA). Evaluating the GIA-induced gravity change requires viscoelastic Earth structure and ice history from the last deglaciation.

Antarctica is characterized by lateral heterogeneity of seismic velocity structure. West Antarctica shows relatively low seismic velocities, suggesting low viscosity regions in the upper mantle. On the other hand, East Antarctica shows relatively high seismic velocities, suggesting thick lithosphere. Here we examine the sensitivities of GIA-induced gravity change in Antarctica to upper mantle viscosity and lithosphere thickness using spherically symmetric Earth models.

Results indicate that the gravity field change depends on both the upper mantle viscosity profile and the lithosphere thickness. In particular, the long-wavelength gravity field changes become dominant in the adoption of viscoelastic models with a low viscosity layer beneath the elastic lithosphere. The same trend is also shown in the adoption of viscoelastic models with a thick lithosphere, and there is a trade-off between the structure of the low viscosity layer and the thickness of the lithosphere. This trade-off may reduce the effect of the lateral variations in Earth structure beneath Antarctica on the estimate of Antarctic ice sheet mass change.

How to cite: Irie, Y., Okuno, J., Ishiwa, T., Doi, K., and Fukuda, Y.: Dependence of GIA-induced gravity change in Antarctica on viscoelastic Earth structure, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6829, https://doi.org/10.5194/egusphere-egu22-6829, 2022.

EGU22-7609 | Presentations | G3.3

Deglaciation of the Antarctic Ice Sheet modeled with the coupled solid Earth – ice sheet model system PISM-VILMA 

Torsten Albrecht, Ricarda Winkelmann, Meike Bagge, and Volker Klemann

The Antarctic Ice Sheet is the largest and most uncertain potential contributor to future sea level rise. Understanding involved feedback mechanisms require physically-based models. Confidence in future projections can be improved by models that can reproduce past ice sheet changes, in particular over the last deglaciation. The complex interaction between ice, bedrock and sea level plays an important role in ice sheet instability with a large variety of characteristic response time scales dependent on the heterogeneous Earth structure underneath Antarctica and the ice sheet dynamics.

We have coupled the VIscoelastic Lithosphere and MAntle model (VILMA) to the Parallel Ice Sheet Model (PISM v2.0, www.pism.io) and ran simulations over the last two glacial cycles. In this framework, VILMA considers both viscoelastic deformations of the solid Earth by considering a three-dimensional rheology and a gravitationally self-consistent mass redistribution in the ocean by solving for the sea-level equation. PISM solves for the stress balance for a changing bed topography, which is updated in 100 years coupling intervals and which can directly affect ice sheet flow and grounding line dynamics.

Here, we show first results of coupled PISM-VILMA simulations scored against a database of geological constraints including sea level index points. We discuss sensitivities of model parameters and climatic forcing in preparation for a larger parameter ensemble study. This project is part of the German Climate Modeling Initiative PalMod.

 

How to cite: Albrecht, T., Winkelmann, R., Bagge, M., and Klemann, V.: Deglaciation of the Antarctic Ice Sheet modeled with the coupled solid Earth – ice sheet model system PISM-VILMA, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7609, https://doi.org/10.5194/egusphere-egu22-7609, 2022.

EGU22-7906 | Presentations | G3.3

Glacial Isostatic Adjustment in Antarctica : a rheological study 

Alexandre Boughanemi and Anthony Mémin

 The Antarctic Ice Sheet (AIS) is the largest ice sheet on Earth that has known important mass 
 changes during the last 20 kyrs. These changes deform the Earth and modify its gravity field, 
 a process known as Glacial Isostatic Adjustment (GIA). GIA is directly influenced by the mechanical
 properties and internal structure of the Earth, and is monitored using Global Navigation Satellite 
 System positioning or gravity measurements. However, GIA in Antarctica remains poorly constrained  
 due to the cumulative effect of past and present ice-mass changes, the unknown history of the past
 ice-mass change, and the uncertainties of the mechanical properties of the Earth. The viscous 
 deformation due to GIA is usually modeled using a Maxwell rheology. However, other geophysical
 processes employ Andrade (tidal deformation) or Burgers (post-seismic deformation) laws that could 
 result in a more rapid response of the Earth. We investigate the effect of using these
 different rheology laws to model GIA-induced deformation in Antarctica.  

Employing the ALMA and TABOO softwares, we use the Love number and Green functions formalism to
compute the surface motion and the gravity changes induced by the past and present ice-mass redistributions.
We use the elastic properties and the radial structure of the preliminary reference Earth model (PREM) and the
viscosity profile given by Hanyk (1999). The deformation is computed for the three rheological laws mentioned
above using ICE-6G and elevation changes from ENVISAT (2002-2010) to represent the past and present changes
of the AIS, respectively. 

We obtain that the three rheological laws lead to significant Earth response within a 20 kyrs time interval since
the beginning of the ice-mass change. The differences are the largest between Maxwell and Burgers rheologies
during the 500 years following the beginning of the surface-mass change. Regarding the response to present
changes in Antarctica, the largest discrepancies are obtained in regions with the greatest current melting rates,
namely Thwaites and Pine Island Glacier in West Antarctica. Uplift rates computed twelve years after the end of
the present melting using Burgers and Andrade rheologies are five and two times larger than those obtained
using Maxwell, respectively. 

How to cite: Boughanemi, A. and Mémin, A.: Glacial Isostatic Adjustment in Antarctica : a rheological study, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7906, https://doi.org/10.5194/egusphere-egu22-7906, 2022.

EGU22-8112 | Presentations | G3.3

Investigating the Sensitivity of North Sea Glacial Isostatic Adjustment during the Last Interglacial to the Penultimate Deglaciation of Global Ice Sheets 

Oliver Pollard, Natasha Barlow, Lauren Gregoire, Natalya Gomez, Víctor Cartelle, Jeremy Ely, and Lachlan Astfalck

The Last Interglacial (LIG; MIS 5e) period (130 - 115 ka) saw the last time in Earth’s history that polar temperatures reached 3 - 5 °C above pre-industrial values causing the Greenland and Antarctic ice sheets to shrink to sizes smaller than those of today. Similar polar temperature increases are predicted in the coming decades and the LIG period could therefore help to shed light on ice-sheet and sea-level responses to a warming world. 

LIG estuarine sediments preserved in the North Sea region are promising study sites for identification of the Antarctic ice sheet's relative contribution to LIG sea level, as well as for the reconstruction of both the magnitude and rate of LIG sea-level change during the interglacial. For these purposes, sea-level records in the region must be corrected for the impacts of glacial isostatic adjustment (GIA) which is primarily a consequence of two components: the evolution of terrestrial ice masses during the Penultimate Deglaciation (MIS 6), predominantly the near-field Eurasian ice sheet, and the viscoelastic structure of the solid Earth. 

The relative paucity of geological constraints on characteristics of the MIS 6 Eurasian ice sheet makes it challenging to evaluate its effect on sea level in the North Sea region. In order to model the Eurasian ice extent, thickness, and volume during the Penultimate Deglaciation we use a simple ice sheet model (Gowan et al. 2016), calibrated against models of the Last Glacial Maximum. By employing a gravitationally consistent sea-level model (Kendall et al. 2005), we generate a large ensemble of GIA outputs that spans the uncertainty in parameters controlling both the viscoelastic earth model and the evolution of global ice sheets during the Penultimate Deglaciation. By performing spatial sensitivity analysis with this ensemble, we are able to demonstrate the relative importance of each parameter in controlling North Sea GIA. Our comprehensive approach to exploring uncertainties in both the global ice sheet evolution and solid earth response provides significant advances in our understanding of LIG sea level.

How to cite: Pollard, O., Barlow, N., Gregoire, L., Gomez, N., Cartelle, V., Ely, J., and Astfalck, L.: Investigating the Sensitivity of North Sea Glacial Isostatic Adjustment during the Last Interglacial to the Penultimate Deglaciation of Global Ice Sheets, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8112, https://doi.org/10.5194/egusphere-egu22-8112, 2022.

EGU22-8350 | Presentations | G3.3 | Highlight

Reconstructing large scale differential subsidence in the Netherlands using a spatio-temporal 3D paleo-groundwater level interpolation 

Kim de Wit, Roderik S.W. van de Wal, and Kim M. Cohen

Subsidence is a land use problem in the western and northern Netherlands, especially where both shallow soft soil subsidence and deeper subsidence components, including glacio-isostatic adjustment (GIA), add up. The aim of this study is to improve the estimation of the GIA component within the total subsidence signal across the Netherlands during the Holocene, using coastal plain paleo-water level markers. Throughout the Holocene, the GIA induced subsidence in the Netherlands has been spatially and temporally variant, as shown by previous studies that used GIA modelling and geological relative sea-level rise reconstructions. From the latter work, many field data points are available based on radiocarbon dated coastal basal peats of different age and vertical position. These reveal Holocene relative sea-level rise to have been strongest in the Wadden Sea in the Northern Netherlands. This matches post-glacial GIA subsidence (forebulge collapse) as modelled for the Southern North Sea, being located in the near-field of Scandinavian and British former ice masses.

In this study, geological data analysis of RSL and other paleo-water level data available from the Dutch coastal plain for the Holocene period is considered in addition. The analysis takes the form of designing and executing a 3D interpolation (kriging with a trend: KT), where paleo-water level Z(x,y,age) is predicted and the field-data points are the observations (Age, X, Y and Z as knowns). We use a spatio-temporal 3D grid that covers the Dutch coastal plain, and reproduces and unifies earlier constructed sea level curves and high-resolution sampled individual sites (e.g. Rotterdam). The function describing the trend part of the interpolation separates linear and non-linear components of relative water level rise, i.e.: long-term background subsidence and shorter-term GIA subsidence signal and postglacial water level rise. The kriging part then processes remaining subregional patterns. The combined reconstruction thus yields a spatially continuous parameterization of regional trends that (i) allows to separate subsidence from water level rise terms, and (ii) is produced independently of GIA modelling to enable cross-comparison. Results are presented for the coastal plain of the Netherlands ([SW] Zeeland – Rotterdam – Holland – Wadden Sea – Groningen [NE]). The percentage of the total coastal-prism accommodation space that appears due to subsidence, from the south to the north of the study area increases by 20%. Holocene-averaged subsidence rates from the first analysis ranged from ca. 0.1 m/kyr (Zeeland) to 0.4 m/kyr (Groningen), which is 5-10 times larger than present-day GPS/GNSS-measured rates.

The research presented in this abstract is part of the project Living on soft soils: subsidence and society (grantnr.: NWA.1160.18.259). 

How to cite: de Wit, K., van de Wal, R. S. W., and Cohen, K. M.: Reconstructing large scale differential subsidence in the Netherlands using a spatio-temporal 3D paleo-groundwater level interpolation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8350, https://doi.org/10.5194/egusphere-egu22-8350, 2022.

EGU22-9485 | Presentations | G3.3

An adaptive-triangular fully coupled 3D ice-sheet–sea-level model 

Jorjo Bernales, Tijn Berends, and Roderik van de Wal

Regional sea-level change and the deformation of the solid Earth can lead to important feedbacks on the long- and short-term evolution and stability of ice sheets. A rigorous manner of accounting for these feedbacks in model-based ice-sheet reconstructions and projections, is to establish a two-way coupling between an ice-sheet and a sea-level model. However, the individual requirements of each of these two components such as a global, long ice sheet load history or a high ice-model resolution over critical sectors of an ice sheet are at present not easy to combine in terms of computational feasibility. Here, we present a coupling between the ice-sheet model UFEMISM, which solves a range of approximations of the stress balance on a dynamically adaptive irregular triangular mesh, and the gravitationally self-consistent sea-level model SELEN, which incorporates the glacial isostatic adjustment for a radially symmetric, viscoelastic and rotating Earth, including coastline migration. We show global simulations over glacial cycles, including the North American, Eurasian, Greenland, and Antarctic ice sheets, and compare its performance and results against commonly used alternatives.

How to cite: Bernales, J., Berends, T., and van de Wal, R.: An adaptive-triangular fully coupled 3D ice-sheet–sea-level model, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9485, https://doi.org/10.5194/egusphere-egu22-9485, 2022.

EGU22-9968 | Presentations | G3.3

Interacting melt-elevation and glacial isostatic adjustment feedbacks allow for distinct dynamic regimes of the Greenland Ice Sheet 

Maria Zeitz, Jan M. Haacker, Jonathan F. Donges, Torsten Albrecht, and Ricarda Winkelmann

Interacting feedbacks play an important role in governing the stability of the Greenland Ice Sheet under global warming. Here we study the interaction between the positive melt-elevation feedback and the negative feedback from glacial isostatic adjustment (GIA), and how they affect the ice volume of the Greenland Ice Sheet on long time scales. We therefore use the Parallel Ice Sheet Model (PISM) coupled to a simple solid Earth model (Lingle-Clark) in idealized step-warming experiments. Our results suggest that for warming levels above 2°C, Greenland could become essentially ice-free on the long-term, mainly as a result of surface melting and acceleration of ice flow. The negative GIA feedback can mitigate ice losses and promote a partial recovery of the ice volume.

Exploring the full factorial parameter space which determines the relative strength of the two feedbacks reveals that four distinct dynamic regimes are possible: from stabilization, via recovery and self-sustained oscillations to the irreversible collapse of the Greenland Ice Sheet. In the recovery regime an initial ice loss is reversed and the ice volume stabilized at 61-93% of the present day volume. For certain combinations of temperature increase, atmospheric lapse rate and Earth mantle viscosity, the interaction of the GIA feedback and the melt-elevation feedback leads to self-sustained, long-term oscillations in ice-sheet volume with oscillation periods of tens to hundreds of thousands of years and oscillation amplitudes between 15-70% of present-day ice volume. This oscillatory regime reveals a possible mode of internal climatic variability in the Earth system on time scales on the order of 100,000 years that may be excited by or synchronized with orbital forcing or interact with glacial cycles and other slow modes of variability.

How to cite: Zeitz, M., Haacker, J. M., Donges, J. F., Albrecht, T., and Winkelmann, R.: Interacting melt-elevation and glacial isostatic adjustment feedbacks allow for distinct dynamic regimes of the Greenland Ice Sheet, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9968, https://doi.org/10.5194/egusphere-egu22-9968, 2022.

Geodetic time series from autonomous GNSS systems distributed across Antarctica are revealing unexpected patterns and startling rates of crustal deformation due to GIA.  Linked with seismic mapping and derived rheological properties of the Antarctic crust and mantle, and with new modeling capabilities, our understanding of the timescales of GIA response to ice sheet change is swiftly advancing.  Rapid GIA response allows for cryosphere-solid earth interactions that can alter ice sheet behavior on decadal and centennial timescales.  Continued progress in understanding how such feedbacks may influence future contributions of polar ice sheets to global sea level change requires continuing and expanding our geodetic observations. What frameworks can lead to implementation of this goal?  U.S. and international science vision documents pertaining to geodynamics, the changing cryosphere and sea level, all point to international collaborative efforts as the way to achieve ambitious science goals and extend observational capacities in polar regions.  SCAR research programmes facilitated the network vision and collaborative relations that led to the POLENET (POLar Earth observing NETwork) network of geophysical and geodetic instruments during the International Polar Year 2007-08. Can the SCAR INSTANT programme provide a framework for collaborative initiatives between national Antarctic programs to form a sustainable model to support acquisition of the observations required to meet community science objectives?  Let’s consider the ‘grass roots’ actions by the science community needed to push international, interdisciplinary science frameworks forward.

How to cite: Wilson, T. J.: GNSS Observations of Antarctic Crustal Deformation – International Framework for Future Networks?, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10610, https://doi.org/10.5194/egusphere-egu22-10610, 2022.

EGU22-10884 | Presentations | G3.3

Effect of Icelandic hotspot on Mantle viscosity in southeast Greenland 

Valentina R. Barletta, Wouter van der Wal, Andrea Bordoni, and Shfaqat Abbas Khan

Recent studies suggest the hotspot currently under Iceland was located beneath eastern Greenland at ~40 Ma BP and that the upwelling of hot material from the Iceland plume towards Greenland is ongoing. A warm upper mantle has a low viscosity, which in turn causes the solid Earth to rebound much faster to deglaciation. In the area of the Kangerlussuaq glacier, a large GPS velocities residual after removing predicted purely elastic deformations caused by present-day ice loss suggests the possibility of such fast rebound to little ice age (LIA) deglaciation. Here we investigate the lithospheric thickness and the mantle viscosity structure beneath SE-Greenland by means of model predictions of solid Earth deformation driven by a low viscosity mantle excited by the LIA deglaciation to the present day. From the comparison of such modeled deformations with the GPS residual, we conclude that 1) a rather thick lithosphere is preferred (90-100 km) 2) and the upper mantle most likely has a viscosity that changes with depth. Assuming a two layer upper mantle, it is not well constrained which part of the upper mantle has to be low, with a preference for low viscosity in the deeper upper mantle.

To understand such results we implemented forward modelling with more realistic earth models, relying on improvements in seismic models, petrology and gravity data. This yields 3D viscosity maps that can be compared to inferences based on the 1D model and forms the basis for 3D GIA models. The conclusion based on the 1D model can be explained with 3D Earth models. In the area of the Kangerlussuaq glacier the seismic derived viscosities prefer a higher viscosity layer above a lower viscosity one. This stems from the slow decrease in viscosity with depth. The layer that is characterized as shallow upper mantle still contains shallow regions with low temperatures, while the deeper upper mantle reaches low viscosities. Generally, for GIA earth models the “higher above lower” viscosity layering is unusual. However, the analysis of the 1D model clearly shows this to be one of the preferred model regions, in combination with a large lithosphere thickness of 100 km. This is a notable result that draws attention to the importance of shallow layering in GIA models. 

How to cite: Barletta, V. R., van der Wal, W., Bordoni, A., and Khan, S. A.: Effect of Icelandic hotspot on Mantle viscosity in southeast Greenland, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10884, https://doi.org/10.5194/egusphere-egu22-10884, 2022.

EGU22-10942 | Presentations | G3.3

Separating of Glacial Isostatic Adjustment (GIA) across Antarctica from GRACE/GRACE-FO observations via Independent Component Analysis (ICA) 

Tianyan Shi, Yoichi Fukuda, Koichiro Doi, and Jun’ichi Okuno

The redistribution of the near-surface solid Earth due to glacial isostatic adjustment (GIA), which is the ongoing response of the solid Earth due to changes in the ice-ocean load following the Last Glacial Maximum, has a direct impact on the inferred Antarctic Ice Sheet (AIS) mass balance from gravimetric data acquired during the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) missions.

However, sparse in-situ observation networks across Antarctica have led to the inability to effectively constrain the GIA effect. Here, we analyze the mass change patterns across Antarctica via independent component analysis (ICA), a statistics-based blind source separation method to extract signals from complex datasets, in an attempt to reduce uncertainties in the glacial isostatic adjustment (GIA) effects and improve understanding of AIS mass balance.

The results reveal that GIA signal could be directly separated from GRACE/GRACE-FO observations without introducing any external model.  Although the GIA signal cannot be completely isolated, the correlation coefficients between ICA-separated GIA, and the ICE-5G and ICE-6G models are 0.692 and 0.691, respectively. The study demonstrates the possibility of extracting GIA effects directly from GRACE/GRACE-FO observations.

How to cite: Shi, T., Fukuda, Y., Doi, K., and Okuno, J.: Separating of Glacial Isostatic Adjustment (GIA) across Antarctica from GRACE/GRACE-FO observations via Independent Component Analysis (ICA), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10942, https://doi.org/10.5194/egusphere-egu22-10942, 2022.

EGU22-11569 | Presentations | G3.3

The influence of Earth’s hypsometry on global sea level through a glacial cycle and into the future 

Vivi Kathrine Pedersen, Natalya Gomez, Gustav Pallisgaard-Olesen, Julius Garbe, Andy Aschwanden, Ricarda Winkelmann, and Jerry Mitrovica

Earth’s topography and bathymetry is shaped by a complex interplay between solid-Earth processes that deform the Earth from within and the surface processes that modify the outer shape of the Earth. At the surface, an ultimate baselevel set by global sea level marks the defining transition from erosion to deposition. Over geological time scales, this baselevel has resulted in a distinct hypsometric distribution (distribution of surface area with elevation), with the highest concentration of surface area focused in a narrow elevation range near present-day sea level.

This particular feature in Earth’s hypsometry makes the global land fraction very sensitive to changes in sea level. Indeed, a sea-level change will result in a significant change in the land fraction as dictated by the hypsometric distribution, thereby modulating the very same sea-level change. However, it remains unexplored exactly how sea-level changes have modified the global land fraction over past glacial cycles and into the future.

Here we analyse how Earth’s hypsometry has changed over the last glacial cycle as large ice sheets waxed and waned particularly in Scandinavia and North America. These changes in global ice volume resulted in a significant global excursion in sea level, modulated regionally by solid-Earth deformation, gravitational effects, and effects from Earth’s rotation. These changes modified Earth’s hypsometry, and therefore the global land fraction at any given time. Consequently, we can map out how Earth’s hypsometry has influenced global mean sea level (GMSL) over time. To examine this relationship between Earth’s hypsometry and sea level further, we look to the deep future, to a scenario where both the Greenland Ice Sheet and the Antarctic Ice Sheets will melt away completely over multi-millennial timescales. This scenario is not meant to represent a realistic future scenario per se, but it allows us to define the hypsometric GMSL correction needed for any GMSL that the Earth has experienced recently or will experience in the future.

How to cite: Pedersen, V. K., Gomez, N., Pallisgaard-Olesen, G., Garbe, J., Aschwanden, A., Winkelmann, R., and Mitrovica, J.: The influence of Earth’s hypsometry on global sea level through a glacial cycle and into the future, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11569, https://doi.org/10.5194/egusphere-egu22-11569, 2022.

EGU22-12689 | Presentations | G3.3

Improving past and future relative sea-level constraints for the Norwegian coast 

Thomas R. Lakeman, F. Chantel Nixon, Anders Romundset, Matthew J.R. Simpson, John Inge Svendsen, Kristian Vasskog, Stein Bondevik, Glenn Milne, and Lev Tarasov

New research aims to improve relative sea-level (RSL) projections for the Norwegian coast. The main objectives are to: i) collect observations of past RSL changes, ranging from the end of the last ice age to the last century, ii) develop a high-quality database of post-glacial sea-level index points (SLIPs) for the Norwegian coast, and to iii) improve our understanding of past and future vertical land motion using glacial isostatic adjustment (GIA) modelling. To now, our collection of new empirical data has focussed on three significant, but enigmatic RSL histories that are not adequately reproduced in existing GIA models: very recent stillstands and transgressions documented by historical tide gauge records, rapid transgressions during the early- to mid-Holocene Tapes period, and abrupt transgressions during the latest Pleistocene Younger Dryas chronozone. Ongoing field sampling is focussed on developing high-resolution RSL trends from salt marshes, isolation basins, and raised beaches, using multiple biostratigraphic and geochemical proxies (i.e. micropaleontology, macrofossils, x-ray fluorescence, C/N) and dating techniques (i.e. Pb-210, Cs-137, C-14, tephrochronology, geochemical markers). Results from various localities spanning the Norwegian coast provide robust constraints for the timing and rate of RSL change during the Younger Dryas and Tapes chronozones. Additional results providing new estimates of very recent RSL trends in southwest Norway are presented by Holthuis et al. (Late Holocene sea-level change and storms in southwestern Norway based on new data from intertidal basins and salt marshes; Session CL5.2.2). These new and emerging constraints are being integrated into a post-glacial RSL database that incorporates high-quality data from the entire Norwegian coastline. Over 1000 SLIPs have been assembled from published studies. These existing data were updated using current radiocarbon calibration curves, high-resolution digital elevation models, new field observations, and new quantitative estimates of relevant uncertainties. Ongoing GIA modelling is utilizing the new RSL database, a glaciological model that freely simulates ice sheet changes, as well as geodetic and ice margin chronology constraints, to develop rigorous uncertainty estimates for present and future GIA along the Norwegian coast.

How to cite: Lakeman, T. R., Nixon, F. C., Romundset, A., Simpson, M. J. R., Svendsen, J. I., Vasskog, K., Bondevik, S., Milne, G., and Tarasov, L.: Improving past and future relative sea-level constraints for the Norwegian coast, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12689, https://doi.org/10.5194/egusphere-egu22-12689, 2022.

Uncertainty in present-day glacial isostatic adjustment (GIA) rates represent at least 44% of the total gravity-based ice mass balance signal over Antarctica. Meanwhile, physical couplings between solid Earth, sea level and ice dynamics enhance the dependency of the spatiotemporally varying GIA signal on 3D rheology. For example, the presence of low-viscosity mantle beneath melting marine-based ice sheet sectors such as the Amundsen Sea Embayment may delay or even prevent unstable grounding line retreat. Improved knowledge of upper mantle thermomechanical structure is therefore required to refine estimates of current and projected ice mass balance.

Here, we present a Bayesian inverse method for mapping shear wave velocities from high-resolution adjoint tomography into thermomechanical structure using a calibrated parameterisation of anelasticity at seismic frequency. We constrain the model using regional geophysical data sets containing information on upper mantle temperature, attenuation and viscosity structure. The Globally Adaptive Scaling Within Adaptive Metropolis (GASWAM) modification of the Metropolis-Hastings algorithm is utilised to allow efficient exploration of the multi-dimensional parameter space. Our treatment allows formal quantification of parameter covariances, and naturally permits us to propagate uncertainties in material parameters into uncertainty in thermomechanical structure.

We find that it is possible to improve agreement on steady state viscosity structure between tomographic models by approximately 30%, and reduce its uncertainty by an order of magnitude as compared to a forward-modelling approach. Direct access to temperature structure allows us to estimate lateral variations in lithospheric thickness, geothermal heat flow, and their associated uncertainties.

How to cite: Hazzard, J., Richards, F., Roberts, G., and Goes, S.: Reducing Uncertainty in Upper Mantle Rheology, Lithospheric Thickness and Geothermal Heat Flow Using a Bayesian Inverse Framework to Calibrate Experimental Parameterisations of Anelasticity, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12967, https://doi.org/10.5194/egusphere-egu22-12967, 2022.

This article presents a comprehensive benchmark study for the newly updated and publicly available finite element code CitcomSVE for modeling dynamic deformation of a viscoelastic and incompressible planetary mantle in response to surface and tidal loading. A complete description of CitcomSVE’s finite element formulation including calculations of the sea-level change, polar wander, apparent center of mass motion, and removal of mantle net rotation is presented. The 3-D displacements and displacement rates and the gravitational potential anomalies are solved with CitcomSVE for three benchmark problems using different spatial and temporal resolutions: 1) surface loading of single harmonics, 2) degree-2 tidal loading, and 3) the ICE-6G GIA model. The solutions are compared with semi-analytical solutions for error analyses. The benchmark calculations demonstrate the accuracy and efficiency of CitcomSVE. For example, for a typical ICE-6G GIA calculation with a 122-ky glaciation-deglaciation history, time increment of 100 years, and ~50 km (or ~0.5 degree) surface horizontal resolution, it takes ~4.5 hours on CPU 96 cores to complete with about 1% and 5% errors for displacements and displacement rates, respectively. Error analyses shows that CitcomSVE achieves a second order accuracy, but the errors are insensitive to temporal resolution. CitcomSVE achieves the parallel computation efficiency >75% for using up to 6,144 CPU cores on a parallel supercomputer. With its accuracy, computing efficiency and its open-source public availability, CitcomSVE is a powerful tool for modeling viscoelastic deformation of a planetary mantle in response to surface and tidal loading problems. 

How to cite: Zhong, S., Kang, K., Aa, G., and Qin, C.: CitcomSVE: A Three-dimensional Finite Element Software Package for Modeling Planetary Mantle’s Viscoelastic Deformation in Response to Surface and Tidal Loads, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13136, https://doi.org/10.5194/egusphere-egu22-13136, 2022.

EGU22-13323 | Presentations | G3.3

Mantle viscosity derived from geoid and different land uplift data in Greenland 

Mohammad Bagherbandi, Hadi Amin, Linsong Wang, and Masoud Shirazian

The Earth’s mass redistribution due to deglaciation and recent ice sheet melting causes changes in the Earth’s gravity field and vertical land motion in Greenland. The changes are because of ongoing mass redistribution and related elastic (on a short time scale) and viscoelastic (on time scales of a few thousands of years) responses. These signatures can be used to determine the mantle viscosity. In this study, we infer the mantle viscosity associated with the glacial isostatic adjustment (GIA) and long-wavelength geoid beneath the Greenland lithosphere. The viscosity is determined based on a spatio-spectral analysis of the Earth’s gravity field and the land uplift rate in order to find the GIA-related gravity field. We used and evaluated different land uplift data, i.e. the vertical land motions obtained by the Greenland Global Positioning System (GPS) Network (GNET), GRACE and Glacial Isostatic Adjustment (GIA) data. In addition, a  combined land uplift rate using the Kalman filtering technique is presented in this study. We extract the GIA-related gravity signals by filtering the other effects due to the deeper masses i.e. core-mantle (related to long-wavelengths) and topography (related to short-wavelengths). To do this, we applied correlation analysis to detect the best harmonic window. Finally, the mantle viscosity using the obtained GIA-related gravity field is estimated. Using different land uplift rates, one can obtain different GIA-related gravity fields. For example, different harmonic windows were obtained by employing different land uplift datasets, e.g. the truncated geoid model with a harmonic window between degrees 10 to 39 and 10 to 25 showed a maximum correlation with the GIA model ICE-6G (VM5a) and the combined land uplift rates, respectively. As shown in this study, the mantle viscosities of 1.6×1022 Pa s and 0.9×1022 Pa s for a depth of 200  to 650  km are obtained using ICE-6G (VM5a) model and the combined land uplift model, respectively, and the GIA-related gravity potential signal.

How to cite: Bagherbandi, M., Amin, H., Wang, L., and Shirazian, M.: Mantle viscosity derived from geoid and different land uplift data in Greenland, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13323, https://doi.org/10.5194/egusphere-egu22-13323, 2022.

GD3 – Core Dynamics

The investigation of planetary cores is of great interest to those seeking to better understand magnetic fields and the life-processes of planets. Like many large-scale systems, planetary cores are unable to be modelled perfectly by numerical simulations or physical experiments. However, it is of constant importance to improve numerical and experimental methods and designs to better replicate full-scale processes. Many previous studies have over-looked the effects of the inhomogeneous insulation from the Earth's mantle on convection in the core. A few numerical studies have taken this effect into consideration for rotating Rayleigh-Benard convection (RBC) in spherical geometries. Experimental models are desirable to further understand the motion of fluid in the center of planets; however, due to physical limits, spherical systems are difficult to recreate experimentally. Therefore, cylindrical geometries are useful to study varied thermal flux on sidewalls both experimentally and numerically. While some studies have numerically and experimentally considered changes in temperature along the sidewall, there has been little consideration for variations in heat flux, which is the more physically appropriate boundary condition. 


The present study seeks to explore rotating RBC in a cylindrical domain with sidewalls inhomogeneously insulated in an experimentally-achievable system. It is experimentally plausible that the material of a cylindrical cell could varying in thickness, and therefore thermal conductivity, or have patches of heating and/or cooling attached to the sidewall to vary the thermal flux on the side boundaries. To imitate this numerically, a sinusoidal pattern of increasing and decreasing heat flux is applied to the sidewall in two cases: one whereby heat flux fluctuates between positive and negative, and another whereby the heat flux is strictly positive. Additionally the mode and amplitude of the wave is considered. The mode will either match the mode of the system with insulating sidewall conditions or have a larger wavelength to better simulate planetary cores. The amplitude is increased as necessary to achieve significant results. For simplicity, the top and bottom boundary conditions are fixed temperature.


Changes in heat transport and temporal behavior are measured with a global Nusselt number, Nu, time series. Additional variables such as mean zonal flow, number and location of convection rolls, and transitions to time-dependence are considered. Results indicate that large-wavelength heat flux on the sidewalls causes two modes to inhabit the system, existing on opposite sides of the cylinder: the mode natural to the homogeneously insulated system exists where heat flux is high and a large-wavelength mode dominates where heat flux is lower. However, the implementation of heat flux along the sidewalls with the same wavelength of the insulated system results in near-time independence as the amplitude increases. These results indicate that variation in heat flux boundary conditions can cause significant changes in rotating RBC behavior. Experimental studies could be used to validate or refute these conclusions. Overall, it is clear that numerical studies of molten planetary cores heterogeneously heated by mantles must take these irregularities into consideration to improve our understanding of core convection. 

How to cite: Peifer, J., Bokhove, O., and Tobias, S.: Changes in pattern formation and behavior in rotating Rayleigh-Benard convection due to inhomogeneous thermal insulation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-134, https://doi.org/10.5194/egusphere-egu22-134, 2022.

It was often shown how the anisotropy (due to turbulence) in the Earth’s outer core strongly influences some convection processes very important in the Core Dynamics. For instance, it was described how some instabilities in rotating magnetoconvection, described as usually by the analysis in term of normal modes, depend strictly on the anisotropic diffusion. Thus, we developed many models concerning the marginal modes (stationary and oscillating modes) of rotating magnetoconvection with different cases of anisotropy in the viscosity, thermal and magnetic diffusivities. In all cases, an anisotropy greater in the vertical direction parallel to gravity (“atmospheric anisotropy”) facilitates the convection, while an anisotropy greater in horizontal directions (“oceanic anisotropy”) inhibits some types of convection. This is linked with the balance among Magnetic, Archimedean and Coriolis forces in the Earth’s outer core.  

After recalling these former results concerning marginal modes, we present new results concerning the most unstable modes, namely the ones with maximum growth rate, with isotropic and anisotropic diffusivities.

Firstly, the state of the art about this topic in isotropic conditions is reminded, then our new approach on it is presented. We show that assuming a time-dependence only in the temperature perturbation (we call it T-case), like it was done in some former works, does not describe properly these modes in the Earth’s outer core. Indeed, this implies that some types of convection would occur only with some values of the dimensionless numbers unrealistic for the Earth (e.g., with too huge values of the Ekman numbers). We study the most general isotropic case (and we christen it G-case), namely the most unstable modes of convection with temperature, velocity and magnetic perturbations time-dependent. In this case the convection is much more facilitated than in the T-case: it occurs with much smaller values of Ekman and Elsasser numbers. Another model (named by us Q-case) with very small magnetic Prandtl number, namely with magnetic diffusivity much greater than viscosity, is considered. The Q-case results are very similar to the G-case ones. We demonstrate (and indicate) that Q and G cases can hold for the Earth (and for other planets).

We show that the anisotropy strongly influences the most unstable modes. Indeed, like in the marginal ones, the atmospheric anisotropy facilitates the occurrence of the most unstable modes convection, while the oceanic one inhibits it. Furthermore, we prove that, in contrast with isotropic case, in case of strong oceanic anisotropy the differences between Q and G cases can be significant for the Geodynamo.

Our approach allows to easily deal with very huge wave numbers and Rayleigh numbers as well as with very small Ekman numbers, what is usually not possible in the standard geodynamo simulations. This aspect and the growth rates search are useful to look for possible connections with small length and time scale analysis of the Geomagnetic field. 

How to cite: Filippi, E. and Brestenský, J.: The most unstable modes in rotating magnetoconvection with anisotropic diffusion in the Earth’s outer core, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-189, https://doi.org/10.5194/egusphere-egu22-189, 2022.

EGU22-1088 | Presentations | GD3.1

Observations of Inner Core Shear Waves with AlpArray 

On Ki Angel Ling, Simon Stähler, Doyeon Kim, Domenico Giardini, and The AlpArray Working Group

Although the solidity of Earth’s inner core is evidenced by normal mode data, the direct observation of inner core shear waves (J-waves) has remained challenging for decades due to their small amplitudes. Previous studies have presented evidence of J-waves in different seismic datasets (e.g., Okal and Cansi Y, 1998; Deuss et al., 2000; Cao et al., 2005; Wookey and Helffrich, 2008), however, the observability seems to be highly dependent not only on distance, but also on the location of the source and receiver, suggesting that amplification from specific 3D structures in the deep Earth is necessary to elevate the phase above noise for certain ray paths. Waszek and Deuss (2015) and Tkalčić and Phạm (2018) also found J-waves in global stacks and global correlation wavefield respectively, but these average over all possible source-receiver geometries and inner core structure.

To improve phase identification and discrimination, we use an approach that combines the array method of slant stacking and polarization filtering to enhance linearly polarized signals with the expected slowness and incident angle. We apply this technique on the data of the AlpArray Seismic Network, a large-scale seismic network in Europe that consists of over 600 broadband stations with a mean station spacing of 30-40km. An arrival consistent with PKJKP (in reference travel time, slowness, and polarization) is found from events in the source region reported by Cao et al. (2005). We present an overview of PKJKP candidate paths over distance based on observations with AlpArray. We also examine whether these observations correspond to specific depths or azimuths and investigate the effects of anisotropy or other three-dimensional earth structures​​​​​​.

How to cite: Ling, O. K. A., Stähler, S., Kim, D., Giardini, D., and AlpArray Working Group, T.: Observations of Inner Core Shear Waves with AlpArray, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1088, https://doi.org/10.5194/egusphere-egu22-1088, 2022.

EGU22-2363 | Presentations | GD3.1

Waves in the Earth’s core. 2: Diffusive Magneto-Coriolis waves. 

Jiawen Luo, Andrew Jackson, and Philippe Marti

Various types of waves exist in the Earth’s core. Waves associated with the magnetic field can leave a signature in the observed geomagnetic field, which may allow one to infer properties of the core. Among those, a balance of magnetic, Coriolis and pressure forces forms a type of waves known as Magneto-Coriolis (MC) waves. Previous studies of MC wave have mostly been focused on the ideal limit (without magnetic diffusion and viscous dissipation) with a columnar ansatz for the flow field. In this study, we investigate this problem by retaining the magnetic diffusion and three-dimensional flows in a full sphere. With several choices of axisymmetric background magnetic field, we analyse various branches of normal modes. The dependence of the normal mode's structure on the background field is clearly seen. A westward propagating branch with perfect columnar flows is found for some background B. We have also found eastward propagating modes constituted by flows with weaker columnarity. With the choice of Elsasser number Λ=1 (Coriolis and magnetic forces of similar magnitude), for axisymmetric background fields we find most of the MC modes have decay rates comparable or larger than their frequencies.

How to cite: Luo, J., Jackson, A., and Marti, P.: Waves in the Earth’s core. 2: Diffusive Magneto-Coriolis waves., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2363, https://doi.org/10.5194/egusphere-egu22-2363, 2022.

EGU22-3229 | Presentations | GD3.1

Phase Relations in the Fe-Si-H Ternary up to 125 GPa and 3700K: Implications for the Structure and Chemistry of Planetary Cores 

Suyu Fu, Stella Chariton, Vitali Prakapenka, Andrew Chizmeshya, and Sang-Heon Shim

Light elements play a key role in the chemical and physical processes of planetary Fe-rich metallic cores [1].  H and Si are believed important candidates in planetary cores and previous estimates indicate as much as 0.6 wt% H and 13 wt% Si in the Earth’s core [2, 3]. However, existing studies are on Fe-H or Fe-Si binary systems and knowledge on Fe-Si-H ternary at high pressure and temperature is still limited [4, 5]. We conducted a series of experiments to understand the impact of hydrogen on Fe-Si alloy system. Fe-Si alloys with three compositions, Fe-9Si (9 wt% Si), Fe-16Si (16 wt% Si), and FeSi (33.3 wt% Si), reacted with H separately up to 125 GPa and 3700 K in diamond-anvil cells by combining pulsed laser heating with high-energy synchrotron X-ray diffraction. Results show little H solubility in B20 and B2 phases of FeSi (0.3 wt% and <0.1 wt% H, respectively) up to 62 GPa, which is significantly smaller than H solubility in Fe metal (1.8 wt% H) [6]. The low H solubility in these phases is likely because of their highly distorted interstitial sites which are not favorable for H incorporation. We found that the low-Si alloys (Fe-9Si and Fe-16Si) convert into FeHx (fcc or dhcp), FeSi (B20 or B2), and Fe-Si-H ternary phases up to 125 GPa and 3700 K. Particularly, a Fe5Si3Hx phase is stable below 43 GPa and the cubic FeH3 can appear after reactions above 100 GPa. These results indicate that H alters the behavior of the Fe-Si system severely. Considering the various sizes and masses of planets in the solar and exoplanetary systems, the planetary cores can have a wide range of Si contents. If Fe-droplets in early magma ocean contain much Si, Si could limit the amount of H incorporated in the core. On the other hand, for cores with low Si, crystallization at the solid-liquid core boundary may result in formation of separate H-rich and Si-rich crystals in the solid core, potentially inducing heterogeneities in the region [7]. 

References:

1. Shahar, A., et al., What makes a planet habitable? Science, 2019. 364(6439): p. 434-435.

2. Tagawa, S., et al., Experimental evidence for hydrogen incorporation into Earth’s core. Nature Communications, 2021. 12(1): p. 2588.

3. Hirose, K., B. Wood, and L. Vočadlo, Light elements in the Earth’s core. Nature Reviews Earth & Environment, 2021. 2(9): p. 645-658.

4. Terasaki, H., et al., Hydrogenation of FeSi under high pressure. American Mineralogist, 2011. 96(1): p. 93-99.

5. Tagawa, S., et al., Compression of Fe–Si–H alloys to core pressures. Geophysical Research Letters, 2016. 43(8): p. 3686-3692.

6. Pépin, C.M., et al., New iron hydrides under high pressure. Physical review letters, 2014. 113(26): p. 265504.

7. Deuss, A., Heterogeneity and anisotropy of Earth's inner core. Annual Review of Earth Planetary Sciences, 2014. 42: p. 103-126.

How to cite: Fu, S., Chariton, S., Prakapenka, V., Chizmeshya, A., and Shim, S.-H.: Phase Relations in the Fe-Si-H Ternary up to 125 GPa and 3700K: Implications for the Structure and Chemistry of Planetary Cores, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3229, https://doi.org/10.5194/egusphere-egu22-3229, 2022.

EGU22-3349 | Presentations | GD3.1

CCMOC: A New View of the Earth's Outer Core Through the Global Coda Correlation Wavefield 

Xiaolong Ma and Hrvoje Tkalčić

Increasing seismic evidence has accumulated, suggesting that the Earth’s outer core consists of distinct layers of low P-wave velocities relative to the Preliminary Reference Earth Model (PREM) in the top and bottom of the liquid core. Seismically detected low velocity in the outer core could be linked with the stratification, essential for understanding the geodynamo and thermochemical evolution of the liquid core. However, a consistent globally-averaged radial structure of the outer core has not been obtained due to the incomplete coverage of sampling body waves. To remedy this problem, we explore the seismic structure of Earth's outer core by employing a new theoretical and observational concept termed coda correlation wavefield. We construct the global correlogram in the 15-50 sec period range by stacking cross-correlations of the long-duration coda waves from the selected ten large earthquakes. We then assemble a dataset of prominent correlation features from the global correlogram that are sensitive to the outer core. The waveforms of these features are fit by computing synthetic correlograms through various outer core models. The obtained optimal model displays P-wave velocities in both the outer core's top and bottom, consistent with Coda Correlation Reference Earth Model (CCREM) and reduced relative to PREM. The low seismic speeds in the top of the outer core could likely imply the formation of a thermal and/or compositional stratification.

How to cite: Ma, X. and Tkalčić, H.: CCMOC: A New View of the Earth's Outer Core Through the Global Coda Correlation Wavefield, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3349, https://doi.org/10.5194/egusphere-egu22-3349, 2022.

EGU22-3362 | Presentations | GD3.1 | Highlight

Imaging of Deep Planetary Interiors from Inter-source Correlations via a Single Seismograph 

Sheng Wang and Hrvoje Tkalčić

Global seismic imaging of the Earth's interior has come a long way in exploring and understanding the Earth’s internal structure and dynamics with the worldwide proliferation of seismographs. However, investigating planetary interiors, including detections of their deep structures, remains challenging because of the limited number of seismographs that are and will be deployed in the foreseeable future. Besides, the existing imaging methods based on observations of a direct seismic wavefield from seismic sources require the emergence of the seismic waves with distinguishable amplitudes. That condition restricts the seismic station locations for practical wave reflections or refractions from internal planetary interfaces to a limited angular distance range from the source.

Here, we explore a new way to image deep planetary interiors, especially the planetary cores, using a single seismograph. We first develop a novel procedure for constructing global inter-source correlograms and show that they contain many prominent features sensitive to the internal planetary structures. We demonstrate that a single station is sufficient to produce a global correlogram for the Earth. We then utilize a single-station correlogram and show the steps for detecting and quantifying the Earth’s and Martian cores interfaces. This provides a new paradigm for imaging deep planetary interiors on global scales.

How to cite: Wang, S. and Tkalčić, H.: Imaging of Deep Planetary Interiors from Inter-source Correlations via a Single Seismograph, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3362, https://doi.org/10.5194/egusphere-egu22-3362, 2022.

EGU22-3740 | Presentations | GD3.1

A laboratory model for iron snow in planetary cores 

Ludovic Huguet and Michael Le Bars

Top-down solidification has been suggested in the liquid cores of small planets, moons, and large asteroids. An iron snow is then thought to exist, consisting of the crystallization of free iron crystals at the top of these cores and of their settling in a stably stratified ambient, until they remelt in a hotter, deeper region. This inward crystallization and associated buoyancy flux may sustain dynamo action by convection below the remelting depth. However, thermal evolution models are up-to-now oversimplified, assuming a constant-in-time and homogeneous-in-space buoyancy flux at the bottom of the snow zone. We have shown from analog experiments that the buoyancy flux is heterogeneous in time and space, with intense snow events, corresponding to an explosion of frazil-ice,  separated by quiescent periods where the snow zone supercools. We found that a wide range of crystal sizes exists, with large crystals overshooting the convection region and challenging the thermodynamic equilibrium hypothesis underlying the evolution models. The spatio-temporal variability of the energy source obviously impacts the shape and intensity of the generated magnetic field, which may provide alternative explanations for the observed and surprising features of Mercury's and Ganymede's magnetic fields.

How to cite: Huguet, L. and Le Bars, M.: A laboratory model for iron snow in planetary cores, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3740, https://doi.org/10.5194/egusphere-egu22-3740, 2022.

The Earth’s rotation is not perfectly steady: both its rotation rate (its spin rate) and its orientation in space change in time due to the gravitational pull of the Sun and Moon. The precession-nutation response of the Earth to this external tidal forcing depends strongly on the planet’s deep interior structure. 
In particular, the existence of the Earth’s liquid outer core is known to produce a resonance in the nutation signal at a near-diurnal frequency (as measured in the Earth-bound rotating frame). Physically, this resonance corresponds to the excitation of free mode whereby the liquid core experiences a global rotation of uniform vorticity, hence its name: Free Core Nutation (FCN). 

In parallel, experimental and theoretical studies of fluid dynamics have since long demonstrated that rotating fluids can support oscillatory motions known as inertial waves, which are due to the restoring effect of the Coriolis force. In planetary situations where the fluid domain is bounded by solid boundaries, these oscillations become global, so that they are sometimes referred to as inertial modes. The Spin-Over Mode (SOM), is the simplest of these inertial mode, with uniform vorticity. Because of this and the fact that the SOM, like the FCN, has a near-diurnal frequency, the two modes have often been identified as one and the same. In a former study, we showed that the FCN is in fact a generalization of the SOM to the case of a (non-steadily) freely rotating planet (Rekier et al 2020). 

In the present work, we analyse the relation between the SOM and the FCN in more details by showing how the two modes can, in fact, coexist together in a planet subjected to external gravitational forcing. We also show that the proximity between the frequencies of the SOM and the FCN can have a significant effect on the shape and the intensity of the FCN resonance – represented by the transfer function for nutations – when viscous and/or electromagnetic coupling is introduced at the planet’s Core-Mantle Boundary (CMB). In particular, we estimate that this can cause an increase of ∼1 day in the (retrograde) period of the resonance as measured in the inertial frame. 

We conclude with a discussion on some of the implications of our findings for the nutations of other planetary objects like Mars and the Moon.

Reference:

  • Rekier, J., Trinh, A., Triana, S. A., & Dehant, V. (2020). Inertial modes of a freely rotating ellipsoidal planet and their relation to nutations. The Planetary Science Journal, 1(1), 20

How to cite: Rekier, J.: The Spin-Over Mode of freely rotating planets and its relation to their Free Core Nutation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3972, https://doi.org/10.5194/egusphere-egu22-3972, 2022.

EGU22-4635 | Presentations | GD3.1

Non-monotonic growth and motion of the South Atlantic Anomaly 

Hagay Amit, Filipe Terra-Nova, Maxime Lézin, and Ricardo Trindade

The South Atlantic Anomaly (SAA) is a region at Earth’s surface where the intensity of the magnetic field is particularly low. Accurate characterization of the SAA is important for both fundamental understanding of core dynamics and the geodynamo as well as societal issues such as the erosion of instruments at surface observatories and onboard spacecrafts. Here, we propose new measures to better characterize the SAA area and center, accounting for surface intensity changes outside the SAA region and shape anisotropy. Applying our characterization to a geomagnetic field model covering the historical era, we find that the SAA area and center are more time dependent, including episodes of steady area, eastward drift and rapid southward drift. We interpret these special events in terms of the secular vari‑ation of relevant large‑scale geomagnetic flux patches on the core–mantle boundary. Our characterization may be used as a constraint on Earth‑like numerical dynamo models.

How to cite: Amit, H., Terra-Nova, F., Lézin, M., and Trindade, R.: Non-monotonic growth and motion of the South Atlantic Anomaly, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4635, https://doi.org/10.5194/egusphere-egu22-4635, 2022.

EGU22-4857 | Presentations | GD3.1

A python interface for global geomagnetic field models: pymagglobal 

Maximilian Arthus Schanner, Stefan Mauerberger, and Monika Korte

We present pymagglobal, a simple to use python interface for global geomagnetic field models. Pymagglobal was developed to provide easy access to global, spherical harmonics based magnetic main field models over historical and paleomagnetic times. The software readily handles cubic-spline based geomagnetic field models stored in the same file format as gufm1 or the CALSxk model series out of the box. Models in other file formats can be incorporated with minimal effort using the python backend. The python interface can, e.g., give model curves for any location, time series of dipole moment or spherical harmonic coefficients or grids and maps of magnetic field components. 

Pymagglobal can be installed by a single command and comes with a command line interface and a GUI, that allows easy extraction and visualization of information from the models. Additionally, the python backend can be used to access the models, for example to generate synthetic data or refer to them in your own analysis. Emphasis is put on documentation and accessibility. The package is available via a git repository  and a custom website at https://git.gfz-potsdam.de/sec23/korte/pymagglobal.

How to cite: Schanner, M. A., Mauerberger, S., and Korte, M.: A python interface for global geomagnetic field models: pymagglobal, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4857, https://doi.org/10.5194/egusphere-egu22-4857, 2022.

Geomagnetic field models are essential in the study of the physical processes that contribute to the Earth’s magnetic field. There are several groups that build models of the Earth’s magnetic field. These models essentially differ in the magnetic data and mathematical methods used during the model estimation, and in the represented sources of the geomagnetic field. It is then the users who choose the models that are most suitable for the study of the geophysical signals of interest. However, there is currently no single platform where field models are collected in a standardised way, and that provides information which helps users to find the best models for their purposes.

Here, we present the geomagnetic field model called CHAOS that is developed and regularly updated by the Technical University of Denmark. CHAOS provides estimates of the recent time-dependent and static internal magnetic fields, and the external magnetospheric field during quiet geomagnetic conditions. It is derived from magnetic data collected by the Swarm, CHAMP, Ørsted, SAC-C, CryoSat-2 satellite missions supplemented by ground observatory data. It is updated approximately every 4 months with the latest ground and satellite data; the current version CHAOS-7.9 covers the time from 1997 to November 2021.

The model is distributed in various formats. For the time-dependent internal field, B-spline coefficients for each spherical harmonic are provided in a similar format as traditionally used for the gufm1 historical field model and the CALS7K millennial timescale models. It is also provided in the shc-file format, which was developed and adopted for distributing spherical harmonic models determined in connection with the Swarm magnetic satellite mission. This format allows reconstruction of spline-based models from a dense sampling of the time series of the spherical harmonic coefficients and is easier for non-experts to use. A piecewise polynomial Matlab version is also available. For reading and evaluating the CHAOS model, we provide Fortran, Matlab and Python software. In particular, we have recently developed the ChaosMagPy Python package, which allows the CHAOS model (and other spherical harmonic field models) to be easily evaluated and visualized.

Although the shc-file format and ChaosMagPy have been developed primarily in support of the Swarm mission and the CHAOS model, they can be used more broadly for time-dependent spherical harmonic field models or serve as a starting point for the development of new tools that enable cross-disciplinary sharing of data and models.

How to cite: Kloss, C., Finlay, C. C., and Olsen, N.: Tools for sharing and evaluating the CHAOS geomagnetic field model and the shc-file format for time-dependent spherical harmonic models, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6265, https://doi.org/10.5194/egusphere-egu22-6265, 2022.

EGU22-6447 | Presentations | GD3.1

A comparison between the magnetohydrodynamical modes of plesio-geostrophy and fully 3D calculations 

Daria Holdenried-Chernoff, Andy Jackson, and Stefano Maffei

An ever-expanding catalogue of satellite data has laid the foundations for new studies of Earth’s secular variation and acceleration. Studies that encode a-priori the axial rigidity conferred to core flows by the Earth’s rapid rotation have revealed novel fast dynamics and improved estimates for the magnetic field strength inside the core. Within this context, a new formalism christened “plesio-geostrophy” (PG) was developed by Jackson and Maffei (Proc. Roy. Soc. A, 476(2243), 2020) with the purpose of describing core dynamics in a regime closer to Earth's conditions. This model makes use of axial integration of the equations of fluid motion and magnetic induction to collapse all three-dimensional quantities into two-dimensional scalars. We report on new results within the PG formalism.

We consider the dynamics of a conducting, inviscid fluid in a full sphere subject to various background magnetic fields. The eigenmodes sustained by the Coriolis and Lorentz forces split into two branches: a fast and a slow one. We characterise these eigenmodes and compare their structure and frequency to fully three-dimensional results. Previous studies are extended by incorporating the effects of horizontal magnetic diffusion.

How to cite: Holdenried-Chernoff, D., Jackson, A., and Maffei, S.: A comparison between the magnetohydrodynamical modes of plesio-geostrophy and fully 3D calculations, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6447, https://doi.org/10.5194/egusphere-egu22-6447, 2022.

It has been proposed that thermoelectric (TE) currents may be important in the vicinity of planetary core boundaries (Stevenson 1987, EPSL; Giampieri & Balogh 2002, P&SS). However, TE-induced core dynamics remain largely unstudied. To address this, we have conducted a series of laboratory experiments of turbulent Rayleigh-Bénard convection with a vertical magnetic field in a cylindrical cell filled with liquid gallium. Thermal measurements are taken at a fixed buoyancy forcing with varying Lorentz force. When buoyant inertia dominates, a large-scale overturning circulation cell develops, which imposes strong lateral temperature gradients onto the tank's top and bottom boundaries. In experiments equipped with electrically conducting boundaries, the large-scale circulation slowly precesses in azimuth when thermoelectrically induced Lorentz forces become comparable to buoyant inertial forces. Moreover, TE introduces an asymmetry in the system: this novel magnetoprecessional mode reverses its traveling direction when the magnetic field polarity is reversed. Extrapolating our results to Earth's core, we estimate the required net Seebeck coefficient to generate TE dynamics at CMB conditions. Furthermore, because TE-driven flows reverse direction as the magnetic field reverses, we hypothesize that thermoelectricity can provide a natural symmetry breaker by driving CMB (or ICB) core flows in opposite directions between normal and reversed geomagnetic field polarities. To test our hypothesis, we need to better constrain the electrical, thermal conductivity, and Seebeck coefficient of the CMB (or ICB), and gather observational evidence of geomagnetic secular variation during field reversals. This study is reported in Xu et al. 2022, JFM

How to cite: Xu, Y., Horn, S., and Aurnou, J.: A laboratory study of turbulent magnetoconvection: Could thermoelectricity induce asymmetry in geomagnetic secular variation?, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6590, https://doi.org/10.5194/egusphere-egu22-6590, 2022.

EGU22-7290 | Presentations | GD3.1

The Kalmag and ArchKalmag14K geomagnetic field models: their derivation principle, properties and availability 

Julien Baerenzung, Maximilian Arthus Schanner, Monika Korte, Jan Saynisch, and Matthias Holschneider

The recent Kalmag and archaeomagnetic ArchKalmag14K models together represent the global geomagnetic field model evolution over the past 14000 years and resolve temporal scales of the order of a month over the last 122 years. They are obtained through the sequential assimilation of archeomagnetic and volcanic data, and survey, observatory and satellite data, respectively. Both these models provide full posterior information about the core field, and in the case of Kalmag also about other magnetic sources such as the lithospheric or some tidal fields. These models are made accessible online through different physical and statistical quantities associated with them. In this presentation, we will detail our modeling strategy, the type of results we are getting with it, and how the community can access and use our models by an online interface at https://ionocovar.agnld.uni-potsdam.de/Kalmag/ and https://ionocovar.agnld.uni-potsdam.de/Kalmag/Archeo/.

How to cite: Baerenzung, J., Schanner, M. A., Korte, M., Saynisch, J., and Holschneider, M.: The Kalmag and ArchKalmag14K geomagnetic field models: their derivation principle, properties and availability, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7290, https://doi.org/10.5194/egusphere-egu22-7290, 2022.

EGU22-8071 | Presentations | GD3.1

Inertial waves excited by topography 

Fabian Burmann and Jerome Noir

We bring together two important features of planetary cores: 1) wave propagation in the fluid and 2) topography of the fluid-solid interface. On one hand, inertial waves contribute to the maintenance of quasi geostrophic motions or to the formation of elongated structures in rotating turbulence. On the other hand, topography of the core-mantle boundary has been prososed in various seismological and geodynamical studies and can modify the fluid flow in the core, for example, by altering global fluid modes. Here, we focus on inertial waves excited by topography.

We present results from a combined numerical and experimental investigation of inertial wave motion which is forced by an oscillating topography. To allow comparison with the theory of linear inertial waves, we use a complex topography characterised by a single wavenumber in the spectral domain. Both, the wavenumber and the frequency of the oscillations are varied, allowing us to characterise the transport of kinetic energy at different length scales as well as the interactions of direct and reflected inertial waves. 

How to cite: Burmann, F. and Noir, J.: Inertial waves excited by topography, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8071, https://doi.org/10.5194/egusphere-egu22-8071, 2022.

EGU22-8509 | Presentations | GD3.1 | Highlight

BepiColombo at Mercury: First close-in magnetic field measurements from the southern hemisphere 

Daniel Heyner, Chris Carr, Uli Auster, Ingo Richter, Patrick Kolhey, Willi Exner, Johannes Mieth, Ferdinand Plaschke, Kristin Pump, Johannes Wicht, Benoit Langlais, Gerhard Berghofer, Daniel Schmid, Wolfgang Baumjohann, David Fischer, Timothy Horbury, Werner Magnes, Adam Masters, Jim Slavin, and Karl-Heinz Glassmeier and the MPO-MAG Team

The internal magnetic field of Mercury is best described by a northward offset dipole with almost zero obliquity. Its offset, weakness, axisymmetry and lack of secular variation still poses a challenge to dynamo theory. After NASA’s Mariner 10 flybys in the 1970’s and MESSENGER’s orbital mission in 2011-2015, BepiColombo performed a flyby at Mercury in October 2021. For the first time, magnetic field measurements are obtained from the southern hemisphere by the fluxgate magnetometer MPO-MAG. We will present an overview of the flyby data and compare the new in-situ data to magnetospheric models obtained from the previous missions to the innermost terrestrial planet. Does the flyby data reveal any secular variation? Has the dipole offset changed? These are some of the questions we will discuss with this unprecedented magnetometer data. We will close with a discussion on what is to be expected from the orbital phase of BepiColombo. 

How to cite: Heyner, D., Carr, C., Auster, U., Richter, I., Kolhey, P., Exner, W., Mieth, J., Plaschke, F., Pump, K., Wicht, J., Langlais, B., Berghofer, G., Schmid, D., Baumjohann, W., Fischer, D., Horbury, T., Magnes, W., Masters, A., Slavin, J., and Glassmeier, K.-H. and the MPO-MAG Team: BepiColombo at Mercury: First close-in magnetic field measurements from the southern hemisphere, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8509, https://doi.org/10.5194/egusphere-egu22-8509, 2022.

EGU22-8532 | Presentations | GD3.1

Dynamo models reproducing the offset dipole of Mercury’s magnetic field 

Patrick Kolhey, Daniel Heyner, Johannes Wicht, Thomas Gastine, and Ferdinand Plaschke

Since the discovery of Mercury’s peculiar magnetic field it has raised questions about the underlying dynamo process in its fluid core. The global magnetic field at the surface is rather weak compared to other planetary magnetic fields, strongly aligned to the planet's rotation axis and its magnetic equator is shifted towards north. Especially the latter characteristic is difficult to explain using common dynamo model setups. One promising model suggests that a thermal stably stratified layer right underneath the core-mantle boundary is present. As a consequence the magnetic field deep inside the core is efficiently damped by passing through the stably stratified layer due to the skin effect. Additionally, the non-axisymmetric parts of the magnetic field are vanishing, too, such that a dipole dominated magnetic is left at the planet’s surface. In this study we present new direct numerical simulations of the magnetohydrodynamical dynamo problem which include a stably stratified layer on top of the outer core, which can also reproduce the shift of the magnetic equator towards north. We revisit a model configuration for Mercury’s dynamo action, which successfully reproduced the magnetic field features, in which core convection is driven by thermal buoyancy as well as compositional buoyancy (double-diffusive convection). While we find that this model configuration produces Mercury-like magnetic field only in a limited parameter range (Rayleigh and Ekman number), we show that also a simple codensity model is sufficient over a wide parameter range to produce Mercury-like magnetic fields.

How to cite: Kolhey, P., Heyner, D., Wicht, J., Gastine, T., and Plaschke, F.: Dynamo models reproducing the offset dipole of Mercury’s magnetic field, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8532, https://doi.org/10.5194/egusphere-egu22-8532, 2022.

EGU22-8916 | Presentations | GD3.1

Melting and phase relations of Fe-Ni-Si determined by a multi-technique approach 

Vasilije Dobrosavljevic, Dongzhou Zhang, Wolfgang Sturhahn, Jiyong Zhao, Thomas Toellner, Stella Chariton, Vitali Prakapenka, Olivia Pardo, and Jennifer Jackson

Many studies have suggested silicon as a candidate light element for the cores of Earth and Mercury. However, the effect of silicon on the melting temperatures of core materials and thermal profiles of cores is poorly understood, due to disagreements among melt detection techniques, uncertainties in sample pressure evolution during heating, and sparsity of studies investigating the combined effects of nickel and silicon on the phase diagram of iron. In this work (Dobrosavljevic et al. 2022), we develop a multi-technique approach for measuring the high-pressure melting and solid phase relations of iron alloys and apply it to Fe0.8Ni0.1Si0.1 (Fe-11wt%Ni-5.3wt%Si), a composition compatible with recent estimates for the cores of Earth and Mercury.

This approach combines results (20-83 GPa) from two in-situ techniques: synchrotron Mössbauer spectroscopy (SMS) and synchrotron x-ray diffraction (XRD). Melting is independently detected by the loss of the Mössbauer signal, produced exclusively by solid-bound iron nuclei, and the onset of a liquid diffuse x-ray scattering signal. The use of a burst heating and background updating method for quantifying changes in the reference background during heating facilitates the determination of liquid diffuse signal onsets and leads to strong reproducibility and excellent agreement in melting temperatures determined separately by the two techniques. XRD measurements additionally constrain the hcp-fcc phase boundary and in-situ pressure evolution of the samples during heating.

We apply our updated thermal pressure model to published SMS melting data on fcc-Fe and fcc-Fe0.9Ni0.1 to precisely evaluate the effect of silicon on melting temperatures. We find that the addition of 10mol% Si to Fe0.9Ni0.1 reduces melting temperatures by ~250 K at low pressures (<60 GPa) and flattens the hcp-fcc phase boundary. Extrapolating our results, we constrain the location of the hcp-fcc-liquid quasi-triple point at 147±14 GPa and 3140±90 K, which implies a melting temperature reduction of 500 K compared with Fe0.9Ni0.1. The results demonstrate the advantages of combining complementary experimental techniques in investigations of melting under extreme conditions.

Reference:

Dobrosavljevic, V. V., Zhang, D., Sturhahn, W., Zhao, J., Toellner, T. S., Chariton, S., Prakapenka, V. B., Pardo, O. S., Jackson, J. M. (2022). Earth and Planetary Science Letters (in press).

How to cite: Dobrosavljevic, V., Zhang, D., Sturhahn, W., Zhao, J., Toellner, T., Chariton, S., Prakapenka, V., Pardo, O., and Jackson, J.: Melting and phase relations of Fe-Ni-Si determined by a multi-technique approach, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8916, https://doi.org/10.5194/egusphere-egu22-8916, 2022.

EGU22-9908 | Presentations | GD3.1

Chirality of the Geodynamo from the Core’s buoyancy and Sense of Spinning 

Gunther Kletetschka

The geodynamo inside the liquid core is part of the Earth’s rotation. We discovered that electric currents in the heat exchanging liquid core need to follow the handedness of the spiraling liquids given by Coriolis force. Coriolis force splits the buoyant heat exchanging liquid into the two, north and south hemispheres, each with its unique handedness of spiraling convection systems. Convection spiraling model of the core fluid revealed that any planetary dynamo with a liquid conducitng core must have a two-component bimodal structure magnetic contribution, where, for Earth, the southern hemisphere is always associated with a dominating normal polarity component and northern hemisphere with a dominating component of reverse magnetic polarity. We show that the geodynamo would have a non-random distribution of the probability of generation of dynamo’s magnetic polarity, depending on a difference in a degree of buoyancy vigorousness between the two hemispheres.  In this work, the individual treatment of normal and reversed polarity durations revealed that while before 80 Ma geodynamo was generating predominantly normal polarity durations, after the Tertiary transition at ~ 60 Ma, the geodynamo produced predominantly reverse polarity durations. This observation of predominance of magnetic polarity durations is constrained by the existing temperature models near the core/mantle boundary (CMB) and we show a novel connection how a lower mantle temperature distribution may reorganize its convection pattern in the core and change the stability of the dipolar field in favor of a specific polarity.

How to cite: Kletetschka, G.: Chirality of the Geodynamo from the Core’s buoyancy and Sense of Spinning, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9908, https://doi.org/10.5194/egusphere-egu22-9908, 2022.

EGU22-10532 | Presentations | GD3.1

Early Cambrian renewal of the geodynamo and the origin of inner core structure 

Tinghong Zhou, John Tarduno, Rory Cottrell, and Francis Nimmo

Seismic anisotropy observations indicate the presence of an innermost and outermost inner core, but the origin of this structure is unknown. Records of the past geomagnetic field provide a means to probe inner core evolution by establishing when growth started. The Ediacaran (~565 million-year-old) geodynamo was near collapse, with a strength 10 times weaker than that of the present-day consistent with model predictions for the field before the onset of inner core nucleation. But the timing of the key transition to stronger intensities typical of the Phanerozoic Eon, needed for establishing an exact onset age, has been unclear. We present single crystal paleointensity results from anorthosites of the early Cambrian (~532 million-year-old) Glen Mountains Layered Mafic Complex (Oklahoma). Data from single plagioclase crystals bearing single domain magnetite and titanomagnetite inclusions yield a time-averaged dipole moment of 3.5 +/- 0.9 x 1022 A m2, 5 times greater than that recorded in the Ediacaran Period. This rapid field recovery is the expectation at the start of inner core growth, as new thermal and compositional sources of buoyancy to power the geodynamo become available. We will discuss thermal models, which together with our new paleointensity results, allow us to constrain growth of the inner core and when its structure may have changed.

How to cite: Zhou, T., Tarduno, J., Cottrell, R., and Nimmo, F.: Early Cambrian renewal of the geodynamo and the origin of inner core structure, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10532, https://doi.org/10.5194/egusphere-egu22-10532, 2022.

EGU22-11293 | Presentations | GD3.1

Regional geomagnetic field model over the area comprising the South Atlantic Anomaly 

Saioa A. Campuzano, Angelo De Santis, and F. Javier Pavón-Carrasco

Taking advantage of the Swarm three-satellite magnetic field mission by ESA, launched on 22 November 2013 and still orbiting, and ground observatory magnetic data, we determine a spatiotemporal regional model for the geomagnetic field using the R-SCHA technique over the area comprising the South Atlantic Anomaly (SAA). The SAA is the region above the South Atlantic and South America where the geomagnetic field intensity is much lower than expected by a simple dipolar field. Its origin is deep in the outer core and is likely due to a reverse magnetic flux area that has been increasing in the last four centuries. On the basis of this model, we observe 1) the recent evolution of the anomaly from 2014 up to date, with a focus on its “tails” towards South Africa and West Pacific, 2) some features that can be related to important properties of the main geomagnetic field, such as its secular variation and the occurrence of geomagnetic jerks.

How to cite: Campuzano, S. A., De Santis, A., and Pavón-Carrasco, F. J.: Regional geomagnetic field model over the area comprising the South Atlantic Anomaly, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11293, https://doi.org/10.5194/egusphere-egu22-11293, 2022.

EGU22-11668 | Presentations | GD3.1

Exploring the dynamics of inward core solidification using analogue tank experiments 

Kathryn Dodds, James Bryson, Jerome Neufeld, and Richard Harrison

Given their small sizes and low central pressures, the cores of most asteroids are expected to have started crystallising at the core mantle boundary (CMB) instead of at their centre, as is the case for the Earth. This so-called top-down crystallisation is thermally unstable but compositionally stable, making the conditions for dynamo generation more difficult to achieve. Nevertheless, modern observations of Ganymede show an active magnetic field, where it has been suggested that solidification occurs away from the CMB as an iron snow. This model proposes that iron crystals grow in a snow zone and subsequently sink into the interior and melt, releasing dense fluid that drives convection and a magnetic field. However, whether this process could have occurred in asteroid cores is uncertain due to the significantly smaller adiabatic temperature difference between the CMB and the centre of their cores. This weak temperature gradient may also prevent crystallisation away from the CMB. Therefore, the power for a compositional dynamo may result from an increase in convective velocities caused by the formation of dense crystals at the CMB or turbulence caused by the settling of the crystals themselves.

To investigate these possibilities, we employ analogue tank experiments to explore the possible mechanisms driving convection during inward asteroid core crystallisation. An ammonium chloride solution is cooled from above with a layer of buoyant propanol separating the solution from the cold plate to prevent the growth of crystals on this boundary. Instead, the crystals form below the buoyant layer in a ‘snow zone’. We vary the temperature difference across this buoyant layer to investigate the different regimes that may exist. At each driving temperature difference, we measure the velocity fields of any fluid flow within the ammonium chloride solution using particle imaging velocimetry. This enables us to compare the convective velocities with and without crystallisation as well as develop scaling laws to apply the results of these experiments to models of core thermal evolution.

We find that the mean convective speeds increase by over an order of magnitude when the fluid is crystallising. This increase in speed is driven by an increase in the bulk density of the fluid in the snow zone due to the presence of a small crystal fraction. While the motion of crystals themselves do not induce any turbulence in the fluid due to their small size, they act to locally increase the density of the fluid, causing dense, crystal-rich plumes to emanate from the snow zone, which drive faster convective speeds throughout the fluid. This result provides a new mechanism for dynamo generation in inwardly crystallising cores, especially if remelting of falling iron crystals is delayed until deep within the core’s interior, as has recently been proposed for Mars, or if there is a nucleation barrier that causes significant undercooling before the onset of crystallisation. We also measure the temperature and composition as a function of depth within the tank, from which we may assess whether thermal equilibrium can be assumed when modelling snow zones in cores.

How to cite: Dodds, K., Bryson, J., Neufeld, J., and Harrison, R.: Exploring the dynamics of inward core solidification using analogue tank experiments, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11668, https://doi.org/10.5194/egusphere-egu22-11668, 2022.

EGU22-12178 | Presentations | GD3.1

The influence of a stratified core on Mercury's librations 

Fleur Seuren, Santiago Andres Triana, Jérémy Rekier, Tim Van Hoolst, and Véronique Dehant

Earth-based measurements of Mercury's libration amplitude have been used previously to establish the existence of Mercury's liquid core and to estimate its size. However these previous works have not yet taken into account the internal core flows that can be induced by rotational variations such as librations. In the present study, we use a numerical linear model to investigate the effect that these internal flows might have on Mercury's libration amplitude and other observables. In particular we find that the inclusion of a stably stratified layer at the top of the core – the existence of which has been suggested by thermal evolution and numerical dynamo models – in most cases prohibits the transmission of any motion from the top of the core to its deeper parts and vice versa.

How to cite: Seuren, F., Triana, S. A., Rekier, J., Van Hoolst, T., and Dehant, V.: The influence of a stratified core on Mercury's librations, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12178, https://doi.org/10.5194/egusphere-egu22-12178, 2022.

EGU22-13478 | Presentations | GD3.1

Velocity field reconstruction by Machine Learning during kinematic dynamo process 

Waleed Mouhali, Jae-Yun Jun, and Thierry Lehner

Generation and reversal of the Earth’s magnetic field have remained one of the most controversial topics.  It is well known that the Earth’s magnetic field is generated by dynamo action in the liquid iron outer core. This mechanism explains how a rotating, convecting, and electrically conducting fluid sustains a magnetic field.

In this study, we investigate the kinematic dynamo action associated with the well-known ABC-flow (see Dombre et al. [1986]). We focus on the “A = B = C = 1. Its dynamo properties have been assessed in 1981 by Arnold et al. [1981]. It belongs to fast dynamo action: a flow which achieves exponential magnetic field amplification over a typical time related to the advective timescale and not the ohmic diffusive timescale (in which case it is referred to as a “slow dynamo”).

We use DNS method for solving the kinematic dynamo problem, for which a solenoidal magnetic field evolution is governed under a prescribed flow by the induction equation.

In this work, we propose a deep learning method to solve the inverse dynamo problem by estimating the velocity field from the magnetic field. We train our deep learning algorithm from the velocity field and the magnetic field values obtained from the above flow model. Once the algorithm parameters are trained, the optimized algorithm is tested for the velocity field estimation from magnetic field. 

How to cite: Mouhali, W., Jun, J.-Y., and Lehner, T.: Velocity field reconstruction by Machine Learning during kinematic dynamo process, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13478, https://doi.org/10.5194/egusphere-egu22-13478, 2022.

GD4 – The Dynamics and evolution of Earth and Terrestrial Planets (in partnership with PS and GMPV)

Singhbhum Craton, eastern India, exposes an array of Paleoarchean granitoids (e.g., TTGs and diorites, transitional TTG, and K-rich granite) ranging in age from ~3.53─3.25 Ga, thus making it a suitable archive for understanding crustal architecture and dynamics during that era. Granitoids cover the core of the craton as a composite dome and are fenced by keels of contemporaneous iron ore bearing greenstone belts from east, west, and south giving rise to a dome-and-keel architecture.  Change in granitoid chemistry and isotope signature over time and space can provide a window into the change of crustal evolution mechanism as well as geodynamics of the crust formation if put into a robust tectonic framework. Most of such earlier studies addressed the secular evolution of granitoid chemistry and isotopic changes as an expression of a shift in tectonic paradigms. This tectonic shift is explained broadly as a response to a progressively cooling earth. However, the timing of the transition (advent of a new tectonic setting) varies globally; hence, each craton needs to be studied separately and without any prior bias.

Spatial variation represented by contour diagrams from the cratonic core show two distinct areas exposing dominantly 3.35–3.25 Ga high-silica, low-magnesiam, high K2O/Na2O (K/Na>0.60) granitoids of shallow crustal origin, indicated by their low pressure-sensitive ratios (eg. Eu/Eu*, Sr/Y, Gd/Er, La/Yb). These two areas are surrounded by older intermediate granitoids (>3.35 Ga TTGs). Based on the spatial distribution, it is being suggested that these spatial arrangement of granitoids are related to “partial convective overturn (PCO)” process where the >3.35 Ga TTG basements were subjected to greenstone load while they were soft. As a result some part of the newly formed softer >3.35 Ga TTG crust melted as these overburdens helped in bringing the TTGs to a potential melting depth. The greenstones then sank into the partially molten TTGs along steep-dipping sinistral shear zones by forming synformal keels. The moderate- to- low-pressure TTG-derived partial melts then rose to the shallower level and formed the 3.35–3.25 Ga high-silica, low-Mg# potassic granitoids.

Preserved rock record in the Singhbhum Craton indicates that the granitoid magmatism started at ~3.47 Ga with emplacement of high-silica, low alumina tonalite, characterized by low Sr/Y, (Gd/Er)N, (La/Yb)N, Eu/Eu* and Sr. The 3.47 to 3.32 Ga TTG record from the Singhbhum Craton show a progressive increase in Al2O3, Sr/Y, (Gd/Er)N, (La/Yb)N, Eu/Eu* and Sr and decrease in Na2O. The increase in the pressure-sensitive ratios reached peak during 3.32 Ga and then started decreasing until ~3.28 Ga followed by another increase during ~3.28 to ~3.25 Ga before ceasing of Paleoarcehan magmatism in the Singhbhum Craton. Such variation in geochemical tracers is explained in terms of episodic crustal thickening by periodic mantle upwelling and associated delamination along with time-progressive changes in bulk chemical composition of the continental crust from mafic to felsic.

How to cite: Mitra, A. and Dey, S.: Time-space evolution of an ancient continent, a window to crustal evolution: Insight from granitoids of Singhbhum Craton, eastern India, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-594, https://doi.org/10.5194/egusphere-egu22-594, 2022.

EGU22-955 | Presentations | GD4.1

Taphonomy of early life: Role of organic and mineral interactions 

Julie Andréa Ngwal Ghoubou Ikouanga, Claude Fontaine, Olabode M. Bankole, Claude Laforest, Armelle Riboulleau, Alain Trentesaux, Celine Boissard, Andrea Somogyi, Alain Meunier, and Abderrazak El Albani

Biogenicity and taphonomy of the early life fossil records are debated as most of the previous studies focussed mainly on isotopes geochemistry. The non-metamorphosed Paleoproterozoic (~2.1 Ga) sedimentary succession of the Francevillian Basin (Gabon) contains the oldest complex multicellular organisms embedded in black shale facies. Several studies have confirmed the biogenicity of these soft-bodied organisms. Here, we used multi-proxy techniques to show that the preservation of these macro-organisms happened in a close system that limits interaction with their host rocks, which leads to their good preservations. The macro-organisms are present in different shapes and sizes: lobate (L), elongate (E), tubular (T), segmented (S), and circular (C), and are often associated with bacterial mats. Except for the C form, most of the other specimens are pyritized. Sulfur isotopes data confirms that pyritization occurred by bacterial sulfato-reduction during early diagenesis. We compare the clay mineral assemblages between the pyritized specimens and the late-diagenetically formed pure pyritized concretions in the sediments because the early pyritization process could not explain the taphonomic preservation alone. Our clay mineralogical data show that the specimens are dominated mainly by randomly mixed layer Illite-smectite (IS MLMs), illite, and chlorite relative to the host rocks. The abundance of IS MLMs indicates incomplete illitization of smectite, potassium deficiency, and limited mineral reactions in a semi-close local chemical system within the fossils.  In addition, the authigenic chlorites are more iron-rich and show vermicular habitus. By contrast, the pyritized concretions mainly consist of well-crystallized illite and less iron-rich chlorite, while the smectite phases are absent. These results confirmed that the diagenetic reaction is controlled by interaction with an open late diagenetic system. We concluded that taphonomic preservation of the ancient fossil record resulted from the early diagenetic growth of pyrite crystals during bacterial sulfato reduction in the fossils, which creates a semi-closed system that drastically reduced fluid-rock interactions with the host sediments.

How to cite: Ngwal Ghoubou Ikouanga, J. A., Fontaine, C., M. Bankole, O., Laforest, C., Riboulleau, A., Trentesaux, A., Boissard, C., Somogyi, A., Meunier, A., and El Albani, A.: Taphonomy of early life: Role of organic and mineral interactions, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-955, https://doi.org/10.5194/egusphere-egu22-955, 2022.

EGU22-1666 | Presentations | GD4.1

U-Pb zircon geochronology combining both in-situ and bulk-grain techniques in the Transvaal Supergroup, South Africa. 

Martin Hugo Senger, Joshua Davies, Maria Ovtcharova, Nicolas Beukes, Ashley Gumsley, Sean Patrick Gaynor, Alexey Ulyanov, and Urs Schaltegger

The Precambrian comprises the vast majority of Earth’s history. Preserved archives contain essential information about the first few billion years for planetary evolution of our planet. Despite covering a large part of the history of our planet, these outcrops are not so abundant due to erosion and frequently occur in disparate areas. In order to relate them and to establish a timeline of geological events in a world lacking biochronology, we rely on accurate radio-isotopic age determinations. These are, however, rather scarce and still leave several hundreds of million years long time intervals undated. In this study, we present U-Pb age determinations from volcanic and sedimentary units of the Paleoproterozoic Transvaal Supergroup, South Africa. The Transvaal Supergroup is an exceptionally well preserved sequence and therefore accounts for a very large amount of geochemical data. Due to its capacity to produce large data sets the preferred technique in U-Pb zircon geochronology for ancient sediments is LA-ICP-MS. It allows the aqcuisition of maximum depositional ages (MDA) in a fast way and at a relatively low cost. However, the large analytical uncertainty preclude the temporal resolution to distinguish between different processes in such old rocks. Moreover, the standard dating procedure rarely includes zircon treatment via chemical abrasion to mitigate common problems such as open system behavior due to radioactive decay damage related Pb loss. In consequence, interpreted ages might be severely disturbed and may yield MDA’s that are tens to hundreds of million years too young. As an alternative, the much more work-intensive CA-ID-TIMS technique allows the obtention of more accurate and more precise ages, preferably using zircon grains that have previously been screened for their LA-ICP-MS U-Pb age.

 Our new combined LA-ICP-MS and CA-ID-TIMS data indicates that the glaciogenic Makganyene Formation has a MDA of ~2.42 Ga. Younger age clusters at around ~2.2 Ga from LA-ICP-MS dating disappear with chemical abrasion and have to be interpreted as artifacts of radiation-damage related Pb loss. These new results have important implications for both environmental evolution during the Neoarchean/Paleoproterozoic, as well as for the regional geology. The Makganyene diamictites are thought to represent the oldest Paleoproterozoic glaciation in South Africa. The data also corroborate the hypothesis that the directly overlying-to-locally-interfingered mafic volcanic Ongeluk Formation is ~200 Ma older than the volcanic rocks ~2250 Ma Hekpoort Formation in the East Transvaal basin. We therefore reject the long-standing correlation between both units, as previously published.

We demonstrate that LA-ICP-MS is not capable to provide a robust and reliable MDA’s in ancient clastic sediments. CA-ID-TIMS analysis provides dates of significantly higher accuracy, because the chemical abrasion is minimizing Pb-loss in the crystal. Therefore, for studies relying on U-Pb zircon geochronology, we encourage the application of CA-ID-TIMS in the youngest populations previously identified with the LA-ICP-MS. This is particularly important for establishing reliable maximum depositional ages in sedimentary rocks.

How to cite: Senger, M. H., Davies, J., Ovtcharova, M., Beukes, N., Gumsley, A., Gaynor, S. P., Ulyanov, A., and Schaltegger, U.: U-Pb zircon geochronology combining both in-situ and bulk-grain techniques in the Transvaal Supergroup, South Africa., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1666, https://doi.org/10.5194/egusphere-egu22-1666, 2022.

EGU22-3181 | Presentations | GD4.1

Secular change in the age of TTG sources during the Archean from in-situ Sr and Hf isotope analysis by LA-MC-ICPMS 

Kira Musiyachenko, Matthijs Smit, Summer Caton, Robert B. Emo, Melanie Kielman-Schmitt, Ellen Kooijman, Anders Scherstén, Jaana Halla, Wouter Bleeker, J. Elis Hoffmann, Om Prakash Pandey, Arathy Ravindran, Alessandro Maltese, and Klaus Mezger

Much of the continental lithosphere developed during the Archean, which was an Eon of change in terms of global geodynamics and geochemical cycles. Uncovering the causal links between crust forming processes and prevailing geodynamic mechanisms is crucial for understanding the origins and composition of the present-day continental lithosphere. Pristine Archean crust is scarce yet can be found in cratons worldwide. Many of these occurrences comprise rocks of the tonalite-trondhjemite-granodiorite (TTG) suite, which represent a prevalent component of the Archean continental crust. TTGs are generally considered to have formed by partial melting of amphibolite or eclogite source rocks that had basaltic precursors originally extracted from a depleted mantle (e.g., [1]). The age of the source rocks (i.e., the time between the basalt extraction from the mantle and TTG formation) can be determined from the initial radiogenic isotope compositions of TTGs, provided that the P/D ratio of the source can be reliably estimated and is significantly different from that of the depleted mantle.

Based on this principle, we estimated the age of basaltic sources of TTGs from cratons of different age and paleogeography from initial 87Sr/86Sr compositions determined by in-situ Sr isotope analysis of primary igneous apatite (LA-MC-ICPMS). The 87Sr/86Sr of these apatites show that prior to 3.4 Ga TTGs were derived from relatively old mafic sources and that the average time between formation of basaltic material from the mantle and subsequent remelting under amphibolite to eclogite facies conditions decreased drastically during the Paleoarchean. This secular change indicates a rapid global increase in the efficiency of TTG production or the emergence of a new TTG-forming process at c. 3.4 Ga [2].

In this contribution we explore this hypothesis by comparing the 87Sr/86Sr signature of the TTGs with their trace-element compositions, as well as with 176Hf/177Hf zircon data for these rocks and contemporary TTGs from other studies. This combined geochronological, isotope and geochemical analyses will provide new constraints on the age of TTG sources during the Archean and will allow investigation into the nature and probable causes of the apparent rejuvenation at 3.4 Ga, as indicated by Sr isotopes.

[1] Hoffmann, J.E. et al. (2011) Geochim. Cosmochim. Acta 75, 4157-4178.

[2] Caton, S., et al., (in review) Chem. Geol.

How to cite: Musiyachenko, K., Smit, M., Caton, S., B. Emo, R., Kielman-Schmitt, M., Kooijman, E., Scherstén, A., Halla, J., Bleeker, W., Hoffmann, J. E., Prakash Pandey, O., Ravindran, A., Maltese, A., and Mezger, K.: Secular change in the age of TTG sources during the Archean from in-situ Sr and Hf isotope analysis by LA-MC-ICPMS, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3181, https://doi.org/10.5194/egusphere-egu22-3181, 2022.

The present-day Earth exhibits subduction-driven plate tectonics, which is a surface expression of processes happening in the deep interior. For the early Earth, following the magma ocean solidification stage, a variety of tectonic regimes have been proposed albeit without any consensus: heat-pipe tectonics, plutonic-squishy lid, stagnant lid. Furthermore, the rheological changes required to make the (supposedly gradual) transition to modern style plate tectonics on Earth remain hotly debated. Also, different estimates of mantle potential temperature (Herzberg et al., 2010; Aulbach and Arndt, 2019) for the Archean have been proposed.

Recently, it has been proposed that sediments accumulated at continental margins as a result of surface erosion processes could have acted as a lubricant to stabilise subduction and aid with the initiation of plate tectonics after the emergence of continents around 3 Ga (Sobolev and Brown, 2019). Before that time, the flux of sediments to the ocean was very limited. It was further suggested that subduction zones were already present at that time but were likely initiated only above hot mantle plumes. This tectonic regime of regional plume-induced retreating subduction zones was very different from the modern type of plate tectonics, but nevertheless might have been efficient in production of early continental crust and recycling of water and pre-existing crust into the deep mantle.

In this work, we test this hypothesis of surface-erosion controlled plate tectonics preceded by plume-induced retreating subduction tectonic regime in global convection models by introducing magmatic weakening of lithosphere above hot mantle plumes. We also adapt the effective friction coefficient in brittle deformation regime to mimic the lubricating effect of sediments. Furthermore, these models employ a more realistic upper mantle rheology and are capable of self-consistently generating oceanic and continental crust while considering both intrusive (plutonic) and eruptive (volcanic) magmatism (Jain et al., 2019). We also investigate the influence of lower mantle potential temperatures on crust production and compare our models with geological data.

When compared to models with just diffusion creep, the models with composite rheology (diffusion creep and dislocation creep proxy) result in more efficient mantle cooling, higher production of continental crust, and higher recycling of basaltic-eclogitic crust through delamination and dripping processes. These models also show higher mobilities (Tackley, 2000), which have been previously shown for diffusion creep models only with low surface yield stress values (Lourenço et al., 2020). Preliminary results from models initialised with lower mantle potential temperatures show an affect on the initial growth of TTG rocks over time. However, no considerable differences in terms of total crust production or mantle cooling are observed.

How to cite: Jain, C. and Sobolev, S.: Using composite rheology models to explore the interplay between continent formation, surface erosion, and the evolution of plate tectonics on Earth, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4850, https://doi.org/10.5194/egusphere-egu22-4850, 2022.

EGU22-5226 | Presentations | GD4.1

Sulfur and Hafnium Isotope evidence for Early Horizontal Tectonics in Eoarchean Peridotites 

Jonathan Lewis, J. Elis Hoffmann, Esther M. Schwarzenbach, Harald Strauss, Chunhui Li, Carsten Münker, and Minik T. Rosing

The origins of Eoarchean peridotites found in the Itsaq Gneiss Complex (IGG) of southern West Greenland represent a crucial record of igneous and geodynamic processes on the early Earth. The igneous and geodynamic origins of these rocks have, however, been the subject of controversy, with some researchers arguing that they represent the first known slivers of mantle emplaced by tectonic processes in the crust and others contending that they represent cumulates associated with the local basalt units. The geodynamic context for the formation of these rocks has also been disputed, with some researchers arguing that they formed in a horizontal tectonic setting analogous to a modern subduction zone, while others propose a vertical tectonic origin for all Eoarchean rocks. Here, we provide new insights into the history of these peridotites using multiple sulfur isotope signatures combined with Hf isotope compositions. Anomalously high εΗf values in some IGC peridotites identified in previous studies [1], as well as in metabasalts with boninite-like compositions [2] found in the Isua Supracrustal Belt (ISB) within the IGC, point to contributions from a mantle source already depleted in the Hadean [2]. The multiple sulfur isotope data of the IGC peridotites found south of the ISB reveal small but significant Δ33S anomalies, consistent with incorporation of surface-derived material of Archean age or older. Furthermore, correlations between sulfur isotope data and major and trace element abundances as well as initial Hf isotope values of IGC peridotites support the hypothesis that high-degree melt depletion occurred under hydrous conditions, followed by variable degrees of melt metasomatism. The involved fluid and melt components precipitated sulfides that incorporated surface-derived sulfur with different depositional origins. We propose that these findings are best explained by a horizontal tectonic regime similar to modern arc settings.

 

1. van de Löcht, J., et al., Preservation of Eoarchean mantle processes in ∼3.8 Ga peridotite enclaves in the Itsaq Gneiss Complex, southern West Greenland. Geochimica et Cosmochimica Acta, 2020. 280: p. 1-25.

2. Hoffmann, J.E., et al., Highly depleted Hadean mantle reservoirs in the sources of early Archean arc-like rocks, Isua supracrustal belt, southern West Greenland. Geochimica et Cosmochimica Acta, 2010. 74(24): p. 7236-7260.

How to cite: Lewis, J., Hoffmann, J. E., Schwarzenbach, E. M., Strauss, H., Li, C., Münker, C., and Rosing, M. T.: Sulfur and Hafnium Isotope evidence for Early Horizontal Tectonics in Eoarchean Peridotites, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5226, https://doi.org/10.5194/egusphere-egu22-5226, 2022.

The nature of Paleoarchean (>3.2 Ga) crustal accretion continues to be debated, in particular the onset and timing of subduction-like processes. Crust of this age is typically characterised by dome-and-keel geometry that is widely interpreted to be related to “sagduction” or the episodic dripping of denser, mafic volcanics into the mantle around buoyant silicic cratonic nuclei. This occurs during regional scale crust-mantle overturn events.

The exceptional preservation of the East Pilbara Terrane (EPT) has been instrumental in the development of this model and its role in Paleoarchean continental crust formation. The Emu Pool Supersuite (~3324-3290 Ma) represents a phase of voluminous silicic magmatism that has been attributed to overturn and sagduction within the EPT (e.g. Wiemer et al., 2018). However, the widespread occurrence of magmatic-hydrothermal Cu and Mo mineralisation, reported to be linked to this magmatic episode, have received little attention. Comparisons to Phanerozoic porphyry Cu-Mo deposits have been drawn (e.g. Barley & Pickard, 1999), which is intriguing as such porphyry-type deposits have a clear genetic link to arc magmatism and subduction processes as they require hydrous, Cl-rich magmatism (e.g. Tattich et al., 2021).

To date the chronological relationships of the magmatic-hydrothermal deposits to the major dome forming silicic magmatism is poorly constrained. In one deposit, hydrothermal activity is constrained by 187Re-187Os geochronology (Stein et al., 2007) to late to post Emu Pool Supersuite magmatism, yet this interpretation is hampered by issues relating to the λ187Re uncertainty. Furthermore, interpretation of Paleoarchean geodynamics and magmatic evolution generally relies on micro-beam zircon U-Pb geochronological analyses, typically reported at single 207Pb/206Pb date precision at >±10 Myrs (2s), and presents challenges for accurately resolving geological processes and events.

We demonstrate that high-precision CA-ID-TIMS (Chemical Abrasion-Thermal-Ionisation Mass Spectrometry) zircon U-Pb geochronology, utilising ATONA low-noise detectors, can now routinely obtain precision of  ~<±200 kyrs (2s) on 207Pb/206Pb dates of single zircon or fragments at ~3.3 Ga. By combining detailed field relationships, with unprecedented temporal precision, we show that the Mo-Cu hydrothermal mineralisation can be demonstrably linked to their host plutons and formation timescales can even be constrained to ~1 Myrs, comparable to Phanerozoic porphyry deposits. This study identifies that magmatic-hydrothermal systems were not synchronous across the EPT. Instead they occurred over >7 Myrs during the early phase of Emu Pool Supersuite and silicic magmatism within domes.

Whilst the geodynamic trigger for Mo and Cu magmatic-hydrothermal mineralisation at ~3.3 Ga remains enigmatic, we highlight their timing and occurrence should be accommodated within Paleoarchean geodynamic models. Furthermore, the results illustrate the potential of modern high-precision U-Pb geochronology to routinely examine Paleoarchean magmatic records at timescales that closely approximate known plutonic accretion rates within the Phanerozoic.

 

References

Barley, & Pickard, (1999) Precambrian Research, 96, 41-62

Stein et al., (2007) Geochimica et Cosmochimica Acta, 71

Tattitch et al., (2021) Nature communications, 12, 1-11.

Wiemer et al., (2018) Nature Geoscience, 11, 357-361.

How to cite: Thijssen, A., Tapster, S., and Parkinson, I.: Pinpointing Paleoarchean magmatic-hydrothermal events during the geodynamic and crustal evolution of the East Pilbara Terrane, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7947, https://doi.org/10.5194/egusphere-egu22-7947, 2022.

EGU22-8653 | Presentations | GD4.1 | Highlight

Global scale numerical modelling of the transition to modern day plate tectonics 

Timothy Gray, Paul Tackley, Taras Gerya, and Robert J. Stern

The Earth’s lithosphere, atmosphere, and biosphere interact with one another primarily at the surface of our planet, with the lithospheric coupling arising primarily from large-scale, long-period topographic evolution driven by deep mantle processes. Global numerical modelling of mantle convection in 3D with mobile continents in a modern plate tectonic regime has been previously demonstrated (Coltice et al., 2019). Improvements on such models can provide a useful tool for investigating the effects of large scale and long term changes in Earth’s tectonic regime on the surface.

We present preliminary results in 2D spherical geometry using newly implemented additions to the existing mantle convection code StagYY (Tackley, 2008). A free surface representation using a marker chain enables higher surface resolution and the possibility of future implementation of surface processes on a global scale (Duretz et al., 2016). Initial conditions based on previous work on self-consistent continent generation enables modelling of continents with realistic rheology and structure (Jain et al., 2019).

The successful development of these tools enables further study of the evolution of the surface as a result of tectonic changes. A key goal is the modelling of the transition from a pre-plate tectonic regime to modern plate tectonics, as may have occurred in the Neoproterozoic (Stern, 2018). The tectonic changes of this period were also associated with other radical changes in the atmosphere and biosphere, such as the Cryogenian glaciations, and the Cambrian explosion. Models of topographic evolution may be used in conjunction with climate models or models of biological evolution to study the coupling between these systems as a part of the emerging field known as Biogeodynamics (Gerya et al., 2020).

How to cite: Gray, T., Tackley, P., Gerya, T., and Stern, R. J.: Global scale numerical modelling of the transition to modern day plate tectonics, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8653, https://doi.org/10.5194/egusphere-egu22-8653, 2022.

EGU22-9527 | Presentations | GD4.1

The end of the atmospheric xenon Archean’s evolution: a study of the Great Oxygenation Event period 

Lisa Ardoin, Micheal Broadley, Matthieu Almayrac, Guillaume Avice, David Byrne, Alexandre Tarantola, Aivo Lepland, Takuya Saito, Tsuyoshi Komiya, Takazo Shibuya, and Bernard Marty

Several geochemical tracers (S, C, O, Xe) underwent irreversible global changes during the Precambrian, and in particular during the Great Oxygenation Event (GOE), between the Archean and Proterozoïc eons [1]. Xenon is of particular interest as it presents a secular isotopic evolution during the Archean that ceased around the time of the GOE. In this regard Xe is somewhat analogous to mass-independent fractionation sulfur (MIF-S) in that it can be used to categorically identify Archean atmospheric components [2]. Xe isotopes in the modern atmosphere are strongly mass-dependent fractionated (MDF-Xe), with a depletion of the light isotopes relative to the heavy ones. There was a continuous Xe isotope evolution from primitive Xe to modern Xe that ceased between 2.6 and 1.8 Ga [2] and this evolution has been attributed to coupled H+-Xe+ escape to space [3].

The purpose of this project is to document the Xe composition of the paleo-atmosphere trapped in well-dated hydrothermal quartz fluid inclusions with ages covering the Archean-Proterozoic transition to better constraint its link with the GOE.

We have measured an isotopically fractionated Xe composition of 2.0 ± 1.8 ‰ relative to modern atmosphere at 2441 ± 1.6 Ma, in quartz vein from the Seidorechka sedimentary formation (Imandra-Varzuga Greenstone belt, Russia). A slightly younger sample from the Polisarka sedimentary formation (Imandra-Varzuga Greenstone belt, Russia) of 2434 ± 6.6 Ma does not record such fractionation and is indistinguishable from the modern atmospheric composition. A temporal link between the disappearance of the Xe isotopes fractionation and the MIF-S signature at the Archean-Proterozoic transition is clearly established for the Kola Craton. The mass-dependent evolution of Xe isotopes is the witness of a cumulative atmospheric process that may have played an important role in the oxidation of the Earth's surface [3], independently of biogenic O2 production that started long before the permanent rise of O2 in the atmosphere [4].

 

[1] Catling & Zahnle, 2020, Sciences Advances 6, eaax1420. [2] Avice et al., 2018, Geochimica et Cosmochimica Acta 232, 82-100 [3] Zahnle et al., 2019, Geochimica et Cosmochimica Acta 244, 56-85. [4] Lyons et al., 2014, Nature 506, 307-315.

How to cite: Ardoin, L., Broadley, M., Almayrac, M., Avice, G., Byrne, D., Tarantola, A., Lepland, A., Saito, T., Komiya, T., Shibuya, T., and Marty, B.: The end of the atmospheric xenon Archean’s evolution: a study of the Great Oxygenation Event period, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9527, https://doi.org/10.5194/egusphere-egu22-9527, 2022.

The lithologic and chemical composition of the continental crust impacts Earth atmosphere and environment through e.g. weathering feedbacks and nutrient supply. However, despite being important for  the biological and atmospheric evolution of our planet, the question of how the lithological composition of Earth’s landmasses evolved from around 3.5 Ga to present is still a matter of considerable debate.

Here I will present a summary of the work that has been conducted by my colleagues and myself over the past five years and that improved our understanding of the chemical and lithological evolution of Earth landmasses since 3.5 Ga. Reconstructing the composition of past continents is difficult because erosion and crustal reworking may have modified the geologic record in deep time, so direct examination of the nature of igneous rocks could provide a biased perspective on the nature of the continents through time. A less biased record is likely provided by terrigenous sediments that average the composition of rocks exposed to weathering on emerged lands and we therefore use major and trace element concentrations and stable isotope compositions of shales as a proxy for the average composition of the emerged continents in the past. Applying a three-component mixing model to the sediment record shows that since 3.5 Ga, the landmasses that were subjected to erosion were dominated by felsic rocks. Furthermore, our reconstructed relative abundance of felsic, mafic and komatiitic rocks in the Archean is close to that currently observed in these ancient terrains. While our model does not suggest a strong change in the lithologic composition of Earth continents, we find a secular change in the average major and trace element concentration, with incompatible elements being more depleted and compatible elements being more enriched in the old landmasses.

How to cite: Greber, N. D.: The lithologic composition of Earth’s emerged lands reconstructed from the chemistry of terrigenous sediments, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10352, https://doi.org/10.5194/egusphere-egu22-10352, 2022.

The tectonic processes responsible for the formation of early Earth felsic crust (predominantly composed of tonalite-trondhjemite-granodiorite, or TTGs) inform the global regime of mantle convection that operated at this time. Many models have been proposed to explain the formation of Archean TTGs, including melting of downgoing crust in hot subduction zone settings, or melting of crust that is buried by lava flows and founders into the mantle. Formation in a subduction zone setting would imply at least some form of mobile-lid tectonics on the early Earth, while TTG formation via crustal burial and foundering does not require subduction or plate tectonics, and can thus occur in a stagnant-lid regime.  

Regardless of tectonic setting, TTGs can only form if hydrated basaltic protocrust melts before it experiences metamorphic dehydration. Previous work has argued that this constraint may preclude a subduction origin to TTGs. Regional scale numerical models have found that slabs sink quickly and steeply through the mantle at Archean mantle temperatures, such that they dehydrate before melting. However, these models do not consider evolution of grainsize in the mantle interior and in plate boundaries. Using numerical models of mantle convection with grain damage, a mechanism for generating mobile-lid convection via grain size reduction, I show that a sluggish, drip-like style of subduction emerges at early Earth conditions. This subduction style is a result of plate boundaries becoming effectively stronger with increasing mantle temperature, and leads to significant slab heating at shallow depths.

To test whether TTGs can form from this style of sluggish subduction, I use scaling laws developed from numerical models combined with a simple model of the evolution of the vertical temperature profile through a slab. Results show that the slower sinking speed of slabs caused by grain size evolution in plate boundaries allows for crustal melting for a much wider range of mantle temperatures and subducting plate thicknesses than if the effects of grain size evolution were ignored. Overriding plate thickness is also important, with thin overriding plates favored for TTG formation. These results have important implications for the settings where subduction could generate Archean TTGs, and for potential episodicity in TTG formation resulting from both short- and long-term episodicity in subduction.  

How to cite: Foley, B.: Generation of Archean TTGs by slab melting during sluggish, drip-like subduction, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10873, https://doi.org/10.5194/egusphere-egu22-10873, 2022.

The timing of the onset of plate tectonics on Earth remains a topic of strong debate, as does the tectonic mode that preceded modern plate tectonics. Understanding possible tectonic modes and transitions between them is also important for other terrestrial planets such as Venus and rocky exoplanets. Recent two-dimensional modelling studies have demonstrated that impacts can initiate subduction during the early stages of terrestrial planet evolution - the Hadean and Eoarchean in Earth’s case (O’Neill et al. 2017). Here, we perform three-dimensional simulations of the influence of ongoing multiple impacts on early Earth tectonics and its effect on the distribution of compositional heterogeneity in the mantle, including the distribution of impactor material. We compare two-dimensional and three-dimensional simulations to determine when geometry is important. Results show that impacts can induce subduction in both 2-D and 3-D and thus have a great influence on the tectonic regime. The effect is particularly strong in cases that otherwise display stagnant-lid tectonics: impacts can shift them to having a plate-like regime. In such cases, however, plate-like behaviour is temporary: as the impactor flux decreases the system returns to what it was without impacts. Impacts result in both greater production of oceanic crust and greater recycling of it, increasing the build-up of subducted crust above the core-mantle boundary and in the transition zone. Impactor material is mainly located in the upper mantle, at least at the end of the modelled 500 million year period. This is modified when impactors are differentiated into metal and silicate: the dense metal blobs sink to the CMB. In 2-D simulations, in contrast to 3-D simulations, impacts are less frequent but each has a larger effect on surface mobility, making the simulations more stochastic. These stronger 2-D subduction events can mix both recycled basalt and impactor material into the lower mantle. These results thus demonstrate that impacts can make a first-order difference to the early tectonics and mantle mixing of Earth and other large terrestrial planets, and that three-dimensional simulations are important so that effects are not over- or under-predicted.

How to cite: Tackley, P. and Borgeat, X.: Hadean/Eoarchean plate tectonics and mantle mixing induced by impacts: A three-dimensional study, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12521, https://doi.org/10.5194/egusphere-egu22-12521, 2022.

EGU22-13571 | Presentations | GD4.1

ExoPhot: Phot0, a plausible primeval pigment on Earth and rocky exoplanets 

Juan García de la Concepción and Pablo Marcos-Arenal

Photosynthesis, the metabolic route for conversion of solar to chemical energy, could be present in any planetary system provided with the only three required ingredients: a light source, water, and carbon dioxide.

The ExoPhot project aims to study the relation between photosynthetic systems and exoplanet conditions around different types of stars (i.e. stellar spectral types) by focusing on two aspects: Assessing the photosynthetic fitness of a variety of photopigments (either real or theoretical) as a function of stellar spectral type, star-exoplanet separation, and planet atmosphere composition; and delineating a range of stellar, exoplanet and atmospheric parameters for which photosynthetic activity might be feasible. In order to tackle this goals, this project is studying the evolutionary steps that led to the highly evolved chlorophylls and analogues, and assessing the feasibility or likelihood to trigger photosynthetic activity in an exoplanetary system.

Based on the Darwinian theory of common ancestors, the first (photosynthetic) organism should have had simple oligopeptides, oligonucleotides and alkyl amphiphilic hydrocarbons as primeval membranes. Therefore, it should have had simple pigments. We propose that there could exist geochemical conditions allowing the abiotic formation of a simple pigment which might become sufficiently abundant in the environment of an exoplanet. Besides, we show that the proposed pigment could also be a precursor of the more evolved pigments known today on Earth by proposing, for the first time, an abiotic chemical route leading to tetrapyrroles not involving pyrrole derivatives.

 

Juan García de la Concepcióna,* Pablo Marcos-Arenala, Luis Cerdánb, Mercedes Burillo-Villalobosc, Nuria Fonseca-Bonillaa,María-Ángeles López-Cayuelad, José A. Caballeroe, and Felipe Gómez Gómeza

aCentro de Astrobiología (CSIC-INTA), Ctra. de Ajalvir km. 4, Torrejón de Ardoz, 28850 Madrid, Spain; bInstituto de Ciencia Molecular (ICMoL), Universidad de Valencia, 46071 Valencia, Spain.;cInstituto Nacional de Técnica Aeroespacial, 28850 Torrejón de Ardoz, Madrid, Spain.; dÁrea de Investigación e Instrumentación Atmosférica,Instituto Nacional de Técnica Aeroespacial, 28850 Torrejón de Ardoz, Madrid, Spain.; eCentro de Astrobiología (CSIC-INTA), ESAC, camino bajo del castillo, 28691 Villanueva de la Cañada, Madrid, Spain

How to cite: García de la Concepción, J. and Marcos-Arenal, P.: ExoPhot: Phot0, a plausible primeval pigment on Earth and rocky exoplanets, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13571, https://doi.org/10.5194/egusphere-egu22-13571, 2022.

EGU22-490 | Presentations | PS3.3 | Highlight

Studying the Earth’s heat budget with geoneutrinos 

Virginia Strati, Gianpaolo Bellini, Kunio Inoue, Fabio Mantovani, Andrea Serafini, and Hiroko Watanabe

The Earth is cooling down and its surface heat flux is the highest among all the terrestrial planet of the Solar System. The total heat loss (Q) is due to the energy released by the secular cooling of our planet (C) and of the radiogenic heat (H) produced by the radioactive decays of the radioelements contained therein. Can geoneutrino disentangle these two contributions?

Since while decaying, the uranium, thorium and potassium radioisotopes contained in the Earth release geoneutrinos in a well-fixed ratio, we can attempt to answer affirmatively to this question. Indeed, geoneutrinos are able to pass through most matter without interacting, so they can bring to surface useful information about the Earth’ deep interior. Concretely, measuring the geoneutrino flux at surface hence translates in estimating H and in turn constraining C once that Q is known.

The only two experiments which collected data in the last 15 years are KamLAND (Japan) and Borexino (Italy). By combining theoretical models and experimental flux with a sophisticated analysis, we inferred valuable insights on mantle radioactivity and of contribution of H to the Earth’s energy budget. We estimated a total radiogenic heat accounting for H = 20.8+7.3-7.9 TW and, by subtracting this value from the total heat power of the Earth, we derived a secular cooling C = 26 ± 8 TW. The obtained results are discussed and framed in the puzzle of the diverse classes of formulated Bulk Silicate Earth models, analyzing their implications on planetary heat budget and composition.

The effectiveness in investigating deep earth radioactivity demonstrated by geoneutrino studies confer them a prestigious role in the comprehension of geodynamical processes of our planet.

How to cite: Strati, V., Bellini, G., Inoue, K., Mantovani, F., Serafini, A., and Watanabe, H.: Studying the Earth’s heat budget with geoneutrinos, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-490, https://doi.org/10.5194/egusphere-egu22-490, 2022.

            Ferropericlase is the second most abundant phase of Earth’s lower mantle and is also considered to be one of the main constituents of the mantles of super-Earth exoplanets. Since ferropericlase is more ductile compared to silicates (Girard et al. 2016), it is expected to control the rheological behavior of mantle aggregates which governs solid-state convection of planetary mantles. The mechanical behavior of polycrystalline aggregates is strongly affected by the presence of grain boundaries. Despite previous work on MgO grain boundaries (e.g. Verma & Karki 2010; Hirel et al. 2019), little is yet known about the properties and mobility of ferropericlase grain boundaries at pressure conditions of deep planetary interiors.

            In this study, we carried out atomistic simulations based on the density functional theory to model the structures, energies and spin states of iron of a series of [001] symmetrical tilt grain boundaries in ferropericlase as a function of pressure. Based on these results, we investigated the mechanical behavior of the Σ5 tilt grain boundary by applying simple shear increments to the simulation cell to trigger grain boundary migration. Here, we will present the different mechanisms of grain boundary migration and the evolution of the ideal shear strengths up to a pressure of 400 GPa. Our results show that the mechanical strength of the grain boundaries and the directionality of their motion strongly varies with increasing pressure. Especially at pressure conditions of super-Earth exoplanets, significant grain boundary weakening is observed with increasing depth.  Implications for the deformation of ferropericlase at conditions of Earth’s and super-Earth’s mantles will be finally discussed.

How to cite: Ritterbex, S. and Tsuchiya, T.: Ab initio investigation of the intercrystalline mechanical behavior of ferropericlase at extreme pressures of planetary mantles, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1140, https://doi.org/10.5194/egusphere-egu22-1140, 2022.

EGU22-1433 | Presentations | PS3.3 | Highlight

Modification of icy planetesimal interiors by early thermal evolution and collisions 

Gregor Golabek and Martin Jutzi

In the early solar system radiogenic heating by 26Al and collisions are the two prominent ways expected to modify the internal composition of icy planetesimals, building blocks of comets, by removing highly volatile compounds like CO, CO2 and NH3. However, observations indicate that even large comets like Hale-Bopp (R ≈ 35 km) can be rich in these highly volatile compounds [1].
Here we constrain under which conditions icy planetesimals experiencing both internal heating and collisions can retain pristine interiors [2]. For this purpose, we employ both the state-of-the-art finite difference marker-in-cell code I2ELVIS [3] to model the thermal evolution in 2D infinite cylinder geometry and a 3D SPH code [4] to study the interior heating caused by collisions among icy planetesimals. For simplicity we assume circular porous icy planetesimals with a low density (≈ 470 kg/m3) based on measurements for comet 67P/Churyumov-Gerasimenko [5].
For the parameter study of the thermal history we vary (i) icy planetesimal radii, (ii) formation time and the (iii) the silicate/ice ratio. For the latter we keep the mean density fixed and change the porosity of the icy planetesimal. For the impact models we use porous, low-strength objects and vary (i) target and (ii) projectile radii, (iii) impact velocity as well as (iv) impact angle. Potential losses of volatile compounds from their interiors are calculated based on their critical temperatures taken from literature [6]. Our combined results indicate that only small or late-formed icy planetesimals remain mostly pristine, while early formed objects can even reach temperatures high enough to melt the water ice.

REFERENCES
[1] Morbidelli & Nesvorný, In: The Trans-Neptunian Solar System. 25–59 (2019). [2] Golabek & Jutzi, Icarus 363, 114437 (2021). [3] Gerya & Yuen, Phys. Earth Planet. Int. 163, 83-105 (2007). [4] Jutzi, Planet. Space Sci. 107, 3–9 (2015). [5] Sierks et al., Science 347, 1044 (2015). [6] Davidsson et al., Astron. Astrophys. 592, A63 (2016).

How to cite: Golabek, G. and Jutzi, M.: Modification of icy planetesimal interiors by early thermal evolution and collisions, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1433, https://doi.org/10.5194/egusphere-egu22-1433, 2022.

EGU22-1746 | Presentations | PS3.3 | Highlight

Crystallisation of the upper lunar magma ocean and implications for KREEP and crust formation 

Weronika Ofierska, Max Schmidt, Paolo Sossi, and Christian Liebske

According to the canonical model, the Moon was formed in the aftermath of a giant impact, when the proto-Earth was struck by a Mars-size impactor leading to a debris disk from which the Moon accreted. This event is thought to have been sufficiently energetic to cause wholesale melting of the Moon. Solidification of the resulting Lunar Magma Ocean (LMO) involves plagioclase flotation and formation of an anorthositic crust that blankets the residual LMO. This crust may form directly through plagioclase flotation or involve more complex reprocessing mechanisms. Extensive fractional crystallization of the LMO likely led to formation of a residual KREEP component in the crust, enriched in K, REE, P and other incompatible elements relative to the bulk Moon, whose signature has been recognized in several lunar samples (e.g.  feldspathic basalt).

The experimentally-constrained liquid lines of descent of a range of plausible LMO compositions bear strong resemblances to one another, crystallizing in the sequence olivine -> opx -> cpx + plagioclase -> quartz + Fe-Ti oxide. Crystallisation of olivine ± orthopyroxene prevails, depending on the composition, between 61-77 PCS (percent solidified), followed by the concomitant appearance of plagioclase + cpx at 1230±30 oC. Crystallisation of plagioclase marks the point at which the crystallisation sequences diverge owing to differences in bulk composition (e.g. refractory element content), which in turn influence phase saturation. Existing experiments on liquid lines of descent lack resolution, in particular at the point of quartz and Fe-Ti oxide saturation. Moreover, these experiments rarely proceed to the extent required to produce a KREEP component. In this work, we aim to more precisely determine the phase relations during crystallisation of the uppermost LMO, and assess possible mechanisms of formation of the KREEP component.

An isobaric series (8 - 5kbar) of six experiments on the bulk silicate Moon composition of O’Neill (1991) yields a crystallization sequence beginning at 1250 oC with olivine ± opx ± Cr-sp (69 PCS), followed by plagioclase and clinopyroxene at 1200 oC (77 PCS). Our mineral and melt major and trace-element abundances constrain the terminal stages of LMO crystallisation. Melt compositions remain near 45 wt% SiO2 during the final crystallization stage while FeO increases from 12 wt% (bulk) to 20 wt% at plagioclase saturation. The Al2O3 and CaO budget is controlled by plagioclase crystallization (but not cpx) as the An# is as high as 97. We report mineral/melt partitioning coefficients for La, Ce, Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Y, Zr, Th and U for plagioclase, pigeonite and high-Ca clinopyroxene and use the lattice strain model to evaluate these, also in the context of literature data. These partition coefficients are therefore the most suitable for understanding the origin of the KREEP component.  

Preliminary results suggest KREEP forms only after 99 PCS due to the evolved melt and the relatively rapid cooling rate of the surface magma ocean once crystal fraction is high. The last stage of eutectic crystallisation should lead to gabbroic rocks as the final crystallisation product.  

How to cite: Ofierska, W., Schmidt, M., Sossi, P., and Liebske, C.: Crystallisation of the upper lunar magma ocean and implications for KREEP and crust formation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1746, https://doi.org/10.5194/egusphere-egu22-1746, 2022.

EGU22-3089 | Presentations | PS3.3

Non-equilibrium melting of partially differentiated asteroids: insights from partial melting experiments on L6 chondrite DAV01001 

Stefano Iannini Lelarge, Matteo Masotta, Luigi Folco, Lucia Mancini, and Lidia Pittarello

Planetary differentiation in small bodies is believed to be ruled by several partial end-states that were dominated by low degrees of partial melting and melt segregation, before arriving at the formation of rocky planets. Having a better understanding of non-equilibrium melting processes in undifferentiated chondritic materials is critical to characterize planetary differentiation processes and the formation of rocky planets and differentiated asteroids. In this context, partial melting experiments of natural chondrites can provide unique insights into the petrological evolution associated with early planetary differentiation of planetesimals. For this study, we performed partial melting experiments using fragments from the ordinary chondrite DAV01001. Experiments were performed in a piston-cylinder at 1 GPa pressure, at temperatures from 1100 to 1300 °C and for 24 hours run duration. Reducing conditions were imposed by the use of graphite capsules. The experimental products were analysed using electron microprobe and synchrotron radiation computed microtomography (SR-µCT).

DAV01001 is an equilibrated L6 ordinary chondrite that has still visible relic chondrules and contains olivine (Fo75), low-Ca pyroxene (En77Fs21Wo2), high-Ca pyroxene (En47Fs8Wo45), albitic plagioclase (An13Ab81Or6), metal, troilite, chromite, and apatite. Upon heating, metal and troilite disappear at 1100 °C forming two immiscible phases, one made of pure metal with variable amounts of Ni, the other made of a metal-sulphide liquid of variable composition. Chromite starts melting at 1100 °C and disappears at 1300 °C. Silicatic melt forms already at 1100 °C as a result of the melting of plagioclase. With increasing temperature, the pyroxene and olivine begin to melt and shift the composition of the liquid towards trachy-andesitic (1200 °C) and basaltic trachy-andesitic to andesitic (1300 °C) compositions. Melting of olivine and pyroxene is accompanied by the crystallisation of both phases. The newly-formed olivine has a composition varying from Fo80 to Fo59, becoming progressively enriched in Fe and Ca and depleted in Ni at increasing temperature. The newly-formed pyroxene has a variable Ca content, and is enriched in Al and Cr and depleted in Fe and Mn. The new-grown olivine and pyroxene crystals have a strong affinity with chondritic/primitive achondrites compositions, in contrast to the melts that have a good affinity to a bulk HED composition. Overall, the combination of melting and crystallisation fixes the amount of silicatic liquid to a rather constant value of 10% vol.

SR-µCT was used to create 3D reconstructions of the experimental samples, in order to evaluate the efficiency of metal segregation at increasing degrees of partial melting. At increasing temperature, no change in the object density (number of 3D particles divided by the sample volume) is observed but only a progressive increase of the roundness and sphericity of the particles. This suggests that, even in presence of an interconnected liquid silicate phase (~10% vol), the coalescence of the metal phases does not occur spontaneously and other forces such as rotational spin or deformation are needed to segregate metal under these conditions.

How to cite: Iannini Lelarge, S., Masotta, M., Folco, L., Mancini, L., and Pittarello, L.: Non-equilibrium melting of partially differentiated asteroids: insights from partial melting experiments on L6 chondrite DAV01001, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3089, https://doi.org/10.5194/egusphere-egu22-3089, 2022.

EGU22-3311 | Presentations | PS3.3 | Highlight

Moon Formation via Streaming Instability 

Miki Nakajima, Jeremy Atkins, Jacob B. Simon, and Alice C. Quillen
  • The Apollo lunar samples reveal that Earth and the Moon have strikingly similar isotopic ratios, suggesting that these bodies may share the same source materials. This leads to the "standard" giant impact hypothesis, suggesting the Moon formed from a partially vaporized disk that was generated by an impact between the proto-Earth and a Mars-sized impactor. This disk would have had high temperature (~ 4000 K) and vapor mass fraction of ~20 wt %. However, impact simulations indicate that this model does not mix the two bodies well, making it challenging to explain the isotopic similarity. In contrast, more energetic impacts, such as a collision between two half Earth-sized objects, could mix the two bodies well, naturally solving the problem. These impacts would produce much higher disk temperatures (6000-7000K) and higher vapor mass fractions (~80-90 wt%). These energetic models, however, may have a challenge during the Moon accretion phase. Our analyses suggest that km-sized moonlets, which are building blocks of the Moon, would experience strong gas drag from the vapor portion of the disk and fall onto Earth on a very short timescale. This problem could be avoided if large moonlets (>1000 km) form very quickly by the process called streaming instability, which is a large clump formation mechanism due to spontaneous concentration of dust particles followed by gravitational collapse. We investigate this possibility by conducting numerical simulations with the code called Athena. Our 2D and 3D hydrodynamic simulations show that moonlet formation by streaming instability is possible in the Moon-forming disk, but their maximum size is approximately 50 km, which is not large enough to avoid the strong gas drag. This result supports the Moon formation models that produce vapor-poor disks, such as the standard model. We will further discuss implications for moons in the solar system and extrasolar systems (exomoons). 

How to cite: Nakajima, M., Atkins, J., Simon, J. B., and Quillen, A. C.: Moon Formation via Streaming Instability, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3311, https://doi.org/10.5194/egusphere-egu22-3311, 2022.

During the differentiation of terrestrial planets, the metal phase from the impactor core segregates from the silicate phase of the magma ocean. This buoyant mass forms a turbulent thermal and settles toward the proto-core. During this descent, thermal and chemical exchange occurs at the boundary between the metallic and silicate phases. Based on laboratory fluid dynamic experiments mimicking the settling of the metallic thermal turbulent, we develop a Lagrangian approach of the mixing from the experimental velocity field. We are able to track the evolution of the material elongated as lamellae by the turbulent stirring. We have characterised the elongation rate, the aggregation of lamellae, and the probability density function of the elongation and concentration, which are not accessible from direct measurements in the experiments. We have also investigated the effect of the Reynolds number and density ratio on these quantities. These results will allow us to develop a new predictive model of the mixing and chemical transfer in thermal turbulent to better understand the equilibrium between metals and silicates during the accretion of terrestrial planets.

How to cite: Huguet, L. and Deguen, R.: Lagrangian approach of the mixing in a turbulent thermal, and implications for metal-silicate equilibrium during Earth's formation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3776, https://doi.org/10.5194/egusphere-egu22-3776, 2022.

EGU22-4128 | Presentations | PS3.3 | Highlight

Is planetary resurfacing a key factor for outgassing and gas speciation on rocky planets? 

Lena Noack and Caroline Brachmann

Accurate measurements of a planet's mass, radius and age (provided for example by the PLATO mission and follow-up measurements) together with compositional constraints from the stellar spectrum can help us to deduce potential evolutionary pathways that rocky planets can evolve along, and allow us to predict the range of likely atmospheric properties that can then be compared to observations.

However, for the evolution of composition and mass of an atmosphere, a large degeneracy exists due to several planetary and exterior factors and processes, making it very difficult to link the interior (and hence outgassing processes) of a planet to its atmosphere. The community therefore thrives now to identify the key factors that impact an atmosphere, and that may lead to distinguishable traces in planetary, secondary outgassed atmospheres. Such key factors are for example the planetary mass (impacting atmospheric erosion processes) or surface temperature (impacting atmospheric chemistry, weathering and interior-atmosphere interactions).

Here we investigate the signature that a planet evolving into plate tectonics leaves in its atmophere due to its impact on volcanic outgassing fluxes and volatile releases to the atmosphere - leading possibly to distinguishable sets of atmospheric compositions for stagnant-lid planets and plate tectonics planets. These preliminary findings will need to be further investigated with coupled atmosphere-interior models including various feedback mechanisms such as condensation and weathering as well as atmospheric escape to space.

How to cite: Noack, L. and Brachmann, C.: Is planetary resurfacing a key factor for outgassing and gas speciation on rocky planets?, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4128, https://doi.org/10.5194/egusphere-egu22-4128, 2022.

EGU22-4758 | Presentations | PS3.3

Asymmetric growth of planetary stagnant lids 

Callum Watson, Jerome Neufeld, and Chloé Michaut

Both the Moon1 and Mars2 are known to have significant degree-1 variations in their crustal thicknesses, with the Moon's far side and Mars's southern hemisphere having far thicker crusts than their respective opposing hemispheres. A number of potential mechanisms have been proposed to explain these dichotomies, including large impacts in both cases3,4, radiant heat from the Earth5 (in the case of the Moon), and large-scale volcanism6 (in the case of Mars). However, the effectiveness of these mechanisms are limited by the difficulty of sustaining a large hemispheric difference during the tens to hundreds of Ma of crustal formation. Both planets' lithospheres are examples of a fluid-dynamical boundary layer known as a stagnant lid, caused by temperature-dependent viscosity in a convecting system. We consider the effect of pressure on the viscosity of magma oceans and mantles, finding that under certain circumstances a spherically-symmetric stagnant lid is linearly unstable to asymmetric perturbations. The fastest-growing wavenumbers of this instability is degree 1, meaning that a small initial asymmetry may grow into a full-scale hemispherical dichotomy. We then numerically examine the stability of these asymmetric states, finding that they may last for hundreds of Ma. We also compare to the case of Mercury, a similarly-sized planet with no such crustal dichotomy, to determine if our analysis matches observations.

 

1 Wieczorek, M.A., Jolliff, B.L., Khan, A., Pritchard, M.E., Weiss, B.P., Williams, J.G., Hood, L.L., Righter, K., Neal, C.R., Shearer, C.K., McCallum, I.S., Tompkins, S., Hawke, B.R., Peterson, C., Gillis, J.J. & Bussey, B. 2006 The Constitution and Structure of the Lunar Interior. Reviews in Mineralogy and Geochemistry 60, 221–364.

2 Thiriet, M., Michaut, C., Breuer, D. & Plesa, A.-C. 2018 Hemispheric dichotomy in lithosphere thickness on mars caused by differences in crustal structure and composition. Journal of Geophysical Research: Planets 123 (4), 823–848.
Weiss, Benjamin P. & Tikoo, Sonia M. 2014 The lunar dynamo. Science 346 (6214), 1198

3 Garrick-Bethell, I., Perera, V., Nimmo, F. & Zuber, M.T. 2014 The tidal-rotational shape of the Moon and evidence for polar wander. Nature 512 (7513), 181–184.

4 Andrews-Hanna, J.C., Zuber, M.T. & Banerdt, W.B. 2008 The borealis basin and the origin of the martian crustal dichotomy. Nature 453 (7199), 1212–1215.

5 Roy, A., Wright, J.T. & Sigurðsson, S. 2014 Earthshine on a young moon: Explaining the lunar farside highlands. The Astrophysical Journal Letters 788 (2), L42.

6 Golabek, G.J., Keller, T., Gerya, T.V., Zhu, G., Tackley, P.J. & Connolly, J.A.D. 2011 Origin of the martian dichotomy and tharsis from a giant impact causing massive magmatism. Icarus 215 (1), 346–357.

How to cite: Watson, C., Neufeld, J., and Michaut, C.: Asymmetric growth of planetary stagnant lids, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4758, https://doi.org/10.5194/egusphere-egu22-4758, 2022.

EGU22-4890 | Presentations | PS3.3

Tungsten isotope implications for the source of ocean island basalts from the Marquesas Archipelago 

Marie-Theres Herret, Andrea Mundl-Petermeier, Paterno Castillo, and Doyeon Kim

The application of the short-lived radiogenic 182Hf/182W-system (t1/2 = 8.9 Ma [1]) is a good approach to study early differentiation processes or potential involvement of long-term isolated and/or core-influenced mantle domains as components for ocean island basalts (OIB) [2,3].

Several examples of OIB worldwide (e.g., Hawaii, Samoa and Iceland) exhibit a negative He-W correlation [2], possibly connected to the incorporation of primordial material characterized by high 3He/4He ratios and negative µ182W (182W/184W deviation of a sample from laboratory standards in parts per million). Anomalous W isotope compositions in combination with elevated 3He/4He ratios have previously been connected to seismically anomalous structures in the lowermost mantle, so-called “(mega) ultra-low velocity zones” [3]. Recently, such a structure was discovered beneath the Marquesas Archipelago [4]. This volcanic island chain is located in the South Pacific, in proximity of the Marquesas Fraction Zone. Its formation process is not yet fully understood. Based on high 3He/4He ratios in combination with other geochemical characteristics, such as Sr, Nd and Pb isotopes, a deep-lying mantle source has been suggested [5].

In this study, we have analysed seven samples from two islands of the Marquesas Archipelago, which exhibit 3He/4He ratios up to 14.4 Ra [5]. µ182W ranges from -3.6 ±3.1 to 4.7 ±8.5. Hence, despite elevated 3He/4He in some of the samples, none of them display resolved negative 182W anomalies and thus, no negative He-W correlation is observed. Interpretations for the decoupling of He-W systematics in samples from the Marquesas Archipelago will be discussed.

 

References:

[1] Vockenhuber et al., 2004, Phys. Rev. Lett.

[2] Mundl et al., 2017, Science

[3] Mundl-Petermeier et al., 2020, Geochim. Cosmochim. Acta

[4] Kim et al., 2020, Science

[5] Castillo et al., 2007, Chem. Geol.

How to cite: Herret, M.-T., Mundl-Petermeier, A., Castillo, P., and Kim, D.: Tungsten isotope implications for the source of ocean island basalts from the Marquesas Archipelago, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4890, https://doi.org/10.5194/egusphere-egu22-4890, 2022.

EGU22-5002 | Presentations | PS3.3

The critical point and the supercritical regime of MgO 

Tim Bögels and Razvan Caracas

The position of the critical point determines the top of the liquid-vapor coexistence dome, and is a physical parameter of fundamental importance in the study of high-energy shocks, including those associated with large planetary impacts. For most major planetary materials, like oxides and silicates, the estimated position of the critical point is below 1 g/cm3 at temperatures above 5000 K. Here we compute the position of the critical point of one of the most ubiquitous materials: MgO. For this, we perform first-principles molecular dynamics simulations. We find the critical density to be in the 0.4 - 0.6 g/cm3 range and the critical temperature in the 6500 - 7000 K range. We investigate in detail the behavior of MgO in the subcritical and supercritical regimes and provide insight into the structure and chemical speciation. We see a change in Mg-O speciation towards lower degrees of coordination as the temperature is increased from 4000 K to 10000 K. This change in speciation is less pronounced at higher densities. We observe the liquid-gas separation in nucleating nano-bubbles at densities below the liquid spinodal. The majority of the chemical species forming the incipient gas-phase consist of isolated Mg and O atoms and some MgO and O2 molecules. We find that the ionization state of the atoms in the liquid phase is close to the nominal charge, but it almost vanishes close to the liquid-gas boundary and in the gas phase, which is consequently largely atomic.

 

This research was supported by the European Research Council under EU Horizon 2020 research and innovation program (grant agreement 681818–IMPACT to RC). This research was performed by access to supercomputing facilities via eDARI stl2816 grants, PRACE RA4947 grant, Uninet2 NN9697K grant.

How to cite: Bögels, T. and Caracas, R.: The critical point and the supercritical regime of MgO, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5002, https://doi.org/10.5194/egusphere-egu22-5002, 2022.

EGU22-5270 | Presentations | PS3.3

Evolution of the reservoir of volatiles in the protosolar nebula 

Antoine Schneeberger, Olivier Mousis, Artem Aguichine, and Jonathan Lunine

How volatiles were incorporated in the building blocks of planets and small bodies in the protosolar nebula remains an outstanding question. Some scenarios invoke the formation of planetesimals from a mixture of refractory material and amorphous ice in the outer nebula while others argue that volatiles have been incorporated in clathrate or pure condensate forms in these solids. Here we study the fate of volatiles (H2O, CO, CO2, CH4, H2S, N2, NH3, Ar, Kr, Xe, and PH3) initially delivered in the forms of amorphous ice or pure condensates to the protosolar nebula. We investigate the radial distribution of these volatiles via a transport module coupled with an accretion disk model. In this model, multiple icelines are considered, including the condensation fronts of pure condensates, as well as those of clathrates when enough crystalline water is available at given time and location. Our simulations show that a significant fraction of volatiles can be trapped in clathrates only if they have been initially delivered in pure condensate forms to the disk. Under specific circumstances, volatiles can be essentially trapped in clathrates but, in many cases, the clathrate of a given species coexists with its pure condensate form. Those findings have implications for the compositions of giant planets and comets.

How to cite: Schneeberger, A., Mousis, O., Aguichine, A., and Lunine, J.: Evolution of the reservoir of volatiles in the protosolar nebula, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5270, https://doi.org/10.5194/egusphere-egu22-5270, 2022.

The radiogenic elements K, Th, and U are large contributors to the heating inside a terrestrial planet. Because they act incompatible in solid mantle rocks, they prefer to gather in partial melt, which is generally less dense than the surrounding material and rises upwards. While rising, the melt transports the radiogenic heat sources and other incompatible elements towards the surface, where over time they accumulate inside the crust. The amount of the transported incompatible elements is heavily dependent on their degree of incompatibility in mantle rocks and therefore their mineral/melt partition coefficients. Despite the fact that partition coefficients can change by multiple orders of magnitudes from 0-15 GPa along a peridotite solidus (Schmidt and Noack, 2021), they were generally taken as constant in mantle evolution models due to a lack of high-pressure models and experimental data.

Based on the thermodynamic approach of Blundy et al. (1995), Schmidt and Noack (2021) modelled partition coefficients for sodium in clinopyroxene/melt from 0-15 GPa. As sodium has a very low strain in the M2 lattice site of clinopyroxene and is therefore very compatible, its partition coefficients can act as a reference to model the other elements from. In this study, we take the approach of Schmidt and Noack (2021) to model the partition coefficients of the above-mentioned heat producing elements and volatiles at local P-T conditions for partial melting events inside the mantle of terrestrial planets. We insert local bulk partition coefficients for an adequate mantle rock composition into a 1D interior evolution model of Mars. By comparing the results of the redistribution to models with constant partition coefficients, we can assess the impact of the locally calculated partition coefficients on the accuracy of models which deal with the thermal evolution of a planet and the enrichment of heat producing elements and volatiles inside the crust.

Blundy, J. et al. (1995): Sodium partitioning between clinopyroxene and silicate melts, J. Geophys. Res., 100, 15501-15515.

Schmidt, J.M. and Noack, L. (2021): Clinopyroxene/Melt Partitioning: Models for Higher Upper Mantle Pressures Applied to Sodium and Potassium, SysMea, vol 13 nr 3&4, to be published.

How to cite: Schmidt, J. M. and Noack, L.: Applying locally calculated partition coefficients for radiogenic heat sources and volatiles to interior evolution models of terrestrial planets, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5850, https://doi.org/10.5194/egusphere-egu22-5850, 2022.

EGU22-6028 | Presentations | PS3.3 | Highlight

An overview of modeled dynamic histories of rocky planets 

Nicolas Coltice

Every planet is singular, with scars and bumps at their surface. One planet, one history. But the physics at play is common to them, connecting planetary bodies together. Tectonics is a common theme of what we can observe on planets of the solar system, and a central question for explanets. More than 20 years of geodynamic modelling has resulted in  identifying a diversity of tectonic regimes for mantle convection, from very active, like heat-pipe (Monnereau and Dubuffet, 2002 among others) and squishy lid (Lourenço et al., 2020) to almost inert, like stagnant lid (Schmeling and Jacoby, 1982). Tectonics is an emergent property deriving from the intimate structure and composition of a planet. It is also a fundamental piece shaping the surface environment. This presentation will attempt to give an overview of tectonic regimes of planets and propose typical evolutional scenari, connecting structural and compositional histories from the depth to the surface.

 

References

Lourenço, D. L., Rozel, A. B., Ballmer, M. D., & Tackley, P. J. (2020). Plutonic‐squishy lid: A new global tectonic regime generated by intrusive magmatism on earth‐like planets. Geochemistry, Geophysics, Geosystems, 21, e2019GC008756.

Monnereau, M., & Dubuffet, F. (2002). Is Io's mantle really molten?. Icarus, 158, 450-459.

Schmeling, H., & Jacoby, W. R. (1982). On modelling the lithosphere in mantle convection with non-linear rheology. Journal of Geophysics, 50, 89-100.

How to cite: Coltice, N.: An overview of modeled dynamic histories of rocky planets, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6028, https://doi.org/10.5194/egusphere-egu22-6028, 2022.

EGU22-6584 | Presentations | PS3.3

Determination of Water D/H in Hydrated Chondrites using NanoSIMS Imaging 

Lionel G. Vacher and Ryan C. Ogliore

Introduction: Hydrogen isotopic compositions (D/H or 𝛿D) in chondrites are a powerful tool for deciphering the source of water delivered to terrestrial planets (1). CM-type carbonaceous chondrites contain up to ~10wt.% H2O, retained as OH in phyllosilicates. The D/H ratio of phyllosilicates (a direct proxy for water) in chondrites cannot be determined directly using whole rock measurements, because their matrices also accreted D-rich organics which are mixed with D-poor phyllosilicates at the sub-micrometer scale. To address this issue, water D/H has been estimated by in-situ measurements of both D/H and C/H in hydrated chondrites, which define a mixing line in a D/H vs. C/H plot. The intercept gives the isotopic composition of the phyllosilicate alone (1). However, SIMS measurements of water D/H using this method can be compromised by (i) contamination and (ii) limited dispersion of the phyllosilicates/organics ratio measured with a large primary beam.

Methods: We addressed both issues using the Wash U NanoSIMS50 which allows us to obtain coordinated isotopic and elemental data with high-spatial resolution. H,Dwith 12C,12C14N,12C15N,28Si are collected using magnetic-field peak-jumping in “Combined Analysis” mode. Centering of the secondary ions beam in Cy and P2/P3 planes of the secondary column changes between the low and high masses, resulting in misaligned ion images. So, we used AutoHotkey scripts to send a different Cy voltage for every B-field set up through the virtual keyboard of the NanoSIMS. To separate phyllosilicate-rich from organic-rich pixels, we assume that D/H is not simply a linear function of C/H, but in general D/H is approximated by a function using all measured species: . The true phyllosilicate composition [C,N,Si,H] is estimated from the data and is then used to estimate the water D/H composition from the linear regression model. NanoSIMS isotopic analyses were carried out in a matrix area of the CM Maribo and our analytical conditions were the same as outlined in (2).

Results: First, we calculated a 𝛿D value of −178±46‰ (2σ) for the phyllosilicates in Maribo using the D/H vs. C/H correlation from the resized pixels. This value is higher than previous measurements using SIMS [𝛿D ≈ −420 to −270‰, (2, 3)], demonstrating that D/H ratio of phyllosilicate cannot be simply determined using the D/H vs. C/H line in this matrix area. Second, we calculated the 𝛿D value of the phyllosilicates in Maribo using all the measured species and the linear regression model described above. We found that the phyllosilicate D/H is best correlated for dominant contributions of N, Si and H (b=0.14, c=0.58 and d=−0.86) and minor contributions of C (a=0.06). We calculated a 𝛿D value of −286+/-60‰. This value is consistent with those previously determined by SIMS, demonstrating that our method can be used to precisely determine the water D/H on very small areas.

 

(1) Alexander C.M.O’D. et al. (2012) Science, 337, 721–723.

(2) Vacher L.G. and Ogliore R.C. (2022) 53rd LPSC, 2653.

(3) van Kooten E.M.M.E. et al. (2018) GCA, 237, 79–102.

(4) Piani L. et al. (2021) EPSL, 567, 117008.

How to cite: Vacher, L. G. and Ogliore, R. C.: Determination of Water D/H in Hydrated Chondrites using NanoSIMS Imaging, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6584, https://doi.org/10.5194/egusphere-egu22-6584, 2022.

EGU22-6591 | Presentations | PS3.3 | Highlight

Forming the Martian dichotomy with realistic impact scenarios 

Kar Wai Cheng, Antoine Rozel, Harry Ballantyne, Martin Jutzi, Gregor Golabek, and Paul Tackley

The Martian dichotomy features a ~25 km difference in crustal thickness and ~5 km contrast in topography between the southern highlands and northern lowlands [1]. Among various origin hypothesis, a southern impact [2,3] creates a magma pond which, upon cooling, induces crustal thickening and thereby forms the crustal dichotomy within 10s of million years.

 

Our previous study [4], which utilizes a head-on parametrized impact in 2D geometry, shows that an impact-induced magma pond in the southern hemisphere is able to not only create a thickened crust in the south, but also a satisfying volcanic history with localized melt production in the equatorial region at geologically recent time.  Depleted material, formed from crystallization of the magma pond, spreads and underplates the thicker and colder Northern lithosphere undisturbed by the impact, reinforcing the lesser extent of volcanism in the northern hemisphere. Our resultant mantle structure is consistent with existing simulation efforts that focus on the post-dichotomy formation evolution history [5], and in addition gives the context of how such thermochemical structure is developed.

 

In order to include a more realistic impact scenario, we use smoothed particle hydrodynamics (SPH) simulations [6] to model the first 24-36 hours of a giant impact between proto-Mars and its impactor. The SPH result is then transferred to the mantle convection code StagYY [7], as an initial thermal condition, to simulate the long-term evolution of the crust and mantle for the subsequent 4.5 billion years. We systematically vary the impactor size, impact velocity and pre-impact Martian mantle temperature. Our preliminary results show that a 45-degree impact does not form a Martian dichotomy-like crustal structure, while a 15-degree impact is a better match.  With a realistic impact, the mechanisms reported in our parametrized impact study still hold.

 

 

References:

 

[1] Watters, T., McGovern, P., & Irwin III, R. (2007). Hemispheres Apart: The Crustal Dichotomy on Mars. Annual Review Of Earth And Planetary Sciences, 35(1), 621-652.

 

[2] Reese, C., Orth, C., & Solomatov, V. (2011). Impact megadomes and the origin of the martian crustal dichotomy. Icarus, 213(2), 433-442.

 

[3] Golabek, G., Keller, T., Gerya, T., Zhu, G., Tackley, P., & Connolly, J. (2011). Origin of the martian dichotomy and Tharsis from a giant impact causing massive magmatism. Icarus, 215(1), 346-357.

 

[4] Cheng, K.W., Tackley, P.J., Rozel, A.B., Golabek, G.J. (2021). Martian Dichotomy: Impact-induced Crustal Production in Mantle Convection Models, Abstract [DI35B-0023] presented at 2021 Fall Meeting, AGU, New Orleans, LA, 13-17 Dec.

 

[5] Plesa, A., Padovan, S., Tosi, N., Breuer, D., Grott, M., & Wieczorek, M. et al. (2018). The Thermal State and Interior Structure of Mars. Geophysical Research Letters, 45(22), 12,198-12,209.

 

[6] Emsenhuber, A., Jutzi, M., Benz, W. (2018). SPH calculations of Mars-scale collisions: The role of the equation of state, material rheologies, and numerical effects. Icarus, 301, 247-257

 

[7] Tackley, P. (2008). Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid. Physics Of The Earth And Planetary Interiors, 171(1-4), 7-18.

 

How to cite: Cheng, K. W., Rozel, A., Ballantyne, H., Jutzi, M., Golabek, G., and Tackley, P.: Forming the Martian dichotomy with realistic impact scenarios, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6591, https://doi.org/10.5194/egusphere-egu22-6591, 2022.

      The crystallization of the Basal Magma Ocean (BMO) sets the stage for the long-term evolution of terrestrial planets and may leave behind large-scale thermochemical structures in the lower mantle. Previous work shows that a FeO-enriched molten layer or basal magma ocean (BMO) is stabilized at the core-mantle boundary of large rocky planets such as Earth for a few billion years. The BMO itself is expected to freeze by fractional crystallization (FC) because it cools very slowly. However, the fate of BMO cumulates has not yet been systemically explored.

To explore the fate of the BMO cumulates in the convecting mantle, we explore 2D geodynamic models with a moving-boundary approach. Flow in the mantle is explicitly solved, but the thermal evolution and related crystallization of the successively crystallizing BMO (i.e., below the moving boundary) are fully parameterized. The composition of the crystallizing cumulates is self-consistently calculated in the FeO-MgO-SiO2 ternary system according to Boukaré et al. (2015). In some cases, we also consider the effects of Al2O3 on the cumulate density profile. We then investigate the entrainment and mixing of BMO cumulates by solid-state mantle convection over billions of years as a function of BMO initial composition and volume, BMO crystallization timescales, distribution of internal heat sources, and mantle rheological parameters (Rayleigh Number and activation energy). We vary the initial composition of BMO by manipulating the bulk molar fraction of FeO, MgO, and SiO2, e.g. considering BMO compositions such as pyrolite, lower-mantle partial melts of pyrolite (after 50% batch crystallization), or Archean Basalt.

For all our model cases, we find that most of the cumulates (first ~90% by mass) are efficiently entrained and mixed through the mantle. However, the final ~9% of the cumulates are too dense to be entrained (either fully or partially) over the age of the Earth, and rather remain at the base of the mantle as a strongly FeO-enriched solid layer. Unless the initial thickness of the BMO is ≤100 km, this strongly enriched and intrinsically dense layer should cover the CMB globally. We highlight that this outcome of BMO fractional crystallization is inconsistent with the geophysical constraints. Our results suggest that the BMO was either very small initially or did not crystallize by end-member FC. An alternative mode of crystallization may be driven by an efficient reaction between a highly-enriched last-stage BMO with the overlying mantle. Such reactive crystallization may be much faster than FC of the BMO, as it is driven by chemical disequilibrium instead of (slow) planetary cooling.

How to cite: Ismail, M. and Ballmer, M.: Fractional Crystallization Of The Basal Magma Ocean: Consequences For Present-day Mantle Structure, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6651, https://doi.org/10.5194/egusphere-egu22-6651, 2022.

EGU22-6692 | Presentations | PS3.3

Formation of Jupiter's envelope from supersolar gas in the protoplanetary disk 

Artyom Aguichine, Olivier Mousis, and Jonathan Lunine

The formation mechanism of Jupiter is still uncertain, as multiple volatile accretion scenarios can reproduce its metallicity [1-4]. The Galileo mission allowed in situ measurements of the abundances of several elements (Ar, Kr, Xe, C, N, S and P), which exhibit a uniform enrichment of 2 to 5 times the protosolar abundance, and a subsolar abundance has been measured for O. Recent measurements for N and O by the Juno mission confirmed the supersolar abundance of N, but indicated that the abundance of O may also be supersolar [5]. Elemental abundances measured in the Jupiter's atmosphere are key ingredients to trace the origin of various species.
Here, we investigate the possible timescale and location of Jupiter's formation using measurements of molecular and elemental abundances in its envelope. To do so, we use a 1D accretion disk model to compute the properties of the protosolar nebula (PSN) that includes radial transport of trace species, present in the form of refractory dust, a mixture of ices and their vapors, to compute the composition of the PSN [6]. We focus on the radial transport of volatile species by advection-diffusion combined with the effect of icelines, computed as sublimation/condensation rates. Initialy, the disk is uniformly filled with H2O, PH3, CO, CO2, CH4, CH3OH, NH3, N2, H2S, Ar, Kr and Xe [6,7], corresponding to the main bearers of C, N, O, P, S, Ar, Kr and Xe.
As the PSN evolves, solid particles drift inward due to gas drag. Volatile species are thus efficiently transported to their respective icelines, where they sublimate. This results in supersolar abundances of volatile elements in the inner part of the PSN. We find that the composition of Jupiter’s envelope can be achieved by accretion of enriched gas only, or a mixture of gas and solids, depending on the viscosity of the PSN. In both cases, the composition of the PSN matches the one measured in Jupiter’s envelope in timescale that are compatible with a formation by core accretion or gravitational collapse.

[1] Gautier, D., Hersant, F., Mousis, O., et al. 2001, ApJL, 550, L227.
[2] Mousis, O., Ronnet, T., and Lunine, J. I. 2019, ApJ, 875, 9.
[3] Öberg, K. I. and Wordsworth, R. 2019, AJ, 158, 194.
[4] Miguel, Y., Cridland, A., Ormel, C. W., et al. 2020, MNRAS, 491, 1998.
[5] Li, C., Ingersoll, A., Bolton, S., et al. 2020, Nature Astronomy, 4, 609.
[6] Aguichine, A., Mousis, O., Devouard, B., and Ronnet, T. 2020, ApJ, 901, 97.
[7] Lodders, K., Palme, H., & Gail, H.-P. 2009, Landolt Börnstein, 4B, 712

How to cite: Aguichine, A., Mousis, O., and Lunine, J.: Formation of Jupiter's envelope from supersolar gas in the protoplanetary disk, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6692, https://doi.org/10.5194/egusphere-egu22-6692, 2022.

EGU22-7484 | Presentations | PS3.3

The effects of terrestrial exoplanet bulk composition on long-term planetary evolution 

Rob Spaargaren, Maxim Ballmer, Stephen Mojzsis, and Paul Tackley

The study of exoplanets can provide a more general understanding of planetary systems and terrestrial-planet evolution. How terrestrial exoplanets differ from Earth has so far mostly focused on planet size and orbital distance. In contrast, bulk planet composition has gained much less attention, even though it controls key physical properties of planetary interiors, and thus interior dynamics and long-term evolution. Bulk planet composition is related to core size as well as mantle chemistry and mineralogy. To better understand the variability of interior properties among terrestrial exoplanets, we attempt to constrain the range of bulk terrestrial exoplanet compositions. 

To constrain the compositional range of terrestrial exoplanets, we use the compositional link between rocky planets and their host stars. At least in the Solar System, planetary building blocks (chondrites) correspond to the devolatized star (Sun) composition. Accordingly, we apply devolatilization to stellar compositions in the galactic neighbourhood (i.e., within 500 pc) according to the approach of Wang et al. [1]. These bulk compositions are then split into core and mantle reservoirs by considering interior oxygen fugacity during core formation equal to that of Earth. 

We find compositional ranges of molar mantle Mg/Si-ratios from 0.9 to 2.0, core sizes between 18 and 35 wt%, and mantle molar MgO+FeO+SiO2 abundances between 88 and 94 mol%. We summarize our results by defining 20 end-member compositions that represent the full range of bulk terrestrial exoplanet compositions in the Solar neighbourhood. A Gibbs energy minimization algorithm, Perple_X, shows that these planets all have mantles dominated by Fe-Mg-Si minerals, such as olivine, pyroxene, bridgmanite and periclase. The relative abundances of these minerals control mantle viscosity, where Mg-rich minerals (periclase) are weaker than Si-rich minerals (olivine, bridgmanite). We continue by simulating mantle dynamics using a 2D geodynamic model. Most of our end-member planets have a lower mantle viscosity than Earth, and their mantles are more fertile than Earth's. Accordingly, we find that mantle cooling is more efficient than for Earth for most Earth-sized exoplanets in the solar neighborhood. Future work is needed to further constrain the coupled interior-atmosphere evolution of Earth-like exoplanets, and how bulk planet composition affects it. 

[1] Wang, H.S., Lineweaver, C.H., Ireland, T.R. (2019). The volatility trend of protosolar and terrestrial elemental abundances. Icarus, 328, 287-305 

How to cite: Spaargaren, R., Ballmer, M., Mojzsis, S., and Tackley, P.: The effects of terrestrial exoplanet bulk composition on long-term planetary evolution, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7484, https://doi.org/10.5194/egusphere-egu22-7484, 2022.

EGU22-7919 | Presentations | PS3.3

Constraints on the Moon’s deep interior from tidal deformation 

Arthur Briaud, Agnès Fienga, Daniele Melini, Nicolas Rambaux, Anthony Mémin, Giorgio Spada, Christelle Saliby, Hauke Hussmann, and Alexander Stark

The Moon deforms in response to tidal forcing exerted by the Earth, the Sun and, to a lesser extent, by other planetary bodies. Their observations from ground-based and space-borne instruments, as well as Lunar surface missions, provide one of the most significant constraints that can be employed to unravel the deep interior (Williams et al. [2014], Williams and Boggs [2015]). The tidal forcing generates periodic variations of the harmonic degree-2 shape and gravity that depend on the internal composition and structure of the Moon. These changes in shape and gravity of the Moon are described by three geodetic parameters, called Tidal Love numbers (TLNs). Because of their low degree, these TLNs are sensitive to the structure of the deep interior (e.g., Khan et al. [2004]). Apart from the geodetic constraints, the Moon and Mars (e.g. Zweifel et al. [2021]) are the only other bodies besides the Earth for which seismic data are available. Seismic studies using the Apollo Passive Seismic Experiment (PSE) constrain the seismic wave velocity distribution and therefore give a glimpse of the Moon’s interior structure (Garcia et al. [2011], Weber et al. [2011]). However, at greater depth, seismic data do not provide sufficient resolution on the velocity profile, leaving the near-centre Moon structure uncertain. Other studies based upon geophysical constraints (Khan et al. [2004], Harada et al. [2014, 2016], Matsumoto et al. [2015]) and the re-analysis of the Apollo seismic data suggested the existence of an attenuated region called low viscosity zone (LVZ) originated from a melting layer at the core-mantle boundary (Khan and Mosegaard [2001], Weber et al. [2011], Harada et al. [2014], Rambaux et al. [2014]).

Based on geodetic observations and seismic studies, we perform Monte Carlo simulations for combinations of thicknesses, densities and viscosities for two classes of Moon’s models, one including an undifferentiated core and one including an inner and outer core, with both classes assuming an LVZ at the core-mantle boundary. By comparing predicted and observed tidal deformation parameters we find that the existence of an inner core cannot be ruled out. Furthermore, by deducing temperature profiles for the LVZ and the mantle following Earth assumptions, we obtain stringent constraints on the radius, viscosity, and density of the LVZ. We also infer the first estimation for the outer core viscosity, for our two possible scenarios.

How to cite: Briaud, A., Fienga, A., Melini, D., Rambaux, N., Mémin, A., Spada, G., Saliby, C., Hussmann, H., and Stark, A.: Constraints on the Moon’s deep interior from tidal deformation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7919, https://doi.org/10.5194/egusphere-egu22-7919, 2022.

EGU22-9006 | Presentations | PS3.3

The effect of heterogeneous conductivity on the long-term thermo-chemical evolution of the lower mantle: implications for primordial reservoirs 

Joshua Guerrero, Frédéric Deschamps, Yang Li, Wen-Pin Hsieh, and Paul Tackley

The long-term evolution of the mantle is simulated using 2D spherical annulus geometry to examine the effect of heterogeneous conductivity on the stability of primordial thermo-chemical reservoirs. Conductivity of the mantle is often emulated in numerical models using purely depth-dependent profiles (e.g., taking on values between 3 and 9 W/m-K). This approach is meant to synthesize the mean conductivities of mantle materials at their respective conditions in-situ. However, because conductivity depends also on temperature and composition, their role in the conductivity of the mantle is masked. This issue is significant because dynamically evolving temperature and composition introduce lateral variations in conductivity, especially in the deep-mantle. Minimum and maximum variations in conductivity are due to the temperatures of plumes and slabs, respectively, and depth-dependence directly controls the amplitude of the conductivity (and its variations) across the mantle depth. Our simulations allow assessing the consequences of these variations on mantle dynamics, in combination with the reduction of thermo-chemical pile conductivity with iron composition, which has so far not been well examined. 

First, we examine the effect of depth (D)-dependence employing a linear profile and vary the bottom-to-top conductivity ratio. We find that increased conductivity ratio acts to reduce pile temperature. Greater conductivity in the lower mantle helps to efficiently extract heat from piles (at rates sufficient to overcome or suppress temperature increases due to enrichment in HPEs). This reduction in thermal buoyancy stabilizes the piles and may play a major role in organizing thermo-chemical reservoirs into two distinct piles. 

Next, the combined effects of temperature (T) and composition (C) are examined. A positive feedback occurs when the reduced conductivity of piles inhibits its cooling and the resulting increase in temperature further reduces its conductivity. Consequently, the augmented thermal buoyancy destabilizes piles (i.e., greater topography or enhanced erosion). Furthermore, the combined T and C-dependences can greatly underestimate typical mantle conductivities if D-dependence is also underestimated. By increasing the amplitude of D-dependence, the destabilizing effects of T and C-dependence can be suppressed. 

Finally, mineral physics data is employed to emulate a more realistic depth-dependent profile for the upper and lower mantle. Depth-dependence is no longer a linear profile and values range from 3 to 27.5 W/m-K. Buoyancy ratio and the enrichment in heat-producing elements in piles are examined for this conductivity model to determine potential evolution scenarios of primordial thermo-chemical piles. We find that this model produces stable piles for periods exceeding the age of the Earth. When B is reduced from 0.23 to 0.15, piles are destabilized earlier (by approx 1 Gyr) for cases with lesser depth-dependence. HPE enrichment in piles increases their temperature over time (and further reduces their conductivity). For HPE enrichment 10 times the mantle heat production, two distinct piles are formed with moderate topography. For greater enrichment, the piles become unstable and material becomes entrained by thin plume conduits.

How to cite: Guerrero, J., Deschamps, F., Li, Y., Hsieh, W.-P., and Tackley, P.: The effect of heterogeneous conductivity on the long-term thermo-chemical evolution of the lower mantle: implications for primordial reservoirs, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9006, https://doi.org/10.5194/egusphere-egu22-9006, 2022.

EGU22-9683 | Presentations | PS3.3

Exploring hemispheric tectonics on tidally-locked super-Earths 

Tobias G. Meier, Dan J. Bower, Tim Lichtenberg, Mark Hammond, and Paul J. Tackley

Super-Earth LHS 3844b is a rocky exoplanet with a radius around 1.3 Earth radii. Its thermal phase curve suggests that the dayside temperature is around 1040 K and the nightside temperature is around 0 - 700 K, indicating inefficient atmospheric heat circulation. Therefore, this planet most likely lacks an atmosphere. In a previous study, we have shown that such a strong surface temperature dichotomy can lead to a so-called hemispheric tectonic regime. In such a regime, a cold downwelling forms preferentially on one side and hot upwellings are getting pushed towards the other hemisphere. 
GJ 486b is a super-Earth that is very similar to LHS 3844b in terms of size and it is currently unknown whether this planet has an atmosphere. In this study, we are investigating under which circumstances hemispheric tectonics can operate on GJ 486b. We also investigate the stability of hemispheric tectonics. 

We run 2D geodynamic simulations of the interior mantle flow using the mantle convection code StagYY. The models are fully compressible with an Arrhenius-type viscosity law where the mantle is mostly composed of perovskite and post-perovskite. The lithospheric strength is modelled through a plastic yielding criteria and the heating mode is either basal heating only or mixed heating (basal and internal heating). 
We use general circulation models (GCMs) of potential atmospheres to constrain the surface temperature assuming different efficiencies of atmospheric heat circulation. 

We find that a hemispheric tectonic regime is also possible for surface temperature contrasts with moderate heat redistribution. The location of the strong downwelling depends on several factors such as the surface temperature contrast and strength of the lithosphere. By reducing the temperature contrast, the location of the downwelling becomes less stable and it can start to move from one side towards the other over very long timescales (Gyrs). Our results show that hemispheric tectonics could operate on tidally-locked super-Earths, even if the surface temperature contrast between the dayside and nightside is not as strong as for LHS 3844b. Upwellings that rise preferentially on one hemisphere could lead to generation of melt and subsequent outgassing of volatiles on that side. Imprints of such outgassing on the atmospheric composition could possibly be probed by current and future observations such as JWST, ARIEL or the ELT. 

How to cite: Meier, T. G., Bower, D. J., Lichtenberg, T., Hammond, M., and Tackley, P. J.: Exploring hemispheric tectonics on tidally-locked super-Earths, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9683, https://doi.org/10.5194/egusphere-egu22-9683, 2022.

EGU22-10146 | Presentations | PS3.3 | Highlight

Devolatilisation during planet formation: A hybrid model of chemistry and dynamics 

Haiyang Wang

A star and its planets are born from the same molecular cloud, so they share the same origin of the essential building blocks: elements. The compositional deviations between stars and (particularly rocky) planets are associated with the gas-dust fractionation process in the protoplanetary disk and subsequent formation processes of the planets. During these processes, a key differentiator between forming a gas giant (e.g. Jupiter) and a rocky planet (e.g. Earth) is devolatilisation – i.e. depletion of volatiles (e.g. H, C, and O) resulting in completely different bulk compositions between the two types of planets, with former being dominated by gases/ices and the latter by rocks. This devolatilisation mechanism has been empirically observed in both the Solar System and other planetary systems (e.g. in polluted white dwarf atmospheres), but has yet to be explored and implemented in the prevalent planet-formation models.

I will explore both the nebular and post-nebular devolatilization processes based on the first principals starting from the stellar nebulae to rocky planetary bodies. These processes will then be coupled with a state-of-the-art planet formation model. Such a coupled/hybrid devolatilisation-dynamics model will enable a detailed and accurate estimation of the volatile (subject to devolatilisation) and refractory (resistant to devolatilisation) contents of a small (rocky) planet, as well as the physical properties (e.g. mass, radius, and orbit) of the planet. These unprecedentedly detailed predictions of planetary elemental composition will provide crucial constraints, together with mass, radius and orbital properties, for further modelling of planetary interiors, surfaces, and atmospheres. Together, these will lead to a new level of predictive statistical understanding of the detailed properties of small (rocky) planets in our solar neighbourhood.

How to cite: Wang, H.: Devolatilisation during planet formation: A hybrid model of chemistry and dynamics, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10146, https://doi.org/10.5194/egusphere-egu22-10146, 2022.

EGU22-12336 | Presentations | PS3.3

Evolution of the thermally stratified layer in the outer core of Mercury 

Yue Zhao, Marie-Hélène Deproost, Jurriën Knibbe, Attilio Rivoldini, and Tim Van Hoolst

Mercury’s high core mass ratio means that its core evolution could have strong implications for its mantle dynamics, surface geology, and the generation of a dynamo. Radial contraction, present-day magnetic field, ancient crustal magnetisation, and early extensive volcanism are some of the observations that are controlled by the thermal evolution of Mercury’s interior and therefore influenced by the core.

The low intensity and lack of small-scale variations in Mercury’s present-day magnetic field can be explained by a convective liquid below a thermally stratified core layer where heat is transported conductively. Numerical studies confirmed the plausibility of a sub-adiabatic heat flow at the core-mantle boundary, giving rise to the thermally stratified layer. Investigating the conditions leading to the formation of the thermally stratified layer, and its evolution, is of crucial importance for our understanding of Mercury’s geological and geophysical history.

We couple mantle and core thermal evolution to investigate the conditions under which the thermally stratified layer is formed in the liquid core, and to study the interactions between the core and the mantle. Events such as the cessation of convection in the mantle may strongly influence the core-mantle boundary heat flow and affect the thickness of the thermally stratified layer in the core. Our results highlight the importance of coupling mantle evolution with that of the core, taking into account processes such as melting in the mantle and solidification of an inner core, and the effects of a sub-adiabatic core-mantle boundary heat flow.

How to cite: Zhao, Y., Deproost, M.-H., Knibbe, J., Rivoldini, A., and Van Hoolst, T.: Evolution of the thermally stratified layer in the outer core of Mercury, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12336, https://doi.org/10.5194/egusphere-egu22-12336, 2022.

EGU22-12407 | Presentations | PS3.3

Implications of a realistic crustal rheology and intrusive magmatism on Venusian tectonics: a geodynamic perspective 

Jiacheng Tian, Paul Tackley, and Antoine Rozel

From the observations on ~1000 recognizable impact craters on Venus’ surface, the average surface age for Venus is comparable to the average surface age for Earth, and is significantly younger than the surface ages of other solar terrestrial planets. To explain Venus’ young surface without plate tectonics, the global tectonics of Venus have often been proposed to be in an episodic-lid regime with catastrophic global overturns. Previous episodic-lid geodynamic models often assume an olivine-diffusion-creep rheology for Venus’ crust, resulting in global overturns followed by stagnant-lid phases with near-zero surface mobilities. However, some tectonic units on Venus’ surfaces show substantial tectonic deformation, such as tesserae and coronae. Recent analyses of satellite images on Venus' surface also suggest possible widespread lithospheric mobilities in the lowland basins. And these observations can hardly be explained by the stagnant-lid phases between overturns in the episodic-lid models.

In this study, we test the influence of (1) a composite, experiment-based crustal rheology (including diffusion creep, dislocation creep, and plasticity), and (2) intrusive magmatism, on Venus’ surface tectonics, using the mantle convection code StagYY in a 2D spherical annulus geometry. Our results show that applying the experiment-based rheology and intrusive magmatism in the model results in (1) both global and regional overturns, (2) high and continuous surface mobilities that indicate substantial surface deformation between global overturns, and (3) a young and thinner crust that is consistent with current estimations.  As for volcanic activities, contrary to olivine-diffusion-creep models, there is no persistent mantle plume in our models when the realistic crustal rheology is applied. The basalt cumulated between the upper and lower mantle affects convective flows in the mantle and mantle upwellings from the core-mantle boundary. Also, there are short-term, randomly located volcanisms within crust between global overturns, which are consistent with recent observations of active magmatism on Venus’ surface and the short-term plumes suggested by coronae formation models. The surface tectonics in our models are dependent on the heat transfer efficiency in the upper mantle. And the tectonic regime is different from both episodic-lid regime and plutonic-squishy-lid regime that are proposed in previous literature, and can provide insights on the tectonic style for Venus and early Earth.

How to cite: Tian, J., Tackley, P., and Rozel, A.: Implications of a realistic crustal rheology and intrusive magmatism on Venusian tectonics: a geodynamic perspective, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12407, https://doi.org/10.5194/egusphere-egu22-12407, 2022.

EGU22-658 | Presentations | PS6.1

Towards interior-atmosphere coupling on Venus: CO2 and H2O 

Iris van Zelst, Ana-Catalina Plesa, Caroline Brachmann, and Doris Breuer

Here, we show the first results of coupling a grey atmosphere model (i.e., we assume that the absorption coefficients are constant and hence independent of frequency) considering only CO2 and H2O as greenhouse gases to the geodynamic code Gaia (Hüttig et al., 2013). The evolution of the atmospheric composition of a planet is largely determined by the partial melting and volcanic outgassing of the interior. In turn, the composition of the atmosphere dictates the surface temperature of the planet (due to processes like the greenhouse effect), which is an important boundary condition for crustal and mantle processes in the interior of a planet. Venus in particular has a thick atmosphere at present with an abundance of the greenhouse gas CO2 and a small amount of water vapour. However, the surface conditions may have been much milder up to recent times (e.g., Way et al., 2016). Volcanic outgassing during the thermal history of Venus is thought to have significantly affected the planet's surface temperature and hence its global mantle evolution. Here, we calculate the outgassing of CO2 and H2O from the melt and then use the resulting partial pressures to calculate the surface temperature, which we then use as our boundary condition for the mantle convection. We compare our results to previous studies who employed similar coupled models to address the interaction between the interior and atmosphere of Venus (e.g., Noack et al., 2012; Gillmann & Tackley, 2014; Höning et al., 2021). Ultimately, we aim to consider more chemical species than CO2 and H2O to shed light on the Venus’ interior and atmosphere evolution. Therefore, we also show preliminary results of outgassing models that consider chemical speciation of the entire C-O-H system, i.e., CO2, H2O, H2, O2, CO, and CH4. 

How to cite: van Zelst, I., Plesa, A.-C., Brachmann, C., and Breuer, D.: Towards interior-atmosphere coupling on Venus: CO2 and H2O, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-658, https://doi.org/10.5194/egusphere-egu22-658, 2022.

The cold forearc mantle is a universal feature in global subduction zones and attributed to mechanically decoupling by the weak hydrous layer at the sub-forearc slab interface. Understanding the mechanical decoupling by the weak hydrous layer thus provides critical insight into the transition from subduction infancy to mature subduction since subduction initiation. Nevertheless, the formation and evolution of the weak hydrous layer by slab-derived fluids and its role during the transition have not been quantitatively evaluated by previous numerical models as it has been technically challenging to implement the mechanical decoupling at the slab interface without imposing ad hoc weakening mechanism. We here for the first time numerically demonstrate the formation and evolution down-dip growth of the weak hydrous layer without any ad hoc condition using the case of Southwest Japan subduction zone, the only natural laboratory on Earth where both the geological and geophysical features pertained to the transition since subduction initiation at ~17 Ma have been reported. Our model calculations show that mechanical decoupling by the spontaneous down-dip growth of the weak hydrous layer converts hot forearc mantle to cold mantle, explaining the pulsating forearc high-magnesium andesite (HMA) volcanism, scattered monogenetic forearc and arc volcanism, and Quaternary adakite volcanism. Furthermore, the weak hydrous layer providing a pathway for free-water transport toward the tip of the mantle wedge elucidates seismological observations such as large S-wave delay time and nonvolcanic seismic tremors as well as slab/mantle-originating geochemistry in the Southwest Japan forearc mantle.

 

How to cite: Lee, C. and Kim, Y.: Spontaneous formation and evolution of a weak hydrous layer at a slab interface: a numerical perspective, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2121, https://doi.org/10.5194/egusphere-egu22-2121, 2022.

EGU22-3062 | Presentations | PS6.1

Heat flow in the cores of Earth, Mercury and Venus from resistivity experiments on Fe-Ni-Si 

meryem berrada, Richard Secco, and Wenjun Yong

Recent theoretical studies have tried to constrain internal structure and composition of Earth, Mercury and Venus using thermal evolution models. In this work, the adiabatic heat flow at the top of the core was estimated using the electronic component of thermal conductivity (kel), a lower bound for thermal conductivity. Direct measurements of electrical resistivity (ρ) of Fe-10wt%Ni-wt%Si at core conditions can be related to kel using the Wiedemann-Franz law. Measurements were carried out in a 3000 ton multi-anvil press using a 4-wire method. The integrity of the samples at high pressures and temperatures was confirmed with electron-microprobe analysis of quenched samples at various conditions. Measurements of ρ at melting seem to remain constant at 135 µΩcm and 141 µΩcm on the solid and liquid sides of the melting boundary. The heat flow at the top of Earth’s CMB is greatly influenced by the light element content in the core. Interpolation of the measured thermal conductivity from this study with high pressure data from the literature suggest the addition of 10-16 wt%Ni and 3-10wt%Si in Earth core results in a heat flow of 6.8 TW at the top of the core. In Mercury, the presence of a thermally stratified layer of Fe-S at the top of an Fe-rich core has been suggested, which implies a sub-adiabatic heat flow on the core side of the CMB. The calculated adiabatic heat flux at the top of Mercury’s core suggests a sub-adiabatic from 0.09-0.21 Gyr after formation, which suggest a chemically driven magnetic field after this transition. Also, the heat flow in Mercury’s interior is estimated to increase by 67% from the inner core to outer core. It has been proposed that an Earth-like core structure for Venus is only compatible with the current lack of dynamo if Venus’ core thermal conductivity is 100 Wm−1K−1 or more. The thermal conductivity at Venus’ core conditions is estimated to range from 44-51 Wm−1K−1, in agreement with scenarios of a completely solidified core.

How to cite: berrada, M., Secco, R., and Yong, W.: Heat flow in the cores of Earth, Mercury and Venus from resistivity experiments on Fe-Ni-Si, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3062, https://doi.org/10.5194/egusphere-egu22-3062, 2022.

EGU22-3367 | Presentations | PS6.1

Melting relations of carbonates and trace element partitioning between carbonates and carbonate liquid in the Earth's upper mantle 

Melanie J. Sieber, Max Wilke, Marcus Oelze, Oona Appelt, Franziska D.H. Wilke, and Monika Koch-Müller

We examined the supra-solidus phase relations of the CaCO3-MgCO3 system and established trace element partition coefficient between carbonates and carbonate melt by conducting high pressure (6 and 9 GPa) and temperature (1300-1800 oC) experiments with a rocking multi-anvil press. It is well known that the major element composition of initial melts derived from low-degree partial melting of the carbonated mantle strongly depends on the melting relations of carbonates (e.g. 1, 2 and reference therein). Understanding the melting relations in the CaCO3-MgCO3 system is thus fundamental in assessing low-degree partial melting of the carbonated mantle. We show here to which extent the trace element signature of a pure carbonate melt can be used as a proxy for the trace element signature of mantle-derived CO2-rich melts such as kimberlites.

Our results support that, in the absence of water, Ca-Mg-carbonates are thermally stable along geothermal gradients typical at subduction zones. Except for compositions close to the endmembers (~Mg0-0.1Ca1-0.9CO3; Ca0-0.1Mg1-0.9CO3), Ca-Mg-carbonates will partially (to completely) melt beneath mid‑ocean ridges and in plume settings. Ca-Mg-carbonates melt incongruently to dolomitic melt and periclase above 1450 oC and 9 GPa making the CaCO3-MgCO3 a (pseudo-) ternary system as the number of components increases. Further, our results show that the rare earth element signature of a dolomitic melt in equilibrium with magnesite is similar to those of Group I kimberlites, namely that HREE are depleted relative to primitive mantle signatures. This implies that dolomite-magnesite solid solutions might be useful to approximate melting relations and melt compositions of low-degree partial melting of the carbonated mantle.

References

1  Yaxley, Ghosh, Kiseeva, Mallik, Spandler, Thomson, and Walter, CO2-Rich Melts in Earth, in Deep Carbon: Past to Present, Orcutt, Daniel, and Dasgupta, Editors. 2019, Cambridge University Press: Cambridge. p. 129-162.

2  Dasgupta and Hirschmann, The deep carbon cycle and melting in Earth's interior. Earth and Planetary Science Letters, 2010. 298 (1-2): p. 1-13.

How to cite: Sieber, M. J., Wilke, M., Oelze, M., Appelt, O., Wilke, F. D. H., and Koch-Müller, M.: Melting relations of carbonates and trace element partitioning between carbonates and carbonate liquid in the Earth's upper mantle, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3367, https://doi.org/10.5194/egusphere-egu22-3367, 2022.

EGU22-4048 | Presentations | PS6.1

Convection and segregation in partially molten orogenic crust: application to the formation of Naxos migmatite domes (Greece) 

Olivier Vanderhaeghe, Aurélie Louis-Napoléon, Muriel Gerbault, Thomas Bonometti, Roland Martin, and Nathan Maury

The deep roots of the Archaean to Phanerozoic continental crust reveal domed structures of kilometer to deca-kilometer sizes. These domes are typically cored by migmatites, which attest of the dynamics of the partially molten crust and associated heterogeneous mass redistribution. We model here numerically the development of gravity instabilities in a continental crust heated from below with no lateral motion, simulating the conditions prevailing at the transition between orogenic climax and collapse. The chemical and physical heterogeneity of the crust is represented by deformable inclusions of distinct viscosity and density with power-law temperature and strain-rate dependent viscosities. We use the VOF Method (Volume Of Fluid, OpenFoam code) that reproduces well the coalescence and separation of inclusions, of sizes of a few hundred meters.

In previous work (Louis-Napoleon et al., GJI, 2021) we identified three distinct flow regimes depending on two Rayleigh numbers RaUM and RaPM, which characterize the solid and molten domains, respectively. A"suspension" regime (high RaUM and RaPM) describes the entrainment of the inclusons in the convective cells. A “stratification” regime (low RaUM and high RaPM) characterizes how the light inclusions amalgamate as floating clusters under the rigid upper crust, which can then form kilometer scale dome structures. A “diapirism” regime corresponds to the segregation of the heavy and light inclusions to to form layers at the bottom and top of the molten layer, respectively.

The present study incorporates 3D models that evidence the key role of the size and concentration of the inclusions for the “stratification” regime, and pinpoint the fundamental characteristics of Earth’s rocks heterogeneity at the crustal scale.

Application of our results to the kilometer-scale subdomes within the crustal-scale migmatite dome exposed on Naxos Island (Greece) probe basal heating for 5-10 Ma, below a 45 km thick crust. There, several cycles of zircon precipitation dated from 24 to 16 Ma have been interpreted in terms of convective motion (Vanderhaeghe et al., 2018). Three distinct configurations validate this scenario in which the viscosity and density distributions, and the basal heating time were varied. All configurations also lead to the final formation and preservation of domes cored by the low-viscosity-density material of a diameter of 2 to 5 km, at a depth of ca. 15 km. These results show that the efficiency of material redistribution within a partially molten crust depends on the flow regime associated to the development of gravitational instabilites and is very sensitive to the physical heterogeneity of the crust.

How to cite: Vanderhaeghe, O., Louis-Napoléon, A., Gerbault, M., Bonometti, T., Martin, R., and Maury, N.: Convection and segregation in partially molten orogenic crust: application to the formation of Naxos migmatite domes (Greece), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4048, https://doi.org/10.5194/egusphere-egu22-4048, 2022.

EGU22-5975 | Presentations | PS6.1

Water planet thresholds: The topographic scope for land atop a stagnant lid 

Claire Marie Guimond, John Rudge, and Oliver Shorttle

Small water budgets produce desert worlds and large water budgets produce water worlds, but there is a narrow range of water budgets that would grant a marbled surface to a rocky planet. A planet’s highest point can constrain this range in that it defines the minimum ocean volume to flood all land. Thus we take a first step in quantifying water world limits by estimating how minimum surface elevation differences scale with planetary bulk properties. Our model does not require the presence of plate tectonics, an assumption which has constricted the scope of previous studies on exoplanet land fractions. We focus on the amplitudes of dynamic topography created by rising and sinking mantle plumes—obtained directly from models of mantle convection—but also explore rough limits to topography by other means. Rocky planets several times more massive than Earth can support much less topographic variation due to their stronger surface gravity and hotter interiors; these planets’ increased surface area is not enough to make up for low topography, so ocean basin capacities decrease with planet mass. In cooler interior thermal states, dynamically-supported topography alone could maintain subaerial land on Earth-size stagnant lid planets with surface water inventories of up to approximately 100 ppm of their mass (or half Earth’s ocean mass fraction). Considering the overall cap to topography on such planets would raise this threshold ocean mass fraction by an order of magnitude. Current estimates of the surface water contents on TRAPPIST-1e to g place these planets near or above the ultimate topographic waterworld threshold, depending on their core masses.

How to cite: Guimond, C. M., Rudge, J., and Shorttle, O.: Water planet thresholds: The topographic scope for land atop a stagnant lid, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5975, https://doi.org/10.5194/egusphere-egu22-5975, 2022.

EGU22-8661 * | Presentations | PS6.1 | Highlight

Compositional constraints on the lifetime of habitable climates on rocky exoplanets 

Bradford Foley and Cayman Unterborn

An essential factor for the habitability of rocky exoplanets over geologic timescales is climate regulation via the carbonate-silicate cycle. Without such regulation, uninhabitably hot or cold climates could form, even for planets lying within their host star’s habitable zone. While often associated with plate tectonics, recent work has shown that the carbonate-silicate cycle can operate on planets in a stagnant-lid regime of tectonics, as long as volcanism is active. Volcanism drives release of CO2 to the atmosphere, without which climate could cool into a globally frozen state, and the creation of fresh rock for weathering, without which a CO2-rich hothouse climate could form. A key factor dictating how long volcanism can last on a rocky planet is the budget of heat producing elements (U, Th, and K) it acquires during formation. While not directly measurable for exoplanets, estimates on the range of heat producing elements (HPEs) can be made from stellar composition observations. We estimate a probability distribution of HPE abundances in rocky exoplanets based on the Hypatia catalog database of stellar U, Th, and K abundances, where Eu is used as a proxy for the difficult to measure U.

We then constrain how long volcanism, and hence habitable climates, can last on rocky exoplanets in a stagnant-lid regime using a simple thermal evolution model where initial HPE abundances in the mantle are randomly drawn from the distributions constructed from the Hypatia catalog. We further explore the influence of planet size and factors such as the initial mantle temperature and mantle reference viscosity in our models. Our models are conservative, meant to estimate the earliest time that volcanism could cease on rocky exoplanets. We find volcanism lasts for ~2 Gyrs, with 95% confidence intervals of 0.6-3.8 Gyrs for an Earth-sized planet, increasing modestly to ~3.5 Gyrs (95% confidence intervals of 1.4-5.8 Gyrs) for a six Earth mass planet. The variation in volcanism lifetime is largely determined by the K abundance of the planet, as K is a potent HPE and highly variable in stars. The likelihood of acquiring high enough abundances of the long half-life HPEs, Th or 238U, to power long-lived volcanism through these heat sources is low. In most cases even Th and 238U abundances at the high end of our observationally constrained probability distributions are not sufficient to power volcanism on their own, such that planets will see volcanism cease once K concentrations have decayed. Only with a high reference viscosity can Th or 238U potentially drive long-lived volcanism, as in this case volcanism can be sustained for a lower total radiogenic heat production rate.  

How to cite: Foley, B. and Unterborn, C.: Compositional constraints on the lifetime of habitable climates on rocky exoplanets, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8661, https://doi.org/10.5194/egusphere-egu22-8661, 2022.

EGU22-10678 | Presentations | PS6.1

New insights into the formation of the pallasites from the Sericho meteorite from EBSD.  

Reina Hiramatsu and Martin Lee

The pallasite meteorites are composed of olivine crystals, Fe-Ni metal alloy and Fe-sulphide. Their formation environment was initially proposed to be at core-mantle boundaries of planetesimals (Scott et al., 1977., Geochemica et Cosmochemica Acta., p.349). However, recent studies using paleomagnetic techniques, and examining the metal concentrations across multiple pallasites, argues against the core-mantle boundary hypothesis (Nichols et al., 2021., Journal of Geophysical Research Planets., p.16). Ferrovolcanism models, which invoke Fe-FeS magma injection into mantle lithologies support paleomagnetism results, compositional trends, and olivine growth conditions (Johnson et al., 2020., Nature Astronomy., p.43). Here we present results from the recently found pallasite Sericho to further explore magmatic aspects of the ferrovolcanism hypothesis using optical microscopy together with SEM energy dispersive X-ray spectrometry (EDS) and electron backscatter diffraction (EBSD).

Sericho has a jigsaw-like texture of forsterite crystals in a troilite matrix. Crystallographic preferred orientations (CPO) of the olivine as determined by EBSD indicate a flow alignment, possibly due to the introduction of the Fe-Ni alloy resulting from upwelling within the planetesimal. Identification of a tabular inclusion within one of the olivine crystals suggests that Sericho experienced mild shock events in contrast to previously studied pallasites including Eagle Station. Our CPO results support the ferrovolcanism hypothesis and more work is underway to investigate olivine slip systems to find out type of internal misorientation is recorded within Sericho’s olivines.

How to cite: Hiramatsu, R. and Lee, M.: New insights into the formation of the pallasites from the Sericho meteorite from EBSD. , EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10678, https://doi.org/10.5194/egusphere-egu22-10678, 2022.

EGU22-11313 | Presentations | PS6.1

Solubility of water in peridotite liquids and the formation of steam atmospheres on rocky planets 

Paolo Sossi, Peter Tollan, James Badro, and Dan Bower

Atmospheres are products of time-integrated mass exchange between the surface of a planet and its interior. On Earth, the most significant of these events occurred when it existed in a magma ocean state, producing its earliest atmosphere. During this stage, both steam- and carbon-rich atmospheres may have been generated in equilibrium with a magma ocean [1, 2]. However, the nature of Earth’s early atmosphere, and those around other rocky planets, remains unclear for lack of constraints on the solubility of major atmophile elements in liquids of appropriate composition.

Here we determine the solubility of water in 14 peridotite liquids synthesised in a laser-heated aerodynamic levitation furnace [2]. We explore oxygen fugacities (fO2) between -1.5 and +6.4 log units relative to the iron-wüstite buffer at constant temperature (1900±50 °C) and total pressure (1 bar). The resulting fH2O ranged from nominally 0 to ~0.028 bar and fH2 from 0 to ~0.065 bar. The total H2O contents were determined by FTIR spectroscopy of polished thick sections by examining the intensity of the absorption band at 3550 cm-1 and applying the Beer-Lambert law.

We find that the mole fraction of dissolved water in the liquid is proportional to (fH2O)0.5, attesting to its dissolution as OH-. The solubility coefficient fit to the data yields a value of ~500 ppm/bar0.5, roughly 30 % lower than that determined for basaltic liquids at 1350 °C and 1 bar [3]. Therefore, more Mg-rich compositions and/or higher temperatures result in a significant decrease of water solubility in silicate melts. While the solubility of water remains high relative to that of CO2, we hypothesise that steam atmospheres may form under oxidising conditions, provided sufficiently high temperatures and H/C ratios in terrestrial planets prevail.

[1] Gaillard, F. et al. (2022), Earth Planet. Sci. Lett., 577, 117255. [2] Sossi, P.A. et al. (2020), Science Adv., 6, eabd1387. [3] Newcombe, M.E. et al., (2017), Geochim. Cosmochim. Acta, 200, 330-352.

How to cite: Sossi, P., Tollan, P., Badro, J., and Bower, D.: Solubility of water in peridotite liquids and the formation of steam atmospheres on rocky planets, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11313, https://doi.org/10.5194/egusphere-egu22-11313, 2022.

EGU22-11544 | Presentations | PS6.1

Delineating driving mechanisms of Phanerozoic climate: building a habitable Earth 

Andrew Merdith, Benjamin Mills, Pierre Maffre, Yves Goddéris, Yannick Donnadieu, and Thomas Gernon

The fundamental drivers of Phanerozoic climate change over geological timescales (10–100s of Ma) are well recognised: degassing from the deep-earth puts carbon into the atmosphere, silicate weathering takes carbon from the atmosphere and traps it in carbonate minerals. A number of variables are purported to control or exert influence on these two mechanisms, such as the motion of tectonic plates varying the amount of degassing, the palaeogeogrpahic distribution of continents and oceans, the colonisation of land by plants and preservation of more weatherable material, such as ophiolites. We present a framework, pySCION, that integrates these drivers into a single analysis, connecting solid earth with climate and biogeochemistry. Further, our framework allows us to isolate individual drivers to determine their importance, and how it changes through time. Our model, with all drivers active, successfully reproduces the key aspects and trends of Phanerozoic temperature, to a much greater extent than previous models. We find that no single driver can explain Phanerozoic temperature with any degree of confidence, and that the most important driver varies for each geological period.

How to cite: Merdith, A., Mills, B., Maffre, P., Goddéris, Y., Donnadieu, Y., and Gernon, T.: Delineating driving mechanisms of Phanerozoic climate: building a habitable Earth, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11544, https://doi.org/10.5194/egusphere-egu22-11544, 2022.

EGU22-12614 | Presentations | PS6.1

A python package for fast interior modelling of terrestrial (exo-)planets using a Gibbs free energy minimization 

Fabian Seidler, Haiyang Wang, and Sascha Quanz

With increasing capabilities of characterizing small rocky exoplanets beyond our solar system, the question of their chemistry, geology and interior structure arises. Accompanied by observational facilities capabale of giving a deeper look into this topic than ever before, modelling of the interior structure of exoplanets has become a standard procedure in the emerging field of exogeology. Most often, these research uses a simplified mineralogy – consisting of the major phases formed by  MgxFe1-xSiO3 and Mg2xFe2(1-x)SiO4 -  to construct the density profile of the planets mantle. Others have used the more sophisticated, but computationally expensive procedure of Gibbs free energy minimization to find the mantle equilibrium mineralogy (and hence its thermodynamical properties) from the first order chemistry of the planet. Here, we present a new Python/Cython software package capable of quickly inferring exoplanet interior structure by using a linearized Gibbs free energy minimization procedure - written in Cython - along an adiabatic mantle gradient. This simplifies and speeds up the interior structure modelling, reaching a runtime of ~7 seconds on a standard desktop PC for an Earth-sized planet, compared to ≥ 2 minutes with another interior structure and mineralogy solver, ExoPlex. We will demonstrate the use of the codes and its first application results at the assembly.

How to cite: Seidler, F., Wang, H., and Quanz, S.: A python package for fast interior modelling of terrestrial (exo-)planets using a Gibbs free energy minimization, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12614, https://doi.org/10.5194/egusphere-egu22-12614, 2022.

EGU22-12795 | Presentations | PS6.1

Experimental Phase Relations in the CaS-FeS and MgS-FeS Systems and their Bearing on the Evolution of Mercury 

Stefan Pitsch, Paolo A. Sossi, Max W. Schmidt, and Christian Liebske

Sulfide liquids in terrestrial environments are near mono-sulfidic and are FeS-rich with varying amounts of other chalcophile elements. At highly reducing conditions, as on Mercury, elements like Ca, Na and Mg can also form major components of sulfides and coexist with FeS [1,2,3].
Here, we re-examine the FeS-CaS and FeS-MgS binaries at 950 to 1600°C and 1100°C to 1500°C respectively, owing to the limited amount of data on these systems and the uncertainty in the eutectic point of the FeS-CaS binary [4, 5]. We use the determined phase compositions and inferred densities in the systems CaS-Fes and MgS-FeS (± additions of NaS) to assess mechanisms of sulfur accumulation on the surface of Mercury by gravitational separation of sulfides in a portential magma ocean [6].              Experiments were performed with stoichiometric mixes of pure components in graphite capsules sealed in evacuated silica tubes at ~10-5 bar. Quenched samples were prepared under anhydrous conditions, and phase compositions determined by energy-dispersive spectroscopy. Because quenched Ca-rich sulfide liquid is labile, its composition was estimated by mass balance and image analysis. The eutectic point of the CaS-FeS system was determined by experimentally bracketing various bulk compositions.           
The solubility of FeS in oldhamite is higher than previously reported, reaching 2.5 mol% at 1065 °C. The eutectic is located at 8.5 ± 1 mol % CaS, significantly poorer in CaS than previously suggested [4], at 1070 ± 5 °C. Our data suggest that solid solution phase compositions in the MgS-FeS binary are in accord with those reported in the only other study on this system [7]. However, we find that the liquid phase in equilibrium with MgS (ss) between 1150°C and 1350°C is more FeS-rich than suggested containing <10 mol% MgS up to 1350°C. 
Our data show that Ca dissolves extensively in sulfides under graphite-saturated conditions at low pressures, which may have prevailed during crust formation on Mercury [8]. The produced solid phases of the CaS-FeS binary are sufficiently light to be able to float in a Hermean magma ocean.

[1]          Skinner + Luce (1971) AmMin

[2]          Nittler + Starr et al., (2011) Science

[3]          Barraud + Coressoundiram + Besse (2021) EPSC2021

[4]          Dilner + Kjellqvist + Selleby (2016) J Phase Equilibria Diffus

[5]          Heumann (1942) Arch Eisenhuttenwes

[6]          Malavergne et al. (2014) Earth Planet. Sci. Lett.

[7]          Andreev et al. (2006) Russ. J. Inorg. Chem.

[8]          Vander Kaaden + McCubbin (2015) J. Geophys. Res. Planets

 

 

 

 

 

 

 

 

 

How to cite: Pitsch, S., Sossi, P. A., Schmidt, M. W., and Liebske, C.: Experimental Phase Relations in the CaS-FeS and MgS-FeS Systems and their Bearing on the Evolution of Mercury, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12795, https://doi.org/10.5194/egusphere-egu22-12795, 2022.

GD5 – Subduction and Orogeny

EGU22-382 | Presentations | GD5.2

Correlation slab heterogeneity and volcanism in Kamchatka arc 

Olga Bergal-Kuvikas

The correlation of subducted plate parameters with generated volcanism was studied along the Kamchatka arc. Increased slab age controls dip angle (25-45o) and length of the seismic zone (200-700 km slab depth)  from the north (~530N) to the south (~490N) of the Kamchatka arc. All listed above parameters generate various aged volcanic belts with different parameters of volcanism. The natural boundary between various aged slabs is on ~530N, on the extension Avachinsky transform fault. It divides the Kamchatka arc on Southern Kamchatka with slab age ~ 103-105 Ma and Eastern volcanic belt, Central Kamchatkan Depression with slab age ~ 87-92 Ma. Complicated evolution and various ages of the slab control magmatism along the Kamchatka arc. Basic-intermediate magma compositions dominantly characterized Quaternary-Pliocene volcanoes in Central Kamchatkan Depression. In contrast, Neogene-Quaternary volcanism on Southern Kamchatka represents by strong explosions of acidic magmas (Gordeev, Bergal-Kuvikas, 2022).

Monogenetic volcanism marked a Malko-Petropavlovsk zone of transverse dislocations (MPZ), which is located on the extension Avachinsky transform fault. Monogenetic cinder cones in MPZ are randomly distributed along to these long-lived rupture zones. Here I present new geochemical and isotopic results of monogenetic volcanism in MPZ. Based on whole rock and trace element geochemistry, Pb-Sr-Nd isotopic ratios of monogenetic cinder cones magmas were shown to tap the enriched mantle source (low 143Nd/144Nd isotopic ratios (0.512959-0.512999), as variated 87Sr/86Sr (0.703356-0.703451) and 206Pb/204Pb (18.30-18.45), 208Pb/207Pb (38.00-38.12) isotopic ratios).  High Nb/Yb and La/Yb ratios, without significant inputs of the slab`s components (the lowest Ba, Th contents), indicate decompression melting predominately (Bergal-Kuvikas et al., 202X). Therefore, a combination of geophysical and geochemical methods enable us to conclude that monogenetic volcanism in MPZ   mark a natural boundary between various aged slab on Avachinsky transform fault. Various aged slabs under Southern Kamchatka and the Eastern volcanic belt generate volcanism with different magma compositions and ages of volcanoes.

This research was supported by Russian Science Foundation (grant number 21-17-00049,https://rscf.ru/project/21-17-00049/).

References

Bergal-Kuvikas O.V., Bindeman I.N., Chugaev A.V., Larionova Yu. O., Perepelov A.V., Khubaeva O.R. Pleistocene-Holocene monogenetic volcanism at Malko-Petropavlovsk zone of transverse dislocations on Kamchatka: geochemical features and genesis // Pure and Applied Geophysics. Special Issue: Geophysical Studies of Geodynamics and Natural Hazards in the Northwestern Pacific Region (in review)

Gordeev, E.I., Bergal-Kuvikas O.V. (2022). Structure of subduction zone and volcanism on Kamchatka. Doklady of the Earth Sciences. 2. 502. P. 26-30. 10.31857/S2686739722020086

 

 

 

How to cite: Bergal-Kuvikas, O.: Correlation slab heterogeneity and volcanism in Kamchatka arc, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-382, https://doi.org/10.5194/egusphere-egu22-382, 2022.

EGU22-1293 | Presentations | GD5.2

The maximum depth of the subduction channel in modern subduction zones 

Hans-Joachim Massonne

The subduction channel is located directly above a downgoing oceanic plate and forms by dehydration of this plate. The ascending water-rich fluids react with the mantle to hydrous minerals such as chlorite and amphibole. This process rheologically weakens the mantle and reduces its density so that an upwards-directed mass flow is continuously generated as long as the oceanic plate is subducted. However at great depth, the fluids ascending from the subducting plate do not produce hydrous minerals anymore due to too high pressure-temperature (P-T) conditions. Thus, the question arises how high can these conditions become in order to still generate such hydrous minerals in the mantle. To answer this question, thermodynamic modelling was undertaken with PERPLE_X using different data sets of Holland and Powell (1998, 2011), corresponding solid-solution models for relevant minerals, and the bulk-rock composition of a common lherzolite + 2.5 wt% H2O. In addition, results of experiments at high pressure on the P-T stability of hydrous minerals such as chlorite were considered.

Under the assumption of a relatively steeply and fast dipping oceanic plate, the geothermal gradient at the interface between this plate and the overlying mantle wedge should be below 7.5 °C/km (100 km = 3.2 GPa). At such low gradients, that are common in modern subduction zones, chlorite is the only (nominally) hydrous mineral in the lherzolite considered because amphibole shows an upper pressure limit, for example 2.3 GPa using model cAmph(G), in the calculation results. Calculations with the data set of Holland and Powell (1998) lead to results at pressures >3 GPa, which are, due to the used equation-of-state for minerals, incompatible with experimental results, whereas the results produced with the more recent data set (Holland and Powell, 2011) are compatible. Along gradients of 7.5, 5, and 3.5 °C/km, chlorite decomposes to form garnet in lherzolite at about 740 (3.15 GPa), 660 (4.3 GPa), and 570 °C (5.3 GPa), respectively. These temperatures are 60-80 °C lower than calculated for the reaction of chlorite + enstatite = forsterite + pyrope + H2O in the system MgO-Al2O3-SiO2-H2O.

The aforementioned P-T conditions limit the subduction channel towards great depths, which should be less than 160 km (5.2 GPa) even at very low thermal gradients, and are compatible with peak P-T conditions of many eclogites exhumed in the subduction channel from the surface of the downgoing oceanic plate. A few exceptions were reported which suggest exhumation of eclogite from depths > 200 km (e.g., Ye et al., 2000). The reason for these greater depths could be another exhumation mechanism. However, a misinterpretation of so-called exsolution lamellae in eclogitic minerals, taken as evidence for unusual mineral compositions and, thus, depths > 200 km, is more likely (see Liu and Massonne, 2022).

Holland, T.J.B., Powell, R., 1998. J. Metamorph. Geol. 16, 309-343.

Holland, T.J.B., Powell, R., 2011. J. Metamorph. Geol. 29, 333–383.

Liu, P., Massonne, H.-J., 2022. J. Metamorph. Geol., doi: 10.1111/jmg.12649

Ye, K., et al., 2000. Nature 407, 734–736.

How to cite: Massonne, H.-J.: The maximum depth of the subduction channel in modern subduction zones, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1293, https://doi.org/10.5194/egusphere-egu22-1293, 2022.

EGU22-2400 | Presentations | GD5.2

Segmentation of subducting oceanic plates by brittle-ductile damage 

Taras Gerya, David Bercovici, and Thorsten Becker

Subducting oceanic plates experience intense normal faulting during bending that accommodates the transition from horizontal to downward motion at the outer rise at subduction trenches. We investigated numerically the consequences of the plate bending on the mechanical properties of subducting slabs using 2D subduction models in which both brittle and ductile deformation, as well as grain size evolution, are tracked and coupled self-consistently. Numerical results suggest that pervasive brittle-ductile slab damage and segmentation can occur at the outer rise region and under the forearc that strongly affects subsequent evolution of subducting slabs in the mantle. This slab-damage phenomenon explains the subduction dichotomy of strong plates and weak slabs, the development of large-offset normal faults near trenches and the occurrence of segmented seismic velocity anomalies and interfaces imaged within subducted slabs. Furthermore, brittle-viscously damaged slabs show a strong tendency for slab breakoff at elevated mantle temperatures that may have destabilized continued oceanic subduction and plate tectonics in the Precambrian (Gerya et al., 2021).

Gerya, T.V., Bercovici, D., Becker, T.W. (2021) Dynamic slab segmentation due to brittle-ductile damage in the outer rise. Nature, 599, 245-250.

How to cite: Gerya, T., Bercovici, D., and Becker, T.: Segmentation of subducting oceanic plates by brittle-ductile damage, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2400, https://doi.org/10.5194/egusphere-egu22-2400, 2022.

EGU22-3822 | Presentations | GD5.2

Subduction dynamics through the mantle transition zone in the presence of a weak asthenospheric layer 

Nestor Cerpa, Karin Sigloch, Fanny Garel, Rhodri Davies, and Arnauld Heuret

Plate kinematics in the vicinity of subduction zones, as well as seismic tomography provide insights into the deep dynamics of subducting slabs. Velocities at which subducting plates are consumed at the trench (the subduction velocities) typically exceed 3–4 cm/yr at present-day. Absolute trench velocities (relative to a lower-mantle reference frame) are lower, between -2 and 2 cm/yr [Heuret and Lallemand, 2005]. This implies that the “accommodation space” created by the slab rollback associated with lateral trench migration is not nearly sufficient for accommodating the length of incoming slab in the horizontal dimension. In the vertical dimension, even the fastest estimates for slab sinking rates over long time scales amount to only a fraction of 3–4 cm/yr [Butterworth et al. 2014, van der Meer et al. 2010, Sigloch & Mihalynuk 2013]. Hence the rates at which the lithosphere typically subducts cannot be accommodated by fast vertical sinking either. Seismic tomography confirms the “traffic jam” conditions for slabs in the mantle that are implied by these numbers, with slab thickening imaged in and beneath the mantle transition zone (MTZ). These highly visible, thickened, slabs have been interpreted as the result of folding [Ribe et al., 2007], and their relative localization (massive,  near-vertical “slab walls”) supports the notion of near-stationary trenches over long time scales [Sigloch and Mihalynuk, 2013]. 

Buoyancy-driven analog and numerical models of subduction have commonly produced subduction and trench velocities that differ from the first-order observations above. Their subduction velocities typically drop below 1-2 cm/yr once the modelled slab enters the high-viscosity lower mantle, and their trench migration velocities remain almost equal to subduction velocities, thus accommodating the slab mainly in the horizontal direction. In addition, these models tend to produce trench retreat and slab “rollback” , unless the latter is very weak and/or the overriding plate is very strong [Goes et al., 2017]. These modelling results have led to the conclusion that near-vertical slab sinking and folding at the MTZ is an end-member regime restricted to very specific subduction set-ups. 

We have added a weak asthenospheric layer to typical 2-D thermo-mechanical models of subduction zones with a complex rheology [e. g., Garel et al., 2014], which partly reconciles the models and the observations. A weak asthenosphere appears as an intuitive candidate for increasing subduction velocity because a reduced mantle drag at the base of the subducting plate lowers the mantle’s resistance to the plate’s trench-ward motion. We further found that the models with a weak asthenospheric layer lessens the trench motion and thus tend to produce prominent vertical folding of slabs at the MTZ. Subduction velocities remain higher than trench velocities long after the slab reaches the MTZ, so that 300-to-400-km wide “slab walls” are continuously produced in the lower mantle over a relatively wide range of model parameters. The presence of a weak asthenosphere has often been speculated to explain seismic properties beneath oceanic plates, but seldom modelled. This study contributes to a quantification of its potential effects on subduction dynamics. 

How to cite: Cerpa, N., Sigloch, K., Garel, F., Davies, R., and Heuret, A.: Subduction dynamics through the mantle transition zone in the presence of a weak asthenospheric layer, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3822, https://doi.org/10.5194/egusphere-egu22-3822, 2022.

EGU22-4233 | Presentations | GD5.2

Global compilation of double seismic zones and their dependence on the intraslab stress field 

Christian Sippl, Timm John, Stefan Schmalholz, and Armin Dielforder

Double seismic zones (DSZs), parallel planes of intermediate-depth earthquakes inside oceanic slabs, have been observed in a number of subduction zones and may well be a ubiquitous feature of downgoing oceanic plates. Early focal mechanism observations from Japan and Alaska have shown downdip compressive events in the upper and downdip extensive events in the lower plane of the DSZ, which was interpreted as a signature of plate unbending at these depths. Such a pattern of compressive over extensive events has become a hallmark of DSZ seismicity, and some models of DSZ seismogenesis explicitely rely on an unbending-dominated intraslab stress field as a mechanism for deep slab hydration.

In this study, we show that the intraslab stress field in the depth range of DSZs is much more variable than previously thought. Compiling DSZ locations and mechanisms from literature, we observe that the “classical” pattern of compressive over extensive events, as in NE Japan, is only observed at about half of the DSZ locations around the globe. The occurrence of extensive mechanisms across both planes accounts for most other regions, whereas a “bending signature” of extensive over compressive events is not widely observed at all. To obtain an independent estimate of the (un)bending state of slabs at intermediate depths, we compute (un)bending estimates from slab geometries taken from the slab2 compilation of slab surface depths. We find no clear prevalence of slab unbending at intermediate depths, and the occurrence of DSZ seismicity does not appear to be limited to regions of slab unbending. Taking high-resolution focal mechanism information from the Northern Chile subduction zone as an example, we conclude that the intraslab stress field in subduction zones is primarily a superposition of (un)bending stresses and downdip extensive in-plane stresses. Depending on the sign (bending or unbending) and the relative contributions of these two principal stresses, an unbending signature as in NE Japan or a purely extensive pattern of focal mechanisms as in Northern Chile can emerge. We also consider possible additional contributing stresses that may further modify the intraslab stress field, such as friction along the plate interface and volume loss due to metamorphic phase changes.

How to cite: Sippl, C., John, T., Schmalholz, S., and Dielforder, A.: Global compilation of double seismic zones and their dependence on the intraslab stress field, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4233, https://doi.org/10.5194/egusphere-egu22-4233, 2022.

EGU22-4261 | Presentations | GD5.2

3D numerical modeling of suction-induced subduction initiation at passive margins 

Marzieh Baes, Stephan Sobolev, Andrea Hampel, and Anne Glerum

Conversion of a passive margin, which is the transition between oceanic and continental lithosphere formed by sedimentation above an ancient rift, into an active converging plate boundary is still ambiguous. According to the Wilson Cycle (Wilson, 1966), which describes the repeated opening and closing of the oceans, the collapse of a passive margin is a key factor in the closing phase of the Wilson Cycle. However, the lack of any Cenozoic examples of conversion of passive margins into subduction zones and the existence of old oceanic plates along Atlantic passive margins indicate the difficulty of subduction initiation at passive margins. Due to lack of observational evidence, modeling studies play a key role in understanding the kinematics and dynamics of transforming a passive into active margin. During the last decades, they proposed several facilitating mechanisms to collapse a passive margin such as sediment loading (Cloetingh et al., 1982), water weakening (Regenauer-Lieb et al., 2001), STEP faults (Subduction-Transform-Edge-Propagator; Govers and Wortel, 2005) near passive margins (Baes et al., 2011), mantle suction forces derived from detached slabs and/or neighboring subduction zones (Baes and Sobolev, 2017), convergence forces induced from neighboring plates (Zhong and Li, 2019) and propagation of subduction along passive margins (Baes and Sobolev, 2017; Zhou et al., 2020).

 In this study, we extend the work of  Baes and Sobolev (2017) by using 3D models. As breaking a 3D lithosphere is more difficult than a 2D plate, 3D numerical models may lead to different conclusions than those of 2d ones. To study the effect of mantle suction flow on the destabilisation of passive margins, we set up 3D models, using the ASPECT finite element code (Kronbichler et al., 2012). We investigate the effect of different parameters such as the magnitude, spatial size and location of suction flow, the age of oceanic lithosphere and the existence of a STEP (Subduction-Transform-Edge-Propagator; Govers and Wortel, 2005) fault near margin. Our preliminary results show over-thrusting of continental crust from the earliest stage of deformation. This continued over-thrusting along with suction force, which imposes shear stresses below the lithosphere, causes breaking of the oceanic plate and its sinking into the mantle and eventually subduction initiation at the passive margin. The time of subduction initiation, which depends on several factors such as magnitude and location of the suction force, is more than 30 Myr indicating difficulty in the converting passive margins into converging plate boundaries. We believe that subduction initiation at some Atlantic passive margins such as those in the north of the South Sandwich subduction zone, southwest of the Iberia and north of the Caribbean region, where considerable suction forces induced by sinking slabs or neighboring subduction zones are available, will occur in a few tens of million years.

 

References:

Baes et al., 2011. Geophys. J. Int.

Baes, and Sobolev, 2017. Geochem. Geophys. Geosyst.

Cloetingh et al., 1982. Nature.

Govers and Wortel, 2005, Earth Planet. Sci. Lett.

Kronbichler et al., 2012, Geophys. J. Int.

Regenauer-Lieb et al., 2001. Sci.

Wilson, 1966, Nature

Zhou et al., 2020. Sci. Adv.

Zhong and Li, 2019. Geophys. Res. Lett.

 

How to cite: Baes, M., Sobolev, S., Hampel, A., and Glerum, A.: 3D numerical modeling of suction-induced subduction initiation at passive margins, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4261, https://doi.org/10.5194/egusphere-egu22-4261, 2022.

EGU22-4399 | Presentations | GD5.2

Fluid migration, deep dehydration, and melt generation in the Lesser Antilles subduction zone 

Lidong Bie, Stephen Hicks, Andreas Rietbrock, Saskia Goes, Jenny Collier, Catherine Rychert, Nicholas Harmon, and Benjamin Maunder and the VoiLA Consortium

Volatiles play a pivotal role in subduction zones dynamics, associated geological hazards and mineralization, yet their pathways remain partially understood. The Lesser Antilles subduction zone can yield insights to volatile recycling as a global end-member, where old oceanic lithosphere formed by slow spreading slowly subducts. Here we use seismograms from local earthquakes recorded by a temporary deployment of ocean-bottom seismometers in the fore- and back-arc during the VoiLA (Volatile Recycling in the Lesser Antilles) experiment to characterize the 3-D properties of the slab, back-arc and mantle wedge in the north-central Lesser Antilles subduction zone. Along the top of the slab, defined by the underlying Wadati-Benioff seismicity, we find low P-wave velocity extending to 130–150 km depth, deeper than expected for magmatic oceanic crust. The deep low velocities together with high Vp/Vs at 60–80 km and 120–150 km depth are consistent with a significantly tectonised and serpentinised slab top, as expected for lithosphere formed by slow spreading. The most prominent high Vp/Vs anomalies in the slab correlates with two projected fracture zones and the obliquely subducting boundary between Proto-Caribbean and Equatorial Atlantic lithosphere, indicating these structures enhance hydration of the oceanic lithosphere and subsequent dehydration when subducted. Deep dehydration of slab mantle serpentinite is evidenced by high Vp/Vs anomalies in the back-arc offshore Guadeloupe and Dominica. Right above the slab, the asthenospheric mantle wedge is imaged beneath the back-arc as high Vp/Vs and moderate Vp feature, indicative for fluids rising from the slab through the overlaying cold boundary layer. The fluids might be dragged down with the subducting slab before rising upwards to induce melting further to the west. The variation in seismic properties along the subducting slab and in the back-arc mantle wedge shows that the changes in hydration of the incoming plate govern the dehydration processes at depth. The highest Vp/Vs anomaly in the back-arc west of Dominica at depth greater than 120 km, together with the anomaly at 60–80 km depth on the slab east of the island, appear to track the source and path of excess volatiles that may explain the relatively high magmatic output observed on the north-central islands of the Lesser Antilles arc.

How to cite: Bie, L., Hicks, S., Rietbrock, A., Goes, S., Collier, J., Rychert, C., Harmon, N., and Maunder, B. and the VoiLA Consortium: Fluid migration, deep dehydration, and melt generation in the Lesser Antilles subduction zone, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4399, https://doi.org/10.5194/egusphere-egu22-4399, 2022.

Intermediate-depth earthquakes in many subduction zones occur in two distinct layers, forming an upper and a lower seismic zone separated vertically by an aseismic or weakly seismic region. These Double Seismic Zones (DSZs) have been related to dehydration reactions in the downgoing crust and mantle lithosphere. Notably, intermediate-depth seismicity in Northern Chile shows a pattern of intraslab seismicity which is quite different from a conventional DSZ. Here, two parallel seismicity planes are present in the updip part of the slab, but at a depth of ∼80–90 km, there is a sharp transition to a highly seismogenic volume of 25–30 km thickness, which corresponds to a closing of the gap between the two seismicity planes.

While such an observation is unique to Northern Chile, understanding the processes behind the formation of this feature should provide important constraints on the mineral processes that govern seismicity in DSZs as well as the role and involvement of fluids. As seismic velocities contain important information about mineralogy and fluid content, we aim at a high-resolution characterization of the seismic wavespeeds of the Northern Chile subduction zone, mainly focusing on the downgoing Nazca slab. We use the seismicity catalog of Sippl et al. (2018) that contains >100,000 earthquakes and 1,200,404 P- and 688,904 S-phase picks for the years 2007 to 2014 to perform local earthquake tomography using the FMTOMO algorithm (Rawlinson et. al., 2006). Data from the seismic stations of the permanent IPOC (Integrated Plate boundary Observatory Chile) deployment in the Northern Chile forearc form the backbone of the dataset, but are complemented by several temporary deployments that span shorter time sequences.

We will present first 3D models of P- and S-wavespeeds from the Northern Chile forearc between about 19°S and 23°S, using a subset of the earthquake catalog mentioned above, as well as images of ray coverage, relocated seismicity and synthetic resolution tests.

The presented seismic velocity distribution will eventually be compared with theoretical wavespeeds that are forward calculated assuming different mineralogical compositions in order to narrow the range of possible reactions that may be occurring at depth.

How to cite: Hassan, N. and Sippl, C.: Towards imaging dehydration reactions in the downgoing Nazca plate with local earthquake tomography, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4461, https://doi.org/10.5194/egusphere-egu22-4461, 2022.

EGU22-4774 | Presentations | GD5.2 | Highlight

Subduction invasion of the Atlantic by Mediterranean subduction zones 

João C. Duarte, Nicolas Riel, Boris J.P. Kaus, and Filipe M. Rosas

Subduction invasion has been referred to as the process by which subduction zones from a subducting ocean invade or trigger subduction initiation in a contiguous ocean. This can, in principle, happen in different ways that can vary from a direct migration by rollback along an oceanic corridor connecting the two oceans (e.g., the Gibraltar Arc into the Atlantic) or by polarity reversal across a narrow continental land bridge, potentially involving the collision of an ocean plateau with the pre-existent trench (the Scotia and the Caribbean arcs). This process is important because new subduction zones are difficult to start in the present plate tectonics context and most known examples of initiation seem to be forced by pre-existent subduction zones. The problem is that in internal Atlantic-type oceans there are no pre-existent subduction zones, and therefore, they must be introduced from the outside. Luckily, the Atlantic seems to be just passing through a phase of invasion, as evidenced by the three referred examples. But while the Caribbean and the Scotia arcs are already two fully formed Atlantic-subduction systems, the Gibraltar Arc is currently in the process of migrating between oceanic basins. In the future, the Arc can evolve according to two different scenarios. In the first, the Gibraltar Arc is stuck between Africa and Iberia and the subduction is waning. In the other scenario, after a period of quiescence, the arc manages to go through and invade the Atlantic. In order to understand which is more feasible, we have developed 3D numerical models using the code LaMEM to gain some insights into how this system may evolve. We have simulated the development of the Mediterranean arc-back-arc system, with rollback and the retreat of the subduction zones in a fully dynamic framework (no active kinematic boundaries). Our model shows that under the studied parameters, the Gibraltar subduction zone manages to invade the Atlantic, even in the cases of a very narrow oceanic corridor. However, this led to a very significant decrease in the subduction velocity, suggesting that in the natural prototype, a period of quiescence is expected before the Mediterranean subduction zone manages to go through and invade the Atlantic.

J.C. Duarte and F.M. Rosas acknowledge financial support by FCT through the project UIDB/50019/2020 – Instituto Dom Luiz (IDL)

How to cite: Duarte, J. C., Riel, N., Kaus, B. J. P., and Rosas, F. M.: Subduction invasion of the Atlantic by Mediterranean subduction zones, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4774, https://doi.org/10.5194/egusphere-egu22-4774, 2022.

EGU22-4810 | Presentations | GD5.2

Modelling ridge jumps in back-arc basins at different scales 

Valentina Magni, Nicholas Schliffke, Jeroen van Hunen, Frédéric Gueydan, Mark Allen, John Naliboff, Manel Prada, and Carmen Gaina

The structure of oceanic back-arc basins reflects the dynamics of the subduction zone they are associated with. Often, the basement of these basins is not only composed of oceanic crust, but also of exhumed mantle, fragments of continental crust, intrusive magmatic bodies, and a complex mid-ocean ridge system characterised by distinct relocations of the spreading centre. These features are a direct consequence of the transient nature of subduction zones. Here, we show results from different types of numerical models that aim at understanding how back-arc basins are shaped by subduction dynamics.

We present 3D numerical models of back-arc spreading centre jumps evolving naturally in a homogeneous subduction system surrounded by continents without a trigger event (Schliffke et al., 2022). We find that jumps to a new spreading centre occur when the resistance on the boundary transform faults enabling relative motion of back-arc and neighbouring plates is larger than the resistance to break the overriding plate closer to trench. Time and distance of spreading centres jumps are, thus, controlled by the ratio between the transform fault and overriding plate strengths. We also present results from 2D numerical models of lithospheric extension with asymmetric and time-dependent boundary conditions that simulate multiple phases of extension due to episodic trench retreat (Magni et al., 2021). We show that multiphase extension can result in asymmetric margins, mantle exhumation and continental fragment formations. We find that the duration of the first extensional phase controls the final architecture of the basin. Finally, we show that our models can explain many features observed in present-day and extinct back-arc basins.

Magni, V., Naliboff, J., Prada, M., & Gaina, C. (2021). Ridge Jumps and Mantle Exhumation in Back-Arc Basins. Geosciences, 11(11), 475.

Schliffke, N., van Hunen, J., Gueydan, F., Magni, V., & Allen, M (2022). Episodic back-arc spreading centre jumps controlled by transform fault to overriding plate strength ratio. Accepted for publication in Nature Communications.

 

 

How to cite: Magni, V., Schliffke, N., van Hunen, J., Gueydan, F., Allen, M., Naliboff, J., Prada, M., and Gaina, C.: Modelling ridge jumps in back-arc basins at different scales, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4810, https://doi.org/10.5194/egusphere-egu22-4810, 2022.

EGU22-4976 | Presentations | GD5.2

Plume-induced sinking of the intracontinental lithosphereas a fundamentally new mechanism of subduction initiation. 

Sierd Cloetingh, Alexander Koptev, Istvan Kovacs, Taras Gerya, Anouk Beniest, Ernst Willingshofer, Todd Ehlers, Nevena Andric-Tomasevic, Svetlana Botsyun, Paul Eizenhofer, Thomas Francois, and Fred Beekman

Although many different mechanisms for subduction initiation have been proposed, few of them are viable in terms of agreement with observations and reproducibility in numerical experiments. In particular, it has recently been demonstrated that intra-oceanic subduction triggered by an upwelling mantle plume could contribute greatly to the onset and functioning of plate tectonics in the early Earth and, to a lesser extent, in the modern Earth. In contrast, the onset of intracontinental subduction is still underestimated. Here we review 1) observations demonstrating the upwelling of hot mantle material flanked by sinking proto-slabs of the continental mantle lithosphere, and 2) previously published and new numerical models of plume-induced subduction initiation. Numerical modelling shows that under the condition of a sufficiently thick (> 100 km) continental plate, incipient down thrusting at the level of the lowermost lithospheric mantle can be triggered by plume anomalies with moderate temperatures and without significant strain and/or melt-induced weakening of the overlying rocks. This finding is in contrast to the requirements for plume-induced subduction initiation in oceanic or thin continental lithosphere. Consequently, plume-lithosphere interactions in the continental interior of Paleozoic-Proterozoic (Archean) platforms are the least demanding (and therefore potentially very common) mechanism for triggering subduction-like foundering in Phanerozoic Earth. Our findings are supported by a growing body of new geophysical data collected in a variety of intracontinental settings. A better understanding of the role of intracontinental mantle downthrusting and foundering in global plate tectonics and, in particular, in triggering "classic" oceanic-continental subduction will benefit from further detailed follow-up studies.

How to cite: Cloetingh, S., Koptev, A., Kovacs, I., Gerya, T., Beniest, A., Willingshofer, E., Ehlers, T., Andric-Tomasevic, N., Botsyun, S., Eizenhofer, P., Francois, T., and Beekman, F.: Plume-induced sinking of the intracontinental lithosphereas a fundamentally new mechanism of subduction initiation., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4976, https://doi.org/10.5194/egusphere-egu22-4976, 2022.

EGU22-5045 | Presentations | GD5.2

Depressed 660-km seismic discontinuity beneath cold subduction zones caused by akimotoite-bridgmanite phase transition 

Artem Chanyshev, Takayuki Ishii, Dmitry Bondar, Shrikant Bhat, Eun Jeong Kim, Robert Farla, Keisuke Nishida, Zhaodong Liu, Lin Wang, Ayano Nakajima, Bingmin Yan, Hu Tang, Zhen Chen, Yuji Higo, Yoshinori Tange, and Tomoo Katsura

The 660-km seismic discontinuity (D660) is the boundary between the Earth’s lower mantle and transition zone and is commonly interpreted as the dissociation of (Mg,Fe)2SiO4 ringwoodite to (Mg,Fe)SiO3 bridgmanite plus (Mg,Fe)O ferropericlase (post-spinel transition). Prominent features of D660 are significant depressions to 750 km and multiplicity beneath cold subduction zones. Previous high-pressure experiments provided negative but gentle Clapeyron slopes (−1.3 to −0.5 MPa/K) of the post-spinel transition. Thus, the post-spinel transition cannot interpret the D660 depression. Therefore, another phase transition with a steep negative slope is required, and the akimotoite−bridgmanite transition in (Mg,Fe)SiO3 is one candidate.

In the current study, we determined the boundaries of the post-spinel (RBP) and akimotoite−bridgmanite (AB) phase transitions in the MgO-SiO2 system over a temperature range of 1250–2085 K using advanced multi-anvil techniques with in situ X-ray diffraction. We judged a stable phase assemblage by observing relative increase/decrease in the ratio of coexisting high- and low-pressure assemblages at spontaneously and gradually decreasing pressure and a constant temperature from diffraction intensities. Since this strategy is strictly based on the principle of phase equilibrium, it excludes problems in determining phase stability caused by sluggish kinetics and surface energy.

We found that the RBP boundary has a slightly concave curve, whereas the AB boundary has a steep convex curve. The RBP boundary is located at pressures of 23.2–23.7 GPa in the temperature range of 1250–2040 K. Its slope varies from −0.1 MPa/K at temperatures less than 1700 K to −0.9 MPa/K at 2000 K with an averaged value of −0.5 MPa/K. The slope of the AB boundary gradually changes from −8.1 MPa/K at low temperatures up to 1300 K to −3.2 MPa/K above 1600 K. Based on these findings, we predict that, beneath cold subduction zones, ringwoodite should first dissociate into akimotoite plus periclase, and then akimotoite transforms to bridgmanite with increasing depth; these successive transitions cause the multiple D660. Moreover, the steep negative boundary of the AB transition should result in cold-slab stagnation due to significant upward buoyancy. Our predictions are supported by the seismological observations beneath cold (e.g., Tonga, Izu-Bonin) subduction zones.

How to cite: Chanyshev, A., Ishii, T., Bondar, D., Bhat, S., Kim, E. J., Farla, R., Nishida, K., Liu, Z., Wang, L., Nakajima, A., Yan, B., Tang, H., Chen, Z., Higo, Y., Tange, Y., and Katsura, T.: Depressed 660-km seismic discontinuity beneath cold subduction zones caused by akimotoite-bridgmanite phase transition, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5045, https://doi.org/10.5194/egusphere-egu22-5045, 2022.

EGU22-5283 | Presentations | GD5.2

Sulfur transfer along a metasomatized serpentinite-metagabbro contact in the Voltri Massif, Italy 

Esther Schwarzenbach, Linus Streicher, Besim Dragovic, Maria Rosa Scicchitano, Uwe Wiechert, Emmanuel Codillo, Frieder Klein, Horst Marschall, and Marco Scambelluri

Subduction zones provide a key link between the surficial biogenic, atmospheric and hydrospheric geochemical cycles with the Earth’s internal reservoirs. Sediment compaction and dehydration of variably altered oceanic lithosphere during subduction release volatile species (containing e.g., S, H, C, N) to the overlying mantle wedge. In particular, sulfur plays a key role in the formation of porphyry ore deposits and has a major control on redox processes in subduction zones, given it occurs in variable oxidation states from oxidized sulfate (S6+) to reduced sulfide (S2-). Here we studied samples from a contact between serpentinite and partly metasomatized eclogitic metagabbros in the Voltri Massif (Italy). We determined the bulk rock and in situ sulfur isotope composition of pyrite grains and combined this with detailed mineralogic and petrologic investigations. Along the serpentinite-metagabbro contact, the metagabbros are metasomatized to actinolite-chlorite schists and metagabbros rich in epidote and Na- and Na-Ca amphiboles. The serpentinites as well as the actinolite-chlorite schists along the serpentinite-metagabbro contact have very low sulfide contents and provide evidence for the oxidation of sulfides, including formation of Fe-oxides. Sulfur input from the serpentinite-metagabbro contact towards the less metasomatized eclogitic metagabbros is observed. This sulfur input is reflected by bulk rock δ34S values that increase from initially around +1.5‰ in samples distant from the contact to +7.3 to +12.5‰ in samples near the contact. This trend correlates with a general increase in the in situ δ34S values from core to rim of individual pyrite grains. Distinct Co and Ni growth zones in pyrite and variations in the in situ δ34S values indicate multiple phases of pyrite growth during subduction and exhumation of these rocks, with the last stage of pyrite growth clearly related to Mg-metasomatism along the serpentinite-metagabbro contact. Thus, this study provides new insight into processes of sulfur migration during metasomatism of gabbroic rocks within the subducting slab and at the slab–mantle interface.

How to cite: Schwarzenbach, E., Streicher, L., Dragovic, B., Scicchitano, M. R., Wiechert, U., Codillo, E., Klein, F., Marschall, H., and Scambelluri, M.: Sulfur transfer along a metasomatized serpentinite-metagabbro contact in the Voltri Massif, Italy, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5283, https://doi.org/10.5194/egusphere-egu22-5283, 2022.

EGU22-5284 | Presentations | GD5.2

Variability of the shortening rate in Central Andes controlled by subduction dynamics and interaction between slab and overriding plate. 

Michaël Pons, Stephan Sobolev, Sibiao Liu, and Derek Neuharth

The nature of the shortening of the Central Andes has been a matter of debate. The South American plate is advancing westwards forcing the subducting Nazca plate to roll back and the trench to retreat. But as the trench slowed its retreat the Andean mountain belt formed. This decrease of trench velocity has been attributed to the anchoring of the slab, but this process cannot explain the observed pulsatile behaviour of the shortening rate. Indeed, whereas the formation of the Central Andes started ~50 Ma ago, most of the shortening and elevation growth, including the formation of the Altiplano-Puna plateau, took place in two pulsatile steps at 15 Ma and 7 Ma as recognized from geological data. Thus we hypothesize that the deformation of the Central Andes is controlled by the subduction dynamics and a complex interaction between the overriding and subducting plates.

We used the FEM geodynamic code ASPECT to develop a self-consistent subduction E-W-oriented 2D high-resolution geodynamic model along the Altiplano-Puna plateau (21°S). This model incorporates the flat slab subduction episode at 35 Ma and follows the evolution of the lithospheric deformation. Our model results reproduced the observed spatial and temporal variations of tectonic shortening in Central Andes.

Three main conditions related to the plate interaction are of key importance to explain the observed shortening rate evolution in Central Andes. Firstly, the subduction dynamics affects the trench migration: each episode of slab steepening is followed by the blocking of the trench. The steepening occurs after the flat slab and at the end of two slab-buckling instabilities at 15 Ma and at 7 Ma. The second relevant process is the weakening of the overriding plate. This is ensured by the partial removal of a part of the lithospheric mantle after the re-steepening of the flat slab at 35 Ma and by weakening of the sediments in the Subandean Ranges after 10 Ma. Thirdly, a relatively high interplate friction coefficient (~0.05) is needed to ensure the stress transfer from the slab to the overriding plate, which is further enhanced by the delaminated mantle lithosphere eventually blocking the subduction corner flow.

The pulses of shortening rate occur at the end of each slab-buckling cycle when the trench is blocked. The deformation of the overriding plate is intensified by the eclogitization of the lower crust and the subsequent delamination of the sublithospheric mantle. Finally, at ~10 Ma, the deformation switches from pure-shear to simple-shear shortening, after the underthrusting of the Brazilian craton in presence of weak foreland sediments. 

How to cite: Pons, M., Sobolev, S., Liu, S., and Neuharth, D.: Variability of the shortening rate in Central Andes controlled by subduction dynamics and interaction between slab and overriding plate., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5284, https://doi.org/10.5194/egusphere-egu22-5284, 2022.

EGU22-5344 | Presentations | GD5.2

Effects of subduction termination processes on continental lithosphere 

Simone Pilia, Rhodri Davies, Robert Hall, Conor Bacon, Amy Gilligan, Tim Greenfield, Felix Tongkul, and Nicholas Rawlinson

Subduction is the main driver of tectonic activity on Earth. Termination of subduction is followed by diverse and unexpected tectonic activity, such as anomalous magmatism, exhumation, subsidence and subsequent rapid uplift. What fundamentally drives these processes remain enigmatic. A prime example of subduction termination can be found in northern Borneo (Malaysia), where subduction ceased in the late Miocene and was followed by puzzling tectonic activity, as reconstructed from geological and petrological evidence. Our current understanding of the subduction cycle cannot be reconciled with evidence of post-subduction tectonics in both the near-surface geology and mantle of northern Borneo.

We use new passive-seismic data to image at unprecedent detail a sub-vertical lithospheric drip that developed as a Rayleigh-Taylor gravitational instability from the root of a volcanic arc, which formed above a subducting plate. We use thermo-mechanical simulations to reconcile these images with time-dependent dynamical processes within the crust and underlying mantle, following subduction termination. Our model predictions illustrate how significant extension from a downwelling lithospheric drip can thin the crust in an adjacent orogenic belt, causing lower crustal melting and possible exhumation of subcontinental material, which can explain core-complex formations seen in other areas of recent subduction termination.

How to cite: Pilia, S., Davies, R., Hall, R., Bacon, C., Gilligan, A., Greenfield, T., Tongkul, F., and Rawlinson, N.: Effects of subduction termination processes on continental lithosphere, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5344, https://doi.org/10.5194/egusphere-egu22-5344, 2022.

EGU22-7483 | Presentations | GD5.2

Controls on slab detachment and subsequent topography evolution 

Andrea Piccolo and Marcel Thielmann

Slab detachment causes a reorganization of the forces acting on orogenic systems and can have a distinctive signature in the geological record that may be identified through the structural,  metamorphic and topographic evolution of the orogen. However, this signature is hidden within other signals relating to the general complexity of the mountain building processes. In addition, slab detachment (or slab tearing in 3D) is a complex process that occurs on different timescales as a function of the inherent rheological properties of the lithosphere and the weakening mechanism occurring within the slab (viscous, plastic or thermal weakening).

How these properties affect the slab detachment process and to which extent these controls are reflected in the topograhic evolution of the orogenetic system is not yet fully understood. As slab detachment may occur at different depths and rates, it has different effects on the overall pull force acting on the orogen and on its post-detachment response.

Here, we employ 2D numerical experiments to systematically explore first order controls on slab detachment (slab rheology, geometry and weakening mechanisms) and the corresponding topographic evolution. Apart from the effect of lithosphere rheology and weakening mechanisms, we put particular focus on the effects of plate coupling and breakoff depth.

How to cite: Piccolo, A. and Thielmann, M.: Controls on slab detachment and subsequent topography evolution, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7483, https://doi.org/10.5194/egusphere-egu22-7483, 2022.

EGU22-8243 | Presentations | GD5.2

Styles of seamount subduction and overriding plate deformation 

Maaike Fonteijn, Elenora van Rijsingen, and Ylona van Dinther

The subduction of seamounts and its accompanying crustal deformation of the overriding plate is thought to have a large effect on the occurrence of megathrust earthquakes. Subducted seamounts can generally only be observed using seismic-reflection studies, which have shown that seamounts can subduct intact down to 30-40 km depth. On the other hand, there is evidence for accreted seamounts in e.g. the Costa Rica and Makran subduction zones. Because such observations only provide snapshots in space and time, little is still known about the exact evolution of seamount subduction and its effect on overriding-plate deformation and subduction zone seismicity through time. We investigate the different styles of seamount subduction and how these influence seismicity and overriding plate deformation. We use seismo-thermo-mechanical (STM) models with a visco-elasto-plastic rheology simulating seamount subduction over millions of years in a 2D realistic subduction setting. The momentum, mass and energy equations are solved and a strongly slip rate dependent friction allows for the spontaneous development of faults. The use of a realistic rheology allows us to evaluate faulting patterns and the state of stress in the overriding plate caused by seamount subduction. We find three scenarios for seamount subduction by varying the rock properties cohesion (C) and pore fluid pressure ratio (λ): (1) cutting off of the seamount at the trench leading to frontal accretion; (2) intact subduction through the trench, followed by flattening and stretching of the seamount; and (3) intact subduction of the seamount until seismogenic depths. Scenario’s 1 and 2 are most common, while scenario 3 only occurs under a limited range of material parameters. Particularly, a cohesion of the seamount and upper oceanic crust larger than 20 MPa is required for intact seamount subduction. Decreasing λ on locations with ample amounts of fluids increases the strength of the sediments, upper oceanic crust and seamount, but does not lead to intact seamount subduction. Subduction scenario’s 2 and 3 show more crustal deformation and seismicity within the fore-arc than subduction of a smooth interface (scenario 1 and models without a seamount). Seismicity patterns are also affected by λ and C. A low λ results in shorter and shallower megathrust ruptures and higher cohesions decrease the recurrence interval. Furthermore, the seamount itself introduces more frequent nucleation of smaller events at its edge.

How to cite: Fonteijn, M., van Rijsingen, E., and van Dinther, Y.: Styles of seamount subduction and overriding plate deformation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8243, https://doi.org/10.5194/egusphere-egu22-8243, 2022.

EGU22-8968 | Presentations | GD5.2 | Highlight

The role of subducted fluids on the genesis of deep earthquakes: evidence from deep diamonds and subduction zone thermal modeling 

Lara Wagner, Steven Shirey, Michael Walter, D. Graham Pearson, and Peter van Keken

The role of subducted fluids on the generation of deep earthquakes (300 – 700 km) has been a topic of much research and debate for decades. While fluids are commonly believed to play a role in the genesis of intermediate depth earthquakes (70 – 300 km), it is often argued that fluids (i.e., water- or carbonate-bearing) cannot be transported to sufficient depth to play a role in the triggering or propagation of deep earthquakes. However, recent investigations show evidence of up to ~1.5 wt% water in a ringwoodite inclusion in a diamond from the mantle transition zone [1]. Additionally, heavy iron (δ56Fe = 0.79–0.90‰) and unradiogenic osmium (187Os/188Os = 0.111) isotopic compositions of metallic inclusions in sublithospheric diamonds trace the pathway of serpentinized slabs from the trench to the top of the lower mantle [2]. Given this evidence for slab derived fluids at transition zone depths, we investigate the ability of fluids to reach these depths in subducted slabs by compiling a) new subduction zone thermal models, b) slab earthquake locations within these modeled subduction zones, and c) phase relations of hydrated or carbonated mantle peridotite and basaltic crust. Our results show a distinctive pattern that is consistent with the necessity of fluids in the generation of deep seismicity [3]. Specifically, those slabs capable of transporting water to the bottom of the transition zone (via dense hydrous magnesium silicates (DHMS)) produce earthquakes at transition zone depths. Conversely, virtually all slabs that do not transport water to these depths do not generate deep earthquakes. We also note that the depths of deep earthquakes coincide with the P/T conditions at which oceanic crust is predicted to intersect the carbonate-bearing basalt solidus to produce carbonatitic melts. We suggest that hydrous and/or carbonated fluids released from subducted slabs at these depths lead to fluid-triggered seismicity, fluid migration, diamond precipitation, and inclusion crystallization. Deep focus earthquake hypocenters would then track the general region of deep fluid release and migration in the mantle transition zone [3].

[1] Pearson, D. G., Brenker, F. E., Nestola, F., Mcneill, J., Nasdala, L., Hutchison, M. T., et al. (2014). Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507, 221–224. https://doi.org/10.1038/nature13080 [2] Smith EM, Ni P, Shirey SB, Richardson SH, Wang W, and Shahar, A (2021) Heavy iron in large gem diamonds traces deep subduction of serpentinized ocean floor. Science Advances 7: eabe9773 https://doi.org/10.1126/sciadv.abe9773 [3] Shirey SB,  Wagner LS, Walter MJ, Pearson DG, and van Keken PE (2021) Slab Transport of Fluids to Deep Focus Earthquake Depths – Thermal Modeling Constraints and Evidence From Diamonds. AGU Advances: 2, e2020AV000304.    https://doi.org/10.1029/2020AV000304

How to cite: Wagner, L., Shirey, S., Walter, M., Pearson, D. G., and van Keken, P.: The role of subducted fluids on the genesis of deep earthquakes: evidence from deep diamonds and subduction zone thermal modeling, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8968, https://doi.org/10.5194/egusphere-egu22-8968, 2022.

EGU22-11903 | Presentations | GD5.2

Modern hotspot-influenced MORBs reveal anoxic conditions during deposition and subduction of recycled Proterozoic sediments in their source 

Qasid Ahmad, Martin Wille, Carolina Rosca, Jabrane Labidi, Timothy Schmid, Klaus Mezger, and Stephan König

Significant Mo mobility and isotope (δ98/95Mo) fractionation is induced during prograde metamorphism at present-day subduction zones. Depending on the redox conditions during early subduction and accompanied slab dehydration, isotopically heavy Mo is released towards the overlying mantle wedge, leaving behind a depleted, and isotopically light subducted slab. This isotopically light Mo signature has been detected in slab-melt influenced volcanic rocks and potentially will be traceable in ocean-island basalts, if their geochemical signatures are affected by previously subducted lithologies (i.e. slab and overlying sediments). Thus, the isotope composition of mantle plume-influenced volcanic rocks might reveal the nature of subducted and re-incorporated lithologies and possibly redox conditions during subduction.

In this study, we present new Mo isotope data for South-Mid Atlantic Ridge basalts that partly interacted with the enriched Discovery and Shona mantle plumes. Isotopically heavier Mo isotope ratios (δ98/95Mo > ambient depleted mantle) are observed in samples tapping a more enriched mantle source. Furthermore, δ98/95Mo correlates with radiogenic isotopes (Sr, Nd, Hf) indicating recycling of a Proterozoic sedimentary components with a Mo isotopic composition that was not modified during and before subduction by Mo mobility under oxidising conditions. Rather, the new Mo isotope data supports and expands on previous stable Se and S isotope evidence that suggests the incorporation of subducted anoxic Proterozoic deep-sea sediments into the mantle of the South-Mid Atlantic Ridge basalts.

How to cite: Ahmad, Q., Wille, M., Rosca, C., Labidi, J., Schmid, T., Mezger, K., and König, S.: Modern hotspot-influenced MORBs reveal anoxic conditions during deposition and subduction of recycled Proterozoic sediments in their source, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11903, https://doi.org/10.5194/egusphere-egu22-11903, 2022.

EGU22-12659 | Presentations | GD5.2

Numerical modeling of subduction zones: thermo-mechanical stabilization as a function of overriding plate rheology and thickness 

Francisco Bolrão, Jaime Almeida, João C. Duarte, and Filipe M. Rosas

The absence of a forearc is a recurrent simplification in numerical subduction models. This because, to our knowledge, there are no previous studies that have systematically investigate the role of this structure on subduction systems. Despite its short length (166 ± 60 km), the forearc has a significant impact in the maintenance of a stable subduction. It has already been proposed that the serpentinization of this region, by percolating fluids from the sinking slab, reduces the effective mechanical strength of the plate coupling zone interface, allowing the one-sided asymmetric subduction observable in nature. Moreover, the forearc could be the key stabilization mechanism in intra-oceanic subduction settings. In this scenarios, the oceanic overriding plate (OP) could be in a thermal state such that would also be negative buoyant. The ubiquitous presence of forearcs in all-active intra-oceanic subductions suggests that a weak interface alone could not be enough to prevent the OP to sink. Adding a positive buoyant forearc  to the tip of the OP could provide the counterforce required to prevent the OP to sink, and eventually, double-sided subduction setting. There are studies that already implement a forearc structure in their numerical models. However, since its dynamic influence has not been study yet, we can not predict its impact and/or ascribe a specific dynamic behaviour of the system to it. 

In this work we investigate the role of the forearc and its contribution to emergent features in subduction zones. We present a series of fully dynamic, buoyancy driven, thermo-mechanical numerical modelling experiments with a free surface carried out to gain insight on the dynamic role of the forearc.  We use the Underwolrd numerical code to perform a parametrization to geometric and rheologic parameters of this structure, namely the thickness (age of the OP), length and density. We consider a forearc that encompasses the arc (25 to 250 km wide) as well. We kept all physical properties of the subducting plate  constant throughout all models. Therefore, we are able to ascribe all dynamic changes solely to variations of the forearc properties. We test different forearc compositions based on its density, ranging between 2700 and 3300  kg.m−3, for 200  kg.m−3 intervals, mimicking a full granitic continental and an basaltic oceanic forearc, respectively. For all densities, we also test several possible lengths, for 130 km and for 200 to 470 km, for intervals of 90 km. Additionally, we test all possible density-length combinations for five different OPs, in terms of age, ranging between 20 and 100 Myr, for 20 Myr intervals. 

We expect a higher accommodation of strain in the tip of the OP in models where the forearc is implemented. The presence of this structure could favor slab roll-forward before this reaches the 660 km discontinuity, enhance subduction velocities and generate a more pronounced orogenic topography. This features would be enhanced with the decrease of density and thickness and  the increase of length of the forearc.

How to cite: Bolrão, F., Almeida, J., C. Duarte, J., and M. Rosas, F.: Numerical modeling of subduction zones: thermo-mechanical stabilization as a function of overriding plate rheology and thickness, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12659, https://doi.org/10.5194/egusphere-egu22-12659, 2022.

EGU22-13213 | Presentations | GD5.2

Channel-flow induced ‘normal faulting’ in the Himalaya: a case study from the Jhala Normal Fault, Garhwal Higher Himalaya, NW India 

Narayan Bose, Takeshi Imayama, Ryoichi Kawabata, Saibal Gupta, and Keewook Yi

The ‘channel flow’ concept is generally associated with the collisional mountain belts (such as the Himalaya) to explain the exhumation of deeper crustal materials. According to the concept, the top part of the subducting plate gets ‘molten’ and tries to return to the surface following the ‘pipe flow’ mechanism via a combination of Poiseuille- and Couette Flows. In this study, we employed these concepts to address a long-standing debate related to the existence and cryptic nature (normal/ reverse) of an orogen parallel discontinuity, named the Jhala Normal Fault (JNF) present in the Bhagirathi River section of the Garhwal Higher Himalaya. More importantly, while a group of researchers consider the JNF to be the northern boundary of the Higher Himalayan channel (i.e., the South Tibetan Detachment System), another group put the JNF well inside the channel. In this scenario, understanding the mechanism of deformation at the JNF will not only solve this local issue but will also provide us with new insights into the geodynamic evolution of an orogeny. Based on fresh field observations and SHRIMP geochronological data (zircon and monazite), a model is being proposed in the current study to explain the origin and evolution of the JNF. The presence of amphibolite-grade rocks across the JNF, along with the lack of well-developed extensional markers, confirm that the fault is located within the Higher Himalayan channel, and not at the channel boundary. The U-Pb zircon rim ages of 33.8 ± 0.8 Ma and 30.7 ± 0.5 Ma obtained from the JNF hanging wall (northern block) and footwall (southern block), respectively, are considered as the ages of peak metamorphism. The hanging wall, which was present at the slow-moving marginal part of the channel during Eocene, eventually lagged behind the relatively faster and warmer central part. As a result, the footwall (southern) block experienced a faster exhumation, resulting in normal-sense movement along the JNF, as documented by sparse extension markers. At 21.4 ± 2.3 Ma (monazite U-Pb age), tourmaline-bearing leucogranite intruded in the JNF hanging wall, rupturing the host. This indicates the passive uplift of the JNF hanging wall (in a brittle domain) as a part of the Higher Himalaya. Hence the JNF originated as an intra-channel discontinuity, and our proposed model predicts the origin of a ‘normal fault’ during crustal channel flow.

How to cite: Bose, N., Imayama, T., Kawabata, R., Gupta, S., and Yi, K.: Channel-flow induced ‘normal faulting’ in the Himalaya: a case study from the Jhala Normal Fault, Garhwal Higher Himalaya, NW India, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13213, https://doi.org/10.5194/egusphere-egu22-13213, 2022.

EGU22-13458 | Presentations | GD5.2

No channel flow in the Longmen Shan: evidence from the Maoxian-Wenchuan fault Cenozoic kinematics (SE Tibet) 

Chenglong Ge, Philippe Hervé Leloup, Yong Zheng, and Haibing Li

The NE striking Longmen Shan (LMS) mountains are located at the eastern margin of the Tibetan plateau, and towers nearly 5000m above the Sichuan basin, which is considered to be the greatest relief than anywhere else around the plateau. From west to east, three major sub-parallel faults straddle the Longmen Shan: Wenchuan-Maoxian fault (WMF), Yingxiu-Beichuan fault and Guanxian-Anxian fault. Several models have been proposed to explain the Cenozoic uplift of the Longmen Shan. The major two models are lower crustal channel flow and upper crustal shortening, which imply different movement sense on the Wenchuan-Maoxian fault. The former suggests that the LMS were uplifted above a lower crustal flow expulsed from below the Tibetan plateau and would require a normal sense movement on the MWF. The latter implies that a series of upper crustal thrusts controlled the uplift of the LMS, and the WMF should have a reverse sense. Here we present field observations, fault gouge structural analysis and authigenic illite K-Ar geochronology data of fault gouge in the Wenchuan-Maoxian fault, showing that the Maoxian-Wenchuan fault was dextral with a reverse component at ~7Ma. Reconstruction of offsets of river valleys along the Wenchuan-Maoxian fault suggests that the corresponding total horizontal dextral offset is ~25km. Analysis of the thermochronology data acquired on both side of the fault suggest that dextral-reverse faulting started at ~13 Ma and possibly lasted until today. Our conclusions support the upper crustal shortening model and suggest the channel model maybe not applicable to Longmen Shan uplifting in the Miocene.

How to cite: Ge, C., Leloup, P. H., Zheng, Y., and Li, H.: No channel flow in the Longmen Shan: evidence from the Maoxian-Wenchuan fault Cenozoic kinematics (SE Tibet), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13458, https://doi.org/10.5194/egusphere-egu22-13458, 2022.

EGU22-1613 | Presentations | TS7.1

How does lithospheric strength, mantle hydration and slab flexure relate to seismicity in the southern Central Andes? 

Constanza Rodriguez Piceda, Magdalena Scheck-Wenderoth, Mauro Cacace, Judith Bott, Ya-Jian Gao, Frederik Tilmann, and Manfred Strecker

The southern Central Andes (SCA, 29°S—39°S) orogen is one of the seismically most active regions along the length of the South-American convergent margin, where past earthquakes (e.g., San Juan in 1944, Valdivia M9.5 in 1960 and M8.8 Maule in 2010) have had devastating effects on the population. Past research has extensively focused on linking the occurrence of seismic activity with the stress regime on individual faults at a local scale.  In order to more systematically address the relationship between the long-term rheological configuration of the whole lithosphere and the spatial patterns of seismic deformation in the SCA, we computed a 3D model of the expected mechanical strength and rheology (brittle, ductile) of the SCA and adjacent forearc and foreland regions based on an existing 3D model describing the first-order variations of thickness, composition and temperature of geological units forming the upper and subducting plates. We found that the spatial variation in the predicted rheology correlates well with the distribution of seismic deformation in the upper plate, with seismicity bounded to the modelled brittle deformation domain. Moreover, seismic events localize at the transition between mechanically strong and weak domains. This ultimately indicates that the strength of the lithosphere exerts a first-order control on the mechanical stability of the region.

In contrast, the results from the rheological model fail to reconcile the observed slab seismicity at depths > 50—70 km, where ductile rheological conditions are expected. In this case, we evaluated possible additional mechanisms triggering these earthquakes, including compaction of sediments at the interface, metamorphic reactions within the oceanic crust and mantle, and slab flexural stresses. To characterize the state of hydration of the mantle related to dehydration reactions and/or sediment compaction, we made use of the Vp/Vs ratio from a seismic tomography model. The majority of the slab seismicity was found to spatially correlate with hydrated areas of the slab and overlying continental mantle, apart from a cluster where the slab attains a sub-horizontal angle. In this region, the correlation between the focal mechanisms of these earthquakes and the slab orientation, suggests that seismicity here is driven by enhanced flexural stresses within the oceanic plate.

This contribution showcases the importance of a quantitative characterization of the rheological state of the lithosphere to elucidate the causative dynamics of the spatial distribution of seismicity in the area.

How to cite: Rodriguez Piceda, C., Scheck-Wenderoth, M., Cacace, M., Bott, J., Gao, Y.-J., Tilmann, F., and Strecker, M.: How does lithospheric strength, mantle hydration and slab flexure relate to seismicity in the southern Central Andes?, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1613, https://doi.org/10.5194/egusphere-egu22-1613, 2022.

EGU22-2924 | Presentations | TS7.1

Multi-disciplinary assessment of the August 12, 2021, South Sandwich earthquake doublet 

Malte Metz, Angela Carillo Ponce, Felipe Vera, Simone Cesca, Frederik Tilmann, and Joachim Saul

On August 12, 2021, an earthquake doublet with a cumulative magnitude MW 8.0 – 8.3 hit the South Sandwich Trench in the South Atlantic where the South American plate is subducted beneath the Sandwich microplate. Significant differences in location, depth, and magnitude are reported by international agencies. Discrepant results might be due to the short inter-event time of ~150 s between both subevents and the lack of local and regional data.

We apply a multi-disciplinary approach to clarify the source processes and characterize different features of the doublet. Our centroid solutions of the mainshocks, separated by ~290 km, confirm the overall southward rupture directivity. The predominant thrust mechanisms, with different strike directions, suggest the activation of a bent portion of the slab. We estimate a cumulative magnitude of Mwc 7.65 inverted from body waves in the frequency band 0.01 – 0.03 Hz. Our magnitude estimate is substantially smaller than the one reported, e.g., by Global CMT, suggesting that a significant part of the moment has been released at lower frequency as a slow slip process. It is verified by a W-phase inversion in the frequency band 0.005 - 0.01 Hz with a resulting magnitude Mww of 8.0. The iterative deconvolution and stacking method (IDS) resolves high slip patches located in the area of the two mainshock centroids. High-frequency back-projection results confirm the unilateral southward rupture propagation. Complex fault and slab geometries do not significantly improve the fit, providing no clear evidence for the activation of secondary faults. Centroid moment tensors, estimated for 87 aftershocks between August 12, 2021 and August 31, 2021, support the identification and characterization of activated fault segments.

How to cite: Metz, M., Carillo Ponce, A., Vera, F., Cesca, S., Tilmann, F., and Saul, J.: Multi-disciplinary assessment of the August 12, 2021, South Sandwich earthquake doublet, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2924, https://doi.org/10.5194/egusphere-egu22-2924, 2022.

EGU22-6099 | Presentations | TS7.1

Recurrent episodes of transient deformation in NW Sulawesi, Indonesia 

Nicolai Nijholt, Wim Simons, Taco Broerse, Joni Efendi, Dina Sarsito, and Riccardo Riva

The Celebes Sea subducts beneath the North Arm of Sulawesi, Indonesia, at the Minahassa trench. Over the past three decades, only a few Mw>7 earthquakes ruptured this plate interface, despite a 40 mm/yr convergence rate. The left-lateral Palu-Koro fault delineates the extent of the overriding plate at the western termination of the Minahassa subduction zone and hosted a Mw7.5 earthquake in September 2018. Observations of post-seismic surface motion following the 2018 event were interpreted in a previous study to result from afterslip that extended underneath the co-seismic rupture plane. A mismatch between observed post-seismic surface motions and predictions from afterslip distributions remained at the North Arm of Sulawesi.

In this study we revisit and reprocess the GNSS observations in NW Sulawesi. We analyse the post-2018 time series to determine whether the post-seismic signal can be ascribed to a single source. This is not the case, as we detect another, yet smaller amplitude signal. We take a Bayesian approach and find that this smaller magnitude signal corresponds to slow slip on the Minahassa subduction interface. This delayed-triggered, (apparently aseismic) slow slip event occurred just east of the 1996 Mw7.9 megathrust rupture.

The 20-year long time series is characterized by four additional periods of transient surface motion. Three of these periods are likely the result of distinct slow slip events and one is a post-seismic signal from the 2008 subduction Mw7.4 earthquake. The presumed slow slip events generally take more than 300 days to quiet down again with a recurrence interval of about five years.

How to cite: Nijholt, N., Simons, W., Broerse, T., Efendi, J., Sarsito, D., and Riva, R.: Recurrent episodes of transient deformation in NW Sulawesi, Indonesia, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6099, https://doi.org/10.5194/egusphere-egu22-6099, 2022.

EGU22-6527 | Presentations | TS7.1

Probing the structure of the flat subduction in Oaxaca, Mexico, using a temporal seismic array. 

Marco Calò, Erika Alinne Solano Hernández, Karina Bernal Manzanilla, Luisa García Gomora, Xyoli Perez-Campos, and Arturo Iglesias Mendoza

Cocos plate assumes a peculiar flat subduction beneath Mexico. Oaxaca region is the part of Mexico where the trench is closest to the coastline and where a transition from flat to a more dipping subduction plane occurs.

The closest seismic broadband seismometers existing near the coast are managed by the Mexican National Seismological Service (SSN) and consist of three stations installed over a straight coastline of Oaxaca of more than 200 km. The limited number of stations makes it very      difficult to get a detailed study of the seismicity able to provide sufficient information to characterize the events of magnitude less than 4.0-4.5 in this portion of the subduction.

In this work we show the preliminary results of a temporary network of 11 stations (9 broadband and 2 Raspberry Shakes) installed since September 2021 on the Oaxaca coast and designed to complement the coverage of the SSN stations. The two networks are now able to provide enough information to obtain refined catalogs and carry out studies that can probe the structure of the crust and upper mantle of the region with unprecedented detail.

In particular we will show the first results of the refined event locations, focal mechanisms and 3D seismic velocity models. All this information is lighting several features unknown of this portion of the Cocos plate and the overlaying North America one, opening new questions about the tectonics and geodynamics of the region.

Work supported by the PASPA-DGAPA, UNAM program, as a sabbatical year at Universidad del Mar (UMAR), Puerto Angel, by the PAPIIT-DGAPA project: IN108221, and by the internal project of the UMAR: 2II2003 and PRODEP UMAR-PTC-181.

How to cite: Calò, M., Solano Hernández, E. A., Bernal Manzanilla, K., García Gomora, L., Perez-Campos, X., and Iglesias Mendoza, A.: Probing the structure of the flat subduction in Oaxaca, Mexico, using a temporal seismic array., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6527, https://doi.org/10.5194/egusphere-egu22-6527, 2022.

EGU22-6564 | Presentations | TS7.1

Transformational Faulting in Metastable Olivine, from Lab to Slab 

Julien Gasc, Clémence Daigre, Damien Deldicque, Arefeh Moarefvand, Blandine Gardonio, Julien Fauconnier, Claudio Madonna, Pamela Burnley, and Alexandre Schubnel

     This year marks the 100th anniversary of the discovery of Deep Focus Earthquakes (DFEs). Despite the elaboration of several hypotheses, the mechanisms responsible for their occurrence at depths where rocks flow in a viscous way are not entirely elucidated. DFEs are far from ubiquitous and only occur in certain subducting slabs as they descend through the mantle transition zone, where olivine transforms to wadsleyite and ringwoodite. This has led to associating DFEs to the transformation of metastable olivine. Faulting induced by the olivine transformation was proven to cause brittle behavior under conditions where ductile deformation otherwise prevails [Burnley et al., 1991]. It can also explain the anomalously high DFE activity in Tonga, which has been attributed to the thermal state of the subducting slab, colder slabs allowing for more metastable olivine.

     However, there are limited data regarding the conditions required for transformational faulting in terms of reaction kinetics, as well as regarding its possible propagation in ringwoodite peridotites. The seminal work of Burnley, Green and co-authors regarding transformational faulting used a Ge-olivine analogue, a material that undergoes the transition to the ringwoodite structure (Ge-spinel) at much lower pressures than the silicate counterpart [Burnley et al., 1991]. Here we continue to build upon this work by combining high pressure and temperature deformation experiments with Acoustic Emission (AE) monitoring. The experiments investigate lower temperatures and strain rates to assess the extrapolation of transformational faulting towards natural conditions. Ge-olivine samples were deformed in the Ge-spinel field at 1.5 GPa and various temperatures in a modified Griggs apparatus.

     We demonstrate that transformational faulting can initiate in metastable olivine, and then continue to propagate via shear-enhanced melting in the stable high-pressure phase, which is a paramount finding since transformational faulting has been contested as the origin of DFEs on the basis that large DFEs cannot be contained within a metastable olivine wedge. The experiments yielded a range of mechanical behaviors and acoustic signals depending on the kinetics of the olivine-ringwoodite transformation. The b-values associated with the obtained AEs range from 0.6-1.5, consistent with those of DFEs. In addition, we evidence that transformational faulting is controlled by the ratio between strain rate and reaction kinetics and extrapolate this relationship to the natural conditions of DFEs. Counterintuitively, these results imply that cold slabs induce transformational faulting at higher temperatures as a result of faster descent rates. This produces more numerous small DFEs and explains the higher b-values observed.

Burnley, P. C., H. W. Green, and D. J. Prior (1991), Faulting Associated With The Olivine To Spinel Transformation In Mg2geo4 And Its Implications For Deep-Focus Earthquakes, Journal of Geophysical Research-Solid Earth and Planets, 96(B1), 425-443.

How to cite: Gasc, J., Daigre, C., Deldicque, D., Moarefvand, A., Gardonio, B., Fauconnier, J., Madonna, C., Burnley, P., and Schubnel, A.: Transformational Faulting in Metastable Olivine, from Lab to Slab, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6564, https://doi.org/10.5194/egusphere-egu22-6564, 2022.

EGU22-6888 | Presentations | TS7.1

First analysis of shallow tremors in the Guerrero seismic gap. 

Raymundo Plata-Martinez and Yoshihiro Ito

The Guerrero seismic gap, at the Mexican subduction zone, has been a region of great seismological interest because of the absence of a large earthquake in more than 110 years. If an earthquake were to rupture the entire Guerrero seismic gap the resulting earthquake could be disastrous to major Mexican cities. Additionally, the Guerrero subduction zone has plenty of slow earthquake activity with large slow slip events and tectonic tremors, located at the deep plate interface. To obtain a new and unique observation point of seismicity in the Guerrero seismic gap and continue evaluating its seismic risk, we deployed an array of ocean bottom seismometers (OBS) offshore the Guerrero seismic gap. We were able to detect and locate shallow tremors near the trench and deduce that a portion of the shallow plate interface undergoes stable slip. We used data from the OBS to analyse the new catalogue of shallow tremors and describe their source. Focal mechanisms of shallow tremors were estimated using S wave polarisation. We found that slip azimuth tends to follow the subduction plate motion, suggesting that tremors rupture at the plate interface. We also estimated shallow tremor radiated seismic energy. We found a heterogeneous energy release of shallow tremors along strike. Our observations of a heterogeneous shallow tremor energy release can be explained with the different mechanical properties, inside and outside the Guerrero seismic gap, and help to characterise the seismogenic zone at the shallow plate interface.

How to cite: Plata-Martinez, R. and Ito, Y.: First analysis of shallow tremors in the Guerrero seismic gap., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6888, https://doi.org/10.5194/egusphere-egu22-6888, 2022.

EGU22-8542 | Presentations | TS7.1

Back-arc thrusting in the Jakarta basin 

Sonny Aribowo, Laurent Husson, Christophe Basile, Danny H. Natawidjaja, Christine Authemayou, Mudrik R. Daryono, and Manon Lorcery

The Java subduction megathrust is undoubtedly the source of high magnitude, extremely damaging earthquakes. In the back-arc of the subduction zone, severe earthquakes also affect the northern part of Java. The Jakarta basin lies at the western end of the Java back-arc thrust, which stems on the seismogenic Flores thrust in the east and propagates westward across Java. The tectonic activity of the Java Back-arc Thrust in the Jakarta basin has been overlooked because of its low recurrence time. Yet, historical records reveal that it was destructive, resulting in severe destruction in Bogor and Jakarta. Tracking fault activity in large cities is problematic because the original landscape is often profoundly anthropized and has little to do with its pre-industrial physiography. In the Jakarta basin, this is even more complex owing to the fast Plio-Quaternary sedimentation that conceals the morphotectonic features associated with the fault. We combine geomorphic observations and subsurface data using DEMs and optical imagery, seismic reflection and biostratigraphic well data. At depth, seismic data reveal a partitioned fault network of compressive fault-propagation folds and transpressive flower structures that deform the Plio-Quaternary sedimentary layers of the Jakarta basin and interplay with volcanoes. At the surface, morphological observations in the rims of the basin reveal that several river meanders were abandoned and uplifted hundreds of meters above the current riverbeds above the fault network. In the basin, multiple meter scale waterfalls that we interpret as knickpoints above active faults scar the flat surface of the basin. We conclude that the western end of the Java back-arc thrust fault bears a potentially high risk for the infrastructures of the densely populated province of Jakarta.

How to cite: Aribowo, S., Husson, L., Basile, C., Natawidjaja, D. H., Authemayou, C., Daryono, M. R., and Lorcery, M.: Back-arc thrusting in the Jakarta basin, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8542, https://doi.org/10.5194/egusphere-egu22-8542, 2022.

EGU22-8846 | Presentations | TS7.1

Testing the Strain-rate Hypothesis for Deep Slab Seismicity 

Magali Billen, Rebecca Fildes, Marcel Thielmann, and Menno Fraters

The occurrence of deep earthquakes within subducting lithosphere (slabs) remains enigmatic because these earthquakes have many similarities to shallow earthquakes, yet frictional failure is strongly inhibited at high pressure. Regardless of depth, earthquakes occur where the temperature is cold enough that elastic deformation is accumulated over time: for frictionally controlled earthquakes at shallow depth, the rate of seismic moment release is correlated with the strain-rate. Comparison of spatial variation in strain-rate magnitude from 2D simulations of subduction to observed seismicity versus depth profiles suggest that strain-rate may also be a determining factor in the occurrence of deep slab seismicity (1). In addition, proposed mechanisms for deep earthquakes, including transformational faulting of metastable olivine and thermal shear instability, are known to depend directly on strain-rate. To test the hypothesis that strain-rate is a determining factor in the spatial distribution of deep earthquakes, we are creating 2D models of subduction with visco-elasto-plastic (VEP) rheology and a free surface in the software ASPECT (2). The 2D slab structure is constructed for specific locations in which the slab geometry is extracted from Slab 2.0 (3) and the plate age and convergence rate are used to define the thermal structure using a new mass-conserving slab temperature model (4) implemented in the Geodynamic WorldBuilder (5). The resulting strain-rate and stress, together with the pressure and temperature along multiple transects of the slab are used as input values for a 1D thermal shear instability model (6) using the same VEP rheology as the slab deformation models.  Using this approach we can test whether the conditions in the slab favor failure through thermal shear instability and compare the spatial distibution to obsered seismicity. Initial results of this workflow will be presented, including how we have overcome some of the challenges in running VEP models for comparison to present-day slab seismicity. References: 1. Billen, M. I. , Sci. Advances, 2020. 2. Bangerth, W. et al., https://doi.org/10.5281/ZENODO.5131909, 2021. 3. Hayes, G.P. et al., Science, 2018. 4. Billen, M. I. and Fraters, M. R. T., EGU Abstract, 2022. 5. Fraters, M. R. T. et al., Solid earth, 2019. 6. Thielmann, M. Tectonophysics, 2018. 

 

How to cite: Billen, M., Fildes, R., Thielmann, M., and Fraters, M.: Testing the Strain-rate Hypothesis for Deep Slab Seismicity, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8846, https://doi.org/10.5194/egusphere-egu22-8846, 2022.

The occurrence of deep-focus earthquakes (h > 300 km) is restricted to a handful of regions worldwide, generally associated with subduction zones. In particular, the South American subduction zone hosts two narrow belts of deep-focus seismicity with depths greater than ~500 km along the Peru-Brazil border and Bolivia/northern Argentina. This subduction zone has a thermal parameter of Φ < 2500 km and is regarded as a warm end-member. Only in 2015, the USGS catalog listed up to 25 deep-focus events in the Peru-Brazil belt, with magnitudes and depths ranging from 4.0 to 7.6 Mw and 515 to 655 km, respectively. Notably, this sequence included a well-investigated doublet of two 7.6 Mw events occurring 5 min apart trailed by a number of aftershocks of magnitude 4.0 Mw or larger. Published focal mechanisms for the main doublet display predominantly double-couple components that closely agree with the GCMT solution (E1: 350°, 39°, -80° and E2: 350°, 30°, -81°), suggesting shear failure at those depths. Mechanisms capable of shear instability at those large depths traditionally include dehydration embrittlement, transformational faulting, thermal runaway or a combination of those. Aiming at investigating the physical mechanism responsible for these deep-focus events, we are using a combination of regional and teleseismic recordings from the Brazilian Seismographic Network (RSBR) and other regional and national networks in the continent to determine focal mechanisms for deep-focus earthquakes (M > 4) that occurred between 2014 and 2022. The mechanisms are being determined through a Cut and Paste approach, which compensates for inaccuracies in the velocity model through independent relative time shifts between observations and predictions for P, SV and SH wave trains sampling both the upper and lower hemispheres of the focal sphere. The results on the 2015 doublet, using the full dataset (regional and teleseismic stations), indicated two very similar normal faults fully consistent with the GCMT solutions, at the preferred depths of 616 (E1) and 621 (E2) km. Preliminary inversions using only regional networks (RSBR) for 15 smaller earthquakes (4.3 < M < 7.1) also yield normal mechanisms with T axes oriented roughly E-W. This apparent uniformity of the focal mechanisms for the South-American deep-focus earthquakes, with near-vertical P axes and near-horizontal (east-west-oriented) T axes, strongly suggests vertical compression along the subducting plate is the main source of stress driving deep-focus seismicity. Down-dip compression is expected from either buoyancy forces, equilibrium phase transformations or a metastable olivine wedge (MOW); however, how earthquakes are nucleated at those depths is harder to explain. Transformational faulting within the MOW has been the preferred mechanism in cold slabs, while in warm slabs its presence has been more debated due to wedge size being expected to decrease with temperature. Transformational faulting in other metastable minerals such as enstatite is our preferred alternative, as dehydration embrittlement and thermal runaway seem to lack the capacity of triggering earthquakes at those large depths.

How to cite: Leite Neto, G. and Julià, J.: Investigating Source Mechanisms of Deep-Focus Earthquakes at the Peru-Brazil Border with Regional and Teleseismic Data, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9820, https://doi.org/10.5194/egusphere-egu22-9820, 2022.

EGU22-11060 | Presentations | TS7.1

Megathrust Seismicity Through the Lens of Explainable Artificial Intelligence 

Juan Carlos Graciosa, Fabio Antonio Capitanio, Mitchell Hargreaves, Thyagarajulu Gollapalli, and Mohd Zuhair

Understanding the controls on large magnitude seismicity occurrence remains an open challenge, yet a pressing one, for the exceptional hazard associated with earthquakes. Different parameters are proposed to exert control on the generation and propagation of megathrust earthquakes and untangling their complex interactions across scales remains challenging. Here, we use explainable artificial intelligence to unravel the interactions between different parameters and elucidate the underlying mechanisms. We use three types of datasets from a number of convergent margins: a) a catalogue of earthquake hypocentre and rupture, b) geophysical observations of subduction zones properties (e.g., gravity, bathymetric roughness, sediment thickness), and c) the distribution of stress within the slab due to slab pull calculated from flexure models. These constitute the three types of nodes in the input layer of a Fully Connected Network (FCN) trained to classify earthquake magnitude embedding the state of the system (b), the driving mechanism (c) and the resulting seismicity (a). We then analyse the trained network using Layer-wise Relevance Propagation (LRP) to determine the relative weights of the input nodes, providing relevant constraints on the mechanisms that dominate the seismicity in a region, their scale and likelihood.

How to cite: Graciosa, J. C., Capitanio, F. A., Hargreaves, M., Gollapalli, T., and Zuhair, M.: Megathrust Seismicity Through the Lens of Explainable Artificial Intelligence, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11060, https://doi.org/10.5194/egusphere-egu22-11060, 2022.

EGU22-11670 | Presentations | TS7.1

From the Izu-Bonin to the north of Hokkaido : how did the M9.0 Tohoku earthquake affect the Pacific plate seismicity ? 

Blandine Gardonio, David Marsan, Stéphanie Durand, and Alexandre Schubnel

The last twenty years have seen a number of large, devastating earthquakes on subduction zones. In many ways, the M9.0 Tohoku-oki earthquake was bewildering for the seismological community. It occurred on a previously identified coupled area but ruptured a larger zone than expected and, above all, the large amount of near-trench coseismic slip was a surprise.

Because Japan is one of the best area instrumented in the world, the 2011 Mw 9.0 Tohoku-oki earthquake is one of the world's best-recorded ruptures. Many studies have analyzed with great details the pre-seismic, co-seismic and post-seismic phases of the Tohoku earthquake. Researchers also focused on the triggering of on-land seismicity following the mega-thrust earthquake. However, no study zoom out and considered the consequences of this earthquake on the Pacific plate in this area.

 

In this study, we analyzed the Japanese Meteorological Agency seismic catalog over ten years of data to assess the consequences of such large mega-thrust earthquake over the Pacific plate from the Izu-Bonin area to the north of Hokkaido island. We studied the seismicity from 0 to 700km depth, taking advantage of one of the most complete subduction zone catalogue.

Our results show that the seismic rate south of Japan experienced a decrease at the time of Tohoku about 30% and an increase of 20% underneath the Hokkaido island. The subduction zone that is downdip Tohoku doesn’t seem affected by the megathrust earthquake. While it is difficult to understand and to model such large scale effects of the Tohoku earthquake on the Pacific plate, we think it is primordial to observe and detail them with precision.

How to cite: Gardonio, B., Marsan, D., Durand, S., and Schubnel, A.: From the Izu-Bonin to the north of Hokkaido : how did the M9.0 Tohoku earthquake affect the Pacific plate seismicity ?, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11670, https://doi.org/10.5194/egusphere-egu22-11670, 2022.

EGU22-11762 | Presentations | TS7.1

Crushed and fried: ductile rupture at depth due to grain size reduction and shear heating 

Marcel Thielmann and Thibault Duretz

Since their discovery in 1928, deep earthquakes have been the subject of extensive research to unravel their nucleation and rupture mechanisms. Due to the elevated pressures and temperatures at depths below 50 km, brittle failure becomes less likely and ductile deformation is favored. To date, there is no consensus on the mechanisms resulting in deep earthquake generation. Three main mechanisms (dehydration embrittlement, transformational faulting and thermal runaway) have been proposed to cause deep earthquakes, but neither of them has been sufficiently quantified to yield a definite answer under which conditions they are active.

Here, we explore the feasibility of the thermal runaway hypothesis using 1D and 2D thermo-mechanical models. In particular, we investigate the impact of grain size reduction in conjunction with shear heating to see whether grain size reduction and shear heating are competitive mechanisms (which would prevent thermal runaway) or whether they are collaborative. Our results show that the combination of both mechanisms facilitates thermal runaway and significantly reduces the stress required for the occurrence of thermal runaway. We then investigate whether this combined failure mechanism may explain the seismicity observed in regions of detaching lithosphere, such as the Hindu Kush and the Vrancea earthquake nests. 

How to cite: Thielmann, M. and Duretz, T.: Crushed and fried: ductile rupture at depth due to grain size reduction and shear heating, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11762, https://doi.org/10.5194/egusphere-egu22-11762, 2022.

EGU22-12386 | Presentations | TS7.1

Lithospheric structure in and around Slow Slip in the Alaska Subduction Region 

Pousali Mukherjee and Yoshihiro Ito

Subduction zones host some of the greatest megathrust earthquakes in the world. Slow earthquakes have been also discovered around the subduction zones of the Pacific rim very close to megathrust earthquakes in several subduction zones in Chile, Cascadia, Mexico, Alaska, and New Zealand (Obara and Kato, 2016). Investigating the lithosphere of the slow earthquake area versus non slow-earthquake areas in subduction zones is crucial in understanding the role of the internal structure to control slow earthquakes. Deep transient slow slip had been detected in the Lower and Upper Cook Inlet in the Alaska subduction region(Fu et al. 2015; Li et al. 2016; Wei et al. 2012). In this study, we investigate the lithospheric structure beneath the stations in and around the slow earthquake area in Alaska. We also study the non slow-earthquake areas in the Alaska subduction zone using receiver function analysis and inversion method using teleseismic earthquakes. Here we focus on, especially the Vs and Vp/Vs ratios from both the slow and non-slow earthquake areas, because of the sensitivity  to the fluid distribution in the lithosphere; the fluid distribution possibly controls the potential occurrence of slow earthquakes.
Additionally, the nature of the slab can also play a crucial factor. The velocities around the plate interface region in the lower continental mantle, subducted oceanic crust and upper oceanic mantle has the potential to reveal information that the structural heterogeneity could be related to the slow slip.

How to cite: Mukherjee, P. and Ito, Y.: Lithospheric structure in and around Slow Slip in the Alaska Subduction Region, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12386, https://doi.org/10.5194/egusphere-egu22-12386, 2022.

An increase of both shallow and intraslab intermediate-depth seismicity has been observed days to years before some great subduction earthquakes, as before Tohoku-oki (Mw 9.0, 2011), Maule (Mw 8.8, 2010) or Iquique (Mw 8.2, 2014) earthquakes (Bouchon et al., 2016, Jara et al,. 2017). These observations suggest that a link exists between these deep and shallow foreshocks, but it is still poorly understood and not characterized in a systematic manner. Some studies have attempted to address this lack of systematic characterization by using a statistical approach (Delbridge et al., 2017).

The aim of this study is to systematically and statistically identify and characterize the potential correlations between deep and shallow seismicity. We want to assess whether or not such interactions exist. If they exist, we plan to characterize when and where they occur, at what frequency, their characteristic duration, and with what spatial pattern.  

For this purpose, we develop a statistical method to assess the relevance of deep-shallow interactions, that allows to identify statistically significant correlations between deep and shallow seismicity. We focused on the seismicity of the Japan trench subduction zone during the decade prior to the Tohoku-oki earthquake, because deep-shallow interactions were identified there, and because we can test the events picked by our method against the correlations highlighted in published papers (Bouchon et al., 2016). The correlation values between the deep and shallow events from the Japan Meteorological Agency catalog are calculated on various different sliding-windows with durations from month to week. These correlation values are then compared to the ones obtained using synthetic series of shallow events that meet the spectral properties of the real series, and the significance of the correlation is calculated.

Some windows show a strong correlation. The dependence of our results to different parameters, such as the completeness magnitude, the length of the window, the lag, the smoothing etc… are evaluated. The spatio-temporal analysis of the seismicity on maps for these windows is also explored. While the results are still preliminary, we believe that this method has the potential to systematically and quantitatively assess the current presumptions on the link between deep and shallow seismicity, that would lead to a better understanding of the mechanisms leading to megathrust earthquakes.

 

Bouchon, M., Marsan, D., Durand, V., Campillo, M., Perfettini, H., Madariaga, R., & Gardonio, B. (2016). Potential slab deformation and plunge prior to the Tohoku, Iquique and Maule earthquakes. Nature Geoscience, 9(5), 380.

Delbridge, B. G., Kita, S., Uchida, N., Johnson, C. W., Matsuzawa, T., & Bürgmann, R. (2017). Temporal variation of intermediate‐depth earthquakes around the time of the M9. 0 Tohoku‐oki earthquake. Geophysical Research Letters, 44(8), 3580-3590.

Jara, J., Socquet, A., Marsan, D., & Bouchon, M. (2017). Long-Term Interactions Between Intermediate Depth and Shallow Seismicity in North Chile Subduction Zone. Geophysical Research Letters, 44(18), 9283-9292.

How to cite: Chouli, A., Marsan, D., Giffard-Roisin, S., Bouchon, M., and Socquet, A.: Analysis of the potential correlation between intraslab intermediate-depth and shallow earthquakes in the Japan trench subduction zone prior to the Mw 9.0 Tohoku-oki earthquake, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12565, https://doi.org/10.5194/egusphere-egu22-12565, 2022.

EGU22-877 | Presentations | GMPV2.2

Magnesium isotopic composition of back-arc basin lavas and its implication for the recycling of serpentinite-derived fluids 

Yi Ding, Xianglong Jin, Xiaohu Li, Zhenggang Li, Jiqiang Liu, Hao Wang, Jihao Zhu, Zhimin Zhu, and Fengyou Chu

Dehydrated fluids expelled from serpentinized mantle in the subducted slab are gradually recognised as a vital role in generating arc magmatism and element cycling in the Earth. However, it remains not clear about their recycling at various depth in subduction zones and if slab serpentinite-derived fluids contribute to the genesis of lavas from the back-arc basins. Here, we study the magnesium (Mg) isotopic compositions of lavas from the Okinawa Trough (OT) and Lau basin (LB) as Mg isotopes have shown great potential to trace dehydration of slab serpentinites in recent years. Overall, lavas from the OT and LB have averagely heavier Mg isotopic compositions relative to the mid-ocean ridge basalt (MORB) mantle, which could be attributed to the involvement of slab serpentinite-derived fluids rather than crustal assimilation or input of subducted sediments as indicated by the isotopic modelling results. The δ26Mg values of the southern OT (SOT) and southern LB (SLB) are generally higher than the middle OT (MOT) and northern LB (NLB), respectively, with an average of -0.11 ± 0.06‰ (2SD, n=5) for the SOT, -0.20 ‰ ± 0.04 (2SD, n=5) for the MOT, -0.13 ‰ ± -0.08 for the SLB (2SD, n=6) and -0.19 ‰ ± 0.06 (2SD, n=10) for the NLB. The binary modelling results have shown that various amounts of serpentinite-derived fluids could explain the variations in Mg isotopic compositions observed in the OT and LB. Combined published δ26Mg values in subduction zones with our data, the thermal structure of inter-subduction zone may play a first control on the signal of Mg-rich serpentinite-derived fluids. By contrast, the contributions of these fluids to different segments in a specific subduction zone may depend on the slab depth beneath magmatic activity sites.

How to cite: Ding, Y., Jin, X., Li, X., Li, Z., Liu, J., Wang, H., Zhu, J., Zhu, Z., and Chu, F.: Magnesium isotopic composition of back-arc basin lavas and its implication for the recycling of serpentinite-derived fluids, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-877, https://doi.org/10.5194/egusphere-egu22-877, 2022.

EGU22-1215 | Presentations | GMPV2.2

Experimental constraints on low temperature dehydration induced by mineral reactions in calcite-bearing ophicarbonates 

Lisa Eberhard, Oliver Plümper, and Daniel J. Frost

It is generally accepted that subduction zones are important sites for element recycling into the Earth’s mantle. This does in particular also include carbon, which is transported in the form of organic carbon and carbonates. While organic carbon is expected to effectively fix carbon in the slab, carbonates are often entitled as an important CO2 source for arc magmatism. The exact composition of the total subducted carbon load, in terms of oxidised and reduced carbon material, changes between different slabs and consequently the total released carbon varies significantly among suduction zones. An important mechanism for carbon release is the dissolution of carbonates in aqueous fluids. Ophicarbonates, containing both serpentine and carbonate minerals, are thus of special interest: The fluid released through serpentine dehydration reactions interacts with carbonates and causes the release of carbon. However, to better constrain the carbon release it is essential to understand the release of fluid in carbonated systems.

In this study we present a detailed experimental analysis on the effect of carbonates on the fluid release from serpentinites. We performed multi-anvil experiments on model ophicarbonates. Our starting material was a mixture between natural antigorite and Ca-carbonate and/or graphite. We also conducted thermodynamic calculations on various serpentinite-carbonate systems. Our experimental results show that serpentine dehydrates at temperatures <600 °C at 2.5 GPa, which is lower with respect to uncarbonated serpentinites. For a serpentinite with 20 wt% CaCO3 the dehydration of serpentine thus takes place at 50 - 60 km depth. In the absence of CaCO3 the fluid is released at 60 - 70 km depth. In cold subduction zones this shift in dehydration depth is even more extreme: In a carbonated system the serpentine was found to dehydrate at 80 - 110 km depth, in comparison to 110 - 130 km depth in the uncarbonated system. We found that this shift is mainly due to Ca-Mg exchange reactions between the carbonate and silicate fraction. The experimental run products show distinct dehydration mineralogy, forming Ca-silicates and Mg-bearing carbonates. In combination with mass balance calculations we show that the total carbonate-fraction does not decrease over the whole experimental temperature range. In conclusion, serpentinites with a high Ca-carbonate content are expected to dehydrate earlier in the subduction zones, whereas the carbon remains in the slab. The presence of Ca-carbonate thus has the potential to prevent subduction of water into deeper levels of the Earth’s mantle.

How to cite: Eberhard, L., Plümper, O., and Frost, D. J.: Experimental constraints on low temperature dehydration induced by mineral reactions in calcite-bearing ophicarbonates, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1215, https://doi.org/10.5194/egusphere-egu22-1215, 2022.

EGU22-2584 | Presentations | GMPV2.2

Multidimensional Analysis of Serpentinite Dehydration Networks and Implications for Volatile Flux in Subduction Zones 

Austin Arias, Andreas Beinlich, Lisa Eberhard, Marco Scambelluri, and Oliver Plümper

Subduction zones are principal pathways for the cycling of volatiles such as  hydrogen and carbonfrom the Earth’s surface to the mantle and back to the atmosphere. This cycling has significant long-term effects on Earth’s climate. However, the processes that lead to volatile release during subduction and total volatile fluxes are poorly understood. In our study, we will quantify and characterize the network architecture of dehydration pathways exhibited as mineralized olivine-bearing metamorphic veins in the exhumed meta-serpentinites from the Erro-Tobbio unit, Italy [1]. Applying network analytical methods and graph theory both macroscopically and microscopically can provide the mode of propagation and describe the controlling factors affecting the evolution of these dehydration networks. Furthermore, multiscale observations can confirm the scalability of the vein network and if quantitative results such as permeability or volatile flux can be extrapolated to larger scales.

Along with 2-D network analysis, these vein networks will be analyzed in 3-dimensions using X-ray tomography and sophisticated machine-learning methods, such as generative adversarial networks. The results of both will be compared, which can then assure whether current machine-learning methods can effectively create statistically equivalent copies of these networks. Lastly, the synthesis of 2-D and 3-D multiscale results should provide meaningful parameters for accurate calculations of volatile flux during the dehydration of subducting slabs. 

 

[1] Plümper et al. (2017) Nature Geoscience 10(2), 150-156.

How to cite: Arias, A., Beinlich, A., Eberhard, L., Scambelluri, M., and Plümper, O.: Multidimensional Analysis of Serpentinite Dehydration Networks and Implications for Volatile Flux in Subduction Zones, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2584, https://doi.org/10.5194/egusphere-egu22-2584, 2022.

EGU22-3092 | Presentations | GMPV2.2

New rutile and titanite phase stability constraints at subsolidus conditions in a mafic system 

Inês Pereira, Kenneth Koga, and Emilie Bruand

Rutile, titanite and ilmenite are the most common Ti-bearing minerals found in metamorphic rocks of variable grades. Rutile and titanite, in particular, are extremely useful minerals as they can be dated using U-Pb, and Zr concentrations are calibrated as geothermometers for both minerals, making them valuable petrochronometers. Previous experimental studies on MORB composition [1] established that titanite is more stable at LT-LP, rutile at HP (> 12 kbar), while ilmenite at HT-LP metamorphic conditions. Despite these phase stabilities, the natural occurrence of rutile at LP (< 12 kbar) and titanite at HP (> 20 kbar) and ilmenite at both HP and LP indicates strong uncertainties on our current understanding about their stabilities. [2] demonstrated a non-trivial compositional effect mainly driven by CaO content, on the titanite-out reaction for granitoid compositions (2-4 kbar). For MORB compositions, experimental constraints are currently lacking in the 400-600 ºC temperature range.

Here we present the results of a set of experiments run in a piston-cylinder apparatus using a gold capsule with a NNO oxygen fugacity buffer. We tested multiple starting materials, with different Ti/Ca values, including: 1) a pulverised eclogite (MORB composition) powder with titanite and rutile as well as a few initial eclogitic silicate mineral seeds, promoting nuclei for mineral overgrowth, 2) the same eclogite, glassed and pulverised in the lab, with fewer product seeds, and some of these with added Ti powder; 3) a different MORB powder with crushed titanite and kaersutite seeds. More than 30 experiments were conducted, with pressure ranging between 12 and 23 kbar, and temperature between 400 and 750 ºC in water-saturated conditions and using a cold pressure-seal capsule technique. Due to the challenging LT experiments, equilibrium is not attained, but dissolution and precipitation features are often observable. Epidote is one of the first minerals to nucleate and grow when the initial water content is > 10 wt%, and crystallisation is followed by amphibole. We show that when Ti/Ca is high, rutile is stable even at lower pressures, and when Ti/Ca is low, titanite seeds appear metastable even at higher pressures (19 kbar) and low temperatures. This is in agreement with petrological observations (i.e. peak titanite reported in blueschist rocks). At lower water saturation conditions (10 wt%), reactions are more sluggish, but successful experimental assemblies show that at 600 ºC and 14 kbar titanite seeds become unstable and start reacting with the basalt bulk rock powder to form ilmenite. We found that H2O content, as well as Ti/Ca ratios appear to influence the stability of these Ti-phases in a mafic system. These results can be used to constrain the stabilities of rutile, titanite and ilmenite, which in turn elucidate the P-T-X conditions that these accessory minerals are able to record.

[1] Liou, et al. (1998). Schweiz. Mineral. Petrog. Mitt., 78, 317-335. [2] Angiboust, S., & Harlov, D. (2017). Am. Min., 102, 1696-1708.

How to cite: Pereira, I., Koga, K., and Bruand, E.: New rutile and titanite phase stability constraints at subsolidus conditions in a mafic system, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3092, https://doi.org/10.5194/egusphere-egu22-3092, 2022.

EGU22-3423 | Presentations | GMPV2.2

Metasomatism between serpentinite and pelitic schist in the Yuli belt, eastern Taiwan: fluid-rock interactions during subduction metamorphism 

Dominikus Deka Dewangga, Chin-Ho Tsai, Hao-Yang Lee, Yoshiyuki Iizuka, Wen-Han Lo, and Chi-Yu Lee

Metasomatic rocks in orogenic mélanges bear critical information about fluid-rock interactions and element mobilities during subduction processes. The Yuli belt contains a few mélange units that crop out high-pressure blocks of metaigneous rocks and serpentinites enclosed in metasedimentary rocks. Metasomatic rocks are found along contacts between the serpentinites and metasedimentary rocks. However, the protolith and formation of those metasomatic rocks are largely unknown. Meter-scale metasomatic zones occur at the contact between pelitic schists (PS) and serpentinites (SP) in the Tsunkuanshan area. Five zones from PS to SP are newly identified: (I) chlorite-albite schist, (II) amphibole-albite rock, (III) albite-chlorite schist, (IV) epidote-chlorite schist, and (V) chlorite-talc schist. Minor garnet and amphibole (glaucophane core - barroisite mantle - actinolite rim) are present in the zone I and II, respectively. Field and petrographic observations combined with whole-rock major elements data suggest that this rock association likely was formed by chemical exchanges between the SP and PS. However, the zone II shows enrichment of Si, Na, and Ca, but Al depletion relative to the other metasomatic rocks. This anomaly might be due to infiltration of external fluids. Rare earth element patterns of the PS, zone I, II, III, and IV are similar, indicating a similar protolith origin. Hence, the original boundary between the PS and SP is likely between the zone IV and V. We estimate the chemical mass balance from the PS to the metasomatic rocks (zone I, II, III, and IV) using the sparse isocon method (Kuwatani et al., 2020). The result shows that the chemical components in zone I, III, and IV are gained relative to the PS, whereas those in zone II are of loss. We interpret that the zone I, III, IV, and V were produced by diffusive exchanges of components between the PS and SP, whereas formation of the zone II was likely created by Na-Ca rich fluid infiltrations. The newly-found occurrence of glaucophane within the zone II indicates fluid-rock interactions during subduction metamorphism.

Keywords: Chemical mass balance, sparse isocon method, Na-Ca rich fluids, Yuli belt.

How to cite: Dewangga, D. D., Tsai, C.-H., Lee, H.-Y., Iizuka, Y., Lo, W.-H., and Lee, C.-Y.: Metasomatism between serpentinite and pelitic schist in the Yuli belt, eastern Taiwan: fluid-rock interactions during subduction metamorphism, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3423, https://doi.org/10.5194/egusphere-egu22-3423, 2022.

EGU22-3611 | Presentations | GMPV2.2 | Highlight

Perturbation of the deep-Earth carbon cycle in response to the Cambrian Explosion 

Andrea Giuliani, Russell N. Drysdale, Jon D. Woodhead, Noah J. Planavsky, David Phillips, Janet Hergt, William L. Griffin, Senan Oesch, Hayden Dalton, and Gareth R. Davies

Earth’s carbon cycle is strongly influenced by subduction of sedimentary material into the mantle. The composition of the sedimentary subduction flux has changed considerably over Earth’s history, but the impact of these changes on the mantle carbon cycle is unclear. Here we show that the carbon isotopes of kimberlite magmas record a fundamental change in their deep-mantle source compositions during the Phanerozoic Eon. The 13C/12C of kimberlites prior to ~250 Myr preserves typical mantle values, whereas younger kimberlites exhibit lower and more variable ratios – a switch coincident with a recognised surge in kimberlite magmatism. We attribute these changes to increased deep subduction of organic carbon with low 13C/12C following the Cambrian Explosion when organic carbon deposition in marine sediments increased significantly. These observations demonstrate that biogeochemical processes at Earth’s surface have a profound influence on the deep mantle, revealing an integral link between the deep and shallow carbon cycles.

How to cite: Giuliani, A., Drysdale, R. N., Woodhead, J. D., Planavsky, N. J., Phillips, D., Hergt, J., Griffin, W. L., Oesch, S., Dalton, H., and Davies, G. R.: Perturbation of the deep-Earth carbon cycle in response to the Cambrian Explosion, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3611, https://doi.org/10.5194/egusphere-egu22-3611, 2022.

EGU22-3929 | Presentations | GMPV2.2

Carbonation of peridotites along the basal thrust of the Semail Ophiolite (OmanDP Hole BT1B): insights from Fe and Zn isotopes 

Thierry Decrausaz, Marguerite Godard, Baptiste Debret, and Isabelle Martinez

The formation of carbonated serpentinites (serpentine, Mg-Ca carbonates) and listvenites (quartz, Mg-carbonate) by reactions between exhumed mantle peridotites and percolating CO2-bearing fluids is a major sink for carbon from spreading ridges to ophiolites and orogenic suture zones. During ICDP Oman Drilling Project, the transition from the base of the Semail Ophiolite to its metamorphic sole was drilled at Hole BT1B (Wadi Mansah), allowing to recover ~200 m of variously carbonated serpentinites and listvenites, and underlying metabasalts. Mineralogical and geochemical investigations indicate that carbonation at the expense of the Wadi Mansah peridotites was triggered by the migration of multiple fluid batches along the basal thrust at shallow depths and low temperatures (50-250 °C). To better constrain the impacts of fluid source(s) and protolith compositions on reaction pathways and oxidation state during carbonation, we carried out iron and zinc isotopes study of 19 variously carbonated peridotites (13 listvenites, 5 carbonated serpentinites, one serpentinized harzburgite) and of 6 underlying metamorphic samples from Wadi Mansah area (including 3 BT1B samples).

The partially serpentinized harzburgite and carbonated serpentinites have δ56Fe and δ66Zn compositions ranging between -0.05 – +0.06 ‰ and -0.11 – +0.15, respectively, overlapping that of previously analysed abyssal (δ56Fe: -0.15 – +0.11 ‰; δ66Zn: +0.12 – +0.62 ‰), ophiolitic (δ56Fe: -0.27 – +0.14 ‰; δ66Zn: -0.56 – +0.38 ‰), orogenic (δ56Fe: -0.06 – +0.12 ‰; δ66Zn: +0.03 – +0.55 ‰), and fore-arc (δ56Fe: -0.26 – +0.09 ‰) peridotites. In contrast, listvenites display highly variable δ56Fe and δ66Zn values, between -0.33 – +0.2 ‰ and -0.46 – +0.64 ‰ respectively. Iron isotopes compositions show a positive correlation with bulk iron contents. Zinc isotope compositions are positively correlated to δ13CTC values, suggesting a high mobility of Zn in carbonate-bearing fluids. The lightest δ66Zn values were measured in listvenites with minor amounts of fuchsite (Cr-mica), that often display evidences for breakdown of Cr-spinel. Metamorphic sole samples display isotopic compositions typical of mafic rocks (δ56Fe: +0.01 – +0.24 ‰; δ66Zn: +0.24 – +0.47 ‰), in agreement with an oceanic crust-derived protolith (MORB, δ56Fe: +0.06 – +0.18; δ66Zn: +0.27 – +0.30 ‰).

Our results suggest an important control of the protolith chemistry and complexation with dissolved carbon in reactive fluids on the Fe and Zn isotopes compositions.

How to cite: Decrausaz, T., Godard, M., Debret, B., and Martinez, I.: Carbonation of peridotites along the basal thrust of the Semail Ophiolite (OmanDP Hole BT1B): insights from Fe and Zn isotopes, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3929, https://doi.org/10.5194/egusphere-egu22-3929, 2022.

The role of subduction zones has been considered critical to understand carbon fluxes among the Earth’s reservoirs. At plate margins, most of the carbon is stored in carbonate sediments. Nevertheless, the past decade saw an increasing focus also on reduced carbon - kerogen and graphite – to understand its role in the deep carbon cycle. Most of reduced carbon derive from seafloor organic-rich sediments, even if, a little portion can form by decarbonation during metamorphism.

In the Palaeoproterozoic supracrustal rocks of the Lewisian Complex, graphitic marbles were found in a mixed succession of metasediments at Gott Bay, Island of Tiree (Scotland). Such marbles show bedding-parallel slip surfaces associated with chlorite that are absent in other marbles on the island that are devoid of graphite. Marbles and schists-hosted graphite were analysed showing marked differences in carbon isotopic composition and structural ordering measured by means of Raman spectroscopy.

Petrographic and chemical evidence support the hypothesis of an abiotic origin of the marble-hosted graphite and the mechanisms that led to its formation could explain the heavy isotopic composition of many Proterozoic marbles in the world.

 

 

 

 

How to cite: Schito, A., Parnell, J., Muirhead, D., and Boyce, A.: Evidence of abiotic graphite formation in Proterozoic marbles of the Lewisian Complex: mechanisms and consequences for the deep carbon cycle, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5014, https://doi.org/10.5194/egusphere-egu22-5014, 2022.

EGU22-5782 | Presentations | GMPV2.2

Deep subduction of continental crust contributes to mantle metasomatism and deep carbon cycle 

Alessia Borghini, Gautier Nicoli, Silvio Ferrero, Patrick J. O'Brien, Oscar Laurent, Laurent Remusat, Giulio Borghini, and Sula Milani

The garnet in the ultra-high pressure (UHP) eclogites of the Erzgebirge (Bohemian Massif, Germany) trapped primary inclusions of metasomatic melt originated by the partial melting of the continental crust. The study of these inclusions alow us to estimate the contribution of the subducted continental crust to mantle metasomatism and deep carbon fluxes. The inclusions are randomly distributed in the inner part of the garnet, they are micrometric and occur as both polycrystalline, i.e. nanogranitoids, and glassy, often with a shrinkage bubble. Nanogranitoids consist of kumdykolite, quartz, kokchetavite, biotite, white mica, calcite and rare graphite. The inclusions share their microstructural position in the garnet with inclusions of polycrystalline quartz interpreted as quartz pseudomorph after coesite that indicate the entrapment at UHP conditions. The melt composition, measured on glassy inclusions and rehomogenized nanogranitoids, is granitic. The melt is also hydrous, slightly peraluminous and the trace element enrichments observed are consistent with an origin from the continental crust, testified by the high amount of incompatible elements such as Cs, Pb, Th, U, Li and B. Similar signatures were also reported elsewhere in the Bohemian Massif, e.g. in other metasomatic melts hosted in HP mantle eclogites, in metasomatized mantle rocks and in post-collisional ultrapotassic magmatic rocks, suggesting that mantle metasomatism from melts originated in the continental crust is widespread in the orogen.

The melt H2O and CO2 contents were measured with the NanoSIMS. The CO2 values in particular were corrected reintegrating the vapor contained in the shrinkage bubble and are in average 19552 ± 772 ppm, the highest content of CO2 measured so far in crustal melt inclusions. The modelled endogenic carbon flux associated with the subduction of the continental crust of the Variscan Orogenic Cycle is 22 ± 8 Mt C yr-1. This flux within error is similar to the endogenic carbon fluxes in the serpentinized mantle (~ 14 Mt C yr-1) and to the exogenic fluxes in mid-oceanic ridges (~ 16 Mt C yr-1) and arc volcanoes (~ 24 Mt C yr-1). Hence, in collisional settings, deeply subducted continental crust carried a large amount of volatiles to the mantle and the lower crust. Due to the absence of post collisional arc volcanism, most of these volatiles remained trapped in the root of mountain belts. This long-term storage of the carbon in the orogen roots prevents ultimately the closure of the carbon cycle.

How to cite: Borghini, A., Nicoli, G., Ferrero, S., O'Brien, P. J., Laurent, O., Remusat, L., Borghini, G., and Milani, S.: Deep subduction of continental crust contributes to mantle metasomatism and deep carbon cycle, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5782, https://doi.org/10.5194/egusphere-egu22-5782, 2022.

EGU22-6180 | Presentations | GMPV2.2

New zircon U-Pb geochronology from the Ketilidian orogen of South Greenland 

Rikke Vestergaard, Tod Waight, Andreas Petersson, Heejin Jeon, and Martin Whitehouse

The Paleoproterozoic Ketilidian orogen in South Greenland (1.85-1.73 Ga) is interpreted to be the result of northwards-dipping oblique subduction of an oceanic plate beneath the Archaean continental crust of the North Atlantic Craton. The Ketilidian orogen was part of the subducted-related magmatism and accretionary orogenic belt named the Great Paleoproterozoic Accretionary Orogen that existed along an active margin stretching through Laurentia (North America and South Greenland) to Baltica (Northeast Europe), which formed the supercontinent Columbia/Nuna. Thus, the orogeny represents part of an important episode of crustal growth and preservation in Earth’s history. The Central Domain of the orogeny is dominated by the plutonic remnants of a magmatic arc (the Julianehåb Igneous Complex (JIC), ca. 1.85-1.80 Ga), which eventually grew sufficiently large and stable to subsequently uplift and unroof, to produce rocks interpreted to represent erosional fore-arc deposits that are preserved to the south in the Southern Domain. Between ca. 1.80 Ga and 1.76 Ga, the fore-arc was subjected to metamorphism of amphibolite to granulite facies, and was subsequently intruded by post-tectonic granites (including rapakivi variants) of the Ilua Suite (1.75-1.73 Ga). We present new zircon U-Pb SIMS ages for granitic and metasedimentary rocks sampled at a regional scale in a traverse stretching NW to SW through the Central and Southern Domains of the Ketilidian Orogen in South Greenland. Previous studies have distinguished two pulses of magmatism in the JIC, an early event at ca. 1.85-1.83 Ga and a later phase at ca. 1.80-1.78 Ga. Our JIC samples are dominated by the late stage (<1.83 Ga) with most ages concentrated at 1.8 Ga, suggesting that the main volume of crust in the western portion of the arc was generated over a relatively short period. Ages for the Ilua Suite agree well with previous studies. Zircon age distributions in the metasedimentary rocks of the Southern Domain are consist with detritus dominantly sourced from the JIC, however the presence of small populations of older zircons (up to 2.8 Ga) not observed as inherited zircons in the JIC, indicates that older crustal components also eroded into the fore-arc. These U-Pb zircon results are part of an ongoing larger investigation combining O-Hf isotope compositions in zircon, coupled with whole rock geochemical and isotope data. This research will provide the first thorough geochemical and petrogenetic investigation of the timing, across arc variations, and source components involved in the formation and evolution of South Greenland as well as its contribution in one of the worldwide peaks of continental crustal growth.

How to cite: Vestergaard, R., Waight, T., Petersson, A., Jeon, H., and Whitehouse, M.: New zircon U-Pb geochronology from the Ketilidian orogen of South Greenland, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6180, https://doi.org/10.5194/egusphere-egu22-6180, 2022.

EGU22-9318 | Presentations | GMPV2.2

Subducted Carbon in the Earth’s lower mantle: The fate of magnesite 

Lélia Libon, Georg Spiekermann, Melanie Sieber, Johannes Kaa, Serena Dominijanni, Mirko Elbers, Ingrid Blanchard, Christian Albers, Nicole Bierdermann, Wolfgang Morgenroth, Karen Appel, Catherine McCammon, Anja Schreiber, Vladimir Roddatis, Konstantin Glazyrin, Rachel Husband, Louis Hennet, and Max Wilke

Subduction of carbon-bearing phases throughout Earth’s history may be an important mechanism of sourcing carbon to the Earth’s lower mantle. As carbon has very low solubility in mantle silicates, it is primarily present in accessory phases such as carbonates, diamond, or metal carbides. Previous studies indicate that more than half of the carbonate contained in the oceanic crust may survive metamorphism and dehydration in the sub-arc and reach the lower mantle, even though the oxygen fugacity in the deep mantle may not favour their stability [1]. Indeed, the presence of carbonate in ultra-deep diamond inclusions provides evidence for carbonate subduction at least down to the transition zone [2].

The carbonate phases present in the lower mantle depend on their bulk composition, the oxygen fugacity, and on their stability at a given pressure and temperature. Results from high-pressure experiments show that magnesite (MgCO3) can be stable up to deep lower mantle conditions (∼80 GPa and 2500 K) [3]. Accordingly, magnesite may be considered the most probable carbonate phase present in the deep Earth. Experimental studies on magnesite decarbonation in presence of SiO2 at lower mantle conditions suggest that magnesite is stable along a cold subducted slab geotherm [4, 5]. However, our understanding of magnesite’s stability in contact with bridgmanite [(Mg,Fe)SiO3],  the most abundant mineral in the lower mantle, remains incomplete.

Hence, to investigate sub-solidus reactions, melting, decarbonation, and diamond formation in the system MgCO3-(Mg,Fe)SiO3, we conducted a combination of high-pressure experiments using multi-anvil press and laser-heated diamond anvil cells (LH-DAC) at conditions ranging from 25 to 70 GPa and 1300 to 2100 K.

Multi-anvil experiments at 25 GPa and temperatures below the mantle geotherm (1700 K) show the formation of carbonate-silicate melt associated with stishovite crystallization, indicating incongruent melting of bridgmanite to stishovite, in accordance with the recent finding of Litasov and Shatskiy [4]. LH-DAC data from in situ X-ray diffraction show crystallization of bridgmanite and stishovite. Diamond crystallization is detected using Raman spectroscopy. A melt phase could not be detected in situ at high temperatures.

Our results suggest a two-step process that starts with melting at temperatures below the mantle geotherm, followed by crystallization of diamond from the melt produced.  Therefore, we propose that subducted carbonate-bearing silicate rocks will not remain stable in the lower mantle and will instead melt at upper-most lower mantle conditions, fostering diamond formation. Our study also provides additional evidence that diamond production is related to carbonated melt. Consequently, the melting of recycled crust and chemical transfer to the surrounding mantle will hinder the transport of carbon deeper into the lower mantle.

[1] Stagno et al. (2015) Contrib. Mineral. Petrol. 169(2), 16.
[2] Brenker et al. (2007) EPSL 260(1-2), 1-9.
[3] Binck, et al. (2020) Physical Review Materials, 4(5),1-9.
[4] Litasov & Shatskiy (2019) Geochemistry International, 57(9), 1024-1033.
[5] Drewitt, et al. (2019). EPSL, 511, 213-222.

How to cite: Libon, L., Spiekermann, G., Sieber, M., Kaa, J., Dominijanni, S., Elbers, M., Blanchard, I., Albers, C., Bierdermann, N., Morgenroth, W., Appel, K., McCammon, C., Schreiber, A., Roddatis, V., Glazyrin, K., Husband, R., Hennet, L., and Wilke, M.: Subducted Carbon in the Earth’s lower mantle: The fate of magnesite, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9318, https://doi.org/10.5194/egusphere-egu22-9318, 2022.

EGU22-9783 | Presentations | GMPV2.2

Titanium isotopic fractionation of arc derived melts and cumulates 

Julian-Christopher Storck, Nicolas David Greber, Alexandra Müller, Thomas Pettke, and Othmar Müntener

Mechanisms such as crystallization differentiation, subduction erosion, delamination, or relamination that are responsible for the formation and modification of modern crust with an on average andesitic composition are actively debated (Hacker et al. 2015). Isotope fractionation associated with igneous processes is documented for many non-traditional stable isotope systems, making them promising tools to advance our understanding of modern arc crust formation. Titanium isotopes are especially promising, as volcanic and plutonic arc rocks show a trend from light to heavy isotope values with increasing SiOconcentration due to the fractionation of minerals with light Ti isotopes.

We present new Ti isotope data on medium K calc-alkaline to shoshonitic magmatic differentiation suites from the Adamello Batholith (N-Italy), Kos (Agean arc), Torres del Paine (Patagonia) and the Dolomites (N-Italy) in addition to crust-derived mafic cumulates. The Ti isotopic composition of dacites and granites range between δ49TiOL-Ti ≈ 0.3 to 1.1‰, with heavier values for more alkaline granitic melts in agreement with published data (Hoare et al. 2020). Mafic cumulates from related and additional localities are overall isotopically lighter than (their) granitic counterparts ranging between δ49TiOL-Ti ≈ -0.15 and +0.08‰. Cumulates of studied crustal sections enriched in Fe-Ti oxides (>5 modal %) show δ49Ti values lighter than the depleted MORB mantle (DMM, δ49TiOL-Ti ≈ +0.002 ± 0.007‰) and counterbalance the isotopically heavy composition of felsic rocks. The occurrence of cumulates heavier than DMM may have several reasons: (i) “heavy” cumulates may represent late-stage relicts of progressive magma differentiation containing trapped intercumulus melt or (ii) they experienced overprinting, e.g., by mafic rejuvenation.

We therefore find that the Ti isotopic composition of cumulate rocks and likely also the magmatic lower continental crust is influenced by their mineralogical composition. How this impacts the Ti isotopic composition of the bulk continental crust in the light of delamination and relamination processes needs further work.

 

REFERENCES

Hacker, B. R., Kelemen, P. B., & Behn, M. D. (2015). Continental lower crust. Annual Review of Earth and Planetary Sciences43, 167-205.

Hoare, L., Klaver, M., Saji, N. S., Gillies, J., Parkinson, I. J., Lissenberg, C. J., & Millet, M. A. (2020). Melt chemistry and redox conditions control titanium isotope fractionation during magmatic differentiation. Geochimica et Cosmochimica Acta282, 38-54.

How to cite: Storck, J.-C., Greber, N. D., Müller, A., Pettke, T., and Müntener, O.: Titanium isotopic fractionation of arc derived melts and cumulates, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9783, https://doi.org/10.5194/egusphere-egu22-9783, 2022.

EGU22-9996 | Presentations | GMPV2.2

Metaserpentinite carbonation and decarbonation reactions during subduction metamorphism and subsequent tectonic exhumation 

Vicente López Sánchez-Vizcaíno, José Alberto Padrón-Navarta, Casto Laborda-López, María Teresa Gómez-Pugnaire, Manuel Dominik Menzel, and Carlos Jesús Garrido

In subduction zones, serpentinite-hosted ophicarbonates and their main dehydration and decarbonation reactions linked to prograde metamorphism are relatively well understood. On the contrary, the geological conditions and processes leading to the carbonation of subduction-zone metaserpentinites by fluid–rock interactions remain poorly constrained. At different arc depths, the reaction of decarbonation fluids derived from marble and carbonate‐bearing sediment with slab and mantle wedge serpentinites, as well as tectonic mixing and deformation along subduction zone interface, may produce magnesite-bearing rocks with a bulk composition similar to that of ophicarbonates. Subsequently, these hybrid metasomatic lithologies will undergo decarbonation reactions at prograde or retrograde conditions which may influence the cycling of C and other volatiles from the slab to the mantle wedge and the global estimates of C fluxes at convergent margins. This can be evaluated through the study of exposed paleo-subduction metamorphic suites.

Here we investigate the tectonic, textural and mineralogical evolution of marble layers and magnesite-rich lenses hosted in chlorite harzburgite (Chl-harzburgite) in the Cerro Blanco ultramafic massif (Nevado-Filábride Complex, Betic Cordillera, S. Spain), which records high-pressure alpine subduction metamorphism as evidenced by the transition from antigorite serpentinite (top of the body) to Chl-harzburgite (bottom) due to high-pressure deserpentinization. Chl-harzburgite is separated from a gneiss and mica schist crustal sequence by a footwall of strongly heterogenous mylonite (around 20 m thick) encompassing: transposed, foliated and brecciated marble layers, foliated Chl-harzburgite lenses (in some cases completely transformed to retrograde serpentinite), centimetre to several decimetre thick boudins of idiomorphic coarse to very coarse magnesite aggregates, associated to chlorite and magnetite and enveloped by the mylonitic foliation, and, finally, abundant almost monomineralic amphibole aggregates. We interpret this mylonite zone as a detachment leading to the exhumation of the Cerro Blanco massif after reaching peak subduction metamorphic conditions that formed the Chl-harzburgite assemblage.

Combined field, EDS-SEM, and EPMA data obtained from a detailed cross-section sampling of this mylonite zone reveal that, locally, metamorphic equilibrium was reached between Chl-harzburgite and the transformation products of the magnesite boudins during the mylonite foliation development. Thermodynamic modelling of these assemblages allows inferring the relationship between deformation and metamorphic conditions during exhumation, including possible decarbonation reactions.

We thank the Universidad de Jaen 1263042 FEDER-UJA grant, funded by the European Social Fund and the European Regional Development Fund.

How to cite: López Sánchez-Vizcaíno, V., Padrón-Navarta, J. A., Laborda-López, C., Gómez-Pugnaire, M. T., Menzel, M. D., and Garrido, C. J.: Metaserpentinite carbonation and decarbonation reactions during subduction metamorphism and subsequent tectonic exhumation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9996, https://doi.org/10.5194/egusphere-egu22-9996, 2022.

EGU22-11108 | Presentations | GMPV2.2

Eclogite-hosted metamorphic veins in the Münchberg Massif (Germany) 

Johannes Pohlner, Afifé El Korh, Reiner Klemd, Thomas Pettke, and Bernard Grobéty

Eclogite-hosted metamorphic veins mark former fluid migration pathways during a subduction-exhumation cycle, and allow to trace fluid-mediated element transfer across lithologies, to ultimately metasomatize the mantle wedge. Fluids can be generated by dehydration reactions at different P-T conditions in various lithologies, all influencing how different chemical constituents are dissolved and re-precipitated. Here we present a study of eclogite-hosted quartz-rich metamorphic veins in the Variscan Münchberg Massif. The eclogites probably represent subducted continental crust that was variably hydrated and subjected to amphibolite facies conditions before reaching eclogite facies peak conditions of ca. 3 GPa and 700°C.

Isolated, mm-sized quartz pockets with euhedral high-pressure minerals are common in the Münchberg eclogites, but continuous veins that may have allowed focused fluid flow beyond specimen scale are rare. Nevertheless, where such veins occur, they can contain high-pressure minerals such as garnet and omphacite, but also rutile, zircon, and allanite, indicating high field strength-element (HFSE) mobility at least on the specimen scale. Garnet- and omphacite-bearing veins are typically 1-10 mm thick with average crystal sizes of 1 mm and less. A different vein type is mostly similar in thickness, but consists of quartz + phenocrysts (sometimes >1 cm long) of kyanite, phengite, and/or rutile. Symplectite-rich selvages surrounded by mostly fresh host eclogite are common.

Oxygen isotope thermometry of quartz-garnet, quartz-phengite, and quartz-kyanite pairs yield temperatures around 700°C, interpreted to represent vein crystallization. δ18O values of vein quartz (+6.1 to +10.5‰) from all vein types are identical to δ18O values of host rock quartz (the latter were predicted from mass balance modelling at 700°C based on host rock δ18O values from +4.0 to +7.9‰). While it is evident that the garnet- and omphacite-bearing veins were formed under eclogite facies conditions, pressures are uncertain for the quartz-rutile, quartz-phengite, and quartz-kyanite veins. Still, vein formation at relatively high pressures seems probable, as solubilities of chemical components tend to increase with pressure, facilitating HFSE mobilization from the source rock. We propose that internal fluids were generated by dehydration of phengite and/or zoisite and/or amphibole from the eclogites. Isolated quartz-rich pockets formed in eclogites that may have released only small amounts of fluid, whereas continuous metamorphic veins were formed in eclogites that produced more fluid, probably reflecting a more intense hydration before eclogite facies metamorphism. The internal origin of the fluids supported by oxygen isotope evidence argues against fluid transport over large distances. The fluids may have largely remained in place before being consumed for symplectite formation upon retrogression to amphibolite facies conditions.

How to cite: Pohlner, J., El Korh, A., Klemd, R., Pettke, T., and Grobéty, B.: Eclogite-hosted metamorphic veins in the Münchberg Massif (Germany), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11108, https://doi.org/10.5194/egusphere-egu22-11108, 2022.

EGU22-11350 | Presentations | GMPV2.2

Hydrocarbon-bearing fluid migration produces brecciation at high pressure condition in subduction 

Francesco Giuntoli, Alberto Vitale Brovarone, and Luca Menegon

It has been recently proposed that high-pressure genesis of abiotic hydrocarbon can lead to strain localization in subducted carbonate rocks1. However, the mechanical effects of the migration of these hydrocarbon-bearing fluids on the infiltrated rocks still need to be constrained.

In this study, we investigate omphacitite (i.e. omphacite-rich rock) adjacent to an high-pressure methane source from the Western Italian Alps (Italy) using a multiscale and analytical approach including petrographic, microstructural, X-ray compositional mapping and electron backscatter diffraction analyses (EBSD). In the field, omphacitite bands are 1-5 metres thick and tens of metres long and are adjacent to carbonate rocks affected by high-pressure reduction and methane production.

Hand specimens and thin sections display a brecciated structure, with omphacitite fragments ranging in size from a few microns to several centimetres, surrounded by a matrix of jadeite, omphacite, grossular, titanite, and graphite. X-ray compositional maps and cathodoluminescence images highlight oscillatory zoning and skeletal (jackstraw) textures in jadeite, omphacite and garnet in the matrix, suggesting a fast matrix precipitation under plausible disequilibrium conditions. CH4 and H2 are found in fluid inclusions in the jadeite grains. This feature suggests a potential link between the genesis of CH4 in the adjacent carbonate rocks and the brecciation event.

EBSD analysis was performed on omphacitite clasts close to their borders, where omphacite grain size varies between a few microns and a maximum of 100 microns. Those omphacite grains display no crystallographic preferred orientation, abundant low angle boundaries and low (< 5°) internal lattice distortion. We interpret these textures as formed by pervasive and diffuse micro-fracturing related to the brecciation occurring at high pore fluid pressure, reaching sub-lithostatic values. This study suggests that at high-pressure conditions in subduction zones, the genesis and migration of hydrocarbon-bearing fluids can trigger fracturing in adjacent lithotypes.

1Giuntoli, F., Vitale Brovarone, A. & Menegon, L. Feedback between high-pressure genesis of abiotic methane and strain localization in subducted carbonate rocks. Sci. Rep. 10, 9848 (2020).

This work is part of project that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 864045).

 

How to cite: Giuntoli, F., Vitale Brovarone, A., and Menegon, L.: Hydrocarbon-bearing fluid migration produces brecciation at high pressure condition in subduction, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11350, https://doi.org/10.5194/egusphere-egu22-11350, 2022.

EGU22-11697 | Presentations | GMPV2.2

Sulfur in the slab: A sulfur-isotopes and thermodynamic-modeling perspective from exhumed terranes 

Jesse Walters, Alicia Cruz-Uribe, and Horst Marschall

Sulfur is a key element in the subduction zone-volcanic arc system; however, the mechanism(s) that recycle sulfur from the slab into the overlying volcanic arc are debated. Here we summarize recent advances in quantifying this component of the deep sulfur cycle. First, primary metamorphic or inherited sulfides in oceanic-type eclogites are only rarely observed as inclusions and are typically absent from the rock matrix. Additionally, sulfides are relatively common in rocks metasomatized at the slab-mantle interface by slab-derived fluids during exhumation. Combined, these two observations suggest that sulfur loss from subducted mafic crust is relatively efficient. Thermodynamic modeling in Perple_X using the Holland and Powell (2011) database combined with the Deep Earth Water model suggests that the efficiency and speciation of sulfur loss varies depending on the degree of seafloor alteration prior to subduction and the geothermal gradient of the slab. In relatively cold subduction zones, such as Honshu, slab-fluids derived from subducted mafic crust are predicted to exhibit elevated concentrations of HSO4-, SO42-, HSO3-, and CaSO4(aq), whereas hot subduction zones, such as Cascadia, are predicted to produce slab fluids enriched in HS- and H2S at lower pressures. The oxidation of sulfur expelled from subducted pyrite is balanced by the reduction of Fe3+ to Fe2+, consistent with the low Fe3+/SFe of exhumed eclogites relative to blueschists and altered oceanic crust. Where oxidized S-bearing fluids are produced, they are anticipated to interact with more reduced rocks at the slab-mantle interface and within the mantle wedge, resulting in sulfide precipitation and significant isotopic fractionation. The δ34S values of slab fluids are estimated to fall between -11 and +8 ‰. Rayleigh fractionation during progressive fluid-rock interaction results in fractionations of tens of per mil as oxidized species are depleted and sulfides are precipitated, resulting in δ34S values of sulfides that easily span the -21.7 to +13.9 ‰ range observed in metasomatic sulfides in exhumed high-pressure rocks. However, in subduction zones where reduced species prevail, the S isotopic signature of slab fluids is expected to reflect their source and will exhibit a narrower range in δ34S values. As a result, the δ34S values measured in arc magmas may not always be a reliable indicator of the contribution of different components of the slab, such as sediments vs. AOC. Additionally, the impact of S recycling on the oxygen fugacity of arc magmas is expected to vary both spatially and temporally throughout Earth history.

How to cite: Walters, J., Cruz-Uribe, A., and Marschall, H.: Sulfur in the slab: A sulfur-isotopes and thermodynamic-modeling perspective from exhumed terranes, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11697, https://doi.org/10.5194/egusphere-egu22-11697, 2022.

High-pressure COH fluids have a fundamental role in a variety of geological processes. Their composition in terms of volatile species can control the solidus temperature, carbonation/decarbonation reactions, and influences the amount of solutes generated during fluid-rock interaction at depth. Over the last decades, several systems have been experimentally investigated to unravel the effect of COH fluids at upper mantle conditions. However, fluid composition is rarely tackled as a quantitative issue, and rather infrequently fluids are analyzed in the same way as the associated solid phases in the experimental assemblage. A comprehensive characterization of carbon-bearing aqueous fluids in terms of composition is hampered by experimental difficulties in synthetizing and analyzing high-pressure fluids, without altering their composition upon quench.

Recently, improved ex situ techniques have been proposed for the analyses of experimental COH fluids, leading to significant advancement in synthetic fluids characterization. The development of customized techniques in order to investigate these fluids, in terms of volatile speciation and dissolved solute load, allowed to elucidate some of the processes involving carbon at high-pressure conditions and to assess its influence in the mantle wedge.

Some of the recently developed techniques employed for ex situ quantitative analyses of carbon-saturated COH fluids will be presented, such as the capsule piercing QMS technique (Tiraboschi et al., 2016) and the cryogenic LA-ICP-MS technique (Kessel et al., 2004; Tiraboschi et al., 2018). The capsule piercing QMS technique allow to measure the main uncharged volatile species in the COH system (i.e., H2O, CO2, CH4, H2, O2, CO), while the cryogenic LA-ICP-MS technique permits to measure the amount solutes generated by mineral dissolution in COH fluids, in terms of mol/kg.

The results obtained by employing these analytical strategies indicate that a quantitative approach to COH fluid analyses is a fundamental step to understand the effect of carbon-bearing fluids at upper mantle conditions and to ultimately unravel the deep cycling of carbon.

 

Kessel, R., Ulmer, P., Pettke, T., Schmidt, M. W. and Thompson, A. B. (2004) A novel approach to determine high-pressure high-temperature fluid and melt compositions using diamond-trap experiments, Am. Mineral., 89(7), 1078–1086.

Tiraboschi, C., Tumiati, S., Recchia, S., Miozzi, F. and Poli, S. (2016) Quantitative analysis of COH fluids synthesized at HP–HT conditions: an optimized methodology to measure volatiles in experimental capsules, Geofluids, 16(5), 841–855.

Tiraboschi, C., Tumiati, S., Sverjensky, D., Pettke, T., Ulmer, P. and Poli, S. (2018) Experimental determination of magnesia and silica solubilities in graphite-saturated and redox-buffered high-pressure COH fluids in equilibrium with forsterite + enstatite and magnesite + enstatite, Contrib. to Mineral. Petrol., 173(1), 1–17.

How to cite: Tiraboschi, C.: Carbon-saturated COH fluids in the upper mantle: what ex situ experiments tell us about carbon at high-pressure and high-temperature conditions, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11725, https://doi.org/10.5194/egusphere-egu22-11725, 2022.

EGU22-11784 | Presentations | GMPV2.2

Elemental and lithium isotopic signature of fluids in metapelites from ancient subduction zones 

Kristijan Rajic, Hugues Raimbourg, Antonin Richard, Catherine Lerouge, Romain Millot, and Clement Herviou

The objective of this work is to study the fluid rock-interactions at low metamorphic grade in subduction zones. We focused in particular on the evolution of metapelites from the base of the seismogenic zone (⁓250℃) to the down-dip transition to the aseismic domain (⁓330℃). In the three examples examined here (Kodiak Complex in Alaska, Shimanto Belt in Japan, the French Alps), we followed the variations in mineralogy, trace element budget, as well as fluid inclusion elemental and isotopic (δ7Li) composition.

In the Kodiak and Shimanto belt, the mineralogy remains constant with temperature increase, with the dominance of phyllosilicates (white mica and chlorite), quartz and plagioclase. In more deformed zones of higher-T samples (330 ± 16℃ and 3 ± 0.4 kbar for Kodiak and 320 ± 14℃ and 3.9 ± 0.4 kbar for Shimanto belt) quartz and plagioclase are completely dissolved, while large white mica and chlorite grains crystallized. Also, the chlorite/white mica ratio is higher with temperature increase.

White mica is a main host for B, LILE and to smaller extent for Li. Plagioclase hosts the same elements but in lower concentrations. Chlorite is a main host for Li ± B and quartz hosts Li to smaller extent than chlorite and mica. Bulk rock analysis revealed partial loss in B, Rb, Sr and Cs with temperature increase, in contrast to the retention of Li and Ba. Mass balance based on trace element concentrations of individual phases and their proportion point to a reorganization of elements released during quartz and plagioclase dissolvement and phyllosilicate recrystallization: Rb, Cs and Ba released from plagioclase are incorporated in higher grade mica, Li released from mica and quartz is incorporated into chlorite. In the lack of newly formed phase as a host, B and Sr are probably released into a fluid.

The salinity at 250°C is around 2wt.% NaCl eq., i.e. lower than original pore-filling seawater. The freshening can be accounted for by smectite dehydration and transformation into illite. From 250 to 330°C, a salinity increase is observed, up to 3.5wt.%, possibly related to the chlorite crystallization requiring higher amount of water. The fluid is highly enriched in fluid-mobile elements in comparison with seawater. δ7Li values of fluid inclusion leachates are distinct for each locality: +8.1 to +17.07‰, in the Kodiak, +2.53 to +10.39‰ in the Shimanto belt and -1.54 to +9.54 ‰ in the western Alps. δ7Li of fluids is independent of other parameters, such as temperature or Li concentration.

Mineral reactions and fluid-mobile elements concentration in phases point to overall a local redistribution of fluid-mobile elements between phases, except for minor release of B and Sr. Lithium isotopes, which show that δ7Li of fluid is possibly buffered by host rock, confirm the fact that the rocks behaved to a large extent as a closed system during burial and subsequent exhumation.

How to cite: Rajic, K., Raimbourg, H., Richard, A., Lerouge, C., Millot, R., and Herviou, C.: Elemental and lithium isotopic signature of fluids in metapelites from ancient subduction zones, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11784, https://doi.org/10.5194/egusphere-egu22-11784, 2022.

EGU22-11854 | Presentations | GMPV2.2

Iron mobility in slab-derived hydrous silicate melts at sub-arc conditions 

Carla Tiraboschi, Rohrbach Arno, Klemme Stephan, Berndt Jasper, and Sanchez-Valle Carmen

Aqueous and saline fluids have a fundamental role in subduction zones and represent a major vector of mass transfer from the slab to the mantle wedge. In this setting, assessing the mobility of redox sensitive elements, such as iron, in aqueous fluids and melts is essential to provide insights on the oxygen fugacity conditions of slab-derived fluids and the oxidation state of arc magmas.

We experimentally investigate the solubility of magnetite and hematite in water-saturated haplogranitic melts, which represent the felsic melt produced by subducted eclogites. Experiments were conducted at 1–2 GPa and temperature ranging from 700 to 950 °C employing an endloaded piston cylinder apparatus. Single gold capsules were loaded with natural hematite, magnetite and synthetic haplogranite glass. Two sets of experiments were conducted: a first set with pure H2O and a second set with a 1.5 m H2O-NaCl solution. After quench, the presence of H2O in the haplogranite glass was verified by Raman spectroscopy, while iron and major element contents were determined by electron microprobe analysis.

Results show that a significant amount of FeO is released from magnetite and hematite equilibrated with hydrous melts, up to 1.96 ± 0.04 wt% at 1 GPa and 950 °C. In the presence of NaCl, we observed an increase in the amount of iron in the haplogranite glass, e.g. from 1.04 ± 0.12 wt% to 1.50 ± 0.31 wt% of FeOtot at 800 °C. These concentrations are substantially higher than the iron solubility in aqueous and saline fluids predicted by thermodynamic modelling (DEW model, Sverjensky et al., 2014), likely due to formation of Fe- and Si-bearing complex in the haplogranite-bearing fluid at run conditions. Our results suggest that hydrous melts can effectively mobilize iron from Fe-oxides even at relatively low-pressure conditions. Slab-derived hydrous melts can thus represent a valid agent for mobilizing iron from the subducting slab to the mantle wedge, and can strongly influence the geochemical cycles of Fe and the redox conditions of subduction zone fluids.

 

Sverjensky, D. A., Harrison, B. and Azzolini, D. (2014) Water in the deep Earth: The dielectric constant and the solubilities of quartz and corundum to 60kb and 1200°C, Geochim. Cosmochim. Acta, 129, 125–145

How to cite: Tiraboschi, C., Arno, R., Stephan, K., Jasper, B., and Carmen, S.-V.: Iron mobility in slab-derived hydrous silicate melts at sub-arc conditions, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11854, https://doi.org/10.5194/egusphere-egu22-11854, 2022.

EGU22-13148 | Presentations | GMPV2.2

Rupture of serpentinized mantle wedge by self-promoting carbonation: insights from Sanbagawa metamorphic belt 

Atsushi Okamoto, Ryosuke Oyanagi, Kazuki Yoshida, Masaoki Uno, Hiroyuki Shimizu, and Madhusoodhan Satish-Kumar

The slab-mantle interface is one of the most active sites of fluid-rock interaction, which affects the mass transfer and mechanical properties along subduction zone megathrust. However, the effects of CO2 fluids and carbonation/decarbonation reactions on seismic activity are still poorly understood. In addition, although mantle peridotite is known as a large sink of CO2, the nature of carbonation at mantle wedge condition remains unconstrained. In this study, we show the characteristics of carbonation of serpentinite body from the Sanbagawa metamorphic belt, Kanto Mountain, Japan [1]. The Higuchi serpentinite body (8 x15 m) is mainly composed of antigorite, and has not relics of olivine and pyroxenes. Massive antigorite parts are segmented by talc + carbonates (magnesite, dolomite and calcite) veins. At the boundary between serpentinite body and pelitic schists, actinolite-chlorite schist and chlorite rocks were formed. The location, depleted composition of Cr-rich spinel in the Higuchi body and temperature of ~400 ˚C of carbonation suggest that this body was originated from the leading edge of the mantle wedge. The carbon and oxygen stable isotope compositions of carbonates within the Higuchi body reveal that carbonic fluid was derived from carboniferous materials in sediments. Carbonation of serpentinite body is characterized by gains of CO2, silica and Ca, and losses of H2O and Mg. The thermodynamic calculations on mineral-fluid equilibria reveal that (1) the carbonic fluid produced under the oxidizing conditions (QFM +0.3) explains the systematic mineralogical variations within the Higuchi body, and that (2) carbonation of serpentinite proceeded with solid volume contraction, high fluid pressure and high mobility of Mg, which is largely consistent with the experimental carbonation at the mantle wedge condition [2]. This is consistent with the tree-like patterns of carbonate veins within the Higuchi body. Brittle failure to form carbonate veins was followed by a viscos flow of carbonate and talc. We infer that episodic infiltration of oxidizing fluids causes self-promoting carbonation of mantle wedge with solid volume change, which could affect the mechanical properties of slab-mantle interface.

[1] Okamoto, A, et al., 2021. Com Env Earth, 58, 4831-4839. doi.org/10.1038/s43247-021-00224-5

[2] Sieber et al. 2020. J. Petrol., 1-24. doi: 10.1093/petrology/egaa035

How to cite: Okamoto, A., Oyanagi, R., Yoshida, K., Uno, M., Shimizu, H., and Satish-Kumar, M.: Rupture of serpentinized mantle wedge by self-promoting carbonation: insights from Sanbagawa metamorphic belt, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13148, https://doi.org/10.5194/egusphere-egu22-13148, 2022.

EGU22-13287 | Presentations | GMPV2.2

Reconciling extensive mantle hydration at subduction trenches and limited deep H2O fluxes 

Diane Arcay, Nestor Cerpa, and José Alberto Padrón-Navarta

The long-term global sea level depends on the balance of H2O exchanges between the Earth's mantle and the surface through both volcanism (mantle degassing) and subduction of hydrous minerals (mantle regassing). The estimates of H2O fluxes by the current thermopetrological subduction models predict that regassing exceeds degassing by 60%, which may lead to a sea-level drop of at least a hundred meters in the last 540 Ma [Parai & Mukhopadhyay, 2012, Earth Planet. Sc. Lett., 317, 396-406. https://doi.org/10.1016/j.epsl.2011.11.024. These models further imply a moderate ( Tg/Myr) global input of H2O at the subduction trenches. In contrast, geological constraints suggest a near-steady state of long-term sea level while geophysical observations advocate for a larger global H2O input, especially given the large amounts of hydrated lithospheric mantle that are inferred at present-day subduction trenches. To address this paradox, we revise the subduction-H2O flux calculations using recently published experimental data on natural hydrated peridotites at high-pressure conditions, which suggest that all hydrated phases destabilize below 800˚C for pressures higher than 8 GPa [Maurice et al., 2018, Contrib. Mineral. Petrol, 173(10), 86. https://doi.org/10.1007/s00410-018-1507-9 ]. Our reassessed thermopetrological models show that a prominent global H2O input ( Tg/Myr), mainly conveyed by the layer of subducted serpentinized mantle, is compatible with a limited global H2O retention in subducted slabs at mid-upper mantle depths ( Tg/Myr), including in models that consider some worldwide variability of the input serpentine. We also show that the global H2O retention at mid-upper mantle depths is only driven by the hydrated mantle of coldest subducting plates. Overall, our models show that the present-day global water retention in subducting plates beyond mid-upper mantle depths barely exceeds the estimations of mantle degassing, and thus quantitatively support the stable-sea level scenario over geological times.

How to cite: Arcay, D., Cerpa, N., and Padrón-Navarta, J. A.: Reconciling extensive mantle hydration at subduction trenches and limited deep H2O fluxes, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13287, https://doi.org/10.5194/egusphere-egu22-13287, 2022.

EGU22-13297 | Presentations | GMPV2.2

Experimental constraints on the nature of multiphase solid inclusions and their bearing on mantle wedge metasomatism, Bohemian Massif 

Antonio Acosta Vigil, Jana Kotková, Renata Copjaková, Richard Wirth, and Jörg Hermann

Fluids are the primary agents for mass transfer in subduction zones. These fluids can be captured as primary inclusions within minerals crystallizing during subduction processes. Some of these inclusions, referred to as multiphase solid inclusions (MSI), are characterized by the high proportion and variety of minerals, hence by a high concentration of solute in the trapped fluid. Kotková et al. (2021) have described primary MSI in garnets of subduction-related ultra-high pressure (UHP) peridotites (P-T of 1030-1150 ºC/3.6-4.8 GPa) of the Bohemian Massif. MSI range in size between ≈5-40 µm and are mostly composed of hornblende, the barian mica kinoshitalite, dolomite and magnesite. MSI have been interpreted as trapped residual liquids produced after partial UHP crystallization of carbonate-silicate melts that now form garnet pyroxenite veins in the peridotites. Experimental re-melting of MSI is the best procedure to investigate the precise nature of trapped fluids. We have conducted re-melting experiments of MSI present in garnets of a lherzolite, taking the inclusions to P-T around their entrapment conditions at or close to host rock peak P-T, 4-4.5 GPa and 1000-1225 ºC. The inclusions (re-)crystallized into a garnet fringe at the boundary between inclusions and host garnet, barian mica and carbonatite melt towards the center of the inclusion, and a large irregular and empty space in between the garnet fringe and the central silicate-carbonate component. Microstructures and mass balance indicate that the empty space was occupied by a Na-K-Cl-F-rich saline aqueous fluid (brine). Hence experiments did not produce a single melt at any experimental conditions, but systematically show the stability and coexistence of barian mica + carbonatite melt + brine at the entrapment conditions, and a garnet fringe indicating reaction between trapped fluids and host garnet. This suggest that growing garnet trapped a carbonatite melt and a saline aqueous fluid coexisting in the matrix, together with solid crystals of barian mica likely produced by metasomatism of the percolating fluids through the host peridotite. It is intriguing, however, that neither single mica crystals nor separate former carbonate melt and brine have been found included in garnets. Mass balance shows that carbonate melt is the main host for incompatible elements such as Ba. This presentation will discuss the bearings of the experimental results on the nature and origin of these MSI, potential links to diamond formation and their implication on mass transfer processes in subduction zones.

Kotkova et al. (2021) Lithos 398-399, 106309

How to cite: Acosta Vigil, A., Kotková, J., Copjaková, R., Wirth, R., and Hermann, J.: Experimental constraints on the nature of multiphase solid inclusions and their bearing on mantle wedge metasomatism, Bohemian Massif, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13297, https://doi.org/10.5194/egusphere-egu22-13297, 2022.

GD6 – Rheology and Multiscale Mineralogy

EGU22-575 | Presentations | GD6.1

Strain relaxation around stressed quartz inclusions in garnet 

Hugo van Schrojenstein Lantman, David Wallis, Mattia Bonazzi, Jay Thomas, Maartje Hamers, Martyn Drury, and Matteo Alvaro

The measurement of residual stresses in exhumed rocks yields valuable information about metamorphic temperature and pressure, deformation and rheology, and stress state. However, the state of elastic strain and stress at the surface of a sample does not necessarily correspond to the state well below the surface. When a sample under elastic strain is cut, polished, or otherwise prepared for analysis, a part of the constraining rock is removed, allowing for the partial relaxation of the elastic strain. To be able to work with residual elastic strain and stress with analytical methods that probe the upper few microns of a sample, the process of strain relaxation must be well understood.

For this work we used high-angular resolution EBSD to analyse stressed quartz inclusions in natural garnet from a range of settings, and in several samples grown in piston-cylinder experiments that were previously analysed with Raman spectroscopy for inclusion pressures. The experimental samples are not expected to have undergone plastic deformation in the garnet during cooling, as the majority of the pressure within the inclusion built up during decompression at room temperature. Additionally, the inclusion pressures in buried inclusions matches what is expected for the experimental conditions, suggesting no plastic yielding. Thus, in these samples we can isolate elastic strain from potential plastic deformation. One of the experimental samples was analysed with TEM to test this expectation.

Forescatter images reveal topographical effects resembling quartz and adjacent garnet “extruding” out of the sample. Furthermore, rotations of the quartz lattice and the garnet lattice immediately around the quartz inclusion are observed. The rotation axis of the misorientation generally lies in the plane of the sample surface. TEM analysis revealed a number of dislocations in experimental garnet where these were not expected. However, a significant degree of bending of a wedge of garnet between the original sample surface and a quartz inclusion is also observed.

The dislocations observed with TEM do not fit with the model of the experiments. Also, the formation of dislocations before sample preparation does not explain the dependence of the rotation axis on the surface orientation. A likely scenario for the deformation measured with EBSD is that the partial relaxation of elastic strains in stressed quartz inclusions in garnet as result of sample preparation induced local distortion of the inclusion and host. Additionally, the persistence of topographical features related to this relaxation despite several steps of polishing suggests that relaxation is not instantaneous but occurs over time.

How to cite: van Schrojenstein Lantman, H., Wallis, D., Bonazzi, M., Thomas, J., Hamers, M., Drury, M., and Alvaro, M.: Strain relaxation around stressed quartz inclusions in garnet, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-575, https://doi.org/10.5194/egusphere-egu22-575, 2022.

EGU22-1247 | Presentations | GD6.1

Fast resetting of zircon in garnet inclusion pressures: implications for elastic geothermobarometry. 

Nicola Campomenosi, Boriana Mihailova, Ross John Angel, Marco Scambelluri, and Matteo Alvaro

The contrast in the thermoelastic properties between one inclusion and its surrounding host is commonly exploited to back-calculate the pressure (P) and temperature (T) conditions of inclusion entrapment. This is elastic thermobarometry and it is based on the elastic properties of minerals rather than chemical equilibrium. The effect of inclusion confinement is the inclusion residual pressure (P-inc), which can be determined via Raman spectroscopy. For a given host-inclusion system, a specific P-inc corresponds a P-T line along which the confinement effects between the two crystals disappear: the isomeke. By definition, this line potentially represents the P-T conditions of inclusion entrapment. Away from the isomeke, the inclusion exhibits over- or under-pressure with respect to the external pressure. The position and slope of the isomeke can be calculated using the equations of state of both the host and the inclusion [1].

In this contribution, we show how zircon-in-garnet isomekes can be partially investigated via in-situ Raman spectroscopy at high T and ambient P by comparing the evolution of the Raman peak position of the inclusion with respect to a free zircon crystal at the same temperature. Several zircon inclusions in pyrope-rich garnets from the Dora-Maira whiteschists (Western Alps) were heated up and brought from the over- to the under-pressure domain across their corresponding isomeke. At temperatures above the isomeke, we found that zircon inclusions in garnet can be reset on the timescale of laboratory experiments: after cooling down the P-inc was different from the original. We interpret this reset as the result of viscous relaxation at the host-inclusion boundary [2] and annealing of submicron dislocations of the garnet host at high temperature. Importantly, for similar heating rate and T range, viscous relaxation occurs more easily when the inclusions are in the under-pressure domain. This suggest that original confinement effects of zircon in a garnet host whose exhumation path mostly occurs within the inclusion under-pressure domain can be easily reset to record P-T conditions on the retrograde path, while those from a garnet host whose exhumation path mostly occurs within the inclusion over-pressure domain can be better preserved. Therefore, since the isomekes of zircon with garnet are steep in P-T, this system may be more reliable for high T and low P terranes for which the exhumation path passes directly or quickly into the over-pressure domain [3]. On the other hand, for UHP domains such as Dora-Maira resetting occurs [4] due to the exhumation path being steep and thus in the under-pressure domain until low pressures.   

[1] Angel et al. 2015 Journal of Metamorphic Geology33(8), 801-813. [2] Zhong et al. 2020 Solid Earth11(1), 223-240.  [3] Gilio et al. 2021 Journal of Metamorphic Geology 10.1111/jmg.12625 [4] Campomenosi et al. 2021 Contributions to Mineralogy and Petrology176(5), 1-17  

This work was supported by the Alexander von Humboldt foundation and the ERC-StG TRUE-DEPTHS grant (number 714936) to M. Alvaro

How to cite: Campomenosi, N., Mihailova, B., Angel, R. J., Scambelluri, M., and Alvaro, M.: Fast resetting of zircon in garnet inclusion pressures: implications for elastic geothermobarometry., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1247, https://doi.org/10.5194/egusphere-egu22-1247, 2022.

EGU22-2449 | Presentations | GD6.1

Hybridization of magmas by break down of partially molten granitic rock and its assimilation 

Pavlina Hasalová, Karel Schulmann, Anne-Sophie Tabaud, and Jitka Míková

During orogenic processes continental crust experiences significant partial melting. Repeated thermal pulses or fluctuation in fluid content can even cause multiple anatectic events that result in complex intrusion suits. The Vosges Mountains (NE France) reveal two chronologically and geochemically distinct tectono-magmatic events. An early major pulse of Mg‒K magmatism was followed ten millions years later by development of a magma-rich detachment zone and intrusion of Central Vosges Granite forming a felsic MASH zone. This MASH zone is characterized by the production of a large quantity of anatectic melts that interacted with the older Mg‒K granites and surrounding granulites and metasedimentary rocks. We aim to understand how such hybridization processes impact on the crustal rocks rheology, deformation as well as its geochemistry and geochronology. Three different granite varieties were distinguished: (i) the older Mg‒K granite end-member that is coarse-grained with a high proportion of feldspar phenocrysts, zircon U-Pb ages of 340 Ma and specific geochemical signature; (ii) Medium-grained type has a smaller amount of phenocrysts and shows advanced brecciation where fine-grained Pl+Kfs+Qtz form discontinuous corridors to an interconnected network surrounding fractured phenocrysts. Its geochemical signature suggests that this represents a mixing of Mg−K and Central Vosges granites, as confirmed by the presence of both inherited (340 Ma) and younger (330‒310 Ma) zircon domains; (iii) Isotropic medium-grained granite that shows geochemical signature typical for the Central Vosges Granite in which younger zircon domains (310‒320 Ma) dominate over inherited xenocrysts (340 Ma). These three granite varieties represent different stages of magma hybridization by the break up of the older Mg‒K granite by the younger Central Vosges Granite magmas. The interaction between new melt and previously crystallized granitoids results in variety of granite textures, fabrics, chemical compositions, isotopic signatures and deformational behavior. In summary, the resulting signature is result of interplay of melt transfer and interaction in the MASH zone.

How to cite: Hasalová, P., Schulmann, K., Tabaud, A.-S., and Míková, J.: Hybridization of magmas by break down of partially molten granitic rock and its assimilation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2449, https://doi.org/10.5194/egusphere-egu22-2449, 2022.

EGU22-3549 | Presentations | GD6.1

Evolution of P-wave velocities during antigorite dehydration at pressures up to 2.5GPa 

Alexandre Schubnel, Arefeh Moarefvand, Julien Gasc, Damien Deldicque, and Loïc Labrousse

Antigorite dehydration is considered as one of the potential triggering mechanisms of intermediate depth earthquakes in subduction zones. Here, the evolution of p-wave velocities were measured during antigorite dehydration experiments at pressure and temperature conditions representative of the upper mantle (1 to 2.5 GPa) for the first time.

Experiments were realized on a natural antigorite serpentinite from Corsica (Gasc et al. 2011), using a 3rdgeneration Griggs-type apparatus equipped with p-wave velocity ultrasonic monitoring (Moarefvand et al. 2021).Velocities were measured maintaining constant hydrostatic pressure conditions at  1, 1.5, 2 and 2.5 GPa, and slowly heating the sample beyond dehydration temperatures. At each pressure conditions, two experiments were carried out at a maximum temperature of 650°C or 700°C respectively, in order to investigate reaction kinetics and equilibrium overstepping. Experiments were quenched once the dehydration was completed, in order to preserve the microstructure.

In all our experiments, P-wave velocity decreased dramatically at the onset of dehydration.  This important drop in elastic properties is related to the fracturing and porous space generated by water release. At 700°C temperature, observed velocity drops were faster, and more pronounced compared to experiments performed at 650°C, indicating that the dehydration reaction progress was faster and more important. The velocity drop also got smaller with increasing pressure, but remained noticeable, even at 2.5GPa, a pressure at which the reaction volume change is negative. This indicates that even in the absence of fluid overpressures, the reaction is accompanied by an important amount of microcracking/softening. Recovered samples were then analyzed using scanning electron microscopy (SEM) and Electron backscatter diffraction (EBSD). With these microstructural data, the final reaction progress/advancement was estimated and we show that in situ measurements of p-wave velocity represent a good proxy for reaction progress and kinetics.

Our study opens up the door to a vast domain, where mineral reactions kinetics could be monitored in situ outside the synchrotron environment, via a direct access to elastic properties. It also reveals our need to apply state of the art effective medium theory modeling of porous and cracked aggregates when computing elastic properties of hydrating/dehydrating mineral assemblages. Finally, the elastic softening observed upon dehydration, even above 2GPa, tends to confirm the dehydration stress transfer model (Ferrand et al. 2017) for intermediate depth earthquake triggering.

 

references:

- Ferrand, Thomas P., et al. "Dehydration-driven stress transfer triggers intermediate-depth earthquakes." Nature communications 8.1 (2017): 1-11.

- Gasc, Julien, et al. "Simultaneous acoustic emissions monitoring and synchrotron X-ray diffraction at high pressure and temperature: Calibration and application to serpentinite dehydration." Physics of the Earth and Planetary Interiors189.3-4 (2011): 121-133.

- Moarefvand, Arefeh, et al. "A new generation Griggs apparatus with active acoustic monitoring." Tectonophysics816 (2021): 229032.

How to cite: Schubnel, A., Moarefvand, A., Gasc, J., Deldicque, D., and Labrousse, L.: Evolution of P-wave velocities during antigorite dehydration at pressures up to 2.5GPa, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3549, https://doi.org/10.5194/egusphere-egu22-3549, 2022.

EGU22-4325 | Presentations | GD6.1

Pervasive melt migration in hot continental crust – numerical models 

Petra Maierová, Pavlína Hasalová, Karel Schulmann, and Pavla Štípská

The common view of melt transport in the continental crust involves an initial stage of percolation along grain boundaries, melt segregation into leucosomes and dykes, coalescence of small melt conduits into larger ones and quick nearly vertical melt flow leading to formation of plutons. An entirely different style of melt migration was described in the Bohemian Massif, eastern European Variscan belt. There, a sequence of metaigneous migmatites was described where veins are lacking, leucosomes are rare and relics of melt are spread along grain boundaries. Textural, geochemical and compositional variations in these rocks show that they formed due to equilibration with melt coming from an external source, and that pervasive flow along grain boundaries was the dominant mechanism of melt transport.

The question arises, at what conditions this style of melt transport can operate and what consequences the different styles of melt transport have on the crustal-scale tectonics. We address this question by means of a 2D crustal-scale model of two-phase flow using the code ASPECT (aspect.geodynamics.org). The system of pores through which the melt flows is not resolved in our model and it is described only by its permeability. A low permeability describes material with pores along grain boundaries while a high permeability corresponds to a system of leucosomes, dykes or cracks

For different material properties and thermal conditions we obtain different styles of melt migration and characteristics of the modeled crust. The melt can form a diffuse zone in the lower–middle crust, km-scale waves of high melt fraction gathering into sub-vertical channels, or a horizontal zone with high melt fraction in the middle crust. The lower crust is depleted and the middle crust is enriched in incompatible elements, and composition of the middle crust typically shows km-scale variations. The compositional variations are obtained even in the models with low permeability that corresponds to the melt percolation along grain boundaries, in agreement with the characteristics of the Bohemian migmatites.

How to cite: Maierová, P., Hasalová, P., Schulmann, K., and Štípská, P.: Pervasive melt migration in hot continental crust – numerical models, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4325, https://doi.org/10.5194/egusphere-egu22-4325, 2022.

EGU22-4494 | Presentations | GD6.1

Large-strain elastoplastic formulations for host-inclusion systems with applications to elasto-thermobarometry and geodynamic models 

Evangelos Moulas, Konstantin Zingerman, Anatoly Vershinin, Vladimir Levin, and Yuri Podladchikov

Elastic thermobarometry has been at the forefront of research during the last decade. Using state-of-the-art spectroscopic and diffraction methods it has been possible to assess the residual elastic strain of mineral inclusions in an in-situ manner (Mazzucchelli et al., 2021; Zhong et al., 2019). The interpretation of residual stress/strain and its extrapolation to geological conditions requires mechanical models, that are based on continuum mechanics, which provide the range of pressure-temperature (P-T) conditions where host and inclusion are under homogeneous stress. This set of conditions may correspond to the entrapment conditions if the system is purely elastic. In the case of viscous/plastic relaxation of the host-inclusion system, the inferred P-T conditions represent apparent-entrapment conditions that could lie anywhere between the conditions of the true entrapment and the conditions of viscous/plastic relaxation (Moulas et al., 2020; Zhong et al., 2020). Thus, the interpretation and validity of elastic barometry strongly relies on the purely elastic behavior of the host-inclusion system.

The commonly employed elastic solutions assume a linear-elastic behavior and deal only with small-strain approximations. However, large values of residual stresses/strains may indicate that the range of decompression for such host-inclusion systems requires the incorporation of material/geometric non-linearity. In this work, we provide new numerical and analytical solutions for the non-linear, elasto-plastic behavior of host-inclusion systems. Our analytical solutions are based on new published models that describe the Neo-Hookean behavior of materials and reduce to the Murnaghan equation of state when the deformation is purely volumetric (Levin et al., 2021). We find that for the range of residual pressures that is commonly employed in barometric applications (<1GPa) the incorporation of geometric non-linearity does not influence the results significantly. Nevertheless, the incorporation of plasticity and the combined non-linear elastic and plastic behavior may lead to results that render elasto-thermobarometry inapplicable for very large compression/decompression ranges. Our results can be useful for benchmarking: a) models relevant to elasto-thermobarometry and b) geodynamic models that require the treatment of large volumetric deformations during the exhumation from lithospheric/mantle depths.

References

Levin, V.A., Podladchikov, Y.Y., Zingerman, K.M., 2021. An exact solution to the Lame problem for a hollow sphere for new types of nonlinear elastic materials in the case of large deformations. European Journal of Mechanics - A/Solids 90, 104345. https://doi.org/10.1016/j.euromechsol.2021.104345

Mazzucchelli, M.L., Angel, R.J., Alvaro, M., 2021. EntraPT: An online platform for elastic geothermobarometry. American Mineralogist 106, 830–837. https://doi.org/10.2138/am-2021-7693CCBYNCND

Moulas, E., Kostopoulos, D., Podladchikov, Y., Chatzitheodoridis, E., Schenker, F.L., Zingerman, K.M., Pomonis, P., Tajčmanová, L., 2020. Calculating pressure with elastic geobarometry: A comparison of different elastic solutions with application to a calc-silicate gneiss from the Rhodope Metamorphic Province. Lithos 378–379, 105803. https://doi.org/10.1016/j.lithos.2020.105803

Zhong, X., Andersen, N.H., Dabrowski, M., Jamtveit, B., 2019. Zircon and quartz inclusions in garnet used for complementary Raman thermobarometry: application to the Holsnøy eclogite, Bergen Arcs, Western Norway. Contributions to Mineralogy and Petrology 174, 50. https://doi.org/10.1007/s00410-019-1584-4

Zhong, X., Moulas, E., Tajčmanová, L., 2020. Post-entrapment modification of residual inclusion pressure and its implications for Raman elastic thermobarometry. Solid Earth 11, 223–240. https://doi.org/10.5194/se-11-223-2020

How to cite: Moulas, E., Zingerman, K., Vershinin, A., Levin, V., and Podladchikov, Y.: Large-strain elastoplastic formulations for host-inclusion systems with applications to elasto-thermobarometry and geodynamic models, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4494, https://doi.org/10.5194/egusphere-egu22-4494, 2022.

EGU22-6103 | Presentations | GD6.1 | Highlight

The role of mechanics in the modelling of common rock microstructures 

Lucie Tajcmanova, Yury Podladchikov, and Ivan Utkin

Understanding rocks at the microscale is essential to comprehending Earth's history and making reasonable predictions about how planetary processes may change in the future.  

Advanced models for complex rock microstructures, such as symplectites or a development of exsolution lamellae, have been developed (Kuhl & Schmid, 2007; Petrishcheva & Abart, 2009). Despite of this recent valuable progress in our understanding of these microstructures, the mechanisms controlling its evolution especially from slowly cooled rocks are still not complete.

Commonly, such models focus solely on the chemical process. Interestingly, mechanics, i.e. stress and pressure redistribution, may also play an important role on microstructure evolution. In this contribution, we investigate the coupled, chemo-mechanical, effect for representative rock microstructures. We provide a comparison between purely chemical vs. coupled chemo-mechanical systems and provide predictions on the evolution of the given microstructures in 3D.

References:

Kuhl, E., Schmid, D.W. (2007). Computational Modeling of Mineral Unmixing and Growth. Comput Mech 39, 439–451.

Petrishcheva, E., & Abart, R. (2009). Exsolution by Spinodal Decomposition I: Evolution Equation for Binary Mineral Solutions with Anisotropic Interfacial Energy. American Journal of Science, 309(6), 431-449.

 

How to cite: Tajcmanova, L., Podladchikov, Y., and Utkin, I.: The role of mechanics in the modelling of common rock microstructures, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6103, https://doi.org/10.5194/egusphere-egu22-6103, 2022.

EGU22-7325 | Presentations | GD6.1

A multiscale model for coupled chemical reaction and deformation of porous rocks 

Viktoriya Yarushina and Yury Podladchikov

Coupled hydro-mechano-chemical (HMC) modeling is a topic of active ongoing research in various branches of Earth sciences and subsurface engineering. In engineering applications, HMC modeling is used to assess the feasibility of permanent CO2 storage in mafic and ultramafic rocks. The deformation and stresses building during the reaction is believed to induce fracturing, increase permeability and thus promote extensive reactions between CO2 and host rock. CCS in depleted reservoirs faces challenges related to possible CO2 leakage through old plugged and abandoned wells. When CO2 reaches the well, old cement compositions react with cement, compromising well integrity due to chemical degradation. In geology, coupled reactions and deformation are involved in melt extraction and migration, influencing the dynamics of volcanic systems and the evolution of subduction zones.

A large focus of previous studies was whether or not it is possible to achieve 100% of the reaction. Common reactive transport models predict that the reaction product will clog the pores, which will stop the fluid flow and thus further reactions. However, recent developments suggest that reaction progress depends on the assumed reaction kinetics and the constitutive models used in coupled models. Models that account for solid volume change as in mineral replacement reactions have a much higher potential for preserving porosity than the common dissolution-precipitation model, thus predicting the complete reaction. It is often assumed that reaction processes are transport-dominated, i.e., that all dissolved material is carried away by pore fluid. Then it precipitates on the available pore space leading to clogging and permeability reduction. However, recent observations suggest that while some reactions might be associated with dissolution and precipitation at the nano-scale, aqueous species transport is limited, and reaction products do not precipitate in the pores but rather stay attached to the primary mineral. Thus, the overall effect is the same as in mineral replacement reactions.

Using a combination of effective media theory and irreversible thermodynamics approaches, we propose a new model for reaction-driven mineral expansion, which preserves porosity and limits unrealistically high build-up of the force of crystallization by allowing inelastic failure processes at the pore scale. To fully account for the coupling between reaction, deformation, and fluid flow, we derive macroscopic poroviscoelastic stress-strain constitute laws that account for chemical alteration and viscoelastic deformation of porous rocks. These constitutive equations are further used with macroscopic conservation laws to illustrate the mutual impact of reactive transport and mechanical deformation on simple 1D examples of wellbore stability and fluid transport.

How to cite: Yarushina, V. and Podladchikov, Y.: A multiscale model for coupled chemical reaction and deformation of porous rocks, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7325, https://doi.org/10.5194/egusphere-egu22-7325, 2022.

EGU22-8033 | Presentations | GD6.1

Modelling focused fluid flow: What matters? 

Lawrence Hongliang Wang, Viktoriya M. Yarushina, and Yury Podladchikov

Two-phase flow equations that couple solid deformation and fluid migration have opened new research trends in geodynamical simulations and modelling of subsurface engineering operations. The physical nonlinearity of fluid-rock systems and strong coupling between flow and deformation in such equations lead to interesting predictions such as the spontaneous formation of focused fluid flow in ductile/plastic rocks. However, numerical implementation of two-phase flow equations and their application to realistic geological environments with complex geometries and multiple stratigraphic layers is challenging. Here, we present an efficient pseudo-transient solver for two-phase flow equations. We first study the focused fluid flow under the viscous regime without considering the elasticity. The roles of material parameters, reservoir topology, geological heterogeneity, and porosity are investigated. We show that focused fluid channels are the natural outcome of the flow instability of the two-phase system with a low ratio (< 0.1) between shear viscosity and bulk viscosity. We also confirm the previous studies that  decompaction weakening is necessary to elongate the porosity profile. The permeability exponents play the dominant role in the speed of wave propagation. The numerical models study fluid leakage from high porosity reservoirs into less porous overlying rocks. Geological layers present in the overburden do not stop the propagation of the localized channels but rather modify their width, permeability, and growth speed. We further validate our conclusions by modelling the full two-phase system with viscoelastic rheology and elastic solid and fluid compressibility (Yarushina et al., 2015). The Deborah number (De), solid (Ks), and fluid (Kf) bulk moduli are thus introduced into the governing equations. We found that the elasticity makes a difference when the Deborah number approaches one by speeding up the channel propagation. At the same time, its effect is rather limited when Deborah's number is small (e.g., 0.1). The effects of compressibility of the solid and fluid, on the other hand, are not found significant within the reasonable ranges of the bulk moduli.

 

How to cite: Wang, L. H., Yarushina, V. M., and Podladchikov, Y.: Modelling focused fluid flow: What matters?, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8033, https://doi.org/10.5194/egusphere-egu22-8033, 2022.

EGU22-8422 | Presentations | GD6.1 | Highlight

Chronometry of a nappe-scale thermal event inferred by thermobarometry and viscous relaxation of quartz inclusion pressure (Adula nappe, Alps) 

Xin Zhong, Marisa Germer, Alexandra Pohl, Vincent Könemann, Olga Brunsmann, Philip Groß, Jan Pleuger, and Timm John

The Adula nappe is located at the eastern flank of the Lepontine dome in the Swiss Alps. It consists mainly of orthogneiss and paragneiss with intercalated lenses of eclogite, amphibolite and metasediments. Previous petrological studies on the peak pressure and temperature (P-T) conditions yield somewhat inconsistent results, particularly the pressure in the southern part of the nappe, but in general exhibit an increasing trend in both P-T towards the south. In this work, we applied zirconium-in-rutile thermometer and quartz-in-garnet Raman elastic barometer to constrain the P-T conditions using samples covering most of the nappe with high spatial coverage within the 600 km2 area to obtain an internally consistent dataset. Based on the results of zirconium-in-rutile thermometer, the temperature gradually increases from the north at ca. 540 °C to the south at ca. 680 °C. Using the quartz-in-garnet elastic barometer, the calculated entrapment pressure increases from ca. 2.0 GPa to ca. 2.2 GPa from the north to the middle-south region of the Adula nappe, but rapidly falls to ca. 0.8-1.2 GPa towards the southern region, where the temperature exceeds ca. 650 °C. It is speculated that due to the temperature increase towards the south, viscous relaxation became activated that led to an apparent drop of the recorded residual quartz inclusion pressure. This suggests that by applying a pure elastic model to high temperature conditions, one may potentially underestimate of the formation pressure of garnets. Therefore, this study may provide information on the limit of the quartz-in-garnet (pure) elastic barometry technique. Moreover, it may offer a potential opportunity to constrain the duration of the near-isothermal decompression path if a viscoelastic model can be applied, which requires not only the equation of state of minerals but also the creep behavior of the inclusion-host system.

How to cite: Zhong, X., Germer, M., Pohl, A., Könemann, V., Brunsmann, O., Groß, P., Pleuger, J., and John, T.: Chronometry of a nappe-scale thermal event inferred by thermobarometry and viscous relaxation of quartz inclusion pressure (Adula nappe, Alps), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8422, https://doi.org/10.5194/egusphere-egu22-8422, 2022.

EGU22-8776 | Presentations | GD6.1

Local variations of metamorphic record from compositionally heterogeneous rocks: Inferences on exhumation processes of (U)HP-HT rocks (Cima di Gagnone, Adula-Cima Lunga unit) 

Stefania Corvò, Matteo Maino, Antonio Langone, Filippo Luca Schenker, Leonardo Casini, Sandra Piazolo, and Silvio Seno

The record of metamorphic conditions may be highly heterogeneous in spatially close rocks with different composition and rheology. The Cima di Gagnone area (Central Alps) represents an example of ultrahigh–pressure and high–temperature ultramafic lenses enveloped within amphibolite–facies metasediments. Structural investigations demonstrate that the rheologically strong ultramafics and eclogites and weak metapelites experienced a common Alpine deformation history in a single tectonic unit, excluding their coupling within a tectonic mélange (Maino et al., 2021). New structural, microstructural and petrological analyses and thermodynamic modelling results on the metasediments, confirming that all rocks generally experienced medium pressure and medium temperature conditions of 1.0–1.2 GPa and 640–700 °C, followed by a retrograde stage around 0.6–0.8 GPa and 600–675 °C. However, significantly higher P–T conditions of 1.3–3.0 GPa and 750–850 °C are locally developed close to the rheological boundary depicted by the micaschists-peridotite contact (Corvò et al., 2021; Piccoli et al., 2021). Rock and mineral chemistry changes during growth of new mineral phases indicate a local melt/fluid interaction (i.e., metasomatism) between metasediments and ultramafics during the high temperature deformation. The local occurrence of (U)HP and HT conditions is demonstrated by the absence of significant melting in the unit, although around the peridotite lenses, metapelites show hydrated assemblage at T>800 °C were stable at variable P stage. U-Pb zircon and monazite dating indicate that local HP and HT conditions were accomplished at the early stage of Alpine exhumation (~36 Ma), while the rocks fa form the rheological boundaries records only pre–Alpine ages. Our results documented that, even though weak metasediments share the same structural evolution with the strong UM, large differences in the local metamorphic conditions (ΔP up to 2 GPa; ΔT up to 160 °C) are recorded in relation to the distance from the UM lenses. Fluid–assisted metasomatism is further documented as being strongly localized at the interface between ultramafic lenses and the metapelitic host throughout all part of the metamorphic evolution, including the HP–HT stage. Therefore, in the Cima di Gagnone type–locality, the interplay between metapelites and ultramafic exerts a crucial first–order control to allow assemblage equilibrium during HT metamorphism and amphibolite–facies retrogression. These new findings exclude that the different metamorphic record may be attributed only to differential preservation during the retrograde path. Our new P–T–t–D paths highlight the crucial role of the rheological boundaries in modify the P-T metamorphic records without varying lithostatic pressure and thus depth conditions.

References:

Maino, M., Adamuszek, M., Schenker, F.L., Seno, S., Dabrowski, M., 2021. Sheath fold development around deformable inclusions: Integration of field-analysis (Cima Lunga unit, Central Alps) and 3D numerical models. J. Struct. Geol. 144, 104255.

Corvò, S., Maino, M., Langone, A., Schenker, F. L., Piazolo, S., Casini, L., & Seno, S., 2021. Local variations of metamorphic record from compositionally heterogeneous rocks (Cima di Gagnone, Central Alps): Inferences on exhumation processes of (U) HP–HT rocks. Lithos, 390, 106126.

Piccoli, F., Lanari, P., Hermann, J., & Pettke, T., 2021. Deep subduction, melting, and fast cooling of metapelites from the Cima Lunga Unit, Central Alps. Journal of metamorphic geology

How to cite: Corvò, S., Maino, M., Langone, A., Schenker, F. L., Casini, L., Piazolo, S., and Seno, S.: Local variations of metamorphic record from compositionally heterogeneous rocks: Inferences on exhumation processes of (U)HP-HT rocks (Cima di Gagnone, Adula-Cima Lunga unit), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8776, https://doi.org/10.5194/egusphere-egu22-8776, 2022.

EGU22-9093 | Presentations | GD6.1 | Highlight

Grain-scale equilibrium reactions guide fluid-driven eclogitization of dry crustal rocks 

Timm John, Sascha Zertani, Johannes C. Vrijmoed, Caroline Brachmann, and Oliver Plümper

When a fluid is introduced into dry rocks at high-pressure conditions, it acts as a catalyst and facilitates re-equilibration. This often promotes weakening and subsequent ductile deformation. Here, we present a detailed micro-structural and mineral chemical study of eclogitization of initially dry continental crustal rocks in the absence of ductile deformation. The studied sample features an incomplete (fluid-induced) transition from lower crustal granulite to eclogite, and the transition is fully preserved. None of the mineral phases show any signs of ductile deformation, indicating that the transformation was entirely static. Material transport during the reaction was limited to the availability of fluids. Detailed analysis of the local assemblages along the transect reveals that the reaction occurs in three distinct steps: The plagioclase-plagioclase grain boundaries were the first to re-equilibrate followed by clinopyroxene-plagioclase and garnet-plagioclase grain boundaries. Lastly, the grain boundaries that included only garnet and/or clinopyroxene are involved in the transformation. Thermodynamic modelling of local equilibria at dry conditions and with H2O in excess reveals that this stepwise transformation is caused by the varying reactivity of the local assemblages at the prevailing P-T conditions. Those reactions that result in the largest decrease of the Gibbs free energy from the dry case to the case with H2O in excess occur first. Once the reaction is facilitated, this effect is amplified because the density increase is largest at those grains boundaries that have reacted first, creating new fluid pathways through volume reduction. The calculated stable local mineral assemblages are consistent with those present in the sample indicating that element transport is limited, also supported by the observation that the fabric of the granulite is preserved in the eclogite. Our results demonstrate that reactive fluid flow is guided by the local energy budget along the grain boundaries, and that element transport during static re-equilibration is limited to the extent where it is thermodynamically advantageous.

How to cite: John, T., Zertani, S., Vrijmoed, J. C., Brachmann, C., and Plümper, O.: Grain-scale equilibrium reactions guide fluid-driven eclogitization of dry crustal rocks, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9093, https://doi.org/10.5194/egusphere-egu22-9093, 2022.

EGU22-9608 | Presentations | GD6.1 | Highlight

Formation of olivine veins by dehydration during viscously deforming serpentinite: a numerical study 

Stefan Markus Schmalholz, Evangelos Moulas, Ludovic Räss, and Othmar Müntener

The dehydration of serpentinite during subduction and the associated formation of dehydration veins is an important process for the global water cycle and the dynamics of the subducting plate. Field observations suggest that olivine veins can form by dehydration during viscous shear deformation of serpentinite. However, this hypothesis of olivine vein formation, involving the coupling of rock deformation, dehydration reactions and fluid flow, has not been tested and quantified by hydro-mechanical-chemical (HMC) models. Here, we present a new two-dimensional HMC numerical model to test whether olivine veins can form by dehydration during viscous shearing of serpentinite. The applied numerical algorithm is based on the pseudo-transient finite difference method. We consider the simple reaction antigorite + brucite = forsterite + water. Volumetric deformation is viscoelastic and shear deformation is viscous with a shear viscosity that is an exponential function of porosity. In the initial model configuration, total and fluid pressures are homogeneous and in the antigorite stability field. Small, initial perturbations in porosity, and hence in viscosity, cause pressure perturbations during far-field simple shearing. During shearing, the fluid pressure can locally decrease and reach the thermodynamic pressure required for the dehydration reaction, so that dehydration is triggered locally. The simulations show that dehydration veins form during progressive shearing and grow in a direction parallel to the maximum principal stress. During the dehydration the porosity can increase locally from 2% (initial value) to more than 50% inside the dehydration vein. The numerical model allows quantifying the mechanisms and variables that control the evolution of porosity and fluid pressure. We show that the porosity evolution is controlled by three mechanisms: (1) volumetric deformation of the porous solid, (2) temporal variation of the solid density and (3) mass transfer during the dehydration reaction. We quantify the evolution of the fluid pressure that is controlled by five variables and processes: (1) the total pressure of the porous rock, (2) elastic effects of the total volumetric deformation, (3) the temporal variation of porosity, (4) the temporal variation of solid density and (5) mass transfer during the dehydration reaction. This model supports the observation-based hypothesis of the formation of olivine veins due to dehydration during viscous shearing of serpentinite. More generally, our HMC model provides quantitative insights into the evolution of porosity, and hence dynamic permeability, fluid pressure and mass transfer during dehydration reactions in deforming rock.

How to cite: Schmalholz, S. M., Moulas, E., Räss, L., and Müntener, O.: Formation of olivine veins by dehydration during viscously deforming serpentinite: a numerical study, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9608, https://doi.org/10.5194/egusphere-egu22-9608, 2022.

EGU22-9773 | Presentations | GD6.1

The influence of non-hydrostatic stress on mineral equilibria: insights from Molecular Dynamics 

Mattia L. Mazzucchelli, Evangelos Moulas, Boris Kaus, and Thomas Speck

Mountain building, earthquake generation, and volcanic eruptions occur in Earth’s lithosphere and have direct impacts on society. Understanding the mechanism of geodynamic processes relies on the determination of the pressure-temperature history which is recorded by rocks that have been involved in geodynamic processes. In most cases, the interpretation of the conditions attained by rocks is based on the assumption that the stresses in the Earth are hydrostatic. However, non-hydrostatic stresses are observed in the lithosphere, and the significance of the magnitude of the differential stress on phase equilibria is still actively contested among researchers who hold completely incompatible views about the use of various thermodynamic potentials (e.g. [1-3]).

The problem of phase equilibria under non-hydrostatic stress has been explored in several rock-deformation experiments (on mm scale), in which recrystallization of minerals was observed under an applied non-hydrostatic stress [4-6]. However, during experiments, stress and pressure heterogeneities may develop in the sample (e.g. [6]). Therefore, the direct effect of the applied non-hydrostatic stress on the thermodynamics of the reactions cannot be separated from the effect caused by local pressure variations in the sample itself.

Here, we explore the effect of non-hydrostatic stress on the thermodynamics of mineral reactions by investigating a system at the molecular scale. With Molecular Dynamics (MD) we perform coexistence simulations in which two phases are brought in contact and equilibrated at given temperature, pressure, and stress conditions. As expected, the obtained stress component normal to the phase-phase interfaces is homogeneous across the system. Our data suggest that the direct effect of non-hydrostatic stress on the solid-liquid equilibria is rather minor for geological applications, consistent with theoretical predictions [7,8]. However, our analysis does not take into account the indirect effect of stress heterogeneities at the sample scale. Spatial variations of stress can reach GPa level and can therefore indirectly affect phase equilibria.

M.L. Mazzucchelli is supported by an Alexander von Humboldt research fellowship.

References

[1] Wheeler, J. Geology 42, 647–650 (2014);

[2] Hobbs, B. et al. Geology 43, e372 (2015);

[3] Tajčmanová, L. et al. Lithos 216–217, 338–351 (2015)

[4] Hirth, G. et al. J. Geophys. Res. 99, 11731–11747 (1994)

[5] Richter, B. et al. J. Geophys. Res. Solid Earth 121, 8015–8033 (2016)

[6] Cionoiu, S. et al. Sci. Rep. 9, 1–6 (2019)

[7] Sekerka, R. et al. Acta Mater., 52(6), 1663–1668 (2004)

[8] Frolov, T. et al. Phys. Rev. B Condens. Matter Mater. Phys. 82, 1–14 (2010)

How to cite: Mazzucchelli, M. L., Moulas, E., Kaus, B., and Speck, T.: The influence of non-hydrostatic stress on mineral equilibria: insights from Molecular Dynamics, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9773, https://doi.org/10.5194/egusphere-egu22-9773, 2022.

EGU22-10147 | Presentations | GD6.1

H2O contents in nominally anhydrous minerals and its effect on the formation of eclogite-facies, hydrous shear zones (Holsnøy, Western Norway) 

Lisa Kaatz, Stefan M. Schmalholz, Julien Reynes, Jörg Hermann, and Timm John

High-grade dry granulites of Holsnøy (Western Norway) were subducted during the Caledonian orogeny and reached eclogite-facies conditions at ~2 GPa and 700° C. However, they stayed in a metastable state until brittle deformation enabled infiltration of an aqueous fluid, which triggered the kinetically delayed eclogitization. Field observations reveal an interconnected network of hydrated eclogite-facies shear zones surrounded by unaltered and pristine granulites. The formation of these features is highly controlled by deformation, fluid infiltration and fluid-rock interaction.

At first, the shear zone evolution was analyzed to better understand the relation between strain localization within the shear zones and the progressive widening of these shear zones from cm- to m-wide thickness. The results showed that widening overcomes the effect of stretching during progressive fluid-rock interaction and strain accumulation, if either a substantial amount of continuously infiltrating fluid and/or numerous repetitive fluid pulses enter the system.

Therefore, investigations have been carried on the H2O contents in nominally anhydrous minerals of the granulite and eclogite. The H2O contents were measured using Fourier transform infrared spectroscopy. Garnet (grt), clinopyroxenes (cpx) and plagioclase (plg) have been measured with a close look on spatial repartition of OH at the grain scale and at the shear zone scale. The aim is to decode the link between fluid infiltration, mineral reaction, and deformation. There are no significant compositional changes between granulite and eclogite, which means that the fluid mainly worked as a catalyst without mass transfer beside H2O. The analyses across a shear zone profile reveal three major observations: (i) average H2O contents of the grt cores increase from granulite towards the shear zone (from 10 to 50 µg/g), (ii) average H2O contents of the cpx increase, too (from 145 to 310 µg/g), (iii) the plg stores limited amounts of H2O until a phase separation leads into an symplectites consisting of albite-rich plg (anhydrous) and clinozoisite (hydrous). The H2O contents of the minerals are interpreted to be a result of two different diffusional mechanisms acting simultaneous at different spatial scales and rates. The H2O increase in grt and cpx cores without mineral reaction is a result of hydrogen diffusion (H+/H2), which is much faster and pervasive than the porous influx of an aqueous fluid (H2O), which, contemporaneously, caused the formation of hydrous phases.

The above findings are combined in a 1D numerical shear zone model to reproduce the measured mineral chemical data and the respective H2O-contents. The results shed light on the dynamic weakening processes caused by the influx of H+/H2 in combination with synkinematic mineral reactions.

How to cite: Kaatz, L., Schmalholz, S. M., Reynes, J., Hermann, J., and John, T.: H2O contents in nominally anhydrous minerals and its effect on the formation of eclogite-facies, hydrous shear zones (Holsnøy, Western Norway), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10147, https://doi.org/10.5194/egusphere-egu22-10147, 2022.

EGU22-10316 | Presentations | GD6.1 | Highlight

Thermolab: a thermodynamics laboratory for non-linear transport processes in open systems 

Johannes C. Vrijmoed and Yury Y. Podladchikov

We developed a numerical thermodynamics laboratory called “Thermolab” to study the effects of the thermodynamic behavior of non-ideal solution models on reactive transport processes in open systems. The equations of state of internally consistent thermodynamic datasets are implemented in MATLAB functions and form the basis for calculating Gibbs energy. A linear algebraic approach is used in Thermolab to compute Gibbs energy of mixing for multi-component phases to study the impact of the non-ideality of solution models on transport processes. The Gibbs energies are benchmarked with experimental data, phase diagrams and other thermodynamic software. Constrained Gibbs minimization is exemplified with MATLAB codes and iterative refinement of composition of mixtures may be used to increase precision and accuracy. All needed transport variables such as densities, phase compositions, and chemical potentials are obtained from Gibbs energy of the stable phases after the minimization in Thermolab. We demonstrate the use of precomputed local equilibrium data obtained with Thermolab in reactive transport models. In reactive fluid flow the shape and the velocity of the reaction front vary depending on the non-linearity of the partitioning of a component in fluid and solid. We argue that non-ideality of solution models has to be taken into account and further explored in reactive transport models. Thermolab Gibbs energies can be used in Cahn-Hilliard models for non-linear diffusion and phase growth. This presents a transient process towards equilibrium and avoids computational problems arising during precomputing of equilibrium data.

How to cite: Vrijmoed, J. C. and Podladchikov, Y. Y.: Thermolab: a thermodynamics laboratory for non-linear transport processes in open systems, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10316, https://doi.org/10.5194/egusphere-egu22-10316, 2022.

EGU22-10318 | Presentations | GD6.1 | Highlight

Eclogitization of the Allalin gabbro under heterogeneous stress conditions 

Cindy Luisier, Philippe Yamato, Horst R. Marschall, Evangelos Moulas, and Thibault Duretz

Eclogitization reactions in mafic rocks involve large volume changes, porosity evolution and fluid transfer. They impact many important geological processes such as the localization of deformation and fluid channeling at intermediate depth in subduction zone. The study of exhumed eclogitic bodies in orogens shows that eclogitization of the oceanic crust is heterogeneous from both a structural and metamorphic point of view. For example, in the European Alps, the Allalin metagabbro shows high strain areas, consisting of hydrous metagabbros, fully equilibrated under eclogite-facies conditions during the Alpine orogeny. Conversely, large volumes of low strain, fluid-undersaturated gabbros remained largely unaffected by the high-pressure (HP) metamorphism, locally preserving igneous textures and even, occasionally, relics of their magmatic mineralogy. The intensity of deformation as well as the degree of eclogitization in the metagabbro have been shown to be directly related to the extent of pre-Alpine hydration during high-temperature hydrothermal alteration [1]. However, the influence of this degree of hydration on (1) reaction kinetics and/or (2) enhancing rheological contrasts leading to heterogeneous deformation patterns and metamorphic conditions is still debated.

In order to address this issue, we propose a multidisciplinary study involving petrographic and microtextural observations combined with 2D thermo-mechanical numerical models allowing to discuss the role of pre-Alpine hydrothermal alteration on the development of HP metamorphic assemblages.

We present petrographic and textural data from three different types of rocks from the Allalin metagabbros: i) undeformed and mostly untransformed metagabbros, with relics of igneous augite and plagioclase, ii) coronites, with olivine pseudomorphs showing different levels of hydration, rimmed by a garnet corona, and iii) eclogitized metagabbros, with olivine and plagioclase sites fully replaced by high-pressure assemblages.

The role of protolith hydration on the observed range in metamorphic facies is then tested by using 2D thermo-mechanical models that allow to simulate the deformation of a strong and dry rock with several randomly oriented weak and hydrous zones. Our results show that the shearing of heterogeneous rock can lead to the formation of localized ductile shear zone within a matrix that remains relatively undeformed but where plastic deformation can occur. The associated P field is also highly heterogeneous, with P ranging from 1 to 3 GPa. The deformation patterns and P modelled may suggest that locally hydrated portions of the gabbro acted as rheological perturbations sufficiently efficient in producing the structural and metamorphic record now observed in the field.

 

 

[1] Barnicoat, A. C. & Cartwright, I. (1997) Journal of Metamorphic Geology 15, 93–104

How to cite: Luisier, C., Yamato, P., Marschall, H. R., Moulas, E., and Duretz, T.: Eclogitization of the Allalin gabbro under heterogeneous stress conditions, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10318, https://doi.org/10.5194/egusphere-egu22-10318, 2022.

EGU22-10383 | Presentations | GD6.1

Geodynamic constraints on ophiolite emplacement 

Iskander Ibragimov and Evangelos Moulas

Ophiolite complexes are commonly found outcropping along ancient suture zones in continental regions. Many geological studies suggest that, during subduction initiation, a small remnant of the oceanic crust can be thrusted upon continenal regions. This thrusting occurs during a process that is generally termed as “ophiolite obduction”. Despite the relatively small volume of the ophiolite rocks, their occurence provides important geologic/geodynamic constraints for the processes of subduction initiation. 
Following the seminal work of Cloos (1993), oceanic lithosphere that is older than 10 Myrs is dense enough, and as a result, facilitates oceanic subduction in a spontaneous manner. This suggestion is based on the fact that buoyancy is one of the most important forces relevant to large-scale geodynamics. However, old oceanic lithosphere is also expected to be cold and, as a consequence, mechanically strong. The increased strength of the oceanic lithosphere hinders subduction initiation and makes ophiolite obduction difficult.
In this work we perform systematic numerical simulations to investigate the effects of initial geometry and convergence velocity on subduction initiation and ophiolite obduction. We use LaMEM to calculate 2D thermo-mechanical models that include the effects of visco-elasto-plastic rheology. In addition, we have incorporated a thermodynamically-consistent density structure for the crust and mantle. In this way, buoyancy forces are calculated in a consistent manner based on the pressure and temperature fields of the thermo-mechanical models. Our results show that when the oceanic lithosphere is older than 10Myr, subduction is very difficult and does not initiate in a spontaneous manner. Our systematic simulations provide insights for the range of conditions and parameters of oceanic subduction and ophiolite emplacement.

References
Cloos, M. (1993) Lithospheric Buoyancy and Collisional Orogenesis: Subduction of Oceanic Plateaus, Continental Margins, Island Arcs, Spreading Ridges, and Seamounts. Geological Society of America Bulletin, 105, 715-737.
https://doi.org/10.1130/0016-7606(1993)105<0715:LBACOS>2.3.CO;2

How to cite: Ibragimov, I. and Moulas, E.: Geodynamic constraints on ophiolite emplacement, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10383, https://doi.org/10.5194/egusphere-egu22-10383, 2022.

EGU22-10445 | Presentations | GD6.1

Reactive Melt Transport Using Porosity Waves Across the Thermal Boundary Layer. 

Marko Repac, Annelore Bessat, Stefan Schmalholz, Yury Podladchikov, Kurt Panter, and Sebastien Pilet

The lithosphere and the asthenosphere are characterized by different heat transport mechanisms, conductive for the lithosphere, convective for the asthenosphere. The zone associated with the transition between these two distinct mechanisms is known as the "Thermal Boundary Layer" (TBL). How the melt is transported across this zone is an important question regarding intraplate magmatism and for the nature of the seismic Low-Velocity Zone. Numerous studies and models suggest that primary magmas from intraplate volcanos are the product of low degree partial melting in the asthenosphere, while the differentiation process takes place in the crust or shallow lithospheric mantle. The question is how low degree melt ascends through the TBL and the lithospheric mantle. The thermal structure of the lithosphere is characterized by a high geothermal gradient, which questions the ability of melt to cross the lithospheric mantle without cooling and crystallizing. Since the base of the lithosphere is ductile, the possible modes of magma transport are porous flow or porosity waves. For these reasons, we would like to understand how melt is transported and what are the implications on the evolution of primitive melt, going from the convective part of the geotherm to the conductive part of the geotherm and further across the lithosphere.

We present the results of a thermo-hydro-mechanical-chemical (THMC) model1 for reactive melt transport using the finite difference method. This model considers melt migration by porosity waves and a chemical system of forsterite-fayalite-silica. Variables, such as solid and melt densities or MgO and SiO2 mass concentrations, are functions of pressure, temperature, and total silica mass fraction (CtSiO2). These variables are pre-computed with Gibbs energy minimization and their variations with evolving P, T, and CtSiO2 are implemented in the THMC model. We consider P and T conditions relevant across the TBL. With input parameters characteristic for alkaline melt and conditions at the base of the lithosphere, we obtain velocities between 1 to 150 m yr-1,which is a velocity similar to melt rising at mid-ocean ridges2. This implies the inability of primary melts to cross the lithosphere. However, melt addition to the base of the lithosphere is important to understand mantle metasomatism, and could, to some extent, contribute to physical properties of the Lithosphere-Asthenosphere Boundary and Mid Lithosphere Discontinuity observed with geophysical methods. We suggest that the appearance of alkaline magmas at the surface requires multiple stage processes as melts rising in the lithosphere progressively modify the geotherm allowing new melts to propagate to the surface. Our earlier modeling results1 demonstrated that a single porosity wave has a minor impact on chemical evolution. In this study, we search for a mechanism responsible for stabilizing porosity wave motion to some lateral location forcing consecutive waves to follow the same ascent path. The passage of a large number of quickly rising porosity waves over a long time through the same path would accumulate large melt to rock ratios and cause significant chemical evolution.

 

  • Bessat et at., 2022, G3, in press
  • Connolly et al. 2009, Nature 462, 209-212.

How to cite: Repac, M., Bessat, A., Schmalholz, S., Podladchikov, Y., Panter, K., and Pilet, S.: Reactive Melt Transport Using Porosity Waves Across the Thermal Boundary Layer., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10445, https://doi.org/10.5194/egusphere-egu22-10445, 2022.

EGU22-11149 | Presentations | GD6.1

Early reaction of plagioclase : an underrated alteration step during burial of the continental crust 

Loic Labrousse, Marie Baisset, and Alexandre Schubnel

Mutual links between metamorphic reactions and rheological properties of rocks under pressure, temperature and deviatoric stress are a major source of discrepancy of thermo-mechanical models when it comes to predict strain localization for instance. The interactions between metamorphism and strain are also considered as a possible cause for unexpected mechanical instabilities, e.g. mechanical failure, in lithological units buried deep in convergent plate boundaries.

The partially transformed granulite facies anorthosites on the Holsnøy Island, Bergen Arcs, Norwegian Caledonides, constitute one of the few archetypical exposure of crustal rocks deforming and reacting at the same time in the eclogite facies conditions. In these rocks, eclogite-facies paragenesis develops with devitrification patterns in « brittle » pseudotachylyte, and in their damage walls, along a pervasive network of « ductile » shear zones, as well as « statically » along digitations following the preserved granulite facies foliation, with no apparent relation to strain.

The present study, that follows recent advances in the understanding of relationships between crystallization of pyroxene and local scale pressure field, or modeling of the interaction between the eclogitization reactions sequence and strain localization, focuses on the first steps of incipient plagioclase destabilization along eclogite facies « fingers ». 

Granulite facies plagioclase, close to 40 % anorthite in composition, is subject to reactions both in the NASH and CASH subsystems, with contrasted stoechiometries and kinetics. Petrological observations evidence that the lowermost pressure reaction in the CASH system (an + H2O = zo + ky + qz), occurs unbalanced, with high kinetics and reaction volume change and therefore initiates strain within plagioclase grains, that react by twinning and subgrains individualization. This early stage of intra-grain transformation induces an effective grain size reduction, and favors fluid percolation, therefore promoting the eclogitization progression. The reaction occurring inside of plagioclase grains also affects their grain boundaries where kyanite and transient reactions products, such as potential melts, accumulate also altering the overall aggregate properties. 

We claim that this early, fast and pervasive reaction is a significative, yet underrated, step of mechanical alteration of the burying continental rocks.

How to cite: Labrousse, L., Baisset, M., and Schubnel, A.: Early reaction of plagioclase : an underrated alteration step during burial of the continental crust, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11149, https://doi.org/10.5194/egusphere-egu22-11149, 2022.

EGU22-11487 | Presentations | GD6.1 | Highlight

Deformation-facilitated melting of plagioclase 

Sarah Incel, Marie Baisset, Loic Labrousse, and Alexandre Schubnel

Geological processes involving deformation and/or reactions are highly influenced by the rock grain size, especially if diffusion-controlled processes take place such as long-range metamorphic reactions and diffusion creep. Although many processes, inducing grain-size reduction, are documented and understood at relatively high stresses and low temperatures (e.g., cataclasis) as well as at lower stress and higher temperature conditions (e.g., bulging, subgrain rotation), deformation twinning, a plastic deformation mechanism active in various minerals at lower temperatures, has been neglected as cause for grain-size reduction so far. We conducted experiments on natural plagioclase-bearing aggregates at 2.5 to 3 GPa confining pressure and temperatures of 720 to 950 °C using two different deformation apparatus, a DDIA and a Griggs press, as well as a piston-cylinder apparatus. Regardless of the apparatus type, we observe the breakdown of plagioclase into an eclogite-facies paragenesis, which is associated with partial melting in the high pressure, high temperature domain of the eclogite facies. In contrast to the sample that experienced hydrostatic conditions in the piston-cylinder press, the deformed samples reveal melt patches inside of several plagioclase grains. These patches coincide with the occurrence of deformation twins in plagioclase that formed due to differential stress. The ability of plagioclase to form deformation twins and their exploitation for melt initiation significantly lowers the effective grain size of plagioclase-rich rocks and thus impacts their reactivity and deformation behavior.

How to cite: Incel, S., Baisset, M., Labrousse, L., and Schubnel, A.: Deformation-facilitated melting of plagioclase, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11487, https://doi.org/10.5194/egusphere-egu22-11487, 2022.

EGU22-11490 | Presentations | GD6.1

Creep and acoustic emission in Shales from the Barents Sea 

Alina Sabitova, Sergey Stanchits, Viktoriya Yarushina, Georgy Peshkov, Lyudmila Khakimova, and Vladimir Stukachev

Nowadays, environmental awareness has become one of the key directions of humankind development. There are a lot of projects aimed at preserving the environment: ensuring the environmental safety of geothermal energy facilities; study of global geodynamics and its influence on the composition, state, and evolution of the biosphere; geoecological substantiation of safe placement, storage, and disposal of toxic, radioactive and other wastes, etc. An essential role is assigned to the storage of increasing volumes of carbon dioxide gas. This problem requires complex approaches and solutions. Given that both CO2 and radioactive storage are long-term projects, it is necessary to investigate the creep process to monitor the state of the underground environment and assess the risks of leakage. A viscous deformation of the formation accompanies the prolonged loading. Viscosity is an essential parameter in coupling fluid flow and deformation processes occurring on Earth [Sabitova et al., 2021]. At the same time, focused fluid flow is a common phenomenon in sedimentary basins worldwide. Flow structures often penetrate the sandy reservoir rocks and clay-rich caprocks [Peshkov et al., 2021]. The impacts of the viscoelastic deformation of clay-rich materials need to be evaluated from an experimental and modeling perspective to understand better the mechanisms forming such structures. Here, we present multistage triaxial laboratory creep experiments with acoustic emission analysis conducted on samples from the Barents Sea. We performed lithological and geochemical characterization of each sample as a petroleum system element. Bulk and shear viscosities used in numerical models are calculated for all samples. The experimental curves are explained using the theoretical model for porous rock viscoelastoplastic (de)compaction [Yarushina et al., 2020].

References:

Sabitova, A., Yarushina, V. M., Stanchits, S., Stukachev, V., Khakimova, L., & Myasnikov, A. (2021). Experimental compaction and dilation of porous rocks during triaxial creep and stress relaxation. Rock Mechanics and Rock Engineering, 54(11), 5781-5805.

Peshkov, G. A., Khakimova, L. A., Grishko, E. V., Wangen, M., & Yarushina, V. M. (2021). Coupled Basin and Hydro-Mechanical Modeling of Gas Chimney Formation: The SW Barents Sea. Energies, 14(19), 6345.

Yarushina, V. M., Podladchikov, Y. Y., & Wang, L. H. (2020). Model for (de) compaction and porosity waves in porous rocks under shear stresses. Journal of Geophysical Research: Solid Earth, 125(8), e2020JB019683.

How to cite: Sabitova, A., Stanchits, S., Yarushina, V., Peshkov, G., Khakimova, L., and Stukachev, V.: Creep and acoustic emission in Shales from the Barents Sea, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11490, https://doi.org/10.5194/egusphere-egu22-11490, 2022.

EGU22-11811 | Presentations | GD6.1

The simplest visco- or elasto-plastic rheology allowing to spontaneous earthquake nucleation 

Yury Alkhimenkov, Ivan Utkin, Lyudmila Khakimova, Celso Alvizuri, and Yury Podladchikov

Understanding the physical processes governing earthquake nucleation has been a hot topic since the last decade. A lot of research has been done trying to explain the physics of seismic triggering events. However, the exact physics behind seismic events nucleation is still poorly understood. The outcome of our recent research is the new theory of earthquake nucleation (Alkhimenkov et. al., 2021). The simplest visco-plastic or elasto-plastic rheology allows us to model spontaneous earthquake nucleation. We consider pure shear boundary conditions and slowly increase stress in the model reflecting the stress increase e.g., due to tectonic forces in real rocks. Once the stress field reaches the yield surface, the strain localization occurs, resulting in slowly developing fractal shear bands. As time evolves, shear bands grow spontaneously, and stress drops take place in the medium. Such stress drops are caused by the instantaneous development of new shear bands, their intersections, and intersections with the boundaries of the numerical domain. A stress drop corresponds to a particular new strain localization pattern. The new strain localizations act as seismic sources and trigger seismic wave propagation (Minakov and Yarushina, 2021). We suggest that the (seismic) radiation pattern of the focal mechanism might be similar to a particular moment tensor source, typical for realistic earthquakes (Alvizuri et al., 2018). This new modeling approach is based on conservation laws without any experimentally derived constitutive relations.

References

Alkhimenkov Y., Utkin I., Khakimova L., Alvizuri C., Quintal Q., Podladchikov Y. Spontaneous earthquake nucleation in elasto-plastic media. 19th Swiss Geoscience Meeting 2021, Geneva, Switzerland.

Minakov, A. and Yarushina, V., 2021. Elastoplastic source model for microseismicity and acoustic emission. Geophysical Journal International, 227(1), pp.33-53.

Alvizuri, C., Silwal, V., Krischer, L. and Tape, C., 2018. Estimation of full moment tensors, including uncertainties, for nuclear explosions, volcanic events, and earthquakes. Journal of Geophysical Research: Solid Earth, 123(6), pp.5099-5119.

How to cite: Alkhimenkov, Y., Utkin, I., Khakimova, L., Alvizuri, C., and Podladchikov, Y.: The simplest visco- or elasto-plastic rheology allowing to spontaneous earthquake nucleation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11811, https://doi.org/10.5194/egusphere-egu22-11811, 2022.

EGU22-11836 | Presentations | GD6.1

Thermo-chemo-mechanical coupling in Maxwell-Stefan multi-component diffusion 

Lyudmila Khakimova, Evangelos Moulas, Ivan Utkin, and Yury Podladchikov

Classical Fickian linear diffusion of inert or trace-like elements is restricted to ideal solution models of components with equal molar mass. Simultaneous diffusion of multiple concentrations is well-treated by the classical Maxwell-Stefan model. Quantitative predictions of concentrations evolution in real mixtures require careful replacement of concentration gradients by gradients of chemical potentials. Coupling of multi component diffusion to mechanics result in pressure gradients that contribute to Gibbs-Duhem relationship. We aim at developing of thermodynamically admissible multicomponent thermo-chemo-mechanical (TMC) model with ensured non-negative entropy production. We also ensure correct equilibrium limit with zero gradients of chemical potentials of individual components and satisfaction of classical Gibbs-Duhem and Maxwell relationships under pressure gradients. Following recent Tajčmanová et al. (2021) we consider both molar and mass formulations. We present optimal pseudo-transient numerical scheme for multi-diffusional fluxes coupled to visco-elastic bulk deformation.

Tajčmanová, L., Podladchikov, Y., Moulas, E. and L. Khakimova. The choice of a thermodynamic formulation dramatically affects modelled chemical zoning in minerals. Sci Rep 11, 18740 (2021).

How to cite: Khakimova, L., Moulas, E., Utkin, I., and Podladchikov, Y.: Thermo-chemo-mechanical coupling in Maxwell-Stefan multi-component diffusion, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11836, https://doi.org/10.5194/egusphere-egu22-11836, 2022.

EGU22-12215 | Presentations | GD6.1

Channelizing of melt flow by reactive porosity waves and its impact on chemical differentiation 

Andrey Frendak, Yury Alkhimenkov, Lyudmila Khakimova, Ivan Utkin, Yury Podladchikov, and Stefan Schmalholz

Many geodynamic processes are coupled. For example, in the partially molten mantle, the solid and molten mantle phases interact chemically during porous melt flow. For such two-phase reactive melt migration, solid and melt densities are functions of temperature, pressure, and chemical composition. Numerical models of such coupled physical-chemical systems require special treatment of the various couplings and concise numerical implementation. We elaborate a 2-D thermo-hydro-mechanical-chemical (THMC) numerical model for melt migration by porosity waves coupled to chemical reactions (Bessat et. al., 2021). We consider a simple ternary chemical system of forsterite-fayalite-silica to model melt migration within partially molten peridotite around the lithosphere-asthenosphere boundary. Our THMC model can simulate porosity waves of different shapes depending on the ratio of shear to bulk viscosity and the ratio of decompaction to compaction bulk viscosity. For an initial circular (blob-like) porosity perturbation, having a 2-D Gaussian shape, the geometry of the propagating reactive porosity wave remains blob-like if all viscosities are similar. If the decompaction bulk viscosity is smaller than the compaction bulk viscosity, so-called decompaction weakening, then the propagating porosity wave evolves into a channelized form. Our simulations quantify the variation from a blob-like to a channel-like porosity wave as a function of the viscosity ratios. We describe the 2-D THMC numerical algorithm which is based on the pseudo-transient finite difference method. Furthermore, we quantify the impact of channelization on the chemical differentiation during melt flow. Particularly, we quantify the evolution of the total silica concentration during melt migration as a function of the degree of channelization.

References

Bessat, A., Pilet, S., Podladchikov, Y. Y., & Schmalholz, S. M. (2022). Melt migration and chemical differentiation by reactive porosity waves. Geochemistry, Geophysics, Geosystems. In press.  

How to cite: Frendak, A., Alkhimenkov, Y., Khakimova, L., Utkin, I., Podladchikov, Y., and Schmalholz, S.: Channelizing of melt flow by reactive porosity waves and its impact on chemical differentiation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12215, https://doi.org/10.5194/egusphere-egu22-12215, 2022.

EGU22-12337 | Presentations | GD6.1

Experimental and numerical investigation of acoustic emission and its moment tensors in sandstones during failure based on the elastoplastic approach 

Elena Grishko, Viktoriya Yarushina, Maria Bobrova, Sergei Stanchits, Alexander Minakov, and Vladimir Stukachev

Microseismicity and acoustic emission (AE) studies are a part of earthquake science. Compared to ordinary earthquakes, microseismic events are characterized by higher frequencies, lower magnitudes, shorter duration, and more complex source mechanisms. The researchers associate the induced seismicity with different processes: borehole breakouts, tunnel excavations, hydraulic fracturing, wastewater injection, and stimulation of geothermal reservoirs.

Acoustic emission represents elastic waves generated spontaneously due to the formation of microfractures when the rock is undergoing a sufficiently high load. AE can be used to obtain continuous data at various stages of the deformation process: from distributed plastic failure to localized macroscopic failure. The spatial distribution of AE events indicates the location of fractures, and the source mechanism provides information about the failure mode: a tensile fracture, a shear fracture, or a combination of both.

This work shows the results of an experimental study of borehole breakouts in sandstones. We measured AE during the deformation experiments and applied the moment tensor analysis to microseismic waveforms. We used a continuum mechanics model of Minakov and Yarushina [2021] to relate the laboratory AE data to the deformation processes. The comparison of the failure patterns and corresponding seismic responses obtained in laboratory and simulations, allows to classify the deformation regimes in real rocks based on seismic observables.

EG, MB, SS, and VS gratefully acknowledge support from the Ministry of Science and Higher Education of the Russian Federation under agreement No. 075-15-2020-119 within the framework of the development program for a world-class Research Center.

 

References:

  • Minakov, A., Yarushina, V., Elastoplastic source model for microseismicity and acoustic emission, Geophysical Journal International, Volume 227, Issue 1, October 2021, Pages 33–53, https://doi.org/10.1093/gji/ggab207

How to cite: Grishko, E., Yarushina, V., Bobrova, M., Stanchits, S., Minakov, A., and Stukachev, V.: Experimental and numerical investigation of acoustic emission and its moment tensors in sandstones during failure based on the elastoplastic approach, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12337, https://doi.org/10.5194/egusphere-egu22-12337, 2022.

The simplest kinetic normal growth model assumes linear dependence of the transformation rate (or the velocity of the phase boundary) on overstepping of equilibrium conditions (or the degree of metastability).   Under pressure gradients within the phases, the equilibrium state requires zero spatial gradient of difference of the chemical potentials of the two chemical components. This can be achieved by diffusional redistribution of the fraction of two components. At the phase boundary, equilibrium requires the equality of both chemical potentials. Accordingly, at the phase boundary, the linear kinetic model may assume the first component exchange between the phases to be proportional to the chemical potential difference of this component and the phase boundary velocity to be proportional to the chemical potential difference of the second complementary component. The phenomenological proportionality constants are needed to quantify the "mobility" of the phase boundary and intensity mass exchange between phases. These phenomenological material parameters can either be taken from an experiment or derived from a Cahn-Hilliard-type model. Cahn-Hilliard-type model resolving the fine structure of advancing phase boundary  ‘can derive, rather than postulate, a kinetic relation governing the mobility of the phase boundary and check the validity of the "normal growth" approximation’ (Truskinovsky, 1994).

Truskinovsky, L. About the “normal growth” approximation in the dynamical theory of phase transitions. Continuum Mech. Thermodyn 6, 185–208 (1994). https://doi.org/10.1007/BF01135253

How to cite: Podladchikov, Y. and Utkin, I.: Normal growth versus Cahn-Hilliard models for kinetics of the first-order phase transformations in binary mixtures under pressure gradients, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12437, https://doi.org/10.5194/egusphere-egu22-12437, 2022.

EGU22-12496 | Presentations | GD6.1 | Highlight

Numerical modelling of lithospheric deformations with frictional plasticity 

Thibault Duretz, René de Borst, Ludovic Räss, Phillippe Yamato, Tim Hageman, and Laetitia Le Pourhiet
Strain localisation is a key process that allows for the emergence of tectonic plates and controls their long-term deformation. Upper crustal levels are relatively cold and their rheology is thus governed by frictional plasticity. In order to predict the formation of tectonic plates and quantify the deformation of the Earth's upper shell, geodynamic modelling simulation tools must reliably account for deformation in the frictional plastic realm. 
Nevertheless, the simulation of frictional plastic strain localisation poses severe issues. Commonly employed implementations (visco-plastic and visco-elasto-plastic) often fail to accurately satisfy force balance and suffer from a lack of convergence upon mesh refinement. These problems are intimately linked to the fact that commonly employed models do not encompass any characteristic spatial or temporal scales of localisation. Various regularisation techniques can thus be used as a remedy. Here we investigate three popular regularisation techniques, namely viscoplasticity, gradient plasticity and the use of a Cosserat medium, and discuss their potential application for geodynamic modelling.  

How to cite: Duretz, T., de Borst, R., Räss, L., Yamato, P., Hageman, T., and Le Pourhiet, L.: Numerical modelling of lithospheric deformations with frictional plasticity, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12496, https://doi.org/10.5194/egusphere-egu22-12496, 2022.

EGU22-13185 | Presentations | GD6.1 | Highlight

Brittle failure at high-pressure conditions: the key role of reaction-induced volume changes 

Philippe Yamato, Thibault Duretz, Marie Baïsset, and Cindy Luisier

Metamorphic reactions can lead to drastic changes in rocks mechanical properties. Indeed, during such transformations, the nucleation of new phases with different strength, grain size and/or density compared to the primary phases is enhanced, and transient processes due to the ongoing reaction are then activated.

Eclogitization of lower crustal rocks during continental subduction constitutes an emblematic transformation illustrating these processes. In such tectonic context, it has been shown that eclogitization seems to be closely associated with the occurrence of seismogenic events. However, the mechanisms that trigger brittle failure in such high pressure environments remain highly debated. Indeed, whether the change in density or the change in rheology can lead to embrittlement is still enigmatic.

By using 2D compressible mechanical numerical models we studied the impact of the strong negative volume change of the eclogitization reaction on the rocks rheological behaviour. We show that eclogitization-induced density change occurring out of equilibrium can, by itself, generates sufficient shear stress to fail the rocks at high-pressure conditions.

Rupture initiation at depth in continental subduction zones could therefore be explained by volume changes, even without considering the modifications of the rheological properties induced by the transformation. Our results also indicate that the negative volume change associated with brittle failure can enhance the propagation of the eclogitization process by a runaway mechanism as long as the reaction is not limited by the lack of reactants.

 

How to cite: Yamato, P., Duretz, T., Baïsset, M., and Luisier, C.: Brittle failure at high-pressure conditions: the key role of reaction-induced volume changes, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13185, https://doi.org/10.5194/egusphere-egu22-13185, 2022.

In the recent decade, numerical modelling approaches based on combination of staggered finite differences with marker in cell techniques became increasingly popular in geodynamics due to their simplicity, flexibility and computational efficiency. Here, I present new version of popular 3D thermomechanical code i3ilvis, which has been fundamentally revised to include the following methodological advances (Gerya, 2019 and references therein):

  • Full thermomechanical coupling (through global Picard iteration) including compressible time-dependent mass conservation equation and adiabatic and shear heating effects in the energy conservation equation.
  • Regularized visco-elasto-viscoplastic rheological model with/without dilation. (Duretz et al., 2019) based on global thermomechanical Picard iteration.
  • Accurate continuity-based velocity interpolation for marker advection applicable for both compressible and incompressible flows.
  • Free surface stabilization against “drunken sailor” instability.
  • Accurate 3D rotation of elastic stresses on markers.
  • Dislocation-diffusion creep rheology with grainsize evolution(Bercovici and Ricard, 2012) including newton iteration for dislocation creep to compute effective viscosity for markers.

The new code is OpenMP parallel and has already been successfully tested for cases of realistic 3D geodynamic modeling including tectono-magmatic model of continental breakup to oceanic spreading transition and spontaneous subduction initiation scenario associated with slab bending and normal faulting.

 

Bercovici, D., Ricard, Y. (2012) Mechanisms for the generation of plate tectonics by two- phase grain-damage and pinning. Phys. Earth. Planet. Inter. 202-203, 27–55.

Duretz, T., de Borst, R., Le Pourhiet, L. (2019) Finite thickness of shear bands in frictional viscoplasticity and implications for lithosphere dynamics. Geochemistry, Geophysics, Geosystems, 20, 5598–5616.

Gerya T.V. (2019) Introduction to Numerical Geodynamic Modelling. Second Edition. Cambridge University Press, 472 pp.

 

How to cite: Gerya, T.: New i3elvis: Robust visco-elasto-plastic geodynamic modelling code based on staggered finite differences and marker in cell, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13215, https://doi.org/10.5194/egusphere-egu22-13215, 2022.

EGU22-284 | Presentations | GD6.2

Imprints of Crust- and Mantle-Scale Deformation in Central Anatolide-Tauride Region: Exploiting Receiver Functions 

Derya Keleş, Tuna Eken, Andrea Licciardi, Christian Schiffer, and Tuncay Taymaz

Central Anatolia is a seismically active region with complex tectonic provinces and represents one of the significant regions experiencing active deformation in Turkey. It involves the Anatolide-Tauride Block settled in southern Anatolia that is separated from the Pontides by the İzmir-Ankara-Erzincan Suture Zone (IAESZ). In central Anatolia, the Kırşehir Massif mainly comprises complex crystalline metamorphic and plutonic rocks with obducted ophiolitic fragments. It is detached from the Anatolide-Tauride Block by the Intra-Tauride Suture (ITS). The ITS is thought to represent the footprint of subducted Neo-Tethyan ocean. This region further includes a number of active tectonic features, i.e., the Central Anatolian Fault Zone (CAFZ), the Tuz Gölü Fault (TGZ), the East Anatolian Fault zone (EAFZ), the Dead Sea Fault (DSF), and the Bitlis-Zagros Suture. In order to investigate the style of deformation of the region and its influence on the crustal and lithospheric structure and to better understand the relationship between tectonic features and regional deformation at different depth and tectonic features, we quantify the strength and orientation of seismic anisotropy. To achieve this, we focus on the directional dependence of P-to-S converted teleseismic waves (i.e., receiver functions) through the harmonic decomposition analysis. Our findings indicate that seismic anisotropy is mostly localized in the mid-crust (15-25 km) with an overall NE-SW and NNW-SSE orientation in the west and east portions of the study area which is present in the mid-crust (15-25 km). In the uppermost mantle, we observed NE-SW oriented and relatively strong anisotropy. This is compatible with fast shear wave azimuths inferred from SKS splitting measurements reported in previous studies and likely be associated with a sub-lithospheric origin. Anisotropic orientations found at crustal and upper mantle depths are consistent with a model of the ITS reaching to great depths suggest anisotropic fabrics in frozen related to past deformation events. We further perform a joint inversion of receiver functions with apparent S wave velocities to better constrain crustal thickness estimates derived from the harmonic decomposition analysis. The resulting crustal thicknesses vary from about 25-28 km nearby the EAFZ and DSF, and to ~35 and 40 km beneath the Kırşehir block and the Eastern Tauride Mountains.

How to cite: Keleş, D., Eken, T., Licciardi, A., Schiffer, C., and Taymaz, T.: Imprints of Crust- and Mantle-Scale Deformation in Central Anatolide-Tauride Region: Exploiting Receiver Functions, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-284, https://doi.org/10.5194/egusphere-egu22-284, 2022.

EGU22-370 | Presentations | GD6.2

Investigating the response of seismic anisotropy in the crust to the 2014–15 Bárðarbunga-Holuhraun dyke intrusion and eruption 

Conor Bacon, Elisavet Baltas, Jessica Johnson, Robert White, and Nicholas Rawlinson

Existing evidence points towards the evolution of magmatic intrusions being a complex function of both existing structures and the stress state within the crust. Consequently, developing means to make in-situ measurements and effective models of these two factors would provide crucial insight into the dynamics of volcanic systems, feeding forward to volcanic monitoring and crisis response agencies. Seismic anisotropy—the directional dependence of seismic wavespeeds—has been shown to be a direct proxy for the in-situ stress state of the crust, as well as the existing fabric, but its potential for further developing our general understanding of magmatic intrusions has yet to be realised. The wealth of geophysical data recorded during eruptions in the last decade presents a unique opportunity to explore these important natural phenomena in exceptional detail.

We first establish a general model for the bulk properties and structure of upper crust in the central highlands of Iceland by analysing shear-wave splitting (SWS), a common and near-unambiguous indicator of seismic anisotropy. Using this model as a starting point, we subsequently explore the evolution of seismic anisotropy before, during, and after the 2014–15 Bárðarbunga-Holuhraun dyke intrusion and eruption. Seismicity associated with this magmatic intrusion was used to capture the spatial evolution through time of this event in unprecedented detail. Persistent seismicity at “knot points” along the path of the dyke intrusion allow us to negate the effect of changes to source-receiver path on the measured variations in seismic anisotropic properties.

Our preliminary work suggests the far-field response of seismic anisotropy to the intrusion can be explained by existing models relating the stress field to the orientation of the fast direction. It is apparent, however, that this simple model fails to explain sufficiently our observations in the near field. Whether this is due to shortfalls in the stress modelling, the influence of the presence of melt along the raypath, or potentially a breakdown in the established relationship between stress and seismic anisotropy remains unclear.

How to cite: Bacon, C., Baltas, E., Johnson, J., White, R., and Rawlinson, N.: Investigating the response of seismic anisotropy in the crust to the 2014–15 Bárðarbunga-Holuhraun dyke intrusion and eruption, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-370, https://doi.org/10.5194/egusphere-egu22-370, 2022.

EGU22-1166 | Presentations | GD6.2

On singularity point for acoustic orthorhombic model 

Alexey Stovas

The singularity points are very important for elastic waves propagation in low-symmetry anisotropic media (Stovas et al., 2021a). Being converted into the group velocity domain, they result in internal refraction cone with anomalous amplitudes and very complicated polarization fields. I analyze the conditional singularity point in acoustic orthorhombic (ORT) model which is very popular in processing and analysis of 3D seismic data. The elliptic ORT model has one singularity point in one of the symmetry planes (Stovas et al., 2021b). The elastic ORT model has 1 to 6 singularity points. It is shown that for acoustic ORT model the only one S1-S2 wave singularity point (per quadrant) can conditionally be defined in-between the symmetry planes. The required conditions and position of singularity point are computed. The projection of the slowness vector    for singularity point are given by

where are the elements of the stiffness coefficients matrix. I show that the singularity point for this model has the stable conical type of degeneracy (Shuvalov, 1998), which means that the internal refraction cone is always represented by ellipse in 3D space. The slowness surface for acoustic orthorhombic model that consists of three sheets corresponding to P (the inner one) and S1-S2 waves. The image of singularity point in the group domain and its three projections on the symmetry planes can be computed analytically.

 

References

Shuvalov, A.L., 1998, Topological features of the polarization fields of plane acoustic waves in anisotropic media, Proc. R. Soc. Lond., A., 454, 2911–2947.

Stovas, A., Roganov, Yu., and V. Roganov, 2021a, Geometrical characteristics of P and S wave phase and group velocity surfaces in anisotropic media, Geophysical Prospecting, 68(1), 53-69.

Stovas, A., Roganov, Yu., and V. Roganov, 2021b, Wave characteristics in elliptical orthorhombic medium, Geophysics, 86(3), C89-C99.

How to cite: Stovas, A.: On singularity point for acoustic orthorhombic model, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1166, https://doi.org/10.5194/egusphere-egu22-1166, 2022.

Presence of the Etendeka continental flood basalts in northwestern Namibia, at the eastern extension of Walvis Ridge toward the African coast, is taken as evidence for the assumption that this region was affected by the Tristan da Cunha mantle plume during the rifting/break-up process between Africa and South America. Investigation of seismic anisotropy can provide further evidence for the cause-and-effect relationship between mantle flow, lithospheric deformation and surface structures. We investigate seismic anisotropy beneath NW Namibia by splitting analysis of core-refracted teleseismic shear waves (SKS family). The waveform data was obtained from two different GEOFON seismic networks in the region. The XC network with 5 stations, which has been operating for two years since 1998 and 6A network with 40 stations including both land and off-shore (OBS) stations, operated for longer than two years in 2010-2012.

The data was analyzed using the SplitRacer software and the results of joint splitting analysis assuming a one-layer of anisotropy are presented here. The less-noisy waveform data from the land stations provide reliable and consistent measurements. We obtained few reliable measurements from the OBS stations due to higher noise level and ambiguity about the sensor orientation. The majority of our fast directions exhibit an NE-SW direction consistent with the regional trend of seismic anisotropy in western Africa compatible with a model of large-scale mantle flow due to the NE-ward motion of the African plate. In the northern part of the study area, we observe an anti-clockwise rotation of the splitting polarization directions that seems to be caused by the Kaoko belt and the Puros shear zone. Based on the short-scale variation of the splitting parameters in this region, we believe that the cause of the lateral variation in SKS-splitting observation is the shallow lithospheric structure rather than a variation of deep mantle flow. Our results does not show any direct plume related observations in the study region.

How to cite: komeazi, A., Rümpker, G., and Kaviani, A.: Investigation of mantle anisotropy in NW Namibia by shear-wave splitting analysis: evidence for large-scale mantle flow and fossil-anisotropy, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2576, https://doi.org/10.5194/egusphere-egu22-2576, 2022.

EGU22-3042 | Presentations | GD6.2

3D transversely isotropic shear-wave velocity structure of India and Tibet from joint modeling of Rayleigh and Love waves group velocity dispersion. 

Siddharth Dey, Monumoy Ghosh, Rupak Banerjee, Shubham Sharma, Supriyo Mitra, and Shankar Bhattacharya

We use regional Rayleigh and Love wave data, from 4750 earthquakes (M >= 4.0) recorded at 726 stations across India and Tibet, to compute fundamental mode group velocity dispersion between 10 s and 120 s, using the Multiple Filter Technique (MFA). These result in the dense coverage of 14,706 and 14,898 ray-paths for Rayleigh and Love waves, respectively. The dispersion data at discrete periods have been combined through a ray-theory based tomographic formulation to obtain 2D maps of lateral variation in group velocities, where the best resolution is upto 2.5° and 4° for Rayleigh and Love waves tomographic maps, respectively. The Peninsular Shield, the Himalayan foreland basin, the Himalayan collision-zone and the Tibetan Plateau, have been sampled at unprecedented detail. Rayleigh and Love wave dispersion curves, at each node point of the tomography, have been inverted for 1D isotropic shear-wave velocity structure of Vsv and Vsh, respectively, which are combined to obtain 3D Vsv and Vsh structures across India and Tibet. We jointly invert the two datasets at each node to obtain an isotropic 1D velocity structure. The isotropic inversion fits the two datasets reasonably well, however, the misfit in the dispersion dataset both at high and low periods is high. For this, we incorporate radial anisotropy in the velocity structure and parameterize the crust with three layers and upper mantle with two layers. Assuming this radially anisotropic earth structure, we use Genetic Algorithms (GA) to explore the model space extensively. The synthetic dispersion curves are computed using Thomson-Haskell method with reduced delta matrix. The free parameters used in the inversion are VPH and VSH, layer thickness (h) and Vs anisotropy represented by Xi (ξ=VSH/VSV)2. The non-linear inversion technique converges to a best-fitting model by iteratively minimising the misfit between the observed and the data. The 2D group velocity dispersion heterogeneities, the 3D structures of Vsv and Vsh (both isotropic and transversely isotropic) will be presented with a focus to characterize a) the structure of the Indian plate and it’s extent of underthrusting beneath Tibet, and b) to quantify the low-velocity zone at the base of the Himalayan wedge, across the basal decollement, which ruptures in megathrust earthquakes.

How to cite: Dey, S., Ghosh, M., Banerjee, R., Sharma, S., Mitra, S., and Bhattacharya, S.: 3D transversely isotropic shear-wave velocity structure of India and Tibet from joint modeling of Rayleigh and Love waves group velocity dispersion., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3042, https://doi.org/10.5194/egusphere-egu22-3042, 2022.

EGU22-3339 | Presentations | GD6.2

Evidence for Anisotropy in the Innermost Inner Core from the Earthquake Coda-correlation Wavefield 

Thuany Costa de Lima, Hrvoje Tkalčić, and Lauren Waszek

Progress on seismic imaging of the Earth’s inner core (IC) is fairly limited by the uneven distribution of sources and receivers; large earthquakes are primarily confined to plate margins, and seismic stations are unevenly deployed on the Earth’s surface. Advances in data processing techniques and new methods are required to bridge new opportunities to probe the centre of our planet and provide us with valuable information on the IC seismic structure and its surrounding dynamics. In this study, we present a newly-developed method based on the global earthquake coda-correlation wavefield to investigate the anisotropic structure of the IC. Anisotropy in seismic velocity is the directional dependence of seismic waves. Under IC pressure and temperature conditions, different phases of iron – the core’s main mineral constituent can stabilize and form elastic anisotropy. Thus, improved constraints on its strength and distribution are required to understand the crystallographic structure of iron in the IC, which is linked to the evolution of its solidification and deformation processes. Here, we stack the cross-correlation functions of the late-coda seismic wavefield (the correlation wavefield) that reverberates within the Earth up to 10 hours after large earthquakes. We analyse the travel times of the I2* correlation feature, a mathematical manifestation of similarity among IC seismic phases with the same slowness detected in global correlograms at small interstation distances (<10°). The I2* spatial sampling offers an unprecedented data coverage of the IC’s central portion, also known as the innermost IC (IMIC), which overcomes the shortage of the traditional approach using PKIKP ray paths sampling. By comparing the time residuals of different paths of I2* propagating through the IC, we confirm the presence of a deep IC structure with anisotropy fundamentally different from the IC’s outer layers. Our observations support an IMIC cylindrical anisotropy model with a slow direction oriented 55° from the Earth’s spin axis. This new evidence reinforces previous inferences on the existence of the IMIC, with implications for our understanding of the core’s geodynamical evolution. In the future, a similar approach could be applied to advance our understanding of anisotropy in the Earth’s mantle.

How to cite: Costa de Lima, T., Tkalčić, H., and Waszek, L.: Evidence for Anisotropy in the Innermost Inner Core from the Earthquake Coda-correlation Wavefield, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3339, https://doi.org/10.5194/egusphere-egu22-3339, 2022.

EGU22-5322 | Presentations | GD6.2 | Highlight

Constraining Seismic Anisotropy on Mars: New Challenges and First Detection 

Caroline Beghein, Jiaqi Li, James Wookey, Paul Davis, Philippe Lognonné, Martin Schimmel, Eléonore Stutzmann, Matthew Golombek, Jean-Paul Montagner, and William Banerdt

Seismic anisotropy is now commonly studied on Earth and has been detected at various depths, from the crust to the top of the lower mantle, in the lowermost mantle, and in the inner core. In the mantle, observations of seismic anisotropy are often taken as an indication of past or present deformation resulting in the preferential orientation of anisotropic minerals. In the crust, it can come from stress-induced oriented cracks, compositional layering, or crystallographic preferred orientation of minerals. 

While many questions remain regarding the presence and interpretation of seismic anisotropy on Earth, scientists are now faced with new, exciting challenges in trying to constrain the structure of other planetary bodies. One of the goals of NASA’s InSight mission, which landed on Mars in November 2018 and includes a very broadband seismometer, is to constrain Mars interior structure. Compared to seismic studies of Earth, which benefit from the availability of a wealth of high quality data recorded on many seismic stations, difficulties with InSight stem from having only one seismic instrument and only a few high quality events. 

In this study, we analyzed the horizontally polarized (SH)-wave reflections generated from the shallowest crustal layer (layer 1) detected at 8 ± 2 km beneath the InSight lander site by a previous receiver function (RF) study. From Sol 105, when the first low-frequency marsquake was recorded, to Sol 1094, a total of 83 broadband and low-frequency events were detected, but only nine are rated as quality-A with constraints on both their epicentral distance and back azimuth. Of those nine events, we selected four that did not show any interference with mantle triplications generated by the olivine to the wadsleyite phase transition and that had a clear signal after the direct SH phase. A model space search approach enabled us to obtain a range of acceptable SH-wave velocities and layer thicknesses, which we then compared with the RF models of Knapmeyer-Endrun et al. (2021). We found that the acceptable SH-wave speeds are systematically lower than those from the RF study. Since this RF analysis is sensitive to vertically polarized (SV)-waves, we interpret this difference as the signature of radial anisotropy with an anisotropy coefficient 𝜉=(𝑉𝑆𝐻/𝑉𝑆𝑉)2 between 0.7 and 0.9. Modeling of preferred alignment of inclusions shows that dry or fluid-filled cracks/fractures, and igneous inclusions can reproduce the observed radial anisotropy amplitude with VSV>VSH. 

How to cite: Beghein, C., Li, J., Wookey, J., Davis, P., Lognonné, P., Schimmel, M., Stutzmann, E., Golombek, M., Montagner, J.-P., and Banerdt, W.: Constraining Seismic Anisotropy on Mars: New Challenges and First Detection, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5322, https://doi.org/10.5194/egusphere-egu22-5322, 2022.

Teleseismic travel-time tomography remains one of the most popular methods for obtaining images of Earth's upper mantle. However, despite extensive evidence for a seismically anisotropic mantle, assuming an isotropic Earth remains commonplace in such imaging studies. This assumption can result in significant imaging artefacts which in turn may yield misguided inferences regarding mantle dynamics. Using realistic synthetic seismic datasets produced from waveform simulations through elastically anisotropic geodynamic models of subduction, I show how such artefacts manifest in teleseismic P- and S-wave tomography. The anisotropy-induced apparent anomalies are equally problematic in both shear and compressional body wave inversions and the nature of the shear velocity artefacts are dependent on the coordinate system in which the delay times are measured. In general, the isotropic assumption produces distortions in slab geometry and the appearance of large sub- and supra-slab low-velocity zones. I summarise new methods for inverting P- and S-delay times for both isotropic and anisotropic heterogeneity through the introduction of three anisotropic parameters that approximate P and S propagation velocities in arbitrarily orientated hexagonally symmetric elastic media. Through a series of synthetic tomographic inversions, I demonstrate that both teleseismic P- and S-wave delay time data can resolve complex anisotropic heterogeneity likely present in subduction environments. Moreover, including anisotropic parameters into the inversions improves the reconstruction of true isotropic anomalies. Particularly important to the removal of erroneous velocity structure is accounting for dipping fabrics as many imaging artefacts remain when simpler azimuthal anisotropy is assumed. I conclude by highlighting results from recent applications of the anisotropic imaging method to P-wave datasets in the Western US and Mediterranean.

How to cite: VanderBeek, B.: New imaging strategies for constraining upper mantle anisotropy with teleseismic P- and S-wave delay times, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5497, https://doi.org/10.5194/egusphere-egu22-5497, 2022.

Radial seismic anisotropy (RA) designates the difference between the speeds of vertically and horizontally polarized shear waves. RA in the crust can provide information on past tectonic events. Since the amplitude and impact of anisotropic are smaller than the variation of velocity, it is more difficult to distinguish whether radially anisotropic anomalies are driven by the structure or uncertainty. Hence, a lack of considering uncertainty and trade-off here may underestimate radial anisotropy and lead to divergent geodynamical interpretations. The hierarchical transdimensional Bayesian approach is able to provide uncertainty estimates taking fully into account the nonlinearity of the forward problem. Under the Bayesian framework, the mean and the variance of the ensemble containing a large set of models are interpreted as the reference solution and a measure of the model error respectively. 

In our study, we applied a two-step RA inversion of surface wave dispersion and receiver function based on a hierarchical transdimensional Bayesian Monte Carlo search with coupled uncertainty propagation to a temporary broadband array covering all of Sri Lanka. First, we constructed Rayleigh and Love wave phase velocity and errors maps at periods ranging from 0s to 20s. To remove outliers, data uncertainty distribution was expressed as a mixture of a Gaussian and uniform distribution. Next, we inverted local dispersion curves and receiver functions jointly to obtain 1D shear velocity and RA models. The method effectively quantifies the uncertainty of the final crustal shear wave velocity and RA model and shows robust results. The negative RA (Vsv > Vsh) anomalous with low uncertainty found in the mid-lower crust of Central Sri Lanka may show evidence that the charnockite inclusion is associated with the shear zones confined to the cores of some doubly-plunging synforms. In the east Highland Complex, the positive radial anisotropy (Vsh > Vsv) anomalous with low uncertainty may reveal the evidence for sub-horizontal shear zones along the thrust boundary.

How to cite: Ke, K.-Y., Tilmann, F., Ryberg, T., and Dreiling, J.: Radial anisotropy models and their uncertainties beneath Sri Lanka derived from joint inversion of surface wave dispersion and receiver functions using a Bayesian approach, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5526, https://doi.org/10.5194/egusphere-egu22-5526, 2022.

EGU22-6498 | Presentations | GD6.2

A hybrid computational Framework for 3D anisotropic full-Waveform inversion at a regional scale 

Foivos Karakostas, Andrea Morelli, Irene Molinari, Brandon VanderBeek, and Manuele Faccenda

Seismic anisotropy exists in various depths on Earth. However, computational complexities and limited data coverage often lead many seismic tomographic efforts to neglect it. This isotropic assumption can lead to various misinterpretations, which become more important when the spatial resolution is increased. 

In our project, we aim at constructing, through full-waveform inversion, a 3D seismic model of upper mantle anisotropic structure (approximately 500 km depth) below the Tyrrhenian Sea -- a region of great geodynamic interest mainly because of the Calabro-Ionian subduction zone. 

Here we present the framework and the forward modelling, based on the joint use of SPECFEM3D and AxiSEM software, for the implementation of the so-called "box tomography" [1]. By this, a 3D, anisotropic, model spans the region that we aim to resolve, whereas the rest of the globe is represented by a 1D model with lower resolution. This methodology allows the inclusion of teleseisms -- thus a much larger dataset than allowed by closed-domain modelling, as we can also use numerous seismic events out of the region of interest recorded by the dense network of stations within it. We show that this approach in fact highly improves the coverage of data, that can be used for inversion. 

We use SPECFEM3D for the region of interest and AxiSEM for the global simulation. We process the topography, seismic velocities and anisotropy, in order to construct a realistic 3D input model for the area of interest, that honours the Earth's curvature and transforms the geometry of an a priori model from geographical to Cartesian coordinates, with respect to a point of reference, situated in the middle of the top layer of the constructed mesh. We then process the waveforms, resulting from such forward simulation, with the application of a rotation from the Cartesian coordinates to the geographical ones, in order to perform the inversion with the use of real data of seismic recordings. The forward modelling is then to be used for computation of anisotropic Fréchet kernels and inversion. 

[1] Yder Masson, Barbara Romanowicz, Box tomography: localized imaging of remote targets buried in an unknown medium, a step forward for understanding key structures in the deep Earth, Geophysical Journal International, Volume 211, Issue 1, October 2017, Pages 141–163, https://doi.org/10.1093/gji/ggx141

How to cite: Karakostas, F., Morelli, A., Molinari, I., VanderBeek, B., and Faccenda, M.: A hybrid computational Framework for 3D anisotropic full-Waveform inversion at a regional scale, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6498, https://doi.org/10.5194/egusphere-egu22-6498, 2022.

EGU22-7184 | Presentations | GD6.2

Patchwork structure of continental lithosphere captured in 3D body-wave images of its anisotropic fabrics 

Jaroslava Plomerová, Helena Žlebčíková, and Luděk Vecsey

Seismic anisotropy, modelled from propagation of teleseismic longitudinal (P) and shear (S/SKS) waves, provides unique constraints on tectonic fabrics and character of past and present-day deformations of the continental lithosphere in different tectonic environments (e.g., Babuška and Plomerová, Solid Earth Sci. 2020). We evaluate body-wave anisotropic parameters (directional variations of velocities or shear-wave splitting) in 3D and invert for three-dimensional structure of the upper mantle (Munzarová et al., GJI 2018) with no limitation imposed on the symmetry axis orientation into the horizontal or vertical directions. Resulting models of the continental lithosphere are based on data from several passive seismic experiments in Archean, Proterozoic and a variety of Phanerozoic provinces of Europe. We emphasize the importance of the three-dimensional approach of modelling anisotropy to be able to detect tilts of symmetry axes in individual domains of the mantle lithosphere. The extent of the domains is delimited by changes in orientation and strength of anisotropy. Assuming only azimuthal anisotropy, similarly to only isotropy, may create artefacts and lead to spurious interpretations (e.g., VanderBeek and Faccenda, GJI 2021). Prevailingly sub-horizontal preferred orientation of olivine, the most abundant mantle mineral, arises from mantle convection in newly formed oceanic lithosphere on both sides of the mid-oceanic ridges. Systematically oriented dipping fabrics in domains of the continental mantle lithosphere reflect series of successive subductions of ancient oceanic plates and their accretions enlarging primordial continent cores. Consequent continental break-ups and assemblages of wandering micro-plates preserve “frozen” anisotropic fabrics and create patchwork structures of the present-day continents.

How to cite: Plomerová, J., Žlebčíková, H., and Vecsey, L.: Patchwork structure of continental lithosphere captured in 3D body-wave images of its anisotropic fabrics, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7184, https://doi.org/10.5194/egusphere-egu22-7184, 2022.

EGU22-7201 | Presentations | GD6.2

Olivine texture evolution under simple deformation: Comparing different numerical methods for calculating LPO and anisotropic viscosity 

Yijun Wang, Ágnes Király, Clinton Phillips Conrad, Lars Hansen, and Menno Fraters

The development of olivine texture, or lattice preferred orientation (LPO), has been implemented in many numerical modelling tools to predict seismic anisotropy, which places constraints on mantle dynamics. However, a few recent studies have linked olivine texture development to its mechanical anisotropy, which in turn can affect deformation rates and also the resulting texture. To study the effect of anisotropic viscosity (AV) and LPO evolution in geodynamics processes, it is important to know the role of AV and LPO and the differences between the numerical methods that calculate them.

The modified director method parameterizes the olivine LPO formation as relative rotation rates along the slip systems that participate in the rotation of olivine grains due to finite deformation. When it is coupled with a micromechanical model for olivine AV, it allows the anisotropic texture to modify the viscosity. We compare the olivine textures predicted by the modified director method both with and without a coupled micromechanical model and textures predicted by the D-Rex LPO evolution model. To do this, we recalculate the texture observed in simple 3D models such as a shear box model and two other well-understood models: a corner flow model and a subduction model. 

In general, we observed that the D-Rex models predict a stronger anisotropic texture compared to the texture predicted by the modified director method both with and without the micromechanical model, in agreement with previous studies. When including the micromechanical model, the anisotropic texture changes the observed strain rates, which allows for a slightly faster texture evolution that is more similar to the D-Rex predictions than it is to those produced by the modified director method alone. We found that even for the simplest settings there is an increase of 10~15% in strain rate during deformation until a strain of 2.5. When shearing the asthenosphere over ~10 Myr, such anisotropy could modify the effective viscosity of the mantle,causing an up to 40% increase in plate velocity for the same applied stress. The anisotropy can also induce deformation in planes other than the initial shear plane, which can change the direction of the primary deformation.

Our ultimate goal is to understand the role of AV and LPO evolution in geodynamic processes by looking at deformation paths predicted by geodynamic models in ASPECTWith this initial test, we will gain a basic understanding of olivine AV behavior and LPO evolution under different deformation settings calculated with different numerical methods, which we will carry onto our next step of implementing anisotropic viscosity of olivine in 3D into ASPECT.

How to cite: Wang, Y., Király, Á., Conrad, C. P., Hansen, L., and Fraters, M.: Olivine texture evolution under simple deformation: Comparing different numerical methods for calculating LPO and anisotropic viscosity, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7201, https://doi.org/10.5194/egusphere-egu22-7201, 2022.

EGU22-7807 | Presentations | GD6.2

New insights into tomographic image interpretation and upper mantle dynamics by combining geodynamic modelling and seismological methods 

Rosalia Lo Bue, Francesco Rappisi, Brandon Paul Vanderbeek, and Manuele Faccenda

Earth’s crust and upper mantle (above 400 km) exhibit strong anisotropic fabrics which reflect the strain history of the rocks and can provide important constraints on mantle dynamics and tectonics. Although the well-established anisotropic structure of Earth’s upper mantle, the influence of elastic anisotropy on the seismic tomography remains largely ignored. It is in fact commonplace to neglect the effects of seismic anisotropy in the construction of tomographic models assuming an isotropic Earth. This approximation certainly simplifies the computational approach but can introduce notable imaging artefacts hence errors in the interpretation of the tomographic results.

Here, we want to bring new insights into the 3D upper mantle structure and dynamics by combining geodynamic modelling and seismological methods taking into account seismic anisotropy.

An ideal environment for studying seismic anisotropy and related geodynamic processes is the Central-Western Mediterranean, that, in the last 20-30 million years, has experienced a complex tectonic activity characterized by back-arc extension related to slab retreat in the Liguro-Provençal, Alborean, Algerian and Tyrrhenian basins and episodes of slab break-off, lateral tearing and interactions between slabs.

Firstly, we apply the modelling methodology of Lo Bue et al., 2021 to reproduce the geodynamic evolution of the study region over the last ∼20-30 Myr. We validate this geodynamic model by comparing seismological synthetics (e.g., SKS splitting) and major tectonic features (i.e., slab and trench geometry) with observations. Next, we use the elastic tensors of the present-day modelled Mediterranean set-up to performed 3D P-wave anisotropic tomography by inverting synthetics delay times as in VanderBeek and Faccenda, 2021 validated through comparison with the geodynamic reference model.

In this work, we attempt to answer some fundamental questions. Compared to Lo Bue et al., 2021 how does using a more complex initial geometry affect the geodynamic modelling result? How well does P-wave anisotropic tomography recover the isotropic and anisotropic features? By performing purely isotropic inversions, which are the main artefacts introduced in the tomographic image by neglecting seismic anisotropy? How much the vertical smearing effect bias P-wave tomographic models?

 

References

Lo Bue, R., Faccenda, M., & Yang, J. (2021). The role of adria plate lithospheric structures on the recent dynamics of the central mediterranean region. Journal of Geophysical Research: Solid Earth, 126(10), e2021JB022377.

VanderBeek, B. P., & Faccenda, M. (2021). Imaging upper mantle anisotropy with teleseismic p- wave delays: Insights from tomographic reconstructions of subduction simulations. Geophysical Journal International, 225(3), 2097–2119.

How to cite: Lo Bue, R., Rappisi, F., Vanderbeek, B. P., and Faccenda, M.: New insights into tomographic image interpretation and upper mantle dynamics by combining geodynamic modelling and seismological methods, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7807, https://doi.org/10.5194/egusphere-egu22-7807, 2022.

For the understanding of deformational mechanism and geodynamics of a tectonic set up, the source localization and central depth of anisotropy plays a vital role. Though mantle dynamics and deformation patterns can be understood from studying the shear wave splitting mechanism, the true interpretation of under earth mechanism governing the geodynamics remains little biased and unrealistic without the  proper justification and identification of the source localization and depth of anisotropy. Our present study is focused on the possible central depth determination and source localization of anisotropy beneath the Sikkim Himalayan region based upon the well-established spatial coherency method of Splitting parameters, an improved and dynamic principle of grid search analysis based on the Fresnel zone concept. The principle is based upon the maximum coherency relation between the splitting parameters suggested by a minimization in the variation factor as a function of true depth of the anisotropy. Sikkim Himalaya, sandwiched between the central Nepal Himalaya and the eastern Bhutan Himalaya, demarcates the distinct change in the width of the Himalayan foreland basin and the Main Himalayan Thrust (MHT), which is a part of the active deforming eastern Himalayan fold axis and thrust belt. The Spatial coherency analysis of splitting parameters suggests the central depth of heterogeneity at around 130 km beneath this Sikkim Himalayan region as a consequence of the deformation patterns governed by the complex lithospheric mass at this particular depth.

 

KEYWORDS

Spatial coherency, Shear wave splitting, Sikkim Himalaya, lithosphere.

How to cite: Biswal, S., Dey, G., and Mohanty, D. D.: Implications on source localization and central depth of anisotropy beneath the Sikkim Himalaya: an appraisal on lithospheric deformation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9402, https://doi.org/10.5194/egusphere-egu22-9402, 2022.

EGU22-10088 | Presentations | GD6.2

Quantifying the effective seismic anisotropy produced by a ridge-transform model 

Thomas Bodin, Alexandre Janin, Milena Marjanovic, Cecile Prigent, Yann Capdeville, Sebastien Chevrot, and Stephanie Durand

Global tomographic models depict long-wavelength azimuthal anisotropy in the oceanic upper mantle, with a fast axis direction orthogonal to divergent plate boundaries. This anisotropy is usually attributed to the Lattice Preferred Orientation (LPO) of olivine due to asthenospheric mantle flow away from the ridge axis. In this work, we want to test an alternative hypothesis, whether this observed anisotropic signal could be partially explained by the presence of transform faults and associated fracture zones in the lithosphere. The transform plate boundaries represent sharp structures perpendicular to the ridge-axis with the wavelength (˜10 km), which is much smaller than the wavelength of seismic surface waves used to image the mantle (˜100 km). Therefore, transform faults could potentially result in an effective anisotropy in tomographic images through their Shape Preferred Orientation (SPO). We base our calculations on several thermo-chemical models that follow the observed ridge-transform geometry at different spreading rates. To produce the effective medium as seen by long-period waves, we use a non-periodic homogenization algorithm. The resulting seismic velocity field can be interpreted as the tomographic image that would be obtained after inverting long-period seismic data; it is smooth, fully anisotropic, and comparable to actual tomographic models.

How to cite: Bodin, T., Janin, A., Marjanovic, M., Prigent, C., Capdeville, Y., Chevrot, S., and Durand, S.: Quantifying the effective seismic anisotropy produced by a ridge-transform model, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10088, https://doi.org/10.5194/egusphere-egu22-10088, 2022.

EGU22-11315 | Presentations | GD6.2

Differential SKS-SKKS splitting due to lowermost mantle anisotropy beneath North America measured from beamformed SmKS phases 

Jonathan Wolf, Maureen D Long, Daniel A Frost, Adeolu O Aderoju, Neala Creasy, Edward Garnero, and Ebru Bozdag

Differential SKS-SKKS splitting is often interpreted as evidence for lowermost mantle anisotropy, because while SKS and SKKS raypaths are very similar in the upper mantle, they diverge substantially in the lowermost mantle. While discrepant SKS-SKKS splitting is a valuable tool to probe D'' anisotropy, individual measurements are typically noisy and have large scatter, making interpretation challenging. Array techniques are commonly used in observational seismology to enhance signal-to-noise ratios and extract seismic phases that would not be reliably detectable in single seismograms. Such techniques, however, have rarely been applied to resolve seismic anisotropy via shear wave splitting. In this study, we apply stacking and beamforming for different subarrays across the USArray to analyze SKS-SKKS splitting discrepancies measured across the North American continent. A benchmarking exercise demonstrates that the effect of upper mantle anisotropy on the beamformed phases can be understood as a relatively simple average of splitting over different upper mantle volumes, and that discrepant measurements reflect a contribution from the lowermost mantle. We obtain robust differential splitting intensity measurements for beamformed data from a selection of events that occurred in the western Pacific and Scotia subduction zones. This approach yields a robust set of splitting intensity discrepancy values for phases that sample the lowermost mantle beneath North America and the surrounding region, with much less scatter than comparable datasets based on individual seismograms. We find evidence for several distinct regions with strong anisotropy at the base of the mantle beneath our study region, plausibly due to subduction-related lowermost mantle flow and deformation. 

How to cite: Wolf, J., Long, M. D., Frost, D. A., Aderoju, A. O., Creasy, N., Garnero, E., and Bozdag, E.: Differential SKS-SKKS splitting due to lowermost mantle anisotropy beneath North America measured from beamformed SmKS phases, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11315, https://doi.org/10.5194/egusphere-egu22-11315, 2022.

EGU22-11438 | Presentations | GD6.2

Numerical modelling of strain localization by anisotropy evolution during 2D viscous simple shearing 

William Halter, Emilie Macherel, Thibault Duretz, and Stefan M. Schmalholz

Strain localization and associated softening mechanisms in a deforming lithosphere are important for subduction initiation or the generation of tectonic nappes during orogeny. Many strain localization and softening mechanisms have been proposed as being important during the viscous, creeping, deformation of the lithosphere, such as thermal softening, grain size reduction, reaction-induced softening or anisotropy development. However, which localization mechanism is the controlling one and under which deformation conditions is still contentious. In this contribution, we focus on strain localization in viscous material due to the generation of anisotropy, for example due to the development of a foliation. We numerically model the generation and evolution of anisotropy during two-dimensional viscous simple shear in order to quantify the impact of anisotropy development on strain localization and on the effective softening. We calculate the finite strain ellipse during viscous deformation. The aspect ratio of the finite strain ellipse serves as proxy for the magnitude and evolution of anisotropy, which determines the ratio of normal to tangential viscosity. To track the orientation of the anisotropy during deformation we apply a director method. We benchmark our implementation of anisotropy by comparing results of two independently developed numerical algorithms based on the finite difference method: one algorithm employs a direct solver and the other a pseudo-transient iterative solver. We will present results of our numerical simulations and discuss their application to natural shear zones.

How to cite: Halter, W., Macherel, E., Duretz, T., and Schmalholz, S. M.: Numerical modelling of strain localization by anisotropy evolution during 2D viscous simple shearing, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11438, https://doi.org/10.5194/egusphere-egu22-11438, 2022.

EGU22-12169 | Presentations | GD6.2

Surface wave detectability of transition zone anisotropy induced by non-Newtonian mantle flow 

John Keith Magali, Sébastien Merkel, and Estelle Ledoux

Large-scale anisotropy inferred from long-period seismic tomography mainly results from the crystallographic preferred orientation (CPO) of olivine aggregates due to mantle deformation. In the 410-km transition zone, the inclusion of wadsleyite CPO diminishes the overall anisotropy. This may predispose the latter below the seismic detection limit.  In this study, we attempt to assess the detectability of the anisotropy in the 410-km transition zone using surface wave dispersion measurements. Proceeding as a purely-forward approach, we consider non-Newtonian mantle flows reminiscent to the deformation by dislocation creep of olivine. A wadsleyite layer is imposed underneath the discontinuity down to a depth of 520 km. We model the CPO development in olivine and in wadsleyite using a visco-plastic self-consistent (VPSC) approach. Finally, we compute local surface wave dispersion curves and its azimuthal variations to study the surface imprint of transition zone anisotropy.  We anticipate the sensitivity kernels to as well provide key insights in evaluating its detectability.

How to cite: Magali, J. K., Merkel, S., and Ledoux, E.: Surface wave detectability of transition zone anisotropy induced by non-Newtonian mantle flow, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12169, https://doi.org/10.5194/egusphere-egu22-12169, 2022.

EGU22-13364 | Presentations | GD6.2

Seismic anisotropy beneath the western part of the Carpathian-Pannonianregion inferred from combined SKS splitting and mantle xenolith studies 

Nóra Liptai, Zoltán Gráczer, Gyöngyvér Szanyi, Bálint Süle, László Aradi, György Falus, Götz Bokelmann, Máté Timkó, Gábor Timár, Sierd Cloetingh, Csaba Szabó, and István Kovács and the AlpArray Working Group

Information on mantle anisotropy can be obtained from methods such as
studying the lattice-preferred orientation (LPO) in mantle peridotites,
or conducting shear-wave splitting (SKS) analyses which allow to
determine whether it is a single or multi-layered anisotropy and the
delay time of the fast and slow polarized wave can indicate the
thickness. In this study we provide a detailed SKS mapping on the
western part of the Carpathian-Pannonian region (CPR) using an increased
amount of splitting data, and compare the results with seismic
properties reported from mantle xenoliths to characterize the depth,
thickness, and regional differences of the anisotropic layer in the
mantle.
According to the combined SKS and xenolith data, mantle anisotropy is
different in the northern and the central/southern part of the western
CPR. In the northern part, the lack of azimuthal dependence of the fast
split S-wave indicates a single anisotropic layer, which agrees with
xenolith data from the Nógrád-Gömör volcanic field. In the central
areas, multiple anisotropic layers are suggested by systematic azimuthal
variations in several stations, which may be explained by two,
petrographically and LPO-wise different xenolith subgroups described in
the Bakony-Balaton Highland. The shallower layer is suggested to have a
‘fossilized’ lithospheric structure, which could account for the
occasionally detected E-W fast S-orientations, whereas the deeper one
reflects structures responsible for the regional NW-SE orientations
attributed to the present-day convergent tectonics. In the Styrian
Basin, results are ambiguous as SKS splitting data hints at the presence
of multiple anisotropic layers, however, it is not supported clearly by
xenolith data.
Spatial coherency analysis of the splitting parameters put the center of
the anisotropic layer at ~140-150 km depth under the Western
Carpathians, which implies a total thickness of ~220-240 km. Thickness
calculated from seismic properties of the xenoliths resulted in lower
values on average, which may be explained by heterogeneous sampling by
xenoliths, or the different orientation of the mineral deformation
structures (foliation and lineation).

How to cite: Liptai, N., Gráczer, Z., Szanyi, G., Süle, B., Aradi, L., Falus, G., Bokelmann, G., Timkó, M., Timár, G., Cloetingh, S., Szabó, C., and Kovács, I. and the AlpArray Working Group: Seismic anisotropy beneath the western part of the Carpathian-Pannonianregion inferred from combined SKS splitting and mantle xenolith studies, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13364, https://doi.org/10.5194/egusphere-egu22-13364, 2022.

EGU22-28 | Presentations | GMPV7.2

Preliminary investigation on PT path of garnet-bearing mafic rocks in the Neoproterozoic Ougda magmatic complex, Tuareg Shield, Algeria 

Chaouki Djallel Eddine Bendimerad, Abderrahmane Bendaoud, Julien Berger, Renaud Caby, and Nachida Abdallah

The mafic-ultramafic Ougda magmatic complex is located in the west part of Tuarge Shield, in Algeria, between Tassendjanet terrane in the east and Ahnet terrane in the west. It is composed of three successive generations of magmatic rocks (Dostal et al., 1996). The first generation located in the north, includes ultramafic rocks cut by dikes of cumulate garnet-bearing mafic rocks and quartz diorite sheets. It records high-temperature metamorphic conditions, granulite facies. The second and third generation located in the south, includes undeformed cumulate and non-cumulate gabbros and intermediate to mafic dikes. The three generations record a geochemical evolution from tholeiitic to calco-alkaline magmatism with subduction-related oceanic environment (Dostal et al., 1996). The age of the first generation is around 800 Ma and the second generation is dated at 680 Ma, considered as the ages of the inception to demise of the oceanic lithosphere (Dostal et al., 1996; Caby and Monié, 2003). Here, we focus on garnet-bearing rocks that show particular interest, as they are affected by high-grade metamorphism in this area. Understanding the pressure-temperature (P-T) evolution of those garnet-bearing rocks allow a crucial constrain of the evolution of the oceanic crust in this area during the Panafrican orogeny.

Petrographical investigation shows that all samples share similar mineralogical assemblages with garnet, plagioclase, amphibole, clinopyroxene, ilmenite and rutile. It is interpreted as typical of granulite facies. Garnet is the most dominate phase and show different textural types: Pokioblastic garnet with inclusions of amphibole, clinopyroxene, plagioclase, ilmenite and rutile. In some samples, garnet is very large (~2 cm), ilmenite is observed in garnet core and rutile appears with ilmenite in garnet rims. Clinopyroxene in garnet is a primary phase as it is surrounded by amphibole, which indicate a reaction with garnet. Garnet corona is around clinopyroxene and plagioclase and both are not in contact with each other. Modeling phase relationship using P-T pseudosections was calculated to constrain the P-T conditions and mineralogical evolution. For garnet growth, modal calculations with observed mineral assemblages are more consistent with a solid-state reaction where clinopyroxene and plagioclase are consumed to produce garnet. The PT path manifest with either cooling at high pressure or pressure increase stage, linked to garnet growth, 14-7 Kbar and 1000-700 °C. The P-T conditions are limited by the appearance of biotite at low temperature, solidus at high temperature and olivine at low pressure. The maximum pressure being recorded by rutile-ilmenite-bearing assemblage. This granulitisation stage is followed by a decompression in subsolidus conditions, amphibolites facies, where amphibole appears either as the product of clinopyroxene transformation or reaction between primary clinopyroxene and garnet through hydration. Lastly, hydration in low grade, greenschist facies, is recorded in garnet- and clinopyroxene-free domains with hydrous phases, chlorite, epidote and amphibole. Hence, P-T evolution recorded in garnet-bearing rocks of Ougda shows an anticlockwise PT path with granulitisation stage showing P-T peak recorded by rutile-ilmenite-bearing assemblage in garnet. Followed by a decompression in amphibolite facies with production of amphibole and ended up with late hydration in geenschist facies.

How to cite: Bendimerad, C. D. E., Bendaoud, A., Berger, J., Caby, R., and Abdallah, N.: Preliminary investigation on PT path of garnet-bearing mafic rocks in the Neoproterozoic Ougda magmatic complex, Tuareg Shield, Algeria, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-28, https://doi.org/10.5194/egusphere-egu22-28, 2022.

EGU22-186 | Presentations | GMPV7.2

Elastic thermobarometry on Zircon-in-Garnet (ZiG) from the Brossasco-Isasca unit (Dora-Maira Massif, Western Alps) 

Giulia Mingardi, Nicola Campomenosi, Mattia Luca Mazzucchelli, Christian Chopin, Marco Scambelluri, and Matteo Alvaro

Here we studied metapelites from the ultrahigh-pressure (UHP) Brossasco-Isasca unit in the Dora-Maira Massif, Western Alps, combining zircon-in-garnet elastic geo-thermobarometry and phase equilibria modelling. We determined the residual strain and pressure of zircon inclusions via micro-Raman spectroscopy and the dedicated softwares available online such as stRAinMAN [1] and EntraPT [2]. The entrapment isomekes obtained for 28 zircon inclusions in garnet from metapelites (Alm67-79-Py9-30-Grs1-6-Sps0-6) were combined with thermodynamic modelling to constrain the P-T range of garnet growth, assuming purely elastic behaviour.

The presence of chloritoid and/or staurolite inclusions at the garnet core-mantle and the presence of coesite inclusions only at the garnet rim suggest that most of the garnet volume formed during an early prograde path and only a small portion under UHP conditions. Most of the selected inclusions, however, come from the rim of the garnet. Since the rim is limpid, we could localize and target those inclusions that are spaced enough to be used reliably for elastic thermobarometry without corrections. The entrapment pressures obtained for most zircon inclusions do not match the previously published results obtained from conventional petrologic methods [3]. For example, combining our results with the available retrograde P-T paths of the UHP unit [3], we bracket the apparent entrapment conditions of zircon inclusions at 0.5 GPa and 600-650 °C, below the expected conditions in the coesite stability field. The same discrepancy between the elastic and chemical barometric methods has been documented for the pyrope-bearing whiteschists from the same metamorphic unit [4]. The observed misfit has been tentatively attributed to post-entrapment viscous relaxation of the garnet–zircon inclusion system, which cannot be accounted for by purely elastic models. These results provide further evidence of a general post-entrapment elastic resetting of the zircon-in-garnet pairs along the retrograde path at temperatures near 600-650°C.

This work was supported by ERC-StG TRUE DEPTHS (grant number 714936) to Matteo Alvaro. Nicola Campomenosi and Mattia L. Mazzucchelli are supported by the SIMP PhD Thesis Award and by the Alexander von Humboldt research fellowship. [1] Angel et al. (2019) Zeitschrift für Kristallographie, 234, 219. [2] Mazzucchelli et al. (2021) American Mineralogist, 106, 830. [3] Groppo et al. (2019) European Journal of Mineralogy, 31, 665. [4] Campomenosi et al. (2021) Contrib Mineral Petrol 176, 36.

How to cite: Mingardi, G., Campomenosi, N., Mazzucchelli, M. L., Chopin, C., Scambelluri, M., and Alvaro, M.: Elastic thermobarometry on Zircon-in-Garnet (ZiG) from the Brossasco-Isasca unit (Dora-Maira Massif, Western Alps), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-186, https://doi.org/10.5194/egusphere-egu22-186, 2022.

EGU22-1633 | Presentations | GMPV7.2

Graphite in granulite - characterization, origin, role of fluids and consequences for rheology 

Ane K. Engvik, Håvard Gautneb, Pål Tore Mørkved, Janja Knezevic, Muriel Erambert, and Håkon Austrheim

In a combined geological, petrological and isotopic study from the Lofoten-Vesterålen Complex, Norway, graphite is documented formed in the deep Proterozoic crust. Graphite schist is hosted in sequences of banded gneisses dominated by orthopyroxene-bearing quartzofeldspatic gneiss, interlayered with horizons of marble, calcsilicates and amphibolite. The schist displays a strong foliation and has a major content of graphite up to a modality of 39%. Quartz and plagioclase (Ab47-93An5-52), pyroxenes, biotite (Mg# = 0.67-0.91; Ti < 0.66 a.p.f.u.), and K-feldspar (Ab1-8Kfs92-99) or perthite (Ab35-64An3Kfs50-62) are additional major phases. Pyroxene is present either as orthopyroxene (En69-74Fs26-29; Mg#=0.70-0.74), as clinopyroxene (En33-53Fs1-14Wo44-53; Mg#=0.70-0.97), or both. Pseudosection modeling of the plagioclase + orthopyroxene (Mg#-ratio = 0.74) + biotite + quartz + rutile + ilmenite + graphite-assemblage constrains its stability field to pressure-temperature conditions of 810-835 °C and 0.73-0.77 GPa. Zr-in-rutile also supports a temperature of formation of 740-870°C.

Stable isotopic δ13C in graphite schist shows values from -38 to -17‰ while δ13C values of marbles range from +3‰ to +10‰. Mixed graphitic and calcite carbon samples give lighter values for the calcite (δ13Ccalcite = -8.65‰ to -9.52‰) and heavier values for graphite (δ13Cgrapite = -11.50‰ to -8.88‰) compared to the “pure” samples. δ18O for marble shows relatively light values for calcite ranging from -15.44‰ to -7.53‰ reflecting metamorphic and hydrothermal processes. From the stable C-isotopes we interpret the graphite origin as organic carbon accumulated in sediments contemporaneous with the Early Proterozoic global Lomagundi-Jatuli isotopic excursion.

From petrography and mineral composition, we deduce the reaction equations producing and consuming H2O- and CO2-fluids leading to the stabilisation of graphite and orthopyroxene. The high Mg#-ratio of biotite and pyroxenes is an indication of metasomatism, and together with a high Cl-content of apatite up to 2 a.p.f.u. show the importance of fluids during the high-grade formation of graphite.

The enrichment of graphite resulted in zones with strong schistosity and a sharp strain gradient towards host massive granulite gneiss; High-ordered graphite occurs as euhedral “flakes” (i.e., flake graphite) of fine- to medium grain size, with a strong preferred crystal orientation forming the well-developed foliation together with the crystal preferred orientation of biotite. The presence of graphite reduces crustal strength and causes strain localisation in the granulite facies crust.

How to cite: Engvik, A. K., Gautneb, H., Mørkved, P. T., Knezevic, J., Erambert, M., and Austrheim, H.: Graphite in granulite - characterization, origin, role of fluids and consequences for rheology, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1633, https://doi.org/10.5194/egusphere-egu22-1633, 2022.

EGU22-3348 | Presentations | GMPV7.2

Duration of anatexis in a Neoproterozoic-Cambrian UHT terrane: constraints from prograde melt inclusions in zircon 

Kota Suzuki, Tetsuo Kawakami, and Shuhei Sakata

The duration of anatexis in high-grade metamorphism is essential to understand the crustal melting processes and the tectonic settings. In the case of Rundvågshetta, Lützow-Holm Complex, East Antarctica, the linkage between the U-Pb zircon ages and the metamorphic pressure-temperature (P-T) evolution is still unclear. Only the melt crystallization age of ca. 520 Ma is constrained. In this study, we aim to constrain the duration of anatexis by using petrochronological approaches to an ultrahigh-temperature (UHT) granulite sample from Rundvågshetta.

Garnet in the studied sample consists of the P-poor core, P-rich mantle and P-poor rim. Based on the detailed petrography of inclusion minerals in garnet, we interpret that the garnet core was formed as a peritectic product of biotite dehydration melting during prograde metamorphism, and that the garnet mantle and rim were formed in the peak and retrograde stages, respectively, in a clockwise P-T evolution.

Zircon in the rock matrix shows four microstructural domains; oscillatory-zoned inherited core, dark-CL annulus, slightly bright-CL inner rim and bright-CL outer rim. The inner rim was too thin for the LA-ICP-MS U-Pb zircon dating with 20 µm spot size. The inherited cores are always truncated by the dark-annulus with low Th/U ratios below 0.04. The dark-annulus includes muscovite, biotite, rutile, quartz and melt inclusions and yielded weighted mean age of 564.0 ± 4.9 Ma (2σ error, n = 4, MSWD = 1.8). The dark-annulus is further truncated by the outer rim with higher Th/U ratios (0.08-1.13). The outer rim includes sillimanite, K-feldspar and rutile and yielded weighted mean age of 530.5 ± 4.9 Ma (2σ error, n = 13, MSWD = 1.5).

The microstructures of inclusion zircon vary systematically with the phosphorus zoning of the host garnet. Zircon in the garnet rim show four microstructural domains that are common to the matrix zircon. Meanwhile, zircon in the garnet core always lacks the inner and outer rims. The dark-annulus and outer rim of zircon respectively showed steeply positive-sloping and negative-sloping heavy rare earth elements (HREE) patterns. Meanwhile, the garnet core, mantle and rim showed positive, flat and negative HREE patterns, respectively. Based on these systematic microstructures of inclusion zircon and on the partitioning of HREE between zircon and garnet, it is revealed that the outer rim of zircon grew simultaneously with the garnet rim during the retrograde metamorphism, and that the dark-annulus of zircon grew prior to the garnet core during the prograde metamorphism.

Inclusion minerals in the dark-annulus of zircon suggest the possible occurrence of muscovite dehydration melting at ca. 560 Ma. Therefore, microstructural observations of zircon enabled us to deduce the prograde anatexis prior to the attainment of UHT condition that is not recorded in garnet. Taking the melt crystallization age of ca. 520 Ma into account, the duration of anatexis in Rundvågshetta is constrained to be at least ~40 Myr. Further U-Pb dating of the thin inner rim of zircon may reveal the duration of the UHT itself precisely.

How to cite: Suzuki, K., Kawakami, T., and Sakata, S.: Duration of anatexis in a Neoproterozoic-Cambrian UHT terrane: constraints from prograde melt inclusions in zircon, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3348, https://doi.org/10.5194/egusphere-egu22-3348, 2022.

EGU22-4832 | Presentations | GMPV7.2

Lu-Hf dating of Jurassic eclogites of the Zagros hinterland, Iran: Implications for the timing of Neotethyan subduction initiation 

Rezvaneh Jamaliashtiani, Erik Scherer, Axel K. Schmitt, and Jamshid Hassanzadeh

The Sanandaj-Sirjan zone (SaSZ) on the northern edge of the Arabia-Eurasia suture in Iran includes a significant high-pressure (HP) metamorphic suite exposed along the upper Zayanderud River north of Shahrekord. Phengitic micas from eclogite in the Zayanderud metamorphic complex (ZMC) yielded 40Ar/39Ar dates ranging from 184 to 173 Ma [1], whereas zircon from an associated anatectic pegmatite gave an average U-Pb age of 176 ± 3 Ma [2]. These data are consistent with a subduction channel metamorphism and rapid exhumation during the Early to Middle Jurassic. To constrain the timing of high-pressure conditions, we have conducted Lu-Hf mineral-whole rock dating on two eclogite samples. The resulting garnet-controlled isochron dates of 171.4 ± 0.4 (MSWD = 1.2) and 175 ± 1 (MSWD = 0.43) Ma have important geodynamic implications as the Jurassic initiation of the Neotethyan subduction in Iran has recently been disputed [3][4]. The metamorphic ages of the ZMC eclogite now leave no doubt that subduction was ongoing along the SaSZ peri-Tethyan margin during the Middle Jurassic.

[1] Davoudian et al., 2016 Gondwana Research 37: 216-240; [2] Jamali Ashtiani et al., 2020 Gondwana Research 82: 354-366; [3] Azizi & Stern, 2019 Terra Nova 31: 415-423; [4] Lechmann et al., 2018 Contrib. Mineral. Petrol. 173 (12): 102

How to cite: Jamaliashtiani, R., Scherer, E., K. Schmitt, A., and Hassanzadeh, J.: Lu-Hf dating of Jurassic eclogites of the Zagros hinterland, Iran: Implications for the timing of Neotethyan subduction initiation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4832, https://doi.org/10.5194/egusphere-egu22-4832, 2022.

EGU22-6127 | Presentations | GMPV7.2

Using P-T-t estimates to identify and restore out-of-sequence thrusting in the lower part of the Kalak Nappe Complex (Nordkinnhalvøya, Sværholthalvøya), internal Scandinavian Caledonides, Finnmark, N. Norway 

A. Hugh N. Rice, Fred Gaidies, Olivier K. A. Heldwein, M. Thereza A. G. Yogi, Jamie A. Cutts, and Matthjis A. Smit

The tectonometamorphic evolution of the Kalak Nappe Complex in the northernmost Scandinavian Caledonides is currently uncertain; at least two pre-Caledonian events have been locally recognised within the complex, as well as Caledonian events. To help clarify the evolution of the complex, we document here the P-T-t paths of garnet growth, which represent the peak metamorphic conditions within this relatively unstudied external part of the complex.

Metamorphic P-T paths for the lower part of the Kalak Nappe Complex were obtained using the THERIA_G model of Gaidies et al. (CMP 2008). In the model, equilibrium in the MnNCKFMASHT system was established across the entire rock-volume during prograde metamorphism, except for garnet, which developed growth zoning preserved at levels controlled by the kinetics of intracrystalline diffusion. The mass and composition of material used in successive increments of garnet growth is cumulatively subtracted from the matrix bulk-rock composition before calculating the P-T conditions of the next increment of garnet growth.

There is some latitude with regards to the absolute metamorphic conditions determined using this model, due to the inherent uncertainty of the thermodynamic data and the approximation of the reactive volume composition. However, the slopes of the determined P-T paths, together with lithological, geochemical and Lu-Hf garnet whole-rock isotopic data and garnet crystal size frequency distributions, enabled the identification of three nappes in the study area; from lowest upwards, the Bekkarfjord, Veidnes and Kolvik nappes.

An early, low-pressure Barrovian-type metamorphic event at ∼464 Ma is preserved in the Veidnes Nappe, where garnet cores (Grt 1V) give a P-T gradient of ∼15 bar/°C, with peak conditions of ∼560 °C and 4.5 kbar. That was followed by moderate-pressure metamorphism in the Bekkarfjord Nappe at ∼423 Ma, resulting in garnet crystallization (Grt 1B, core growth) along a gradient of ∼20 bar/°C, with peak conditions of ∼570 °C and 6.0 kbar. All three nappes then experienced Barrovian-type metamorphism at ∼420 Ma on a steep P-T gradient of ∼40 bar/°C, with peak conditions of ∼560 °C and 6.7 kbar in the Bekkarfjord and Veidnes nappes (Grt 2B, V, rim growth), while the overlying Kolvik Nappe was metamorphosed at peak conditions of ∼590 °C and 7.5 kbar (Grt 1K, core growth). We consider the latter two episodes (423, 420 Ma) to be different stages of the Scandian phase of the Caledonian Orogeny.

The juxtaposition of the three nappes, with the youngest event having occurred in the structurally highest unit and the oldest event now being sandwiched between the two younger events indicates out-of-sequence thrusting associated with the final continent-continent collision. This has been modeled in “balanced” cross-sections of the ductile thrusting.

How to cite: Rice, A. H. N., Gaidies, F., Heldwein, O. K. A., Yogi, M. T. A. G., Cutts, J. A., and Smit, M. A.: Using P-T-t estimates to identify and restore out-of-sequence thrusting in the lower part of the Kalak Nappe Complex (Nordkinnhalvøya, Sværholthalvøya), internal Scandinavian Caledonides, Finnmark, N. Norway, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6127, https://doi.org/10.5194/egusphere-egu22-6127, 2022.

EGU22-6214 | Presentations | GMPV7.2

Petrology, geochemistry, and petrogenesis of calcic-ferroan-metaluminous garnetiferous magmatic charnockites from eastern Chhotanagpur Gneissic Complex, Eastern Indian Craton 

Bapi Goswami, Susmita Das, Ankita Basak, Chittaranjan Bhattacharyya, and Chandreyee Goswami

We report calcic-ferroan-metaluminous garnetiferous magmatic charnockites that are extremely rare in nature and hence interesting to study. The garnetiferous porphyritic granite pluton of the Tilaboni area of Chhotanagpur Gneissic Complex of Eastern Indian shield contains older enclaves of enderbite-charnoenderbite-charnockite (charnockitic suite). Garnetiferous metagabbro are spatially associated with charnockitic rocks. Plagioclase, K-feldspar, quartz, ortho-, and clinopyroxene, garnet, biotite ± amphibole, ilmenite ± magnetite are major mafic phases. Biotite is sub-alkaline to alkaline. Plagioclase compositions vary from andesine to oligoclase. Garnet is rich in almandine (70.28–74.04 mol%) and grossular (17.77–21.41 mol%) but contains low pyrope (2.83–7.67 mol%) and spessartine (4.09–4.59 mol%). Amphibole formed through the hydration of hypersthene, clinopyroxene, and garnet.

Garnet-clinopyroxene and orthopyroxene-clinopyroxene geothermometry and garnet-orthopyroxene-plagioclase-quartz geobarometry give granulite-facies (750-850°C; 7.5-8.0 kb) of metamorphism of the charnockitic rocks. Amphibole-plagioclase thermobarometry yields temperature and pressure (733−795 °C; 5−6 kbar) that suggest amphibolization of the mafic minerals at a relatively shallower level. Pseudosection modeling shows that the garnets and orthopyroxene finally equilibrated at around 560°C temperature and 5.8 kb.

Primary ilmenite and high Fe/(Fe+Mg) ratios of amphibole-biotite indicate these charnockites metamorphosed under reduced conditions (ΔNNO −2).

These charnockites are dominantly calcic and ferroan to slightly magnesian (Fe-number: 0.74–0.97); dominantly metaluminous to weakly peraluminous (A/CNK: 0.84–1.08); high- and medium-K calc-alkaline and shoshonite series.

These exhibit moderate variations of Al2O3 (12.44–18.19 wt.%), K2O (1.16–5.7 wt.%), and CaO (1.01–5.72 wt.%) contents. Na2O (3.71–3.89 wt.%) show a slight variation in concentration. Abundances of Fe2O3(total) (2.45–7.88 wt.%) and TiO2 (0.21–1.11 wt.%) are generally moderate, whereas the concentration of MgO (0.08–1.99 wt.%) remains low.

These rocks show enrichments of the Rb, Ba, Th, K, Zr, and Hf but depletion in Nb, Ta, and Ti relative to the primitive-mantle composition. They also show strong depletions in Sr and P, whereas enrichment in Pb. LaN/SmN (2.68–12.95) and GdN/YbN ratios (1.57–2.89) of these rocks are high. Five of the six samples show negative Eu-anomalies (0.29–0.91), one sample shows pronounced positive Eu-anomaly (3.09).

These rocks exhibit similar multicationic trace-element and REE patterns and a nearly collinear array of sample plots in Harker diagrams. Further, these samples follow a calcic to alkali-calcic trend in SiO2 vs. MALI diagram. These factors are the result of magmatic differentiation. Decreases in CaO and Fe2O3t with increasing SiO2 but increasing agpaitic index with increasing silica alkalis are due to fractional crystallization from a common parental magma. Decreasing modal plagioclase following the calc-alkaline trend also supports magma differentiation. High Nb/U (av. 22.48) and Ce/Pb (av. 12.64) ratios but low Th/U (average 7.76) ratios suggest mantle source of the magma parental to these charnockites.

Their ferroan and reduced characters resulted from intense fractionation of early-formed allanite, magnetite, etc. Geochemical modeling shows the calcic charnockites evolved by fractionation of garnet and clinopyroxene from basaltic magma derived from a depleted mantle.

How to cite: Goswami, B., Das, S., Basak, A., Bhattacharyya, C., and Goswami, C.: Petrology, geochemistry, and petrogenesis of calcic-ferroan-metaluminous garnetiferous magmatic charnockites from eastern Chhotanagpur Gneissic Complex, Eastern Indian Craton, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6214, https://doi.org/10.5194/egusphere-egu22-6214, 2022.

EGU22-6405 | Presentations | GMPV7.2

Detrital garnet Lu-Hf and U-Pb geochronometry coupled with compositional analysis: Possibilities and limitations as a sediment provenance indicator 

Chris Mark, Laura Stutenbecker, Sergio Andò, Marta Barbarano, Gary O'Sullivan, Stijn Glorie, Alexander Simpson, and J. Stephen Daly

Detrital geochronology is a powerful tool to interrogate the sedimentary archive of (paleo-)hinterland tectonic, metamorphic, and climatic processes, and can also be applied to modern river sediment as a first-pass tool to establish regional bedrock ages. The popular zircon U-Pb detrital geochronometer has seen widespread adoption for these tasks (3,626/4,471 results for the search term detrital geochronology also contain the term zircon U-Pb; Clarivate Analytics Web of Science). However, zircon fertility is strongly biased to intermediate to felsic source rocks. Moreover, zircon crystallization is volumetrically limited in metamorphic terranes which do not achieve anataxis (e.g., Moecher & Samson, 2006), and is typically restricted to rim overgrowths which are vulnerable to mechanical destruction during fluvial transport, and which are challenging to detect and analyse (e.g., Campbell et al., 2005).

Therefore, it is desirable to develop complementary provenance tools for metamorphic settings. Garnet group minerals are rock-forming in several common metamorphic lithologies, and garnet is therefore a common constituent of clastic detritus from orogens. Moreover, single-grain in-situ dating of garnet by LA-ICPMS is possible using the U-Pb (e.g., Seman et al., 2017) and, by use of an online reaction cell, the Lu-Hf radioisotope systems (Simpson et al., 2021).    

Here, we present results from U-Pb and Lu-Hf double-dating, acquired by LA-ICPMS for detrital garnet recovered from the Oligo-Miocene pro-foreland basin of the European Alps, as well as modern Alpine river sediment. We integrate these data with compositional data acquired by Raman spectroscopy, and energy and wavelength-dispersive X-ray spectroscopy (Stutenbecker et al., 2019). We discuss the implications for Alpine tectonics and metamorphism, and future scope of detrital garnet geochronometry.   

Campbell, I., et al., 2005. Earth Planet. Sci. Lett. 237, 402-432,  doi: 10.1016/j.epsl.2005.06.043

Moecher, D., & Samson, S., 2006, Earth Planet. Sci. Lett. 247, 252–266, doi: 10.1016/j.epsl.2006.04.035

Seman, S., et al., 2017. Chem. Geol. 460, 106–116. doi: 10.1016/j.chemgeo.2017.04.020

Simpson, A., et al., 2021. Chem. Geol. 577, 120299. doi: 10.1016/j.chemgeo.2021.120299

Stutenbecker, L., et al., 2019, Solid Earth 10, 1581–1595, doi: 10.5194/se-10-1581-2019

How to cite: Mark, C., Stutenbecker, L., Andò, S., Barbarano, M., O'Sullivan, G., Glorie, S., Simpson, A., and Daly, J. S.: Detrital garnet Lu-Hf and U-Pb geochronometry coupled with compositional analysis: Possibilities and limitations as a sediment provenance indicator, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6405, https://doi.org/10.5194/egusphere-egu22-6405, 2022.

EGU22-6734 | Presentations | GMPV7.2

Deciphering Neoarchean polymetamorphism and crustal melting in the northern Wyoming Province using garnet petrochronology 

Besim Dragovic, Victor Guevara, Mark Caddick, Jeremy Inglis, Tom Raimondo, and Andrew Kylander-Clark

High-grade metamorphic rocks can record the dynamic processes that lead to crustal heating and a departure from normal crustal geothermal gradients. High temperatures in the Archean crust led to particularly significant melt generation and cratonic stabilization, and understanding the depths, temperatures and rates of Archean metamorphism may reflect our clearest window into possible tectonic styles at this time. However, several Archean metamorphic terranes record polymetamorphism, and unravelling the pressure-temperature-time (P-T-t) histories of such terranes has proven difficult, with complexity inherent in both chronologic and petrologic data.

Here we synthesize results of a multi-analytical study in which garnet and monazite petrochronology, coupled with thermodynamic and diffusion modeling, were applied to Archean granulites from the Beartooth Mountains in the northern Wyoming Province, U.S.A. The data reveal two phases of garnet growth and high-temperature metamorphism. Garnet cores grew coeval with emplacement of a granitoid batholith at ~2.78-2.76 Ga. This was followed by a distinct, second phase of peritectic garnet rim growth at ~2.71 Ga, during biotite breakdown melting at peak temperatures of ~750˚C. Diffusion modeling of chemical zoning in garnet rims shows that this second event was brief: near-peak temperatures were maintained for < 1 Myrs. In contrast, core and rim dates of garnet from a meta-granitoid from the same outcrop record only the initial phase of growth, most likely because a lack of grain boundary fluids inhibited further crystallization in these rocks. Evidence for this second event is cryptic in other granitoid samples, such that this period of heating to at least 750˚C, ~50-100 Myrs after initial batholith emplacement, is poorly recorded in the broader rock record of the Beartooths.

The results of our study show that different parts of the metamorphic history of a rock may be recorded differently between garnet and accessory phases. Lastly, while field and petrologic evidence for polymetamorphism may be cryptic, direct dating of distinct garnet growth zones with preserved major and trace element zonation allows for a clear interpretation between isotopic dates and the metamorphic history of the rock.

How to cite: Dragovic, B., Guevara, V., Caddick, M., Inglis, J., Raimondo, T., and Kylander-Clark, A.: Deciphering Neoarchean polymetamorphism and crustal melting in the northern Wyoming Province using garnet petrochronology, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6734, https://doi.org/10.5194/egusphere-egu22-6734, 2022.

EGU22-7532 | Presentations | GMPV7.2

Repeated metamorphism and deformation localized in a shear zone recording the formation-subduction-exhumation history of the continental crust 

Sascha Zertani, Luca Menegon, Giorgio Pennacchioni, Fernando Corfu, and Bjørn Jamtveit

A prominent natural laboratory to deduce the interplay of seismic and aseismic deformation in the lower continental crust is exposed on the Lofoten archipelago (northern Norway). A key feature to unravel its tectonic history is the ~600 m thick Ramberg-Flakstad shear zone (RFS) that is interpreted as a retrogressed eclogite-facies shear zone. However, the rest of the lower crustal section preserves evidence of cyclicity between seismic rupture (pseudotachylytes) and viscous shear at amphibolite-facies conditions, while the record of high-pressure deformation and metamorphism is less clearly preserved. The RFS is thus a key structure to understand the subduction-exhumation history of the Lofoten crustal section, providing insight into the localization of metamorphism and strain during orogenesis. Here we report field observations combined with mineral chemical, microstructural, and textural observations of this long-lived multistage shear zone. The shear zone is heterogeneous with the main foliation wrapping around weakly to non-foliated blocks. These blocks are dissected by millimeter to centimeter-thick shear zones. The RFS is hosted by Paleoproterozoic gabbroic rocks that were intruded by anorthositic and charnockitic plutons at ~1.8 Ga. Granulite-facies metamorphism, indicated by the crystallization of garnet, recrystallization of orthopyroxene, and a locally preserved migmatitic fabric is likely related to pluton emplacement. Later eclogite-facies metamorphism (age disputed) is evidenced by inclusions of omphacitic clinopyroxene in garnet and clinopyroxene + plagioclase symplectites after omphacite within the main foliation. Inclusion distributions in garnet are patchy and electron backscatter diffraction (EBSD) analysis reveals that individual garnet grains can be divided into multiple domains, indicating various growth phases. The main foliation is dominantly formed by the preferred orientation of amphibole and plagioclase, consistent with amphibolite-facies P-T conditions reported from shear zones and pseudotachylytes elsewhere in Lofoten. The symplectites after omphacite are aligned with this main foliation but internally preserve a vermicular microstructure indicating that retrogression actually occurred statically after alignment. Additionally, plagioclase within the symplectites is more albitic than in the matrix, precluding that significant element redistribution occurred during or after retrogression. Lastly, the main fabric is crosscut by undeformed (to locally weakly folded) pegmatite dykes of Caledonian age which provides a lower age boundary on RFS deformation at ~413 Ma. These observations indicate that the RFS is long-lived (~1.4 Ga), established during Proterozoic granulite-facies metamorphism and repeatedly exploited as a site of metamorphism at varying P-T conditions, hydration/dehydration reactions, and deformation. Key minerals and mineral assemblages reveal these modifications through a history of stable lower continental crust, subduction, and exhumation.

How to cite: Zertani, S., Menegon, L., Pennacchioni, G., Corfu, F., and Jamtveit, B.: Repeated metamorphism and deformation localized in a shear zone recording the formation-subduction-exhumation history of the continental crust, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7532, https://doi.org/10.5194/egusphere-egu22-7532, 2022.

EGU22-7573 | Presentations | GMPV7.2

Decompression of host-inclusion systems in UHP rocks: insights from observations and models 

Cindy Luisier, Thibault Duretz, Philippe Yamato, and Julien Marquardt

Polymorphic transformations are key tracers of metamorphic processes, also used to estimate the pressure and temperature conditions reached by a rock. In particular, the quartz-coesite transition is commonly used to define the lower boundary of the ultrahigh-pressure (UHP) metamorphic field. The partial preservation of coesite included in garnets from UHP rocks bring considerable insights into the burial and exhumation mechanisms of the continental crust involved in convergent zone. Coesite was first described in the Western Alps by Chopin[1], in the Dora-Maria whiteschist, one of the most emblematic UHP rock worldwide. Although the partial preservation of coesite inclusions in garnet has long been attributed to the pressure vessel effect, the interrelationship and relative timing between fracturing and retrogression is still contentious.

Here we study the reaction-deformation relationships of coesite inclusions initially enclosed in garnet and transforming into quartz during the decompression process. We combine 2D numerical thermo-mechanical models constrained by pressure-temperature-time (P-T-t) estimates from the Dora-Maira whiteschist. The model accounts for a compressible visco-elasto-plastic rheology including a pressure-density relationship of silica based on thermodynamic data. This allows us to study the effect of reaction-induced volume increase during decompression. Our results capture the typical fracture patterns of the host garnet radiating from retrogressed coesite inclusions and can be used to study the relative role of volume change associated with a change of P-T conditions on the style of deformation during decompression.

The mechanisms of the coesite-quartz transformation and geodynamic implications are presented and validated against geological data. The effect of fluids on the phase transition and the conditions of access of fluids during the transformation are discussed in the light of the results of the thermo-mechanical models.

This study demonstrates the high potential of thermo-mechanical modelling in enhancing our understanding of the processes involved in the formation and evolution of metamorphic minerals.

 

[1]Chopin (1984) Contributions to Mineralogy and Petrology 86, 2, 107-118

How to cite: Luisier, C., Duretz, T., Yamato, P., and Marquardt, J.: Decompression of host-inclusion systems in UHP rocks: insights from observations and models, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7573, https://doi.org/10.5194/egusphere-egu22-7573, 2022.

The Woodroffe Thrust (WT) in the Musgrave Ranges (central Australia) is a shallowly south-dipping crustal-scale mylonitic zone extending E-W for over 600 km. The WT, developed during the intracontinental Petermann Orogeny (630-520 Ma), placed hanging wall lower-crustal granulite to upper-amphibolite facies rocks of the Fregon Subdomain (FS) over footwall amphibolite-facies mid-crustal gneisses and granitoids of the Mulga Park Subdomain (MPS). The WT mylonites largely affect the MPS and to a minor extent the FS. Towards the WT, the hanging wall hosts the largest volumes of supposedly deep-seated, tectonic pseudotachylytes (pst) worldwide, also partially involved in mylonitization adjacent to the WT. The WT has been inferred to have only a very small difference in pressure (depth) over the ca. 60 km of N-S exposure along the transport direction, from 1.0 – 1.3 GPa to 0.8 – 1.1 GPa, thus representing effectively a very shallowly dipping structure[1]. However, it was noted that these pressure estimates had to be considered with some caution due to not always ideal mineral compositions. Here we present new pressure constraints in northern outcrops from the eastern segment of the thrust suggesting a more complex geometry than previously inferred, with significant variation in depth along the structure.

Pseudotachylyte-bearing peraluminous gneisses, from two localities ca. 80 km apart (Sentinel Bore, SB, to the east and Kelly Hills, KH, to the west) in the immediate hanging wall of the WT, were investigated to establish the ambient conditions during seismic faulting. The gneisses display mm-thick alternation of quartz-feldspar and cordierite-sillimanite-rich layers, including sparse garnet, magnetite, ilmenite, and biotite. Along microfractures of the pst damage zone (i) sillimanite was fractured and remained unaltered; (ii) cordierite broke down to either an andalusite + quartz + biotite symplectite overgrown by kyanite (SB), or just kyanite (KH); and (iii) K-feldspar developed flame perthites. The pst at SB and KH also show a different mineralogy. At SB, pst assemblages include (i) andalusite (pseudomorphosed by biotite) + quartz intergrowths rimmed by plagioclase and K-feldspar; (ii) sillimanite microlites overgrowing sillimanite clasts; (iii) microlitic kyanite, and (iv) poikilitic garnet as the latest grown phase. At KH, pst assemblages include (i) cordierite + quartz intergrowths; (ii) sillimanite microlites overgrowing sillimanite; (iii) microlites of kyanite, and (iv) poikilitic garnet. Andalusite is absent at KH.

The newly identified andalusite, stable in pst, sheared pst and along microfractures in the host rock at SB indicates pressures ≤ 0.5 GPa during seismic faulting, i.e. significantly lower than in the more southern portion close to Mount Woodroffe (ca. 60 km to the SW of SB)[2]. The absence of andalusite at KH implies a complex undulating geometry for the WT.

 

 

1: Wex et al., 2017, Geometry of a large‐scale, low‐angle, midcrustal thrust (Woodroffe Thrust, central Australia). Tectonics36(11), 2447-2476.

2: Hawemann et al., 2018, Pseudotachylytes as field evidence for lower-crustal earthquakes during the intracontinental Petermann Orogeny (Musgrave Block, Central Australia). Solid Earth, 9, 629-648

How to cite: Toffol, G., Pennacchioni, G., Camacho, A., and Mancktelow, N.: Geometric complexity of the Woodroffe Thrust (Musgrave Ranges, central Australia) recorded in hanging wall Al-silicate-bearing peraluminous gneisses and hosted pseudotachylytes, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8678, https://doi.org/10.5194/egusphere-egu22-8678, 2022.

EGU22-8700 | Presentations | GMPV7.2

A new compositional estimate for refractory lower continental crust 

Robert Emo, Balz Kamber, Hilary Downes, and John Caulfield

Compared to the well-studied upper continental crust, the composition of the lower crust is much more poorly constrained. Geophysical constraints and geochemical data from granulite xenoliths indicate that the lower crust is, on average, mafic and depleted in most incompatible elements, including the heat-producing elements (HPE). However, the extent of this depletion is not well known. The large uncertainties associated with lower crustal estimates have important implications for the Earth’s evolution, as the lower crust is often proposed to be a “hidden reservoir” (e.g., for unradiogenic Pb) needed to close mass balance discrepancies for the Bulk Silicate Earth.

In this study, we analysed granulite xenoliths from Queensland, eastern Australia, and the Kola Peninsula, northwest Russia, using a reconstitution approach that corrects for host magma contamination. This method also provides detailed insight into which minerals control elemental distribution and concentrations of the xenoliths. The major element compositions of both suites of granulite xenoliths highlight their mafic nature, with SiO2 contents similar to previously published estimates. However, the concentrations of the most incompatible elements, including the large ion lithophile elements (LILE) and HPE, are very low. Some elements are more depleted by an order of magnitude than the most popular composites used in the literature. Zircon and monazite are rare in these mafic granulites, while apatite and rutile have relatively low Th and U concentrations. The absence of hydrous silicates (e.g., mica and amphibole) and the relatively high anorthite contents of feldspar in the xenoliths is a controlling factor in the low LILE concentrations, particularly for Rb and Cs. If this composition is representative of typical lower continental crust, then such highly refractory compositions limit the ability of the lower crust to act as a significant contributor for planetary mass balance considerations because it does not contain enough Pb, Nb, Ta, Cs and Rb to balance other inventories of the differentiated bulk silicate Earth.

How to cite: Emo, R., Kamber, B., Downes, H., and Caulfield, J.: A new compositional estimate for refractory lower continental crust, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8700, https://doi.org/10.5194/egusphere-egu22-8700, 2022.

EGU22-8722 | Presentations | GMPV7.2

Sulphur and carbon signatures of metamorphic processes in the Nepal Himalayas 

Sandeep Thapa, Frédéric Girault, Damien Deldicque, Jabrane Labidi, Jana Börner, Christian France-Lanord, Pierre Agrinier, Élodie Muller, Lok Bijaya Adhikari, Mukunda Bhattarai, Kabi Raj Paudyal, Sudhan Singh Mahat, Rémi Losno, and Frédéric Perrier

The Nepal Himalayas result from the India-Eurasia collision and the actual shortening is accommodated by a detachment ramp, the Main Himalayan Thrust (MHT). Separating high-grade metamorphic rocks from the Greater Himalayan Sequence to the north and low-grade metamorphic rocks from the Lesser Himalayan Sequence to the south, the Main Central Thrust (MCT) shear zone, is related to the MHT at depth where large Himalayan earthquakes nucleate. The MCT zone occurs from Far-Western to Eastern Nepal, associated at mid-crustal depth with active seismicity and high electrical conductivity; it exhibits carbon-rich rock layers and numerous active hydrothermal systems. Here, based on a multidisciplinary approach that includes geology, geochemistry and geophysics, we study the various sulphur and carbon signatures in the MCT zone in the Nepal Himalayas. First, we characterise the upper LHS rocks that include alternation of graphite-rich mica-schists (the so-called “black schists”) and carbonates (mainly siliceous dolomite). In the laboratory, we determine organic and inorganic carbon contents, as well as complex electrical conductivity. Second, we concentrate on numerous thermal springs in which we measure dissolved carbon and sulphur concentrations and their isotopic compositions (δ13C and δ34S). Third, we study the surface gaseous emissions, directly observed in the vicinity of hot springs, with the measurements of carbon dioxide (CO2) and hydrogen sulphide (H2S) fluxes and isotopic compositions. By comparing the signatures of carbon and sulphur sequestration and carbon and sulphur release at a large spatial scale, our work provides insights into the carbon source-to-sink duality of large orogens, the metamorphic processes and the carbon and sulphur geochemical cycles.

 

How to cite: Thapa, S., Girault, F., Deldicque, D., Labidi, J., Börner, J., France-Lanord, C., Agrinier, P., Muller, É., Adhikari, L. B., Bhattarai, M., Paudyal, K. R., Mahat, S. S., Losno, R., and Perrier, F.: Sulphur and carbon signatures of metamorphic processes in the Nepal Himalayas, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8722, https://doi.org/10.5194/egusphere-egu22-8722, 2022.

EGU22-8736 | Presentations | GMPV7.2

Dolomite-and magnesite-bearing pelites: poorly investigated, yet significant, sources of CO2 in collisional orogens. 

Shashi Tamang, Chiara Groppo, Franco Rolfo, and Frédéric Girault

Calcite-bearing sediments (calcareous pelites, marls, impure limestones) are among the most investigated sources of carbon in collisional settings (e.g. Groppo et al., 2017, 2021, 2022; Rapa et al., 2017). Dolomite- and magnesite-bearing sediments, however, can also be important constituents of evaporitic sequences deposited along passive margins and involved in collisional orogenic processes. So far, decarbonation reactions in dolomite- and magnesite-bearing rocks have been rarely investigated, and their contribution to the orogenic carbon cycle substantially neglected.          

As a contribution to the understanding of the influence of dolomite- and magnesite-bearing lithologies on the global Earth's carbon cycle, a petrologic study was focused on the Lesser Himalayan Sequence (LHS) in central Nepal. The LHS is a thick Proterozoic sedimentary sequence originally deposited on the northern margin of the Indian plate, metamorphosed during the Himalayan orogeny. Abundant dolomite- and magnesite–bearing lithologies occur in the Upper-LHS, whose protoliths can be grouped in: (1) a dolomitic series (dolostones, dolomitic marls, dolomitic pelites), and (2) a magnesitic series (sparry magnesite ores, magnesitic pelites). The magnesite deposits associated to dolomitic lithologies are interpreted as the evidence of evaporitic environments during the Proterozoic.

The schists derived from dolomitic pelites show mineral assemblages similar to those of normal metapelites, but with significant amounts of Ca-rich minerals (e.g. plagioclase) and with biotite anomalously enriched in Mg. The schists derived from magnesitic pelites are, instead, characterized by uncommon assemblages such as orthoamphibole + kyanite + garnet + phlogopite. Thermodynamic forward modelling (P/T-X(CO2) pseudosections) applied to these schists allowed to: (1) understand the nature of the main decarbonation reactions; (2) constrain the P-T conditions at which these reactions occurred, and (3) estimate the amounts of dolomite/magnesite consumed during prograde metamorphism, and the correspondent amounts of released CO2. The main results are:

  • the observed assemblages formed during a heating decompression stage, at P-T conditions of 620 ± 20°C, 8.5 ± 0.2 kbar, consistent with those registered by the associated metapelites;
  • the observed peak assemblages are predicted to be stable in equilibrium with a CO2-bearing fluid, even in those samples where carbonates are no more preserved;
  • the overall results point to an internally buffered P/T-X(CO2) evolution. The amount of carbonates consumed during prograde metamorphism varies in the range 7-20 vol%, corresponding to 3-10 wt% of CO2 These CO2 amounts are nearly double the CO2 released by calcareous pelites (Groppo et al., 2021).

The main consequence of this study is that the CO2 productivity of dolomitic and magnesitic pelites is significant and that these lithologies could be relevant sources of CO2, possibly contributing to the diffuse Himalayan CO2 degassing (e.g. Girault et al., 2014, 2018).

 

References

Girault et al. (2014). Geoph. Res. Lett. 41, 6358–6366

Girault et al. (2018). Nat. Comm. 9, 2956

Groppo et al. (2017). J. Petrol. 58, 53-83.

Groppo et al. (2021). J. metam. Geol. 39, 181-207.

Groppo et al. (2022). Comm. Earth Environ, doi: 10.1038/s43247-022-00340-w

Rapa et al. (2017). Lithos, 292–293, 364–378.

How to cite: Tamang, S., Groppo, C., Rolfo, F., and Girault, F.: Dolomite-and magnesite-bearing pelites: poorly investigated, yet significant, sources of CO2 in collisional orogens., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8736, https://doi.org/10.5194/egusphere-egu22-8736, 2022.

EGU22-9119 | Presentations | GMPV7.2

Mesozoic titanite U–Pb age from mafic granulites of the Wuhe Complex, southeastern North China Craton (NCC) 

Xu Kong, Jun-sheng Lu, Gang Liu, Qiang Feng, Yu-ting Li, and Yi-yi Zhang

As an important component of the lower crust, mafic granulites can provide a great deal of information about orogens’ metamorphic and tectonic evolution, and thus are studied extensively. According to the previous studies, the Wuhe Complex experienced the Late Paleoproterozoic metamorphic event. Here, we report the newly discovered Mesozoic metamorphic titanite age from the mafic granulites of Wuhe Complex and provide some clues to the Mesozoic metamorphic event of the southeastern NCC. Mafic granulite (sample 20BB44) is composed of garnet (12–15 vol.%), clinopyroxene (30–35 vol.%), hornblende (3–6 vol.%), plagioclase (40–50 vol.%), and quartz (1–2 vol.%) with minor ilmenite, pyrite, apatite, zircon, and titanite. Titanite grains are subhedral, euhedral, or homogeneous with grain sizes of 50–300 μm, and have inclusion minerals of hornblende, plagioclase, quartz, and ilmenite. Titanites have variable contents of U (1.0–17.2 ppm), Th (0.2–29.6 ppm), Pb (2.2–6.5 ppm), and Zr (20–259 ppm) with Th/U ratios of 0.07–4.53. According to the Zr-in-Titanite thermometer (Hayden et al., 2008: the estimated pressure was assumed as 0.5 GPa, and the activity of SiO2 (αSiO2) and TiO2 (αTiO2) were assumed as 1 and 0.8, respectively), the titanites may form at the temperature of 607–725 ℃ (689 ℃ on average). Thirty analysis spots on 29 titanite grains yield a lower intercept U–Pb age of 163 ± 28 Ma (MSWD = 1.17). Titanite U–Pb age of 163 Ma may represent the Mesozoic metamorphic event of southeastern NCC and may relate to the subduction of the Paleo-Pacific plate.

How to cite: Kong, X., Lu, J., Liu, G., Feng, Q., Li, Y., and Zhang, Y.: Mesozoic titanite U–Pb age from mafic granulites of the Wuhe Complex, southeastern North China Craton (NCC), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9119, https://doi.org/10.5194/egusphere-egu22-9119, 2022.

EGU22-9177 | Presentations | GMPV7.2

Metamorphic P-T-t paths of Neoarchean pelitic granulites from the Qingyuan terrane, eastern North China Craton 

Gang Liu, Jun-sheng Lu, Xu Kong, Qiang Feng, Yu-ting Li, and Yi-yi Zhang

Precambrian high-pressure (HP) granulites can provide crucial information for reconstructing ancient continental nuclei. Here we report the pelitic granulites from Qingyuan terrane, eastern North China Craton (NCC), which are archean supracrustal rocks occurred as enclaves in gneisses. Two samples from the pelitic granulites both record clockwise P-T paths involving prograde stage (M1), peak stage (M2) and post-peak stage (M3). Prograde stage is represented by biotite, plagioclase, quartz, rutile and ilmenite, preserved as mineral inclusions whthin garnet porphyroblasts, formed at P-T conditions of 8-9 kbar/670-700 ℃ constrained by mineral assemblages within garnet porphyroblasts and Ti-in-quartz geothermometer. The peak stage (M2) can be represented by the garnet cores, matrix rutile, kyanite, K-feldspar and the P-T conditions are constrained to be ~12 kbar/800-820 ℃ by the isopleths of XPy and XGrs from the core of garnet grains. The followed post-peak stage (M3) can be represented by matrix minerals assemblages including garnet, biotite, K-feldspar, sillimanite, ilmenite, quartz and plagioclase, revealing isothermal decompression process to ~9 kbar constrained by the isopleths of XPy and XGrs from inner rims of garnet grains. Monazite age dating suggests that the pelitic granulites possibly reached the peak metamorphic stage at ~2.47 Ga, slightly later than TTG magmatic events. The clockwise P-T paths including sequential isothermal decompression (ITD) segments recorded by the pelitic granulites may be caused by a subduction-collision event during the late Neoarchean in the eastern NCC.

How to cite: Liu, G., Lu, J., Kong, X., Feng, Q., Li, Y., and Zhang, Y.: Metamorphic P-T-t paths of Neoarchean pelitic granulites from the Qingyuan terrane, eastern North China Craton, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9177, https://doi.org/10.5194/egusphere-egu22-9177, 2022.

EGU22-9282 | Presentations | GMPV7.2

LA-ICP-MS U-Pb dating on zircons from the Lepontine Dome (Central European Alps) 

Alessia Tagliaferri, Filippo Luca Schenker, Stefan Markus Schmalholz, Alexey Ulianov, and Silvio Seno

The Lepontine Dome is a structural and metamorphic dome formed by crystalline basement nappes belonging to the Penninic domain of the European Alps (Switzerland). The mineral-zone boundaries of the Barrovian Tertiary metamorphism show an asymmetric concentric zonation not coinciding with the dome shape defined by the regional attitudes of foliation and thrust sheets. The related Barrovian isogrades locally dissect the tectonic nappe contacts suggesting a post-thrusting thermal event. However, the extremely pervasive and NW-SE directed mineral and stretching lineation, also developed during the upper amphibolite facies metamorphism, suggests non-coaxial deformation during thrusting at peak metamorphic conditions. This apparent paradox may be explained with several geodynamic scenarios that are still debated by the scientific community. One crucial element helping to evaluate the different scenarios is the timing of the upper amphibolitic, non-coaxial deformation along the tectonic contacts, which is still poorly constrained. Hence, the goal of our work is to date this deformation with a multidisciplinary approach that aims to solve the relation between the geologic structures and the distribution of heat in the nappe pile.

In the studied domain, the lower unit (the Simano nappe) is formed by metagranitoids and by minor paragneiss. The upper thrusted unit (the Cima Lunga/Adula nappe) is made of metasediments, mainly quartz-rich gneiss intercalated with amphibole-gneiss, peridotitic lenses and, locally, calcschist and/or marble. The alternation of lithotypes is mostly parallel to the nappe boundary, and constant over its kilometer-scale length. Below the Cima Lunga/Adula, the transition to the Simano nappe is marked by a progressive change in gneiss texture: more stretched towards the top of the sequence, indicating a strain increase. Migmatitic leucogneisses have been found parallel to the tectonic contacts. Field observations indicate that their deformation is syn-tectonic, hence suggesting partial melting conditions during nappe emplacement. Their foliation is locally crosscut by granitic dikes of aplitic and pegmatitic texture.

To define the temporal duration of melting, U-Pb zircon dating with LA-ICP-MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry) has been performed on migmatites, paragneiss, gneiss, and granitic dikes. The results show two main groups of (metamorphic) ages centring at ca. 31 and 22 Ma. The younger ages date the intrusion of the post-tectonic dikes found exclusively in the southernmost area, proximal to the roots of the Lepontine nappes, likely related to the melt production along the Southern Steep Belt which lasted until ca. 22 Ma (according to U-Pb zircon dating by other authors). Ages indicating ca. 31 Ma are widespread from north to south, representing the nappe emplacement stage, coeval with migmatization.

Our results suggest the existence of two main heat sources: one related to thrusting and the other to fluid advection and/or diffusion of heat from the bottom along the Southern Steep Belt. Which heat source is responsible for the regional Barrovian metamorphism remains unclear. Our future studies will focus on the comprehension of the mechanisms of heat transfer and the relative roles of diffusion, advection and production to understand how these events are responsible for the net Barrovian heat budget of the Lepontine Dome.

How to cite: Tagliaferri, A., Schenker, F. L., Schmalholz, S. M., Ulianov, A., and Seno, S.: LA-ICP-MS U-Pb dating on zircons from the Lepontine Dome (Central European Alps), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9282, https://doi.org/10.5194/egusphere-egu22-9282, 2022.

EGU22-9332 | Presentations | GMPV7.2

"Too old" zircon (U-Th)/He ages in Austro- and Southalpine units of the European Alps: an overestimate of temperature or an underestimate of helium retention? 

Bianca Heberer, István Dunkl, Franz Neubauer, Sina Schulz, William Guenthner, Hannah Pomella, and Hilmar von Eynatten

Zircon (U-Th)/He (ZHe) dating has seen rapid growth and widespread application among low-temperature thermochronological methods. Complex diffusion kinetics, primarily due to radiation damage density, may substantially influence the diffusivity of He and cause a wide temperature range from ca. 220 to <25 °C for the transition from an open to a closed system. Complexities may augment for (meta-)sedimentary rock samples containing minerals of different initial ages with highly variable uranium content leading to differences in accumulated radiation damage and thus annealing behaviours. In such cases, individual grains may only share their postdepositional thermal path. Current diffusion models predict inheritance to play a role for those samples that remained at diagenetic temperatures below 200 °C during burial.

In this contribution, we address the question whether ZHe dates from anchizonal to very low-grade metamorphic units may be transformed into geologically meaningful age information and as such may enhance thermal history reconstructions. We applied ZHe dating on 37 samples from Austroalpine and Southalpine basement-cover series adjacent to the eastern part of the Periadriatic fault line. In an attempt to quantify maximum thermal overprint during Alpine burial we compiled evidence from paleothermal indicators (e.g. vitrinite reflectance, illite crystallinity, CM Raman spectroscopy), geological field observations, and geochronological dates. These data suggest overprint at diagenetic conditions up to low-grade metamorphism in our study area. According to current ZHe diffusion models anchizonal and higher thermal conditions should have harmonized the samples’ age response and thus should have reset the ZHe system leading to concordant Alpine ages.

However, our new thermochronological dataset is characterized by a large variability in intra- and intersample age dispersion. Most of our single grain ages ranging from 12 to 305 Ma are much older than predicted by forward modeling. Such mismatch may be explained either by an underestimate of He retention resulting from a still incomplete understanding of He diffusivity. In this scenario, metasedimentary samples with an overprint up to lower anchizonal conditions (≤270°C) are likely to preserve inherited detrital information and cooling ages will reflect both the previous and most recent thermal histories. Alternatively geothermal data compiled from the literature may have overestimated peak temperatures reached during Alpine burial.

Both alternatives will be discussed in detail as they bring up challenging methodical issues. We underline the need for combining thermal maturity studies with ZHe low-temperature thermochronology in order to extract thermal history information for such complex detrital datasets.

 

How to cite: Heberer, B., Dunkl, I., Neubauer, F., Schulz, S., Guenthner, W., Pomella, H., and von Eynatten, H.: "Too old" zircon (U-Th)/He ages in Austro- and Southalpine units of the European Alps: an overestimate of temperature or an underestimate of helium retention?, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9332, https://doi.org/10.5194/egusphere-egu22-9332, 2022.

EGU22-9426 | Presentations | GMPV7.2

Fluid-rock interactions and amphibolitisation of the lower continental crust (The Kråkenes Gabbro, Western Gneiss Region, Norway) 

Saskia Bläsing, Timm John, Johannes C. Vrijmoed, Michael J. Henehan, and Daniel A. Frick

To understand numerous geological processes, like element recycling or plate dynamics, the quantification of fluid-induced reactions in the Earth’s crust and mantle is an important but challenging subject, especially for short-lived events including substantial mass exchange. Lithium can serve as a powerful tool to quantify timing and fluid-flow mechanisms that happen on short geological timescales, because it is a very fast diffusing element and usually appears as a trace element in both fluid and rock.

The Kråkenes Gabbro is part of a fossil continent-continent collision zone, located in the Western Gneiss Region in Norway, and shows the effects of fluid-rock interaction perfectly.  The low permeability gabbro is cross-cut by strictly N-S-trending fractures, which opened during exhumation, serving as a pathway for an aqueous fluid to infiltrate the rock. Metasomatism occurred under amphibolite-facies conditions, resulting in a sharp amphibolite-generating reaction front propagating on dm-scale into the magmatic gabbro. This reaction is driven by strong chemical gradients between the reactive fluid and the dry, metastable gabbro. Samples were taken as continuous profiles (~ 30 cm length) perpendicular to the vein and analyzed using a) SEM automated quantitative mineralogy mapping to quantify evolving mineral assemblages during amphibolite-facies metamorphism and b) MC ICP-MS to determine variations in bulk rock lithium concentrations and isotope compositions along the profile.

To understand fluid-flow mechanisms, reactive flow-based diffusion models were created, and model accuracy was checked by integrating measured mineral and lithium data. Mass balance calculations and recalculations of the gabbro and amphibolite mineral assemblages give information on the fluid composition and its transported elements, showing that the fluid-induced reaction is not diffusion-limited only. Furthermore, these models portray the evolving reaction front and the evolution of physical parameters such as mineral assemblage, density or porosity within it. Our investigations into lithium concentrations and δ7Li values show that lithium is transported by the fluid into the formerly almost dry system and thus propagated into the gabbro. Reaction-induced variations in e.g. porosity and partition coefficients are included into lithium-diffusion models to find the minimum misfit between measured and modelled lithium data to estimate the duration of the fluid-induced reaction.

How to cite: Bläsing, S., John, T., Vrijmoed, J. C., Henehan, M. J., and Frick, D. A.: Fluid-rock interactions and amphibolitisation of the lower continental crust (The Kråkenes Gabbro, Western Gneiss Region, Norway), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9426, https://doi.org/10.5194/egusphere-egu22-9426, 2022.

EGU22-9763 | Presentations | GMPV7.2

Coupling pressure-temperature and time constraints in greenschist- and amphibolite-facies polymetamorphic rocks: a case study from the Austroalpine Unit (Eastern Alps, Austria) 

Marianne Sophie Hollinetz, Benjamin Huet, David A. Schneider, Christopher R. M. McFarlane, and Bernhard Grasemann

In low-grade metamorphic units, precise thermobarometric and geochronologic data are often ambiguous or entirely lacking, thus complicating the temporal interpretation of metamorphism and hampering the identification of complex polymetamorphic histories. We present new P-T-t-D data from samples collected in two Austroalpine nappes exposed in the Eastern Alps, Austria: the structurally upper greenschist-facies Schöckel Nappe (“Graz Paleozoic,” Drauzug-Gurktal Nappe System) and the structurally lower amphibolite-facies Waxenegg Nappe (Koralpe-Wölz Nappe System). Although polymetamorphism was previously inferred from garnet zonation indicating multiphase growth in the Waxenegg Nappe, the timing of metamorphism is poorly resolved and only limited geochronology exists in the Schöckel Nappe.

Detailed petrographic investigations revealed that the chloritoid-bearing phyllite and micaschist of the Schöckel Nappe contain allanite that occasionally show partial replacement by small (<10 µm) monazite and thorite. Large (up to 500 µm) monazite exhibiting distinct core-rim chemical zoning were observed in the garnet-bearing micaschist of the Waxenegg Nappe. Careful documentation of the microstructural phase relations, thermodynamic modeling in the MnCNKFMASHT system, Raman spectroscopy of carbonaceous matter and in-situ LA-ICPMS U-(Th)-Pb dating of the accessory phases allow us to reconstruct a first metamorphic imprint at ~560°C and 4 kbar in the Waxenegg Nappe at c. 270 Ma (Permian event). Overprinting occurred at ~540°C and 8-10 kbar at c. 90 Ma (Eo-Alpine event). In the Schöckel Nappe, peak metamorphic conditions of ~470°C and 3-4 kbar existed during the Permian event at c. 260 Ma and the Eo-Alpine event in the upper part of the nappe did not exceed lower to middle greenschist-facies conditions.

Our results provide unequivocal evidence for Permian metamorphism in the Schöckel Nappe, which was hitherto unknown in this part of the Austroalpine Unit. Moreover, it demonstrates that the main metamorphic signature in this unit occurred during the Permian event and that the Eo-Alpine overprint is relatively lower grade than previously proposed. Combined with the data from the Waxenegg Nappe, there is an obvious marked increase in the Eo-Alpine peak conditions of ~130°C and 5 kbar across the nappe contact with higher grade in the footwall compared to the hanging wall. This is consistent with the existence of a major normal fault between the Drauzug-Gurktal Nappe System and the Koralpe-Wölz Nappe System in the easternmost part of the Austroalpine Unit, as already identified in its central and western parts. Modern thermobarometric analytical approaches coupled with high spatial resolution geochronology on accessory minerals is allowing a more thorough assessment of the subtle metamorphic histories recorded in the fundamentally important low-grade units of orogens.

How to cite: Hollinetz, M. S., Huet, B., Schneider, D. A., McFarlane, C. R. M., and Grasemann, B.: Coupling pressure-temperature and time constraints in greenschist- and amphibolite-facies polymetamorphic rocks: a case study from the Austroalpine Unit (Eastern Alps, Austria), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9763, https://doi.org/10.5194/egusphere-egu22-9763, 2022.

EGU22-11750 | Presentations | GMPV7.2

Isothermal compression of an eclogite from the Western Gneiss Region (Norway): a multi-method study 

Martin Simon, Pavel Pitra, Philippe Yamato, and Marc Poujol

The Western Gneiss Region in Norway is constituted by a crustal nappe stack that comprises some of the best-preserved exhumed ultra-high pressure (UHP) terranes on Earth. The UHP rocks result from the subduction of the western edge of the Baltica craton beneath Laurentia during the Caledonian orogeny. Mafic eclogites form lenses within granitoid orthogneisses and show the best record of the pressure and temperature evolution. Their exhumation from the UHP conditions has been largely studied, but the prograde evolution has been rarely quantified in the eclogites although it constitutes an important constraint on the tectonic history of this area. This study focused on an unaltered eclogite sample from Vågsøy in the Nordfjord region. This sample was investigated using a large panel of methods including phase-equilibria modelling, trace-element analyses of garnet, trace- and major-element thermo-barometry and quartz-in-garnet barometry by Raman spectrometry. The eclogite comprises omphacite, garnet, white mica, epidote and amphibole and accessory rutile, quartz, zircon, carbonates and kyanite. Garnet shows a grossular-rich core with inclusions of quartz, epidote, white mica and amphibole, while grossular-poor rims are enriched in pyrope and middle rare-earth elements and include omphacite and rutile. Inclusions in garnet core point to crystallisation conditions in the amphibolite facies at 550–600 °C and 11–15 kbar, while chemical zoning in garnet suggests growth during isothermal compression up to the peak pressure of 28 kbar at 600 °C, followed by near-isobaric heating to 640–680 °C. Isothermal decompression to 8–13 kbar is recorded in fine-grained clinopyroxene-amphibole-plagioclase symplectites. The absence of a temperature increase during compression seems incompatible with the classic view of crystallization along a geothermal gradient in a subduction zone and may question the tectonic significance of eclogite-facies metamorphism. Two main tectonic scenarios are discussed to explain such an isothermal compression: (1) either the mafic rocks were originally at deep level within the lower crust and were then buried along the isothermal part of the subducting slab, or (2) the mafic rocks recorded significant tectonic overpressure at constant depth and temperature conditions during the collisional stage of the orogeny. A multi-chronometer geochronological study is currently performed and expected to bring additional, discriminant constraints on this P–T evolution. 

How to cite: Simon, M., Pitra, P., Yamato, P., and Poujol, M.: Isothermal compression of an eclogite from the Western Gneiss Region (Norway): a multi-method study, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11750, https://doi.org/10.5194/egusphere-egu22-11750, 2022.

EGU22-11826 | Presentations | GMPV7.2

Formation of garnet-clinopyroxene coronas at orthopyroxene–plagioclase contacts during high-pressure granulite facies metamorphism, Gföhl unit, Moldanubian zone 

Rene Asenbaum, Julian Portenkirchner, Martin Racek, Elena Petrishcheva, and Rainer Abart

Corona microstructures comprised of garnet (grt) and clinopyroxene (cpx) were observed at the contacts between plagioclase (pl) and Fe-rich orthopyroxene (opx) in meta-gabbroic rocks in a several 100 m sized (ultra-)mafic lens embedded in felsic granulite of the Gföhl unit (Moldanubian zone, Lower Austria).

The corona microstructures are formed around monomineralic aggregates of opx and they are comprised of two layers, an inner about 100 μm thick
layer of polycrystalline cpx and an outer, about 800 μm thick layer of polycrystalline garnet. The corona structures are surrounded by the pl-rich rock matrix. The cpx layer shows a weak but systematic chemical zoning characterized by increasing Mg and decreasing Na and Al contents from the contact with grt towards the contact with opx. The grt layer shows a pronounced and complex chemical zoning. There is a consistent trend of decreasing Mg and increasing Ca contents from the contact with the cpx layer, where the composition is Alm22 Prp67 Grs11 towards the contact with the rock matrix, where we observe Alm25 Prp48 Grs28. This pattern is interpreted as a primary growth zoning. Superimposed on the growth zoning there is a secondary zoning, which is evident from a decrease of the Ca content and a concomitant increase of the Mg content from the interior of the individual grains
of the grt polycrystal forming the grt layer towards the grt grain boundaries. The secondary zoning is most pronounced in the outermost portions of the garnet layer, where the primary growth zoning shows the highest Ca and the lowest Mg contents. Locally the garnet grains contain abundant primary melt inclusions. In most segments of the corona, secondary opx and pl form layers along the contact between the primary cpx and grt layer, where the opx partially replaces the cpx layer and the pl partially replaces grt. The secondary opx has higher Mg and lower Na, Al, and Ca contents than the opx
in the core of the corona structure. The secondary pl has the same composition as the matrix pl. At its outer edge, the garnet layer is locally replaced by spinel bearing cpx-pl symplectites. The primary compositional zoning of the garnet layer could be reproduced in equilibrium assemblage diagrams (pseudosections). Calculated equilibrium phase relations indicate that the grt-cpx corona formed at the contacts between opx and pl at supersolidus HP − HT conditions of P > 1.8 GPa and T > 900 °C and low H2O content. Growth of coronal grt and cpx requires the diffusive transport of Fe and Mg from the opx to the pl and concomitant transport of Ca and Al in the opposite direction. The secondary zoning of garnet, the back reaction forming secondary opx and pl at the contact between the primary grt and cpx layer and the spinel bearing pl-cpx symplectites locally replacing garnet at the outer edge of the grt layer are related to different decompression stages. Preservation of the secondary garnet zoning indicates relatively rapid cooling during late
stages of or immediately after decompression.

How to cite: Asenbaum, R., Portenkirchner, J., Racek, M., Petrishcheva, E., and Abart, R.: Formation of garnet-clinopyroxene coronas at orthopyroxene–plagioclase contacts during high-pressure granulite facies metamorphism, Gföhl unit, Moldanubian zone, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11826, https://doi.org/10.5194/egusphere-egu22-11826, 2022.

EGU22-407 | Presentations | TS2.1

Strain localization along a detachment system: Deformation of natural dolomitic and calcitic mylonites (Mt. Hymittos, Attica, Greece) 

Mark Coleman, Bernhard Grasemann, David Schneider, Konstantinos Soukis, and Riccardo Graziani

Carbonate rocks can be thick, mineralogically-homogeneous packages, which accomodate strain in orogenic belts. Despite its contribution to rock strength, the deformation of dolomite as a major rock forming mineral is understudied in comparison to calcite, quartz, and feldspar. We use field, petrographic, and electron back scatter diffraction (EBSD) analyses of dolomitic and calcitic marbles to investigate the response of these rocks to different degrees of strain under greenschist facies. Mt. Hymittos, Attica, Greece, preserves a pair of Miocene top-SSW ductile-then-brittle low-angle normal faults dividing a tripartite tectonostratigraphy. The bedrock of the massif comprises sub-greenschist facies phyllites and marbles in the uppermost hanging wall unit, and high-pressure greenschist facies schists and marbles of the Cycladic Blueschist Unit in the lower two packages. Ductile mylonites in the footwalls of both detachments grade into brittle-ductile mylonites and finally into cataclastic fault cores. The dolomitic and calcitic marbles of the lower units deformed under greenschist facies conditions and their fabrics reflect the relative differences in strengths between these two minerals. In the middle tectonostratigraphic unit, dolomitic rocks are brittlely deformed and calcitic marbles are mylonitic to ultramylonitic with recrystallized grain sizes ranging from 55 to 8 μm. Within the lower package, dolomitic and calcitic rocks are both mylonitic to ultramylonitic with previous P-T data suggesting metamorphism at ~470 °C and 0.8 GPa. EBSD analysis of six dolomitic marbles of the lower unit reveals a progressive fabric evolution from mylonites to ultramylonites reflecting the magnitude of strain and decreasing temperature of deformation. In mylonitic domains, average grain diameters range from 70 to 25 μm. The mylonitic dolomite exhibits low-angle grain boundaries, internal misorientation zones and textures suggestive of subgrain-rotation recrystallization. This mylonitic fabric is crosscut by ultramylonite bands of dolomite with grain diameters of 15 to 5 μm, which overlaps with the dominant grain size of the subgrains formed within the mylonitic domains. In samples closer to the fault core, the ultramylonite fabric is predominant though boudinaged veins, and relict mylonite zones with coarser grains may still be observed. Uniformly ultramylonitic dolomitic marbles exhibit grain diameters of 40 to 5 μm; the majority of grain diameters are less than 15 μm. The ultramylonite bands have low degrees of internal misorientation and an absence of low-angle grain boundaries that, along with correlated misorientation diagrams, suggest the ultramylonitic dolomite grains are randomly oriented and deforming via grain-boundary sliding. Interstitial calcite grains within these samples may reflect creep-cavitation processes interpreted to have occurred syn-kinematically with grain-boundary sliding. The change from subgrain-rotation recrystallization to grain-boundary sliding is interpreted to reflect the interplay of grain-size sensitive and insensitive processes. Following grain size reduction, subsequent deformation was dominantly accommodated by grain boundary sliding. The dolomitic marbles of the lower unit deformed on the retrograde path from the high-pressure, mid-temperature portion of the greenschist facies. The position of the dolomitic ultramylonites immediately below the cataclastic detachment fault suggest these ultramylonites were deforming very close to the brittle-ductile transition suggesting ductile deformation at lower temperatures than might be predicted by deformation experiments.

How to cite: Coleman, M., Grasemann, B., Schneider, D., Soukis, K., and Graziani, R.: Strain localization along a detachment system: Deformation of natural dolomitic and calcitic mylonites (Mt. Hymittos, Attica, Greece), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-407, https://doi.org/10.5194/egusphere-egu22-407, 2022.

EGU22-2627 | Presentations | TS2.1

Constraining transformation weakening in plagioclase-pyroxene mixtures 

Amicia Lee, Holger Stünitz, Mathieu Soret, and Jacques Précigout

Mafic rocks are a key constituent of the oceanic and lower continental crust. Strain localisation and fabric development in these rocks is controlled by the active deformation mechanisms. From studies of natural rocks it has been established that strain localisation and weakening in mafic rocks is directly related to fluid availability and resultant mineral reactions. Understanding the interplay between reactions, fluid availability, and deformation aids in quantifying the stresses and rates of deformation processes. We have conducted an experimental investigation to constrain the weakening mechanisms in gabbro. Shear experiments were performed in a Griggs-type apparatus at 800-900°C, and 1.2-1.5 GPa with a shear strain rate of 10⁻⁵s⁻¹. The starting material consists of mixed powders with <100 µm sized grains of plagioclase and clinopyroxene from an undeformed sample of the Kågen Gabbro in Northern Norway. Experiments have been conducted with ‘as is’ (dried at 110°C) starting material and with 0.1% added water. The experiments at 800°C are very strong with a peak shear stress ~0.8 GPa whilst the 900°C experiments are weaker, reaching peak stresses of ~0.35 GPa. The 800°C experiments show evidence of mineral reactions with newly formed phases making up 10-25% of the sample. In these reaction zones, plagioclase and clinopyroxene have reacted to produce amphibole and garnet. Additionally S-C’ mylonitic fabrics have developed in these samples. The 900°C samples show minimal evidence for mineral reactions (2-5% new material) or crystal-plastic deformation mechanisms. The lack of mineral reactions in the rheologically weak experiments (900°C) and abundance of reaction products in the mechanically strong experiments (800°C) is conflicting to our inferences of natural studies. However, if partial melting takes place in the higher temperature experiments, it may account for the pronounced strength decrease. We plan to conduct EBSD and TEM analysis to determine crystallographic properties and accurate grain size and shape parameters in the fine grained reaction zones. Future experiments will use fully dried natural starting material (dried at 700-800°C) and An60 and end-member diopside, these experiments will be compared with our current experiments and be used to determine the exact weakening properties from impurities in the natural starting material.

How to cite: Lee, A., Stünitz, H., Soret, M., and Précigout, J.: Constraining transformation weakening in plagioclase-pyroxene mixtures, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2627, https://doi.org/10.5194/egusphere-egu22-2627, 2022.

EGU22-2816 | Presentations | TS2.1

Cracking induced by dislocation creep in pure quartz shear bands of granitoids 

Jacques Précigout, Estelle Ledoux, and Laurent Arbaret

The production of micro-pores during viscous creep is a driving mechanism for fluid circulation in deep environments. However, strain-induced cracking in nature is nowadays attributed to grain boundary sliding (GBS), restricting this process to fine-grained ductile shear zones where rocks deform by diffusion creep. Here we give natural evidence of micro-cracking induced by dislocation creep, which is by far the dominant deformation mechanism in lithospheric rocks. Focusing on pure quartz shear bands across the Naxos western granite (Aegean Sea, Greece), we first document sub-micron pores that arise at grain and sub-grain boundaries. Their shape and location emphasize sub-grain rotation as a source of cracking. We then confirm that quartz is dominated by dislocation creep with evidence of a moderate to strong lattice preferred orientation (LPO) and many sub-grain boundaries, including at the margin of the pluton where the brittle/ductile transition was reached. These features coincide with (1) quartz grains located as inclusion into quartz porphyroclasts and (2) a dependency of the LPO strength on grain size. Our findings suggest that creeping cavities act as pumping sites for fluid to penetrate the crystal lattice and nucleate randomly oriented grains along sub-grain boundaries, accounting for (1) shear localization by enhancing hydrolytic weakening and (2) rock embrittlement through growth and interlinkage of cavities where phase nucleation is limited.

How to cite: Précigout, J., Ledoux, E., and Arbaret, L.: Cracking induced by dislocation creep in pure quartz shear bands of granitoids, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2816, https://doi.org/10.5194/egusphere-egu22-2816, 2022.

EGU22-3268 | Presentations | TS2.1

Diffusion creep of a Na-Ca-amphibole-bearing blueschist 

Leif Tokle, Lonnie Hufford, Luiz Morales, Claudio Madonna, and Whitney Behr

Blueschists are a major constituent rock type along the subduction zone interface and therefore critical to our understanding of subduction zone dynamics. Previous experimental work on natural blueschists focus on either seismic anisotropy or on the process of eclogization of a blueschist aggregate; however, little is known about the mechanical properties of blueschist rocks. We have conducted a suite of general shear deformation experiments in the Griggs apparatus to constrain the rheology of a blueschist aggregate. The sample material derives from a natural blueschist that was crushed into a powder. The powder consists of ~55% sodic amphibole, ~30% epidote, ~8% quartz, ~5% titanite, ~2% ilmenite, and <1% mica. Deformation experiments were conducted at 1.0 GPa confining pressure, temperatures of 650, 675, 700, and 750°C, and no water added. All of the deformation experiments were strain rate stepping experiments with either 4 or 5 strain rate steps per experiment with strain rates ranging from ~2.7e-5 to 5.2e-7 s-1. Based on the mechanical data we determine a stress exponent of 1.9 +/- 0.3. Microstructural and EDS analysis shows the initial Na-amphibole grains transform into a fine-grained aggregate of new Na-Ca-amphibole with lower Na and Si and higher Fe and Ca plus albite and ilmenite. The fine-grained aggregates accommodate the majority of the strain while epidote deforms by rigid body rotation or brittle deformation. Based on both the mechanical and microstructural observations, we interpret the fine-grained aggregates to be deforming by diffusion creep. Additional analyses will be conducted to constrain the grain size to develop flow law parameters to estimate the rheology of the subduction zone interface.

How to cite: Tokle, L., Hufford, L., Morales, L., Madonna, C., and Behr, W.: Diffusion creep of a Na-Ca-amphibole-bearing blueschist, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3268, https://doi.org/10.5194/egusphere-egu22-3268, 2022.

The presence of large volumes of eclogite in collision and subduction zones makes their formation and deformation highly relevant for the dynamics of convergent zones. There is however no consensus on the deformation behavior of eclogite. On the one hand, mylonitic eclogite shear zones showing evidence of dominant deformation by dislocation creep have frequently been reported. On the other hand, fluid supported formation and deformation has been recently suggested as a potential mechanism in eclogite whereby the main accommodating mechanism is dissolution-precipitation creep. This raises the question of the factors controlling the deformation behavior of eclogite.

In this contribution, we present microstructural, petrographical and chemical data from a series of eclogite samples derived from low Mg – high Ti gabbro collected at the eclogite type locality (Saualpe-Koralpe Complex, Eastern Alps, Austria). The rocks are characterized by a pronounced foliation defined by the shape preferred orientation of the major minerals (omphacite, amphibole, epidote and garnet). Minor quartz is observed at dilation sites. Overall, grains show rather straight grain boundaries and a uniform extinction. These features are interpreted as evidence of diffusion and dissolution-precipitation dominated formation and strain accommodation. Thermodynamic forward modelling indicates that eclogitization occurred at around 2 GPa and 640–680°C and was supported by fluid. Locally, the eclogite fabric is crosscut by veins showing a similar paragenesis as the host eclogite. However, they are enriched in quartz and epidote, depleted in garnet and show overall a coarser grain size. Depending on their initial orientation, the veins were either reactivated as flanking structures or foliation sub-parallel shear zones. The reactivated veins are characterized by undulatory extinction, twinning and subgrain formation, all being indicative of dislocation creep. The identical paragenesis and similar mineral chemistry indicates that reactivation occurred at conditions close to those of eclogitization. The investigated samples therefore testify that eclogite can deform by two different mechanisms at similar pressure-temperature conditions. Our investigations document that dissolution-reprecipitation is bound to the process of eclogitization and low strain rate whereas post-eclogitization strain localization is accommodated by dislocation creep.

How to cite: Rogowitz, A., Huet, B., and Schorn, S.: How to creep and when? Deformation mechanisms at the eclogite type locality (Saualpe-Koralpe Complex, Eastern Alps, Austria)., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3477, https://doi.org/10.5194/egusphere-egu22-3477, 2022.

EGU22-3889 | Presentations | TS2.1

Feasibility of the mobile-lid regime controlled by grain size evolution 

Antonio Manjón-Cabeza Córdoba, Tobias Rolf, and Maëlis Arnould

One of the most discussed issues of whole-mantle geodynamic models is the need of an 'ad hoc' yield stress which is lower than any strength measurement of natural samples in the brittle or plastic regimes. It is commonly believed that grain size evolution, in particular grains size reduction due to dynamic recrystallization, may decrease the strength of the lithosphere and therefore aid the onset and persistence of the mobile-lid regime. In this work, we carry out an investigation of 2D whole-mantle annulus models with varying yield stress. We compare cases with different grain growth and grain reduction parameters to cases with constant grain size to make inferences on the feasibility of a plate-like convective regime as a function of the yield strength of the lithosphere.

Our results show that viscosity profiles of models with dynamic grain-size evolution are inherently different to those with constant grain size, and that those profiles vary little when changing grain-size evolution parameters. In this context, the lower mantle shows greater variations in viscosity than the upper mantle: with viscosity contrasts between upper and lower mantle and plume widths comparable to those of the Earth, in particular in models with enhanced grain growth. Furthermore, our models show that, while enhancing grain size reduction reduces episodicity and increases mobility up to some point, increasing grain growth favors mobile-lid convection even more. This is at odds with previous conceptions of the grain-size-evolution-induced mobile-lid regime, where grain groth should promote healing of the lithosphere and therefore inhibit subduction. We hypothesize that increased stiffness of the bottom of the lithosphere, together with a more viscous lower mantle, are the main reasons for the grain-grouth-favored mobile-lid regime.

How to cite: Manjón-Cabeza Córdoba, A., Rolf, T., and Arnould, M.: Feasibility of the mobile-lid regime controlled by grain size evolution, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3889, https://doi.org/10.5194/egusphere-egu22-3889, 2022.

EGU22-4606 | Presentations | TS2.1

Strain localization in quartz-rich fault gouge at subseismic slip rates 

Chien-Cheng Hung and André Niemeijer

Understanding strain localization and development of shear fabrics within brittle fault zones at subseismic slip rates is crucial as they have critical implications for the mechanical strength and stability of faults and for earthquake physics. We performed direct shear experiments on ~1 mm thick layers of simulated quartz-rich fault gouge at an effective normal stress of 40 MPa, pore fluid pressure of 15 MPa, and temperature of 100°C. Microstructures were analyzed from strain hardening state (~1.3 mm displacement) to strain softening (~3.3 mm displacement) to steady-state (~5.6 mm) at different imposed shearing velocities of 1 µm/s, 30 µm/s, and 1 mm/s. We performed X-ray Computed Tomography (XCT) on sheared samples with a strain marker to analyze slip partitioning. To analyze and quantify localization from few hundreds to thousands of cross-section images, we used machine learning and developed an automatic boundary detection method to identify the type of shear fabrics and quantify the amount of them. Our results reveal that R1 and Y (or boundary) shears are the two major localization features that developed in a repeatable manner. Slip on R1 shears shows little dependency on both shear displacement and slip velocity and amounts to ~5 to ~30% of slip through the entire frictional sliding. On the other hand, Y and boundary shears show a strong correlation with displacement and velocity where more than 40% of strain was accommodated at steady-state for all velocities. However, Y and boundary shears become less prominent with increasing velocity, suggesting that velocity-weakening and the associated nucleation of unstable sliding are less likely to occur at higher slip rates as the overall friction behavior would be controlled by a thicker gouge layer. In other words, this suggests that Y shear development by grain size reduction is less efficient at high slip velocities which has important implications for the amount of heat generated during accelerating slip.

How to cite: Hung, C.-C. and Niemeijer, A.: Strain localization in quartz-rich fault gouge at subseismic slip rates, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4606, https://doi.org/10.5194/egusphere-egu22-4606, 2022.

Seismic rupture in strong, anhydrous lithologies of the lower continental crust requires high failure stress, in the absence of high pore fluid pressure. Several mechanisms proposed to generate high stresses at depth imply transient loading driven by a spectrum of stress changes, ranging from highly localised stress amplifications to crustal-scale stress transfers. High transient stresses up to GPa magnitude are proposed by field and modelling studies, but the evidence for transient pre-seismic stress loading is often difficult to extract from the geological record due to overprinting by coseismic damage and slip. However, the local preservation of deformation microstructures indicative of crystal-plastic and brittle deformation associated with the seismic cycle in the lower crust offers the opportunity to constrain the progression of deformation before, during and after rupture, including stress and temperature evolution.


Here, detailed study of pyroxene microstructures characterises the short-term evolution of high stress deformation and temperature changes experienced prior to, and during, lower crustal earthquake rupture. Pyroxenes are sampled from pseudotachylyte-bearing faults and damage zones of lower crustal earthquakes recorded in the exhumed granulite facies terrane of Lofoten, northern Norway. The progressive sequence of microstructures indicates localised high-stress (at the GPa level) preseismic loading accommodated by low temperature plasticity, followed by coseismic pulverisation-style fragmentation and subsequent grain growth triggered by the short-term heat pulse associated with frictional sliding. Thus, up to GPa-level transient high stress leading to earthquake nucleation in the dry lower crust can occur in nature, and can be preserved in the fault rock microstructure.

How to cite: Menegon, L. and Campbell, L.: High stress deformation and short-term thermal pulse preserved in exhumed lower crustal seismogenic faults (Lofoten, Norway), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4692, https://doi.org/10.5194/egusphere-egu22-4692, 2022.

EGU22-5108 | Presentations | TS2.1

Different mechanical behavior at the same P-T conditions in biotite-quartz assemblage: interconnectivity and composition effect of experimentally deformed mica 

Khadija Alaoui, Laura Airaghi, Holger Stünitz, Hugues Raimbourg, and Jacques Précigout

The effect of composition on microstructural development and mechanical strength was tested using mica-quartz-aggregates during deformation experiments.

This study used two chemically different biotite minerals mixed with quartz: (1) high F-phlogopite and (2) intermediate biotite in order to investigate the role of biotite-bearing systems for the development of shear zones and strain accommodation. Shear experiments (Griggs-type apparatus) were performed using mica (30 vol. %) and quartz (70 vol. %) assemblages at 750 and 800°C, 1000 MPa and a shear strain rate of ~10-5 s-1.

Mechanical results for the F-phlogopite-bearing assemblage indicate strong samples, approximately equivalent to pure quartz samples (Richter et al., 2018), deforming at differential stresses of 764-1097 MPa). F-phlogopite flakes are preferentially oriented parallel to the main shear direction, but poorly interconnected. Most of the strain is accommodated by quartz behaving as an interconnected network. Cathodoluminescence imaging reveals that quartz recrystallizes mainly by local pressure-solution and its strength controls the overall strain accommodation.

In contrast, intermediate biotite assemblages are significantly weaker and deform for lower differential stresses of 290-327 MPa, as expected for natural rocks. Biotite flakes form an interconnected network accommodating most of strain.

The interconnectivity of biotite grains thus plays a major role in weakening quartz-biotite assemblages. However, at similar P-T-strain and grain size conditions, the capacity of biotite grains to interconnect may also depend on its chemical composition, particularly considering the effect of trace elements incorporation (as fluorine) on the strength of the biotite interlayer bounds (Dahl et al., 1996, Figowy et al., 2021). This led us to conclude that different types of mica, behaving differently, strongly affect strength, deformation mechanism, and microstructure of the rock due to their structure, composition and stability fields.

How to cite: Alaoui, K., Airaghi, L., Stünitz, H., Raimbourg, H., and Précigout, J.: Different mechanical behavior at the same P-T conditions in biotite-quartz assemblage: interconnectivity and composition effect of experimentally deformed mica, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5108, https://doi.org/10.5194/egusphere-egu22-5108, 2022.

EGU22-5127 | Presentations | TS2.1

Experimental strain localization in granitoid ultramylonites: Pre-fracturing vs. viscous strain localization 

Natalia Nevskaya, Weijia Zhan, Holger Stünitz, Alfons Berger, and Marco Herwegh

Rheological models of Earth’s granitoid mid- to upper crust are commonly based on the physico-chemical properties of the most abundant rock forming minerals quartz and feldspar. However, there is increasing field evidence that deformation in these rocks localizes in ultrafine-grained polymineralic shear zones, which are weaker than any of the end member minerals. Especially at the brittle to viscous transition, the localization and deformation mechanisms, i.e. the role of incipient brittle deformation vs. continuous viscous strain localization, is not yet fully understood.

To fill this gap in knowledge, ultramylonite samples with granitic composition from the Central Aar Granite (Aar Massif, Central Switzerland) were deformed using a Griggs type apparatus. The foliation of the ultramylonitic starting material was oriented 45° to the compression direction, to investigate the influence of grain size and composition on strain localization in the different mylonite bands. Two types of coaxial experiments were conducted at 650°C, and 1.2 GPa confining pressure: A) Discrete fractures were created before the shear deformation starts; B) No fractures were induced during an early stage of the experiment.

All experiments have in common that strain is accommodated in 20-100 µm wide viscous shear zones with elongated grains and minor grain size reduction. In these shear zones, most strain is further localized in 10-20 µm wide zones, showing dramatic grain size reduction down to few tens of nanometres. In the experimentally generated shear zones, both, brittle and viscous processes are active. In terms of overall rock strength, all newly formed ultrafine-grained shear zones are up to three times weaker than comparable experiments on pure quartz or coarser grained granites – which agrees well with field observations. Furthermore, pre-fractured type A) is up to two times weaker than the non-fractured type B), and the orientation and number of shear zones is also fundamentally different between the two experiment types.

This study confirms two weakening factors promoting different types of strain localization at the brittle to viscous transition: 1) The existence of fractures and their interconnectivity – facilitating highly-localized grain size reduction; 2) Initial sample heterogeneity by polymineralic composition and ultrafine grain size – generating grain size reduction along strain gradients by activating viscous processes. Further quantitative microstructural analyses will reveal the role of chemistry and the deformation mechanisms on the localization behaviour.

How to cite: Nevskaya, N., Zhan, W., Stünitz, H., Berger, A., and Herwegh, M.: Experimental strain localization in granitoid ultramylonites: Pre-fracturing vs. viscous strain localization, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5127, https://doi.org/10.5194/egusphere-egu22-5127, 2022.

EGU22-5371 | Presentations | TS2.1

Implementing 3D anisotropic viscosity calculations into ASPECT 

Ágnes Király, Menno Fraters, and Rene Gassmoeller

Olivine, the main rock-forming mineral of Earth's mantle, responds to tectonic stress by deforming viscously over millions of years. This deformation creates an anisotropic (direction-dependent) texture that typically aligns with the mantle flow direction. According to laboratory experiments on olivine, we expect this texture to also exhibit anisotropic viscosity (AV), with deformation occurring more easily when it is parallel to, rather than across, the texture. However, the direction dependency of lithospheric and asthenospheric viscosity is rarely addressed in geodynamic models.

 The open-source modeling package ASPECT can address AV in a 2D setting using the director method, where AV is present due to shape preferred orientation created by dike intrusions (Perry-Houts and Karlstrom, 2019). We have adapted this implementation for current versions of ASPECT and benchmarked it against similar Rayleigh-Taylor instability models by Lev and Hager (2008).

Unfortunately, a 2D method is inappropriate to address AV related to olivine crystallographic preferred orientation (CPO or texture), as, by default, olivine has three independent slip systems on which deformation can occur. Integrating anisotropic viscosity into 3D models would also allow us to use the actual laboratory-based parametrizations of the olivine slip system activities and texture parameters when describing the evolution of CPO and AV. One of the biggest challenges in addressing AV in a 3D setting is to find the full, rank 4, viscosity tensor, which can be done with a method similar to the one for the fluidity tensor in Király et al., (2021).

Here, we present the initial results of simple geodynamic setups (shear box, corner flow), where 3D olivine CPO develops, based on the D-Rex method (Fraters and Billen, 2021), and this CPO creates AV based on the micromechanical model described in Hansen et al., (2016).

Our goal is to create a tool within ASPECT that allows for CPO to develop and affect the asthenospheric or lithospheric mantle’s viscosity to improve modeling a wide range of geodynamic problems.

 

References listed:

Fraters, M.R.T., and Billen, M.I., 2021, On the Implementation and Usability of Crystal Preferred Orientation Evolution in Geodynamic Modeling: Geochemistry, Geophysics, Geosystems, doi:10.1029/2021GC009846.

Hansen, L.N., Conrad, C.P., Boneh, Y., Skemer, P., Warren, J.M., and Kohlstedt, D.L., 2016, Viscous anisotropy of textured olivine aggregates: 2. Micromechanical model: Journal of Geophysical Research: Solid Earth, doi:10.1002/2016JB013304.

Király, Á., Conrad, C.P., and Hansen, L.N., 2020, Evolving Viscous Anisotropy in the Upper Mantle and Its Geodynamic Implications: Geochemistry, Geophysics, Geosystems, v. 21, p. e2020GC009159, doi:10.1029/2020GC009159.

Lev, E., and Hager, B.H., 2008, Rayleigh-Taylor instabilities with anisotropic lithospheric viscosity: Geophysical Journal International, doi:10.1111/j.1365-246X.2008.03731.x.

Perry-Houts, J., and Karlstrom, L., 2019, Anisotropic viscosity and time-evolving lithospheric instabilities due to aligned igneous intrusions: Geophysical Journal International, doi:10.1093/gji/ggy466.

How to cite: Király, Á., Fraters, M., and Gassmoeller, R.: Implementing 3D anisotropic viscosity calculations into ASPECT, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5371, https://doi.org/10.5194/egusphere-egu22-5371, 2022.

EGU22-5979 | Presentations | TS2.1

Quartz grain fabric in shales and sandstones: Some contrasting behaviors 

Charles Aubourg, Hugo Saur, Peter Moonen, and Rebecca Stokes

Many processes are at work when a sedimentary rock deforms. Quartz grains, for example, can rotate rigidly in the matrix, or on the contrary, undergo processes of dissolution and crystallization. Microtomography allows us to image the 3D geometry of minerals at the micron scale and quantify their fabric. Here, we use the quartz shape fabric extracted from microtomography data to evaluate the mechanisms active during burial and deformation of several sedimentary rocks systems.

Our first examples are of shales developing a slaty cleavage oblique to bedding. For shales that have undergone moderate burial (Tburial max ~200°C) (Sigues locality, Pyrenees), we show that the quartz grains rotate very little in the clay matrix. Even with the development of a slaty cleavage, a significant proportion of quartz grains remain parallel to the bedding plane. This surprising result implies that the rigid rotation of quartz grains, even in a ductile clay matrix, is not effective. 

In shales having undergone deeper burial and temperatures approaching the lower greenschist facies (Tburial max ~280°C) (Lehigh Gap locality, Appalachian mountains), we show that the average short-axis of the grains is orthogonal to the cleavage plane.  We suggest that this shape preferred orientation results from preferential dissolution of quartz faces oriented perpendicular to sigma 1, thus resulting in a shape preferred orientation without significant grain rotation.

Our last example concerns fine-grained sandstones, slightly deformed and buried at a shallow depth. If we refer to the example of shales with little burial, we would expect a very strong control of the bedding on the quartz fabric, since at these P-T conditions we expected dissolution-precipitation processes to be sluggish, and grain rotation to be ineffective.  However, surprisingly, the quartz in this rock is well oriented in the fabric which is oriented perpendicular to the bedding.

How the quartz grains were reoriented in the fine-grained sandstone suggests relations still not well understood with the deformation of a porous rock and the cementing processes of the rock. The microtomography approach in fine-grained rocks opens a door to this understanding of the behavior of quartz grains in sedimentary rocks.

How to cite: Aubourg, C., Saur, H., Moonen, P., and Stokes, R.: Quartz grain fabric in shales and sandstones: Some contrasting behaviors, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5979, https://doi.org/10.5194/egusphere-egu22-5979, 2022.

EGU22-6124 | Presentations | TS2.1

Shape Preferred Orientation at scale. From grain-scale aggregates to global mantle convection 

Albert de Montserrat, Manuele Faccenda, and Giorgio Pennacchioni

Earth's mantle rocks are poly-aggregates where different mineral phases coexist. These rocks may often be approximated as two-phase composites with a dominant phase and less abundant one (e.g. bridgmanite-ferropericlase composites in the lower mantle). Severe shearing of these rocks leads to a non-homogeneous partitioning of the strain between the different phases, with the composite developing a laminar fabric of weak and thin material where strain localizes. The resulting bulk rock is a mechanically anisotropic media that is hardened against normal stress, while significantly weakened against fabric-parallel shear stress.

Due to the large scale difference between the laminar gran-scale fabrics and regional-to-global geological processes, Earth’s rocks are idealised as homogeneous materials instead of multi-phase bodies in numerical models. Thus, a characterization of the rheology evolution of the bulk composite is necessary to better understand large-scale geological processes in which anisotropy may play a fundamental role. Recent three-dimensional numerical (de Montserrat et al. 2021) studies have shown that the degree of lateral interconnectivity of the weak and thin layers is rather limited, thus estimating the rheology of a composite with laminar fabrics by the idealized Voigt and Reuss averages for fibres yield a strong underestimation of the strength of the composite. Instead, we use a combination of numerical results and micro-mechanics to develop an empirical framework to estimate the evolution of the (anisotropic) rheology of such composites.

We apply this rheology framework to study the effects of fabric-induced directional-weakening/hardening on global mantle convective patterns. First order effects of extrinsic anisotropy of lower mantle material observed in our two-dimensional models are a decrease of the wavelength of convective cells, and up to a ~50% increase in the average mantle flow velocity caused by the weakening of the flow-parallel component of the viscosity tensor. The latter is particularly evident in mantle plumes, where the ascent and transfer of hot lower mantle material to lower depths is enhanced by the near-alignment of the weak  fabrics with the plume channel.  

How to cite: de Montserrat, A., Faccenda, M., and Pennacchioni, G.: Shape Preferred Orientation at scale. From grain-scale aggregates to global mantle convection, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6124, https://doi.org/10.5194/egusphere-egu22-6124, 2022.

Quaternary deformation in the northern Chile coastal forearc is mainly accommodated by ubiquitous upper-plate faults cataloged as weak fault zones, however, the deformation mechanisms and the internal structure of these reactivated faults remain poorly understood. To solve this problem, we selected seven study sites from reactivated upper-plate faults of the northern Chile forearc (23-25°S). These faults formed during the Early Cretaceous and reactivated during the Quaternary forming conspicuous fault-scarps. Here we present a new characterization of the internal structure at the outcrop and microscopic scale. Samples for thin-sections and XRD were collected in several cross-sections across faults. We define 4 units conforming the internal structure: (1) A decimetric well-defined principal slip zone, referred here as active fault core (AFC), consisting of a gouge layer subunit bounded by a fault breccia subunit, (2) a metric inactive fault core (IFC), surrounding the AFC, composed mostly of cataclasites and in some cases, mylonites, (3) a host-rock unit corresponds mainly to Jurassic-Cretaceous dioritic-granitic intrusives and Jurassic andesites, and (4) a decametric damage zone affecting both the IFC and the host rock. Near the topographic surface, the gouge layer subunit consists of a grey/green ultrafine matrix (40-80%) partially to completely replaced by massive iron oxides. In some sites, the gouge layers are partially foliated or/and exhibit millimetric bands of chaotic microbreccia. Porphyroclasts correspond mainly to (1) highly quartz and plagioclase intracracked individual crystals (<0.4mm), (2) larger fragments (<1mm) generally sigmoidal-like of the IFC (cataclasites) indicating different degrees of cataclastic-flow. Transgranular microfractures are densely propagated through the boundaries of larger porphyroclasts, breaking grains into ever-finer fragments (constrained communition) and generating chaotic microbreccia halos in the boundaries that grade into an ultrafine gouge matrix. (3) Another portion of large porphyroclasts (>1mm) grade from S-C cataclasite at its cores to S-C ultra-cataclasites at its boundaries. Frictional sliding is propagated through this S-C fabric formed by the ultracataclasite boundaries, generating well-defined and smoothened surfaces between large porphyroclasts and gouge layers. Microfractures -commonly filled with quartz>calcite>albite>chlorite-epidote veins- propagate mostly through the gouge layers, which are in turn displaced by microfaults affecting the entire subunit. The IFC composition changes markedly along-strike but multiple-fault cores are ubiquitous. In Jurassic andesites, the IFC is defined by protocataclasites with layers of red gouge, In Jurassic to Cretaceous diorite-metadiorite protoliths the IFC is defined by S-C cataclasites with microstructures showing undulating extinction, subgrains, and bulging recrystallization of quartz, and ultracataclasite bands and green gouge layers developed under low greenschist facies conditions. The IFC formed in mylonitic rocks derived from Jurassic to Cretaceous granitoid includes bands of hydrothermally-altered green and red mylonites. The complex overprinted microtextures indicate a progressive exhumation and shearing of the IFC. The microtexture analysis reflects the evolution of this unit from high temperature-low stain rates formed at deep structural levels to low temperature-high strain rates near-surface. We interpret the highly accumulated strain in S-C ultracataclastic bands and S-C gouge layers of the IFC (constrained communition) reduces the fault frictional strength and promote the frictional slip of the quaternary reactivations of the AFC.

How to cite: González, Y., Jensen, E., and González, G.: Internal Structure and Microtextures of a Quaternary Upper-plate Fault Zone: A Case Study from the Atacama Fault System, Northern Chile., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6742, https://doi.org/10.5194/egusphere-egu22-6742, 2022.

EGU22-6926 | Presentations | TS2.1

Pulverized rock and episodic hydrothermal brecciation along the Median Tectonic Line, Japan 

Geri Agroli, Masaoki Uno, Atsushi Okamoto, and Noriyoshi Tsuchiya

The Median Tectonic Line is a major east-west-trending arc-parallel fault that separates Sanbagawa metamorphic rock and Ryoke granite. We present the novel field observation of possibly pulverized rock and its evolution toward the fault cataclasite/breccia in the Ichinokawa antimony deposit in Central Shikoku. Ichinokawa was considered as largest stibnite mine in the world with a huge stibnite aggregate in which occurs in the brecciated-pelitic schist of the Sanbagawa belt. Based upon the texture in the outcrop and particle size distribution (PSD), this breccia is classified into two types. Breccia-1 (bx-1) is characterized by a centimeter-meter (up to 5m) angular breccia-clast with minimum to no shear displacement and rotational block. This bx-1 subsequently grows to be highly comminuted to produce breccia-2 (bx-2) which appear to have chaotic-polymict clast with matrix-supported texture within the fault zone with variable width and cut the bx-1 by recognizable breccia margin. Both of these breccia are cemented by reddish rock-flour matrix consist of dolomite, quartz, mica, ± pyrite. In addition, bx-2 has a more rounded shape with most of the clast size being less than 50mm and it shows orientation nearly parallel to the fault plane under a thin section. Based on this macro and micro-scale observation breccia in Ichinokawa is more likely to form under different mechanisms. Pulverization is plausible to rupture the pelitic schist and generate bx-1 without rotating the fragment. Hydrothermal activity in this area can’t be neglected which is responsible to create bx-2 as a result of fluid injection and transporting comminuted-fragment of bx-1 into the damage/fault zone. This breccia also underpins the formation of stibnite deposits that mark the latest fluid activity in this area where quartz-stibnite±pyrite±kaolinte vein truncate both pelitic schists of bx-1 as well as bx-2.

How to cite: Agroli, G., Uno, M., Okamoto, A., and Tsuchiya, N.: Pulverized rock and episodic hydrothermal brecciation along the Median Tectonic Line, Japan, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6926, https://doi.org/10.5194/egusphere-egu22-6926, 2022.

EGU22-7175 | Presentations | TS2.1

Weakening effect of grain-size reduction in granitoid shear zones 

Jonas B. Ruh, Leif Tokle, and Behr Whitney

Localization of strain during deformation of crustal rocks to form narrow shear zones requires some form of strain weakening. Bulk weakening of a deforming shear zone may for example result from geometric reorganization and interconnection of weak phases, from concentration of fluids or fluid-rich mineral phases, or from local temperature increase due to shear heating. A further potential weakening effect is work-related grain size reduction driven by dislocation creep, and the consequent activation of grain-size-sensitive diffusion creep in recrystallized zones.

To test the importance of grain size reduction for mechanical weakening of granitoid crustal shear zones, a numerical model of initially undeformed granitoid texture was set up and sheared to a total shear strain of 10. The numerical finite difference code solves for the conservation of momentum (Stokes) and mass with a visco-elasto-plastic rheology. The model setup outlines a naturally constrained multi-phase granitoid texture including quartz, plagioclase, and biotite. The domain measures 5x5 cm with top and bottom velocities describing simple shear, while the left and right prescribe periodic boundaries. For both quartz and plagioclase (anorthite), flow laws for dislocation and diffusion creep are implemented and act in parallel. Grain size evolution is implemented in the form of the paleowattmeter with mineral-specific grain growth laws. The 2D numerical setup of a complex multi-phase initial texture allows us to investigate grain size evolution in a progressively evolving system with a spatially and temporally varying stress field and with simultaneous geometric weakening associated with interconnection of weak phases, neither of which can be analyzed using analytical calculations.

Results show a reduction of grain sizes of quartz and plagioclase during shearing with quartz deforming dominantly under dislocation creep. Plagioclase behaves brittlely at low temperatures, with dominant diffusion creep at intermediate temperatures, switching to dislocation creep at high temperatures. Purely textural weakening of >60% occur at 550 °C. At lower temperatures, anorthite strength reduces given the brittle yield envelope and at higher temperatures, dislocation creep strength of quartz and anorthite converge, resulting in bulk shear and less textural weakening. Additional weakening related to grain size reduction relies on the activation of diffusion creep as the dominant deformation mechanism for anorthite. At 350 °C, anorthite strength is limited by brittle yield and no grain-size-induced weakening is detectable. For higher temperatures, additional grain-size-induced weakening ranges between 12–30 %, and thus represents an important factor for the initiation of granitoid crustal shear zones. The presented numerical study underlines the importance of grain size-related weakening of crustal shear zones, particularly at intermediate temperatures above the brittle-ductile transition (400–450°C) and below the activation of dislocation creep in plagioclase (>650°C).

How to cite: Ruh, J. B., Tokle, L., and Whitney, B.: Weakening effect of grain-size reduction in granitoid shear zones, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7175, https://doi.org/10.5194/egusphere-egu22-7175, 2022.

EGU22-7406 | Presentations | TS2.1

Correlative, cross-platform microscopy application reveals deformation mechanisms during seismic slip along wet carbonate faults 

Markus Ohl, Helen King, Andre Niemeijer, Jianye Chen, and Oliver Plümper

Faults in the upper crust are considered major fluid pathways, raising the need for deformation experiments under wet conditions that focus on the nanoscale interaction between gouge material and pore fluid. Friction experiments on calcite at seismic slip velocities show strong dynamic weakening behaviour attributed to a combination of grain-size reduction and nanoscale diffusion. The resulting syn-deformational physico-chemical interactions between fluid and calcite are key in deciphering deformation mechanisms and rheological changes during and after (seismic) faulting in the presence of a fluid phase. We conducted rotary shear deformation experiments (1 m/s, σn = 2 and 4 MPa) on calcite gouge with water enriched in 18O (97 at%) as pore fluid to track and quantify potential fluid – mineral interaction processes. With our correlative, cross-platform workflow approach, we integrate Raman spectroscopy, nanoscale, and Helium-Ion secondary ion mass spectrometry (nanoSIMS, HIMSIMS), focused ion beam – scanning electron microscope (FIB-SEM) and transmission electron microscopy (TEM) to characterise the nanostructure and analyse isotope distribution. Raman analyses confirm the incorporation of 18O into the calcite crystal structure, as well as the presence of amorphous carbon. We identify three new band positions relating to the possible isotopologues of CO32- (reflecting 16O substitution by 18O). In addition, we detect portlandite (Ca(OH)2), pointing to a hydration reaction of lime (CaO) with water. Raman and NanoSIMS maps reveal that 18O is incorporated throughout the deformed volume, implying that calcite isotope exchange affected the entire fault gouge. Based on oxygen self-diffusion rates in calcite we conclude that solid-state 18O – isotope exchange cannot explain the observed incorporation of 18O into the calcite crystals during wet, seismic deformation. Hydration of portlandite and calcite containing 18O, implies breakdown and decarbonation of the starting calcite and the nucleation of new calcite grains. Our results question the state and nature of calcite gouges during seismic deformation and challenge our knowledge of the rheological properties of wet calcite fault gouges at high strain rates. The observations suggest that the physico-chemical changes are a crucial part of hydrous calcite deformation and have implications for the development of microphysical models that allow us to quantitatively predict crustal fault rheology.

How to cite: Ohl, M., King, H., Niemeijer, A., Chen, J., and Plümper, O.: Correlative, cross-platform microscopy application reveals deformation mechanisms during seismic slip along wet carbonate faults, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7406, https://doi.org/10.5194/egusphere-egu22-7406, 2022.

EGU22-8484 | Presentations | TS2.1

Constraining wet quartz rheology from constant-load experiments 

Subhajit Ghosh, Holger Stünitz, Hugues Raimbourg, and Jacques Précigout

Quartz rheology in the presence of H2O is crucial for modelling (numerical and geophysical) the deformation behavior of the continental crust and gives important insights into crustal strength. Experimental studies in the past have determined stress exponent (n) values for flow law between ≤ 2 to 4, while the values for activation energy (Q) vary from ~120 to 242 kJ/mol. Here, we investigated the quartz rheology under high-pressure and high-temperature conditions, using a new generation hydraulically-driven Griggs-type apparatus. In order to develop a robust flow law for quartzite, we performed constant-load coaxial deformation experiments of natural coarse-grained (~ 200 μm) high purity (> 99 % SiO2) quartzite from the Tana quarry (Norway). Our creep tests were carried out at 750 to 900 °C on the as-is (no added H2O) and 0.1 wt.% of H2O added samples under 1 GPa of confining pressure. In contrast to earlier strain rate stepping experiments, the constant-load procedure needs lower strain at each step (≤1−2%) to achieve steady-state conditions. As a consequence, there is a very low amount of recrystallization. Importantly, we can determine the Q-value independently of the stress exponent (n). Microstructures from the deformed samples were characterized using polarized light microscopy (LM), SEM-cathodoluminescence (CL), and Electron backscatter diffraction (EBSD).

Our creep results for both the as-is and 0.1 wt.% H2O-added samples yield Q = 110 kJ/mol and n = 2. Our microstructural analysis suggests that the bulk sample strain is accommodated by grain-scale crystal-plasticity, i.e., dislocation glide (dominantly in prism <a>) with minor recovery by sub-grain rotation, accompanied by grain boundary migration and micro-cracking. It is inferred that strain incompatibilities induced by dislocation glide are accommodated by grain boundary processes, including dissolution precipitation and grain boundary sliding. These intra-grain and grain-boundary processes together resulted in a lower n-value of 2 for the quartzite.

Our new flow law predicts strain rates that are in much better agreement with the inferred natural values than the earlier flow laws. It further suggests that the strength of the continental crust considering quartz rheology is significantly lower than previously predicted.  

How to cite: Ghosh, S., Stünitz, H., Raimbourg, H., and Précigout, J.: Constraining wet quartz rheology from constant-load experiments, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8484, https://doi.org/10.5194/egusphere-egu22-8484, 2022.

EGU22-9089 | Presentations | TS2.1

Experimental Investigation of Glaucophane Rheology Through General Shear Deformation Experiments 

Lonnie Hufford, Leif Tokle, Claudio Madonna, and Whitney Behr

Glaucophane is a major constituent mineral associated with subducted mafic oceanic crust at blueschist facies conditions. Viscous deformation of glaucophane has been documented in natural blueschists; however, no experimental study has characterized the specific deformation mechanisms that occur in glaucophane nor the flow law parameters. We are conducting a suite of general shear deformation experiments in a Griggs apparatus to investigate crystal-plastic deformation mechanisms and microstructures of deformed glaucophane over a range of experimental conditions. Experimental samples consist of glaucophane powder separated from natural MORB blueschists  from Syros Island, Greece. Our experimental suite thus far includes temperatures and pressures ranging from 650° to 750°C and 1.0 to 1.5 GPa, strain rates ranging from ~3x10-6/s to ~8x10-5/s (both constant-rate and strain-rate stepping), and different grain size populations from 75-90 µm, 63-125 µm , and 63-355 µm. The lowest temperature and the strain-rate-stepping experiments exhibit evidence for combined frictional-viscous deformation and provide constraints on the brittle-ductile transition in glaucophane at laboratory conditions. The constant-rate experiments conducted at higher temperatures show greater evidence for viscous deformation by dislocation creep, including kinked grains, deformation lamellae, undulose extinction, and bulging via bulge recrystallisation. Mechanical data from the strain-rate stepping experiments allow us to interpret what parameters have the largest effect on peak stress. When comparing experiments conducted at 1 GPa and initial powder grain sizes of 63-355 µm, we find temperature having the largest effect on peak stresses. The 700°C experiment with an initial deformation speed 5 times faster (LH038) than another 700°C strain-rate stepping experiment (LH042) has a ~90 MPa higher peak shear stress, whereas the 750°C strain-rate stepping experiment with an initial deformation speed 4 times faster than LH042 has a ~115 MPa lower peak shear stress. At the time of abstract submission, further constant-rate experiments are planned at slower strain-rates to continue exploring the laboratory conditions necessary to activate glaucophane crystal-plastic deformation mechanisms. These data will be used with further strain-rate stepping experiments to develop flow law parameters from mechanical data.

How to cite: Hufford, L., Tokle, L., Madonna, C., and Behr, W.: Experimental Investigation of Glaucophane Rheology Through General Shear Deformation Experiments, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9089, https://doi.org/10.5194/egusphere-egu22-9089, 2022.

   Plate boundary dynamics remain incompletely understood in the context of thermo-chemical convection. Strain-localization is affected by weakening in ductile shear zones, and a change from dislocation to diffusion creep caused by grain-size reduction is one of the mechanisms that has been discussed. However, the causes and consequences of strain localization remain debated, even though tectonic inheritance and strain localization appear to be critical features in plate tectonics.

   Frictional-plastic faults in nature and brittle shear zones in the lithosphere may be weakened by high transient, or static, fluid pressures, or mechanically by gouge, or mineral transformations. Weakening in ductile shear zones in the viscous domain may be governed by a change from dislocation to diffusion creep caused by grain-size reduction. In mechanical models, strain weakening and localization in the shallow parts of the lithosphere has mainly been modeled by an approximation of brittle behavior using a pseudo visco plastic rheology in combination with a linear decrease of the yield strength of the lithosphere with increasing deformation (plastic-strain (PSS) softening). Strain weakening in viscous shear zones, on the other hand, may be described by a linear dependence of the effective viscosity on the accumulated deformation (viscous-strain (VSS) softening). These different types of strain weakening are further explored and compared to the predictions from different laboratory-based models of grain-size evolution for a range of temperatures and a step-like variation of total strain rate with time. Such a parameterized, apparent-strain, or “damage”, dependent weakening (SDW) rheology (mainly PSS) can successfully mimic more complex weakening processes in global mantle convection computations. While we focus on GSS rheology to constrain the parameters of SDW, the analysis is not limited to grain-size evolution as the only possible microphysical mechanism.

   The SDW weakening rheology allows for memory of deformation, which weakens the fault zone as well as the lithosphere for a longer period and allows for a self-consistent formation and reactivation of inherited weak zones. In addition, the memory effect and weakening of the fault zone allows for a more frequent reactivation at smaller strain rates, depending on the strain-weakening parameter combination. Reactivation within the models occurs in two different ways: a), as a guide for laterally propagating convergent and divergent plate boundaries, and b), formation of a new subduction zone by reactivation of weak zones. A longer rheological memory results in a decrease in the dominant period of the reorganization of plates due to less frequently formed new plate boundaries. In addition, the low frequency content of velocity and heat transport spectra decreases with a decreasing dominant period. This indicates a more sluggish reorganization of plates due to the weaker and thus more persistent active plate boundaries. These results show the importance of a rheological memory for the reorganization of plates, potentially even for the Wilson cycle.

How to cite: Fuchs, L.: Plate-boundary maintenance – formation, preservation, and reactivation in global plate-like mantle convection models, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9584, https://doi.org/10.5194/egusphere-egu22-9584, 2022.

EGU22-9765 | Presentations | TS2.1

In-situ mechanical testing and characterization of olivine grain boundaries 

Diana Avadanii, Lars Hansen, Ed Darnbrough, Katharina Marquardt, David Armstrong, and Angus Wilkinson

The mechanics of olivine deformation play a key role in long-term planetary processes, such as the response of the lithosphere to tectonic loading or the response of the solid Earth to tidal forces, and in short-term processes, such as the evolution of roughness on oceanic fault surfaces or postseismic creep within the upper mantle. Many previous studies have emphasized the importance of grain-size effects in the deformation of olivine. However, most of our understanding of the role of grain boundaries in the deformation of olivine is inferred from comparison of experiments on single crystals to experiments on polycrystalline samples.

To directly observe and quantify the mechanical properties of olivine grain boundaries, we use high-precision mechanical testing of synthetic forsterite bicrystals with well characterised interfaces. We conduct in-situ micropillar compression tests at high-temperature (700°C) on low-angle (13° tilt about [100] on (015)) and high-angle (60° tilt about [100] on (011)) grain boundaries. In these experiments, the boundary is contained within the micropillar and oriented at 45° to the loading direction to promote shear along the boundary. In these in-situ tests, we observe differences in deformation style between the pillars containing the grain boundary and the pillars in the crystal interior. In-situ observations and analysis of the mechanical data indicate that pillars containing the grain boundary consistently support elastic loading to higher stresses than pillars without a grain boundary. Moreover, only the pillars without a grain boundary display evidence of sustained plasticity and slip-band formation. Post-deformation advanced microstructural characterization (STEM) confirms that under the conditions of these deformation experiments, sliding did not occur along the grain boundary. These observations support the hypothesis that grain boundaries are stronger than the crystal interior. 

These experiments on small deformation volumes allow us to qualitatively explore the differences between the crystal interior and regions containing grain boundaries. Overall, the variation in strain and temperature in our small scale experiments allows fundamental investigation of the response of well characterised forsterite grain boundaries to deformation. 

How to cite: Avadanii, D., Hansen, L., Darnbrough, E., Marquardt, K., Armstrong, D., and Wilkinson, A.: In-situ mechanical testing and characterization of olivine grain boundaries, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9765, https://doi.org/10.5194/egusphere-egu22-9765, 2022.

EGU22-9842 | Presentations | TS2.1

Revisiting stylolites as a gage of overburden pressure – insights from fractal analysis 

Christoph von Hagke, Simon Hirländer, Kevin Frings, and Herfried Madritsch

Stylolites are ubiquitous structures generated by pressure solution primarily found in limestones. They and have been used as indicator for maximum stress a rock has suffered. This is commonly done by characterizing the fractal dimensions of stylolites. The current canon is the expectation from the theory that stylolites form through two physical pressure-driven regimes: low-frequency and higher-energetic - dominated by elastic forces and high-frequency lower-energetic dominated by surface tension. The so-called characteristic length separates both regimes, analytically marked by a kink in the power spectrum, which relates the energy contributions to the frequency.

However, determining this kink is not straightforward, and requires additional assumptions. We present a data set of stylolites recovered from a drill hole in the Alpine foreland basin. We mapped stylolites from different depths at sub-mm resolution semi-automatically and analyzed them using new methods of fractal analysis.

Excitingly, our preliminary studies did not identify the expected kink’s position from several different images of probes of drill cores, despite satisfactory reliability of laboratory preparation. Standard methods such as power spectral density, averaging wavelet coefficients, RMS, min/max, and rescaled range-based approaches revealed variations in their results, generally without evidence for a kink in the corresponding graphs. Implementing more recently developed methods such as adaptive fractal analysis could not improve the results. This finding challenges the classic interpretation of fractal characteristics of stylolites. 

How to cite: von Hagke, C., Hirländer, S., Frings, K., and Madritsch, H.: Revisiting stylolites as a gage of overburden pressure – insights from fractal analysis, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9842, https://doi.org/10.5194/egusphere-egu22-9842, 2022.

EGU22-10101 | Presentations | TS2.1

The role of grain boundaries for the deformation and grain growth of olivine at upper mantle conditions 

Filippe Ferreira, Marcel Thielmann, and Katharina Marquardt

Crystal defects such as vacancies, dislocations and grain boundaries are central in controlling the rheology of the Earth’s upper mantle. Their presence influences element diffusion, plastic deformation and grain growth, which are the main microphysical processes controlling mass transfer in the Earth’s lithosphere and asthenosphere. Although substantial information exists on these processes, there is a general lack of data on how these defects interact at conditions found in the Earth’s interior. A better understanding of processes occurring at the grain scale is necessary for increased confidence in extrapolating from laboratory length and time scales to those of the Earth. We examined the evolution of olivine grain boundaries during experimental deformation and their impact on deformation in the dislocation-accommodated grain- boundary sliding (disGBS) regime. This may be the main deformation mechanism for olivine in most of Earth’s upper mantle. Our results suggest that grain boundaries play a major role in moderating deformation in the disGBS regime. We present observational evidence that the rate of deformation is controlled by assimilation of dislocations into grain boundaries. We also demonstrate that the ability for dislocations to transmit across olivine grain boundaries evolves with increasing deformation. Lastly, we show that dynamic recrystallization of olivine creates specific grain boundaries, which are modified as deformation progresses. This might affect electrical conductivity and seismic attenuation in the upper mantle. The effective contribution of grain-boundary processes (such as disGBS) on the rheology of the upper mantle is correlated to the amount of grain boundaries in upper mantle rocks, that is, their grain-size distribution and evolution. The grain-size distribution in the Earth’s mantle is controlled by the balance between damage (recrystallization under a stress field) and healing (grain growth) processes. However, grain growth, one of the main processes controlling grain size, is still poorly constrained for olivine at conditions of the upper mantle. To evaluate the effects of pressure on grain growth of olivine, we performed grain growth experiments at pressures ranging from 1 to 12 GPa using piston-cylinder and multi-anvil apparatuses. We found that the olivine grain-growth rate is reduced as pressure increases. Our results suggest that grain-boundary diffusion is the main process of grain growth at high pressure. Based on extrapolation of our experimental results to geological time scales, we suggest that at deep upper-mantle conditions (depths of 200 to 410 km), the effect of pressure on inhibiting grain growth counteracts the effect of increasing temperature. We present estimations of viscosity as a function of depth considering the grain-size evolution predicted here. Our estimations suggest that viscosity is almost constant at the deep upper mantle, which corroborates postglacial-rebound observations.

How to cite: Ferreira, F., Thielmann, M., and Marquardt, K.: The role of grain boundaries for the deformation and grain growth of olivine at upper mantle conditions, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10101, https://doi.org/10.5194/egusphere-egu22-10101, 2022.

EGU22-10153 | Presentations | TS2.1

Does porosity really matter? A first model for dissolution-enabled deformation bands in low porosity rocks based on microstructural analysis of calcarenite from Cotiella Basin, Spain. 

Maria Eleni Taxopoulou, Nicolas E. Beaudoin, Charles Aubourg, Elli-Maria Charalampidou, and Stephen Centrella

We report for the first time deformation features functionally described as deformation bands developed in low porosity rocks. This observation contradicts existing knowledge that deformation bands develop only in highly porous rocks. The studied formation is a bioclastic calcarenite of the Upper Cretaceous Maciños Unit in the Cotiella Massif. It is part of a megaflap adjacent to a salt diapir that has experienced extensional tectonics before the Pyrenean contraction. The bands present thickness variations, and in places they imitate the appearance of stylolites. This observation raises the question: how do deformation bands form in low porosity rocks?

To answer the question, we combine field observations with microstructural analysis to identify the occurring processes for the formation of deformation bands within low porosity rocks. After using optical microscopy and cathodoluminescence spectroscopy to conduct a petrographic study, we observe that the rock underwent multiple diagenetic cycles before the deformation stage, confirming that its porosity was significantly reduced before the deformation stage. Subsequently, we characterized the quartz grains inside the host rock and the dissolution-enabled deformation bands, using non-destructive imaging techniques. Three-dimensional image analysis from X-ray microtomography scans shows low grain size variations between the quartz grains in the host rock and in the bands, suggesting minor grain fracturing along the bands. However, grain reorientation has been reported for the quartz grains inside the bands, in relation to those in the host rock. Strain analysis was performed from Electron Backscattered Diffraction measurements, revealing higher strain along the quartz grain contacts inside the deformation band, compared to those in the host rock and stylolites. Our current data suggest that new porosity was created from local dissolution of the matrix, so the less soluble quartz grains were placed in contact. By wrapping-up the above observations, we propose a conceptual model that demonstrates the genesis and evolution of dissolution-enabled deformation bands in low porosity rocks, through local dissolution of the micritic matrix and transient porosity increase.

How to cite: Taxopoulou, M. E., Beaudoin, N. E., Aubourg, C., Charalampidou, E.-M., and Centrella, S.: Does porosity really matter? A first model for dissolution-enabled deformation bands in low porosity rocks based on microstructural analysis of calcarenite from Cotiella Basin, Spain., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10153, https://doi.org/10.5194/egusphere-egu22-10153, 2022.

EGU22-10404 | Presentations | TS2.1

Influence of a yield stress on lower mantle dynamics: filtering and changing morphology of plumes and slabs 

Anne Davaille, Thibaut Chasse, Neil Ribe, Philippe Carrez, and Patrick Cordier

When a fluid can experience a "jammed" state, it will flow only when the local deviatoric stress becomes greater than a critical stress, the so-called  "yield-stress". Jamming can be caused by entangled dislocations in a mineral, or by the existence of a hard skeleton in a two-phase fluid. According to recent numerical modeling, a Bridgmanite lower mantle would predominantly deform by pure dislocation climb; and due to dislocations interactions, it would flow only for local deviatoric stress greater than a critical yield stress which depends on dislocation density. In a first set of fluid mechanics experiments in such a visco-plastic fluid, we showed that hot plumes would develop with a much thicker morphology than in newtonian fluids. Scaling laws derived from the experiments tightly relate the buoyancy and diameter of the hot plumes to the value of the yield-stress, as well as to the mantle microstructure (such as dislocation density and vacancy concentration). Yield stress values between 1 and 10 MPa, implying dislocation densities between 108 and 1010 m−2, would be sufficient to explain the thick plumes morphology observed in seismic tomography images; while low vacancy concentrations could explain the 1000 km-depth horizon also seen in tomography. 

In a second set of experiments, we show that the existence of a yield stress in a Bridgmanite lower mantle will also act as a filter regarding slab penetration in the lower mantle. Given slab buoyancy, a typical slab, 100 km-thick, could not overcome the lower mantle yield stress. So most of single slabs would be expected  to stagnate in the transition zone. However a pile of folded slab with a typical thickness around 400 km would have sufficient buoyancy and would penetrate into the lower mantle. This could explain the seismic tomographic observations regarding slabs in the transition zone and in the lower mantle, without the need to invoke a compositional stratification there.

How to cite: Davaille, A., Chasse, T., Ribe, N., Carrez, P., and Cordier, P.: Influence of a yield stress on lower mantle dynamics: filtering and changing morphology of plumes and slabs, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10404, https://doi.org/10.5194/egusphere-egu22-10404, 2022.

EGU22-11133 | Presentations | TS2.1

Exploring the effect of mantle composite rheology on surface tectonics and topography 

Maelis Arnould, Tobias Rolf, and Antonio Manjón-Cabeza Córdoba

Earth’s surface dynamics and topography are tied to the properties and dynamics of mantle flow. In particular, upper mantle rheology controls the coupling between the lithosphere and the asthenosphere, and therefore partly dictates Earth’s surface tectonic behaviour and topographic response to mantle convection (dynamic topography). The presence of seismic anisotropy in the uppermost mantle suggests the existence of mineral lattice-preferred orientation (LPO) caused by the asthenospheric flow. Together with laboratory experiments of mantle rock deformation, this indicates that Earth’s uppermost mantle can deform in a non-Newtonian way, through dislocation creep. Although several studies suggest the potentially significant effect of upper-mantle non-Newtonian rheology on mantle convection (e.g. Schulz et al., 2020) and topography (e.g. Asaadi et al., 2011, Bodur and Rey, 2019), it is usually not considered in whole-mantle models of mantle convection self-generating plate tectonics.

 

Here, we investigate the effects of using a composite rheology (with both diffusion and dislocation creep) on surface tectonics and dynamic topography in 2D-spherical annulus models of mantle convection with plate-like tectonics and continental drift. We systematically vary the amount of dislocation creep by changing the activation volume for dislocation creep and the reference transition stress between diffusion and dislocation creep. We show that for low yield stresses promoting plate-like behavior in diffusion-creep-only models, modeling a composite rheology in the mantle favors more surface mobility while for large yield stresses which still generate plate-like motions in diffusion-creep-only models, a progressive increase in the amount of dislocation creep leads to stagnant-lid convection. We then compare the amplitudes and spatio-temporal distribution of dynamic topography in models with and without dislocation creep, in light of observed Earth present-day residual topography characteristics.

 

References:

Schulz, F., Tosi, N., Plesa, A. C., & Breuer, D. (2020). Stagnant-lid convection with diffusion and dislocation creep rheology: Influence of a non-evolving grain size. Geophysical Journal International, 220(1), 18-36.

Asaadi, N., Ribe, N. M., & Sobouti, F. (2011). Inferring nonlinear mantle rheology from the shape of the Hawaiian swell. Nature, 473(7348), 501-504.

Bodur, Ö. F., & Rey, P. F. (2019). The impact of rheological uncertainty on dynamic topography predictions. Solid Earth, 10(6), 2167-2178.

How to cite: Arnould, M., Rolf, T., and Manjón-Cabeza Córdoba, A.: Exploring the effect of mantle composite rheology on surface tectonics and topography, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11133, https://doi.org/10.5194/egusphere-egu22-11133, 2022.

EGU22-11488 | Presentations | TS2.1

Ilmenite transformations in suevites from the Ries meteorite impact structure, Germany 

Fabian Dellefant, Claudia A. Trepmann, Stuart A. Gilder, Iuliia V. Sleptsova, and Melanie Kaliwoda

Glass fragments (Flädle) in suevites from Zipplingen within the Ries (Germany) meteorite impact structure contain round aggregates of polycrystalline ilmenite with various amounts of rutile, ferropseudobrookite (FeTi2O5), armalcolite ((Fe,Mg)Ti2O5) and titanite (CaTi[OSiO4]). The 10-100s µm sized aggregates often have a thin rim of µm-sized magnetite grains. The ilmenite grains are 5-10 µm in diameter and form an equilibrium fabric with 4-6-sided grains with smoothly curved grain boundaries and 120° angles at triple junctions, i.e. a so-called foam structure. The ilmenite grains have random crystallographic orientations and do not show any internal misorientations. Rutile, typically a few µm in diameter, is associated with similarly fine-grained ilmenite and a high amount of pores. Coarser polygonal ilmenite grains can also show a marked grain boundary porosity. Only rarely in the center of the aggregates, a deformed single ilmenite crystal occurs, indicating that the aggregates originated from shocked coarse ilmenite crystals from the target gneisses. Ferropseudobrookite is intergrown with remnants of original ilmenite grains or secondary ilmenite grains without foam structure. A vermicular intergrowth of ilmenite, rutile, and magnetite can be present at the rim, where armalcolite can be enriched in Mg.

We interpret that ferropseudobrookite formed at high temperatures (>1010°C) and reducing conditions from coarse ilmenite crystals originating from the target gneisses according to the following reaction: 2FeTiO3 → FeO + FeTi2O5. Some FeO migrated towards the rim due to the low oxygen fugacity, resulting in the observed porosity. Upon cooling, FeO migration caused ferropseudobrookite to disintegrate resulting in the formation of rutile and ilmenite: FeTi2O5 → FeTiO3 + TiO2. Silicate melt at the contact of the FeTi-oxides provided magnesium to form armalcolite from ferropseudobrookite and calcium to form titanite within fractures. Rapid cooling resulted in a shift in redox-conditions with the formation of pure Fe magnetite from FeO at the rim of the aggregates. Quenching of the system can explain the local preservation of ferropseudobrookite and armalcolite, whereas the ilmenite foam structure formed during back reaction of ferropseudobrookite at relatively slower cooling rates. The different cooling rates in the aggregates can be explained by the locally varying amount of surrounding superheated melt forming the Flädle-structure.

How to cite: Dellefant, F., Trepmann, C. A., Gilder, S. A., Sleptsova, I. V., and Kaliwoda, M.: Ilmenite transformations in suevites from the Ries meteorite impact structure, Germany, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11488, https://doi.org/10.5194/egusphere-egu22-11488, 2022.

EGU22-12327 | Presentations | TS2.1

Strain localization and weakening during eclogite-facies transformation in experimentally deformed plagioclase-pyroxene mixtures 

Mathieu Soret, Holger Stünitz, Jacques Précigout, Amicia Lee, and Hugues Raimbourg

The rheology of mafic rocks buried at high to ultra-high-pressure conditions remains enigmatic. Minerals stable at these conditions are mechanically very strong (garnet, omphacite, glaucophane, zoisite, kyanite). In the laboratory, they show plastic deformation only at very high temperature (e.g. > 1000°C for pyroxene and garnet). Yet, viscous shear zones in mafic rocks metamorphosed at amphibolite and eclogite-facies conditions are commonly reported in fossil collisional and subduction zones. These shear zones localize and accommodate large amounts of strain by weakening of the host rocks. This weakening is interpreted as being induced by a transition from grain size insensitive to grain size sensitive creep, in particular with the activation of the dissolution–precipitation creep. However, the exact interplay between deformation, mineral reaction and fluid/mass transfer remains poorly-known.

We have conducted a first series of deformation experiments at eclogite-facies conditions on a 2-phase aggregate representative of mafic rocks. Shear experiments were performed in a new generation of Griggs-type apparatus (Univ. Orléans) at 850°C, and 2.1 GPa with a shear strain rate of 10⁻6 s⁻¹. The starting material consists of mixed powders with < 100 µm sized grains of plagioclase and clinopyroxene from an undeformed sample of the Kågen Gabbro in Northern Norway. Experiments have been conducted with ‘as is’ (dried at 110°C) starting material and with 0.2% added water.

The mechanical data indicate that the samples are first very strong with a peak differential stress at 1.4 GPa. Then, a significant weakening is observed with a stress decrease by 0.5 GPa. The high-strain sample is characterized by a strain gradient increasing toward the center of the shear zone. Metamorphic reactions occur throughout the sample, but the high-strain areas contain considerably more reaction products than the low-strain areas. The nucleation of new phases leads to a drastic grain size reduction and phase mixing, whose intensities are positively correlated with the strain intensity. The nature, distribution and fabric of the mineral products vary also progressively with the strain intensity.

  • In the low-strain areas, dissolution-precipitation processes mainly occur along grain boundaries: plagioclase is rimmed by zoisite and a secondary plagioclase more albitic in composition while clinopyroxene is rimmed by amphibole.
  • In the mid-strain areas, dissolution-precipitation processes are more pervasive: amphibole and a secondary more sodic clinopyroxene occurs in pressure shadows of primary clinopyroxene, while primary plagioclase is completely replaced by a fine-grained mixture of zoisite and quartz. Reaction products show a strong shape-preferred orientation parallel to the shear direction.
  • In the high-strain areas, dissolution-precipitation leads to the nucleation of a fine-grained mixture of garnet and secondary clinopyroxene, quartz and kyanite. Most reaction products have subhedral shape with no clear preferred orientation. Hydrous minerals (amphibole and zoisite) are not observed.

Our preliminary results indicate that strain at eclogite-facies conditions is preferentially accommodated and localized by dissolution-precipitation processes. Further micro-structural and geochemical analyses are required to quantify the exact interplay between the physical and chemical processes controlling the dissolution-precipitation creep.

How to cite: Soret, M., Stünitz, H., Précigout, J., Lee, A., and Raimbourg, H.: Strain localization and weakening during eclogite-facies transformation in experimentally deformed plagioclase-pyroxene mixtures, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12327, https://doi.org/10.5194/egusphere-egu22-12327, 2022.

EGU22-12964 | Presentations | TS2.1 | Highlight | TS Division Outstanding ECS Award Lecture

Crustal stress across spatial scales 

Mojtaba Rajabi and Oliver Heidbach

The study of crustal stress examines the causes and consequences of in-situ stress in the Earth’s crust. Stress at any given point has several geological sources, including ‘short-term and local-scale’ and ‘long-term, ongoing and wide-scale’ source. In order to better characterise the crustal stress state, the analyses of both local- and wide-scale sources, and the consequences of their superposition are required. The global compilation of stress data in the World Stress Map database has increased significantly since its first release in 1992 and its analysis revealed large rotations of the stress tensor in several intraplate settings.

Large-scale stress analysis, so called first-order, (> 500 km) provides information on the key drivers of the stress state that result from large density contrasts and plate boundary forces. The analyses of stress at smaller-scales (< 500 km) have numerous applications in reservoir geomechanics, geo-storage sites, civil engineering and mining industry. To date, numerous studies have investigated the stress analysis from different perspectives. However, the stress, in geosciences, is still enigmatic because it is a scale-dependant parameter. It means, stress variations can be studied at both the ‘spatial-scale’ and ‘temporal-scale’. This paper aims to investigate the crustal stress pattern with a particular emphasis on the orientation of maximum horizontal stresses at various spatial-scales, ranging from continental scales down to basin, field and wellbore scales, to better evaluate the role of various stress sources and their applications in the Earth’s crust. The stress analyses conducted in this work shows that stress pattern at large-scales do not necessarily represent the in-situ stress pattern at smaller-scales. Similarly, analysis of just a couple of borehole measurements in one area might not yield a good representation of the regional stress pattern.

How to cite: Rajabi, M. and Heidbach, O.: Crustal stress across spatial scales, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12964, https://doi.org/10.5194/egusphere-egu22-12964, 2022.

The rheology and mechanisms of strain localisation in the middle and lower crust is yet to be fully constrained, but advances in analytical techniques mean we can revisit previously studied areas and build upon understanding already gained.

A strain profile across a Laxfordian-age (2300-1700 Ma) amphibolite-facies shear zone at Upper Badcall, NW Scotland, provides an excellent backdrop to investigate the hydration-strain-deformation mechanism relationship in the granulite-facies garnet-pyroxene quartzofeldspathic gneiss host rock and cross-cutting 25 m wide isotropic dolerite Scourie dyke. Both the granulite faces gneissic banding and mafic dyke are initially oriented at a high angle to the shear zone boundary. With increasing proximity to the shear zone centre the host rocks become progressively rotated, more deformed and hydrated. Increasing strain results in new foliation development, general grain size reduction and full or partial replacement of pre-existing pyroxene and hornblende by lower-temperature hornblende.

Tatham and Casey (2007) showed the 65 m wide shear zone has an estimated maximum shear strain of 15, which drops to ~7 towards the edge of the shear zone, and falls to < 1 at distances ≥ 40 m from the shear zone centre. We present data from four new transects, taken at 50-100 m intervals along the mafic dyke, which detail the change in deformation style and patterns of strain localisation and intensity. Localised anastomosing high strain zones envelop lenses of undeformed dolerite, with 65-70% of protolith undeformed in the dyke 350 and 230 m from shear zone centre. This decreases to 30 and 0% of undeformed protolith 100 m from and within the shear zone, respectively. Mylonite sensu stricto makes up 10% of dyke at distances ≥ 100 m from the shear zone, which increases to 70% within the shear zone, while the remaining dyke forms a weak fabric evidenced by the shape change of mafic grain aggregates.

Microstructural analyses show a switch in dominant deformation mechanisms from dynamic recrystallisation 350 m from the shear zone, to dissolution-precipitation creep inside the shear zone, identified by a change in crystallographic and shape preferred orientation, and distinct microstructural observations. An introduction of ~10 area % quartz and a loss of feldspar in the mafic dyke inside the shear zone accompanies this switch in dominant deformation mechanisms. We outline microstructural observations characteristic of dissolution-precipitation creep within the shear zone, and propose localised infiltration of quartz-rich fluid facilitates a switch from dislocation creep to pervasive dissolution-precipitation creep resulting in rheological weakening and local strain localisation. Our results suggest that strain localisation in the mid crust may be highly dependent on local fluid availability as fluid presence may trigger a switch in deformation mechanism and, with that, significant localised rheological weakening.

Tatham, D.J. and Casey, M., 2007. Inferences from shear zone geometry: an example from the Laxfordian shear zone at Upper Badcall, Lewisian Complex, NW Scotland. Geological Society, London, Special Publications, 272(1), pp.47-57.

How to cite: Carpenter, M., Piazolo, S., Craig, T., and Wright, T.: The link between water infiltration, deformation mechanisms and strain localisation in the mid crust – an example from the Badcall shear zone, NW Scotland, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13366, https://doi.org/10.5194/egusphere-egu22-13366, 2022.

EGU22-13371 | Presentations | TS2.1

Glaucophane plasticity and scale-dependent yield strength from nanoindentation experiments 

Alissa Kotowski, James Kirkpatrick, Christopher A. Thom, Sima A. Alidokht, and Richard Chromik

Subduction interface shear zones localize deformation and sustain plate-boundary weakness on million-year timescales, as well as host a variety of enigmatic seismicity and slow slip transients. A physical understanding of the steady-state and transient mechanics of subduction shear zones requires quantitative constraints of the plastic yield strength and deformation mechanism(s) of metamorphic rocks and minerals that occupy the plate interface. However, very little is known about the rheology of many hydrous minerals that occupy the plate interface, such as glaucophane (end-member sodic amphibole). This is partly because conventional deformation experiments meet technical challenges when trying to measure plasticity in the laboratory due to the stability field of glaucophane, the confining pressure needed to suppress fracture, and the limited range of trade-off between temperature and strain rate in experiments.

 

Here, we present preliminary results from room-temperature nanoindentation experiments on thin sections of glaucophane-rich rocks that produced crystal plasticity by dislocation glide under high-stress conditions. Nanoindentation produces in-situ confining pressure that typically inhibits brittle fracture during loading in favor of plastic deformation. Since the volume of deformation beneath the tips is very small compared to the grain size, each indent is essentially a single-grain mechanical test (i.e., effects of grain boundaries can be ignored). We convert load-depth data from two spheroconical tips of different radii to stress-strain curves to quantify the elastic-plastic transition and characterize post-yield behavior. We measure yield stress as a function of grain orientation. Both post-yield weakening and post-yield hardening occur, which likely reflect brittle fracture along micro-faults/cleavage planes, and dislocation bursts and pile-ups, respectively. Glaucophane hardness decreases with increasing length scale of deformation (i.e., indentation radius), capturing a “size effect” that may reflect an effective decrease in dislocation density as the volume of plastic deformation increases beneath the indent tip. This effect is well-constrained for many metals and some geologic materials, including olivine.

 

The mechanical tests provide a basis for interpreting microstructures of naturally-deformed blueschists, which suggest that glaucophane exhibits recovery-limited dislocation glide and dynamic recrystallization. Low-temperature plasticity may provide a micro-physical framework for long-term strain localization and transient brittle shear when meta-mafic rocks are deformed to high strain.

How to cite: Kotowski, A., Kirkpatrick, J., Thom, C. A., Alidokht, S. A., and Chromik, R.: Glaucophane plasticity and scale-dependent yield strength from nanoindentation experiments, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13371, https://doi.org/10.5194/egusphere-egu22-13371, 2022.

GD7 – Crust, Lithosphere and Asthenosphere

EGU22-1232 | Presentations | GD7.1

Preliminary airborne geophysical surveys over the Bou Azzer-El Graara inlier (Central Anti-Atlas, Morocco): implications for geodynamic model of the Anti-Atlas Pan-African belt 

Saïd Ilmen, Fouzia Anzar, Abderrahmane Soulaimani, Mohamed Jaffal, Amine Bajddi, Lhou Maacha, and Bouchra Baidada

The Anti-Atlas orogenic belt, located at the northwestern edge of West African Craton, hosts several Proterozoic antiformal inliers (Boutonnières) which crops out under a thick Paleozoic Cover. In its central part, along the Anti-Atlas Major Fault, the Siroua and Bou Azzer-El Graara inliers exhibit Neoproterozoic ophiolitic suture which subduction settings is still under debate. In the last two decades, huge scientific publications were done in this area, mainly focused on the structural, petrological and geochronological issues. Three broad tectonothermal events were recognized in the Pan-African cycle. The Tonian–Cryogenian period ends with the obduction of supra-subduction ophiolite and oceanic arc material at ca. 640 Ma. The Early Ediacaran period was marked by the development and subsequent closure of a wide marginal basin next to a likely Andean-type arc (Saghro Group). The Late Ediacaran period is recorded by subaerial molasse deposits associated with post-collisional high-K calc-alkaline to shoshonitic magmatism (Ouarzazate Group).This project aims to use the magnetic and electromagnetic data of the Bou Azzer-El Graara inlier, and to integrate their interpretations in the geodynamic model of the Anti-Atlas Pan-African belt. The preliminary interpretations of the available aeromagnetic data show high-level magnetic signature at the western part of the Bou Azzer inlier, while it is missing in the east of the CAMP Foum Zguid dyke. From the Bou Ofroukh at the western tip of the inlier to the Ait Abdellah village, the strength of the magnetic signal is related to the wide exposure of the ultramafic rocks along the Anti-Atlas Major Fault. A weakness of the magnetic signal is observed in the area situated between Bou Azzer and Aghbar mines. This weakness was interpreted as being due to the deeply buried serpentinites under the Ediacaran volcano-sedimentary sequence. However, filed maps and magnetic signature indicate the absence of magnetic signal and the ultramafic rocks at the eastern domain of the Bou Azzer-El Graara inlier from the Foum Zguid dyke eastward. Several pending questions should be emphasized on the structural framework and continuity of the Anti-Atlas Major Fault and the role played by this inherited NE-SW Fracture infilled by Lower Liassic dolerite during the Pangea breakup.

How to cite: Ilmen, S., Anzar, F., Soulaimani, A., Jaffal, M., Bajddi, A., Maacha, L., and Baidada, B.: Preliminary airborne geophysical surveys over the Bou Azzer-El Graara inlier (Central Anti-Atlas, Morocco): implications for geodynamic model of the Anti-Atlas Pan-African belt, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1232, https://doi.org/10.5194/egusphere-egu22-1232, 2022.

There are a large number of different collision zones on Earth, formed in different geodynamic settings as a result of the collision of continental plates of different shapes and sizes. Researchers often use one or a combination of methods to study one region. In this study, we propose to compare the models of P and S anomalies of several regions. In this study, vertical sections were built under the collision zones of the Caucasus, Eastern Anatolia, NW Himalayas and Tien Shan using the method of local seismic tomography. 3D models of crustal inhomogeneities down to ~ 60-150 km were constructed using the LOTOS algorithm [Koulakov, 2009].

The main characteristic feature of all crustal models of collisional zones is a clear differentiation of the velocity anomalies of the orogen, formed due to shortening, and the continental plates, participating in the collision. Thus, the Arabian, East European, Indian, Tarim plates are associated with high velocity anomalies, and mountain structures, for example, the Greater and Lesser Caucasus, the Himalayas, are characterized by low velocities.

Volcanism is another geological feature that shows up well in seismic tomographic models. Young volcanism (up to ~ 2.5Ma) characterized by low-velocity anomalies in the models, while the older one characterized by high-velocity anomalies. Thus, the volcanic area of Kazbegi province including a group of Quaternary volcanoes (455-30 Ka) in Great Caucasus match to the locations of low-velocities in the P- and S-seismic models. But the Eastern Anatolia younger magmatism (6–4 Ma) occurred in the south around Lake Van, stands out as high velocity anomalies.

It is known that there is the lithospheric window under Tien Shan and Anatolia which is filled with overheated asthenospheric material that reaches the bottom of the crust, thereby weakening and heating the lower crust. It is most likely that the upper crustal high-velocity anomaly corresponds to the strong upper crust which is compacted by solidified material from Neogene-Quaternary volcanism, while the low-velocity anomaly is associated with the weak heated lower crust.

Thus, comparison of seismic tomography models of different collision zones can be the key to better understanding the processes in the crust and lithosphere.

The reported study was funded by Russian Foundation for Basic Research, project number 19-35-60002.

How to cite: Medved, I.: Common features of lithosphere structures in various collision zones of Eurasia based on seismic tomography studies, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1399, https://doi.org/10.5194/egusphere-egu22-1399, 2022.

Εpithermal and porphyry-type mineralization is genetically associated with acidic dyke rocks in a part of the supra-detachment Western Thrace Basin. 40Ar/39Ar ages on biotite of an andesitic lava dome and on K-feldspar of quartz-feldspar porphyritic dykes were determined and thus, new temporal constraints on the age of volcanism and mineralization were obtained.           

Biotite of an andesitic lava dome yields a 40Ar/39Ar plateau age of 33.05 ± 0.07 Ma (P=0.12). The dated andesite is considered as representative of the andesitic-dacitic rocks of large volcanic and subvolcanic bodies in the Western Thrace basin (Mavropetra Formation, Kirki area). Andesitic rocks indicate affinities of calc-alkaline to high-K calc-alkaline series magmatism. They are coeval to the high-K calc-alkaline magmatic suite of Leptokarya – Kirki, which forms an ENE-WSW 30 km long magmatic dome, developed between the Rhodope metamorphics extending northwards and the overlying detached Melia non-metamorphic formations and Middle-Upper Eocene molassic clastics, extending southwards.

Smaller bodies of acidic dyke rocks (rhyolite and quartz-feldspar porphyry), crosscut the overall dome structure with the andesitic-dacitic volcanics, the Middle-Upper Eocene clastic sediments, the mafic rocks of the Melia unit, the metamorphics of the Kechros Unit of Rhodope and the Leptokarya - Kirki granitoids. They appear with planar subvertical boundaries following a general NNW-SSE trend, perpendicular to the main ENE-WSW dome structure. They are concentrated along a major fault zone  (Ag. Filippos fault), with high- to intermediate sulfidation epithermal polymetallic sulfide mineralization, as well as in a roughly 8 km long and 1 km wide fracture zone to the east and northeast of Aisymi village with porphyry-type mineralization. Structural observations document the mega-tension gashes nature of the dykes with pronounced sinistral strike-slip kinematic indicators of the Kirki mineralized tectonic zone. K-feldspars from quartz-feldspar porphyritic dykes at Kirki yield a 40Ar/39Ar plateau age of a 31.89 ± 0.12 Ma (P=0.08).  The acidic dyke rocks contain calc-alkaline to high-K calc-alkaline differentiation trends. They exhibit marked enrichment of LREE relative to the HREE, flat HREE pattern, negative Eu anomaly and Eu/Eu* values ranging between 0.32 and 0.82.

In conclusion, the ENE-SSW Leptokarya - Kirki granitic dome was developed contemporaneously with the andesitic-dacitic volcanics at the contact between the Rhodope metamorphics and the detached Melia formations and Middle-Upper Eocene clastics at about 33 Ma, followed by the NNW-SSE transverse faults and acidic dykes with epithermal and porphyry-type mineralization at about 32 Ma.

 

How to cite: Skarpelis, N., Jourdan, F., and Papanikolaou, D.: New time constraints from 40Ar/39Ar geochronology on andesitic-dacitic lavas and acidic dyke rocks: An attempt to date the associated mineralization in the Western Thrace supra-detachment basin (Kirki, NE Greece), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2159, https://doi.org/10.5194/egusphere-egu22-2159, 2022.

This study focusses on the vein-hosted copper sulphide deposits in the Upper Palaeozoic Munster and South Munster Basins of southwest Ireland. Detailed mapping of the Allihies mine area (Beara Peninsula), have led to a new interpretation of the timing and development of mineralised quartz veins. Macro- and microstructural investigations reveal that the copper sulphide-bearing, mainly E-W striking quartz veins are directly related to early extensional, basinal normal faults. Molybdenite Re-Os dating of the main-stage Cu lode yield ages from 367.3 ± 5.5 to 366.4 ± 1.9 Ma. Bi-phase (LV) aqueous fluid inclusions associated with the mineralised quartz veins range from moderate salinity with high homogenisation temperatures (>3.2 wt% NaClequiv, Th < 314°C) to high salinities with very low homogenisation temperatures (<28.5 wt% NaClequiv, Th >74°C) The extensional faults and associated quartz veins experienced subsequent late Carboniferous Variscan deformation, including cleavage development, sinistral SW-NE strike slip faulting, cataclastic deformation and recrystallization of vein fills. Later fluids with low to moderate salinities and Th values of about 200°C were trapped in syn-Variscan quartz-chlorite saddle reefs and en echelon tension gash arrays in semi brittle shear zones. The new timing of Cu mineralisation in SW Ireland has major implications for its relationship to the base metal deposits of the Irish Midlands.

How to cite: Meere, P., Lang, J., and Unitt, R.: The Upper Palaeozoic Vein Hosted Copper Deposits of the Allihies Mining Area, Southwest Ireland – A New Structural and Chronological Evaluation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2811, https://doi.org/10.5194/egusphere-egu22-2811, 2022.

EGU22-3139 | Presentations | GD7.1

Crustal Structure across Central Scandinavia along the Silver-Road refraction profile 

Metin Kahraman, Hans Thybo, Irina Artemieva, Alexey Shulgin, Peter Hedin, and Rolf Mjelde

The Baltic Shield is located in the northern part of Europe. It formed by amalgamation of a series of terranes and microcontinents during the Archean to the Paleoproterozoic, followed by significant modification in Neoproterozoic to Paleozoic time by the Sveconorwegian (Grenvillian) and the Caledonian orogenies. The Baltic Shield includes an up to 2500 m high northeast-southwest oriented mountain range, the Scandes, which mainly coincides with the Caledonian and Sveconorwegian deformed parts along the western North Atlantic coast, despite being located far from any active plate boundary.

We present a crustal scale seismic model along the WNW to ESE directed Silver Road profile in northern Scandinavia between 8oE and 20oE. This profile extends south of Lofoten for ~300km across the Norwegian shelf in the Atlantic Ocean and for ~300km across the onshore Caledonides and Baltic Shield proper. The seismic data were acquired with 5 onshore explosive sources and offshore air gun shots from the vessel Hakon Mosby along the whole offshore profile. Data was acquired by 270 onshore stations at nominally 1.5 km distance and 16 ocean bottom seismometers on the shelf, slope and into the oceanic environment. The results of this experiment will provide information on the origin of the anomalous onshore topography and offshore bathymetry at the edge of the North Atlantic Ocean.

We present results from ray tracing modeling and tomographic inversion of the seismic velocity structure along the profile. The crustal structure is uniform with a thickness of 45 km along the whole onshore profile including both the Caledonides and the shield part. The crust thins abruptly to ~25 km thickness towards the shelf around the coastline. Pn velocity is only ~7.6-7.8 km/s below the high topography areas with Caledonian nappes, and extending into the offshore part, whereas it is 8.4 km/s below the shield proper. By gravity modelling we find that the low Pn zone has a low density of 3.20 g/cm3, which we interpret as partially eclogitizised lower crust. The Svecofennian unit has a very high density of 3.48 g/cm3 in the shield with low topography. Isostasy to 60 km depth, as suggested by Receiver Functions, indicates a ~2 km topography which is ~1 km higher than observed. However, recent results from high-resolution seismic tomography shows a velocity change between the two onshore zones down to 120 km depth. Including this observations into the calculations allows us to explain the observed topography by isostasy in the crust and lithospheric mantle.

How to cite: Kahraman, M., Thybo, H., Artemieva, I., Shulgin, A., Hedin, P., and Mjelde, R.: Crustal Structure across Central Scandinavia along the Silver-Road refraction profile, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3139, https://doi.org/10.5194/egusphere-egu22-3139, 2022.

EGU22-5722 | Presentations | GD7.1

Antarctica ice sheet basal melting enhanced by high mantle heat 

Irina M. Artemieva

Antarctica is losing ice mass by basal melting associated with processes in deep Earth and reflected in geothermal heat flux. The latter is poorly known and existing models based on disputed assumptions are controversial. Here I demonstrate that the rate of Antarctica ice basal melting is significantly underestimated: the area with high heat flux is double in size and the amplitude of the high heat flux anomalies is 20-30% higher than in previous results. Extremely high heat flux (>100 mW/m2) in almost all of West Antarctica, continuing to the South Pole region, and beneath the Lake Vostok region in East Antarctica requires a thin (<70 km) lithosphere and shallow mantle melting, caused by recent geodynamic activity. This high heat flux may promote sliding lubrication and result in dramatic reduction of ice mass. The results form basis for re-evaluation of the Antarctica ice-sheet dynamics models with consequences for global environmental changes. [Artemieva, I.M., 2022, Earth-Science Reviews]

How to cite: Artemieva, I. M.: Antarctica ice sheet basal melting enhanced by high mantle heat, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5722, https://doi.org/10.5194/egusphere-egu22-5722, 2022.

EGU22-5771 | Presentations | GD7.1

Lithospheric thermo-chemical heterogeneity and density structure of the Siberian craton 

Alexey Shulgin and Irina Artemieva

We present a new model for the density structure of the lithospheric upper mantle beneath the Siberian craton, based on a 3D tesseroid gravity modeling. Our model is based on a detailed crustal structural database SibCrust (Cherepanova et al., 2013) constrained by regional seismic data. The residual lithospheric mantle gravity anomalies are derived by removing the 3D gravitational effect of the crust. We next convert these anomalies to lithosphere mantle in situ densities. To evaluate chemical heterogeneities of the lithospheric mantle, thermal effects are removed based on the global continental thermal model TC1 (Artemieva, 2006). The resulting density model at SPT conditions shows a highly heterogeneous structure of the cratonic lithospheric mantle. Density heterogeneities reflect a complex geodynamic evolution of the craton, which still preserves parts of the pristine cratonic lithosphere in areas where the lithosphere has not been modified by metasomatism associated with the Siberian LIP, several pulses of kimberlite-type magmatism, and rifting at the peripheral parts.

How to cite: Shulgin, A. and Artemieva, I.: Lithospheric thermo-chemical heterogeneity and density structure of the Siberian craton, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5771, https://doi.org/10.5194/egusphere-egu22-5771, 2022.

EGU22-6210 | Presentations | GD7.1

Crustal structure in the central Tethys realm 

Vahid Teknik, Hans Thybo, Irina Artemieva, and Abdolreza Ghods

The central Tethys realm including Anatolia, Caucasus and Iran is one of the most
complex geodynamic settings within the Alpine-Himalayan belt. To investigate the
tectonics of this region, we estimate the depth to magnetic basement (DMB) as a
proxy for the shape of sedimentary basins, and average crustal magnetic
susceptibility (ACMS) by applying the fractal spectral method to aeromagnetic data.
Magnetic data is sensitive to the presence of iron-rich minerals in oceanic fragments
and mafic intrusions hidden beneath sedimentary sequences or overprinted by
younger tectono-magmatic events. Furthermore, a seismically constrained 2D
density-susceptibility model along Zagros is developed to study the depth extent of
the tectonic structure.
Comparison of DMB and ACMS demonstrates that the structural complexity
increases from the Iranian plateau into Anatolia.
Strong ACMS show lineaments coincides with known occurrences of Magmatic-
Ophiolite Arcs (MOA) and weak ACMS zones coincide with known sedimentary
basins in the study region, including Zagros. Based on strong ACMS anomalies, we
identify hitherto unknown MOAs below the sedimentary cover in eastern Iran and in
the SE part of Urima-Dokhtar Magmatic Arc (UDMA). Our results allow for
estimation of the dip of the related paleo-subduction zones. Known magmatic arcs
(Pontides and Urima-Dokhtar) have high-intensity heterogeneous ACMS. We
identify a 450 km-long buried (DMB &gt;6 km) magmatic arc or trapped oceanic crust
along the western margin of the Kirşehır massif in Anatolia from a strong ACMS
anomaly. We identify large, partially buried magmatic bodies in the Caucasus LIP at
the Transcaucasus and Lesser Caucasus and in NW Iran. Strong ACMS anomalies
coincides with tectonic boundaries and major faults within the Iranian plateau while
the ACMA signal is generally weak in Anatolia. The Cyprus subduction zone has a

strong magnetic signature which extends ca. 500 km into the Arabian plate to the
south of the Bitlis suture.
We derive a 2D crustal-scale density-susceptibility model of the NW Iranian plateau
along a 500 km long seismic profile across major tectonic provinces of Iran from the
Arabian plate to the South Caspian Basin (SCB). A seismic P-wave receiver function
section is used to constrain major crustal boundaries in the density model. We
demonstrate that the Main Zagros Reverse Fault (MZRF), between the Arabian and
the overriding Central Iran crust, dips at ~13° angle to the NE and extends to a depth
of ~40 km. The trace of MZRF suggests ~150 km underthrusting of the Arabian plate
beneath Central Iran. We identify a new crustal-scale suture beneath the Tarom
valley separating the South Caspian Basin crust from Central Iran. High density lower
crust beneath Alborz and Zagros may be related to partial eclogitization of crustal
roots at depths deeper than ~40 km.

How to cite: Teknik, V., Thybo, H., Artemieva, I., and Ghods, A.: Crustal structure in the central Tethys realm, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6210, https://doi.org/10.5194/egusphere-egu22-6210, 2022.

EGU22-6563 | Presentations | GD7.1

New global constraints on transition-zone topography from normal-mode tomography 

Rûna van Tent and Arwen Deuss

Lateral variations in the depths of the transition-zone discontinuities are generally attributed to variations in temperature, causing local changes in the depth of the dominant phase transition. At moderate temperatures the dominant phase transitions are those of olivine, characterized by a positive Clapeyron slope (dP/dT) at 410 km depth and a negative Clapeyron slope at 660 km depth. An anticorrelation between topography on the 410 and 660-km discontinuities is therefore expected in the absence of variations in chemical composition, as an increase in temperature would lower the 410-km discontinuity and elevate the 660-km discontinuity. Simultaneously, this temperature increase would result in a decrease in seismic velocity and density of the mantle material. Comparing models of transition-zone topography, seismic velocity and density therefore gives valuable insight into the nature of transition-zone discontinuities. Existing global models of transition-zone topography have been created using SS and PP precursor measurements, which need to be corrected for mantle velocity structure using an independent velocity model before the discontinuity depths can be calculated. Here, we present new global models of transition-zone topography and whole-mantle S-wave velocity, P-wave velocity and density that have been simultaneously inferred from a different type of seismic data: Earth’s normal modes. Normal modes are whole-Earth oscillations induced by large earthquakes (Mw≥7.5). We use our models, which can be readily compared to one another, to analyze the nature of the transition-zone discontinuities. We also discuss the trade-offs between the different model parameters and the model uncertainties, the latter of which is additional information provided by the Hamiltonian Monte Carlo method used for our inversion. Finally, we compare our models to transition-zone topography obtained from SS precursor data.

How to cite: van Tent, R. and Deuss, A.: New global constraints on transition-zone topography from normal-mode tomography, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6563, https://doi.org/10.5194/egusphere-egu22-6563, 2022.

EGU22-7161 | Presentations | GD7.1 | Highlight

Regional variability in the thermal structure of Tibetan Lithosphere 

Bing Xia, Irina Artemieva, Hans Thybo, and Simon Klemperer

We present a thermal model- of lithospheric thickness and surface heat flow in Tibet and adjacent regions (74-110o E, 26-42o N) based on topography and seismic Moho. We interpret strong heterogeneity in lithospheric thermal structure to be caused by longitudinal variations in the northern extent of the subducting Indian plate, southward subduction of the Asian plate beneath central Tibet, and possible preservation of fragmented Tethyan paleo-slabs. Cratonic-type cold and thick lithosphere (200-240 km) with a predicted surface heat flow of 40-50 mW/m2 typifies the Tarim Craton, the northwest Yangtze Craton, and most of the Lhasa Block that is likely refrigerated by underthrusting Indian lithosphere. We identify a ‘North Tibet anomaly’ (at 84-92o E, 33-38o N) with thin (<80 km) lithosphere and high surface heat flow (>80-100 mW/m2) in a region with anomalous seismic Sn and Pn propagation. We interpret this anomaly as the result of removal of lithospheric mantle and asthenospheric upwelling at the junction of the Indian and Asian slabs with opposite subduction polarities. Other parts of Tibet typically have intermediate lithosphere thickness of 120-160 km and a surface heat flow of 45-60 mW/m2, with patchy anomalies in eastern Tibet.

How to cite: Xia, B., Artemieva, I., Thybo, H., and Klemperer, S.: Regional variability in the thermal structure of Tibetan Lithosphere, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7161, https://doi.org/10.5194/egusphere-egu22-7161, 2022.

EGU22-9483 | Presentations | GD7.1

Upper mantle structure beneath Bulgaria obtained by receiver function analysis 

Gergana Georgieva, Lev Vinnik, Sergey Oreshin, Larissa Makeyeva, Dragomir Dragomirov, Valentin Buchakchiev, and Liliya Dimitrova

Deep structure beneath the central part of the Balkan Peninsula was studied using P and S receiver function technique. Data from seismic stations from the Bulgarian National Seismological Network and several stations from neighbouring countries were used. Depth of Mohorovicic discontinuity has been estimated between 28–30 km in northern and central Bulgaria to 50 km in southwestern of Bulgaria. The 410 km mantle boundary is uplifted by 10 km relative to nominal depth in the area of Rhodopean Massif. In northern Bulgaria, the boundary is lowered by 10 km. Indications of a low-velocity layer are present at a depth exceeding 410 km. The thickness of the asthenosphere is estimated as 50 km and the depth of lithosphere-asthenosphere (LAB) boundary varies between 40 and 60 km.

The results of this study have been published in Vinnik et. al., Izvestiya, Physics of the Solid Earth, 2021, Vol. 57, No. 6, pp. 849–863. This research has been carried out as part of a joint project supported by the National Science Foundation of Bulgaria (grant no. KP-06-RUSIA/27.09.2019) and the Russian Foundation for Basic Research (RFBR, grant no. 19-55-18008 Bolg_a).

How to cite: Georgieva, G., Vinnik, L., Oreshin, S., Makeyeva, L., Dragomirov, D., Buchakchiev, V., and Dimitrova, L.: Upper mantle structure beneath Bulgaria obtained by receiver function analysis, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9483, https://doi.org/10.5194/egusphere-egu22-9483, 2022.

EGU22-10022 | Presentations | GD7.1

Finite-Frequency Body-Wave Tomography in Scandinavia 

Nevra Bulut and Hans Thybo

We present a P-wave velocity model of the upper mantle, obtained from finite-frequency body wave tomography, to analyze the relationship between deep and surface structures in Fennoscandia, one of the most studied cratons on Earth. The large array aperture of 2000 km by 800 km allows us to image the velocity structure to 800 km depth at very high resolution. The velocity structure provides background for understanding the mechanisms responsible for the enigmatic and debated high topography in the Scandinavian mountain range far from any plate boundary. Our model shows exceptionally strong velocity anomalies with changes by up to 6% on a 200 km scale. We propose that a strong negative velocity anomaly down to 200 km depth along all of Norway provides isostatic support to the enigmatic topography, as we observe a linear correlation between hypsometry and uppermost mantle velocity anomalies to 150 km depth in central Fennoscandia. The model reveals low velocity anomaly below the mountains underlain by positive velocity anomalies, which we explain by preserved original Svecofennian and Archaean mantle below the Caledonian/Sveconorwegian deformed parts of Fennoscandia. Strong positive velocity anomalies to around 200 km depth around the southern Bothnian Bay and the Baltic Sea may be associated with pristine lithosphere of the present central and southern Fennoscandian craton that has been protected from modification since its formation. However, the Archaean domain in the north and the marginal parts of the Svecofennian domains appear to have experienced strong modification of the upper mantle. A pronounced north-dipping positive velocity anomaly in the southern Baltic Sea extends below Moho. It coincides in location and dip with a similar north-dipping structure in the crust and uppermost mantle to 80 km depth observed from high resolution, controlled source seismic data. We interpret this feature as the image of a Paleoproterozoic boundary which has been preserved for 1.8 Gy in the lithosphere.

How to cite: Bulut, N. and Thybo, H.: Finite-Frequency Body-Wave Tomography in Scandinavia, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10022, https://doi.org/10.5194/egusphere-egu22-10022, 2022.

EGU22-10848 | Presentations | GD7.1

New constraints on the thermochemical properties of Earth’s upper and mid-mantle from ScS reverberation data 

Rashni Anandawansha, Lauren Waszek, and Benoit Tauzin

Seismic topography models reveal that both upwelling plumes and downgoing slabs are deflected or stagnate at various depths in Earth’s mantle transition zone (MTZ) and mid-mantle (MM). Deflection within the MTZ is associated with the mineral physics phase changes at 410 and 660-km depth, however the cause of deflection in the MM remains debated. There are no candidate mineral transformations to explain the varied MM reflectors that have been detected [Waszek et al., 2018], instead indicating widespread compositional heterogeneities. Furthermore, our recent thermal model [Waszek et al., 2021] reveals a link between high temperatures in the MTZ and surface activity, indicating that some plumes are able to traverse this region unimpeded. Illuminating the detailed seismic structures of the upper and mid-mantle is key to determine the link between reflectors, temperature, composition, and dynamics.

Here, we present a new large global dataset of ScS reverberations, compiled using an automatic waveform identification code based on Convolutional Neural Networks [Garcia et al., 2021]. Mantle discontinuities and reflectors generate precursors to ScSn phases, and postcursors to sScSn. Here, we present a new method to correct for 3D mantle structure in which we remove the symmetry problem suffered by most of these phases. The data are stacked to reveal the small amplitude reverberation signals, and our correction method allows us to stack for five ScSn and sScSn phases simultaneously to obtain the highest possible data coverage. For the global MTZ discontinuities, we use “adaptive stacking”. Based on Voronoi tessellation, the method automatically adjusts for topography, noise, and data coverage. Regional-scale fixed bin parameterisations of varying sizes are used to search for the intermittent MM reflectors.

We incorporate our seismic observations with mineral physics modelling, inverting for a realistic range of potential temperatures and basalt-harzburgite mixtures to obtain the best-matching thermochemical model for the MTZ. We first compare our new ScS MTZ model with its counterpart generated from SS and PP precursors [Waszek et al., 2021], to benchmark observational differences between data types. We next investigate the link or lack thereof between our MTZ model and detections of MM signals, to place improved constraints on variations in properties with depth. The final step is interpretation of our observations and modelling in the context of geodynamical simulations of mantle convection. Our outputs will contribute to greater understanding of the complex relationship between MTZ discontinuities and MM reflectors, with implications for global mantle circulation, compositional layering beneath the MTZ, and even surface activity. 

 

 

References:

Waszek, Schmerr, Ballmer. 2018.

Garcia, Waszek, Tauzin, Schmerr. 2021.

How to cite: Anandawansha, R., Waszek, L., and Tauzin, B.: New constraints on the thermochemical properties of Earth’s upper and mid-mantle from ScS reverberation data, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10848, https://doi.org/10.5194/egusphere-egu22-10848, 2022.

EGU22-13229 | Presentations | GD7.1

Seismic evidence for a 1000-km mantle discontinuity under the Pacific 

Zhendong Zhang, Jessica Irving, Frederik Simons, and Tariq Alkhalifah

Seismic discontinuities in the mantle are indicators of its thermo-chemical state and offer clues
to its dynamics. Ray-based imaging methods, though limited by the approximations made, have
mapped mantle transition zone (MTZ) discontinuities in detail, but have yet to offer definitive
conclusions on the presence and nature of mid-mantle discontinuities. We use a waveequation-
based imaging method to image both MTZ and mid-mantle discontinuities, and
interpret their physical nature. We focus on precursors to the surface-reflected seismic phases
PP, SS, PS, and SP to produce images of deep reflectors using reverse-time migration (RTM),
employing the full-waveform tomographic model GLAD-M25 for wavefield extrapolation. Our
adjoint-based inverse modeling accounts for more of the physics of wave propagation than raybased
stacking methods, which leads to improved accuracy and realistic precision of the
obtained images. The relative amplitude and location of the imaged reflectors are indeed well
resolved, but an interpretation of absolute amplitudes in terms of reflection coefficients
remains elusive. We observe a thinned mantle transition zone southeast of Mauna Loa, Hawaii,
and a reduction in impedance contrast around 410 km depth in the same area. These
observations coincide with anomalously low S-wavespeeds in the background tomographic
model, suggesting a hotter-than-average mantle in the region. Our new images furthermore
reveal a 4000—5000 km-wide reflector in the mid mantle below the central Pacific, at 950—
1050 km depth. This discontinuity displays strong topography and is marked by a polarity
opposite to that of the 660-km discontinuity, implying an impedance reversal near 1000 km.
We speculate that this mid-mantle discontinuity is linked to the mantle plumes rising from the
large low shear-velocity province (LLSVP) at the base of the mantle below this region. Some
seismic tomography models are in support of this interpretation, while others remain at odds---
a discrepancy that our observations may help resolve.

How to cite: Zhang, Z., Irving, J., Simons, F., and Alkhalifah, T.: Seismic evidence for a 1000-km mantle discontinuity under the Pacific, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13229, https://doi.org/10.5194/egusphere-egu22-13229, 2022.

EGU22-540 | Presentations | GD7.2

3D Modeling of Crust-Mantle Dynamics on Cratonic Regions: Implications for the Deformation of North China Craton 

Açelya Ballı, Oğuz Göğüş, and Jeroen van Hunen

A number of geological, geochemical and seismological studies suggest that cratonic lithospheres may be associated with thinning and destruction. For such unique plate configurations, the most well-known example is the North China craton. Geological studies suggest that during the Mesozoic era (120-80 Ma), a surge of magmatism occurred across the North China Craton as a response to the removal of the portions of the lithosphere beneath it. However, the question of which processes control lithospheric thinning/removal is yet to be understood. The one that is the subject of this study is the deformation controlled by gravitational instabilities (convective removal), that develop because of density variations between the lithosphere and the underlying sub-lithospheric (asthenospheric) mantle.

In accordance with numerical model predictions conceptual geological hypotheses are inferred to invoke the phase transitions in the lower crust and densification of this layer through the transformation of the basalt to eclogite during late Jurassic where Pacific flat-slab subduction led to shortening in the continental back arc (e.g Andean type tectonics). The removal event possibly occurred following the plate shortening during Early Cretaceous and various surface geological features, for instance, normal faulting/extension and pull apart basins and are interpreted in the context of coupled crust-mantle dynamics. This research aims to facilitate new 3D modelling strategies to further explain how large-scale plate geodynamics may account for the geological-geophysical fingerprints of destruction at North China Craton. The problem of deformation of the North China Craton will be approached on a much broader aspect including the extensional events that took place in Cretaceous. The overarching goal of this work is to explain the first order geodynamic mechanism that possibly constrain the craton destructions not only under North China but also other areas where such mechanism has been postulated (e.g North America, South Africa). 

 

 

 

How to cite: Ballı, A., Göğüş, O., and van Hunen, J.: 3D Modeling of Crust-Mantle Dynamics on Cratonic Regions: Implications for the Deformation of North China Craton, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-540, https://doi.org/10.5194/egusphere-egu22-540, 2022.

Despite the influence of several extrinsic parameters that inhibits the use of trace element composition of detrital zircon grains in inferring their host rocks, workers had overcome many related problems and particularly constrained zircon/bulk rock partition co-efficient at least for different granitoids, for example. Based on these kind of progress and few other fundamental works, we have tried to apply trace element composition of detrital zircon grains retrieved from some basal quartz pebble conglomerate units and orthoquartzites of Dharwar craton in studying the crustal evolution pattern of this craton, specifically in terms of its changing crustal thickness with time. In this study, after categorising the pristine zircon grains identified by their La>1, Pr>1 and LREE-I<30 values, the values of their LREE/HREE ratio (measured by their Lu/Nd ratio) are used to infer the temporal variation of crustal thickness within this craton. Here, the zircon grains show depressed values of LREE/HREE ratio manifested in their higher Lu/Nd ratio which possibly attests the absence of thicker continental crust in Dharwar craton between 3.4-3.1 Ga. We would also try to establish our observation regarding the secular evolution of crustal thickness of Dharwar craton with the help of other bivariate plots using the other trace elemental proxies. Our result stand in contradiction with the finding of other workers who, with the help of geophysical parameters, inferred the greater thickness of continental crust attested in WDC within the said time frame  

How to cite: Mitra, A. and Dey, S.: Tale of crustal evolution of western Dharwar craton in Paleo-to- Meso Archean time: Insights from trace elemental composition of detrital zircons of some selected quartzite units., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-609, https://doi.org/10.5194/egusphere-egu22-609, 2022.

EGU22-2524 | Presentations | GD7.2

Evidence for a ca 1.86 Ga continental margin in the Baltic Sea region: rock chemistry, U-Pb ages, and Nd and Sr isotopic data 

Grazina Skridlaite, Laurynas Siliauskas, Martin Whitehouse, Åke Johansson, and Andrius Rimsa

The concealed basement of the Mid-Lithuanian domain (MLD) is considered to be part of a larger Precambrian unit within the western East European Craton (EEC), the Mid-Baltic belt (MBB), established by Bogdanova et al. (2015). New data on rock chemistry, U-Pb ages, and the Sm-Nd and Rb-Sr isotopic systems allow to subdivide the MLD into distinct parts, discuss their origin and correlate them with similar units on the Swedish side.

The MLD can be subdivided into two parts: NW and SE. The NW MLD magmatic rocks crystallized from 1.86 to 1.83 Ga and were subsequently intruded by 1.81-1.80 Ga granitoids and charnockitoids. The NW MLD samples have SiO2 contents between 48 and 71 wt.% but have similar initial εNd values at -1 to -2, while their initial Sr isotope ratios scatter. Nd isotope data suggest either an enriched mantle source, or a mantle magma that was mixed with older crustal material.

The SE MLD magmatic rocks originated from a slightly depleted mantle source from 1.87 to 1.82 Ga. At 1792±9 Ma, they were intruded by gabbronorites which in turn were crosscut by thin veinlets of microgabbronorite at 1758±11 Ma. The SE MLD rocks have positive εNd (+1 to +3) and undisturbed Rb/Sr systems suggesting mantle-derivation, with the variation in composition (mafic to felsic) due to fractionation rather than crustal contributions.

The SE MLD magmatic series with oceanic island arc affinity correlate well with the ca 1.85 Ga Fröderyd metavolcanics of the Vetlanda-Oskarshamn belt (Salin et al., 2021) in SE Sweden, while the NW MLD rocks are similar to the TIB-0 (1.86-1.85 Ga) Askersund granitoids (cf. Salin et al., 2021) in the southern Bergslagen area. The younger (1.81-1.79 Ga) intrusives in both areas are time-equivalents of the TIB-1 magmatism on the Swedish side. Thus, the MLD as well as its counterparts on the Swedish side of the Baltic Sea, the TIB-0 magmatism in the southern Bergslagen area and the Vetlanda-Oskarshamn belt, may be assigned to the same Mid-Baltic Belt, representing an active, south-facing continental margin established at ca. 1.86 Ga. The shape and outline of the Belt was affected by the Fennoscandia-Sarmatia collision at ca. 1.82-1.80 Ga, the 1.81-1.76 Ga TIB-1 magmatism, as well as by later Mesoproterozoic intraplate magmatism.

Bogdanova, S. et al., 2015. Precambrian Research 259, 5–33.

Salin, E. et al., 2019. Precambrian Research 328, 287–308.

Salin, E. et al., 2021. Precambrian Research 356, 106134

How to cite: Skridlaite, G., Siliauskas, L., Whitehouse, M., Johansson, Å., and Rimsa, A.: Evidence for a ca 1.86 Ga continental margin in the Baltic Sea region: rock chemistry, U-Pb ages, and Nd and Sr isotopic data, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2524, https://doi.org/10.5194/egusphere-egu22-2524, 2022.

Deep-seated upwellings within the Earth’s mantle, also known as mantle plumes, affect the Earth’s surface by inducing (large-scale) volcanism, initiating continental breakup and increasing surface heat flow. Plume-lithosphere interaction may also generate lithospheric erosion at the base of the tectonic plates. It is therefore important to understand the past positions and movements of mantle plumes relative to the surface plates. However, while hotspot tracks beneath thin oceanic lithosphere are visible as volcanic island chains, the plume-lithosphere interaction for thick continental or cratonic lithosphere often remains hidden due to the lack of volcanism.

To identify plume tracks with missing volcanism, we characterize the relationship and timing between plume-lithosphere interaction and associated surface heat flux anomalies by using numerical models of mantle convection. Our results indicate a relation between lithospheric thinning and surface heat flux anomaly, which is independent of geometry and can be approximated analytically. We have confirmed this close link between basal erosion of the lithosphere and surface heat flux anomaly using an analytical expression form the time-dependence of heat transmission through convectively thinned lithosphere. Anomaly amplitudes primarily depend on the viscosity structure of the lower lithosphere and the asthenosphere, with a minor dependence on plume temperature. Lithospheric thinning is strongest around the time the plate is above the plume conduit, while the maximum heat flux anomaly occurs about 40-140 Myr later. Therefore, continental and cratonic plume tracks can be identified by lithospheric thinning, even if they lack extrusive and intrusive magmatism, followed by elevated surface heat flux several 10s of Myr later. This has important implications, especially for arctic settings such as Greenland or Antarctica, as ice melting rates might be affected by elevated heat flow long after the plume passage.

How to cite: Heyn, B. and Conrad, C.: Basal erosion and surface heat flux anomalies associated with plume-lithosphere interaction beneath continents, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2631, https://doi.org/10.5194/egusphere-egu22-2631, 2022.

EGU22-2977 | Presentations | GD7.2

Imaging the full extent of the Australian cratonic lithosphere using waveform tomography with massive datasets. 

Janneke de Laat, Sergei Lebedev, Bruna Chagas de Melo, Nicolas Celli, and Raffaele Bonadio

Australia has a long a complex geological history, spanning from the early Archean to the present day. Tomographic models can help us better understand the evolution of Australia by imaging the seismic structure of the crust and underlying mantle. We present a new S-wave tomographic model, Aus22, computed using a very large dataset of 0.9 million seismograms. The dataset includes all publicly available broadband data and yields the densest possible coverage across the hemisphere centred at the Australian continent, with sparser coverage elsewhere. Aus22 is computed using a three-step inversion procedure: 1. waveform inversion, 2. tomographic inversion and 3. outlier analysis. The model is validated by resolution tests and, for particular locations with notable differences with previous models, by independent inter-station measurements of surface-wave phase velocities. The new tomography resolves the structure of the Australian Plate and its boundaries in great detail. Cratonic lithosphere underlies nearly all of western and central Australia and shows substantial lateral heterogeneity. The highest seismic velocities are observed in the central-west portion of the continent, including the West and South Australian Craton. The North Australian Craton can be distinguished by a slightly lower seismic velocity, especially in its southern part. The cratonic lithosphere below the North Australian Craton extends northwards offshore through the Gulf of Carpentaria and the Arufa and Timor Sea and terminates at the southern Banda Arc and the New Guinea Fold-and-Thrust Belt, marking the northern boundary of the Australian Plate. The eastern boundary of the cratonic lithosphere is close, in most places, to the geologically defined Tasman Line and provides a new, deep-lithospheric definition of this line. East of this boundary, the lithosphere transitions to thin, warm lithosphere underlying the volcanically active east of the continent. This transition is sharp in the north, where it is located just west of the Georgetown Inlier, whereas an area of moderately thick, transitional lithosphere is present in the south-central part of the continent.

How to cite: de Laat, J., Lebedev, S., Chagas de Melo, B., Celli, N., and Bonadio, R.: Imaging the full extent of the Australian cratonic lithosphere using waveform tomography with massive datasets., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2977, https://doi.org/10.5194/egusphere-egu22-2977, 2022.

South African lithosphere is a mosaic of the best-preserved and exposed crustal blocks, assembled in the early to late Archean and then modified by a series of major tectono-thermal events, both of Precambrian and Phanerozoic age. Understanding the thermal and compositional structure of the South African lithosphere provides crucial information for the causes and processes of lithospheric stability and modification.

The lithosphere's effective elastic thickness (Te) is a proxy for mechanical strength that can be used to constrain lithospheric rheology and better understand how surface deformation affects deep Earth processes.

In this study, we calculate the admittance and coherence for southern Africa using topography and Bouguer gravity data from the GOCE satellite dataset. The admittance and coherence are then jointly inverted to estimate the spatial variations in southern African elastic thickness, by applying a wavelet transform in a probabilistic Bayesian framework.

Unlike other Cratonic regions, the low effective elastic thickness values and the shallow Curie depth estimated along the Kaapvaal Craton, demonstrate that lithospheric strength is influenced by regional thermo-chemical mantle upwelling dominated by composition, rather than just the continental geothermal state.

The lateral heterogeneity of Te across the Kaapvaal craton indicates that the Kaapvaal may not be a uniformly rigid craton and the modification is related to metasomatism and plume activity.

 

How to cite: Sobh, M., Gerhards, C., and Fadel, I.: Mechanical Strength of Southern African’s Lithosphere from a Joint Inversion of Bouguer Gravity and Topography and its Uncertainty, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3561, https://doi.org/10.5194/egusphere-egu22-3561, 2022.

EGU22-5438 | Presentations | GD7.2

Crustal growth of Archean and early Proterozoic granitoids of the Ivindo region in the Souanké and Bomalinga areas from Congo Craton (North-West Republic of Congo) 

Rodeck Patrick Alan Loemba, Legran Juldit Espoir Plavy Ntsiele, Urbain Fiacre Opo, Carmel Bazebizonza Tchiguina, Hardy Medry Dieu-Veill Nkodia, and Florent Boudzoumou

Most interpretations of the Archean rocks in the Central Congo Craton have only focused on data from Cameroon and Gabon, few of them have included data from the Ivindo region in northwest Republic of Congo. This study presents for the first time a regional interpretation of the Archean rocks of the Congo craton from data on granitoids of the Ivindo region. Modal compositions vary between quartz-rich granitoids or pegmatite, granodiorites, granites and tonalites. These rocks are metaluminous and peraluminous (~0.8≤A/CNK≤~1.3) and define magmatic lineages that are predominantly calc-alkaline, tholeiitic, and rarely highly potassic calc-alkaline. REE diagrams show that these rocks are rich in rare earth elements (LREE) and large ionic lithophile (LILE), while exhibiting significant negative anomalies in Nb-Ta, and in Ti. Such geochemical signatures indicate that these granitoids formed possibly in a subduction tectonic setting. These geochemical signatures are comparable with the Dharwar, North China, and Pilbara cratons, also in similar Archean cratons.

The U-Pb ages based on zircon indicate that tonalites were amplaced at (2891.2 ± 10.6 and 2820.37 ± 6.23 Ma), pegmatite were amplaced at (2878.2 ± 13.6 and 2891.0 ± 12.6 Ma), granodiorite were ampleced at (2828. 98 ± 6.23 Ma) and granite were ampleced at (2430.19 ± 8.11 Ma). Thesse periods of magmatisme describe here revels the magmatic history of the Archean granitoids of the Congo craton in the Ivindo Bassement from 3085 ± 21.6 and 2430.19 ± 8.11 Ma.

Keywords: Archean, Crustal growth, Granitoids, Ivindo region, Congo craton, Republic of Congo.

 

 

How to cite: Loemba, R. P. A., Ntsiele, L. J. E. P., Opo, U. F., Bazebizonza Tchiguina, C., Nkodia, H. M. D.-V., and Boudzoumou, F.: Crustal growth of Archean and early Proterozoic granitoids of the Ivindo region in the Souanké and Bomalinga areas from Congo Craton (North-West Republic of Congo), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5438, https://doi.org/10.5194/egusphere-egu22-5438, 2022.

EGU22-6102 | Presentations | GD7.2 | Highlight

Nature vs. Nurture: Understanding the survival of Archean cratons 

Heather Bedle, Catherine Cooper, and Carol Frost

In a geodynamic, geological and geophysical review of global Archean cratons, we find that the survival of Archean cratons depends on the initial conditions of their formation, as well as the tectonic processes to which they were exposed.  In a sense, we must consider both their nature and how they were nurtured.  In a review of existing literature and models, we use stability regime diagrams to understand the factors that contribute to the intrinsic strength of a craton: buoyancy, viscosity, and relative integrated yield strength. We find that cratons formed in the Archean when thermal conditions enhanced extraction of large melt fractions and early cratonization promoted the formation of stable Archean cratonic lithosphere.  In terms of the cratons' nurturing, processes that may have modified and weaken cratonic lithosphere include subduction and slab rollback, rifting, and mantle plumes, as these processes introduced materials and conditions that warmed and metasomatized the lithosphere.  Examining four Archean cratons that are more stable, and four that are categorized as modified or destroyed, we note that continental lithosphere that was cratonized prior to the end of the Archean has more potential to survive deformation during the last 500 My. Although, the survivability of these cratons is highly dependent on their unique positions relative to larger scale tectonic processes, such as subduction.   We also observe that once an Archean craton begins to undergo even a small amount of modification, it is more likely to continue to be modified, as it loses the preservation advantage that it had upon birth.

How to cite: Bedle, H., Cooper, C., and Frost, C.: Nature vs. Nurture: Understanding the survival of Archean cratons, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6102, https://doi.org/10.5194/egusphere-egu22-6102, 2022.

EGU22-6661 | Presentations | GD7.2

Ocean break-up and related mountain rise controlled by a continentalcrustal root 

Anna Makushkina, Benoit Tauzin, Meghan S. Miller, Hrvoje Tkalčić, and Hans Thybo

Large-scale topography is thought to be mainly controlled by active tectonic processes. Fennoscandia is located far from any active tectonic setting and yet includes a mountain range along its passive North Atlantic margin. Models proposed to explain the origin of these enigmatic mountains are based on glacial isostatic adjustments, delamination, long-term isostatic equilibration, and dynamic support from the mantle, yet no consensus has been reached.

Here we demonstrate that Precambrian lithospheric structure of Fennoscandia controlled both Cenozoic oceanic breakup and recent mountain rise in the North Atlantic region. Fennoscandia formed by amalgamation of Proterozoic and Archean continental blocks; using both S- and P-receiver functions, we discovered that the Fennoscandian lithosphere still retains the original structural heterogeneity and its western margin is composed of three distinct blocks. The southern and northern blocks have relatively thin crust (~40-45 km), while the central block has thick crust (~60 km) that most likely was formed by crustal stacking during the Proterozoic amalgamation. The boundaries of the blocks continue into the oceanic crust as two major structural zones of the North-East Atlantic, suggesting that the Fennoscandian amalgamation structures determined the geometry of the ocean opening. We found no evidence for mountain root support or delamination in the areas of high topography that could be related to the mountain formation. Instead, our results suggest that the geometry of the observed features creates conditions favorable for edge-driven convection at the adjacent narrow margins that provides dynamic support for the mountains in Scandinavia.

How to cite: Makushkina, A., Tauzin, B., Miller, M. S., Tkalčić, H., and Thybo, H.: Ocean break-up and related mountain rise controlled by a continentalcrustal root, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6661, https://doi.org/10.5194/egusphere-egu22-6661, 2022.

EGU22-6819 | Presentations | GD7.2 | Highlight

What are cratons? 

Graham Pearson

The term craton has a complex and confused etymology. Despite originally specifying only strength and stability – of the crust – the term craton has seen widespread use as referring to a region characterised by crustal basement older than 2.5 Ga, despite the fact that some such “cratons” no longer possess their deep lithospheric root and have geological histories that contnue well beyond the Archean/Proterozoic boundary.  Viscous, buoyant lithospheric mantle roots are key to the survival and stability of continental crust. Here we use a revised craton definition (Pearson et al., 2021, Nature), that includes the requirement of a deep (~150 km or greater) and intact lithospheric root, to re-examine extent and character of regions defined as crtons. The revised definition has a nominal requirement for tectonic stability since ~ 1 Ga and recognises that some regions are “modified cratons” – having lost their deep roots, i.e., they may have behaved like cratons for an extended period but subsequently lost much of their stabilising mantle roots during major tectono-thermal events. In other words, despite being long-lived features, cratons are not all permanent. The 150 km lithospheric thickness cut-off provides an optimal match to crustal terranes with 1 Ga timescale stability.

We examine the processes involved in craton ormation and growth. Seismology can help to define the lateral extent of today’s cratons, but a detailed understanding of the regional geological history, kimberlite eruption ages and geothermal conditions is required to evaluate periods of past diamond potential, no-longer evident today. 

How to cite: Pearson, G.: What are cratons?, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6819, https://doi.org/10.5194/egusphere-egu22-6819, 2022.

EGU22-6975 | Presentations | GD7.2

Geochronology of the unexposed crust within the Finnish Archean – insights from the Koillismaa Deep Hole in Kuusamo, northeastern Finland 

Matti Kurhila, Teemu Anttilainen, Tuomo Karinen, and Perttu Mikkola

A 3000 m deep hole is being drilled in the Archean Karelian Craton in northeastern Finland in an area where the granitoids dominating the surface have yielded Neoarchean ages (2.8–2.7 Ga). Archean greenstones and Paleoproterozoic dolerites are exposed within the domain as well. The drilling site lies between ca. 2.44 Ga Koillismaa and Näränkävaara mafic layered intrusions. This site was chosen based on gravimetric, magnetic, magnetotelluric and reflection seismic studies, which have revealed a deep anomaly that seems to connect the two mafic layered intrusions. Based on modelling of the geophysical data, the upper boundary of this ca. 60 km long, roughly E-W oriented anomaly lies at approximately 1.5 km depth.

We sampled various rock types from depths of ~40–1600 m for zircon U-Pb dating. The lithologies include leucogranites, tonalite gneiss, hornblende diabase, quartz diorite and granodiorite. Based on observations from the drill core extracted so far, the source of the anomaly is likely to be ultramafic cumulates. Also, presence of Paleoproterozoic granitoids is likely. We will perform the U-Pb analyses during the winter of 2022. The results are expected to confirm the interconnection of the two layered intrusions, clarify the age distribution of the granitoids in the region, and help to decipher the detailed tectonic evolution of the Archean Koillismaa area. 

How to cite: Kurhila, M., Anttilainen, T., Karinen, T., and Mikkola, P.: Geochronology of the unexposed crust within the Finnish Archean – insights from the Koillismaa Deep Hole in Kuusamo, northeastern Finland, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6975, https://doi.org/10.5194/egusphere-egu22-6975, 2022.

EGU22-7310 | Presentations | GD7.2

Lithospheric domains of the West and Central African rift system based on Terracing and Cluster analysis 

Estelle Eric Fosso Teguia M, Jörg Ebbing, and Peter Haas

We present results of cluster analysis and geophysical modelling of the West and Central African rift system, where we integrate seismological and satellite data. For a description of lithospheric domains, two different methods based on seismic tomography and satellite gravity data have been used. First, the terracing method using the shape index, has been applied to the gravity field in order to enhance the signal of the large-scale tectonic units. In addition, the K-means cluster method (which is an unsupervised machine learning algorithm) has been applied to a seismic tomography model over the area.

Both models are compared and interpreted towards similarities and differences. The preliminary analysis based on K-means clustering of seismic tomography shows that the West and Central African rift system and its surroundings can be divided into at least three clearly distinct tectonic domains: The Northern part of the Congo craton, the Eastern part of the West African craton and an area in between. In addition, the preliminary analysis of the terracing of satellite gravity data, confirms the location of both the Congo and the West African craton, but also splits the area in between into two known tectonic units, the Southern part of the Saharan meta-craton and the West and Central African rift system in the center.

The cluster analysis is also pointing to differences at crustal and upper mantle level and is the first step towards the evolution of a lithospheric scale model. In the model, we integrate our tectonic domain analysis with the existing seismic Moho depths estimate and other information.

How to cite: Fosso Teguia M, E. E., Ebbing, J., and Haas, P.: Lithospheric domains of the West and Central African rift system based on Terracing and Cluster analysis, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7310, https://doi.org/10.5194/egusphere-egu22-7310, 2022.

EGU22-8441 | Presentations | GD7.2

Detailed Structure of the South American Cratons Using Waveform Tomography 

Bruna Chagas de Melo, Sergei Lebedev, Nicolas Celli, and Marcelo Assumpção

South America presents a diverse tectonic set-up, with an active subduction margin on the western border and a stable continental interior to the east. In the ancient stable part, two main cratonic domains can be separated. The Amazonian, consolidated in Archean-Paleoproterozoic times, and the Brasiliano, marked by Neoproterozoic events related to the West Gondwana assembly. In each domain, geology and geophysical methods separate different cratonic nuclei. However, some nuclei's detailed lateral and vertical extent and even existence are debated.

In seismic tomography, we can define regions of cratonic lithosphere due to the shear wave sensitivity to temperature and composition. However, until recently, seismic data sampling in South America was highly scarce and uneven. Here, we assembled all freely available seismic data globally, with the addition of the FAPESP "3-Basins Thematic Project" temporary network. After selecting all paths crossing the hemisphere centred at South America and performing an automatic outlier rejection, we obtain a massive dataset of ~1 million waveform fits, constraining our final model.

We compute a new S-velocity tomographic model of the upper mantle of South America and surrounding oceans using the Automated Multimode Inversion of surface, S- and multiple S-waves. The increase in the data coverage of the model combined with the optimized tuning of the inversion parameters on the continent allows us to identify for the first time the fine details present in the cratonic structure. We observe that regions of thinner lithosphere inside cratons correspond to areas of rifting in previous tectonic cycles. Inside the boundaries of the Amazon craton, we image two cratonic blocks, separated by the Amazon basin. In this area, an aborted rift system preceded the formation of the Amazon basin in the Neoproterozoic, and rift reactivation occurred with the break-up of Pangea in the Mesozoic. Similarly, in the São Francisco Craton, we image a significantly thinner lithosphere in the Paramirim Aulacogen area, a Paleoproterozoic intracontinental rift system. These observations show that the continental lithospheric topography is closely related to upper mantle dynamic processes. We also image high-velocity lithospheric blocks under sedimentary basins. East of the Amazon craton, we image a high-velocity anomaly beneath the Parnaíba block, and under the Paraná basin the fragmented Paranapanema block lithosphere. Finally, by imaging the boundary of the cratonic units in detail, we can observe that magmatic events and large igneous provinces are distributed around the thick roots of the cratons, where the lithosphere is thinner.

How to cite: Chagas de Melo, B., Lebedev, S., Celli, N., and Assumpção, M.: Detailed Structure of the South American Cratons Using Waveform Tomography, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8441, https://doi.org/10.5194/egusphere-egu22-8441, 2022.

EGU22-9048 | Presentations | GD7.2

Modelling petrogenesis of Meso- and Neoarchean andesitic rocks: an example from Singhbhum craton, India 

Avishek Adhikari, Ankita Nandi, Shreya Mukherjee, and Ravikant Vadlamani

Petrogenetic processes of the Archean (>2500 Ma) andesitic rocks are strongly debated because of their distinct geochemical similarities to the modern subduction zone andesites contrast with sparse evidence for Archean lithospheric subduction. Therefore, processes responsible for generation of the andesitic rocks preserved in an Archean craton would potentially place constraints on the Archean geodynamic process. The Western Iron Ore Group (W-IOG) volcano-sedimentary succession in Singhbhum craton is overlain by unmetamorphosed Jagannathpur amygdular volcanics (basaltic andesite – andesite). The W-IOG preserves deformed lower greenschist-facies tholeiitic basalt and calc-alkaline basaltic andesite interlayered with BIF and Fe-Mn-rich phyllite and shale. Previously, petrogenesis of the basaltic andesite in W-IOG was interpreted as having formed in a subduction zone whereas the origin of Jagannathpur volcanics has remained unclear. Therefore, geochemical modelling using trace elements and Sm–Nd geochronology of these basaltic-andesitic rocks were performed to constrain the petrogenetic process and timing of volcanic eruption of these metavolcanic rocks.

Primitive mantle-normalized trace element patterns, chondrite-normalized REE patterns and Nb/Th, Zr/Th ratios of the W-IOG and Jagannathpur basaltic andesite – andesite show enrichment in large ion lithophile elements (LILE), light rare earth elements (LREE), Zr and Th indicating incompatible trace element enrichment in their petrogenesis. The W-IOG tholeiitic basalt is depleted in LILE, LREE, Zr and Th and an absence of Nb-Ta-Ti anomalies that imply a depleted mantle source. The W-IOG basaltic andesite yield an isochron age of 3041±94 Ma (2SD) with Ndi = 0.50875±0.00009, MSWD = 0.62 (n=10) and εNd(T) = +1.1±1.6; whereas the tholeiitic basalt yielded an isochron age of 3050±71 Ma (2SD) with Ndi = 0.50885±0.00010, MSWD = 0.17 (n=10) and εNd(T) = +3.3±1.6. Geochemical modelling indicates that the W-IOG basaltic andesite could have been generated by 20-40% assimilation-fractional crystallization (AFC) (r=0.2, ratio of rate of assimilation to the rate of fractional crystallization) of primitive tholeiitic magma that is derived by 14% partial melting of depleted MORB-type mantle (DMM) under spinel lherzolite depth in an extensional setting. The Jagannathpur basaltic andesite – andesite yielded an Sm-Nd isochron age of 2799±67 Ma (2SD) with Ndi = 0.50895±0.00006, MSWD = 0.36 (n=16) and εNd(T) = -1.1±0.5 and represents one of the oldest Neoarchean intracratonic flood basaltic volcanism. These basaltic andesite – andesite could have been produced by 20-60% AFC (r=0.2) of hybrid magma during lithospheric extension. Generation of the hybrid magma has been modelled by two end member components involving ~18% partial melt of enriched-DMM that interacted with low degree (~5%) partial melt of metasomatised subcontinental lithospheric mantle (SCLM). In addition, our geochemical model results suggest that Meso- to Neoarchean basaltic andesite – andesite rocks in Singhbhum craton were not generated by 1) assimilation of crustal material with primitive tholeiitic magma without fractional crystallization, 2) direct partial melting of different enriched mantle reservoirs (enriched-DMM, EM I, EM II) and mantle wedge peridotite in a subduction environment and 3) partial melting of solely metasomatised SCLM.

How to cite: Adhikari, A., Nandi, A., Mukherjee, S., and Vadlamani, R.: Modelling petrogenesis of Meso- and Neoarchean andesitic rocks: an example from Singhbhum craton, India, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9048, https://doi.org/10.5194/egusphere-egu22-9048, 2022.

EGU22-10000 | Presentations | GD7.2

Effects of multi-extensional tectonics in a cratonic area: 3D numerical modeling and implications for the Congo Basin 

Magdala Tesauro, Francesca Maddaloni, Taras Gerya, Alberto Pastorutti, Carla Braitenberg, and Damien Delvaux

The Congo basin (CB), also named Cuvette Centrale for its bowl shape, occupies a large part of the Congo Craton, which is composed of several amalgamated Archean cratonic blocks, surrounded by Paleo- and Meso- Proterozoic mobile belts. It started to form from a rift phase, during the late Mesoproterozoic (about 1100 Myr). This age, obtained from the interpretation of the almost 3000 km of seismic reflection profiles, is older than that assumed in previous studies and corresponds to a time prior to that of Rodinia assembly. In this tectonic scenario, the CB formation can be related to one of the final phases of the supercontinent Columbia break-up, resulted in several-failed rift. The extensional phase that produced the formation of a very heterogeneous basement, characterized by several basins and highs, NW-SE aligned, could have been likely the effect of the action of a slow multi-divergent velocity (i.e., multi-directional extension) on a cratonic lithosphere, which have induced the initial subsidence of the CB in a weaker part of the craton. The amalgamation of the cratons, composing the basement of the CB, likely left a weak zone in the suture areas, corresponding to the central part of the CB, which could have been more easily deformed, under the influence of tectonic stresses.

We implemented 3D geodynamic models, using the thermomechanical I3ELVIS code to test the hypothesis that the complex structures of the CB basement are the product of a slow multi-divergent velocity, acting on a cratonic area. The results of the numerical models are used to implement forward gravity models to estimate the temporal variations of the gravity effect of the tectonic structures formed during the simulations. Finally, we compared the forward gravity models with the present-day gravity field, in order to demonstrate the consistency between the modelled and observed main structures of the CB. The main results, in terms of topography variations, well reproduce the first-order basement depth variations of the CB. In particular, they produce the formation of an almost circular depressed area in the central part of the model, intersected by two strongly subsided elongated structures, orthogonal each other, whose topography tend to increase with time. The comparison between the forward gravity models and the observed gravity anomalies (gravity disturbance variations), shows that two fields are characterized by a similar alternation of weak positive and strong negative gravity anomalies. However, the modelled anomalies show a smoother trend and higher amplitude, being related to the density and topography variations induced by the upwelling of the asthenosphere, while the observed gravity field is strongly influenced by the sedimentation not simulated in our model.

How to cite: Tesauro, M., Maddaloni, F., Gerya, T., Pastorutti, A., Braitenberg, C., and Delvaux, D.: Effects of multi-extensional tectonics in a cratonic area: 3D numerical modeling and implications for the Congo Basin, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10000, https://doi.org/10.5194/egusphere-egu22-10000, 2022.

Lithosphere of cratons and orogens generally reacts differently to tectonic events. Although these differences are mostly clear during the orogenic phases, understanding how they respond to tectonic reactivation is still challenging. Here, we report the first detailed apatite fission-track (AFT) study pinpointing the gradual transition between cratonic and orogenic lithosphere, using the case study of the São Francisco craton (SFC) and the adjacent Araçuaí-West Congo Orogen (AWCO), eastern Brazil. The collision that built the AWCO partially affected the inherited rift structures of the Paramirim Aulacogen, embedded in the São Francisco-Congo paleocontinent. Our data reveal a differential Phanerozoic exhumation between closely interspaced areas affected and not affected by the AWCO deformation. Samples from the SFC present slow and protracted basement cooling during the Phanerozoic, while samples from the orogen display rapid exhumation since the Eocene. An intermediate ~N-S zone of c.40 km shows lower magnitude basement cooling during the Cenozoic, possibly because the propagation of AWCO deformation decreases towards the craton interior. Within the orogen, the Rio Pardo salient is the main reactive structure and probably results from the deformation of a master fault, inherited from its precursor rift. Here, we show how the magnitude of Phanerozoic denudation may be deeply associated with previous events of lithosphere weakening.

How to cite: Fonseca, A. C., Cruz, S., Novo, T., He, Z., and De Grave, J.: Differential exhumation of cratonic and non-cratonic lithosphere revealed by apatite fission-track thermochronology along the edge of the São Francisco craton, eastern Brazil, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13111, https://doi.org/10.5194/egusphere-egu22-13111, 2022.

The eastern Canadian Shield and its margins represent an excellent natural laboratory to study the formation and evolution of continental lithosphere, as the rocks and structures preserve approximately 4 billion years of geological history. The core of the continent is made up of several large Archean cratonic blocks and continental fragments, welded together by Paleoproterozoic mobile belts. Subsequent Proterozoic orogenesis added to the southern and eastern margins, building the Laurentian landmass, and a series of Wilson cycles established the form of the continent we see today. Laurentian lithosphere is characterized in seismic tomography by a thick, seismically fast continental keel, representing cold temperatures and a depleted composition, whereas the Phanerozoic margins have slower seismic wavespeeds and a thinner lithosphere.

Over the last several decades, numerous seismic anisotropy measurements have been used to investigate lithospheric and sublithospheric fabrics beneath the region. Shear wave splitting shows strong lateral variability in both the strength and fast-polarisation orientation of the anisotropy, and measurements at closely-spaced stations suggest a significant lithospheric component as well as a likely sublithospheric contribution. Recent regional and continental-scale surface wave tomography studies allow for some depth constraint on the azimuthal anisotropy, which appears pervasive, but varying, for different depth ranges within the lithosphere and asthenosphere.

We compare the measurements from shear wave splitting and surface wave tomography with several geological and geophysical observations that could relate to anisotropic fabric, such as surface tectonic boundaries, magnetic anomalies, absolute plate-motion directions and mantle flow patterns from global geodynamic models. We use these comparisons to investigate the relative contributions to the seismic anisotropy observed across the region from lithospheric deformation, basal shear of the North American plate, and active mantle convection.

How to cite: Darbyshire, F.: Evidence for lithospheric and sublithospheric anisotropy of the eastern Canadian Shield and its margins, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1781, https://doi.org/10.5194/egusphere-egu22-1781, 2022.

EGU22-2420 | Presentations | GD7.3

Constraining Upper Mantle Viscosity Using Temperature and Water Content Inferred from Seismic and Magnetotelluric Data 

Florence Ramirez, Kate Selway, Clint Conrad, and Carolina Lithgow-Bertelloni

Mantle viscosity controls a variety of geodynamic processes such as glacial isostatic adjustment (GIA), but it is poorly constrained because it cannot be measured directly from geophysical measurements. To improve viscosity estimates, we develop a method that computes viscosity using empirical viscosity flow laws and mantle parameters (temperature and water content) inferred from geophysical observations. We find that combining both seismic and magnetotelluric constraints allows us to place significantly tighter bounds on viscosity estimates compared to either geophysical observation by itself. In particular, electrical conductivity inferred from MT data can determine whether upper mantle minerals are hydrated, which is not seismically detectible but significantly reduces viscosity. Additionally, we show that rock composition should be considered when estimating viscosity from geophysical data because composition directly affects both seismic velocity and electrical conductivity. Therefore, temperature and water content is more uncertain for rocks of unknown composition, which makes viscosity also more uncertain. Furthermore, calculations that assume pure thermal control of seismic velocity may misinterpret compositional heterogeneity for temperature variations, producing erroneous predictions of mantle temperature and viscosity. Stress and grain size also affect the viscosity and its associated uncertainty, particularly via their controls on deformation regime. Overall, mantle viscosity can be estimated best when both seismic and MT data are available and the mantle composition, grain size and stress can be estimated. Collecting additional MT data probably offers the greatest opportunity to improve geodynamic or GIA models that rely on viscosity estimates.

How to cite: Ramirez, F., Selway, K., Conrad, C., and Lithgow-Bertelloni, C.: Constraining Upper Mantle Viscosity Using Temperature and Water Content Inferred from Seismic and Magnetotelluric Data, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2420, https://doi.org/10.5194/egusphere-egu22-2420, 2022.

EGU22-3250 | Presentations | GD7.3

Dehydration-induced earthquakes and apparent slab pull in a subducted oceanic slab beneath Vrancea, Romania 

Thomas P. Ferrand, Elena Manea, Andreea Craiu, Johannes C. Vrijmoed, and Alexandru Marmureanu

Vrancea, Eastern Romania, presents a significant intermediate-depth seismicity, between 60 and 170 km depth, i.e. pressures from 2 to 6.5 GPa. A debate has been lasting for decades regarding the nature of the seismic volume, which could correspond to the remnant of a subducted slab of Tethyan lithosphere or a delamination of the Carpathians lithosphere. We present P-T diagrams showing to what extent these hypocentral conditions match the thermodynamic stability limits for minerals typical of the uppermost mantle, oceanic crust and lower continental crust.

Most triggering conditions match relatively well antigorite dehydration between 2 and 4.5 GPa; at higher pressures, the dehydration of the 10-Å phase provides the best fit. This demonstrates that the Vrancea intermediate-depth seismicity is evidence of the current dehydration of an oceanic slab beneath Romania. Our results are consistent with a recent rollback of a W-dipping oceanic slab, whose current location is explained by limited delamination of the continental Moesian lithosphere between the Tethyan suture zone and Vrancea.

In addition, we investigate the potential link between the triggering mechanisms and the retrieved focal mechanisms of 940 earthquakes, which allows interpreting the stress field distribution with depth. We observe a switch from collision to vertical extension between 100 and 130 km depth, where the Clapeyron slope of serpentine dehydration is negative. The negative volume change within dehydrating subhorizontal serpentinized faults (verticalized slab) likely explains the vertical extension recorded by the intermediate-depth seismicity. This apparent slab pull is accompanied with a rotation of the main compressive stress, which could favour slab detachments in actively subducting slabs.

How to cite: Ferrand, T. P., Manea, E., Craiu, A., Vrijmoed, J. C., and Marmureanu, A.: Dehydration-induced earthquakes and apparent slab pull in a subducted oceanic slab beneath Vrancea, Romania, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3250, https://doi.org/10.5194/egusphere-egu22-3250, 2022.

EGU22-3554 | Presentations | GD7.3

Towards waveform seismic filtering of mantle convection models 

Nobuaki Fuji, Nirmit Dhabaria, Giacomo Roncoroni, Robert Myhill, Stéphanie Durand, Anselme Borgeaud, Paul Tackley, Takashi Nakagawa, and Frédéric Deschamps

Earth science has been heavily data-driven due to the abundance in data. Yet, when there are relatively a small number of hypotheses to verify, the inverse problem becomes a classification problem. It is then worth directly examining observed seismic data against predicted data. Concretely, we chain forward modelling from geodynamics  to seismology. We call this process ‘waveform Seismic Low Filtering of Earth’s models’ (SeLFiE). We take seismic signals of the snapshots of forwardly generated Earth models with that of the actual Earth, as if we took a photo of ourselves. Although there have several studies on how the seismological tomographic technique can perceive the geodynamical models, there are few studies on the seismic waveform sensitivity to geodynamical or petrological parameters. A pilot test of our SeLFiE methodology was encouraging, since we used only one seismic station to constrain the melt transportation manner beneath the Réunion island (Franken et al. 2020). Here in this contribution we present our strategy and developed tools towards the waveform filtering that have been developed during and after the CLEEDI week in August, 2020.

How to cite: Fuji, N., Dhabaria, N., Roncoroni, G., Myhill, R., Durand, S., Borgeaud, A., Tackley, P., Nakagawa, T., and Deschamps, F.: Towards waveform seismic filtering of mantle convection models, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3554, https://doi.org/10.5194/egusphere-egu22-3554, 2022.

EGU22-4306 | Presentations | GD7.3

Seismic Evidence for Partial Melt Below Tectonic Plates 

Thomas Bodin, Eric Debayle, Stephanie Durand, and Yanick Ricard

The seismic low-velocity zone (LVZ) of the upper mantle is generally associated with a low-viscosity asthenosphere that has a key role in decoupling tectonic plates from the mantle. However, the origin of the LVZ remains unclear. Some studies attribute its low seismic velocities to a small amount of partial melt of minerals in the mantle, whereas others attribute them to solid-state mechanisms near the solidus or the effect of its volatile contents. Observations of shear attenuation provide additional constraints on the origin of the LVZ. On the basis of the interpretation of global three-dimensional shear attenuation and velocity models, here we report partial melt occurring within the LVZ. We observe that partial melting down to 150–200 kilometres beneath mid-ocean ridges, major hotspots and back-arc regions feeds the asthenosphere. A small part of this melt (less than 0.3 per cent) remains trapped within the oceanic LVZ. Melt is mostly absent under continental regions. The amount of melt increases with plate velocity, increasing substantially for plate velocities of between 3 centimetres per year and 5 centimetres per year. This finding is consistent with previous observations of mantle crystal alignment underneath tectonic plates. Our observations suggest that by reducing viscosity melt facilitates plate motion and large-scale crystal alignment in the asthenosphere.

How to cite: Bodin, T., Debayle, E., Durand, S., and Ricard, Y.: Seismic Evidence for Partial Melt Below Tectonic Plates, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4306, https://doi.org/10.5194/egusphere-egu22-4306, 2022.

EGU22-4614 | Presentations | GD7.3

The role of buoyancy-driven flow at the lithosphere-asthenosphere boundary: from mid-ocean ridge to old sub-lithosphere models 

Adina E. Pusok, Katherine Dale, Richard F. Katz, Dave A. May, and Yuan Li

The classic definition of plate tectonics suggests that mid-ocean ridges (MORs) are places of passive mantle upwelling driven by plate divergence, and that the oceanic lithosphere forms by conductive cooling away from the ridge. This model predicts the symmetry of the partially-molten region beneath the ridge axis, and the lithosphere thickening with age (i.e., half-space cooling model). New and classic observations show some inconsistency with these predictions. Here we present dynamic, two-phase flow numerical models of MORs that reconcile theory and observations by incorporating buoyancy-driven flow associated with temperature, composition and porosity.

First, geophysical observations at various MOR segments indicate strong asymmetry in melt production, upwelling and seamount distribution across the axis at fast spreading centers such as the MELT region (Melt Seismic Team, 1998), intermediate-spreading centers such as Juan de Fuca Ridge (Bell et al., 2016) and the Mid-Atlantic Ridge (Wang et al., 2020), and slow-spreading centers such as the Mohns Ridge (Johansen et al., 2019). Passive flow models cannot explain this asymmetry, as they require unrealistically large forcing (Toomey et al., 2002).

Second, both seismic and electromagnetic studies have inferred variations in the lithosphere-asthenosphere boundary (LAB) and plate thickness that do not monotonically increase with age (e.g., Rychert et al., 2020). Sublithospheric small-scale convection (SSC) is generally the preferred explanation of these oscillations (e.g., Parsons and McKenzie, 1978, Likerman et al., 2021). However, seismic anomalies cannot be explained using solely solid-state thermal variations. While other mechanisms have been proposed to match the sharp discontinuities in seismic data, small amounts of melt (1-5.5%) could be the most straightforward explanation (Rychert et al., 2021). Sub-plate partial melt could also explain the cause of intraplate volcanism or petit-spot volcanoes observed on the outer rise in some subduction centers (Hirano et al., 2006). 

We show that melting-induced buoyancy effects may provide an explanation for both the asymmetric distribution of melt beneath the axis and LAB variations. Here, we extend our 2D mid-ocean ridge calculations to incorporate chemical (residue depletion) and thermal buoyancy, in order to investigate how the dynamics of melt generation and migration may influence small-scale convection at the LAB.

We run two types of models: closer to the ridge axis, where melt is generated over an extended region, and further away from the axis, where active flow may induce small amounts of partial-melting. Results show that MOR models with both chemical and porous buoyancy are sensitive to background forcing and can readily induce asymmetry and small-scale, time-dependent convection beneath the axis. Melting and crystallization of enriched material leads to a dynamic LAB closer to the ridge axis. Models of older oceanic LAB are more susceptible to the influence of thermal instabilities, which can erode the lithosphere and limit the base of the ocean lithosphere from cooling. 

References

Bell et al., 2016, DOI:10.1002/2016JB012990

Hirano et al., 2006, DOI:10.1126/science.1128235

Johansen et al., 2019, DOI:10.1038/s41586-019-1010-0

Likerman et al., 2021, DOI:10.1093/gji/ggab286

Melt Seismic Team, 1998, DOI:10.1126/science.280.5367.1215

Parsons and McKenzie, 1978, DOI:10.1029/JB083iB09p04485

Rychert et al., 2020, DOI:10.1029/2018JB016463

Rychert et al., 2021, DOI:10.1016/j.epsl.2021.116949

Toomey et al., 2002, DOI:10.1016/S0012-821X(02)00655-6

Wang et al., 2020, DOI:10.1029/2020GC009177

How to cite: Pusok, A. E., Dale, K., Katz, R. F., May, D. A., and Li, Y.: The role of buoyancy-driven flow at the lithosphere-asthenosphere boundary: from mid-ocean ridge to old sub-lithosphere models, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4614, https://doi.org/10.5194/egusphere-egu22-4614, 2022.

EGU22-4897 | Presentations | GD7.3

Large-scale variation in seismic anisotropy in the crust and upper mantle beneath Anatolia, Turkey 

Cedric Legendre, Li Zhao, and Tai-Lin Tseng

Seismic anisotropy beneath Anatolia is complex, with several layers of different anisotropy. 
The average anisotropy is well constrained by shear-wave splitting measurements [Kaviani et al., 2009], suggesting very strong anisotropy (over 1.5s delay time). However, the vertical layering of anisotropy and the contribution of each layer is still an open question. 

We construct anisotropic phase-velocity maps of fundamental-mode Rayleigh waves for the Anatolia region using records from several regional seismic stations, using both earthquake and ambient noise data. 
The collision between the Arabia and Eurasia plates leads to the westward extrusion (and EW anisotropy) of the Anatolian crust, consistent with the seismic anisotropy patterns we found in the crust (1%, EW fast axis) and with previous studies [Mutlu et al., 2011; Legendre et al., 2020].
The Aegean/Anatolian subduction system with slab tearing and breakoff induces a complex flow pattern and anisotropy in the upper mantle [van Hinsbergen et al., 2010; Kaviani et al., 2018].
This is in agreement with the anisotropy we image in the lithosphere (1%, N020E and N100E fast axes) and asthenosphere (1%, N120E). However, the anisotropy in these layers display limited amplitudes.
At deeper depth, remnant Bitlis and Tethyan slabs are lying flat above the 660-km discontinuity [Berk Biryol et al., 2011]. 

The uniform pattern of anisotropy from shear-wave splitting observations can not be explained solely by a single anisotropic layer, and is not consistent with the anisotropy observed in the crustl lithospheric and asthenospheric mantle. This suggests that main contribution of the anisotropy likely originates from a deep source around the mantle transition zone [Legendre et al., 2021].

How to cite: Legendre, C., Zhao, L., and Tseng, T.-L.: Large-scale variation in seismic anisotropy in the crust and upper mantle beneath Anatolia, Turkey, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4897, https://doi.org/10.5194/egusphere-egu22-4897, 2022.

EGU22-6274 | Presentations | GD7.3

What is a plate ? Dynamical definition of the transition between lithosphere and asthenosphere 

Fanny Garel and Catherine Thoraval

While the lateral limits of tectonic plates are well mapped by seismicity, the bottom boundary of the lithosphere, the uppermost rigid layer of the Earth comprising both crust and shallow mantle, remains elusive. Lithospheric plates are usually viewed as cold, rigid, internally undeformed blocks that translate coherently. The base of the lithosphere, designated as the lithosphere-asthenosphere boundary (LAB), could thus theoretically be characterized from either temperature, viscosity, strain rate and horizontal velocity.

 

Several LABs as defined from these different fields are investigated here using thermo-mechanical models of plate and upper mantle dynamics, either in a transient subduction or in a steady-state plate-driven set-up. Mantle material is modelled as homogeneous in composition with a viscosity that depends on temperature, pressure and strain rate. In such systems, the thermo-mechanical transition between lithosphere and asthenosphere occurs over a finite depth interval in temperature, strain rate and velocity. We propose that the most useful dynamical LAB is defined as the base of a “constant-velocity” plate (i.e. the material translating at constant horizontal velocity). The bottom part of this plate deforms at strain rates comparable to those in the underlying asthenosphere mantle: the translating block is not fully rigid.

 

Thermal structure exerts a major control on this dynamical LAB, which deepens with increasing plate age. However, the surface plate velocity and more generally the asthenospheric flow geometry and magnitude also impact the depth of the dynamical LAB, as well as the thickness of the deformed region at the base of the constant-velocity plate. Moreover, the mechanical transitions from lithosphere to asthenosphere adjust when mantle dynamics evolves.

 

The dynamical and thermo-mechanical LABs occur within a thermal lithosphere-asthenophere gradual transition, in agreement with the results obtained from geophysical proxies. The concept of a constant-velocity plate can be extended to a constant-velocity subducting slab, which also deforms at its borders and drags the surrounding mantle. This dynamical definition of a lithospheric plate is relevant to interpret mantle seismic anisotropy in terms of (past) flow direction, and to quantify mass transport within the Earth’s mantle.

 

How to cite: Garel, F. and Thoraval, C.: What is a plate ? Dynamical definition of the transition between lithosphere and asthenosphere, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6274, https://doi.org/10.5194/egusphere-egu22-6274, 2022.

EGU22-6989 | Presentations | GD7.3

A naive Bayesian method to chase mantle plumes in global tomography models 

Olivier de Viron, Michel Van Camp, Ana M.G. Ferreira, and Olivier Verhoeven

We propose a quantitative approach to search for mantle plumes in global seismic tomography models without prior assumptions on the associated mantle velocity anomalies. We design detection tests with a reasonable detection threshold while keeping false detections at a level lower than 5%. This is based on naive Bayesian clustering analysis, which is possible thanks to the varimax principal component analysis that provides components that are much more independent than the original number of depths slices in the models. We find that using such independent components greatly reduces detection errors compared to using an arbitrary number of depth slices due to correlations between the different slices.

We detect a wide range of behaviour of the seismic velocity profiles underneath the hotspots investigated in this study. Moreover, we retrieve locations away from hotspots that have a similar seismic velocity profile signature to that underneath some hotspots. Hence, it is not possible to obtain a unique definition of seismic velocity anomalies that are associated with mantle plumes and thus care needs to be taken when searching for mantle plumes using prior assumptions about the velocity anomalies that might be associated with them. On the other hand, we identify a criterion that allows establishing a probability distribution of the seismic velocity profiles that is specific to a sub-list of hotspots and we show that this distribution does not occur significantly elsewhere. Overall, the mantle plume zones identified in our analysis do not appear to surround the Africa and Pacific large low shear velocity provinces (LLSVPs) but are rather within them. This supports the idea that LLSVPs may correspond to bundles of thermochemical mantle plumes rather than to compact, dense piles.

How to cite: de Viron, O., Van Camp, M., Ferreira, A. M. G., and Verhoeven, O.: A naive Bayesian method to chase mantle plumes in global tomography models, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6989, https://doi.org/10.5194/egusphere-egu22-6989, 2022.

EGU22-7462 | Presentations | GD7.3

Seismological and petrophysical properties of the lithospheric mantle in a nascent rift 

Adeline Clutier, Stéphanie Gautier, Fleurice Parat, and Christel Tiberi

The North Tanzanian Divergence (NTD) is a rift initiation zone situated at the southern tip of the Eastern Branch of the East African Rift. This zone is a unique continental open-air laboratory to study the beginning of the continental break-up. The rift surface expression results from the interaction between tectonic and magmatic processes. However, the role of each process on the observed surface activity is still debated, as their respective signal is difficult to differentiate. In order to consider the various factors that may interact in this complex zone, a multi-disciplinary study was carried out, combining seismological and petrophysical approaches.

First, our recent development of a new hybrid tomographic method for both P and S-body waves permitted to image at depth the main suture zones between the inherited structures (Archean craton and Proterozoic orogenic belts) and the mantle plume extension (Clutier et al. 2021). We also inferred zones of fluid (melt or gas) presence from the Vp/Vs ratio maps deduced from these P and S independent inversions. Then, to quantify the proportion of fluid from the tomographic images, we carried out a petrophysical study on mantle xenoliths from the Pello Hills volcano, situated in the rift axis. The clinopyroxene-amphibole-phlogopite vein-bearing xenoliths allowed to compute, at a sample scale, the seismic properties of the mantle with and without crystallised or fluid-filled veins. By varying the composition and increasing the proportion veins in the samples, the P and S-wave maximum velocities can decrease from 9.2 down to 5.3 km/s and from 5.1 down to 3.1 km/s, respectively. Those velocity models point out anisotropy in the mantle below the NTD, and particularly in highly metasomatized zones. Finally, despite the difference in spatial and temporal scales between the petrological and geophysical studies, we managed to combine the tomographic velocity anomalies and the xenolith’s seismic properties to infer a maximum volume of fluid in the lithospheric mantle below Pello Hills volcano. This volume may be intermediate between 20% of clinopyroxene-phlogopite-amphibole crystallised vein and 10% melt/fluid-filled vein.

How to cite: Clutier, A., Gautier, S., Parat, F., and Tiberi, C.: Seismological and petrophysical properties of the lithospheric mantle in a nascent rift, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7462, https://doi.org/10.5194/egusphere-egu22-7462, 2022.

EGU22-8282 | Presentations | GD7.3

Spatial Correlation between Intraplate Volcanism and Thin Lithosphere in the Circum-Mediterranean: New Evidences from Surface Wave Tomography and Thermomechanical Modelling 

Amr El-Sharkawy, Thor Hansteen, Carlos Clemente-Gomez, Javier Fullea, Sergei Lebedev, and Thomas Meier

During the Cenozoic, the Circum-Mediterranean and its periphery have experienced extensive and widespread anorogenic igneous magmatism that reflects the response of the upper mantle to the geodynamic evolution of this area. The exact origin of the volcanic activities and its relation to the underlying thin lithosphere especially in the continental areas have been long-lasting debated. We investigate the structure of the Mediterranean lithosphere and the sub-lithospheric mantle by surface waves that are mainly sensitive to the 3-D S-wave velocity structure at those depths. A high-resolution tomographic study based on automated broad-band measurements of inter-station Rayleigh wave phase velocities down to about 300 km depth is presented. We identify shallow asthenospheric volumes, characterized by low S-wave velocities between about 70 km and 250 km depth, and distinguish between five major shallow asthenospheric volumes in the Circum-Mediterranean: the Middle East, the Anatolian-Aegean, the Pannonian, the Central European, and the Western Mediterranean Asthenosphere volumes. Remarkably, they form an almost continuous circular belt of asthenospheric areas interrupted only by the thick Permo-Carboniferous oceanic lithosphere in the eastern Mediterranean.

Integrated thermochemical modelling using surface wave phase velocities, topography, and heat flow as constraints indicates a remarkable variability of the lithospheric thickness across the area. Thick lithosphere is found in the Paris Basin, the East European Craton, and the eastern Mediterranean whereas thin lithosphere is found in areas of pronounced negative shear-wave anomalies at depth between 70 km and 200 km. Cenozoic intraplate volcanic fields are located in areas with thin lithosphere underlain by shallow asthenosphere. Thus, anorogenic intraplate volcanism in the Circum-Mediterranean appears to be associated with thin and hot lithospheric regions and low S-wave sublithospheric velocities. The distribution and properties of the shallow asthenosphere volumes in the region are discussed and related to the spatial-temporal occurrence of intraplate as well as subduction related volcanism in the western Mediterranean, central Europe, the Pannonian Basin, the Anatolian region and the Middle East.

How to cite: El-Sharkawy, A., Hansteen, T., Clemente-Gomez, C., Fullea, J., Lebedev, S., and Meier, T.: Spatial Correlation between Intraplate Volcanism and Thin Lithosphere in the Circum-Mediterranean: New Evidences from Surface Wave Tomography and Thermomechanical Modelling, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8282, https://doi.org/10.5194/egusphere-egu22-8282, 2022.

EGU22-8734 | Presentations | GD7.3

Normal mode models of the mantle using Backus-Gilbert tomography 

Federica Restelli, Paula Koelemeijer, and Christophe Zaroli

Seismic tomography is a powerful tool to study the deep Earth, given the lack of direct observations. Seismic structures can be interpreted together with constraints from other disciplines, such as geodynamics and mineral physics, to provides valuable information about the structure, dynamics and evolution of the mantle. Nevertheless, a robust physical interpretation of seismic images remains challenging as tomographic models typically lack uncertainty information and may have biased amplitudes due to uneven data coverage and regularisation.

We aim to build tomographic models of the mantle with associated uncertainties and unbiased amplitudes. For this, we use the SOLA method (Zaroli, 2016) applied to normal mode data, the Earth’s free oscillations. SOLA is based on a Backus-Gilbert approach, which explicitly constrains the amplitudes to be unbiased and inherently computes the model uncertainty and resolution. This approach enables us to perform meaningful physical interpretations of the imaged structures. By applying this method to normal modes, we obtain valuable insights on the long wavelength structure of the mantle. The use of normal modes also has several advantages: these data are sensitive to multiple parameters, including both Vs and Vp anisotropy as well as density, and they provide global data coverage.

Here, we report on our progress towards a new 3-D mantle model based on the inversion of normal mode splitting function data. We discuss initial results from synthetic tests and isotropic inversions in terms of model estimates, uncertainties and resolution.

How to cite: Restelli, F., Koelemeijer, P., and Zaroli, C.: Normal mode models of the mantle using Backus-Gilbert tomography, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8734, https://doi.org/10.5194/egusphere-egu22-8734, 2022.

EGU22-11306 | Presentations | GD7.3

Southern Tibetan rifting controlled by basal shear and heterogeneities of the underthrusting Indian lithosphere 

Xuewei Bao, Bingfeng Zhang, Yixian Xu, and Wencai Yang

The dominant driving forces for the east-west extension of the Tibetan Plateau since the mid-late Miocene remain vigorously debated. Proposed hypotheses encounter difficulties in reconciling the geological observations of more developed north-trending rifts in southern Tibet as well as the discrepant extension magnitudes among them. With seismic recordings collected from our recently deployed and existing seismic arrays, we locate a mid-crustal simple shear zone characterized by convergence parallel anisotropy beneath the southern plateau, which is likely caused by the underthrusting of the Indian Plate. Furthermore, a zone of reduced S-wave velocity is also resolved between the two rifts with highest extension rate, indicative of the convective removal of the lower Indian mantle lithosphere. Taken together, our results suggest that the enhanced extension occurring in southern Tibet are controlled by both the shear tractions induced by the advancing Indian Plate and the increased buoyancy due to asthenospheric upwelling.

How to cite: Bao, X., Zhang, B., Xu, Y., and Yang, W.: Southern Tibetan rifting controlled by basal shear and heterogeneities of the underthrusting Indian lithosphere, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11306, https://doi.org/10.5194/egusphere-egu22-11306, 2022.

EGU22-11377 | Presentations | GD7.3

Seismic structure in the crust and upper mantle beneath the Hindu Kush and Pamir from Full Waveform Inversion 

Yajian Gao, Frederik Tilmann, Xiaohui Yuan, Bernd Schurr, Andreas Rietbrock, Andreas Fichtner, Wei Li, Felix Schneider, Sofia-Katerina Kufner, Solvi Thrastarson, and Dirk-Philip van Herwaarden

The Hindu-Kush and Pamir are located north of the western syntaxis of the Himalaya, representing one of the most active continental collision zones involving a complicated lithosphere deformation history. Based on the increased seismic data coverage in this region we employ the Multi-Scale Full Waveform Inversion Scheme (MSFWI) to investigate the seismic structure of the crust and uppermost mantle using earthquake waveforms (12-100s) and cross-correlation Green’s Function derived from ambient noise (10-80s). Through the MSFWI joint inversion, we provide high-resolution images for isotropic Vp and radial anisotropic Vs (Vsv and Vsh).

We image the subducting Hindu-Kush slab beneath the interaction zone of the Hindu-Kush and Tajik-Basin at depth and a thin and relatively low-velocity layer is detected on top of the subducting lithosphere, hosting the intense intermediate depth seismicity, indicating the subducting lower crust of the Hindu-Kush slab. The transition from relatively low-to-high velocity indicates the termination of eclogitization of the subducting crust accompanied by a gradual increase of negative buoyancy causing a slab break-off at a depth of around 150 km. This process is ongoing and accompanied by a deep seismicity cluster. Atop of the Hindu-Kush subducting system, low-velocities are imaged within the lower continental crust, dipping to the southeast. This gently dipping low-velocity layer connects the collision zone of the Hindu-Kush and Indian plate, hinting at a complicated lower crust subduction process, which is also accompanied by a very deep Moho up to 80 km.

Beneath the Central Pamir, a narrow low-velocity zone in the lower crust and uppermost mantle (down to 100 km) follows the curvature of the intermediate-depth seismicity and suture (and thrust faults), marking the active collision position of the Indian-Asian plates, which resulted in an exhumation and significant crustal thickening. The thin and southward dipping low-velocity zone in the uppermost mantle is also consistent with the intermediate seismicity, illuminating the subducting lower crust of the Asian plate while meeting the rigid Indian indentation. 

Meanwhile, a strong sharp transition from high-to-low velocity coinciding the Talas-Ferghana fault at mantle lithospheric depth delineates the transition from the Ferghana basin into the Central Tien Shan, indicating the large scale lithosphere delamination beneath the whole Central Tien Shan with some lithospheric remnants existing beneath the central part of Central Tien Shan. This remnant high-velocity lithosphere possibly indicates that the deformation for the Central Tien Shan mainly concentrated on the south and north end due to the compression from the Tarim basin and Kazakh Shield, respectively.

How to cite: Gao, Y., Tilmann, F., Yuan, X., Schurr, B., Rietbrock, A., Fichtner, A., Li, W., Schneider, F., Kufner, S.-K., Thrastarson, S., and van Herwaarden, D.-P.: Seismic structure in the crust and upper mantle beneath the Hindu Kush and Pamir from Full Waveform Inversion, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11377, https://doi.org/10.5194/egusphere-egu22-11377, 2022.

EGU22-12799 | Presentations | GD7.3

S-to-P Receiver Function Analysis of The New Zealand Subduction Zone 

William Buffett, Nicholas Harmon, Catherine Rychert, and Lisa McNeill

Subduction zone dynamics are important for a better understanding of a broad range of topics ranging from plate tectonics to natural hazards such as earthquakes and volcanoes. New Zealand is a seismically unique place, resting on the Hikurangi Subduction Zone. It experiences a large range of seismic phenomena from evidence of large megathrust events and slow slip activity, to active volcanism within the Taupo Volcanic Zone. Although much seismic imaging has been performed, S-to-P receiver functions can tightly constrain discontinuities and associated dynamics. Here we use S-to-P receiver functions to image lithospheric discontinuities beneath the North Island of New Zealand using IRIS-DMC and Geonet stations. We image the Moho at 15-25 km depth in the south by Wellington, with a second velocity increase with depth imaged just beneath at 40-50 km, possibly corresponding to the Moho of the downgoing plate. On the northern edge of the North Island by Auckland, the Moho is imaged at 20 +/- 5 km depth. Near Napier and Lake Taupo we image 2 positive discontinuities at 10 and 30 km depth, still beneath the upper plate potentially related to crustal layering or the magmatic plumbing system. This is in line with previous studies of the Moho, for example a collation of Moho estimates by Salmon et al. (2013) places the Moho in the region of 20-25 km depth for most of the North Island, except for some deeper phases in the very east and the most southwest. A negative phase corresponding to the lithosphere-asthenosphere boundary (LAB) of the upper plate is imaged at 60-70 km depth across portions of the North Island. The LAB of subducting Pacific Plate is imaged at 70-80 km with the exception of a gap in the LAB phase between 39° and 40° latitude and around 176° longitude corresponding to the mountain ranges of Kaweka Forest Park and Ruahīne Forest Park. We image a velocity increase directly beneath the LAB, potentially related to the base of a melt layer beneath the plate. Furthermore, this is consistent with the estimated thickness of the lithosphere (73 +/- 1 km), for instance from the active source estimates of Stern et al. (2015).

How to cite: Buffett, W., Harmon, N., Rychert, C., and McNeill, L.: S-to-P Receiver Function Analysis of The New Zealand Subduction Zone, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12799, https://doi.org/10.5194/egusphere-egu22-12799, 2022.

EGU22-13373 | Presentations | GD7.3 | Highlight | GD Division Outstanding ECS Award Lecture

Probing the rheology of the lithosphere using earthquake seismology 

Tim Craig

Earthquakes provide a crucial way of probing the deformation style, strength, and stress state of the lithosphere.  In this talk, I will outline ways in which we can use careful analysis and precise seismological observations of earthquakes, particularly those at moderate magnitudes (M ~5-6), to map out how stress is supported in the lithosphere, and how the rheology of the lithosphere can vary in both space and time, summarising our current understanding of the controls on the distribution of earthquakes.  I will draw on examples from a range of regional studies, and outline what conclusions we can draw about the geological and geodynamic controls on the distribution of earthquakes in each region, and the variation on the style of deformation within the lithosphere.  I will also discuss areas in which our current understanding of the distribution of earthquakes remains unable to explain some observations, and challenges for the future.

How to cite: Craig, T.: Probing the rheology of the lithosphere using earthquake seismology, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13373, https://doi.org/10.5194/egusphere-egu22-13373, 2022.

It is commonly assumed that intermediate-depth seismicity is in some way linked to dehydration reactions inside subducting oceanic lithosphere. There is growing evidence that the hydration state of an oceanic plate is controlled by its structure and degree of faulting at the outer rise, but we do not yet have a quantitative understanding of this relationship.

Double seismic zones offer the possibility of investigating changes in oceanic-plate hydration not only along strike but also with depth beneath the slab surface. To quantify the impact of oceanic-​plate structure and faulting on slab hydration and intermediate-depth seismicity, with a focus on the genesis of double seismic zones, we correlate high-resolution earthquake catalogs and seafloor maps of ship-based bathymetry for the northern Chilean and Japan Trench subduction zones. The correlations show only a weak influence of oceanic-plate structure and faulting on seismicity in the upper plane of the double seismic zone, which may imply that hydration is limited by slow reaction kinetics at low temperatures in the oceanic crust 5–7 km below the seafloor and by the finite amount of exposed wall rock in the outer-rise region. These factors seem to limit hydration even if abundant water is available.

Seismicity in the lower plane is, in contrast, substantially enhanced where deformation of the oceanic plate is high and distributed across intersecting faults. This likely leads to an increase in the volume of damaged wall rock around the faults, thereby promoting the circulation of water to mantle depths where serpentinization is faster due to elevated temperatures. Increased lower-plane seismicity around the projection of subducting oceanic features such as seamounts or fracture zones to depth may also be caused by enhanced faulting around these features. Our results provide a possible explanation for the globally observed presence of rather homogeneous upper-plane seismicity in double seismic zones as well as for the commonly patchy and inhomogeneous distribution of lower-plane seismicity.

How to cite: Sippl, C., Geersen, J., and Harmon, N.: Inferring the hydration of downgoing oceanic crust and lithospheric mantle from intermediate-depth earthquakes and outer rise faulting patterns, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13549, https://doi.org/10.5194/egusphere-egu22-13549, 2022.

Teleseismic body-wave tomography represents a powerful tool to study regional velocity structure of the upper mantle. Particularly, a need of retrieving anisotropic signal calls for processing of a huge amount of P-wave travel times (Munzarová et al., GJI 2018).  Therefore, automatic picking procedures are needed to supply tomography codes with a large amount of highly accurate absolute arrival times and/or travel-time residuals of body-wave propagation. We present and test a fully automated tool - TimePicker 2017 (Vecsey et al., 2021) for measuring P-wave arrival times on array recordings of passive experiments. The TimePicker 2017 is developed in the ObsPy/Python platform (Krischer et al., 2015) which combines picking, waveform cross-correlation and beamforming. The picker is based on two-step signal cross-correlations and allows us to measure absolute arrival times. Instead of a subjective selection of a reference trace, it cross-correlates all pairs of traces and forms a reference low-noise beam trace as a stack of the shifted traces at all stations. The picker cross-correlates all signals to the reference beam, automatically identifies outliers, and complements all picked absolute arrival times by their error estimates.

We applied the TimePicker 2017 on a set of seismograms from 1920 earthquakes from epicentral distances greater than 30° recorded at 240 temporary and permanent stations involved in the AlpArray experiments. We show uncertainties of measured P-wave arrivals, means and medians of uncertainties for both the complete dataset as well as for subset selected for tomography, and test effects of the standard selection of a reference trace vs. the low-noise beam trace as the reference trace in the TimePicker 2017.

How to cite: Vecsey, L. and Plomerová, J.: TimePicker 2017 – a fully automatic tool to extract P-wave arrivals for high-resolution unravelling structure and fabric of the lithosphere-asthenosphere system, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13550, https://doi.org/10.5194/egusphere-egu22-13550, 2022.

GD8 – Geodynamics of Specific Regions

EGU22-1896 | Presentations | GD8.1

Asthenospheric Flow through the Izanagi-Pacific Slab Window and its Influence in East Asia 

Hamish Brown, Lorenzo Colli, and Hans-Peter Bunge

The tectonics of East and Southeast Asia are notoriously complex. Consisting of an intricate patchwork of microplates and accreted terrains, even the recent (i.e Cenozoic) tectonic history of the region remains controversial; and many differing reconstructions have been proposed. While the exact kinematics remain poorly constrained, it is generally accepted that the region has been characterised by a long history of subduction and downwelling. However, numerous geological and geophysical observations, at a first glance, appear to lie in stark contrast to this history. For example, regions of present-day dynamic uplift inferred from residual topography studies, the observation of seismically slow anomalies in numerous tomography models, and the widespread intraplate volcanism in East Asia since the latest Paleogene are all at odds with the expected cold upper mantle and downwelling associated with a history of subduction. Here, we propose a solution to this problem, in which hot asthenospheric material flows from the Pacific domain into East Asia—passing through the slab window opened by the subduction of the Izanagi-Pacific ridge during the early Cenozoic. To investigate this hypothesis, we compare several independent geological observations to the asthenospheric flow predicted by a suite of recently published 3D global mantle convection models.  Firstly, we compare observations linked to uplift and erosion to the changes in dynamic topography induced by this influx of hot material. These include the widespread late Eocene–Oligocene sedimentary hiatus in far eastern China and the regional erosion of southeastern China since the Miocene inferred from Apatite Fission Track Thermochronology (AFT) studies. Secondly, the timing and location of intraplate volcanism is compared with the predicted distribution of hot material through time. We find the westward influx of asthenospheric material to be a robust feature in the models, being predicted under all considered tectonic reconstructions.  Nevertheless, the influence of this material is significantly affected by differing implementations of the Philippine Sea Plate (PSP) history, which allows us to distinguish between these reconstructions based on their correlations with the evidence considered. A larger PSP is found to predict dynamic subsidence in regions where uplift and erosion is present, such as the East China Sea Shelf Basin and the Cathaysia Block, while also predicting large-scale mantle downwelling in regions where intraplate OIB-type magmatism has been recorded. A smaller PSP and the consequent existence of the hypothesised 'East Asian Sea' slabs instead allows the hot asthenospheric material to predominate over a larger region, providing a better fit to the spatial distribution of regional-scale erosional episodes and OIB-type magmatism.

How to cite: Brown, H., Colli, L., and Bunge, H.-P.: Asthenospheric Flow through the Izanagi-Pacific Slab Window and its Influence in East Asia, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1896, https://doi.org/10.5194/egusphere-egu22-1896, 2022.

EGU22-2130 | Presentations | GD8.1

Reconstruction of the Cenozoic deformation of the Bohai Bay Basin, North China 

Yinbing Zhu, Shaofeng Liu, Bo Zhang, Michael Gurnis, and Pengfei Ma

A well-constrained plate deformation model may lead to an improved understanding of sedimentary basin formation and the connection between subduction history and over-riding plate deformation. Building quantitative models of basin kinematics and deformation remains challenging often due to the lack of comprehensive constraints. The Bohai Bay Basin (BBB) is an important manifestation of the destruction of the North China Craton, and records the plate kinematic history of East Asia during the Cenozoic. Although a number of interpretations of the formation of the BBB have been proposed, few quantitative basin reconstruction models have been built to test and refine previous ideas. Here, we developed a quantitative deformation reconstruction of the BBB constrained with balanced cross-sections and structural, stratigraphic, and depositional age data. Our reconstruction suggests that the basin formation process was composed of three main stages: Paleocene-early Eocene (65-42 Ma) extension initiation, middle Eocene-early Oligocene (42-32.8 Ma) extension climax, and post-Oligocene (32.8-0 Ma) post-extensional subsidence. The deformation of the BBB is spatially heterogeneous, and its velocity directions rotated clockwise during the basin formation process. The reconstruction supports the interpretation that the BBB formed via strike-slip faulting and orthogonal extension and that the basin is classified as a composite extensional-transtensional basin. We argue that the clockwise rotation of the basin velocity field was driven by the counter-clockwise rotation in the direction of Pacific Plate subduction. The kinematics of the BBB imply that the Pacific Plate may have been sufficiently coupled to the over-riding East Asian Plate during the critical period of Pacific Plate reorganization. The new reconstruction provides a quantitative basis for studies of deformation processes not only in the vicinity of the BBB but more broadly throughout East Asia.

How to cite: Zhu, Y., Liu, S., Zhang, B., Gurnis, M., and Ma, P.: Reconstruction of the Cenozoic deformation of the Bohai Bay Basin, North China, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2130, https://doi.org/10.5194/egusphere-egu22-2130, 2022.

EGU22-2715 | Presentations | GD8.1

When will the marginal sea grow up? 

Huizi Jian, Ting Yang, and Peng Guo

The back-arc marginal sea is a small ocean basin located between the volcanic arc and the continental crust. This area is not only an important gathering place for natural resources, but also an important place for plate interaction. Therefore, clarifying the origin and evolution of marginal seas can produce a huge boost for us to explore natural resources and improve the plate interaction mechanism. At present, the back-arc marginal sea with the largest opening rate of the Earth is the Lau Basin, and most marginal seas are generally in a state of medium-to-low-speed opening, such as the Mariana Trough, the Aegean Sea and the Caribbean Sea, and a small amount of marginal seas are even shortening, such as the Sea of Japan. What caused the marginal seas to open at different speeds?  In order to answer this question systematically and give a unified model for the origin and evolution of the marginal seas of the Earth, we must first figure out when the marginal sea will grow up. Therefore, we run 2-D and 3-D numerical experiments to test the possible effects of different factors on the evolution of the marginal sea. The results of our dynamic models can not only fit the evolution of the global marginal sea well, but also come to a robust conclusion: when the subducting plate stagnate in the transition zone, the opening rate of the marginal sea may decrease; but the marginal sea that stopped opening may still grow up again under special conditions. Furthermore, we explain the diversity of the current marginal sea evolution, which provides more theoretical foundations for the discipline of plate tectonics.

 

How to cite: Jian, H., Yang, T., and Guo, P.: When will the marginal sea grow up?, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2715, https://doi.org/10.5194/egusphere-egu22-2715, 2022.

EGU22-5668 | Presentations | GD8.1 | Highlight

Quantifying the contributions of Pacific Plate motion change and hotspot drift to the formation of Hawaiian-Emperor Bend 

Jiashun Hu, Michael Gurnis, Johann Rudi, Georg Stadler, Dietmart Müller, and Jie Zhang

The Hawaiian-Emperor Seamount Chain changed its strike by 60° around 47 Ma, causing the Hawaiian-Emperor Bend (HEB). Both a change in Pacific Plate motion and a change in plume dynamics have been proposed to account for the HEB, but vigorous debates remain on their relative contribution. In order to have a better understanding, we build high–resolution global mantle convection models and test alternative plate reconstructions of North Pacific to quantify the contribution of each mechanism. For the contribution of Pacific Plate motion change, we find that Izanagi Plate subduction, followed by demise of the Izanagi–Pacific ridge and Izu–Bonin–Mariana subduction initiation alone, is incapable of causing a sudden change in plate motion, challenging the conventional hypothesis on the mechanisms of Pacific Plate motion change. Instead, with the alternative intra-oceanic subduction model, the Paleocene slab pull from Kronotsky subduction in North Pacific exerts a northward pull on the Pacific Plate, with its demise causing a sudden 30-35° change in plate motion. We further quantify the Hawaiian Hotspot drift using global mantle convection models with both the traditional and the alternative plate reconstructions. We find both models yield a fast southward drifting Hawaiian plume due to the push of slabs on the edge of the Pacific LLSVP. In the end, we discuss the combinational effects of Pacific Plate motion change and Hawaiian hotspot drift on the formation of HEB under different scenarios to gain insights on the possible history of North Pacific since the Late Cretaceous.

How to cite: Hu, J., Gurnis, M., Rudi, J., Stadler, G., Müller, D., and Zhang, J.: Quantifying the contributions of Pacific Plate motion change and hotspot drift to the formation of Hawaiian-Emperor Bend, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5668, https://doi.org/10.5194/egusphere-egu22-5668, 2022.

EGU22-5762 | Presentations | GD8.1

Tectonic activity at Mangatolu Triple Junction and the Fonualei Rift and Spreading Center: breaking apart the intra-oceanic Niuafo’ou-Tonga microplate, Lau Basin, South West Pacific Ocean 

Anouk Beniest, Michael Schnabel, Udo Barckhausen, Anke Dannowski, Florian Schmid, Michael Riedel, Anna Jegen, and Heidrun Kopp

 The Mangatolu Triple Junction (MTJ) and the Fonualei Rift and Spreading Center (FRSC) are two prominent bathymetric features in the northern Lau Basin in the southwest Pacific Ocean. We present the results of six W-E running Multi-Channel Seismic (MCS), magnetic and sediment echo sounding profiles acquired during the ARCHIMEDES-I expedition. These profiles cover the MTJ, the FRSC and the region just south of the FRSC to investigate the tectonic history and current tectonic activity of the Lau Basin. 

On all MCS profiles, we observe a heavily faulted basement on both sides of the MTJ and FRSC with faults that are covered with sediments, confirmed by the sediment echo sounding data. We consider these buried faults inactive today. We also observe faults that reach the seafloor. These faults are generally located closer to the MTJ and the FRSC and they correlate well with seismic activity recorded in the region. We thus consider these faults currently active. Seismically transparent bodies are observed on most profiles as well. We have interpreted those as volcanic intrusions, i.e. sills, or as volcanoes that pierce through the stratigraphy, especially closer to the volcanic arc. 

The two sets of faults, the notion that extension rates are higher at the MTJ (32 mm/yr) than at the southern tip of the FRSC (8 mm/yr) and the results from our newly acquired and interpreted magnetic data, have led to the interpretation that an earlier rift phase accommodated extension in a wide rift tectonic setting between 2.15 Ma and 0.85 Ma at the MTJ and 2.15 and 1.61 Ma at the FRSC. Today, the extension is accommodated in a narrow rift tectonic setting close to the MTJ and FRSC with a higher extension rate at the MTJ than at the southern tip of the FRSC. These findings suggest that the MTJ and FRSC are one, single intra-plate extension zone that is in the process of breaking apart the overriding Niuafo’ou-Tonga microplate along the MTJ and FRSC.

How to cite: Beniest, A., Schnabel, M., Barckhausen, U., Dannowski, A., Schmid, F., Riedel, M., Jegen, A., and Kopp, H.: Tectonic activity at Mangatolu Triple Junction and the Fonualei Rift and Spreading Center: breaking apart the intra-oceanic Niuafo’ou-Tonga microplate, Lau Basin, South West Pacific Ocean, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5762, https://doi.org/10.5194/egusphere-egu22-5762, 2022.

EGU22-6749 | Presentations | GD8.1 | Highlight

Stratigraphic record of dynamic topography in the Andean foreland basin, South America 

Brian K. Horton

Variations in subduction configuration and mantle dynamics can be detected in retroarc foreland basins.  Modern and ancient examples from western South America show how discrete geodynamic mechanisms drive regional unconformity development in the Andean foreland basin.  Positive dynamic topography in the basin, fold-thrust belt, and broader convergent plate margin can be generated by (1) flat slab subduction, (2) slab window formation, (3) slab breakoff, (4) elevated intraplate (in-plane) stress, or (5) mantle flow variations.  A survey of long duration (>1–20 Myr) unconformities considers these and alternative mechanisms, including (6) local shortening-induced uplift in the frontal thrust belt and proximal foreland, (7) growth and advance of a broad flexural forebulge in the distal foreland, (8) uplift of intraforeland basement blocks along crustal-scale reverse faults, (9) tectonic quiescence with regional isostatic rebound, and (10) diminished accommodation or sediment supply due to changes in sea level, climate, erosion, or sediment transport.  These contrasting mechanisms can be readily observed in the modern foreland, particularly in the case of increased interplate coupling during active flat slab subduction and slab window generation associated with subduction of an active oceanic spreading ridge.  In the ancient record, the operative geodynamic mechanisms can be distinguished on the basis of the spatial distribution, stratigraphic position, paleoenvironmental context, and duration of foreland unconformities within the Cretaceous to Quaternary geodynamic framework of the Andean orogenic system.

How to cite: Horton, B. K.: Stratigraphic record of dynamic topography in the Andean foreland basin, South America, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6749, https://doi.org/10.5194/egusphere-egu22-6749, 2022.

EGU22-6764 | Presentations | GD8.1

Exploring the Cascadia slab structure coupling 3D thermomechinal and CPO modeling. 

Menno Fraters, Magali Billen, John Naliboff, Lydia Staisch, and Janet Watt

The Cascadia Subduction Zone is characterized by young subducting lithosphere, its isolation from other subducting slabs, and its ability to produce megathrust earthquakes (M>9.0) and devastating tsunamis. Due to its high potential hazard and risk, it is also a well-studied subduction zone where modern, diverse and detailed observational datasets are available through the USGS and initiatives like GeoPrisms and EarthScope. These datasets include high quality GPS, onshore and offshore geophysical imaging, magmatic and seismic anisotropy data. These datasets present an opportunity to gain insight into slab structure, tectonic evolution, and present-day seismic hazards. Still, many questions remain about the physical processes that can self-consistently explain all the observations, and better estimate seismic hazards. For example, for the slab, geologic and geophysical data suggest that there may be one or two prominent slab gaps or tears, while tomographic data does not fully constrain the depth extent of the slab. Furthermore, the overriding plate is composed of several different terranes and contain numerous active and slowly moving faults, complicating efforts to accurately constrain variations in the overriding plate present-day stress and deformation rates.

In this study we test whether comparison of observations to model predictions can distinguish between different slab geometries for the Cascadia Subduction Zone. To this end, we have created regional 3D geodynamic models of Cascadia including the Cascadia slab based on the Slab 2.0 dataset. The model setup is built with the Geodynamic World Builder and, and the models are run using the mantle convection and lithospheric dynamics code ASPECT. During the evolution of these models we track the development of the CPO (Crystal Preferred Orientation), so we can compare it against seismic anisotropy data of the region. Our presentation will focus on the preliminary results of these models and demonstrate workflows for linking the model results to surface tectonics.

How to cite: Fraters, M., Billen, M., Naliboff, J., Staisch, L., and Watt, J.: Exploring the Cascadia slab structure coupling 3D thermomechinal and CPO modeling., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6764, https://doi.org/10.5194/egusphere-egu22-6764, 2022.

It is widely accepted that the subduction system along an active continental margin has significant impacts on continental motions and deformation. The longest strike-slip fault in East Asian, the Tan-Lu Fault extends through the lithosphere and parallels the East Asian margin trench could be recognized as weak zone and left more significant geological information of plate tectonics than surrounding areas ( Collettini et al., 2019 ). Previous studies have gained some common sense about the motion of the East Eurasia continent margin from the Tan-Lu fault in the Late Mesozoic. The Tan-Lu fault experienced two phases sinistral strike-slip motion under compression with a striking-length about 150~200 km ( Zhu et al.,2005, 2009; Zhao et al.,2016 ), one stage is the Late Jurassic of the obtained age of 162~150 Ma and the other stage is the Early Cretaceous of the gained age of 143Ma~132Ma ( Zhu et al.,2005, 2010, 2018; Zhang and Dong, 2008 ). However, the formation mechanism of the large strike motion is still in doubt. Zhu et al., (2018) suggest that the Mesozoic tectonism of the Tan-Lu fault zone is dominated by paleo-Pacific plate subduction and thus can reflect its subduction history, while some others think the geodynamics of the Tan-Lu fault is controlled by the combined influences of the collision between the Tibetan blocks and Eurasia and the paleo-Pacific plate subduction ( Zhang et al., 2010 ).

 

To understand whether the paleo-Pacific subduction could have a dominant impact on the tectonic activities along the Tan-Lu fault and how does it influence the overriding plate, we perform 3-D numerical simulations of oceanic-continental subduction with a weakened fault zone simulating the Tan-Lu Fault. The results indicate that the motion and deformation of the East Asian continental plate can be strongly influenced by the interaction between the paleo-Pacific plate and East Asia, especially by the coupling degree between the subduction plate and the overriding plate. The coupling degree could significantly improve when there is micro-continent from subduction plate collide with overriding plate and the overriding plate would undergo compression. The collision between micro-continents with East Eurasia continent in Late Jurassic and Early Cretaceous has been observed ( Li et al.,2020; Charvet,2013 ). From the plate reconstructions ( Müller et al.,2016 ), in the Late Mesozoic had a northward component with an average velocity 40~50 mm/yr. In our numerical model, the generation of large sinistral strike-length could explained by strong coupling caused by collision of micro-continents with Eurasia plate.

How to cite: Zhou, M., Yang, T., Deng, L., and Guo, P.: Strike-slip motion in the Late Mesozoic on the East Asian continental margin: Insight from 3-D numerical models with the Tan-Lu fault, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6782, https://doi.org/10.5194/egusphere-egu22-6782, 2022.

EGU22-7368 | Presentations | GD8.1

Late Cretaceous Sevier and Laramide orogenies in Wyoming-Utah-Colorado, USA: Insight from basin subsidence history 

Danya Zhou, Shaofeng Liu, Lianbin Wang, and Neng Wan

The spatial and temporal variations of basin subsidence could potentially provide critical information for investigating the history of orogeny and deep mantle processes. However, due to the complexity of the formation mechanism of the Western Interior Basin, the factors controlling the basin subsidence has long been debated. Here, by reconstructing a high-resolution chronostratigraphic framework for the Upper Cretaceous strata and restoring the subsidence history of the basin, we analyze the control of the Sevier and Laramide orogenies on the Late Cretaceous evolution of the basin in the Wyoming-Utah-Colorado, and reveal the contemporary migration pattern of long-wavelength dynamic subsidence. During Cenomanian to Santonian time, thrusting events were active on the western margin of the basin, along which NS-trending long-wavelength subsidence center developed. By early Campanian (ca. 82 Ma), thrusting events developed into NW trend, and the center of long-wavelength subsidence shifted in the same orientation and gradually migrated to the center of the basin. Starting in the Maastrichtian (ca. 72 Ma), the NW-trending thrusting events migrates northeastward, roughly consistent with coeval long-wavelength subsidence center. Our results show that the former thrust event is related to Sevier orogeny, while the latter should be related to the Laramide orogeny. The initial timing of the Laramide deformation could start at as early as 82 Ma. This finding suggests that migrations of both long-wavelength subsidence center and Laramide deformation are driven by changes of Farallon subduction direction from eastward to northeastward and subduction angle from deep to flat. Our work shows how the subsidence history precisely records the timing and trajectory of Sevier and Laramide orogenies and dynamic topography, providing valuable insights for future three-dimensional modeling of dynamic subsidence in the Western Interior Basin.

How to cite: Zhou, D., Liu, S., Wang, L., and Wan, N.: Late Cretaceous Sevier and Laramide orogenies in Wyoming-Utah-Colorado, USA: Insight from basin subsidence history, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7368, https://doi.org/10.5194/egusphere-egu22-7368, 2022.

EGU22-10560 | Presentations | GD8.1 | Highlight

First views from assimilation of a new ‘tomographic’ circum-Pacific plate reconstruction into mantle circulation models 

Jonny Wu, Yi-An Lin, Lorenzo Colli, Yi-Wei Chen, Spencer Fuston, and Tsung-Jui Jeremy Wu

One of the greatest challenges of modeling the plate tectonic history of Earth during the Mesozoic and Cenozoic eras lies in reconstructing the Pacific Ocean and its predecessor ocean, Panthalassa.  A major reason for the plate tectonic uncertainty in this region is extensive subduction, which has consumed most (>95%) of the Pacific-Panthalassan ocean lithosphere formed since 150 Ma (Törsvik et al., 2019) and recycled it into the mantle, destroying the information on past plate motions recorded by seafloor magnetic lineations.  Consequently, many circum-Pacific margin plate tectonic models, including the popular GPlates models (e.g. Matthews et al., 2016; Müller et al., 2019), necessarily extrapolate 1000’s of km of subducted seafloor (i.e. synthetic seafloor isochrons).  Given the limited constraints, it is understandable that such models also prefer more straightforward solutions with a smaller number of larger plates, avoiding the complexities of modeling intra-oceanic subduction despite geological evidence from accreted circum-Pacific oceanic terranes.

Here we build the first topologically-closed, global plate tectonic model of the circum-Pacific using structurally-restored slabs from mantle seismic tomography as our primary constraint.  We use the numerical code TERRA to assimilate three variants of our ‘tomographic’ global plate model into mantle circulation forward models and assimilate the default GPlates model as a reference.  We show our preliminary geodynamic modeling results and test our model predictions against observed mantle structure, Earth’s geoid, and oceanic realm dynamic topography. 

All cases favor plate models that incorporate intra-oceanic subduction within Pacific-Panthalassa, particularly within the northern Pacific.  We find robust support for significant slab lateral advections (i.e. non-vertical slab sinking) under NW Pacific basin.  We discuss similarities and differences between our new ‘tomographic’ plate models and the GPlates model, which has been used for almost all geodynamic studies of the circum-Pacific to date. 

How to cite: Wu, J., Lin, Y.-A., Colli, L., Chen, Y.-W., Fuston, S., and Wu, T.-J. J.: First views from assimilation of a new ‘tomographic’ circum-Pacific plate reconstruction into mantle circulation models, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10560, https://doi.org/10.5194/egusphere-egu22-10560, 2022.

EGU22-11229 | Presentations | GD8.1

The Horizontal Slab Beneath East Asia and Its Subdued Surface Dynamic Response 

Bo Zhang, Shaofeng liu, Pengfei Ma, and Michael Gurnis

The kinematics of plate tectonics, deformation, and dynamic topography are strong indicators of coupling between plates and the mantle. East Asia is characterized by the presence of an unusually large horizontal slab that lies within the mantle transition zone. How this feature evolved and is linked to plate tectonics, deformation, and topography is poorly understood. Here, we show four-dimensional geodynamic modeling results constrained by a new deforming plate reconstruction that fits mantle architecture inferred from seismic tomography. We find that the subducted western Pacific slab was progressively torn by the Philippine Sea plate rotating clockwise during the Miocene and that northwestward mantle flow contributed to shaping the horizontal slab during subduction, leading to dynamic subsidence along the East Asia margin. The rather subdued change in dynamic topography, predicted from those models that fit the horizontal slab in the mantle, is consistent with the variation in residual topography, recorded in the stratigraphy, within only about +/- 200 m over the last 50 Myr during a period of no large marine inundation or retreat. The tectonics and topography of East Asia strongly contrast with those of Southeast Asia and are reflective of slabs ephemerally stagnating in the mantle below East Asia while avalanching into the lower mantle below Southeast Asia.

How to cite: Zhang, B., liu, S., Ma, P., and Gurnis, M.: The Horizontal Slab Beneath East Asia and Its Subdued Surface Dynamic Response, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11229, https://doi.org/10.5194/egusphere-egu22-11229, 2022.

Decoding tectonic and climatic signatures from continental successions has become important in basin analysis. However, tectonic and climatic signatures can still be difficult to discriminate from each other. The late Mesozoic Xuanhua basin in the western Yanshan fold‑and‑thrust belt represents a representative intramontane basin and allows detailed stratigraphic, sedimentological, and provenance analyses. The work entailed an analysis of alluvial fan, fluvial, lake‑delta, and lacustrine systems in the Tuchengzi Fm. Lateral correlation of sedimentary columns reveals two large‑scale upward‑coarsening cyclothems each 80-240m thick, with prominent vertical changes from lacustrine through deltaic and fluvial to alluvial fan deposits. Two intervals of thrust‑related growth strata identified in the Tuchengzi Fm suggest that the cyclothems were controlled by tectonic uplift and accommodation change related to the Likouquan and the Mapu thrusting. In the lower upward‑coarsening cyclothem, stacking of small‑scale (3-16 m thick) upward‑fining cyclothems was revealed and argued to have been generated by alternating wet‑dry cycles. The wet half‑cycle started with discharge and deposition of flood‑generated mass‑flows into the lake and ended with accumulation of lacustrine mudstones as lake level rose. The lake deposits include the maximum flooding during the wet half‑cycle. The dry half‑cycle was characterized by continued lacustrine deposits, but with increased evidence of subaerial exposure indicated by rooting, paleosols and mudcracks resulting from falling of the lake level under dry conditions.

How to cite: Lin, C., Liu, S., and Steel, R.: Tectonic and climatic controls on the Late Jurassic-Early Cretaceous stratigraphic architecture of the Xuanhua basin, North China, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13356, https://doi.org/10.5194/egusphere-egu22-13356, 2022.

EGU22-13514 | Presentations | GD8.1

Two-stage rifting of Jiaolai Basin, Eastern China, decoding from the source-to-sink reconstruction 

Bo Zhang, Shaofeng Liu, Chengfa Lin, and Pengfei Ma

The basin is an essential window for exploring tectonic evolution, which preserves the information of regional extension, subsidence, uplift, and denudation. The Jiaolai Basin, located on the northern the Sulu Orogenic Belt, records the extension events of East Asia and the post-orogenic evolution of the Sulu Orogenic Belt during the Cretaceous. Multiple provenance analyses were used in the study to reconstruct the source-to-sink system of the Laiyang Group in the Jiaolai Basin. The results show that the Jiaolai Basin has a two-stage evolution history. In the early Early Cretaceous (ca. 135-122Ma), the Zhucheng sag and Gaomi sag in the south developed firstly. Subsequently, in the late Early Cretaceous (ca. 121-113Ma), the Laiyang Sag in the north developed. Moreover, these sags undergone independent, multi-stage source-sink system evolution in their early stages, and shared similar provenance supply systems at the end of Laiyang Group (ca. 113Ma). The provenance analysis results show that at ~121 Ma, ultra-high pressure (UHP) rock undergone a rapid exhumation in the northern section of the Sulu orogenic belt, whereas, for the southern section, The UHP may not be exposed until ca.113Ma. The two-stage extension in Eastern Asia with the change in direction and magnitude, recorded in the Jiaolai basin, suggests the trench retreat and subduction direction Change of the Izanagi plate should be the first-order drive force of the extension events of Eastern Asia during the Cretaceous. Our results indicate that the change of the Izanagi subduction direction may be ~121 Ma.

How to cite: Zhang, B., Liu, S., Lin, C., and Ma, P.: Two-stage rifting of Jiaolai Basin, Eastern China, decoding from the source-to-sink reconstruction, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13514, https://doi.org/10.5194/egusphere-egu22-13514, 2022.

EGU22-13552 | Presentations | GD8.1

Dynamic origin of anomalous subsidence of Jurassic Ordos basin 

Neng Wan, Shaofeng Liu, Guangting Liu, and Xueyan Li

The Jurassic Ordos basin is generally considered an intracontinental basin characterized by rapid subsidence rate along western margin and slow subsidence rate within basin interior. However, the formation mechanism of Ordos basin was not yet well understood. Flexural backstripping of stratigraphic record spanning from 174-153Ma, along three well sections perpendicular to the western margin of Ordos basin clearly demonstrates that there were long wavelength anomalous subsidence components, termed residual subsidence, in addition to those induced by thrust loads and sediment loads. Flexural components exhibit similar spatial and temporal trends along three sections. Simulations demonstrates that the foredeep is only 80-100 km wide, corresponding to effective thickness of 15-20 km. Contribution by flexural component relative to cumulative subsidence decreases from 50-60% to -15% within foredeep from thrust front towards basin interior, while residual subsidence could account for 40-50% of cumulative subsidence for areas outboard extent of foredeep. From 174-153 Ma, residual subsidence increases from ~150 m to ~330 m, ~200 m to ~390 m, ~180 m to ~480 m in southern, middle and northern section respectively. Our results indicate that thrust loads could act as the dominant driver for subsidence of foredeep while other mechanism needs to be raised to explain the basin-wide anomalous residual subsidence. The general agreement regarding both magnitude and trends along all three sections between dynamic topography predicted by geodynamic models and residual subsidence separated from flexural modeling, indicates that the anomalous subsidence component might be of dynamic origin, related to subduction of paleo-Pacific plate initiated from latest Early Jurassic.

How to cite: Wan, N., Liu, S., Liu, G., and Li, X.: Dynamic origin of anomalous subsidence of Jurassic Ordos basin, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13552, https://doi.org/10.5194/egusphere-egu22-13552, 2022.

EGU22-285 | Presentations | GD8.2

A Paleozoic accretion history: Igneous and detrital zircon signatures of the Kulutingwak and Danish River formations in the Yelverton Inlet-Phillips Inlet region, Ellesmere Island, Nunavut, Canada 

Megan Koch, William C. McClelland, Jane A. Gilotti, Karolina Kośmińska, Karol Faehnrich, and Justin V. Strauss

The Ordovician Kulutingwak Formation of Ellesmere Island, Nunavut, Canada is an enigmatic assemblage that occurs exclusively in fault-bounded panels in a critical 30 kilometer transect between the crystalline basement of the exotic Pearya terrane and clastic rocks on the Laurentian margin. The Pearya terrane is hypothesized to have accreted to the Laurentian margin during late Silurian to Devonian time. The Kulutingwak Formation includes metasedimentary, volcanic, and volcaniclastic rocks with local carbonate olistoliths and serpentinite-bearing lithologies that collectively represent a subduction-related assemblage formed in an accretionary prism. As such, this formation has been cited as evidence of an arc-continent collision, giving these rocks a significant role in shaping tectonic models for the accretion of the Pearya terrane, and subsequently, the assembly of the circum-Arctic region during the Paleozoic. Igneous and detrital zircon U-Pb and Lu-Hf data from 11 samples collected from the Kulutingwak and Silurian Danish River formations between the Petersen Bay fault zone (PBFZ) and the Emma Fiord fault zone (EFFZ) record a dynamic early Paleozoic tectonic setting at the northern Laurentian margin. Detrital zircon spectra from the Kulutingwak samples adjacent to the PBFZ show major age peaks at ca. 960 Ma that record affinity with the Pearya terrane basement, as well as peaks at ca. 1820 Ma and 2700 Ma that suggest a Laurentian margin source. Additionally, two samples record the presence of a 502–508 Ma source which is not well-documented in this region. Kulutingwak Formation volcaniclastic rocks further to the south in the EFFZ yield U-Pb zircon ages 456–465 Ma and εHf(t) signatures of -5 to +10, implying association with volcaniclastic rocks of the newly redefined Ordovician Fire Bay Formation, a dismembered arc fragment equivalent to Ordovician arc-related rocks connected with the Pearya terrane. The data demonstrate that there are at least two distinctive components within the currently defined Kulutingwak Formation: one that records combined provenance signatures from the Pearya terrane and the Laurentian margin in the Paleozoic and another that signals the presence of an Ordovician arc at ca. 455–470 Ma. U-Pb detrital zircon data collected from the Silurian Danish River Formation in this region demonstrate affinity with the Pearya terrane, with a major age peak at ca. 960 Ma. Composite signatures of ca. 960, 1820, and 2700 Ma in the Kulutingwak Formation suggest that the Pearya terrane had reached the Laurentian margin in Late Ordovician to Silurian time.

How to cite: Koch, M., McClelland, W. C., Gilotti, J. A., Kośmińska, K., Faehnrich, K., and Strauss, J. V.: A Paleozoic accretion history: Igneous and detrital zircon signatures of the Kulutingwak and Danish River formations in the Yelverton Inlet-Phillips Inlet region, Ellesmere Island, Nunavut, Canada, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-285, https://doi.org/10.5194/egusphere-egu22-285, 2022.

Geochronological studies illuminate our understanding of the tectono-stratigraphic evolution of the Arctic Ocean, submarine features, continental shelves and adjoining landmasses. The Franklinian and Sverdrup basins of the Canadian High Arctic preserve a near-continuous Phanerozoic succession detailing the geologic evolution of the northern Laurentian margin from the Neoproterozoic to Cenozoic. Whereas previous studies have documented the structural and stratigraphic record of several episodes of orogenesis and first-order depositional cycles related to Circum-Arctic evolution, supporting geochronological data are sparse because the logistical challenges associated with fieldwork at high latitudes resulting in poor temporal resolution on the magnitude and timing of: 1) accretion of the Pearya terrane to the Laurentian margin; 2) the Devonian to Carboniferous Ellesmerian orogeny; and 3) Paleogene Eurekan deformation. In an effort to constrain the age of these tectonic episodes, we applied 40Ar/39Ar and (U-Th)/He low-temperature geochronology to major polydeformed NE-SW trending strike-slip fault zones that bisect the Pearya terrane and Franklinian Basin of northern Ellesmere Island, Canada. Total fusion 40Ar/39Ar dating was conducted on 165 single muscovite grains from 22 samples. Age dispersion was sample dependent, with some samples exhibiting robust Paleozoic ages corresponding to the assembly and accretion of the Pearya terrane, and other samples yielding intra-sample date dispersion that spanned the late Paleozoic and Mesozoic, indicative of a previously unreported post-Ellesmerian and pre-Eurekan history. Zircon (U-Th)/He dates from 11 samples (n: 73) and apatite (U-Th)/He data from 6 samples (n: 21) are largely Eocene in age, with dominant populations of c. 48 Ma and c. 41 Ma, respectively. Inverse thermal history modelling of (U-Th)/He data indicates episodic Mesozoic burial and unroofing that coincide with changes in the regional stress regime from dominant N-S to WNW-ESE compression, and rapid cooling during the nascent (>53 Ma) and initial (53 Ma to 47 Ma) phases of Eurekan deformation. The improved geochronologic resolution of the eastern Canadian High Arctic will allow better correlation to offshore structural features and to deformation events on the Greenland plate and Svalbard archipelago.

How to cite: Schneider, D. and Powell, J.: Phanerozoic record of northern Ellesmere Island, Canadian High Arctic, resolved through 40Ar/39Ar and (U-Th)/He geochronology, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1122, https://doi.org/10.5194/egusphere-egu22-1122, 2022.

EGU22-2379 | Presentations | GD8.2 | Highlight

The Permian-Triassic boundary across the Barents Shelf: an intricate record of climate change, mass extinction, recovery, and basin reorganisation 

Valentin Zuchuat, Lars Eivind Augland, Morgan T. Jones, Arve R.N. Sleveland, Richard Twitchett, Francisco J. Rodríguez-Tovar, Øyvind Hammer, Kim Senger, Peter Betlem, Holly E. Turner, Ivar Midtkandal, Henrik H. Svensen, and Sverre Planke

About 252 million years ago, near the end of the Permian, the Earth experienced its most dramatic mass extinction, caused by magmatic intrusions and volcanic eruptions associated with the Siberian Traps Large Igneous Province. This led to catastrophic global climatic changes, impacts of which lasted well into the Early Triassic.

Here, we summarise the results gathered from the study of sedimentary successions spread across the Barents Shelf that recorded the End Permian Mass Extinction (EPME) and its aftermaths across the Permian-Triassic boundary. Data and samples were collected from the Festningen section in western Spitsbergen; the DD-1 core and the associated river section in Deltadalen, central Spitsbergen; a core (7933/4-U-3) drilled by the Norwegian Petroleum Directorate offshore Kvitøya in northern Svalbard; and a core (7130/4-1; production licence 586) recovered from the Finnmark Platform in the Barents Sea. A series of state-of-the-art analyses were conducted on the collected material, including detailed facies analysis, organic and C-isotope geochemistry, mercury content, geochronology, high resolution XRF core scanning, petrography, ichnology, and palaeontology. Analyses were, where relevant, tied to the outcrops using digital outcrop models.

Traditionally, the Permian-Triassic boundary in Svalbard (and across the High Arctic regions) was placed at the marked and rapid facies change at the top of the siliceous mudstones and spiculites of the Kapp Starostin Formation, which are overlain by soft, non-siliceous mudstones and siltstones of the Vardebukta and Vikinghøgda formations. This abrupt facies change, which also marks the collapse of sponges, occurs across a few centimetres. Given that the non-siliceous mudstones were definitely of Early Triassic age, based on ammonoid biostratigraphy, this lithostratigraphic boundary was believed to represent a lacuna or a hiatus of several million years, with the uppermost Permian strata absent from the sedimentary record.

The base of the Triassic, however, is not defined by ammonoid biostratigraphy but by the conodont Hindeodus parvus, which was recently reported to occur a few meters above the lithostratigraphic boundary in the Deltadalen section. This means that the lithostratigraphic boundary is of Permian age. Additionally, our new data show that sedimentation was continuous across this lithostratigraphic boundary, corresponding to major environmental changes, potentially associated with a reorganisation of the basin(s) physiography.

Furthermore, the 6-8 ‰ δ13Corg negative excursion associated with the EPME falls between the lithostratigraphic and the Permian-Triassic boundary at all measured sections. These negative carbon isotope excursions occur in intervals with numerous tephra layers, the lowest of which has been dated at 252.13 ± 0.62 Ma, potentially connecting the recorded changes to the Siberian Traps. The EPME is also corroborated by the very abrupt decline of trace fossil abundance and diversity, as anoxia extended from proximal and shallow water to deeper settings. Geochemical and ichnological data support the existence of multiple anoxic pulses, separated by very brief periods of enhanced oxygen levels. It took ca. 150 Kyr for life to recover after the EPME, based on sedimentation rate calculations. Data also suggest that the hinterland of the basin experienced a shift towards more arid climatic conditions and increased eutrophication.

How to cite: Zuchuat, V., Augland, L. E., Jones, M. T., Sleveland, A. R. N., Twitchett, R., Rodríguez-Tovar, F. J., Hammer, Ø., Senger, K., Betlem, P., Turner, H. E., Midtkandal, I., Svensen, H. H., and Planke, S.: The Permian-Triassic boundary across the Barents Shelf: an intricate record of climate change, mass extinction, recovery, and basin reorganisation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2379, https://doi.org/10.5194/egusphere-egu22-2379, 2022.

EGU22-4322 | Presentations | GD8.2

Amerasia Basin: new data and new geological model 

Anatoly Nikishin, Eugene Petrov, Elizaveta Rodina, Ksenia Startseva, Andrey Chernykh, Sierd Cloetingh, Gillian Foulger, and Henry Posamentier

We present an interpretation of the regional seismic lines for the Amerasia Basin, and new data from analyses of rocks from the Alpha-Mendeleev Rise. This report is based primarily on interpretation of 2D seismic lines and analysis of magnetic and gravity field anomalies, from data acquired through the Russian Arktika-2011, Arktika-2012, Arktika -2014, and Arktika-2020 projects. We use also open Canadian seismic data (Shimeld et al., 2021) and published data. We propose that the Alpha-Mendeleev Rise is a Eurasian aborted double-sided volcanic passive continental margin with stretched and hyper-extended continental crust intruded by basalts. This rise has a number of SDR-like seismic units. The age of volcanism is ~125-100 Ma. The Podvodnikov, Toll, Mendeleev, Nautilus, Stefansson basins have SDR-like seismic units. The top of SDR-like units has a similar age in all basins. The Alpha-Mendeleev Rise has an axis of symmetry. The East North Chukchi, Toll, Mendeleev, Nautilus, Stefansson basins are coeval basins with very stretched continental crust. They are connected by a long united axial line of hyperextension, subsidence and volcanism.  The Makarov, Podvodnikov, West North Chukchi basins are coeval basins with very stretched continental crust. They are connected by a long united axial line of hyperextension, subsidence and volcanism.  The Alpha-Mendeleev Rise and all mentioned basins originated simultaneously in the same geodynamic environment during the HALIP magmatic epoch at nearly 125-100 Ma. This study was supported by the Russian Science Foundation (Grant 22-27-00160).

How to cite: Nikishin, A., Petrov, E., Rodina, E., Startseva, K., Chernykh, A., Cloetingh, S., Foulger, G., and Posamentier, H.: Amerasia Basin: new data and new geological model, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4322, https://doi.org/10.5194/egusphere-egu22-4322, 2022.

EGU22-4415 | Presentations | GD8.2

SDR (Seaward Dipping Reflectors) mapping in the Amerasia Basin 

Elizaveta Rodina, Anatoly Nikishin, and Ksenia Startseva

Study area includes Alpha-Mendeleev Rise and contiguous deep-water basins – Toll, Mendeleev, Nautilus and Stefansson Basins near the eastern slope and Podvodnikov and Makarov Basins near the western slope. The western boundary is Lomonosov Ridge; the eastern boundary is Chukchi Plateau and part of the Canada Basin. There are Chukchi and East Siberian Seas on the continental shelf.

Within the study area, we studied and interpreted seismic 2D profiles from the Russian Arktika-2011, Arktika-2012, Arktika -2014, and Arktika-2020 expeditions. We also worked with open Canadian seismic data (Shimeld et al., 2021) and published data (e.g., Ilhan, Coakley, 2018). A unified seismostratigraphic correlation was carried out for the entire region.

Many half-grabens locate on the edges of deep-sea basins. Bright-amplitude reflectors with wedge-shaped architecture fill half-grabens. These reflectors are similar to SDR and they represent by interbedding of basaltic lavas and sedimentary rocks. They are typical for the synrift complex within the study area. The top of the synrift complex (or top of SDRs like units) is a bright boundary with age ~100 Ma.  Sometimes the top of the synrift complex contains conical edifices with a chaotic internal structure. Their height is 400-800 m. This is possible underwater volcanoes. The base of the synrift complex (or base of SDRs like units) is unclear and corresponds to the top of the acoustic basement. This age is near 125 Ma. We assume that SDRs like units and volcanos were formed during the HALIP epoch (~125-80 Ma).

 We found a regularity in the distribution of half-graben and SDRs like units. They are all located at the edges of the basins near the slopes of the uplifts. Two axes can be distinguished as the centers where SDRs like units and half-grabens converge. The western axis goes through Podvodnikov Basin and corresponds with the central uplift of the Podvodnikov basin. Reflectors dip from the western slope of the Mendeleev Rise from one side and from the Lomonosov Ridge from another. They converge near the central uplift. The eastern axis goes through Toll, Mendeleev, Nautilus and Stefansson Basins. In Toll and Mendeleev Basins reflectors and half-grabens dip from east slope of Mendeleev Rise from one side and from Chukchi Plateau from another. The Stefansson Basin looks similar to the Podvodnikov Basin. The central uplift is located in the center of the Stefansson Basin. Reflectors and half-grabens dip from Alpha Rise from one side and from Sever Spur from another. We have compiled a map of the distribution of SDR’s like units, volcanoes and half-grabens based on the map of the acoustic basement.

This study was supported by the Russian Science Foundation (Grant 22-27-00160).

How to cite: Rodina, E., Nikishin, A., and Startseva, K.: SDR (Seaward Dipping Reflectors) mapping in the Amerasia Basin, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4415, https://doi.org/10.5194/egusphere-egu22-4415, 2022.

EGU22-4449 | Presentations | GD8.2

The great Arctic Eocene strike-slip zone Umky 

Ksenia Startseva, Anatoly Nikishin, and Elizaveta Rodina

On the seismic lines acquired in 2011-2020 for the North-Chukchi Sea and East Siberian Sea basins plenty of low-amplitude normal faults is identified. Maximal apparent throw of the faults is 100-200 ms, and occasionally reaches up to 300-400 ms. Dip angles of the faults are often directed towards each other, the resulting flower structure is related to strike-slip tension. For individual faults it is possible to ascertain strike azimuth – near 350° for the North Chukchi basin and near 340° in East Siberian basin. By the seismic data, the faults are distributed within an area of ~1.500 km long- and ~350 km wide.

According to interpretation, the faults activation occurred from 45 Ma to 34 Ma. This time corresponds to a regional tectonic rebuilding, that is observed across all the region. For example, a sharp slowdown of the Eurasian Basin spreading had place then. Formation of the North-Chukchi and East Siberian basins is related to Aptian-Albian (~125 Ma) rifting, that manifested itself on the De Long Islands and the Mendeleev Rise. Isometric form of the basins could indicate the conditions of pull-apart tension. Data of gravity and magnetic anomalies support this assumption – a long linear anomaly of ~285° strike is identified to the North of the Wrangel Island (in Chukchi, the last is called Umkilir – “White Bear Island”). The anomaly is interpreted as regional strike-slip that was formed ~125 Ma. The angle between the strike-sleep and the multiple low-amplitude Eocene faults is about 55-65°. It is possible to relate the low-amplitude faults to the reactivation of the great strike-slip.

This study was supported by the Russian Science Foundation (Grant 22-27-00160).

How to cite: Startseva, K., Nikishin, A., and Rodina, E.: The great Arctic Eocene strike-slip zone Umky, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4449, https://doi.org/10.5194/egusphere-egu22-4449, 2022.

EGU22-5930 | Presentations | GD8.2

Variably depleted mantle in the source of Azores lavas 

Paul Béguelin, Andreas Stracke, Felix Genske, Michael Bizimis, Christoph Beier, and Michael Willig

The Azores Plateau in the North Atlantic is a classic example of near-ridge oceanic plateau (600 km) associated with the upwelling of the Azores mantle plume. The radiogenic isotope signatures of Azores lavas show systematic inter-island variations, which are often interpreted in terms of sampling several distinct, chemically enriched reservoirs from the Azores plume [1].

Here we discuss new radiogenic cerium isotope data on Azores lavas in the context of recent isotope data on olivine-hosted melt inclusions [2]. Olivine-hosted melt inclusions have very high neodymium isotope ratios (up to εNd = 18.1), suggesting that variably depleted mantle is the dominant component of the Azores mantle source [2]. Radiogenic Ce isotopes reflect the time-integrated La/Ce ratio of the mantle source. La/Ce approaches zero values in incompatible element depleted mantle, while the Sm/Nd and Lu/Hf ratios retain higher, more variable values. Melts from variably depleted mantle therefore develop distinct signatures in Ce–Nd–Hf space [3].

The new Ce isotope values for 36 whole-rock lava samples covering the whole Azores Plateau reveal a number of parallel, vertically stacked trends in Ce–Nd and Ce–Hf isotope space, pointing to variably incompatible depleted end-members, that are not discernible in Sr–Nd–Pb–Hf isotope space. The observed isotope trends in Ce–Nd–Hf space are readily explained by variable contribution of melts from volumetrically dominant, but variably depleted mantle and similar, but inherently heterogeneous enriched local plume components. Hence, although not directly reflected in the erupted basalts on a whole-rock scale [1, 2], variable contribution of melts from a variably, in part highly depleted mantle control the isotope composition of Azores lavas.

These results indicate the North Atlantic mantle below the Azores is variably depleted and contains highly depleted domains. The lavas closest to the proposed plume center [4] do not correspond to either extreme in terms of mantle depletion, suggesting mantle depletion in Azores is inherently complex and not a simple mixing product between plume and ridge mantle.

 

[1] Béguelin et al. (2017) Geochimica et Cosmochimica Acta, 218, 132-152.

[2] Stracke et al. (2019) Nature Geoscience, 12(10), 851-855.

[3] Willig et al. (2020) Geochimica et Cosmochimica Acta, 272, 36-53.

[4] Bourdon et al. (2005) Earth and Planetary Science Letters, 239, 42-56.

How to cite: Béguelin, P., Stracke, A., Genske, F., Bizimis, M., Beier, C., and Willig, M.: Variably depleted mantle in the source of Azores lavas, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5930, https://doi.org/10.5194/egusphere-egu22-5930, 2022.

EGU22-5989 | Presentations | GD8.2 | Highlight

The anomalous North Atlantic region 

Hans Thybo and Irina Artemieva

The whole North Atlantic region has highly anomalous topography and bathymetry. Observations show evidence for anomalously shallow bathymetry in the ocean as well as recent rapid topographic change with onshore uplift close to the Atlantic coast and simultaneous subsidence of basins on the continental shelves, most likely throughout the Mesozoic. We present a geophysical interpretation of the whole region with emphasis on data relevant for assessing hypsometric change

Most of the North Atlantic Ocean has anomalously shallow bathymetry by up-to 4 km compared to other oceans. Bathymetry is elevated by up-to 2 km and follows the square-root-of-age model, except for the region between Greenland Iceland Faroe Ridge (GIF) and the Jan Mayen Fracture Zone as well as in the Labrador Sea to Baffin Bay. Heat flow follows with large scatter the square-root-of-age model in parts of the ocean and is anomalously low on the Reykjanes and Mohns spreading ridges. Near-zero free-air gravity anomalies indicate that the oceanic areas are generally in isostatic equilibrium except along the mid-oceanic ridges, whereas anomalously low Bouguer anomalies in the oceanic areas indicate low density in the uppermost mantle. Anomalously thick crust is observed along GIF and extends into the Davies Strait. There is no correlation between bathymetry and heat flow, which indicates that the anomalous bathymetry mainly is caused by compositional variation and isostatic compensation of low density continental lithosphere within the oceanic regions. The location of major oceanic fracture zones and continental fragments appears to be controlled by onshore structures.

The onshore circum-Atlantic areas show rapid uplift close to the coast with rates of up-to 3 cm/yr. This is surprisingly mainly associated with strong positive free-air gravity anomalies, which would predict isostatic subsidence. Some parts of the high topography, however, appear supported by low-density anomalies below the seismic Moho. It is enigmatic that the presumed Archaean-Proterozoic continental Barents Sea region is submerged and includes deep sedimentary basins.

How to cite: Thybo, H. and Artemieva, I.: The anomalous North Atlantic region, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5989, https://doi.org/10.5194/egusphere-egu22-5989, 2022.

EGU22-6068 | Presentations | GD8.2

Evaluating the crustal architectures of the Eastern Seaboard of the United States: Insights from seismic reflection and potential field data 

Mike Shotton, Estelle Mortimer, Mohamed Gouiza, and Chris Green

Passive margins are commonly categorised into two end-member models based on the amount of magma produced during continental rifting and breakup, resulting in ‘magma-rich margins’, or ‘magma-poor margins’ as a generic classification. However, in recent years, substantial variability within these models, due to parameters such as rheology, structural inheritance, variations in magmatic budget, has been identified. Similarly, attempting to confidently interpret crustal architectures, particularly within the ocean-continent transition zone, is challenging and much uncertainty in geometries and crustal type exists across many rifted margins across the globe which require careful and robust interpretation to attempt to reduce this uncertainty.

This contribution focuses on the Eastern Seaboard of the United States; in which we show a suite of seismic interpretations (from seismic reflection data), together with validations from potential field data to produce a comprehensive map of the crustal types along the margin. Much recent work on the margin has investigated the segmentation along strike, indicating that the architecture of the Eastern Seaboard does not conform to any of the end-member models. Here we provide evidence of the segmentation and non-conforming nature of the margin, consistent with recent work on the US Eastern Seaboard which is at odds with typical models of rifted margin architectures. Furthermore, to accompany the new crustal architectures map, we propose a conceptual structural model of the development of the margin, constrained by our observations and accounting for the three-dimensional nature of the margin evolution.

How to cite: Shotton, M., Mortimer, E., Gouiza, M., and Green, C.: Evaluating the crustal architectures of the Eastern Seaboard of the United States: Insights from seismic reflection and potential field data, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6068, https://doi.org/10.5194/egusphere-egu22-6068, 2022.

Cretaceous to earliest Oligocene plate motions between Greenland and North America are only modellable at high resolution from a short-lived (61-42 Ma) sequence of magnetic isochrons in the Labrador Sea. Understanding them at other times is hampered by interpretational conflicts and low resolution in geoscientific observations of the Labrador Sea, Davis Strait, Baffin Bay, and Eurekan Orogen. To better contextualize these observations, we build and manipulate models of North America-Eurasia and Eurasia-Greenland divergence in order to depict post-84 Ma North American-Greenland motions at quantified high resolution. Among our findings, we show that the North American-Eurasian plate boundary propagated northwards, leading the continental shelves in the Labrador Sea to separate by 74-72 Ma and in Baffin Bay later, at around 63 Ma, and that field evidence for the Eurekan Orogeny having occurred in two distinct phases is directly related to a 46 Ma change in Greenland-North American plate motion parameters.

How to cite: Causer, A., Eagles, G., Pérez-Díaz, L., and Adam, J.: Cenozoic relative movements of Greenland and North America by closure of the North Atlantic-Arctic plate circuit: The Labrador Sea, Davis Strait, Baffin Bay, and Eurekan Orogen, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6077, https://doi.org/10.5194/egusphere-egu22-6077, 2022.

EGU22-6201 | Presentations | GD8.2

Provenance Analysis of the Andrée Land Basin and the Paleogeography of Svalbard in the Devonian 

Owen Anfinson, Margo Odlum, Karsten Piepjohn, Erini Poulaki, Grace Shephard, Daniel Stockli, Devin Levang, and Maria Jensen

During the Devonian, the Svalbard Archipelago lay near the equator, occupying an important paleogeographic position at the intersection of Caledonian and Ellesmerian orogens. We provide new sediment provenance constraints, including detrital zircon U-Pb ages, from the Devonian Andrée Land Basin, Svalbard, to understand the tectonic history of the archipelago at that time. Sedimentary provenance analysis of Devonian aged strata can help reconstruct the sediment sources and paleogeography to understand the assembly of the domains that make up Svalbard, that are presently separated by Devonian sedimentary basins and(or) faults with syn- to post Devonian displacement. The studied Andrée Land Group strata in Dicksonland, which are part of the North Atlantic's Old Red Sandstone, consist of the Early Devonian Wood Bay Formation and Middle to Late Devonian Mimerdalen subgroup. Paleocurrent indicators from Lower to lower-Middle Devonian strata record north-directed sediment transport. Detrital zircon U-Pb data are dominated by ages sourced from Svalbard’s Northwestern and Southwestern Basement provinces. In Middle and Upper Devonian strata, paleocurrents and detrital zircon ages suggest a shift to a predominantly eastern-northeastern provenance, likely sourced from the uplifting Ny-Friesland block along the Billefjorden Fault Zone. The addition of significant late Ediacaran-early Cambrian detrital zircons in a sample from the uppermost Planteryggen Formation (Frasnian) indicate sources associated with the Timanian orogen and provide a useful palaeogeographic indicator when compared to other regional detrital zircon data sets. Detrital zircon ages and provenance data suggest Svalbard may have already been assembled, similar to the block we see today, with the Andrée Land Basin between modern exposures of the Southwestern/Northwestern and the Northeastern basement provinces. Comparison of detrital zircon ages from Andrée Land Group strata with those from other circum Arctic Lower, Middle, and Upper Devonian strata provides further insight on Svalbard’s paleogeographic position in the Devonian.

How to cite: Anfinson, O., Odlum, M., Piepjohn, K., Poulaki, E., Shephard, G., Stockli, D., Levang, D., and Jensen, M.: Provenance Analysis of the Andrée Land Basin and the Paleogeography of Svalbard in the Devonian, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6201, https://doi.org/10.5194/egusphere-egu22-6201, 2022.

EGU22-6253 | Presentations | GD8.2 | Highlight

The Arctic and NE Atlantic Realms: A comparison 

Gillian Foulger, Anatoly Nikishin, Elizaveta Rodina, Ksenia Startseva, Laurent Gernigon, Laurent Geoffroy, Jordan Phethean, and Andrey Chernykh

The disintegration of Pangea north of the Charlie Gibbs fracture zone led to the formation of the NE Atlantic and Arctic Oceans. Both these oceans are exceptionally complex in terms of diversity of the structures they contain and the sequence of events leading to their formation. Recent, extensive work by cross-disciplinary international groups has cast a great deal of new light on the structure and evolution of both oceans. Both have experienced fan-shaped oceanic-type spreading and ridge growth by linear propagation. Both contain shallow, linear bathymetric highs which comprise substantially or almost wholly, continental crust. There are also regions of continental crust, some hyper-extended, capped with lavas. Much of the NE Atlantic Ocean is floored by oceanic crust produced by classical, albeit piecemeal, oceanic spreading. The spreading rate is low and dwindles to ultra-low on the Gakkel Ridge in the Eurasia Basin of the Arctic Ocean. The Gakkel Ridge is flanked by linear, oceanic-like magnetic anomalies although it is not entirely clear whether these represent fully oceanic crust formation or whether some residual stretched continental crust remains beneath this region. The same may be true of the extinct Canada Basin spreading axis in the Amerasia Basin. Likewise, the nature and location of the continent-ocean transition in the NE Atlantic is currently under discussion and it has recently been proposed that the oldest linear magnetic anomalies, closest to the continental edges, characterize some form of magma-injected continental crust. A similar structure has been recently proposed for the Greenland-Iceland-Faroe Ridge  and the Alpha-Mendeleev Rise. What is currently unclear is the extents, in both oceans, of the three kinds of crust – true continental crust including microcontinents, magma-injected continental crust, and fully oceanic crust. There is furthermore likely a structural and geological continuum between these types. Classical linear magnetic anomalies are discontinuous between sections of the spreading ridge, raising the question of whether continuous fully oceanic crust connects these sections. In our presentation we will summarize what is known geologically and tectonically about both oceans, compare and contrast them, and outline their evolution. We will discuss the extents of the three types of crust and explore the implications for the history and mechanisms of ocean formation and the origins and extents of flood basalts. Of particular interest also is the control of pre-existing structure on the style of breakup.

How to cite: Foulger, G., Nikishin, A., Rodina, E., Startseva, K., Gernigon, L., Geoffroy, L., Phethean, J., and Chernykh, A.: The Arctic and NE Atlantic Realms: A comparison, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6253, https://doi.org/10.5194/egusphere-egu22-6253, 2022.

EGU22-7053 | Presentations | GD8.2

New insights into the brittle evolution along the passive continental margin of Western Norway from U-Pb calcite dating 

Åse Hestnes, Kerstin Drost, Deta Gasser, Joachim Jacobs, Thomas Scheiber, Tor Sømme, and David Chew

We here present the first U-Pb geochronology from calcites precipitated on fracture and fault surfaces from the passive continental margin of Western Norway. The evolution of passive continental rifted margins is reflected in complex fracture and fault networks which have been activated and reactivated through time. Constraining the timing of fault activity and fracturing can assist in revealing the interaction between tectonic processes and the topographic response onshore. Recently, U-Pb calcite dating has proven to be a useful tool to complement other geochronological methods and to produce more complete records of brittle deformation in different geological settings. In this study, we collected 35 calcite samples from different fault and fracture planes in Western Norway, 14 of which gave reliable U-Pb dates. The onshore field area is located at the junction of the NE-SW trending Norwegian Sea and the N-S trending North Sea. 1) The oldest calcites measured are from the Dalsfjord fault, a complex brittle fault related to the Nordfjord-Sogn Detachment Zone. The ages obtained from a green cataclasite indicate fluid flow and calcite precipitation around 208 ± 25 Ma and 205 ± 6 Ma, whereas a reddish cataclasite and fault gouge zone were dated 142 ± 15 Ma. 2) Two calcite samples from the northern part of the study area were collected along fractures parallel to the Møre-Trøndelag Fault Complex and yield dates of 89 ± 4 Ma and 79 ± 3 Ma. 3) Five samples from variously oriented fractures and faults spread over the field area gave dates of 69 ± 2 Ma, 67 ±15 Ma, 65 ± 2 Ma, 64 ± 2 Ma and 59 ± 2 Ma. These ages can be linked to the base Tertiary unconformity in the offshore stratigraphic record of the northern North Sea interpreted to be caused by onshore uplift. Several processes have been proposed to cause a possible uplift during this time span; a) regional influence of the Icelandic mantle plume, b) rift footwall uplift, c) climatically controlled topographic changes. 4) Five samples from across the field area yield dates of 49 ± 3 Ma, 35 ± 1 Ma, 21 ± 1 Ma, 5.5 ± 4.5 Ma and 0.8 ± 0.1 Ma. All these calcites precipitated on faults and fractures striking NE-SW, and its formation may be related to relaxation along the passive margin. The dated calcites from this study provide Cenozoic brittle deformation ages much younger than previously obtained by other geochronological methods, possibly allowing to decipher the youngest brittle tectonic evolution of the margin in unprecedented detail.

How to cite: Hestnes, Å., Drost, K., Gasser, D., Jacobs, J., Scheiber, T., Sømme, T., and Chew, D.: New insights into the brittle evolution along the passive continental margin of Western Norway from U-Pb calcite dating, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7053, https://doi.org/10.5194/egusphere-egu22-7053, 2022.

EGU22-9399 | Presentations | GD8.2 | Highlight

A digital Circum-Arctic geological repository from the NORRAM project 

Carmen Gaina, Grace Shephard, Alexander Minakov, Owen Anfinson, Victoria Ershova, Andrew Schaeffer, Kim Senger, Daniel Stockli, Bernard Coakley, Lars Eivind Augland, Pascal Audet, Ivar Midtkandal, and Morgan Jones

Most of the Arctic region is contained within the territory of Norway, Russia, USA, Canada and Denmark/Greenland, yet the natural boundaries and processes do not conform to these political borders. This remote region requires special logistics, equipment and substantial financial support. The last decade has seen an increase in knowledge about the northern polar region for economic and political reasons, such as the extended continental shelf claims under UNCLOS and Arctic Council activities.

It is crucial that scientific research, activities and their outcome are visible to the broader scientific community and communicated to the wider public. In recent years considerable effort has been invested by several groups and institutions to make various data and results available online and to use it for education and outreach. Examples include: the Arctic Observing Viewer which is a web mapping application in support of U.S. SEARCH, AON, SIOS, and other Arctic Observing networks (https://arcticobservingviewer.org/); Arctic Research Mapping Application (https://armap.org/) and the NSF Arctic Data Center (https://arctic data.io) for locating projects and data supported by US funding agencies; Svalbox (www.svalbox.no), a database for digital outcrop models from Svalbard, the comprehensive PANGAEA database  (https://www.pangaea.de), a data publisher for Earth and Environmental sciences; and GeoMapApp (http://www.geomapapp.org/), a map-based application for browsing, visualizing and analyzing a diverse suite of curated global and regional geoscience data sets.

While a wealth of data can be located and viewed in these databases and data repositories, the scientific community and geoscience educators may benefit from a collection of geological and geophysical data that can be easily visualized, analyzed and used for a quick assessment of present-day geodynamic setting and further for paleogeographic reconstructions  in the circum-Arctic region.

Consequently, a group of scientists from four Arctic countries and their collaborators are aiming to consolidate and further develop the Arctic-related common scientific basis and educational programmes under the auspices of the Norwegian Research Council programme INTPART (International Partnerships for Excellent Education, Research and Innovation).

The project NOR-R-AM (https://norramarctic.wordpress.com/), established in 2017, focused on assessing the openly available information accumulated at participating institutes. During the first phase of this project, we have gathered and interpreted data in various sub-regions, especially in Svalbard and in Russia. The second phase of the NOR-R-AM project aims to complete and launch the digital Circum-Arctic geodynamics platform. This web-based platform will incorporate geological and geophysical data and models, tomographic and kinematic models and paleogeography and paleoclimate indicators. The digital Circum-Arctic geological repository,  to be hosted by our project webpage https://norramarctic.wordpress.com/, assembles the data in openly accessible formats that are compatible with GPlates, GeomapApp and Google Earth. These data are consistently formatted to simplify exchange and completely open to the scientific community.

How to cite: Gaina, C., Shephard, G., Minakov, A., Anfinson, O., Ershova, V., Schaeffer, A., Senger, K., Stockli, D., Coakley, B., Augland, L. E., Audet, P., Midtkandal, I., and Jones, M.: A digital Circum-Arctic geological repository from the NORRAM project, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9399, https://doi.org/10.5194/egusphere-egu22-9399, 2022.

EGU22-10387 | Presentations | GD8.2 | Highlight

Lithosphere response to erosion: Model and case studies 

Sergei Medvedev and Ebbe Hartz

Extensive surface erosion may cause sizable lithospheric deformations. The effects are even more remarkable in regions subjected to glacial erosion. The isostatic response shielded by flexurally strong lithosphere is usually wider than localized glacial erosion and causes non-linear local effects. We use erosion backward in time (EBT) to model this process. In our experiments, we numerically fill the eroded voids with crustal material and calculate isostatic response to this added surface load. We assume that these calculations approximate amplitudes of erosion-related processes occurred in nature. Our studies started with considering enigmatic marine Mesozoic sediments stored at the elevation of 1.2 km in central east Greenland, the area free from recent compressional tectonic processes. The location is surrounded by the world’s biggest fjord system, Scoresby Sund. Application of the EBT allows us to estimate the unloading by the glacial fjord carving and conclude about a km-scale regional uplift explaining elevated marine sediments. Similar study on the development of the Europe’s biggest plateau, Hardangervidda in the southern Norway, demonstrated that glacial erosion caused up to 40% uplift of the plateau. Analyzing the Quaternary evolution of the North Sea, we found that on-shore erosion and off-shore sediment accumulation results in differential vertical motion of the lithosphere of up to 1 km across the sea. Applied to a particular petroleum system, the Troll field, this tilting explains significant oil spilling during the Quaternary.

How to cite: Medvedev, S. and Hartz, E.: Lithosphere response to erosion: Model and case studies, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10387, https://doi.org/10.5194/egusphere-egu22-10387, 2022.

EGU22-11241 | Presentations | GD8.2

The Eurekan in eastern North Greenland: insights from thermochronology 

Katrin Meier, Paul O'Sullivan, Patrick Monien, Karsten Piepjohn, Frank Lisker, and Cornelia Spiegel

Eastern North Greenland is a key area for studying the reorganisation of the North Atlantic-Arctic Realm during the Cenozoic. Due to its crucial position at the intersection of Atlantic Ocean, Arctic Ocean, and the West Greenland Rift Basin this area was significantly involved in the Eureka Orogeny leading to intracontinental compression/transpression observed on the Svalbard-Barents margin and the Canadian Archipelago as well as Northern Greenland. In the Neogene the final breakup occurred in this area, leading to the deep-water connection of the Arctic and North Atlantic Oceans.

It is characterized by the Carboniferous-Paleogene deposits of the Wandel Sea Basin overlaying Mesoproterozoic to early Palaeozoic supracrustal rocks. They occur in a series of pull apart basins along a zone of NE-SW-oriented faults. These faults are part of the DeGeer Shear Zone, along which the lateral offset of Greenland and Spitsbergen occurred during the Eureka Orogeny. In accordance the deposits are deformed, but the timing and the structural context of the deformation is much debated. Also, some deposits show unusually high thermal maturities of which the origin and geodynamic context is unclear.

We took samples across the Tolle-Land-Fault-Zone from the coast in the NE into the Caledonian basement in SW and applied apatite fission tack analysis and (U-Th-Sm)/He thermochronology to reconstruct the thermal history of the respective segments of the fault zone and their thermal evolution in respect to the deformation and opening of the northern Atlantic. Preliminary results will be presented and the exhumation history and timing of deformation and thermal anomalies in eastern North Greenland and influence of the breakup will be discussed.

How to cite: Meier, K., O'Sullivan, P., Monien, P., Piepjohn, K., Lisker, F., and Spiegel, C.: The Eurekan in eastern North Greenland: insights from thermochronology, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11241, https://doi.org/10.5194/egusphere-egu22-11241, 2022.

EGU22-12218 | Presentations | GD8.2

Current geodynamics and evolution of Tjörnes transform zone, North Iceland 

Viacheslav Bogoliubskii, Evgeny Dubinin, and Andrey Grokholsky

Tjörnes transform zone (TFZ) is complicated fracture zone in North Iceland connecting Kolbeinsey ridge and Northern rift zone of Iceland. It includes several different structures such as segmented oblique rift, amagmatic rifts and oblique slip fault zones. They developed consequently since ca. 9 Ma. The aim of this work is to determine current geodynamic activity and ratio of tectonic and magmatic activity of each structure and adjacent structures of Mid-Atlantic ridge (MAR) basing on normal faults morphometric parameters and to reconstruct evolution of TFZ by physical modelling. Morphometric analysis is based on multibeam bathymetry data of Marine and Freshwater Research Institute in Iceland and ArcticDEM digital elevation model. There were collected data on more than 900 normal faults on five parameters: heave, thrust, length, distance between faults and maximum profile curvature. They reflect recent rate of horizontal and vertical deformations and morphological age of the normal fault. Heave and distance ratio shows the relative intensity of tectonic and magmatic activity. The results show that structures have different level of recent tectonic activity and therefore, are on different stages of their evolution. In addition, they have various tectono-magmatic ratio that proceeds from their development stage, width of faulting zone and mantle structure. Physical modeling is based extending setting with mineral oil that have numerical resemblance with oceanic crust in density, shear modulus and thickness. Two-layered model have elastic bottom layer, brittle top one and local heating source corresponding to Icelandic plume impulses. Initial configuration reflects two spreading segments of MAR that develop transform zone in conditions of crust thinning in direction out of Icelandic plume center. In result of their interaction is generation of overlapping spreading centers. One of them became extinct and another one develops into transtensive transform zone, which corresponds to Husavik-Flatey oblique slip fracture zone (HFFZ) and adjacent amagmatic rift. Activation of local heating source rejuvenates extinct branch of the overlap and generates subparallel to extension direction rifting fractures reconstructing Grímsey oblique rift with high magmatic activity. HFFZ activity abruptly declines. In conclusion, consequent development, activation and decline of structures correctly correlate with results of morphometric analysis and reflect the development stages of each structure. The specific current structure of TFZ is determined by initial development of overlapping spreading centers and their control by Icelandic plume magmatic impulses.

How to cite: Bogoliubskii, V., Dubinin, E., and Grokholsky, A.: Current geodynamics and evolution of Tjörnes transform zone, North Iceland, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12218, https://doi.org/10.5194/egusphere-egu22-12218, 2022.

EGU22-12316 | Presentations | GD8.2

The age of monzonitoids of the Mount Yarkeu, Polar Urals: first U-Pb (LA-ICP-MS) and 40Ar-39Ar ages 

Ivan Sobolev, Ilya Vikentiev, Viktor Sheshukov, Alexandr Dubenskii, Alexey Travin, and Anastasiya Novikova

Collisional igneous units of the Carboniferous and Permian age in the Polar Urals are poorly studied. This is due to the fact that most of them are probably hidden under the Mesozoic-Cenozoic cover of the West Siberian Plate. Thin bodies of gabbroids, lamprophyres, monzonitoids, and granitoids are known (Musyur, Yarkeu, Yayu, and Pogurej complexes), which are usually attributed to the collisional stage of the Uralian orogeny. Their age, in most cases, is based on geological data and methodologically outdated K-Ar ages (Shishikin et al., 2007; Pryamonosov et al., 2001).

We have studied one of the largest intrusions in the Polar Urals attributed (Shishkin et al., 2007) to the Late Carboniferous Yarkeu complex of the West Ural megazone and considered to be collisional. The pluton is located 13 km north of Kharp township, making up most of Mount Yarkeu. The intrusion is predominantly composed of monzogabbro, monzodiorite, and monzonite which form a «ring» structure among the Neoproterozoic plagiogranitoids of the Kharbey-Sob' complex, with which they have indistinct (gradual) contacts. K-Ar dating of K-feldspar and plagioclase mix from quartz monzonite (Pryamonosov et al., 2001) yielded the age of 310±10 Ma.

To clarify the time of monzonitoids formation, we carried out additional isotope-geochronological studies using modern methods (U-Pb and Ar-Ar). From the monzodiorite sample, 48 zircon grains were dated according to the method (Nikishin et al., 2020). Discordance in all cases did not exceed 2%. The individual 206Pb-238U ages of dated grains are in the range from 650–707 Ma, and the average concordant age is 680±2 Ma (95% confidence interval, MSWD=0.35).

The 40Ar-39Ar dating of the primary magmatic amphibole from monzodiorite was carried out by the method of stepwise heating according to the standard method (Travin et al., 2009). In the high-temperature part of the age spectrum, a six-step plateau was distinguished, characterized by 83.5% of the released 39Ar and a value of 669±8 Ma (MSWD=0.62).

The new U-Pb and Ar-Ar Neoproterozoic ages are similar and correspond to the time of formation of monzodiorites in the considered pluton. The younger Carboniferous K-Ar age (310±10 Ma) obtained from feldspars (Pryamonosov et al., 2001) is probably rejuvenated. The disturbance of the K-Ar isotope system in feldspars can be explained by the significant saussuritization of plagioclase as well as the lower closing temperature of the K-Ar isotope system in plagioclase and K-feldspar compared to magmatic amphibole. Thus, the Late Carboniferous age of feldspars does not correspond to the time of formation of monzonitoids but to the dynamo-thermal events associated with the collisional stage of the Uralian orogeny (Puchkov, 2010), which occurred at the end of the assembly of the Pangea (Kuznetsov, Romanyuk, 2014).

The obtained Neoproterozoic age of monzodiorite is close to the zircon ages 671±4 Ma and 662±6 Ma from the host subduction-related diorites and plagiogranitoids of the Kharbey-Sob complex (Dushin et al., 2014). The monzonitoids of Mount Yarkeu complement the evolutionary trend of the Late Precambrian subduction-related magmatism attributed to the Neoproterozoic Kharbey-Sob' complex.

This work was supported by RFBR grant 19-55-26009.

How to cite: Sobolev, I., Vikentiev, I., Sheshukov, V., Dubenskii, A., Travin, A., and Novikova, A.: The age of monzonitoids of the Mount Yarkeu, Polar Urals: first U-Pb (LA-ICP-MS) and 40Ar-39Ar ages, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12316, https://doi.org/10.5194/egusphere-egu22-12316, 2022.

EGU22-2908 | Presentations | GD8.4

New insights in the lithospheric configuration of the Ligurian-Provençal Basin derived from gravity field interpretation 

Hans-Jürgen Götze, Judith Bott, Boris Kaus, Magdalena Scheck-Wenderoth, and Christian Schuler

The area of the western Mediterranean between the French and Italian coasts and Corsica-Sardinia is still of great interest in terms of its structural development, which remains incompletely understood. The resolution of geophysical data was not always high enough to explore detailed structures in the lithosphere. After completion of the new AlpArray gravity maps, a high-resolution gravity field is available. The intended 3D modelling of the lithosphere requires the search for reliable constraints for the density/susceptibility models (seismic, bathymetry, gravity fields, gradients). The calculation of residual gravity fields is difficult due to uncertainties in the calculation of regional fields which are characterized by pronounced gravity highs and lows in a very limited spatial area. The residual fields calculated here provide new insights into the lithospheric structure and suggest that the mass distribution in the Ligurian-Provençal Basin does not monotonously follow the known major geological units. A broad belt of local gravity highs (25 - 40 x 10-5 m/s2) extends off the French coast to the northwest of the basin where it merges with NW-SE directed gravity highs (up to 45 x 10-5 m/s2) near the Italian coast. Hitherto unknown is the residual field anomaly south of Marseille with max. 100 x 10-5 m/s2. Euler deconvolution and correlations with maps of focal depths of earthquakes resulted in source depths that lie in the mantle. The results of further processing techniques (curvature calculations, third derivative of potential, terracing and cluster analysis) were superimposed on geological maps to make visual correlations clear. Results of dynamic modelling of the surrounding subduction zones, as well as newly inferred Moho and LAB depths, are also available for interpreting gravity field components of deeper regions of the Earth's mantle in the study area. Previously performed investigations (magnetic field modelling and recent seismic campaigns, e.g., LOBSTER and AlpArray seismic tomography models) were also added to the research.

How to cite: Götze, H.-J., Bott, J., Kaus, B., Scheck-Wenderoth, M., and Schuler, C.: New insights in the lithospheric configuration of the Ligurian-Provençal Basin derived from gravity field interpretation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2908, https://doi.org/10.5194/egusphere-egu22-2908, 2022.

EGU22-3243 | Presentations | GD8.4

Seismic discontinuities from the Moho to 410 km depth between the Alps and Scandinavia from Sp converted waves 

Rainer Kind, Stefan Schmid, Felix Schneider, Thomas Meier, and Xiaohui Yuan

We use teleseismic data from all available broadband stations, permanent and mobile, in the entire area. Our processing method applies distance moveout correction, amplitude normalization, sign equalization and summation of traces with piercing points in 1° latitude times 1° longitude cells. The traces are stacked along the picked SV onset times. We obtain very clear signals from the Moho, less strong signals from velocity reductions below the Moho and again clear signals from the 410 km discontinuity. We also see locally velocity reductions just above the 410 km discontinuity. We show a number of profiles through the study area and hope to show maps of all seismic discontinuities. We compare our results with earlier observation.

How to cite: Kind, R., Schmid, S., Schneider, F., Meier, T., and Yuan, X.: Seismic discontinuities from the Moho to 410 km depth between the Alps and Scandinavia from Sp converted waves, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3243, https://doi.org/10.5194/egusphere-egu22-3243, 2022.

EGU22-3790 | Presentations | GD8.4

Quaternary paleostress regimes in the Eastern Alps inferred from ruptures in karst caves 

Ivo Baroň, Jacek Szczygieł, Rostislav Melichar, Lukas Plan, Bernhard Grasemann, Eva Kaminsky, and Denis Scholz

In the Alps, the Adriatic plate convergence provoked eastward lateral extrusion compensated by strike-slip faulting and N-directed thrusting. Since the Miocene, these complex processes have led to several paleostress phases. Since the Quaternary phase is the least recognized, we used karst cave passages as the geomorphic displacement indicators. This study presents an overview of 190 Quaternary fault ruptures in totally 27 caves in the Eastern Alps, some radiometrically dated, and the paleostress analysis based on cave passages offset. Reactivated faults have been registered with their orientation, slip vector and offset, in caves adjacent to major fault systems of the Eastern Alps. The paleostress was computed using the multiple inversion method for heterogeneous fault-slip data.

Most active faults in caves along the southern part of the sinistral Vienna Basin Transfer Fault were NW-SE, and NNE-SSW oriented and revealed mostly normal to sinistral kinematics and cumulative offsets of a few mm to a couple of cms. The associated extensional paleostress state comprised the E-W σ3 in agreement with the opening mode of the Vienna Basin. At sinistral Mur-Mürz Fault, the active faults striking NNE-SSE and ENE-WSW operated under a strike-slip regime with σ1 NE-SW. In the eastern segment of sinistral Salzach-Ennstal-Mariazell-Puchberg fault associated strike-slip paleostress regime with horizontal SE-NE σ1, and subhorizontal SE-trending σ3. This stress regime was computed from reverse, oblique reverse, oblique normal, and sinistral strike-slip reactivated faults documented in the Hochschwab massif. The central segment of Salzach-Ennstal-Mariazell-Puchberg fault is adjoin to Totes Gebirge and Dachstein massifs. In the western part of Totes Gebirge, three stress regimes were recorded. N-S and NW-SE striking oblique normal strike-slip faults revealed an extensional regime with NE σ3. Two strike-slip regimes with NE-SW σ1 and subhorizontal σ3 gently inclined to SE and NW were calculated from mostly steep oblique reverse NNE to NW striking faults with offsets up to a few decimetres. In the Dachstein massif, two paleostress phases were identified: the extensional regime with σ3 subhorizontally tilted to NE and the strike-slip regime with N-S σ1. Tens of active, mostly oblique normal strike-slip faults were documented in massifs adjacent to sinistral Königsee-Lammertal-Traunsee Fault: Hoher Göll, Tennengebirge and Hagengebirge. The dominating associated paleostress is an extensional regime with NE-SW σ3. The polyphase sinistral and reverse-dextral NE-SW faults with Late Pleistocene to Early Holocene reactivations and up to 40 cm offsets, identified at the sinistral Obir Fault attributed to the dextral Periadriatic Line. Neither the strike-slip regime with ENE-plunging σ1 nor the other strike-slip regime with σ1 WNW oriented to fit the regional stress setting. It probably resulted from large-scale complex Karawanken Mts. transpressive shear zone deformation.

In conclusion, the paleostress multiple inversions from the Quaternary cave passage ruptures kinematic data brought original information on the paleostress regime over a significant portion of the Eastern Alps in their latest deformational period.

How to cite: Baroň, I., Szczygieł, J., Melichar, R., Plan, L., Grasemann, B., Kaminsky, E., and Scholz, D.: Quaternary paleostress regimes in the Eastern Alps inferred from ruptures in karst caves, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3790, https://doi.org/10.5194/egusphere-egu22-3790, 2022.

EGU22-3979 | Presentations | GD8.4

Initial results of modelling 3D plate dynamics in the Alpine-Mediterranean area 

Christian Schuler, Boris Kaus, Eline Le Breton, and Nicolas Riel

Tectonic reconstructions of lithospheric plate motion can be approached by different geological methods. However hypotheses derived from these findings are often not validated in a physically consistent manner. Therefore we employ 3D geodynamic modelling in order to test geological reconstructions.

In this work, 3D thermomechanical forward simulations of the Alpine-Mediterranean area are conducted using the software LaMEM (Kaus et al. (2016)). A viscoelastoplastic rheology and an internal free surface are applied, which means that apart from the internal dynamics also the surface response can be investigated. Kinematic reconstructions of Le Breton et al. (2021) at 35 Ma serve as an initial setup for the simulations. The goal of these simulations is to determine the main driving forces of plate dynamics in this area. This is done by evaluating effects of different model parameters such as the thermal structure and the geometry of the slabs, the viscosity of the mantle and brittle parameters of the crust.

The geodynamic behaviour of the Alpine-Mediterranean area is dominated by various subducting plates which makes it particularly difficult to distinguish the unique influence of different geodynamic processes. The Adriatic microplate plays a key role in the development of the Alpine Orogeny and its plate motion and therefore serves as a marker as it is possible to compare the current position of this plate with the simulation itself. Even though these forward simulations are not capable of exactly reconstructing the current tectonic setting, they provide insights into parameters which influence the subduction dynamics.

First results suggest that the plate motion of Adria is primarily driven by the interaction of the Calabria slab and the Hellenic slab and that the propagation of these slabs strongly depends on the slab geometry and the initial trench location. Furthermore the spreading rate of rifting in the Liguro-Provençal Basin massively affects the timing of Adria’s plate motion.

 

Kaus, B. J. P., A. A. Popov, T. S. Baumann, A. E. Pusok, A. Bauville, N. Fernandez, and M. Collignon, 2016: Forward and inverse modelling of lithospheric deformationon geological timescales. Proceedings of NIC Symposium.

Le Breton, E., S. Brune, K. Ustaszewski, S. Zahirovic, M. Seton, R. D. Müller, 2021: Kinematics and extent of the Piemont–Liguria Basin–implications for subduction processes in the Alps. Solid Earth, 12(4), 885-913.

 

 

 

 

 

 

How to cite: Schuler, C., Kaus, B., Le Breton, E., and Riel, N.: Initial results of modelling 3D plate dynamics in the Alpine-Mediterranean area, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3979, https://doi.org/10.5194/egusphere-egu22-3979, 2022.

EGU22-4420 | Presentations | GD8.4

Seismotectonics in the Central Alps: An attempt to link fault structures, seismic activity and recent crustal movements 

Marco Herwegh, Samuel Mock, Tobias Diehl, Elmar Brockmann, Sandro Truttmann, Edi Kissling, Eva Kurmann-Matzenauer, Stefan Wiemer, and Andreas Möri

Owing to still ongoing convergence within the Europe-Adria collision zone, Switzerland is affected by heterogeneously distributed moderate seismic activity. The project SeismoTeCH aims to improve the understanding of the links between the seismic activity, existing fault structures and geodynamics in Switzerland and its close vicinity. We started with compiling existing databases on faults (fault densities, lengths and orientations), seismic activity (spatial hypocenter and magnitude distributions, detection of seismic lineaments, focal mechanisms), orientations of mean principal stress axes and recent crustal movements (GNSS, high precision levelling) in order to establish potential correspondences as well as regional variations.

Due to the long-lasting Alpine deformation, fault-orientation patterns as well as fault-densities vary between specific tectonic domains (Jura/North-Alpine foreland, Alpine frontal sediment nappe systems, External Crystalline Massifs, inner-Alpine domains and Southern Alps). Despite this variability, the fault patterns show first order correlations with the spatial arrangement of newly mapped seismic lineaments, earthquake focal planes and associated focal mechanisms. This correlation indicates a regional geodynamics-controlled reactivation of the specific fault networks during current crustal movements. In terms of recent surface movements, variations in (i) horizontal GNSS movements with respect to stable Europe and (ii) vertical uplift (from levelling and GNSS data) have to be discriminated. (i) From E to W in southern Switzerland (S-Grisons–Ticino–Valais, S of Rhone-Simplon line), horizontal movements change from NW to SW directions (velocities >0.5-0.8mm/yr). The southern Adria crustal block shows minimal to no lateral motions in the W-part and a clear NE-directed motion that is progressively increasing towards the E. This motion can be correlated with the so-called counter-clockwise rotation of the Adriatic plate. North of aforementioned domain, N- to NW-directed movements dominate but velocities decrease progressively from the central Alpine domains (<0.3-0.5mm/yr) towards southern Germany, where they are generally small (<0.3-0.4mm NE-CH). This variability between southern and central/northern Switzerland as well as that from E to W, respectively, is accommodated by NE-SW (Rhone-Simplon system) and N-S oriented strike-slip systems. (ii) Most substantial vertical uplift occurs in a WSW-ENE oriented central Alpine belt ranging from the Valais to the Grisons. Note that absolute values of this vertical uplift are 2-3 times larger compared to horizontal movements in the corresponding domains. Focal mechanisms in this high uplift belt indicate orogen-parallel NE-SW extension mainly in the S-Valais and Grisons accommodated by active normal faulting S of the Penninic front. Uplift rates gradually decrease towards the N- and S-Alpine foreland as well as towards Austria and France. Data even suggest tendencies of subsidence at very low rates in the Bresse graben, Upper Rhine graben as well as somewhat more pronounced ones in the eastern Po-plane but not in the CH-Molasse basin. Parts of the northern Alpine foreland exhibit upper to lower crustal seismic activity, while in the thick-crustal-root-enhanced high uplift domains upper crustal seismicity dominates and earthquakes below 20km depth do not occur.

Overall recent surface movements and seismicity in and along Central Alpine crustal blocks are affected by buoyancy-driven vertical combined with transpressional/-tensional horizontal movements indicating a lithosphere-scale geodynamic forcing. 

How to cite: Herwegh, M., Mock, S., Diehl, T., Brockmann, E., Truttmann, S., Kissling, E., Kurmann-Matzenauer, E., Wiemer, S., and Möri, A.: Seismotectonics in the Central Alps: An attempt to link fault structures, seismic activity and recent crustal movements, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4420, https://doi.org/10.5194/egusphere-egu22-4420, 2022.

EGU22-4500 | Presentations | GD8.4

Controls on along-strike variations of basin development: a case study of the Northern Alpine Foreland Basin 

Lucas Eskens, Nevena Andrić-Tomašević, Peter M. Süss, Todd A. Ehlers, Rolf Herrmann, and Matthias Müller

The Northern Alpine Foreland Basin developed in response to the collision between the European and Adriatic plates. During the Oligocene-Early Miocene coeval along-strike deposition of terrestrial and deep marine conditions are recorded in the western and eastern parts of the basin respectively. However, the mechanisms driving the observed variability in along-strike development of the basin are still poorly understood.

To study the causes of the observed along-strike variability we review published geological data and (re)interpret available 2D and 3D seismic data, constrained by well data. We interpret (1) seismic facies, (2) stratigraphic surfaces and (3) tectonic structures. Our current focus area covers the transitional zone between the western and eastern parts of the basin.

In our study we distinguish 6 stratigraphic surfaces from the Base Tertiary to the Top Aquitanian. From Upper Swabia to the German-Austrian border (along the basin strike) we observe that the top of the crystalline basement is tilted towards the east with an angle of 2-3°. Furthermore, the base of the Tertiary deposits is also tilted towards the east with an angle of 0.3°. The main structural features are E-W and NW-SE striking normal faults. In the western part of our study area the normal faults cut the crystalline basement, Mesozoic and Oligocene deposits. The faults are sealed by Rupelian deposits. Thickness changes (~20 m) occur in Rupelian and overlying Chattian deposits. Maximum offsets of up to 60 m are observed for Mesozoic reflectors. In the eastern part of our study area the normal faults cut the crystalline basement, Mesozoic, Oligocene and Early Miocene deposits. Thickness changes across these faults indicate fault activity during the Rupelian, Chattian and Aquitanian. Maximum offsets (>150 m) are observed for Chattian reflectors. Upper Aquitanian deposits seal these faults, which is younger than observed in the western part of the study area. The NW-SE striking faults confine Paleozoic grabens within the crystalline basement.

We relate the observed normal faulting of the Oligocene and Early Miocene deposits to flexural downbending of the European plate, assumed to have been caused by tectonic loading of the Alps and/or European slab pull. Furthermore, we suggest that the observed temporal variation in termination of fault activity is related to temporal and spatial variations in tectonic loading of the Alps and/or European slab pull. Finally, based on the observed eastward tilt of the top crystalline basement and Base Tertiary along the basin strike, variations in pre-existing crustal architecture must be considered.

How to cite: Eskens, L., Andrić-Tomašević, N., Süss, P. M., Ehlers, T. A., Herrmann, R., and Müller, M.: Controls on along-strike variations of basin development: a case study of the Northern Alpine Foreland Basin, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4500, https://doi.org/10.5194/egusphere-egu22-4500, 2022.

EGU22-4501 | Presentations | GD8.4

High-resolution deformation maps from the Southern-Eastern Alps compiled from 5-yr-long radar interferometric time-series 

Sabrina Metzger, Milan Lacecký, and Najibullah Kakar

Entering the terminal phase of continental collision, the European Alps exhibit surface deformation rates at the mm-level. Uplift peaks in the Central Alps at 2-3 mm/yr as a result of the post-glacial isostatic rebound, slab tearing, and erosion. Horizontal rate changes of <2 mm/yr are observed in the Southern-Eastern Alps due to the anticlockwise rotation of the Adriatic lithosphere. Here, N–S shortening is primarily accommodated at the densely-populated foothills of the Southern Alps, where seismicity is abundant and includes M6+ earthquakes like the devastating Mw6.5 Friuli earthquake in 1975. Further north and beyond the ESE-trending, dextral Periadriatic fault, the Eastern Alps extrude into the Pannonian basin. Today’s fault slip rates are constrained by Global Navigation Satellite System (GNSS) data with an inter-station distance too sparse to provide a detailed insight into plate locking—a vital component of estimating the fault’s seismic potential.

We present 4D-deformation data of the SE-Alps in unprecedented resolution (~400 m, 6 days). The rate maps were derived from radar-interferometric time-series collected since 2017 by the European Sentinel-1 satellites. Each of the assembled 240-km-wide radar tiles consists of 300+ images. The interferograms were automatically generated, phase-unwrapped, and corrected for atmospheric and topographic signal contributions. We estimated the deformation rates using the LiCSBAS time-series analysis software that involves a small-baseline approach and accounts for spatio-temporal coherence and seasonality. By tying the individual, relative InSAR rates—observed in two look directions—into a Eurasian reference frame based on by published GNSS rates we decompose them into east and vertical rates.

Our results illuminate the extreme, to which we can push the InSAR signal-detection threshold if the signal-backscatter properties are as challenging as in the vegetated SE-Alps: The predominant, vertical rates result from a mixture of isostatic, tectonic and anthropogenic processes, overlaid by a soil-moisture bias; the horizontal shortening rates align northwards, to which the radar satellites is least sensitive. Nevertheless, our rates provide new, dense deformation data and highlight processes yet undetected by the GNSS monitoring network.

How to cite: Metzger, S., Lacecký, M., and Kakar, N.: High-resolution deformation maps from the Southern-Eastern Alps compiled from 5-yr-long radar interferometric time-series, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4501, https://doi.org/10.5194/egusphere-egu22-4501, 2022.

EGU22-6582 | Presentations | GD8.4

The AlpArray Seismicity Catalog 

Matteo Bagagli, Irene Molinari, Tobias Diehl, Edi Kissling, and Domenico Giardini

Exploiting the new large seismic data set provided by the AlpArray Seismic Network (AASN) as part of the AlpArray research initiative (www.alparray.ethz.ch), we provide a highly consistent seismicity catalog with precise hypocenter locations and uniform magnitude calculations across the greater Alpine region (GAR) covering the period from 1st January 2016 to 31st December 2019.

With a backbone of 715 broadband seismic stations (415 permanent, 300 temporary) and a uniform interstation distance of ~50 km, the AASN provides a unique opportunity to assess the laterally heterogeneous GAR seismicity distribution. Regularly, the GAR seismicity is monitored and reported by a dozen national and international observatories, requiring a challenging effort to create a uniform and reliable catalog to document and investigate the complex seismicity and tectonics of the GAR.

To establish the highly consistent AlpArray Seismicity Catalog (AASC), we developed a new multi-step, semi-automated method. We applied the SeisComP3 (SC3) seismic-monitoring software and run it in playback mode to analyze the ~50 Tb of continuous data collected in 4 years for initial events detection and to calculate their hypocenter locations. We cleaned this preliminary, automatic seismic catalog from fake events and from events with an initial magnitude less than 2.0 MLv. We then made use of two additional software packages to refine phase picks and locations: the new ADAptive Picking Toolbox (ADAPT) Python library and the VELEST algorithm. The former was used to develop a new multi-picking algorithm for phase identification and precise arrival time determination. The latter was used to obtain the most reliable earthquakes locations, their quantitative error estimation and to reliably predict phase arrivals by solving the coupled hypocenter-velocity problem using the powerful joint-hypocenter determination technique (JHD). The JHD approach was also implemented as a filtering tool for outlier observations and to detect problematic events.

We eventually recalculate the local magnitude (MLv) in a consistent and uniform way, obtaining a statistical magnitude of completeness of 2.4 MLv with different catalog-based techniques. The AASC is also regionally consistent up to 3.0 M+  with seismic bulletins provided by national and international agencies.

Our final 4-year catalog contains 3293 precisely located earthquakes with magnitudes ranging between 0.4 - 4.9 MLv and it clearly delineates the major seismically active fault systems within the GAR. We additionally provide a new minimum 1D P-velocity model for the GAR and appropriate station delays, for both temporary and all permanent stations. These station delays for the permanent seismic station arrays, together with the velocity model, are key to consistently link the GAR past and future seismicity with our current catalog. This would allow the compilation of a broader consistent seismic catalog suitable for other seismological studies including, but not limited to, seismic hazard and a regional 3D local earthquake tomography.

How to cite: Bagagli, M., Molinari, I., Diehl, T., Kissling, E., and Giardini, D.: The AlpArray Seismicity Catalog, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6582, https://doi.org/10.5194/egusphere-egu22-6582, 2022.

EGU22-7246 | Presentations | GD8.4

Status and Implementation of the AdriaArray Seismic Network 

Petr Kolínský, Thomas Meier, and the AdriaArray Seismic Network Working Group

With the advent of plate tectonics in the last century, our understanding of the geological evolution of the Earth system improved essentially. The internal deformation and evolution of tectonic plates remain however poorly understood. This holds in particular for the Central Mediterranean: The formerly much larger Adriatic plate is recently consumed in tectonically active belts spanning at its western margin from Sicily, over the Apennines to the Alps and at its eastern margin from the Hellenides, Dinarides towards the Alps. High seismicity along these belts indicates ongoing lithospheric deformation. It has been shown that data acquired by dense, regional networks like AlpArray provide crucial information on seismically active faults as well as on the structure and deformation of the lithosphere. The Adriatic Plate and in particular its eastern margin have however not been covered by a homogeneous seismic network yet.

Here we report on the status and preparation of AdriaArray – a seismic experiment to cover the Adriatic Plate and its actively deforming margins by a dense broad-band seismic network. Within the AdriaArray region, currently about 950 permanent broad-band stations are operated by more than 40 institutions. Data of 90% of these stations are currently available via EIDA. In addition to the existing stations, 385 temporary stations from 18 mobile pools are to be deployed in the region to achieve a coverage with an average station distance of about 50 – 55 km. The experiment will be based on intense cooperation between network operators, ORFEUS, and interested research groups. Altogether, more than 50 institutions will participate in the AdriaArray experiment. We will introduce the time schedule, participating institutions, mobile station pools, maps of suggested temporary station distribution with station coverage and main points of the agreed Memorandum of Collaboration. The AdriaArray experiment will lead to a significant improvement of our understanding of the geodynamic causes of plate deformation and associated geohazards.

How to cite: Kolínský, P., Meier, T., and Seismic Network Working Group, T. A.: Status and Implementation of the AdriaArray Seismic Network, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7246, https://doi.org/10.5194/egusphere-egu22-7246, 2022.

EGU22-7333 | Presentations | GD8.4

Towards a high-resolution vS crustal velocity model for the Ivrea Geophysical Body: constraints from seismic ambient noise tomography 

Matteo Scarponi, Jiri Kvapil, Ludek Vecsey, Jaroslava Plomerová, IvreaArray Working Group, and AlpArray Working Group

The arc of the Western Alps is characterized by a complex crustal structure. Lower-to-middle crustal composition outcrops are exposed in the Ivrea-Verbano Zone (IVZ) and a major crustal anomaly, known as Ivrea Geophysical Body (IGB), presents dense and seismically fast rocks right below the surface. Understanding better their relation provides a key to refine our understanding of orogeny formation mechanisms.

We performed seismic ambient noise tomography using data from the IvreaArray and the AlpArray Seismic Network, selected within a radius of ca. 100 km around the study area. Previous seismic investigations provided knowledge on the crustal structure in the Western Alps, by means of active refraction seismics and of more recent local earthquake and ambient noise tomography at regional scales (e.g. Solarino et al. 2018 Lithos, Lu et al. 2018 GJI). Recently, gravity data and receiver function analysis imaged the IGB as a dense and fast seismic anomaly, related to upper mantle material, reaching up to few km depth below sea level (Scarponi et al. 2021 Frontiers). However, local high-resolution constraints on the absolute vS distribution remain unknown.

We used raw summer seismic data (June to September) across 3 years of recording, and computed daily ambient noise cross-correlation traces, for all the available station pairs (61 stations in total) in the 2-20s period range. Daily cross-correlations were stacked and processed to extract Green’s functions. Subsequently, we performed frequency-time analysis to get group velocity dispersions for the fundamental mode of surface Rayleigh waves. We computed 2D surface group velocity maps at each period, which clearly show the slow sediment area of the Po Plain, and the fast IGB structure within the crust.

We are going to use the 2D group velocity maps to derive local dispersions curves and invert for 1D vS-depth profiles with the use of the Neighborhood Algorithm, to produce a 3D vS velocity model for the IVZ at high-resolution. This will also provide new geophysical constraints in the target area of the scientific drilling project DIVE (www.dive2ivrea.org) and reliable information for crustal corrections, which are necessary for upper mantle studies in such a complex area.

How to cite: Scarponi, M., Kvapil, J., Vecsey, L., Plomerová, J., Working Group, I., and Working Group, A.: Towards a high-resolution vS crustal velocity model for the Ivrea Geophysical Body: constraints from seismic ambient noise tomography, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7333, https://doi.org/10.5194/egusphere-egu22-7333, 2022.

EGU22-7433 | Presentations | GD8.4

Thermo-kinematic evolution of the Eastern Alps along TRANSALP: Exploring the transient tectonic state towards slab reversal 

Paul Eizenhöfer, Christoph Glotzbach, Jonas Kley, and Todd Ehlers

The Eastern Alps are shaped by the indentation of Adria into Europe and exhibit a doubly-vergent lithospheric wedge geometry. Immediately after the subduction of the Penninic ocean, pro- and retro-wedges have been established in the European and Adriatic plates, respectively. Recent tomographic studies, depicting several detached slab fragments beneath the Alps, have been interpreted as evidence of continuous southward subduction, contrary to an often-invoked subduction polarity reversal. Systematic changes in orogen-scale exhumation, driven by rock displacement along active faults, should reflect such change in subduction polarity. Low temperature thermochronology can evaluate upper lithospheric cooling as a response to changes in tectonic and/or erosional boundary conditions. This study investigates whether a potential change in locations of the pro- and retro-wedges is reconcilable with observed crustal re-organisations, exhumation patterns and mantle tomography. A suite of thermo-kinematic forward models driven by a new 2D structural-kinematic reconstruction of continental collision along the TRANSALP profile in the Eastern Alps has been subject to systematic sensitivity analyses encompassing variations in shortening rates, thermophysical parameters and topographic evolution, supplemented by new apatite and zircon fission-track data. Results from the thermo-kinematic modelling reproduce: (i) the orogen-scale structural geometry, (ii) the distribution of low-temperature thermochronometer ages, (iii) independently determined time-temperature paths, and (vi) the present-day surface heat flux. We suggest that the observed thermochronologic record along the TRANSALP profile is primarily driven by cooling through rock displacement along active faults. Our thermo-kinematic reconstruction emphasises a systematic southward shift of deformation, in particular in the Southern Alps, since onset of motion along the Tauern Ramp. Interpreting both, the Tauern Ramp as a mega retro-thrust and the southward shift of deformation in the Southern Alps, as a response to new Coulomb-wedge criterions, then our results are consistent with a Mid-Miocene reversal of continental subduction polarity. This time frame is compatible with a detachment of the European slab and a tectonic re-organisation of the Eastern Alps since ~10-25 Ma.   

How to cite: Eizenhöfer, P., Glotzbach, C., Kley, J., and Ehlers, T.: Thermo-kinematic evolution of the Eastern Alps along TRANSALP: Exploring the transient tectonic state towards slab reversal, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7433, https://doi.org/10.5194/egusphere-egu22-7433, 2022.

EGU22-7455 | Presentations | GD8.4

Anisotropy of the Bohemian Massif lower crust from ANT - VTI model or additional azimuthal variations? 

Jiří Kvapil, Jaroslava Plomerová, Hana Kampfová Exnerová, and the AlpArray Working Group

Transversely isotropic lower crust of the Bohemian Massif (BM) has been revealed by an ambient noise tomography (ANT) of the BM (Kvapil et al., Solid Earth 2021). The significant feature of this 3D vSV model is the low velocity layer in the lower part of the crust at depth between 18-30 km and the Moho. The upper interface is characterized by a velocity drop in the 1D velocity models retrieved by the ANT. The interface is interrupted around boundaries of major tectonic units of the BM. The lower interface (Moho) exhibits a sharp velocity increase at 26-40km depths through the massif.

In this work we test whether we are able to detect azimuthal anisotropy in the lower crust, approximated up to now by anisotropic VTI model. We use Rayleigh wave dispersion curves evaluated from station pairs sampling the BM in the period range sensitive to the lower crust. First, we analyze seasonal variations of noise sources and their effect on quality and repeatability of dispersion curve measurements. Then we remove the effect of local heterogeneities by subtraction of synthetic dispersion curves calculated for the 3D vSV model along each station-pair raypath. Retrieved variations of azimuthal anisotropy are period-dependent with the fast velocity directions around NE-SW. We interpret the lower crust anisotropy layer as an imprint of the Variscan orogenic processes such as the NW-SE shortening of the crust and the late-Variscan strike-slip movements along boundaries of the crustal unit recorded in the interruptions of velocity drop interface in zones where anisotropic fabric of the lower crust was modified or erased.

How to cite: Kvapil, J., Plomerová, J., Kampfová Exnerová, H., and Working Group, T. A.: Anisotropy of the Bohemian Massif lower crust from ANT - VTI model or additional azimuthal variations?, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7455, https://doi.org/10.5194/egusphere-egu22-7455, 2022.

EGU22-7660 | Presentations | GD8.4

Identifying Seismic Anisotropy Patterns and Improving Tomographic Images in the Alps and Apennines Subduction Environments with Splitting Intensity 

Judith M. Confal, Silvia Pondrelli, Paola Baccheschi, Manuele Faccenda, Simone Salimbeni, and the AlpArray Working Group

Active and past subduction systems influence the interpretation and understanding of current tectonics and velocity structures of the upper mantle of the Alps and Apennines. Computational advances over the years made it possible to identify remnant and active slabs up to great depths. SKS splitting measurements revealed mostly clockwise rotation in the Alpine region and mostly splitting parameters parallel to the Apennines (with new measurements in Central Italy). More than 700 stations were used in this study to calculate splitting intensities and with those similar but more stable fast polarization directions were recovered compared to SKS measurements. Splitting intensity measurements support a possible mantle material flowing through a tear in the Central Apennines. In the Po Plain region as well as east of the Apennine mountains anisotropy seems to be weaker. Moreover the complexity of layered anisotropy, upper mantle flow through possible slab detachments, and subduction related anisotropy with a dipping axis of symmetry are difficult to recover. Due to directional dependency of splitting intensity measurements, they can be used in tomographic inversions to get depth dependent horizontal anisotropy. So far we are able to recover the most prominent splitting patterns and see some changes with depth, especially for anisotropic strength. In this study we intend to use our results to improve tomographic images of the upper mantle by mapping and comparing existing and new anisotropy measurements (e.g., SKS, Pn anisotropy, azimuthal anisotropy from surface waves tomography, and splitting intensities).

How to cite: Confal, J. M., Pondrelli, S., Baccheschi, P., Faccenda, M., Salimbeni, S., and AlpArray Working Group, T.: Identifying Seismic Anisotropy Patterns and Improving Tomographic Images in the Alps and Apennines Subduction Environments with Splitting Intensity, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7660, https://doi.org/10.5194/egusphere-egu22-7660, 2022.

EGU22-7800 | Presentations | GD8.4

Towards a comprehensive High Resolution 3D P- and S-Wave Velocity Model for the Alpine Mountain Chain using Local Earthquake Data 

Benedikt Braszus, Andreas Rietbrock, and Christian Haberland

Seismic data availability and automated picking algorithms drastically improved in the European Alps since the last orogen wide crustal P-wave velocity model was compiled by Diehl et al. (2009). Especially, the abundant seismic data recorded by the AlpArray Seimic Network (AASN) which was in operation from 2015-2021 provides a unique high resolution seismic data set. The aim of our project therefore is to create a comprehensive 3D P- and S-wave crustal velocity model for the European Alpine region using Local Earthquake Tomography (LET). Such a model is not only needed to sharpen high resolution teleseismic tomography studies imaging subducted slabs but also to relate surface structures to mountain building processes in the mantle.
To achieve this aim precise onset times of seismic crustal phases are needed. Here we show our first results of automatic onset time determination obtained through the deep-neural-network PhaseNet. When compared to catalogues of manual travel time picks, we find its performance as accurate as a human analyst's. This confirms the transferability of machine learning approaches to our area and data set.
The large amount of evenly distributed seismic stations yields up to a total of 720 P and S arrival picks with epicentral distances up to 700km for events with ML > 3.5. Earthquakes with magnitudes of ML=2.5 are generally detectable for epicentral distances up to at least 200km and contribute approximately 200-300 arrivals per event.
As a first step towards a 3D model we present a thorough analysis of the consistency of the automatically determined arrival times, which facilitates a reliable removal of outliers. 
Furthermore, we show visualizations of our preliminary tomography model and its resolution.

How to cite: Braszus, B., Rietbrock, A., and Haberland, C.: Towards a comprehensive High Resolution 3D P- and S-Wave Velocity Model for the Alpine Mountain Chain using Local Earthquake Data, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7800, https://doi.org/10.5194/egusphere-egu22-7800, 2022.

EGU22-7892 | Presentations | GD8.4

Crustal and upper mantle 3D Vs structure of the Pannonian Region from joint earthquake and ambient noise Rayleigh wave tomography 

Máté Timkó, Amr El-Sharkawy, Lars Wiesenberg, László Fodor, Zoltán Wéber, Sergei Lebedev, and Thomas Meier and the AlpArray Working Group

The Pannonian basin is a continental back-arc basin in Central Europe, surrounded by the Alpine, Carpathian, and Dinaric mountain ranges. To better understand this area's tectonic affinity and evolution, a high-resolution model of the crust, the mantle lithosphere, and the asthenosphere is essential. The region's crustal structures are well documented, e.g., classical active seismic, receiver functions, and ambient noise surface wave studies, but consistent imaging of the entire lithosphere remains a challenge. Here we present a new high-resolution 3D shear wave velocity model of the crust and upper mantle of the broader Pannonian region using joint tomographic inversion of ambient noise and earthquake data.

For this purpose, we collected continuous waveform data from more than 1280 seismic stations for ambient noise cross-correlation measurements from a region centered to the Pannonian Basin and encompassing the rimming orogenic chains. This dataset embraces all the permanent and temporary stations operated in the time period from 2005 to 2018. We calculated Rayleigh wave ambient noise phase velocity dispersion curves using the phase of the noise cross-correlation functions of the vertical components in the period range from 5 to 80 s. Then we combined this dataset with existing measurements from earthquake data in the period range of 8-300 s.

At lower periods (< 50 s) and shorter interstation distances, there is a well-documented systematic discrepancy between the dispersion measurements collected by the two methods. The phase-velocity curves measured by the noise-based method are slower on average than the dispersion curves extracted by the earthquake-based method. A correction term is defined by comparing phase velocity curves from both data sets for the same station pairs. Phase velocity maps are then calculated from 5 s to 250 s periods using ambient noise and earthquake measurements.

Local dispersion curves extracted along each grid node of the 2D phase velocity maps are inverted for depth velocity models using a newly implemented Particle Swarm Optimization (PSO) algorithm to obtain the 3D distribution of the shear-wave velocities. The shear wave velocity structure reveals pronounced variations of the lithospheric thickness and physical properties related to deep tectonic mechanisms operated in the region.

How to cite: Timkó, M., El-Sharkawy, A., Wiesenberg, L., Fodor, L., Wéber, Z., Lebedev, S., and Meier, T. and the AlpArray Working Group: Crustal and upper mantle 3D Vs structure of the Pannonian Region from joint earthquake and ambient noise Rayleigh wave tomography, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7892, https://doi.org/10.5194/egusphere-egu22-7892, 2022.

EGU22-7932 | Presentations | GD8.4

Seismic properties profiles of the alpine slab predicted by petrophysics versus ambient noise tomography lithospheric model 

Manon Sonnet, Loïc Labrousse, Jérôme Bascou, Alexis Plunder, Ahmed Nouibat, Laurent Stehly, and Anne Paul

The objective of the present study is to use potential lithologic analogues sampled in the European crust units exhumed in the Alps to predict the seismic properties of the buried continental crust panel. To this end, from the chemical compositions of representative rock samples, we calculate seismic velocities (Vp, Vs or Vp/Vs) at any P and T, under the assumption that the rocks have completely re-equilibrated during burial.

The sample catalog comprehend (1) the mafic intercalations, present in the Variscan basement series of the External Crystalline Massif; (2) the rocks involved in the Grand Paradis - Schistes Lustrés contact (metabasites and garnet bearing micaschists of the upper unit, mylonite and gneiss of the lower unit); (3) those along the Lanzo-Canavese contact (serpentinites, blue schist facies mylonites and biotite bearing gneiss); (4) lithologies of the Ivrea domain (peridotites, garnet bearing gabbros, textured mafic rocks, amphibolitic and mylonitic paragneiss), (5) those from the Gruf massif (biotite bearing orthogneiss, deformed leucogranites and charnockites from the Gruf complex and amphibolites and serpentinites from the Chiavenna unit); (6) lithologies from Alpine Corsica (pelitic gneisses of the granulite facies and more or less foliated metagabbros, from the San Petrone and Farinole unit).

In these diagrams, the main seismic contrasts appear to correspond to the early stages of jadeite crystallization (mainly in the Vp/Vs diagram), as well as to the boundaries of the garnet and clinopyroxene stability fields. Considering the selected rocks as relevant analogues, we then compare the evolution of seismic properties along the top of the Alpine dipping panel with profiles inferred from recent Vp and Vs tomography models (CIFALPS 1 and AlpARRAY), varying the effective thermal profile of the Alpine panel, its reaction degree and overall chemistry. Preliminary results suggest that the lower crust of the plunging panel has a seismic velocity too low to be eclogitized. Its velocity rates are closer to those of an underreacted quartzo-felspathic gneiss. At first sight, observed velocities are too low compared to values predicted for any lithology fully reacted during subduction. The best-fitting scenario turns out to be that of a lower crust thermally relaxed in the variscan without significant mineralogical footprint of subduction. If detected, the velocity rise due to eclogitization might offset of several tenth along the slab, implying a sensible impact of reaction kinetics.

How to cite: Sonnet, M., Labrousse, L., Bascou, J., Plunder, A., Nouibat, A., Stehly, L., and Paul, A.: Seismic properties profiles of the alpine slab predicted by petrophysics versus ambient noise tomography lithospheric model, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7932, https://doi.org/10.5194/egusphere-egu22-7932, 2022.

EGU22-8102 | Presentations | GD8.4

3D anisotropic P-wave tomography of the Central Mediterranean: new insights into slab geometry and upper mantle flow patterns 

Francesco Rappisi, Brandon Paul VanderBeek, Manuele Faccenda, Andrea Morelli, and Irene Molinari

Characterized by the coexistence of different compressional and extensional phases associated with episodes of orogenesis, slab rollback, slab tearing and oceanic spreading, the Central Mediterranean represents one of the most interesting convergent margin on Earth. Since the late 1990s, several seismologists have studied this region aiming at imagining the isotropic and anisotropic structures below its surface. Although numerous researchers have demonstrated that performing P-wave tomography neglecting seismic anisotropy can introduce significant imaging artefacts, prior tomographic studies have largely assumed an isotropic Earth. Using the method proposed by VanderBeek & Faccenda (2021), here we discard the isotropic approximation and invert for both P-wave isotropic velocity anomalies and seismic anisotropy and present the first 3D anisotropic P-wave tomography of the upper mantle covering the entire Central Mediterranean. Our results show that inverting for seismic anisotropy strongly reduces the magnitude of the isotropic P-wave anomalies. This suggests that lateral variations in temperature and/or composition are smaller that what can be inferred from purely isotropic tomographies. P-wave fast azimuths orient mostly parallel to the trend of the Balcanic and the Alpine orogens in Eastern and Central Europe, respectively. In the Central Mediterranean the P-wave fast azimuths are sub-parallel to the Oligocene/Miocene-to-present retreating direction of the Ionian trench which led to the opening of the Liguro-Provençal and Thyrrenian basins and rotation of the Corsica-Sardinia block. We find that the pattern of the P-wave fast azimuths is largely consistent with the S-wave fast azimuths determined from the splitting of SKS waves and from Rayleigh waves. This poses further constraints on the interpretation of the regional geodynamic evolution and on the accuracy of the employed inverse method.

References:

VanderBeek, B. P., & Faccenda, M. 2021. Imaging upper mantle anisotropy with teleseismic P-wave delays: insights from tomographic reconstructions of subduction simulations. Geophysical Journal International,225(3), 2097–2119.

How to cite: Rappisi, F., VanderBeek, B. P., Faccenda, M., Morelli, A., and Molinari, I.: 3D anisotropic P-wave tomography of the Central Mediterranean: new insights into slab geometry and upper mantle flow patterns, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8102, https://doi.org/10.5194/egusphere-egu22-8102, 2022.

EGU22-8174 | Presentations | GD8.4

Moho depths beneath the European Alps from receiver functions of the AlpArray Seismic Network 

Konstantinos Michailos, Matteo Scarponi, Josip Stipčević, György Hetényi, Katrin Hannemann, Dániel Kalmár, Stefan Mroczek, Anne Paul,  Jaroslava Plomerová, Frederik Tilmann, Jerôme Vergne, and the AlpArray Receiver Function Research Group AlpArray Working Group

The European Alps, formed by the interactions between the European and Adriatic plates, is a unique geological structure that has been extensively studied over the past decades. Despite numerous active and passive seismic investigations in the past, the crustal structure across the whole Alpine domain is somehow limited - mainly due to the limited number of seismometers available. The deployment of the AlpArray Seismic Network provides, which consisted of around 600 broadband seismometers and was operational from early 2016 till mid-2019, offers a unique opportunity to further update the current knowledge of the crustal structure beneath the European Alps by employing Receiver function (RF) analysis. 

RF method can provide an efficient way to image the structures and the discontinuities within the uppermost part of the Earth. We use teleseismic earthquakes with M≥5.5 and M<8.5 and epicentral distances ranging between 30 and 90 degrees that occurred during the operational time of the AlpArray Seismic Network. We compute RFs using a time-domain iterative deconvolution method. We apply quality control steps to both the original three-component waveforms and the calculated RFs to ensure that we only use high-quality signals. 

As of abstract submission, we are in the process of calculating the RFs. We also intend to perform a time to depth migration, in a 3D spherical coordinate system, to the RFs. This methodology, together with unprecedented data coverage, will provide us with migrated profiles that will image the structure of the crust and map the Moho depths at a great level of detail. 

How to cite: Michailos, K., Scarponi, M., Stipčević, J., Hetényi, G., Hannemann, K., Kalmár, D., Mroczek, S., Paul, A., Plomerová,  ., Tilmann, F., Vergne, J., and AlpArray Working Group, T. A. R. F. R. G.: Moho depths beneath the European Alps from receiver functions of the AlpArray Seismic Network, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8174, https://doi.org/10.5194/egusphere-egu22-8174, 2022.

EGU22-8725 | Presentations | GD8.4

The DIVEnet: a local seismographic network monitoring the lower continental crust drillings for the ICDP-DIVE project 

Silvia Pondrelli, György Hetényi, Simone Salimbeni, Adriano Cavaliere, Stefania Danesi, Emanuela Ercolani, Irene Molinari, Carlo Giunchi, Konstantinos Michailos, Claudia Piromallo, Lucia Zaccarelli, Giovanna Cultrera, Rocco Cogliano, Gaetano Riccio, and Alberto Zanetti

The ICDP DIVE project (www.dive2ivrea.org) is aimed at addressing fundamental questions on the nature of the lower continental crust and its transition to the mantle, in a first phase through two drillings in the Ivrea Verbano zone (IVZ). The IVZ, considered the world's best outcrop of lower crustal continental rocks, is the exposed part of the Ivrea Geophysical Body (IGB), a major high gravity and high seismic velocity anomaly studied since the 1960s and strongly related to Western Alps structural and tectonic history. Beneath the IVZ the Moho possibly reaches very shallow depth (locally ~1±1 km b.s.l.), making this site unique all over the World.

The two proposed drillings will start in the 2022 in Val D’Ossola: the first in Ornavasso and the second in Megolo, 7 km apart from each other. The assemblage of the two will constitute the most complete record of lower continental crust. Physical and chemical data systematically collected downhole as well as along drill cores will be combined and compared with local/regional geophysical and geological surveys. Within this frame and scope, a dedicated seismographic network named DIVEnet has been planned to monitor local earthquakes and operation-related seismic activity.

Starting from summer 2021 the survey and seismic station deployment started to have all stations running by January 2022. So far 10 seismographic stations provided by INGV and University of Lausanne have been installed within a 15 km maximum distance from the mid-point between the two drilling sites and recording in continuous mode (100 sps). One of the seismometers will be housed in the first completed borehole while the second one is being drilled. Given that the area is characterized by low natural local seismicity and low seismic stations density, having a long time record of background activity and background noise, including the period before and after the drilling activities’ initiation, is of crucial importance. The acquisition and first elaboration of seismic data have been actively included in the routine work at INGV.

How to cite: Pondrelli, S., Hetényi, G., Salimbeni, S., Cavaliere, A., Danesi, S., Ercolani, E., Molinari, I., Giunchi, C., Michailos, K., Piromallo, C., Zaccarelli, L., Cultrera, G., Cogliano, R., Riccio, G., and Zanetti, A.: The DIVEnet: a local seismographic network monitoring the lower continental crust drillings for the ICDP-DIVE project, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8725, https://doi.org/10.5194/egusphere-egu22-8725, 2022.

EGU22-8790 | Presentations | GD8.4

Establishing the eastern alpine-dinaric transition with teleseismic receiver functions: Evidence for subducted European Crust 

Stefan Mroczek, Frederik Tilmann, Jan Pleuger, Xiaohui Yuan, and Ben Heit and the SWATH-D and AlpArray Working Groups

The dense SWATH-D seismic network in the Central-Eastern Alps gives an unprecedented window into the collision of the Adriatic and European plates. We apply the receiver function method to the SWATH-D stations, covering approximately the area from 45-49°N and 10-15°E, supplemented by the AlpArray Seismic Network and the EASI data. A switch in the subduction polarity between the Central Alps (European subduction) and the Dinarides (Adriatic subduction) had been previously suggested to occur below the Eastern Alps but its location and nature are heavily debated. To probe this hypothesis we produce a high resolution Moho map of the Eastern Alps and derive Moho depths from joint analysis of receiver function images of direct conversions and multiple reflections, which enables us to map overlapping discontinuities. Contrary to the hypothesis suggesting the subduction of Adriatic lithosphere in the Eastern Alps, we observe the European Moho to be underlying the Adriatic Moho up to the eastern edge of the Tauern Window (~13.5°E). East of this longitude, a sharp transition from underthrusting European to a flat and thinned crust associated with Pannonian extension tectonics occurs, which is underthrust by both European crust in the north and by Adriatic crust in the south. The northeast-directed underthrusting of Adriatic lithosphere smoothly transitions to subduction below the northwestern Dinarides.

Teleseismic tomography and receiver functions show different aspects of the same system (velocity anomalies versus velocity gradients) making direct comparisons difficult. The common conversion point stacks and Moho picks show good agreement with the tomography however some key differences remain. In particular, teleseismic tomography indicates high velocity anomalies detached from the crust east of ~13°E while receiver functions, in particular the transverse component, show some evidence for connection with a continuous interface going to depth.

How to cite: Mroczek, S., Tilmann, F., Pleuger, J., Yuan, X., and Heit, B. and the SWATH-D and AlpArray Working Groups: Establishing the eastern alpine-dinaric transition with teleseismic receiver functions: Evidence for subducted European Crust, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8790, https://doi.org/10.5194/egusphere-egu22-8790, 2022.

EGU22-9206 | Presentations | GD8.4

Present-day upper mantle structure of the Alps: insights from data-driven dynamic modelling 

Ajay Kumar, Mauro Cacace, Magdalena Scheck-Wenderoth, Judith Bott, Hans-Jürgen Götze, and Boris Kaus

Present-day surface deformation in the Central Alps, that is, uplift and upper-crustal level seismicity in contrast to its northern and southern forelands, has been attributed to surface (i.e., climatic) and tectonic processes (i.e., subduction, slab detachment/break-off, mantle flow). Understanding the relative contribution of these processes is fundamental to understanding their coupling and role in mountain building. The present-day 3D architecture of the lithosphere (i.e., lateral variations of crustal layers and lithospheric mantle thickness) and asthenosphere (i.e., subducted slabs, attached or detached to the orogenic lithosphere) resulting from tectonic processes operating at geologic time scale serve as a boundary condition to test the contribution of surface processes. While the crustal structure in the Alps is well constrained by seismic and gravity data, the upper mantle (i.e., lithospheric mantle and asthenosphere) structure differs from that due to the diversity and subjective interpretation of seismic tomography models. We convert the results of regional shear-wave seismic tomography models to temperature models using the Gibbs-free energy minimization algorithm to define the base of the lithosphere and the position of slabs in the asthenosphere. Our results show that the shallow/attached slab in the Northern Apennines is a common feature in different tomography models, but there are differences in the Alps area. We statistically cluster tomography models into three end-members corresponding to the mean and 67% confidence intervals to address these differences objectively. These end-members represent scenarios ranging from shallow/attached slabs to almost no slabs in the Northern Apennines and Alps. The three end-member scenarios are then used as an input to model the topography and velocities by solving the buoyancy-forces driven instantaneous flow, subject to the first-order rheological structure of the lithosphere-asthenosphere system. Modelled topography and velocities are compared to the first-order patterns of observed topography and GPS derived vertical velocities to discern among the end-member scenarios. Our preliminary results suggest that the lithospheric slab subducting beneath the Northern Apennines should be connected to the overlying lithosphere, whereas it appears to be detached along most of the Alps. The sensitivity of results to the viscosity structure of the crust, lithosphere, and asthenosphere will be discussed.  

How to cite: Kumar, A., Cacace, M., Scheck-Wenderoth, M., Bott, J., Götze, H.-J., and Kaus, B.: Present-day upper mantle structure of the Alps: insights from data-driven dynamic modelling, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9206, https://doi.org/10.5194/egusphere-egu22-9206, 2022.

EGU22-9314 | Presentations | GD8.4

The Saint-Ursanne earthquakes of 2000 revisited: Evidence for active shallow thrust-faulting in the Jura fold-and-thrust belt 

Federica Lanza, Tobias Diehl, Nicholas Deichmann, Toni Kraft, Christophe Nussbaum, Senecio Schefer, and Stefan Wiemer

The interpretation of seismotectonic processes within the uppermost few kilometers of the Earth’s crust has proven challenging due to the often significant uncertainties in hypocenter locations and focal mechanisms of shallow seismicity. Here, we revisit the shallow seismic sequence of Saint-Ursanne of March and April 2000 and apply advanced seismological analyses to reduce these uncertainties. The sequence, consisting of five earthquakes of which the largest one reached a local magnitude (ML) of 3.2, occurred in the vicinity of two critical sites, the Mont Terri rock laboratory and Haute-Sorne, which is currently evaluated as a possible site for the development of a deep geothermal project. Template matching analysis for the period 2000-2021, including data from mini arrays installed in the region since 2014, suggests that the source of the 2000 sequence has not been persistently active ever since. Forward modelling of synthetic waveforms points to a very shallow source, between 0 and 1 km depth, and the focal mechanism analysis indicates a low-angle, NNW-dipping, thrust mechanism. These results combined with geological data suggest that the sequence is likely related to a backthrust fault located within the sedimentary cover and shed new light on the hosting lithology and source kinematics of the Saint-Ursanne sequence. Together with two other more recent shallow thrust faulting earthquakes near Grenchen and Neuchâtel in the north-central portion of the Jura fold-and-thrust belt (FTB), these new findings provide new insights into the present-day seismotectonic processes of the Jura FTB of northern Switzerland and suggest that the Jura FTB is still undergoing seismically active contraction at rates likely <0.5 mm/yr. The shallow focal depths provide indications that this low-rate contraction in the NE portion of the Jura FTB is at least partly accommodated within the sedimentary cover and possibly decoupled from the basement. This trenspressive regime is confirmed by the ML4.1 Réclère earthquake of December 24. 2021, which occurred ~20 kilometres west of St. Ursanne in the uppermost crust.

How to cite: Lanza, F., Diehl, T., Deichmann, N., Kraft, T., Nussbaum, C., Schefer, S., and Wiemer, S.: The Saint-Ursanne earthquakes of 2000 revisited: Evidence for active shallow thrust-faulting in the Jura fold-and-thrust belt, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9314, https://doi.org/10.5194/egusphere-egu22-9314, 2022.

EGU22-9691 | Presentations | GD8.4

The three-dimensional stress field around the margins of the Adriatic Plate derived from source mechanisms 

Elisabeth Glück, Thomas Meier, and Josip Stipcevic

At present time, the formerly much larger Adriatic Microplate is still actively being subducted beneath the Apennines and the Dinarides-Hellenides zone with continental collision and related processes occurring under the Alps and the Dinarides. These tectonic processes along with the large-scale component of the northward moving African Plate resulted in a complex 3D stress field.

In the light of the complex tectonic processes accompanying the movement of the Adriatic Plate, we aim to investigate the three-dimensional stress field in that area by stress inversion using focal mechanism data from the available CMT and RCMT earthquake catalogues. The focal mechanisms are inverted to better understand the stress regime in that region and how the stress pattern is depending on the current tectonic setting. A staggered grid algorithm was used for binning the focal mechanisms before the inversion.

The calculated 3D stress field indicates that the direction of the large-scale convergence of Africa and Eurasia is similar to the dominating direction of the maximum horizontal stress axis in the western central Mediterranean, with the exception of the Apennines, where the subduction of the Adriatic Plate beneath the northern Apennines is the primary source of stress. On the eastern margin of the Adriatic Plate the lack of deeper seismicity and a back arc basin, as well as the orogen normal orientation of the maximum horizontal stress axis in the Dinarides is pointing towards a continental subduction zone with an aseismic delaminating slab of lower lithosphere without a significant slab pull component.
Changes of the stress pattern within the Adriatic Plate may result from intraplate deformation, which points towards a fragmentation of Adria along the Mid Adriatic Ridge into two subplates, Adria Sensu Strictu in the north and Apulia in the south. While Adria Sensu Strictu is moving independently from Africa, Apulia is depending on the larger plates movement.
The inversion of the focal mechanisms from the Hellenic Subduction Zone yields results about the rotation of the stress field with depth, as the maximum horizontal stress rotates from trench normal at shallow depths to trench parallel deeper down.

How to cite: Glück, E., Meier, T., and Stipcevic, J.: The three-dimensional stress field around the margins of the Adriatic Plate derived from source mechanisms, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9691, https://doi.org/10.5194/egusphere-egu22-9691, 2022.

EGU22-11256 | Presentations | GD8.4

Revisiting moment tensors in Switzerland: Unraveling source characteristics in Central Alps and their foreland 

Maria Mesimeri, Tobias Diehl, John Clinton, Marco Herwegh, and Stefan Wiemer

Studies on moment tensors (MT) and focal mechanisms are of great importance for assessing regional and local seismotectonic processes, especially when a high-quality, dense network is in operation. However, common MT inversion methods are largely restricted to magnitudes > 3.5. In order to lower the completeness of MT catalogs, improved Green’s functions and/or hybrid inversion techniques are needed. In this study, we revisit small-to-moderate earthquakes, which occurred in Switzerland and surrounding regions by means of various MT inversion methods and assess the potential to improve completeness of MT catalogs in Central Alps region. To accomplish this, we implement state-of the art methods for MT inversion using either full waveform data or combinations of first-motion polarities with amplitudes and amplitude ratios. Methods based on full waveform inversion considered in this study are ISOLA (Sokos & Zahradnik 2013) and Grond (Heimann et al. 2018), as well as techniques based on amplitudes and/or polarities (HybridMT (Kwiatek et al. 2016), MTfit (Pugh & White 2018)), which can solve MTs for smaller magnitude earthquakes. Hence, the combination of multiple techniques allows to compute full or deviatoric MTs for a broader range of magnitudes and enrich the existing catalogs.

We first apply these methods to recent earthquake sequences occurred in the Central Alps between 2019 and 2021. During that period, several earthquake sequences, like the one associated with the 2021 M4.1 Arolla earthquake, occurred and show complexity on the waveforms, due to their shallow focal depths. In addition, several of the standard MT solutions calculated by the Swiss Seismological Service (SED) for these earthquakes indicate complex moment tensors with unusually high percentage of the CLVD component. To check whether such CLVD component is real and not an artifact caused, for instance, by unmodeled heterogeneities, we invert for full and deviatoric MTs using multiple 1D velocity models and algorithms. Additionally, we perform MT inversions for several earthquakes either within selected earthquake sequences or regional background seismicity. The resulting MT solutions are compared to existing high-quality focal mechanisms computed using first motion polarities as well as to high-precision double difference locations. Uncertainties of MT solutions are estimated using bootstrap-based methods. This work contributes towards an enriched high-quality focal mechanisms database for Switzerland, which could be used to revisit the regional to local stress field at unprecedented resolution and provides new insights into the complexities of active fault systems in the Central Alps region.

References:

Heimann, S., Isken, M., Kühnn, D., Sudhaus, H., Steinberg, A., Vasyura-Bathke, H., Daout, S., et al. (2018) Grond - A probabilistic earthquake source inversion framework., GFZ Data Services. doi:10.5880/GFZ.2.1.2018.003

Kwiatek, G., Martínez-Garzón, P. & Bohnhoff, M. (2016) HybridMT: A MATLAB/Shell Environment Package for Seismic Moment Tensor Inversion and Refinement. Seismol. Res. Lett., 87, 964–976. doi:10.1785/0220150251

Pugh, D.J. & White, R.S. (2018) MTfit: A Bayesian Approach to Seismic Moment Tensor Inversion. Seismol. Res. Lett., 89, 1507–1513. doi:10.1785/0220170273

Sokos, E.N. & Zahradnik, J. (2013) Evaluating Centroid-Moment-Tensor Uncertainty in the New Version of ISOLA Software. Seismol. Res. Lett., 84, 656–665. doi:10.1785/0220130002

How to cite: Mesimeri, M., Diehl, T., Clinton, J., Herwegh, M., and Wiemer, S.: Revisiting moment tensors in Switzerland: Unraveling source characteristics in Central Alps and their foreland, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11256, https://doi.org/10.5194/egusphere-egu22-11256, 2022.

EGU22-11266 | Presentations | GD8.4

Internal deformation of the Dolomites Indenter, eastern Southern Alps: structural field data and low-temperature thermochronology 

Thomas Klotz, Hannah Pomella, Anna-Katharina Sieberer, Hugo Ortner, and István Dunkl

The Dolomites Indenter represents the front of the Neogene to ongoing N(W)-directed continental indentation of Adria into Europe. Deformation of the Dolomites Indenter is well studied along its rim, documented by important fault zones such as the Periadriatic fault system, the Giudicarie belt, and the Valsugana and Montello fault systems. With this study, we aim to investigate the internal deformation of the Dolomites Indenter, which has been much less studied so far but is important for understanding crustal-scale processes during the Alpine orogeny.

 

Our approach to unravel the indenters exhumation and deformation history comprises (i) the compilation and acquisition of detailed structural and sedimentological field data within the Dolomites Indenter, (ii) a collection of a new and comprehensive low-temperature thermochronological dataset (this contribution), and (iii) crustal- to lithospheric-scale physical analogue modelling experiments (see contribution of Sieberer et al. in session TS7.2 – Internal deformation of the Dolomites Indenter, eastern Southern Alps: Orthogonal to oblique basin inversion investigated in crustal scale analogue models).

 

New field data comprise evidence for four distinguishable shortening directions. Examined intersection criteria along N-S cross sections covering the indenters extend from Periadriatic to Bassano fault system support a succession of Top SW, Top (S)SE, Top S and Top E(SE) movement. However, preexisting geometry strongly seems to affect the regional expression of respective compression phases and along strike variation of lineation trends can be observed within coherent fault systems.

 

The limited amount of existing thermochronological data already indicates the presence of relative vertical displacements within the Dolomites Indenter after the onset of indentation, including mostly Miocene apatite fission track (AFT) cooling ages along the Periadriatic and the Valsugana fault and several age clusters of Triassic to Jurassic AFT data. In order to obtain a detailed picture of the indenters thermotectonic evolution, an extensive set of samples has been collected along three roughly N-S striking corridors between Bolzano in the west and Tolmezzo in the east. In this contribution we present the new apatite (U-Th)/He and fission track data along the westernmost corridor (Mauls - Brixen - Valsugana - Schio).

 

The results of field work, comprehensive modelling of time temperature paths, and physical analogue modelling substantially contribute to the understanding of internal deformation and thus enable conclusions to be drawn about the processes at lithospheric scale.

How to cite: Klotz, T., Pomella, H., Sieberer, A.-K., Ortner, H., and Dunkl, I.: Internal deformation of the Dolomites Indenter, eastern Southern Alps: structural field data and low-temperature thermochronology, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11266, https://doi.org/10.5194/egusphere-egu22-11266, 2022.

EGU22-11358 | Presentations | GD8.4

Distribution of Active Seismic Deformation in the Eastern Alps from the Recent Swath-D Experiment 

Rens Hofman, Joern Kummerow, Simone Cesca, Joachim Wassermann, and Thomas Plenefisch and the AlpArray Working Group

The Swath-D network was a temporary seismic experiment nested within the AlpArray backbone network. Roughly 150 broadband stations were deployed across the Austrian-Italian border in the Eastern Alps during the second half of 2017, and were active to late 2019. This dense network provided an unprecedented resolution in a tectonically active region that is considered to play an important role in the evolution of the Alps. Extracting new information from this dataset turned out to be challenging due to the large volume of the dataset, low magnitude of the seismicity, and heterogeneity of the study area.

We applied waveform-based methods to detect, phase-pick, and relocate seismic events using data from the Swath-D network in the Eastern Alps. A GPU-accelerated template matching algorithm was developed in order to increase the number of detected earthquakes based on the previously known seismicity. Newly detected events were automatically picked using based on waveform similarity, and precisely relocated. This poster provides an overview of our results and the methods that we have applied.

How to cite: Hofman, R., Kummerow, J., Cesca, S., Wassermann, J., and Plenefisch, T. and the AlpArray Working Group: Distribution of Active Seismic Deformation in the Eastern Alps from the Recent Swath-D Experiment, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11358, https://doi.org/10.5194/egusphere-egu22-11358, 2022.

EGU22-12266 | Presentations | GD8.4

SEismic imaging of the Ivrea ZonE (project SEIZE) reveals the 3D structure of the Ivrea body near Balmuccia, Italy 

Britta Wawerzinek, Trond Ryberg, Klaus Bauer, Manfred Stiller, Christian Haberland, Alberto Zanetti, Luca Ziberna, György Hetényi, Michael Weber, and Charlotte M. Krawczyk

The Ivrea-Verbano Zone (IVZ) located in the Italian Alps is known as one of most complete archetypes of continental crust–upper mantle section on Earth (e.g. Pistone et al., 2017). Because of its accessibility at the surface it can be used as natural laboratory to improve the understanding of the crust–mantle transition zone. Several geophysical observables indicate the presence of mantle rocks (high density, high seismic velocity) in the shallow sub-surface (~ 1 km), commonly known as the “Bird’s Head” or Ivrea body (Berckhemer, 1968; Diehl et al., 2009; Scarponi et al., 2021). 

The project SEIZE images and characterizes the shallow upper crust at the Balmuccia site (Italy) providing depth, extent and shape of the outcropping Ivrea body as well as its rock properties. Our tomographic study covers the crust down to about 3 km depth, while seismic reflection imaging is possible down to 6 km depth or deeper. With SEIZE we contribute to the comprehensive ICDP Drilling program in the Ivrea-Verbano ZonE (DIVE, www.dive2ivrea.org).

To tackle this task, a controlled source (vibroseis) seismic experiment was carried out in the region around Balmuccia in October 2020. The seismic survey comprised two crossing profiles with a total length of 28 km which ran along (NNE-SSW) and across (W-E) the Balmuccia peridotite. In total, 432 vibro points were acquired with a nominal distance of ~60 m which were recorded using a fix-spread (110 receivers, ~250 m spacing) and a roll-along setup (330 receivers, ~20 m spacing).

To obtain a structural image of the shallow upper crust various seismic techniques are applied: The fix-spread data set is used to recover the velocity structure down to 3 km depth. By using a 3D Markov chain Monte Carlo travel time tomography a shallow, distinct high velocity body is imaged in 3D near Balmuccia, at the proposed drill site. Reflection seismic processing is applied to the roll-along data set. However, the difficult terrain setting (deep mountain valleys) results in complex wave propagation that is challenging for conventional processing methods (e.g. static and dynamic corrections, CDP stacking). Therefore, pre-stack migration techniques are applied enabling the imaging of steeply dipping structures.

How to cite: Wawerzinek, B., Ryberg, T., Bauer, K., Stiller, M., Haberland, C., Zanetti, A., Ziberna, L., Hetényi, G., Weber, M., and Krawczyk, C. M.: SEismic imaging of the Ivrea ZonE (project SEIZE) reveals the 3D structure of the Ivrea body near Balmuccia, Italy, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12266, https://doi.org/10.5194/egusphere-egu22-12266, 2022.

EGU22-12668 | Presentations | GD8.4

Inside the fault core in the footwall of Simplon Fault Zone (Central Alps): ductile to brittle deformation history shown by fault gouge 

Valentina Argante, David Colin Tanner, Christian Brandes, Christoph Von Hagke, and Sumiko Tsukamoto

For thorough understanding of the dynamics of mountain building processes, it is crucial to reconstruct the youngest crustal deformation history over time. Low-angle normal faults are features caused by orogen-parallel extension, which occurs in the last stage of collision. Low-angle normal faults play a key role in the exhumation of the lower crust and they are the reason for most of the seismicity within the chain.

We carried out microstructural analyses on an outcrop in the footwall of one of the major normal faults of the Alpine chain, the Simplon Fault Zone. This low-angle normal fault extended the crust by tens kilometers and it caused exhumation of its footwall, the deeper lower crust of the Alps, i.e. the Penninic nappes. The Simplon Fault Zone itself consists of a thick mylonitic zone overprinted by a narrow cataclastic zone, with the same kinematics. Its timing evolution history from ductile to brittle deformation is still under discussion. This study shows a new microstructural analysis from a fault gouge within the footwall of the northern part of the Simplon Fault Zone, and how it can reconstruct the different stages of exhumation history of this shear zone.

Results from micro-structural analyses show grain boundary migration features on folded quartz veins. This suggests that the protolith of the fault zone was at high temperature conditions, T>600°C, during dynamic deformation. This folding belongs to extension-parallel folds that affect only the ductile shear zone. The presence of greenschist facies minerals suggests that the rock was exposed to low temperature and pressure conditions (T=300-400°C, P=0.2GPa). Pressure-solution mechanisms affect both quartz and greenschist paragenesis, indicating formation in a shallow position of the shear zone. The last deformation was purely brittle, as shown by vertical calcite veins or fractures in quartz. It suggests a near-surface position of the fault.

Altogether, these multiple deformation phases within the gouge samples indicate a continuous exhumation history from high to low temperatures, with clear cross-cutting relationships. However, the lack of cataclasite features can be related to an involvement of the rocks within the fault core in a subsequent stage of deformation. To explain this we suggest a model in which the footwall maintained a high temperature over a long time, which inhibited cataclastic processes.

How to cite: Argante, V., Tanner, D. C., Brandes, C., Von Hagke, C., and Tsukamoto, S.: Inside the fault core in the footwall of Simplon Fault Zone (Central Alps): ductile to brittle deformation history shown by fault gouge, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12668, https://doi.org/10.5194/egusphere-egu22-12668, 2022.

EGU22-13245 | Presentations | GD8.4

3D geophysical and thermal modelling of the northeast Carpathian lithosphere: Implications for geothermal potential of the Baia Mare region 

Alexander Minakov, Carmen Gaina, Liviu Matenco, Maik Neukirch, and Ionelia Panea

The presented study is part of an international multidisciplinary project aiming to investigate the geothermal potential of the Baia Mare volcanic province in north-western Romania. We integrate existing geological, geochemical, hydrogeological, and geophysical data into a 3D lithospheric temperature model. In addition, new seismic reflection and broadband magnetotelluric data, acquired in the study region, provide additional constraints on the crustal-scale structures possibly controlling the transport of deep heat to the surface.

The study area is located within the Neogene Inner Carpathian volcanic arc and includes the area of the recent crustal uplift between the north-eastern part of the Pannonian Basin and the Transylvanian Basin. Borehole temperature measurements showed a geothermal gradient of 45-55 oC km-1 and temperatures higher than 150 oC at depths of 3000 m, the highest values of heat flow recorded to date in Romania. The region is known for surface hot springs and hydrothermal and epithermal volcanic ore deposits.

The heterogeneous pre-Neogene basement contains metamorphic and igneous rocks deformed or emplaced during Precambrian to Paleozoic orogenic cycles and a Triassic-Paleogene sedimentary cover with a variable radioactive heat production rate. The Miocene magmatic plumbing system within the Neogene sedimentary sequence includes intrusive bodies of 1-10s of km size. Crustal hydraulic properties and associated hydrothermal systems are possibly controlled by the regional Bogdan Voda – Dragos Voda strike-slip faults system, which provided pathways for the Miocene volcanic emplacement and sub-volcanic intrusions.

The knowledge of deep lithospheric structure is important for the characterisation of sedimentary basins with a geothermal exploration potential. In this contribution, we present geophysical and geological data and describe the construction of a regional 3D lithospheric temperature model. The structural model includes sedimentary successions, crystalline crustal layers and lithosphere-asthenosphere boundary constrained by gravity, seismic tomography and magnetotelluric data. The temperature modelling is performed by solving 3-D steady state heat conduction equation using a finite element method. We compare the model responses with available surface heat flow and borehole temperature measurements and discuss the role of local crustal heterogeneities, transient heat transfer and fluid circulation on the thermal state of the Baia Mare region.

How to cite: Minakov, A., Gaina, C., Matenco, L., Neukirch, M., and Panea, I.: 3D geophysical and thermal modelling of the northeast Carpathian lithosphere: Implications for geothermal potential of the Baia Mare region, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13245, https://doi.org/10.5194/egusphere-egu22-13245, 2022.

Wholesale slab breakoff or detachment in the Alps has been invoked to explain Periadriatic
calc-alkaline magmatism (43-29 Ma), rapid exhumation of HP metamorphics, as well as
clastic infill of proximal parts of the Alpine Molasse basin (31-28 Ma). However, the 14 My
timespan of these events exceeds the duration of slab detachment estimated from
thermomechanical modelling (2-8 My) and from depocenter migration (~5 My) along
equivalent lengths of the Carpathians and Apennines. Moreover, wholesale slab
detachment does not explain major E-W differences in Alpine orogenic structure, basin
evolution, and kinematics of indentation in the Alps.
Recent V p tomography from AlpArray suggests that the slab segment beneath the
Central Alps comprises European lithosphere and remains attached down to the MTZ. The
~600km length of this segment suggests that it never ruptured and is still connected to
subducted lithosphere of Alpine Tethys. In contrast, the Alpine slab is detached beneath the
Eastern Alps and Pannonian Basin. The minimum time since detachment is bracketed at 25-
10 Ma based on a comparison of vertical detachment distance with global slab sink rates.
We propose a new model of slab detachment in the Alps that began with slab
steepening when the Adria-Europe convergence rate after collision at ~35 ma decreased to
<1 cm/yr. Periadriatic magmatism is no longer attributed to slab detachment and
asthenospheric upwelling, but to fluxing of the cold mantle wedge by fluids derived from
the devolatilizing Alpine slab (Müntener et al. 2021; doi: 10.2138/gselements.17.1.35). Slab
steepening and delamination were more pronounced in the Eastern Alps, possibly due to
the greater negative buoyancy of the slab in the absence of Brianconnais continental
lithosphere, which was never present in the eastern part of Alpine Tethys. Slab pull thus
drove subsidence and continued marine sedimentation in the E. Molasse basin from 29-19
Ma, while the western part of the basin filled with terrigeneous sediments already at 31-28
Ma.
Slab detachment was restricted to the part of the Alps east of the Giudicarie Fault in
Miocene time. Detachment coincided with a switch in the advancing orogenic front, from
the northern front in the Eastern Alps to the southern front in the eastern Southern Alps.
This also coincided with rapid exhumation in the Tauern Window and lateral eastward
escape of the orogenic crust toward the Pannonian Basin. Rapid W-to-E filling of the Eastern
Molasse basin between 19-16 Ma is interpreted to reflect eastward propagation of the slab
tear and the onset of rollback subduction in the Carpathians.
E-W differences in Alpine structure are thus attributed to the contrasting response of
the Alpine orogenic wedge to slab steepening, delamination and detachment. Whereas
steepening and delamination in the west in late Oligocene time induced horizontal
shortening and increased taper of the orogenic wedge with rapid exhumation and
denudation focused in the retro-wedge, Miocene detachment in the east triggered a
dramatic switch in the pro- and retro-wedges, such that rapid exhumation and denudation
was ultimately focused in the axis of the orogenic wedge.

How to cite: Handy, M. R.: A new model of slab detachment in the Alps and its geodynamic consequences, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13517, https://doi.org/10.5194/egusphere-egu22-13517, 2022.

EGU22-164 | Presentations | TS4.1

Speleothem deformation due to the 2017 Mw 6.6 Bodrum–Kos earthquake in a cave on Pserimos (Dodecanese, Greece) 

Bernhard Grasemann, Lukas Plan, Ivo Baron, and Denis Scholz

Although damaged speleothems have been widely investigated to study paleo-earthquake records in caves, only few reports could directly link damages to specific recent earthquakes. We mapped before the 2017 Mw 6.6 Bodrum–Kos earthquake the so-far unexplored Korakia Cave on Pserimos island in the Dodecanese (Greece), which is located at the transition between the Aegean and Anatolian region and is known for its strong seismicity. The cave formed along an active normal fault and records numerous broken columns and flowstones sealed by younger speleothems. New 230Th/U-ages show that paleoseismic events occurred since the formation of the cave, which is older than the limit of the dating method. During a cave visit 2 months after the 2017 Mw 6.6 Bodrum–Kos earthquake we noted that c. 10 cm small stalactites, which were actively growing along fractures in the cave ceiling, have been chipped off by movements along the fractures and were lying on flowstones covered by greenish biofilms. Removal of the broken fragments demonstrated that the chlorophyll pigment below the position of the fragments did not show a colour difference to the surrounding area, which is exposed to the daylight of the cave entrance. The preservation of the photoautotrophic biofilm, which can survive only a few months without daylight, suggests that the stalactites have been broken by the 2017 Mw 6.6 Bodrum–Kos earthquake, which also caused the collapse of several buildings on the island of Kos only 4 km S of Pserimos. We conclude that earthquake capable of causing small shear displacements on fractures can damage speleothems. However, other delicate speleothems including long and slim stalactites remained undamaged.

How to cite: Grasemann, B., Plan, L., Baron, I., and Scholz, D.: Speleothem deformation due to the 2017 Mw 6.6 Bodrum–Kos earthquake in a cave on Pserimos (Dodecanese, Greece), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-164, https://doi.org/10.5194/egusphere-egu22-164, 2022.

Continental transform faults are generally known to have widely distributed structures and sparse seismicity, in opposite to their oceanic counterparts. The North Anatolian Shear Zone (NASZ) is an ideal example, where the total deformation is shared between multiple structures especially during its evolutionary stages. The North Anatolian Fault (NAF), the most prominent member of the NASZ, started to form of about 11 Ma in the east and propagated to the west, reaching to the Marmara Sea only a few hundred thousand years ago. This principal displacement zone generally extends as a single strand from its easternmost tip to the west until Bolu for about 900 km. To the west of Bolu, it bifurcates into two branches, Düzce and Mudurnu Valley segments, delimiting the Almacık Flake (AF) respectively to the north and south. Although there is a considerable number of multi-disciplinary studies on the kinematics and history of active faulting within and around the AF, we still have gaps in our knowledge on (a) the ratio of strain distribution, (b) time of formation of bounding fault segments and (c) their evolutionary stages.

In order to fulfil some parts of this gap, we studied the major morphometric indices, including hypsometric curve and integral (HI), asymmetry factor (Af), channel concavity (θ), chi (χ) and knickpoint analyses on drainage basins across the whole AF and all surrounding fault segments. Our goal is not only to document the comparative tectonic effect of the bounding fault segments on the topography, but also to test any potential cumulative morphological response to pre- and post-peak structures, especially along the Düzce Segment. Almost all of 83 extracted drainage basins yield high HI values, usually ranging between 0.4 and 0.72, and suggest a rejuvenating morphology compatible with the general ‘uplift hypothesis’ for the AF. In more details, θ and χ values point out the strong and confined effect of the active bounding faults. Moreover, knickpoints do not show evidence for any pre-peak structures rather than recent active faulting. This may be result of limited size, thus ages, of drainage basins, which are cut by bounding faults at both sides of the AF. Alternatively, these fault segments may be older than previous assumptions, whereas the effect of pre- and post-peak shear structures on topography has already been erased mainly by external processes. On the other hand, χ values, based on 0.45 reference θ, suggest a high incision along the western sections of the Mudurnu Valley Segment, which may indicate a strain transfer from north to south. Nevertheless, the breach of a landslide dam of about 5750 years ago and the strong incision of the Mudurnu River following this event to the south of the AF, as suggested by previous studies, can be another reason for this anomaly. Briefly, our preliminary results suggest a strong tectonic control on the AF’s topography mainly due to the activity of the bounding structures. We do not see any morphometric evidence for the secondary (pre- and post-peak) faults in the near past of the NASZ around the AF.

How to cite: Kiray, H. N., Sançar, T., and Zabcı, C.: Spatial strain distribution along continental transform faults: insights from morphometric analyses of the Düzce and Mudurnu Valley segments (North Anatolian Fault, NW Turkey), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-459, https://doi.org/10.5194/egusphere-egu22-459, 2022.

EGU22-1477 | Presentations | TS4.1

Incipient lithospheric collision throughout the East Mediterranean 

David Fernández-Blanco and César R. Ranero


We propose that lithospheric collision of Africa and Eurasia is incipient throughout the entire East Mediterranean. Our evidence confirms the incipient continent-continent collision that has been recently proposed for the Cyprus Arc and showcases how collision is expressed at depth and across the Hellenic Arc. We provide evidence of basin-wide lithospheric-scale collision by coupling, at tectonic scale (1.5M km2), quantitative joint analysis of submarine and terrestrial relief, and the interpretation of a compilation of regional vintage multichannel seismic data (>46.000 km), reprocessed with modern techniques. No megathrust surface marking a subduction interplate contact is imaged in any seismic line, and the relief across sedimentary piles is not shaped as mechanically-accreted wedges. Instead, continent-continent collision is expressed across plates in two modes along longitude. In the offshore regions south of Cyprus and Crete, submarine thrust systems with no frontal structure nor imbrication, and lacking latitudinal continuation, record collision stacking basin sediments vertically. Onshore, concurrent uplift and extension are recorded by uplifting strandlines, hanging valleys, and normal faulting, in both continents, and neatly so in the African margin in front of Crete. Joint plate deformation at lithospheric scale is further inferred as wavelengths of relief coherent across both plates. Regions located latitudinally to these collisional sites extrude away obliquely, either rigidly along transpressional systems, as immediately east of Cyprus and Crete, or through flow and halokinesis of Messinian salts, as on the eastern and western sectors of the Mediterranean Ridge. Our evidence typifies incipient lithospheric collision as expressed throughout the East Mediterranean.

How to cite: Fernández-Blanco, D. and R. Ranero, C.: Incipient lithospheric collision throughout the East Mediterranean, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1477, https://doi.org/10.5194/egusphere-egu22-1477, 2022.

EGU22-1692 | Presentations | TS4.1

Slow-slip events destabilize upper-plate and trigger large-magnitude earthquake at the western-end of the Hellenic Subduction System 

Vasiliki Mouslopoulou, Vasso Saltogianni, Gian Maria Bocchini, Simone Cesca, Jonathan Bedford, Armin Dielforder, Onno Oncken, Michael Gianniou, and Gesa Petersen

Slow slip events (SSEs) in subduction zones can precede large-magnitude earthquakes and may therefore serve as precursor indicators, but the triggering of earthquakes by slow slip remains poorly understood. Here we report on a multidisciplinary dataset that captures a synergy of slow slip events, earthquake swarms and fault-interactions during the ~5 years leading up to the 2018 Mw 6.9 Zakynthos Earthquake at the western termination of the Hellenic Subduction System (HSS). We find that this long-lasting preparatory phase was initiated by a slow-slip event that released, over a period of 4-months, aseismic slip equivalent to a ~Mw 6.4 earthquake on the Hellenic plate-interface. This SSE, which is the first to be reported in the HSS, was associated with mild Coulomb failure stress changes (≤3 kPa) that were nevertheless sufficient to destabilize faults in the overriding plate. Tectonic instability was evidenced by a prolonged (~4 years) period of suppressed b-values (<1), an associated increase in upper-plate seismicity rates on discrete thrust, normal and strike-slip faults, including an earthquake swarm in the epicentral area of the Mw 6.9 earthquake, and another episode of slow-slip immediately preceding the Zakynthos mainshock. We show that this second SSE in 2018 caused stress changes up to 25 kPa in the epicentral area immediately prior to the mainshock, affecting a highly overpressured and mechanically weak forearc, whose state of stress fluctuated between horizontal deviatoric compression and tension during the years preceding the Zakynthos Earthquake. We conclude that this configuration facilitated episodes of aseismic and seismic deformation that ultimately triggered the Zakynthos Earthquake and may characterise other subduction zones globally.

How to cite: Mouslopoulou, V., Saltogianni, V., Bocchini, G. M., Cesca, S., Bedford, J., Dielforder, A., Oncken, O., Gianniou, M., and Petersen, G.: Slow-slip events destabilize upper-plate and trigger large-magnitude earthquake at the western-end of the Hellenic Subduction System, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1692, https://doi.org/10.5194/egusphere-egu22-1692, 2022.

EGU22-1972 | Presentations | TS4.1

​Studying the active tectonic in the northern flank of the Bozqush Mountains, NW Iran 

Ali Nasiri and Mahtab Aflaki

The NW-striking North Tabriz Fault is one of the most important basement faults in the northwest of the Iranian ‎plateau. This fault defines the boundary between the two tectonic ‎blocks with different stress regimes in its northern and southern parts as characterized with NW-SE and NE-SW direction of maximum horizontal compression, respectively. In the southern ‎termination of the North Tabriz fault, part of deformation is concentrated along its EW-striking splay faults extending along northern and southern boundaries of the Bozqush Mountains. The occurrence of medium-magnitude earthquakes, as ‎well as morphotectonic evidence reveal that modern deformation is dominantly concentrated along ~EW-striking dextral/reverse dextral and NNE-striking sinistral faults in the southern flank of the Bozqush Mountains. It is still not known to what extent the deformation is also accomodated in the northern flank of the Bozqush Mountain. The approach of this research is to ‎answer the question by studying the state of stress along the northern border of the Bozqush Mountains by applying the inversion method on the fault slip data measured during the field studies, studying their related ‎morphotectonic evidence, and comparing the results with ‎the state of stress and the morphotectonic evidence reported throughout the southern flank of the Bozqush Mountains. Fault kinematic data were collected at 35 sites ‎along the northern boundary of the Bozqush Mountains. Evidence of the modern NW-SE stress regime is found at five sites measured within the Quaternary detrital deposits in the western part of the study area. At the other ‎sites, evidence of the older stress regime, with NE-SW direction of maximum horizontal ‎compression is obtained. Also, the systematic deflection of the stream channels, especially in the eastern part of the region, ‎indicates the sinistral displacement along the EW-striking faults, consistent with the old ‎stress regime in the region. Evidence of dextral deflection was observed along few EW-striking faults cutting the Quaternary deposits only in the western parts of the region. Therefore, ‎by comparing these kinematic data and morphotectonic evidences with those reported from the southern flank of the Bozqush Mountains, it can be concluded that the modern deformation is dominantly absorbed along the splay faults in the southern flank of the Bozqush.‎

 

​Key Words: North Tabriz fault, Modern stress state, NW Iran, Northern flank of Bozqush Mountains, Stress inversion

How to cite: Nasiri, A. and Aflaki, M.: ​Studying the active tectonic in the northern flank of the Bozqush Mountains, NW Iran, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1972, https://doi.org/10.5194/egusphere-egu22-1972, 2022.

EGU22-2092 | Presentations | TS4.1

Rapid large-amplitude vertical motions generated by 3D subduction slab roll-back in the Valencia Trough, Western Mediterranean 

Penggao Fang, Julie Tugend, Geoffroy Mohn, Nick Kusznir, and WeiWei Ding

        The Cenozoic geodynamic evolution of the Western Mediterranean is complex comprising subduction, slab roll-back, back-arc extension, collision, and lithosphere delamination. We investigate the subsidence of a regionally observed unconformity in the Valencia Trough of the Western Mediterranean, here referred to as the Miocene Unconformity, which separates Mesozoic from latest Palaeogene to Neogene sediments. The mechanisms controlling its subsidence are poorly understood.

        We show, using a dense grid of seismic reflection data, well data and 3D flexural backstripping, that the Miocene Unconformity in the SW Valencia Trough subsided by more than 1.5 km to the present day at an average rate of 90 m/Myr. The absence of Cenozoic extensional faults affecting the basement shown by seismic data indicates that this rapid subsidence is not caused by Cenozoic rifting or remaining Mesozoic post-rift thermal subsidence. Neither can this subsidence be explained by subduction dynamic subsidence or flexural loading related to the thin-skin Betic fold and thrust belt which only affects subsidence observed near the deformation front.

        We interpret the 1.5 km subsidence of the Miocene Unconformity as the collapse of a back-arc transient uplift event. Erosion during this uplift, resulting in the formation of the Miocene Unconformity, is estimated to exceed 4 km. Transient uplift was likely caused by heating of back-arc lithosphere and asthenosphere, combined with mantle dynamic uplift, both caused by segmentation of Tethyan subduction resulting in slab tear. Subsidence resulted from thermal equilibration and the removal of mantle flow dynamic support Tethyan subduction slab roll-back. We propose that our observations and interpretation of rapid back-arc km-scale uplift and collapse have global applicability for other back-arc regions experiencing subduction segmentation and slab tear during subduction slab roll-back.

How to cite: Fang, P., Tugend, J., Mohn, G., Kusznir, N., and Ding, W.: Rapid large-amplitude vertical motions generated by 3D subduction slab roll-back in the Valencia Trough, Western Mediterranean, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2092, https://doi.org/10.5194/egusphere-egu22-2092, 2022.

EGU22-2986 | Presentations | TS4.1

This Rift is on Fire: Volcano-Tectonic Evolution of the Christiana-Santorini-Kolumbo volcanic field, Aegean Sea 

Jonas Preine, Christian Hübscher, Jens Karstens, Emilie Hooft, and Paraskevi Nomikou

Many of the most hazardous volcanoes lie in rift systems, where tectonics often seems to exert control on magma emplacement. However, our current knowledge of the interplay between volcanism and tectonics is immature due to the lack of observations on geological time scales. Located in the southern Aegean Sea, the Christiana-Santorini-Kolumbo (CSK) volcanic field lies in a prominent continental rift zone caused by back-arc extension along the Hellenic Arc. Covered by numerous geophysical surveys, this area offers the unique possibility to reconstruct a volcanic rift in time and space. Previous studies have revealed that the CSK volcanic field developed during four distinct volcanic phases, which initiated in the Pliocene and only recently matured to form the vast Santorini edifice. Here, we combine P-wave velocity tomography models and high-resolution reflection seismic data to reveal the internal architecture and the spatio-temporal evolution of the rift basins as well as their relation to the evolution of the CSK volcanoes. Our joint analysis reveals a distinct NE-SW-directed horst-structure separating the volcanic rift into a volcanically active northwestern zone and a volcanically inactive southeastern zone. Using a refined seismo-stratigraphic framework of the internal architecture of the rift basins, we identify four distinct phases of the rift system that correspond to the volcanic phases of the CSK field. These phases reflect the gradual development of a Pliocene-Pleistocene NE-SW oriented fault system overprinting an older Miocene-Pliocene ESE-WNW oriented fault system. The latest volcanic phase, during which volcanism focussed on Santorini and became highly explosive, corresponds to a distinct shift in the tectonic behavior of the rift system after which enhanced subsidence at the Santorini-Anafi and Amorgos faults occurred that was rapidly filled up by thick volcano-sedimentary deposits. We conclude that the volcanism of the CSK field is fundamentally controlled by NE-SW-directed rifting, which lies parallel to the Pliny and Strabo trends of the southeastern Hellenic Arc. This volcanic system is bounded to the southeast by the Akrotiri-Anhydros horst, which seems to be a deep-rooted structural boundary for the volcanic plumbing system. The shift from ESE-WNW directed faulting to NE-SW directed faulting is an indication that the dominant direction of slab-rollback driving the extension of the CSK rift shifted from the southwestern to the southeastern Hellenic Arc with Santorini lying at the hinge of these trends.

How to cite: Preine, J., Hübscher, C., Karstens, J., Hooft, E., and Nomikou, P.: This Rift is on Fire: Volcano-Tectonic Evolution of the Christiana-Santorini-Kolumbo volcanic field, Aegean Sea, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2986, https://doi.org/10.5194/egusphere-egu22-2986, 2022.

Crustal deformation and seismic activity in the Levant is mainly related to the interplate Dead Sea Fault (DSF) and the intraplate Carmel-Gilboa Fault System (CGFS). In this study we analyze the interseismic deformation along these fault systems using 23 years of GPS measurements obtained from 209 campaign and 60 continuous stations. This GPS dataset is the longest record and the densest dataset for the DSF and the Levant region. We use this dataset to investigate the spatial variations of slip and creep rates along the southern and central sections of the DSF and the CGFS. Our inversion model results indicate that part of the tectonic motion is transferred from the DSF to the CGFS. We find that the left-lateral strike-slip motion along the DSF decreases in a rate of 0.9±0.4 mm/yr, from 4.8±0.3 mm/yr south to the intersection with the CGFS, to 3.9±0.4 mm/yr north to this intersection. Along the CGFS the left-lateral strike-slip motion ranges between ~0.3-0.5 mm/yr and the extension rate between ~0.6-0.7 mm/yr, indicating a total slip rate vector of 0.8±0.4 mm/yr in the DSF direction, in agreement with the reduction of slip rate along the DSF near the intersection with the CGFS. Shallow creep is found along the southern and central sections of the Dead Sea basin and the northern Jordan Valley section of the DSF, with creep rates of 3.4±0.4 and 2.3±0.4 mm/yr, respectively. These creeping sections were identified as areas with thick salt layers at the shallow subsurface. We suggest that shallow creep behavior along the DSF is govern by the presence and mechanical properties of the salt layers, which probably allows plastic deformation and the transition to velocity strengthening at the shallow subsurface and promotes creep.

How to cite: Hamiel, Y. and Piatibratova, O.: Spatial variations of slip and creep rates along the Dead Sea Fault and the Carmel-Gilboa Fault System, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3591, https://doi.org/10.5194/egusphere-egu22-3591, 2022.

EGU22-3939 | Presentations | TS4.1

Timing of rock-uplift and of the North Anatolian Fault development in the Central Pontides 

Simone Racano, Taylor Schildgen, and Paolo Ballato

The Central Pontide orogenic belt marks the northern margin of the Central Anatolian Plateau and is the result of several geodynamic processes, including the subduction of the Neo-Tethys crust, the opening of the Black Sea, the continental collision between the southern Eurasian margin and the Anatolide-Tauride block, and the development of the North Anatolian Fault (NAF). Transpressional deformation and crustal thickening along the North Anatolian fault zone are thought to have generated rock-uplift rates of 0.2 – 0.3 km/Myr since ca. 400 ka within the Central Pontides based on Quaternary marine and river terraces. Moreover, data from low-temperature thermochronology suggest that an enhanced exhumation phase in the Central Pontides occurred within the last 11 Mya. However, the precise onset of this faster uplift phase, which likely reflects the timing of the development of the NAF in the Central Pontides, is poorly constrained.

In this work we define the spatiotemporal pattern of rock-uplift rates within the Central Pontides over the last ca. 10 Myr by performing linear inversions of river profiles that drain the northern, external margin of the Central Pontides. We analyze 19 different catchments that drain from the Sinop Range to the Black Sea, first applying a non-dimensional inversion on the chi-plots of the selected stream channels. We then use 21 new basin-averaged denudation rates derived from 10Be concentrations in river sands to calibrate an erodibility parameter, which we use in turn to scale our chi-transformed river profiles. Our results document an increase in rock-uplift rates after 8 Ma, with peak uplift rates of around 0.15 – 0.25 km/Myr occurring between 4 and 2 Ma. Moreover, the spatiotemporal pattern of uplift suggests that faster rock uplift started first in the eastern part of the Sinop Range and migrated westward over a period of ca. 2 to 2.5 Myr. Overall, these results provide important new constraints on the timing of topographic development in the Central Pontides and the westward migration of the NAF from eastern Turkey.

How to cite: Racano, S., Schildgen, T., and Ballato, P.: Timing of rock-uplift and of the North Anatolian Fault development in the Central Pontides, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3939, https://doi.org/10.5194/egusphere-egu22-3939, 2022.

The origin and tectonic evolution of the Western Mediterranean region, specifically the Gibraltar Arc system, is the result of a complex geodynamic evolution involving the convergence of the Eurasia and Africa plates and the dynamic impact of the Gibraltar slab observed in tomographic studies. Although geologic and geophysical data collected in the last few years have greatly increased our knowledge of the Gibraltar Arc region, it is still unclear the mechanical links between the Gibraltar slab and the past deformation of the overriding Alboran lithosphere as well as present-day motion shown in detailed GPS observations. In this work, we use the code ASPECT to model the geodynamic evolution of the Alboran slab in 2D over the last 20 million years. The initial model setup simulates a vertical WE section at a latitude of about 36oN and represents the situation at 20 Ma, when the trench had already fully rotated to the southwest and the predominantly westward rollback of the Gibraltar slab started taking place. We conduct a parametric study varying the rheological parameters and the initial slab properties (dip angle and length) to properly fit the robust current slab features, particularly, its position and its curved morphology extending eastward. We show how after 20 Myr of model evolution, i.e. at present time, the slab pull appears to have a still significant influence on surface velocities. We find a westward surface motion in the Gibraltar arc caused by the negative buoyancy of the slab. These velocities increase westwards from 1 to 4 mm/yr consistently with geodetic observations. Our models roughly reproduce the Alboran basin evolution, initially developing the West Alboran Basin and then the East Alboran Basin. Finally, preliminary 3D models further support these results and properly the main trends of the coupled dynamics of the Gibraltar slab and Alboran basin evolution during the last 20 Myr.

How to cite: Gea, P. J., Negredo, A., and Mancilla, F. D. L.: The Gibraltar slab dynamics and its influence on past and present-day Alboran domain deformation: Insights from thermo-mechanical numerical modelling, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4234, https://doi.org/10.5194/egusphere-egu22-4234, 2022.

EGU22-5227 | Presentations | TS4.1

Present strain partitioning in SE Spain. Insights from CGNSS data 

Ivan Martin-Rojas, Alberto Sánchez-Alzola, Ivan Medina-Cascales, María Jesús Borque, Pedro Alfaro, and Antonio Gil

SE Iberia Tectonics is presently dominated by the NNW-SSE convergence between the Eurasian and Nubian plates. Farther east, the eastern Spanish coast and the Valencia Trough are dominated by ENE-WSW extension related to thermal subsidence. This extension has been interpreted as the final stage of abort rift responsible for the ENE motion of the Balearic promontory. Our data from 11 CGNSS stations permit us to discuss the deformation partitioning in SE Iberia related to the two abovementioned processes.

We identify three kinematic domains: a relatively stable domain, a domain moving towards NNW and undergoing NNW-SSE shortening, and a third domain relatively moving towards ENE and experiencing ENE-WSW extension. Our results indicate that plate convergence-related NNW-SSE shortening is mainly absorbed by the Eastern Betic Shear Zone (EBSZ), in agreement with previous studies, but also show that a significant fraction of this shortening is accommodated south of the EBSZ.

We also identify and quantify for the first time ENE-WSW extension northeast of the EBSZ. We propose that this extension could be absorbed by basement normal faults whose surface expression is obscured due to decoupling of deformation between the basement and the cover. Our results shed light on the tectonic puzzle of SE Spain.

How to cite: Martin-Rojas, I., Sánchez-Alzola, A., Medina-Cascales, I., Borque, M. J., Alfaro, P., and Gil, A.: Present strain partitioning in SE Spain. Insights from CGNSS data, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5227, https://doi.org/10.5194/egusphere-egu22-5227, 2022.

EGU22-5335 | Presentations | TS4.1

Delayed lithosphere tearing along STEP Faults 

Taco Broerse, Rob Govers, and Ernst Willingshofer

Tearing of the lithosphere at the lateral end of a subduction zone is a consequence of ongoing subduction. The location of active lithospheric tearing is known as a Subduction-Transform-Edge-Propagator (STEP). The transcurrent plate boundary system lengthens with time and is referred to as the STEP Fault. Lithospheric tearing was taken to start at the trench in the classical STEP model of Govers and Wortel (2005). They show that active STEPs and STEP Faults can be found alongside many subduction zones. However, recent seismicity studies show results near the active STEPs that are difficult to reconcile with the classical STEP model: there is significant and deep seismicity along the STEP Fault near to the west of Trinidad in the southeast Caribbean; a Wadati-Benioff zone perpendicular to the Pliny-Strabo trenches (the STEP Fault) in the eastern Mediterranean reaches 180 km depth; STEP Fault perpendicular earthquake slip vectors are observed along the northern termination of the South Sandwich trench. We seek to understand these discrepancies by studying the tearing process.  

We show results of new physical analog lab models that aim to elucidate what controls lithospheric tearing and the resulting geometry of the lithospheric STEP. We study the ductile tearing in the process of STEP evolution, which is dynamically driven by the buoyancy of the subducting slab. In our experiments, the lithosphere as well as asthenosphere are viscoelastic media in a free subduction setup. A stress-dependent rheology plays a major role in localization of strain in tearing processes of lithosphere such as slab break-off. 

We find that complete tearing of the lithosphere typically occurs later than in the classical model, at 100-150 km depth. The slab is consequently highly curved near the lateral end of the trench. However, not all STEPs show evidence for such delay, e.g., the north end of the Tonga trench. In our model experiments we therefore investigate the influence of age and integrated strength of the lithosphere and its contrasts across the passive margin, on the timing, depth, and the degree of localization of the tearing process. Furthermore, we relate the tearing at depth to deformation at the surface along and across the STEP fault and we discuss potential consequences for STEP evolution for a number of subduction zones worldwide. Delayed lithospheric tearing explains the observations qualitatively. 

How to cite: Broerse, T., Govers, R., and Willingshofer, E.: Delayed lithosphere tearing along STEP Faults, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5335, https://doi.org/10.5194/egusphere-egu22-5335, 2022.

EGU22-5475 | Presentations | TS4.1

Insights into the 3D lithospheric structure below the Sea of Marmara region from seismic tomography and forward gravity modeling 

Naiara Fernandez, Magdalena Scheck-Wenderoth, Judith Bott, Mauro Cacace, and Ershad Gholamrezaie

The North Anatolian Fault Zone (NAFZ) extends for about 1500 km in the Eastern Mediterranean region, from eastern Anatolia to the northern Aegean. The NAFZ is characterized by strong and frequent seismic activity, increasing the seismic hazard in the region. In the Sea of Marmara area (NW Turkey), the North Anatolian Fault splits into three main branches. The northern branch of the fault, the Main Marmara Fault (MMF), has produced several major earthquakes (M7+) in the past, with a recurrence time of about 250 years. At present, there is a 150 km seismic gap along the MMF which has not ruptured since 1766. The observed fault segmentation, with creeping and locked segments, is indicative of along-strike variability in the fault strength along the seismic gap.

Previous modeling studies in the Sea of Marmara have revealed how crustal heterogeneities effectively affect the thermal and mechanical states of the lithosphere and can likely explain the observed fault segmentation in the area. Therefore, constraining the 3D structure of the deeper crust and upper mantle below the Sea of Marmara is crucial to better assess the mechanical stability of the fault and the possible seismic hazards in the area. In this study, we make use of seismic tomography models and forward gravity modelling to gain insights into the 3D lithospheric structure below the Sea of Marmara. Two tomographic models are used to compute a 3D density model of the area relying on two distinct approaches for the crust and the lithospheric mantle. The results showcase a heterogeneous and rather complex crustal density distribution in the study area[m1] . The 3D density distributions are used in a second step to forward model the gravity response. The results from this new tomography-constrained 3D gravity modelling are then compared to published gravity data and iteratively corrected to fit the overall gravity signals. The final 3D lithospheric-scale density model of the study area will be the basis for thermo-mechanical modeling experiments aimed at improving our current understanding of the present-day geomechanical state of the Sea of Marmara and the MMF and its implications for the seismic hazard of the region.

How to cite: Fernandez, N., Scheck-Wenderoth, M., Bott, J., Cacace, M., and Gholamrezaie, E.: Insights into the 3D lithospheric structure below the Sea of Marmara region from seismic tomography and forward gravity modeling, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5475, https://doi.org/10.5194/egusphere-egu22-5475, 2022.

EGU22-5479 | Presentations | TS4.1

Kinematic and tectonic analysis of the Baza and Galera Fault (S Spain). Insights from GNSS data 

Frank García-Tortosa, Pedro Alfaro, Alberto Sánchez-Alzola, Ivan Martin-Rojas, Jesus Galindo-Zaldívar, Manuel Avilés, Angel Carlos López Garrido, Carlos Sanz de Galdeano, Patricia Ruano, Francisco Jose Martínez-Moreno, Antonio Pedrera, Maria Clara de Lacy, Maria Jesus Borque, Ivan Medina-Cascales, and Antonio Jose Gil

We here discuss the results of a local GNSS episodic network from the Baza sub-Basin (S Spain). This network including six sites, was established in 2008 and has been measured seven times since then. Our data permit us to present the first short-term slip rates for the two active faults in this area. The main active structure is the normal Baza Fault. We estimate slip rates for this fault ranging between 0.3±0.3 mm/yr and 1.3±0.4 mm/yr. For the strike-slip Galera Fault, we quantify the slip rate as 0.5±0.3 mm/yr. These values are higher than previously reported long-term slip rates. We postulate that the discrepancy for the Baza Fault between short-term and long-term slip rates could indicate that the fault is presently in a period with a displacement rate higher than the mean of the magnitude 6 seismic cycle. Moreover, the velocity vectors that we obtained also show the regional tectonic significance of the Baza Fault, as this structure accommodates one-third of the regional extension of the Central Betic Cordillera.

Our results also show that the Baza and Galera Faults are kinematically coherent and they divide the Baza sub-Basin into two tectonic blocks. This points to a likely physical link between the Baza and Galera Faults; hence, a potential complex rupture involving both faults should be considered in future seismic hazard assessment studies.

How to cite: García-Tortosa, F., Alfaro, P., Sánchez-Alzola, A., Martin-Rojas, I., Galindo-Zaldívar, J., Avilés, M., López Garrido, A. C., Sanz de Galdeano, C., Ruano, P., Martínez-Moreno, F. J., Pedrera, A., de Lacy, M. C., Borque, M. J., Medina-Cascales, I., and Gil, A. J.: Kinematic and tectonic analysis of the Baza and Galera Fault (S Spain). Insights from GNSS data, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5479, https://doi.org/10.5194/egusphere-egu22-5479, 2022.

EGU22-5691 | Presentations | TS4.1

Reconstruction of tectonically driven Quaternary fluvial dynamics of the Western Kura Fold-Thrust Belt (Eastern Caucasus, Georgia) 

Lasha Sukhishvili, Giorgi Boichenko, Giorgi Merebashvili, Zurab Javakhishvili, Adam Forte, and Tea Godoladze

Since the Plio-Pleistocene, southward migration of shortening in the Eastern part of the Greater Caucasus (GC) into the Kura foreland basin has formed the Kura fold–thrust belt (KFTB) and Alazani piggyback basin between the GC and KFTB, modifying the drainage network within the southern foreland. The northern, eastern and south-eastern flanks of the Western KFTB (Gombori range) expose the predominantly alluvial Alazani series, while the central (highest) part of the range is covered by Tsivi suite. The base of the Alazani series is estimated to be 2.7-2.5 Ma and deposition spanned the Akchagyl and Apsheronian regional stages. The KFTB likely initiated during the Akchagyl-Apsheronian period, and thus the paleocurrents of the alluvial Alazani series sediments represent potential archives for tracking resulting drainage reorganization within the foreland. Previous measurements of paleocurrents from the Alazani series revealed a reversal from south to north flow directions, but the measurements were limited to the northern flank of the Gombori range. Here we present new observations from the central and southern flanks of the Gombori. Results from the eastern and southeastern regions are consistent with the currents from the northern flank, but paleocurrents from the Tsivi suite are more complex and raises additional questions regarding its depositional context and age. The new results help to build a more complete picture of fluvial dynamics driven by Quaternary tectonic deformations within the GC foreland.

How to cite: Sukhishvili, L., Boichenko, G., Merebashvili, G., Javakhishvili, Z., Forte, A., and Godoladze, T.: Reconstruction of tectonically driven Quaternary fluvial dynamics of the Western Kura Fold-Thrust Belt (Eastern Caucasus, Georgia), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5691, https://doi.org/10.5194/egusphere-egu22-5691, 2022.

EGU22-6407 | Presentations | TS4.1

Morphological and paleoseismic evidence of surface faulting in the coastal Zagros, southwestern Iran 

Aram Fathian, Hamid Nazari, Mohammad Ali Shokri, Morteza Talebian, Manouchehr Ghorashi, and Klaus Reicherter

The Zagros Mountains accommodate intense seismicity due to the ongoing deformation; however, surface faulting has been rarely observed and/or documented. The earthquakes of Furg (November 6th, 1990) and Qir-Karzin (April 10th, 1972) are unique events in the Zagros associated with a surface rupture. We use tectonic geomorphology and paleoseismology to document a previously unknown outcropped fault within the Zagros. This ~ 20 km fault zone lies between the Khormuj and Khaki anticlines, where the Simply Folded Belt (SFB) of the Zagros is physiographically known as the coastal Zagros as well. The Khormuj anticline, located in the northeast of the city of Khormuj, was previously linked to the Main Front Fault (MFF) on the southern limb of the anticline. Further to the south, the oblique-slip Khormuj fault zone with a strike of N120°–N125° cut the Quaternary sediments and displaced the streams and ridges laterally and vertically. Opposite to the dip of the MFF, the Khormuj fault dip is inclined to the southwest—approximately 75°—where the southern block is uplifted and marks an obvious trace on the ground. We carried out a kinematic GPS survey along the deflected ridges to measure the horizontal and vertical components. Our observations indicate significant dextral strike-slip displacements compared to the dip-slip offset. We observed a sequence of fluvial risers in three different levels along the Khormuj fault. We additionally studied a paleoseismological trench perpendicular to the Khormuj fault scarp evidencing at least two paleoearthquakes. The OSL age of the bottom of the colluvium wedge correlated with the older event indicates the latest event is younger than 25±8 ka considering the fault cuts these deposits up to the ground surface.

How to cite: Fathian, A., Nazari, H., Shokri, M. A., Talebian, M., Ghorashi, M., and Reicherter, K.: Morphological and paleoseismic evidence of surface faulting in the coastal Zagros, southwestern Iran, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6407, https://doi.org/10.5194/egusphere-egu22-6407, 2022.

EGU22-7451 | Presentations | TS4.1

A revision of the main active fault systems of the Alboran Basin: their significance in plate tectonics and a first appraisal of its seismogenic and tsunamigenic potential. 

Laura Gómez de la Peña, César R. Ranero, Guillermo Booth-Rea, José Miguel Azañón, Eulàlia Gràcia, Francesco Maesano, Roberto Basili, and Fabrizio Romano

The Alboran Basin is located in the westernmost Mediterranean Sea. This basin was formed during the Miocene, and since the late Miocene, has been deformed due to the Iberia – Africa tectonic plates convergence, producing the contractive reorganization of some structures at the basin. Thus, the Alboran Basin is a seismically active area, which hosts the plate boundary between the European and African tectonic plates. This plate boundary has been traditionally considered a wide deformation zone, in which several small faults are accommodating the deformation.

Based on a modern set of active seismic data, we were able for the first time to quantify the total slip accommodated by the most prominent tectonic structures of the area, late Miocene - early Pliocene in age. Our results show that the estimated total slip accommodated by the main fault systems may be similar (with error bounds) to the estimated plate convergence value since the Messinian time (~24 km). Thus, slip on that faults may have accommodated most of the Iberian – African plate convergence during the Plio-Quaternary, revealing that the contractive reorganization of the Alboran basin is focused on a few first-order structures that act as lithospheric boundaries, rather than widespread and diffuse along the entire basin.

These results have implications not only for kinematic and geodynamic models, but also for seismic and tsunami hazard assessments. Using the most complete dataset until the date, we performed a revision of the geometry and characteristics of the main fault systems offshore. Based on this data, we perform a first appraisal of the seismogenic and tsunamigenic potential of the main fault systems offshore. Our simulations show that the seismogenic and tsunamigenic potential of the offshore structures of the Alboran Basin may be underestimated, and a further characterization of their associated hazard is needed.

How to cite: Gómez de la Peña, L., R. Ranero, C., Booth-Rea, G., Azañón, J. M., Gràcia, E., Maesano, F., Basili, R., and Romano, F.: A revision of the main active fault systems of the Alboran Basin: their significance in plate tectonics and a first appraisal of its seismogenic and tsunamigenic potential., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7451, https://doi.org/10.5194/egusphere-egu22-7451, 2022.

EGU22-7780 | Presentations | TS4.1

The vertical movement of Karpathos: Competing hypotheses  

Violeta veliz borel, Onno Oncken, Vasiliki Mouslopoulou, John Begg, and Johannes Glodny

Karpathos is a roughly north-south oriented island that emerges between Crete and Rhodes in the forearc of the eastern Hellenic subduction system. It extends for ~60 km to the north of the 40 km contour of the plate interface depth. Further, the northern part of the island is confined to a N-S trending Horst bounded by two large normal faults that shape the seafloor off both, the eastern and western shore.  Furthermore, many normal faults, mainly in the north, strike parallel to the Horst and shape the topography onshore. Given the location and the structural configuration of the island, we expect that multiple processes are reflected in both the sedimentary and morphological record of vertical movement. Marine terraces and paleo-cliffs are observed all around the island recording its vertical movements over the last ~1 Ma. Moreover, sedimentary basins in the southern and central parts of the island are excellent archives of long-term uplift interrupted by subsidence over the last ~4.5 Ma. Twenty-five samples were collected at elevations between 1 and ~310 masl. We have gathered six (n=6) age/elevation data-points obtained by Sr-isotope dating, and nineteen (n=19) age/elevation data-points by radiocarbon dating. We explored the likelihood of different hypotheses on what drives the uplift:  whether it is driven by upper-crust normal faults, megathrust earthquakes, underplating, or a combination of these phenomena. We present preliminary results on both the temporal and spatial fluctuations of the vertical movement of Karpathos.

How to cite: veliz borel, V., Oncken, O., Mouslopoulou, V., Begg, J., and Glodny, J.: The vertical movement of Karpathos: Competing hypotheses , EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7780, https://doi.org/10.5194/egusphere-egu22-7780, 2022.

EGU22-7890 | Presentations | TS4.1

Knickpoints and faulted alluvial fans: evidence of orogen parallel active extension related to delamination in the Western Betics 

Marcos Moreno-Sanchez, Daniel Ballesteros, Guillermo Booth-Rea, José Vicente Pérez-Peña, Carlos Pérez-Mejías, Cristina Reyes-Carmona, José Miguel Azañón, Jorge P. Galve, and Patricia Ruano

We present the first results of the MORPHOMED project, in order to deepen the chronology, uplifting rate, and tectonic forcing of different sectors of the Betic Cordillera since the Pliocene. Our initial morphotectonic analysis in the Western Betics, at the active termination of the Betic dextral STEP fault, highlights the location of active orogen-parallel normal faults cutting Pliocene marine sediments, uplifted above 600 masl, and Quaternary alluvial fans. The morphometric study we carried out includes normalized river steepness (ksn) and other geomorphic indices calculated in GIS using our own code designed in python. The fieldwork developed comprises the identification of uplifted Pliocene marine deposits, faulted alluvial fans and remnants of uplifted planation surfaces. The alluvial fans are related to travertine deposits older than 350 ka, which would be associated with hot springs. Geochronological studies involve previous and new U-Th dating on travertines and speleothems from caves in the high areas. The preliminary morphometric analyses reveal the occurrence of knickpoints that coincide with normal faults affecting marine Pliocene deposits and alluvial fans. These fans show vertical displacement of more than 20 m and their age remains unknown albeit the associated travertines are being dated. These results support previous works concerning of active tectonics in the Central and Western Betic Cordillera and they will serve to define new active faults, driving tectonic uplift of the Western Betics, which are the key to understand the landscape evolution forced probably by deep mantle rooted tectonics like slab tearing and edge delamination.

How to cite: Moreno-Sanchez, M., Ballesteros, D., Booth-Rea, G., Pérez-Peña, J. V., Pérez-Mejías, C., Reyes-Carmona, C., Azañón, J. M., Galve, J. P., and Ruano, P.: Knickpoints and faulted alluvial fans: evidence of orogen parallel active extension related to delamination in the Western Betics, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7890, https://doi.org/10.5194/egusphere-egu22-7890, 2022.

The occurrence of earthquake-repeaters, i.e. co-located seismic events of comparable magnitude with highly similar waveforms breaking the same fault patch with an almost identical mechanism, is generally regarded as an indication that the fault surrounding the earthquake asperity is (aseismically) creeping. Earthquake repeaters can either occur during transient loading, e.g. within the afterslip of large earthquakes, or during the constant tectonic loading of tectonic faults. In this study we consider the latter.

The Main Marmara Fault (MMF) belongs to the western part of the North Anatolian Fault Zone (NAFZ) between the Anatolian and Eurasian plates and runs close to the population centre of Istanbul below the Marmara Sea. While the main NAFZ branches to the east and west of the MMF ruptured in M>7 earthquakes in the last century, the MMF itself is regarded as a seismic gap with the potential to host an M>7 event in the near future. Knowledge about the amount of aseismic creep of the off-shore MMF strand is important for a better seismic hazard assessment for the city of Istanbul and is heavily debated.

Building on earlier studies that identified repeating earthquakes in the western part of the MMF, we investigate a newly compiled seismicity catalogue of the Sea of Marmara for repeating events along the complete MMF. The catalogue spans the time period 2006-2020, comprises almost 14,000 events in the magnitude range M0.3-M5.7 and was compiled from regional permanent stations operated by AFAD and KOERI. Phase onset times were automatically picked with a two-step procedure using higher-order statistics and an AIC-representation of the waveforms for crude and fine-tuned estimation of the P- and S-onsets. The resulting onset-times were used in the Oct-tree location algorithm of the probabilistic NLLoc software using a regional velocity model and station corrections to obtain the final hypocentres.

To search for earthquake repeaters, we divide the MMF into overlapping segments and perform a station-wise cross-correlation analysis for all available event waveforms in each segment. Correlated waveforms start 1 s before the P-wave arrival and include the complete waveform including the S-wave coda. Waveforms were bandpass filtered between 2 and 20Hz to retain a rather wide frequency spectrum. We apply strict selection criteria and identify repeating events only as those with a normalized cross-correlation coefficient larger than 0.9 at at least 3 stations and a temporal separation of more than 30 days to exclude bursts of highly similar events in aftershock sequences or earthquake swarms.

The highest density of repeating earthquakes is found below the western Marmara Sea (Central Basin and Western High) with a systematic decrease of repeaters towards the east (Kumburgaz Basin) and none at all in the presumably locked Princess Islands section of the MMF immediately south of Istanbul. These results for the first time provide a consistent image of the amount of creep along the entire overdue Marmara section of the NAFZ derived from permanent onshore stations refining earlier results obtained from individual spots using local seafloor deployments.

How to cite: Becker, D., Martínez-Garzón, P., Wollin, C., and Bohnhoff, M.: Systematic variations of fault creep along the Marmara seismic gap, north-western Turkey, based on the observation of earthquake repeaters obtained from a high-resolution regional earthquake catalogue, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8142, https://doi.org/10.5194/egusphere-egu22-8142, 2022.

EGU22-8675 | Presentations | TS4.1

Subduction hints from the northeastern Mediterranean Sea 

Nicolò Bertone, Lorenzo Bonini, Eugenia Colin, Anna Del Ben, Giuseppe Brancatelli, Angelo Camerlenghi, Edy Forlin, and Gian Andrea Pini

The eastern Mediterranean is shaped by the interaction between the African, Arabian, and Eurasian plates resulting in a complex tectonic framework. The Hellenic subduction is well documented and studied but, the northeast corner of the eastern Mediterranean Sea remains enigmatic. It is a tectonically active region where different plate boundary conditions coexist (i.e., oceanic subduction, continental collision, extension, and strike-slip movements). An active and tsunamigenic system has been interpreted west and east of Cyprus by using deep seismic reflection lines. Vintage deep-penetrating seismic reflection profiles of the Mediterranean Sea project (MS project) - acquired during the ’70 - were re-analyzed and merged with a synthesis of available subsurface data from the scientific literature. This study focuses on two transects (MS53 and MS56) that cross the major offshore structures (i.e., Florence Rise, Latakia Ridge, and Kyrenia Ridge) from north to south. The western transect (MS53) shows the Herodotus oceanic crust subducting northward beneath the Eurasian plate. The Florence Rise is the leading edge of the system, and the Antalya Basin is its forearc basin. Close to the Turkish coast, a buried block seems to act as a backstop for the offshore system, and north of it, some out-of-sequence thrusts have been interpreted. The strain is partitioned between the Florence Rise and the Taurides front. The eastern transect (MS56) crosses the Latakia Ridge, i.e., the northern boundary of the Levant Basin, where shortening is greater than in the western area. The seismic line continues northward into the Cyprus – Latakia Basin, crossing the Kyrenia Ridge, and reaching the Turkish coast. On the seismic section, we interpreted the Mesozoic subduction front now hindered by strike-slip movements on the Latakia Ridge. Another prominent transpressive structure is the Kyrenia Ridge, which is interpreted as an active structure with a well-imaged thrust system in front of it. The seismic sections were depth converted to provide a regional geologic model for the northeastern Mediterranean Sea. Active subduction fronts, which are only partially imaged, were structurally modeled and then crosschecked with previous studies to better constrain their geometry. In the northeastern Mediterranean Sea, a plate boundary is buried offshore with active subduction west of Cyprus and mainly transpressional tectonics to the east. A better understanding of its nature and kinematics would be useful to assess the tsunami hazard in this area.

How to cite: Bertone, N., Bonini, L., Colin, E., Del Ben, A., Brancatelli, G., Camerlenghi, A., Forlin, E., and Pini, G. A.: Subduction hints from the northeastern Mediterranean Sea, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8675, https://doi.org/10.5194/egusphere-egu22-8675, 2022.

EGU22-9537 | Presentations | TS4.1

New constraints on the kinematics of the western Sinai Microplate: geodynamic implications 

Roi Granot, Oded Katz, Mor Kanari, Orit Hyams, and Yariv Hamiel

The tectonic nature of the Sinai Microplate's western boundary is clouded with uncertainties. Early studies suggested that the western edge of Sinai is fully connected to the African Plate, thus concluding that Sinai is a sub-plate. Later, bathymetric analyses of prominent lineated faults straddling across the western edge of the Levant Basin have suggested that, in fact, this area is a plate boundary that accommodates dextral motion between the African Plate and the Sinai Microplate. However, this inference contradicts geological and geophysical observations across the Gulf of Suez, the southern continuation of the same plate boundary. Here we present preliminary results from a recent geophysical cruise aboard the R/V Bat Galim. We focused our investigation on one of the major faults, oriented in an NW-SE direction (located ~80 km southwest of the Eratosthenes Seamount), creating the plate boundary. We collected high-resolution shallow multichannel seismic reflection data complemented with multibeam bathymetry data. We also acquired two piston cores near the trace of the fault. These observations unravel the shallow three-dimensional structure of the fault system whereby several curved and steeply dipping normal fault segments are splayed from the main fault trace in a westerly direction. These secondary faults display a back-tilted and step-like morphology. This structure is best explained by a sinistral motion acting along the master fault. Independently, we present an updated Africa-Sinai Euler pole based on the motion of GPS stations recorded between 1996 and 2019. The results suggest that Sinai is moving in a northwesterly direction with respect to Africa (1.7-1.9±0.9 mm/yr). Focal mechanism solutions calculated for recent earthquakes occurring in this region (Mw>4.5) agree with the geodetic constraints of a sinistral relative motion.

Overall, these observations suggest that the western boundary of Sinai has been, and still is, accommodated sinistral motion relative to Africa. This conclusion implies that the Sinai Microplate is moving faster with respect to Eurasia relative to the motion of Africa with respect to Eurasia. This, in turn, seems to be in conflict with the notion that subduction of the oceanic lithosphere north of the Sinai Microplate (i.e., east of Cyprus) has recently ceased. We speculate that the downgoing slab might still promote the relatively fast northward motion of Sinai and/or a northward drag force induced by large-scale mantle flow related to the Afar plume could also contribute to the motion of the Sinai Microplate.

How to cite: Granot, R., Katz, O., Kanari, M., Hyams, O., and Hamiel, Y.: New constraints on the kinematics of the western Sinai Microplate: geodynamic implications, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9537, https://doi.org/10.5194/egusphere-egu22-9537, 2022.

EGU22-9541 | Presentations | TS4.1

Slow slip events captured by GNSS  along the Central Section of the North Anatolian Fault 

Jorge Jara, Alpay Ozdemir, Ugur Dogan, Romain Jolivet, Ziyadin Çakir, and Semih Ergintav

Recent observations suggest that seismogenic faults release elastic energy not only during sudden earthquakes but also aseismically. Slow slip can be persistent, lasting for years, or episodic. Aseismic slip is thought to be influenced by the presence/migration of fluids, stress interactions through fault geometrical complexities, or fault material heterogeneities. However, slow slip events have mostly been captured by regional GNSS networks in subduction zones, and the finest details of the nucleation, propagation, and arrest of such events have not been observed yet. Therefore, continental creeping faults are ideal targets for tackling such observational gaps and focusing on the sub-daily behavior of such slow slip events.

 

The central segment of the North Anatolian Fault is known to be creeping at least since the 1950s. This region was struck by the Mw 7.3 Bolu/Gerede earthquake in 1944, and since then, no earthquake of magnitude greater than 6 has been recorded. During the 1960s, aseismic slip was discovered as a wall built across the fault in 1957 was being slowly offset. Geodetic studies (InSAR, GNSS, and creepmeters) focused on capturing and analyzing aseismic slip around the village of Ismetpasa. Creepmeter measurements during the 1980s and 2010s, along with InSAR time series analysis, suggest that aseismic slip occurs episodically rather than persistently. However, no permanent GNSS stations were available close enough to the fault to study the details of such slow slip events.

 

Within the scope of a French-Turkish collaboration, we installed 17 GNSS stations (ISMENET) in 2019 to survey the spatio-temporal evolution of aseismic slip rate and characterize the physical properties of the fault zone. A creepmeter array located in the Ismetpasa village reported the occurrence of a significant slow slip event between December 2019 - January 2020. We analyze the GNSS record to search for small aseismic slip episodes and describe their behavior. We use a combination of Multivariate Singular Spectrum Analysis (MSSA) and Geodetic Template Matching (GTM) to extract the signature of aseismic slip and characterize its source. Results are compared to creepmeter measurements, as well as the historical earthquakes, fault geometrical complexities, and kinematic coupling. Our results confirm that aseismic slip in the region is not permanent. Therefore, even though the aseismic slip rate in the long-term seems to be constant, such a rate might result from the contribution of many aseismic slip episodes as the one detected in this work.

How to cite: Jara, J., Ozdemir, A., Dogan, U., Jolivet, R., Çakir, Z., and Ergintav, S.: Slow slip events captured by GNSS  along the Central Section of the North Anatolian Fault, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9541, https://doi.org/10.5194/egusphere-egu22-9541, 2022.

The Apennine Tyrrhenian margin records the evolutionary steps of the back-arc basin developed at the rear of a E-ward migrating fold-and-thrust belt. As well-documented in literature, the counterclockwise rotation of the Apennines is related to the southward increase of the roll back-related subduction of the Adria slab. This led first to the progressive incorporation of thrust sheets within the Apennine prism in the upper plate and later to its subsequent back-arc extension that is contemporaneous with the continuate inarching of the Apennine front towards the Adriatic and Ionian seas. Uncertainties arise on the structural style and timing in the internal Apennines between the orogenic and post-orogenic stages, that are respectively represented by thrust-sheet implacement, and crustal thinning.

We hereby propose a combined 2D seismic and field data review that allows identifying the geodynamic processes preceding the crustal stretching of the Apennine Tyrrhenian margin with new insights from on- and off-shore seismic lines. In particular, the construction of a new geotraverse across the margin, which is stretched over 100 km between the internal Central Apennines belts and the Pontian escarpment, allows to roughly estimate: i) the Late Miocene - Earliest Pliocene shortening with its change of the basal decollement depth through time; in particular, subsurface data highlighted stacked thrust sheets that were involved in an initial in-sequence propagation with top-to-the-ENE, synchronous to late Tortonian foredeep to wedge-top sedimentation. We also distinguish late backthrusts related to the formation of triangle zones that are more deeply rooted moving to the western chain interior. ii) The amount of crustal stretching and subsidence; Back arc-related orogenic collapse is preceded by initial orogen uplift and erosion in the internal sectors. iii) The onset of at least two magmatic cycles; in this frame, the lateral slab tearing and retreat is tracked by E-rejuvenated volcanic activity in the upper plate along the Volsci Volcanic Field and the Palmarola-Vesuvius lineaments. Those volcano-tectonic trends are favoured by a series of transtensive structures that progressively reflect the arc expansion in the rear. In this frame, the NE-dipping crustal detachment(s) may have played into crustal thinning during the Pliocene, driving and occasionally hampering magma emplacement, while high-angle faults have locally driven monogenetic eruptions. Finally, we report on field and seismic evidence of neo-tectonics, supporting ongoing extension occurring on the margin.

How to cite: Vico, G. and Cardello, G. L.: From thrusting to back-arc extension: seismic structure and field evidence of the Apennine Tyrrhenian margin (Central Italy), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9955, https://doi.org/10.5194/egusphere-egu22-9955, 2022.

EGU22-10062 | Presentations | TS4.1

A re-evaluation of the 5th October 1948 M7.3 Ashgabat earthquake (Turkmenistan) 

Neill Marshall, Richard Walker, Qi Ou, and Christoph Gruetzner

The 1948 M 7.3 Ashgabat earthquake, killing over 38,000 people, occurred in the dextral strike-slip Kopeh Dagh fault zone in the Iran-Turkmenistan border region. Previously, it has been debated which fault(s) it occurred on and whether this earthquake was a thrust/reverse, strike-slip, or multi-fault earthquake, as published focal mechanisms suggest it had a reverse mechanism. We relocated the hypocentre using historical seismograms and present a new strike-slip focal mechanism. We used Pleiades satellite stereo imagery to produce Digital Elevation Models of part of the ruptured area. These data reveal clear strike-slip faults where surface ruptures were mapped in 1948. The earthquake did not rupture the Main Kopeh Dagh fault, but instead these subsidiary faults, highlighting the importance of considering lesser faults in seismic hazard models.

How to cite: Marshall, N., Walker, R., Ou, Q., and Gruetzner, C.: A re-evaluation of the 5th October 1948 M7.3 Ashgabat earthquake (Turkmenistan), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10062, https://doi.org/10.5194/egusphere-egu22-10062, 2022.

EGU22-10145 | Presentations | TS4.1

Coseismic and Postseismic Deformation of the January 24, 2020 Sivrice (Elazig) Earthquake Under the Constrain of Geodetic Observations 

İlay Farımaz, Seda Özarpacı, Alpay Özdemir, M. Hilmi Erkoç, Efe Turan Ayruk, Semih Ergintav, Uğur Doğan, and Ziyadin Çakır

January 24, 2020 Sivrice earthquake (Mw 6.8), which is the largest along the East Anatolian Fault (EAF) over the last century, is providing a wealth of information on the mechanics of transform faulting and for monitoring the different phases of the last seismic cycle. In this study, we aim to estimate coseismic and postseismic surface deformation along the Sivrice earthquake rupture and determine the strain accumulations on Pütürge segment by combining InSAR and GNSS measurements. The area was described one of the major seismic gaps along the EAF and we have started to study from Palu to Sivrice segments of the EAF, since 2015. Near field survey GNSS network has been established since 2015 and measured two times in a year, until 2021. Besides, after the earthquake, we surveyed 60% of near field sites to contain the coseismic field within 2-3 days. This dataset analyzed with continuous GNSS stations around the region to control the far field of the deformation field. Additionally, this dataset is densified by InSAR deformation field. For this purpose, the stack of interferograms have been interpreted from descending orbit Sentinel-1 dataset, composed of 6 days interval SAR acquisitions that starts from January 2020 to June 2020 which covers the earthquake time. As a result, significant differences between the pattern of strain accumulation before and after earthquake are documented with both GNSS and InSAR data. Moreover, the signature of the postseismic deformations is presented for 6 months.  

This study was supported by TUBITAK 1001 project no. 114Y250 and 118Y435.

Keywords: Sivrice earthquake, EAF, coseismic, postseismic, InSAR, GNSS

How to cite: Farımaz, İ., Özarpacı, S., Özdemir, A., Erkoç, M. H., Ayruk, E. T., Ergintav, S., Doğan, U., and Çakır, Z.: Coseismic and Postseismic Deformation of the January 24, 2020 Sivrice (Elazig) Earthquake Under the Constrain of Geodetic Observations, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10145, https://doi.org/10.5194/egusphere-egu22-10145, 2022.

EGU22-10193 | Presentations | TS4.1

Determining Strain Accumulation Along NAF with Block Modelling 

Efe Turan Ayruk, Seda Özarpacı, Alpay Özdemir, Volkan Özbey, Semih Ergintav, and Uğur Doğan

The North Anatolian Fault (NAF) is a one of the major dextral strike-slip faults of Turkey which forming the boundary between the Eurasian - Anatolian plates. From 1939 to 1999, significant earthquakes occurred as showing a westward migration. Several studies are being conducted due to this seismic activity along the NAF. However, none of these are sufficiently dense to understand the behaviour of the fault. Here we present our block modelling results obtained from combine that published GNSS velocity datasets to determine strain accumulation along the NAF with TDEFNODE software (McCaffrey,1995). Our study area separates to 3 blocks, starts from east of the Sapanca Lake and includes the Karliova Triple Junction on the east, extends over the Black Sea on the north and 130 kilometers from the fault on the south. Checkerboard method is used to test the resolution of the dataset, then node distribution on the NAF is optimized and Wang’s model is used for inversion solution (Wang,2003). Euler Pole and block strain are estimated with inversion solution for Eurasia/Anatolia plates and the slip deficit variations are estimated for NAF. Under the constrain of the dense GNSS networks, we displayed that some segments of NAF are creeping up to shallow part of the crust and some other segments are locked at deeper region. Herein to better understand latest circumstance of complex slip deficit pattern of the NAF, estimated by our model, we evaluated our results under the complementary present and paleo-seismological datasets.

Keywords: NAF, block modelling, GNSS

How to cite: Ayruk, E. T., Özarpacı, S., Özdemir, A., Özbey, V., Ergintav, S., and Doğan, U.: Determining Strain Accumulation Along NAF with Block Modelling, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10193, https://doi.org/10.5194/egusphere-egu22-10193, 2022.

EGU22-10619 | Presentations | TS4.1

Neogene to recent geodynamic evolution of Northern Tunisia foreland thrust belt. 

Seifeddine Gaidi, Fetheddine Melki, Guillermo Booth-Rea, Wissem Marzougui, Jose Vicente Pérez-Peña, Patricia Ruano, Jorge Pedro Galve, Haifa Chouaieb, Jose Miguel Azañón, and Fouad Zargouni

This work analyses the tectonic evolution of Northern Tunisia from the Late Miocene to Present. Two orthogonal extensional systems with ENE- and SE-directed transport produced the extensional collapse of the Tell and Atlas Foreland Thrust Belts (FTBs) in northern Tunisia during the Late Miocene to Pliocene in a context of NW-SE plate convergence between Africa and Eurasia. These systems produced the extensional denudation of the Tunisian Atlas and Tell foreland thrust belts, which we related to deep mantle tectonic mechanisms, known as a common feature in other FTB´s in the western Mediterranean, i.e. Betics, Rif, Calabria and Apennines. Low-angle normal faults have extended and reworked the Tunisian Tell external foreland thrust belt, exhuming midcrustal lower-greenschist metapelites and marbles with Triassic protholiths, and forming Late Miocene basins. This extension was followed by later Pliocene to Present tectonic inversion, developing the active shortening structures in Northern Tunisia. The main shortening structure is formed by different reverse and strike-slip fault segments, linked forming the 130 km long Alia-Thibar fault zone. Restored Plio-Quaternary deformation observed on reflection seismic lines indicates deformation rates around 0.6-0.8 mm/yr in the studied segments and larger amounts of shortening to the West of Northern Tunisia (16%) than to the East (7%), which suggests that tectonic inversion started earlier to the West and later propagated eastwards, reaching Northeastern Tunisia in the Late Pliocene. Due to the young age of this tectonic inversion, the present relief of Northern Tunisia is characteristic of a young thrust and fold belt, with dominating axial valleys along synforms and an incipient transverse drainage development propagating from West to East.

How to cite: Gaidi, S., Melki, F., Booth-Rea, G., Marzougui, W., Pérez-Peña, J. V., Ruano, P., Galve, J. P., Chouaieb, H., Azañón, J. M., and Zargouni, F.: Neogene to recent geodynamic evolution of Northern Tunisia foreland thrust belt., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10619, https://doi.org/10.5194/egusphere-egu22-10619, 2022.

EGU22-11846 | Presentations | TS4.1

Mantle origins of topography, volcanism and the North Anatolian Fault in Anatolia: constraints from seismic tomography, seismic anisotropy and crustal structure 

Ian Bastow, Thomas Merry, Rita Kounoudis, Christopher Ogden, Rebecca Bell, Saskia Goes, Jennifer Jenkins, Laurence Jones, Beth Grant, and Charles Braham

The eastern Mediterranean hosts, within the span of a few hundred kilometres, extensional, strike-slip, and collision tectonics above a set of fragmenting subducting slabs. Widespread Miocene-Recent volcanism and ~2km uplift has been attributed to mantle processes such as delamination, dripping and/or slab tearing/break-off. We investigate this complex region using a variety of broadband seismological techniques, with new P- and S-wave tomographic images in Kounoudis et al. (2020), seismic anisotropy constrained via an updated dataset of SKS shear-wave splitting observations in Merry et al. (2021), and crustal structure imaged by quality-controlled H-κ stacking of receiver functions in Ogden & Bastow (2021). Overall, seismic anisotropy and crustal structure are more spatially variable than previously recognised, and such variations correspond well with variations in mantle structure shown by the tomography. In general, Moho depth is poorly correlated with elevation, suggesting crustal thickness variations do not fully explain topographic differences, and residual topography calculations indicate the requirement for a mantle contribution to Anatolian Plateau uplift. Evidence for such a contribution exists in central Anatolia, where an imaged horizontal tear in the Cyprus slab spatially corresponds with volcanism, a residual topographic high, and a region of reduced splitting delay times and nulls, all consistent with upwelling of asthenospheric material through the tear. Anisotropic fast directions are consistent with flow through the imaged gap between the Cyprus and Aegean slabs, again correlating roughly with both volcanism and high residual topography. Slow uppermost‐mantle wave speeds below active volcanoes in eastern Anatolia, and ratios of P-to-S wave relative traveltimes, indicate a thin lithosphere and melt contributions. Elsewhere, there is more evidence for slab processes controlling mantle flow, with anisotropic fast directions diverted at the edges of imaged slabs and consistent with flow towards the retreating Hellenic trench in the Aegean. The North Anatolian Fault is revealed to be a deep, plate-scale structure: whilst there are no clear changes in Moho depth across the fault, deep velocity contrasts suggest a 40­-60km decrease in lithospheric thickness from the Precambrian lithosphere north of the fault to a thinned Anatolian lithosphere in the south. Moreover, short-length-scale variations in anisotropy and backazimuthal variations in splitting parameters at the fault indicate fault-related lithospheric deformation, with seismic fast directions either fault-parallel or intermediate between the principle extensional strain rate axis and fault strike, diagnostic of a relatively low-strained transcurrent mantle shear zone. Upper mantle structure thus exerts a strong influence on uplift, volcanism and deformation in Anatolia.

References

Kounoudis, R., I.D. Bastow, C.S. Ogden, S. Goes, J. Jenkins, et al.,  (2020), Seismic Tomographic Imaging of the Eastern Mediterranean Mantle..., G3, 21(7), doi:10.1029/2020GC009009.

Merry, T.A.J., I.D. Bastow, R. Kounoudis, C.S. Ogden, R.E. Bell, & L. Jones (2021), The influence of the North Anatolian Fault and a fragmenting slab architecture on upper mantle seismic anisotropy... ,G3, 22, doi:10.1029/2021GC009896.

Ogden, C.S., & I.D. Bastow (2021), The Crustal Structure of the Anatolian Plate from Receiver Functions..., GJI, doi:10.1093/gji/ggab513.

How to cite: Bastow, I., Merry, T., Kounoudis, R., Ogden, C., Bell, R., Goes, S., Jenkins, J., Jones, L., Grant, B., and Braham, C.: Mantle origins of topography, volcanism and the North Anatolian Fault in Anatolia: constraints from seismic tomography, seismic anisotropy and crustal structure, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11846, https://doi.org/10.5194/egusphere-egu22-11846, 2022.

EGU22-12611 | Presentations | TS4.1

New insights on the relationship between inherited structures of the opening of the Algero-Balearic basin and recent inversion of its southern margin 

Shaza Haidar, Pierre Leffondré, Jacques Déverchère, David Graindorge, Frauke Klingelhoefer, Mohamed Arab, Mourad Medaouri, and Marie-Odile Beslier

The Algero-Balearic Basin (ABB) is an Oligo-Miocene back-arc basin resulting from a polyphase tectonic evolution involving Tethyan subduction retreat and bilateral slab tear propagation. The ABB was fully opened by the Tortonian, while the Gibraltar and Calabria arcs formed by the narrowing of retreating slab fragments. Since then, the Algerian margin has undergone a tectonic inversion, potentially preceding an incipient subduction as shown by the analysis of the on-offshore deformation distribution. In this work, we aim to shed light on the relationships between the large-scale structures inherited from the ABB opening and the recent margin inversion. For this purpose, we rely on two recent analyses, one addressing the ABB opening (Haidar et al., 2021) and the other mapping the inversion-related structures off-Algeria (Leffondré et al., 2021), both being constrained by a set of deep penetration multi-resolution seismic profiles cross-correlated with magnetic, gravimetric and bathymetric data. 

The deep ABB has been subdivided into 4 zones with relatively distinct geodynamic evolutions, as demonstrated by variations in pre-Messinian sedimentary infill thickness and basement depth : (1) the oldest, fan-shaped oceanic basin to the east (off-Jijel), formed during the Langhian-Serravallian after collision of the Kabylian blocks with the stretched African margin; (2) the shallower and younger Hannibal thinned continental domain (HD), intruded by intense post-collisional magmatic activity during the Upper Serravallian - Lower Tortonian; and ever-younger to the west, (3) the central-western (off-Algiers-Tipaza) and (4) westernmost zones, formed from the Tortonian to the Lower Messinian in response to the westward retreat of the Gibraltar slab and the concomitant migration of the Alboran block by propagation of vertical tears along a STEP (Subduction Transform Edge Propagator) type margins.

The tectonic inversion is characterised by long-wavelength of flexure (>100km) of the ABB towards the Algerian margin and/or buckling of shorter wavelengths (≈30km). The central (HD) and central-eastern (off-Jijel) zones are dominated by flexure, whereas buckling is dominant in the central-western zone. Further, the easternmost (off-Annaba) and westernmost zones exhibit a combination of flexure and buckling. Except in the westernmost zone, characterized by low deformation on a single fault, the margin toe consistently displays inversion-related faults systems consisting of 3 to 4 south-dipping and sub-parallel thrust faults.

By comparing the zonation of the deep ABB and the zones with different responses to inversion, we evidence a similar zonation of the margin, with only slight differences likely resulting from data density variations. To the east, the old and wide fan-shaped basin has favored the development of a significant flexural response, whereas the young westernmost zones, narrower and bordered by STEP-faults, evidence a combination of buckling and short-wavelength of flexure. The HD is a complex zone with a shorter wavelength of flexure compared to the eastern zone, probably related to magmatic activities affecting the potentially continental crust. Our results suggest that if initial zonation persists, several parameters may be involved in the control of the inversion mode. These parameters may include the opening-related structural inheritance, the oceanic lithosphere composition, as well as the age and former structures of the margin.

How to cite: Haidar, S., Leffondré, P., Déverchère, J., Graindorge, D., Klingelhoefer, F., Arab, M., Medaouri, M., and Beslier, M.-O.: New insights on the relationship between inherited structures of the opening of the Algero-Balearic basin and recent inversion of its southern margin, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12611, https://doi.org/10.5194/egusphere-egu22-12611, 2022.

EGU22-13052 | Presentations | TS4.1

Connecting subduction, extension, and shear localization across the Aegean Sea and Anatolia 

Sylvain Barbot and Jonathan Weiss

The Eastern Mediterranean is the most seismically active region in Europe due to the complex interactions of the Arabian, African, and Eurasian tectonic plates. Deformation is achieved by faulting in the brittle crust, distributed flow in the viscoelastic lower-crust and mantle, and Hellenic subduction, but the long-term partitioning of these mechanisms is still unknown. We exploit an extensive suite of geodetic observations to build a kinematic model connecting strike-slip deformation, extension, subduction, and shear localization across Anatolia and the Aegean Sea by mapping the distribution of slip and strain accumulation on major active geologic structures. We find that tectonic escape is facilitated by a plate-boundary-like, trans-lithospheric shear zone extending from the Gulf of Evia to the Turkish-Iranian Plateau that underlies the surface trace of the North Anatolian Fault. Additional deformation in Anatolia is taken up by a series of smaller-scale conjugate shear zones that reach the upper mantle, the largest of which is located beneath the East Anatolian Fault. Rapid north-south extension in the western part of the system, driven primarily by Hellenic Trench retreat, is accommodated by rotation and broadening of the North Anatolian mantle shear zone from the Sea of Marmara across the north Aegean Sea, and by a system of distributed transform faults and rifts, including the rapidly extending Gulf of Corinth in central Greece and the active grabens of western Turkey. Africa-Eurasia convergence along the Hellenic Arc occurs at a median rate of 49.8 mm/yr in a largely trench-normal direction, except near eastern Crete where variably-oriented slip on the megathrust coincides with mixed-mode and strike-slip deformation in the overlying accretionary wedge near the Ptolemy-Pliny-Strabo trenches. Our kinematic model illustrates the competing roles the North Anatolian mantle shear zone, Hellenic Trench, overlying mantle wedge, and active crustal faults play in accommodating tectonic indentation, slab rollback, and associated Aegean extension. Viscoelastic flow in the lower crust and upper mantle dominate the surface velocity field across much of Anatolia and a clear transition to megathrust-related slab pull occurs in western Turkey, the Aegean Sea, and Greece. Crustal scale faults and the Hellenic wedge contribute only a minor amount to the large-scale, regional pattern of Eastern Mediterranean interseismic surface deformation.

How to cite: Barbot, S. and Weiss, J.: Connecting subduction, extension, and shear localization across the Aegean Sea and Anatolia, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13052, https://doi.org/10.5194/egusphere-egu22-13052, 2022.

EGU22-65 | Presentations | TS7.4

Middle Permian calc-alkaline basalts and ferroan rhyolites in the Istanbul Zone, NW Turkey: Evidence for Permo-Triassic subduction 

Cumhur Babaoğlu, Gültekin Topuz, Aral Okay, Serhat Köksal, Jia-Min Wang, and Fatma Köksal

Middle Permian bimodal volcanic rocks exposed in the Kocaeli Peninsula represent the first igneous event in the entire Paleozoic record of the Istanbul Zone together with coeval acidic intrusions reported from other parts of the zone. These volcanic rocks crop out as intercalations at the lower horizons of Permian-Earliest Triassic fluvial sedimentary rocks and mainly include basalts and rhyolites with subordinate andesites and rhyolitic tuffs. The basalts were derived from 1-3% partial melting of spinel peridotite in the lithospheric mantle; their high Mg-numbers (Mg# = 63-68) along with Ni (85-136 ppm) and Cr (198-240 ppm) concentrations point to derivation from near-primary mantle melts with minor fractionation. These rocks did not undergo low-pressure plagioclase crystallization based on the lack of a Eu anomaly (Eu/Eu* = 0.95-0.99). Their vesicles are filled by secondary calcite, epidote, pumpellyite, albite and chlorite due to hydrothermal alteration under subgreenschist facies conditions whereby temperatures ranged between 250-300°C. The rhyolites are ferroan [FeO*/(FeO*+MgO) = 0.87-0.96], characterized by high Zr concentrations (279-464 ppm) and compositionally similar to A2-type granitic magmas. Incompatible trace element ratios, rare earth element patterns, initial εNd isotopic data along with temperatures of the rhyolitic melts and absence of inherited zircons in the rhyolites collectively suggest that the rhyolites were derived from fractional crystallization of some basaltic melts in a crustal magma chamber with plagioclase fractionation and minor crustal contamination while the basalts were directly derived from the lithospheric mantle and reached the surface with negligible fractionation. Both volcanic rocks display diagnostic features of subduction-zone melts such as (i) medium- and high-K calc-alkaline affinity and (ii) enrichment in large-ion lithophile elements (LILE) but depletion in high-field strength elements (HFSE) (e.g., Nb-Ta troughs). U-Pb dating of zircon grains extracted from one rhyolite sample yielded a concordia age of 262.7 ± 0.7 Ma (2σ) (Capitanian). The observation that the rhyolites occur near the base of the associated sedimentary rocks places a tight constraint on the age of deposition of these deposits. The bimodal nature of the volcanic rocks, A2-type signature of the rhyolites, local stratigraphic record and data from regional geology (e.g., possible correlation with Late Permian-Early Triassic A-type rift-related granites in Carpathians and Balkans) all indicate an extensional event in the region which started in Middle Permian and resulted in the deposition of Early Triassic quartz sandstones. This extension seems to have taken place above a subduction zone developed in response to a Late Paleozoic-Triassic ocean floor (Paleo-Tethys) dipping northward beneath Laurasia, as evidenced by Permo-Triassic accretionary melanges restricted to Sakarya Zone. In conclusion, geochronological, geochemical and regional data provide additional evidence that the Paleo-Tethys Ocean was subducting northward beneath Laurasia during Permian time.

How to cite: Babaoğlu, C., Topuz, G., Okay, A., Köksal, S., Wang, J.-M., and Köksal, F.: Middle Permian calc-alkaline basalts and ferroan rhyolites in the Istanbul Zone, NW Turkey: Evidence for Permo-Triassic subduction, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-65, https://doi.org/10.5194/egusphere-egu22-65, 2022.

EGU22-322 | Presentations | TS7.4

Paleozoic development of OIB and see-mounts in the Turkestan Ocean within the Khaidarkan and Ulug-Too deposits, South Tianshan (STS) 

Baiansuluu Terbishalieva, Oleh Hnylko, Larysa Heneralova, and Johanne Rembe

The study area is situated in the Ulug-Tau and Khaidarkan gold-antimony-mercury deposits in the South Tienshan (STS). Together with Khadamzhai, Chauvai, and Abshyr deposits, they can be grouped into one ore province. The STS consists mainly of middle and late Paleozoic marine sedimentary rocks, which were deposited in the Turkestan Ocean and on the adjacent continental margins. They crop out along with subordinate metamorphic rocks, arc-related and intraplate volcanic suites, and ophiolites. Various lithologies were juxtaposed together in an accretionary prism during the late Carboniferous - early Permian closure of the Turkestan Ocean.

In the investigated area, Late Silurian to Devonian limestones of the Aktur carbonate platform cover both the shales of the Pulgon Formation (Fm.) (Zarhar-Say) and the basalts with gabbro bodies. Gabbro specimens were sampled for absolute age determination by amphibole 40Ar/39Ar geochronology. Volcanic rocks related to the basement of the Silurian-Carboniferous Akturian carbonate platform, part of the regional nappes of Osh-Uratyube, have been studied by Biske et al., (2019) and our group. The nappe sits on top of basaltic rocks of the Chonkoy Fm. and andesites, tuffs, and carbonate rocks of the Dedebulak Fm. In the latter unit, the volcanic suite forms the lower member which is overlain by Cambrian limestone and dolomite with intercalations of radiolarite (upper member). The volcanic rocks at the base of the Aktur carbonate platform succession indicate the Early Paleozoic geodynamic situation in the Turkestan Ocean as well as about the structure of the Khaidarkan and Ulug-Too gold-antimony-mercury deposits. The Ulug-Tau orefield is situated along the mélange zone at the base of the Aktur nappe.

Results of geochemical and geochronologic analyses (in progress) show that the basalts and basaltic andesites of the lower member of the Dedebulak Fm. formed in an island-arc setting. These volcanic rocks confirm the existence of Early Paleozoic island arcs in the Turkestan Ocean. In a later stage, those arcs possibly died out and were overlapped by carbonate platforms. For the Aktur carbonate platform, it can be assumed that it was detached from the Cambrian island arc basement during the Late Carboniferous and was added to the accretionary prism as the Aktur Nappe. The Cambrian island arc basement (Dedebulak Fm.) formed another thrust-sheet unit as part of the accretionary prism. Plastic Silurian shales and other sediments, primarily located between the Aktur carbonate platform sediments and the Cambrian island arc volcanic rocks, were incorporated into the polymictic mélange.

 

How to cite: Terbishalieva, B., Hnylko, O., Heneralova, L., and Rembe, J.: Paleozoic development of OIB and see-mounts in the Turkestan Ocean within the Khaidarkan and Ulug-Too deposits, South Tianshan (STS), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-322, https://doi.org/10.5194/egusphere-egu22-322, 2022.

EGU22-394 | Presentations | TS7.4

Origin of the metamorphic flysch sequence of the Strandja Massif (NW Turkey) in the Tethyan Realm: insights from new age and structural data 

Ali Akın, Gürsel Sunal, Boris Alexeevich Natal'in, and Namık Aysal

The Strandja Massif is a key location for understanding the Paleozoic and Mesozoic tectonic evolution of the Tethyan Realm in the NW Turkey. Some researchers have suggested that the Strandja Massif is a part of the Cimmerian continent, but others consider it as a section of the southern passive continental margin of the Eurasia. Traditionally the massif is divided into two tectono-stratigraphic units: 1) Pre-Permian crystalline basement and 2) Mesozoic sedimentary cover. However, the ages of the lithostratigraphic units have been significantly revised following the recent geochronological studies. Structural relations between these units are not simple and should be re-examined carefully. Our previous studies have shown that the crystallization time of the magmatic rocks and sedimentation ages of the rocks range from late Proterozoic to Permian especially at the east of the Strandja Massif. In this study, the Serves metagreywacke sporadically containing metabasic rocks and Kumlukoy quartz-rich metasandstones are investigated at the north of the Kıyıköy town, in order to check the first studies that assigned them to the Jurassic and Cretaceous cover deposits. These units stretch along the Black Sea coast and reveal significant differences with units that are exposed to the south. Particularly the Serves unit consists of alternation of lithic metasandstones, schists, and phyllites whereas metaconglomerate layers, marble and dolomite bodies are common among Jurassic rocks exposed in the south. Detrital zircon studies carried on the metasandstone reveal that the sedimentation should be younger than Visean-Serpukhovian, because the youngest U-Pb zircon age population obtained are between ~338 and 327 Ma. Considering widespread late Carboniferous magmatism (~312-306 Ma) in the Strandja Massif and bereft of such magmatics constrain deposition of this unit between ~327 and 312 Ma (early-middle Pennsylvanian). In contrast, the Kumlukoy Unit has quartz-rich metasandstones and it has lower metamorphic degree than the Serves Unit. The detrital zircons of these metasandstones, which were considered as Cretaceous in the previous studies, indicate that the sedimentation interval of the unit is younger than latest Permian (~256 Ma). According to the detrital ages obtained the Kumlukoy metasandstone represent a higher stratigraphical position than the Serves metagreywacke. The Kumlukoy metasandstone is most probably the equivalent of the Triassic metaclastics reported in the cover units of the NW Strandja Massif. Whereas the age and petrography of the Serves metagraywacke are similar to the Mahya Complex and Yavuzdere Arc which was interpreted as a paired magmatic arc-accretionary prism unit. Another interpretation is that the Serves Unit predates the Mahya Complex and Yavuzdere Arc and all of them represents a long-lasting subduction and accompanying accretion events in the late Paleozoic history of the Strandja Massif, namely the Silk-road Arc.

How to cite: Akın, A., Sunal, G., Natal'in, B. A., and Aysal, N.: Origin of the metamorphic flysch sequence of the Strandja Massif (NW Turkey) in the Tethyan Realm: insights from new age and structural data, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-394, https://doi.org/10.5194/egusphere-egu22-394, 2022.

EGU22-452 | Presentations | TS7.4

A new set of overprinting slip-data along Manisa Fault in Aegean Extensional Province, Western Anatolia 

Taner Tekin, Taylan Sançar, and Bora Rojay

Interplay between the dynamic effects of the northward subduction of the African plate beneath the Aegean continental fragment and the North Anatolian dextral strike slip fault to the north caused a complex large-scale extensional crustal deformational domain, named Aegean extensional province.

The Gediz-Alaşehir Graben (GAG), being in that large scale extensional terrain, is a NW-SE trending extensional basin developed to the north of K. Menderes Graben (KMG). NW-SE trending Manisa fault is one of the important elements of the GAG, displaying active fault geomorphology.

The slip data were collected from the high angle normal faults, Manisa fault, controlling the Quaternary configuration and faults that are cutting through the Miocene sequences. Angelier’s reverse inversion method (WinTensor) was carried out to differentiate the deformational phases acting on the Manisa fault, based on σ1 - σ3 relation and θ ratio.

The Manisa fault is a high angle normal and dipping towards NE where the final dip-slip motion overprinted onto strike-slip motion. The analysis of the fault slip data simply implies an almost NNW-SSE and NE-SW, two extensional periods acted in the region possibly following Early Miocene contractional period since post-Oligocene. The Plio-Quaternary NNW-SSE extension overprinted onto almost ENE-WSW compression (dextral strike-slip data) which is finally overprinted by the NE-SW to NW-SE multi-directional extension in Aegean region.

To sum up; final phase of the intermittent extensional deformation, NE-SW to NW-SE multi-directional extension, superimposed on the older contractional systems, evolved under the control of North Anatolian strike-slip shear in north and southern Aegean subduction in the south with a cumulative regionwide 30° counterclockwise rotation of western Anatolia since latest Miocene or the contractional data might be possibly inherited from a strike slip structure at depth (“İzmir-Balıkesir transfer zone or Tear”) or else might be evolved along the edges of block boundaries of rotated fault domains.

Key words: Aegean extensional province, Manisa fault, normal faulting, strike-slip faulting.

How to cite: Tekin, T., Sançar, T., and Rojay, B.: A new set of overprinting slip-data along Manisa Fault in Aegean Extensional Province, Western Anatolia, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-452, https://doi.org/10.5194/egusphere-egu22-452, 2022.

EGU22-568 | Presentations | TS7.4

Arabia-Eurasia Collision and The Geodynamic Models for Plateau Uplift in Turkish-Iranian Plateau 

Uğurcan Çetiner, Jeroen van Hunen, Oğuz Göğüş, Mark Allen, and Andrew Valentine

Orogenic plateaux, the broad high elevation regions of Earth, are mainly formed by plate convergence/shortening and in some cases, there is (hot) mantle support for their formation. Two major examples at present are the Tibetan and Turkish-Iranian plateaux. For instance, Turkish-Iranian plateau, is a consequence of the continental plate collision between Arabia and Eurasia, which began at ~34-25 Ma and continues to the present day. The plateau can be regarded as two distinct entities, with a boundary at roughly the political border between Turkey and Iran. While there have been studies to explain the uplift history, lithospheric/crustal structure and associated magmatism, currently, the mechanisms behind the plateau growth are not well understood. The western region, also known as the East Anatolian Plateau, has a tectonic plate structure with a near-normal crustal thickness (~35-40 km) and a markedly thinned mantle lithosphere (a few 10s of km in thickness). This suggests that, to achieve its regional elevation of ~2 km there is likely considerable support from the underlying hot asthenospheric mantle. In the east, the crust of most of Iran is thicker, up to ~65 km, and it is underlain by a variable but thicker mantle lithosphere (commonly >100 km thick). It is intriguing why these two regions have similar surface elevations (2-3 km on average) and regional geomorphology, despite predicted lithospheric structures. This study will apply new class of geodynamic models to understand how such plateaux form in response to plate collision/convergence and possible mantle upwelling/support. By comparing models with different setups (varying lithospheric thicknesses, strength profiles etc.) suggested by the natural case studies, this study will provide a more general assessment of controls on plateau growth with 2-D and 3-D perspectives in the context of Arabia-Eurasia collision. Further, the study will also help to explain the role of the forces that generate dynamic topography in the evolution of such geologic structures.

How to cite: Çetiner, U., van Hunen, J., Göğüş, O., Allen, M., and Valentine, A.: Arabia-Eurasia Collision and The Geodynamic Models for Plateau Uplift in Turkish-Iranian Plateau, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-568, https://doi.org/10.5194/egusphere-egu22-568, 2022.

EGU22-765 | Presentations | TS7.4

Fracture networks in a Late Jurassic Arab-D reservoir outcrop analogue, Upper Jubaila Formation, Saudi Arabia. 

Yuri Panara, Pankaj Khanna, Viswasanthi Chandra, Thomas Finkbeiner, and Volker Vahrenkamp

Fracture networks are responsible for channeling flow in subsurface reservoirs (hydrocarbon or geothermal) and markedly impact well productivity and ultimate recovery. Yet, methods to provide fracture (network) distribution at sufficiently high resolution are still lacking – mainly because subsurface data do not adequately capture natural fractures at the mesoscale (cm to m in size) beyond the well bore. In this study we utilize an outcrop analogue to bridge this scale gap.  Over the last decades 3D digital photogrammetry drastically improved in terms of measurement amount and quality enabling the collection of large data sets over wide outcrops. Such data provide critical insights on depositional and structural heterogeneities that may then be utilized for reservoir analogue simulations. Subject of this study is an outcrop in Wadi Laban located in SW Riyadh, Saudi Arabia, along the Mecca-Riyadh highway. We constructed a reliable 3D Digital Outcrop Model (DOMs) at high resolution of the Late Jurassic (Kimmeridgian) Upper Jubaila Formation following a ~800m long escarpment without any occlusion or bias. In particular we reconstruct a colorized dense point cloud using the high-quality setting of Agisoft Metashape© software. We investigated DOMs with CloudCompare© software (CloudCompare, 2021) to map the visible fractures 3D exposure and infer general fractures pattern. Four fracture sets are evident in the data: the predominant sets 1 and 2 are roughly E-W oriented, while sets 3 and 4 are roughly NNE-SSW oriented. Most fractures are strata bound and sub-vertical in nature. Fracture intensity (P21) analysis along the entire outcrop enables us to describe and quantify lateral and vertical variability. Laterally natural fractures are concentrated in corridors with a spacing of few tens of meters. Vertically, fracture intensity is heterogeneous. Furthermore, we found a strong correspondence between fracture intensity on the outcrop and a porosity log acquired on core samples from a well drilled only a few meters behind the outcrop. The outcome of this study provides a step forward for the comparison of outcrop and subsurface fractures, and expand the application of outcrop data to generate high resolution and fidelity reservoir analogue models.

How to cite: Panara, Y., Khanna, P., Chandra, V., Finkbeiner, T., and Vahrenkamp, V.: Fracture networks in a Late Jurassic Arab-D reservoir outcrop analogue, Upper Jubaila Formation, Saudi Arabia., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-765, https://doi.org/10.5194/egusphere-egu22-765, 2022.

EGU22-1162 | Presentations | TS7.4

Subsidence and Sedimentation Rates of the Beni Suef Basin, Egypt: Insights From the Burial and Thermal History Modeling 

Ahmed Yousef Tawfik, Robert Ondrak, Gerd Winterleitner, and Maria Mutti

The Beni Suef Basin, a rift basin in north-central Egypt, was formed in response to the NeoTethys and Atlantic oceans opening and the associated tectonic motion between Africa and Eurasia during the Early Cretaceous. It is bisected by the Nile Valley into the East and West of the Nile Provinces (EON and WON) and comprises a mixed siliciclastic-carbonate succession ranging from the Albian to the Oligocene.

Burial and thermal history modeling was performed to investigate the subsidence and sedimentation rates in the context of the tectonic evolution of the basin. Tareef-1x well from the EON and Fayoum-1x well from the WON were selected for this study, where the input data and the boundary conditions were incorporated based on the available well reports and literature.

The results show that during the Albian syn-rift phase, sedimentation was initiated slightly later with low burial rates of about 33 m/My in the EON compared with high sedimentation rates of about 210 m/My in the WON. The post-rift phase was characterized by rapid thermal subsidence accompanied by relatively moderate sedimentation rates of around 117 m/My in the EON and 97 m/My in the WON. By the Late Cretaceous, an erosional uplift occurred and culminated through the entire Paleocene resulting in the removal of some parts of the Late Cretaceous Khoman Formation from both sides of the basin. Subsidence had resumed during the Eocene due to extensional tectonics with elevated average sedimentation rates of approximately 145 m/My in the EON compared with relatively low sedimentation rates of approximately 74 m/My in the WON. These phases are interrupted by a hiatus period during the Late Eocene-Oligocene in the EON, while the WON has continued subsiding and resulted in the deposition of the Oligocene Dabaa Formation. The Miocene thermal uplift represents the last tectonic phase, which led to significant erosion from the Eocene Apollonia Formation in the EON and the Oligocene Dabaa Formation in the WON.

The implications on the hydrocarbons potentiality were also investigated through the thermal history modeling, where we found that the Turonian Abu Roash “F” source rock exists in the early oil window with a transformation ratio of about 20 % across the entire basin. While the Lower Kharita shale source rock, which is only deposited in the WON, has reached the late oil window with a transformation ratio of approximately 70 %.

In summary, sedimentation began slightly later in the EON (Middle to Late Albian) compared with the WON (Early Albian), where the paleo basement high has hindered the deposition of the Early Albian Lower Kharita shale in the EON compared with the WON, thus caused a delay at the beginning of the deposition. The different sedimentation rates across the basin could be attributed to various factors such as the amount of sediment supply, climate conditions, different slopes across the basin, and /or lithology, which need to be addressed in further research.

How to cite: Tawfik, A. Y., Ondrak, R., Winterleitner, G., and Mutti, M.: Subsidence and Sedimentation Rates of the Beni Suef Basin, Egypt: Insights From the Burial and Thermal History Modeling, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1162, https://doi.org/10.5194/egusphere-egu22-1162, 2022.

EGU22-1319 | Presentations | TS7.4

Assessing the geometry of the Main Himalayan thrust in central Nepal: Insights from thermokinematic modelling 

Suryodoy Ghoshal, Nadine McQuarrie, Delores M. Robinson, Katherine Huntington, and Todd A. Ehlers

The 2015 Gorkha earthquake reignited an existing debate about whether geometric barriers on faults play a role in containing the propagation of ruptures. Models suggest that the extent of the Gorkha earthquake rupture, and of other historical earthquakes were controlled by the locations of ramps in the Main Himalayan thrust (MHT), notably on the western edge of the rupture. The existence of such a pronounced lateral boundary to the west of the Gorkha epicenter is supported by an offset in the surface trace of the Main Central thrust (MCT), closely followed by an offset in the distribution of young (<5 Ma) muscovite 40Ar/39Ar (MAr) ages. However, the zircon (U-Th)/He (ZHe) and apatite fission track ages show more linear east-west distributions over the same region, as does Physiographic Transition 2 (PT2). We explore the formation of these relationships by combining forward-modeled balanced cross-sections through the Marsyangdi, Daraundi, and Budhi Gandaki valleys in central Nepal, and investigate the continuity of active structures across the western portion of the Gorkha rupture. The sequential kinematics of each of these sections are combined with a thermokinematic model (PECUBE) to evaluate the exhumation and cooling histories of the rocks exposed at the surface. We gauge the validity of these models by comparing their predicted cooling ages to measured ages, discarding those that do not match the measured distribution of cooling ages.

Our 3D models show that the offset in the surface geology along the Daraundi is due to a shorter (by 1/3) Trishuli thrust sheet, that has been completely translated to the south of the modern ramp and folded by the Lesser Himalayan duplex. Similarly, the southern extent of the reset MAr ages is also controlled by these relationships requiring observed surface offsets to be the result of changes in the hanging wall rocks translated over the ramp, rather than changes in the geometry of the modern ramp. Notably, the continuity and location of the modern MHT ramp is evidenced by the linear distribution of the youngest ZHe and AFT ages, which are most sensitive to the location of the active ramp. Additionally, the out-of-sequence thrust responsible for PT2 soles directly into the modern ramp during its proposed period of activity at ~1.2 Ma, resulting in the highly linear trace of PT2, running parallel to the location of the ramp. These linear relationships and their reproducibility in thermo-kinematic models argue strongly against any geometric offsets in the modern MHT ramp that have been proposed to limit rupture propagation in central Nepal.

How to cite: Ghoshal, S., McQuarrie, N., Robinson, D. M., Huntington, K., and Ehlers, T. A.: Assessing the geometry of the Main Himalayan thrust in central Nepal: Insights from thermokinematic modelling, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1319, https://doi.org/10.5194/egusphere-egu22-1319, 2022.

EGU22-1665 | Presentations | TS7.4

Coeval volcanism and rotation of Neotethyan oceanic crust in the Oman ophiolite – fact or fiction? 

Antony Morris, Anita Di Chiara, Mark Anderson, Chris MacLeod, Louise Koornneef, James Hepworth, and Michelle Harris

The upper crustal volcanic section of the Oman suprasubduction zone ophiolite is divided into an older V1 sequence, overlain by slightly younger V2 lavas and (in places) a final V3 sequence. Paleomagnetic data from the V1 and V2 sequences of the northern massifs of the ophiolite have been used previously to infer that clockwise rotation of the Oman lithosphere began while the upper crust was actively accreting, with V1 lavas apparently more rotated than the overlying V2 units. This inference has been largely accepted by the geological community and has influenced models for the spreading history and geodynamic evolution of the Oman ophiolite.

Here we present new paleomagnetic data from well-exposed and structurally well-constrained volcanic sequences in the Salahi and Fizh massifs of the ophiolite that discredit this interpretation. In contrast to previous studies that employed standard structural tilt corrections, we use a net tectonic rotation approach to determine rotation parameters, taking confidence limits on input variables into account using Monte Carlo modelling. Importantly, we correct the magnetization direction and structural orientation of the older V1 lavas for the effects of the net tectonic rotation of the younger V2 lavas prior to calculating rotation parameters for the older units. Results demonstrate that both massifs rotated ~120° clockwise around steeply-plunging rotation axes after eruption of the V2 lavas. This rotation occurred during roll-back of the Neotethyan subduction zone in response to impingement of the Arabian margin with the trench. Early rotation of the Salahi V1 lavas around shallowly-plunging, broadly ridge-parallel axes indicates only simple tilting between eruption of the V1 and V2 sequences, and no early rotation of the Fizh V1 lavas is required at all. These new constraints on the evolution of the ophiolite therefore provide no evidence of vertical axis rotation during accretion of the Oman volcanic sequences.

How to cite: Morris, A., Di Chiara, A., Anderson, M., MacLeod, C., Koornneef, L., Hepworth, J., and Harris, M.: Coeval volcanism and rotation of Neotethyan oceanic crust in the Oman ophiolite – fact or fiction?, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1665, https://doi.org/10.5194/egusphere-egu22-1665, 2022.

The northern extent of the supercontinent Gondwana in the late Neoproterozoic-Cambrian is not well defined. In most localities the continental margin is covered by thick sedimentary successions, formed following the successive rifting of Tethyan Oceans that episodically detached continental terranes from the edge of the supercontinent. East of the Mediterranean, despite the continental continuity between the Arabian-Nubian-Shield (ANS) and the Tauride block (a Cadomian terrane), the original transition between the two crustal domains is inaccessible and remains obscured. In Israel, investigations of Late Ediacaran, late-stage igneous intrusions of the ANS in the South, together with granulite xenoliths from the lower crust in the North, allow us to probe into the North-Gondwana edge in the late Neoproterozoic and envisage its transition towards the peri-Gondwana Cadomian realm, as well as the evolution of the North Gondwana crust subsequently to the Neoproterozoic. Geochronology and isotopic geochemistry of alkaline intrusions in the Amram massif (southern Israel) as well as doleritic intrusions in the late Neoproterozoic Zenifim Formation (subsurface of south-central Israel) has revealed an igneous and thermal imprint at ca. 550 Ma recorded by the reset of apatite U-Pb ages, together with additional apatite U-Pb dates taken to represent crystallization. Nd and Hf isotopes in apatite, zircon and whole rock also show the ca. 550 Ma intrusions are isotopically distinct from the ANS and resemble Cadomian magmatism in the Taurides. Granulite xenoliths from the lower crust under the lower Galilee (North Israel) contain abundant zircons of distinct U-Pb-Hf properties. These include detrital grains remnant of Neoproterozoic sediment that was subducted and relaminated to the lower crust, late Carboniferous zircons (peaking at 300 Ma) with contrasting εHf(t) signatures, some of which represent syn-Variscan magmatism, and zircons with the age of the host Pliocene basalt. We demonstrate that the Cadomian (ca. 550 Ma) igneous and thermal imprint on the North ANS may have been driven by proto-Tethys subduction that brought about sediment relamination to the North Gondwana lower crust in the latest Neoproterozoic. The late Carboniferous ages recorded in the xenoliths involve both the reworking of depleted ANS basement as well as the relaminated sediment in the means of metamorphism and minor magmatism. Carboniferous thermal disturbance was associated with the formation of continental scale basin and swell architecture across present-day N Africa, Arabia and Iran, and the development of ‘Hercynian unconformities’ in these areas, that were located at the time south of the passive(?) margin of Paleo-Tethys.

How to cite: Abbo, A., Avigad, D., Gerdes, A., and Morag, N.: The Cadomian and Variscan record of the Gondwana margin in Israel: Protracted Crustal Evolution between the Arabian-Nubian Shield and multiple Tethyan Oceans, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1777, https://doi.org/10.5194/egusphere-egu22-1777, 2022.

The Tethys-derived Semail Ophiolite had formed during the Cenomanien-Turonian. Along with deep-sea sediments, it was obducted onto the Arabian Plate as it was still young, hot and buoyant. Thrusting and loading triggered the formation of the Aruma Foreland system consisting of a foredeep, a forebulge and a backbulge basin.

The studied succession represents the uppermost part of the Permo-Mesozoic shallow marine shelf sequence of the Arabian Platform, which is blanketed at an angular unconformity by shales of the Late Cretaceous Muti Formation of the Aruma (foreland) Group. The structural position of the succession is on the forebulge which is characterized by eroded Cretaceous and Jurassic shelf formations of the Arabian Platform (Wasia-Aruma Break).    

We identified two forebulge successions. Both display repetitive lithofacies, beginning with (1) shallow subtidal massive/poorly bedded bioclastic wackestones to floatstones, followed by (2) peloidal grainstones, (3) ferruginous crusts and (4) shallow marine ferruginous oolites. From base to top, both successions record an overall shallowing-up trend. At the same time, the relative sedimentation rate decreases in the same direction. The coarse-grained massive facies may have been deposited on a regular slope which was well-supplied with bioclasts. The finer grained grainstone facies and their peloids indicate a lower sedimentation rate, reflecting the transition form a regular slope to a forebulge on which in the next step sediment condensation occurred (crusts) and chemical precipitation of ferruginous material (crusts and oolites). Each forebulge succession is capped by clayey material.

The similar facies development of the two successions suggests repetitively similar depositional and tectonic conditions. As both sequences occur at the same site, two vertical forebulge developments are concluded.

The ferruginous crusts formed under at least slightly reducing conditions, associated with minor water-deepening events. Both oolites contain chlorite, hematite, quartz, calcite and apatite. The nuclei of the ooids are often chlorite or hematite fragments, having most-likely derived from preexisting ferruginous crusts. Iron oxyhydroxides and clinochlore of the oolites reflect bathymetric changes to more oxidizing aqueous conditions, associated minor water-shallowing events.

Fe-rich anoxic to sub-oxic sea water of the marine foredeep was the Fe source for the crusts and oolites, coinciding with (1) a high rate of global Cretaceous oceanic crust production, (2) related hydrothermalism and (3) the regional proximity of an active spreading axis. Fe was likely stabilized in ocean water as Fe colloids and organic Fe complexes.

How to cite: Mattern, F., Pracejus, B., Scharf, A., Frijia, G., and Al-Salmani, M.: Two Cretaceous forebulge successions in the Oman Mountains, triggered by the obducted Semail Ophiolite, identified by the facies analysis of limestones, ferruginous crusts and ferruginous oolites, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2123, https://doi.org/10.5194/egusphere-egu22-2123, 2022.

EGU22-2493 | Presentations | TS7.4

Seismic structure of a Tethyan back-arc: transdimensional ambient noise tomography of the Black Sea lithosphere 

Laura Petrescu, Felix Borleanu, and Anica Placinta

The Black Sea is the largest European back-arc basin connected to the subduction and final closure of the Tethys ocean. Its origin and type of crust are widely debated, with contrasting views suggesting it is either a relic of Paleotethys or a rifted back-arc basin formed within the thick and cold Precambrian lithosphere. To investigate the structure of this atypical intra-continental basin, we constructed the highest resolution seismic tomography of the region using the latest techniques of probabilistic inversion of ambient noise data recorded at seismic stations around the sea. Our results indicate the presence of thinned continental crust beneath the basin, likely of Precambrian lithospheric origin, thus invalidating the existence of either a relic Paleotethys fragment or younger oceanic crust. Extension and rifting probably exploited pre-existing sutures, but the rheologically strong lithosphere resisted transition to seafloor spreading. Seismic anisotropy shows complex paleo-deformational imprints within the crust and upper mantle related to the closure of Tethys. Extension caused by subduction roll-back generated anisotropic lithospheric fabric parallel to the rifting axis within the thinnest sections of the crust in the western basin. The eastern part developed on a distinct lithospheric domain that preserves paleo-extension anisotropy signatures in the form of lower crustal viscous deformation. Further south, anisotropy orients along the Balkanide-Pontide collisional system that records the final stages of Neotethys closure. Our results place key constraints on the type of deformations that occurred throughout the Tethyan realm, with fundamental implications for the development and evolution of back-arc basins and continental break-up. 

How to cite: Petrescu, L., Borleanu, F., and Placinta, A.: Seismic structure of a Tethyan back-arc: transdimensional ambient noise tomography of the Black Sea lithosphere, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2493, https://doi.org/10.5194/egusphere-egu22-2493, 2022.

EGU22-3985 | Presentations | TS7.4

Thermal overprinting of Mesozoic shelfal limestones on Jabal Akhdar, Oman 

Bernhard Pracejus, Andreas Scharf, and Frank Mattern

The Jabal Akhdar Dome of the Hajar Mountains (northern Oman) has long been considered to have had no significant thermal overprinting since the start of its doming (Eocene, ~40 to 30 Ma). Only the Semail Ophiolite, obducted during the Late Cretaceous, metamorphosed the overridden sedimentary rocks at its base. However, this is stratigraphically well above the positions of the rocks discussed here. Our findings describe the first evidence for an increased metamorphic alteration of Late Permian, Jurassic and Lower Cretaceous shelfal limestones. Two independent sites were identified, where calcite was either replaced by wollastonite or sulfides. 

 

The calc-silicates, which occur southeast of the Saiq Plateau (stratigraphically above the plateau), contain up to centimeter-sized wollastonite crystals. The conversion into marble has been interrupted, as indicated by relict fossils and ooliths of Jurassic and Lower Cretaceous limestones. So far, the outcrop has been mapped over a length of ~1.2 km. It is dissected by several NW-striking dextral faults in a difficult terrain and, thus, the occurrence may be significantly wider. Wollastonite concentrates in sub-horizontal to gently SE-dipping limestone layers, neighbouring strata may be almost void of it. In places, strong and coarse-grained dolomitisation coincides with decreased wollastonite content. The area is cross-cut by irregular quartz-wollastonite-rich veins.

 

Adjacent to the outcrops are younger quartz-siderite veins, which have almost completely replaced limestone layers (encased wollastonite-carrying limestone relicts). Distal to the mineralisations, the limestones contain decimeter-sized chert nodules. This entire silica-dominated system must have reached 450 ºC in order to form the well crystallised wollastonite. The mostly oxidising character of the environment during overprinting is reflected by fine euhedral hematite grains throughout the examined profile. However, slightly reducing settings promoted the formation of very rare and tiny crystals of erdite (NaFeS2·2H2O) in two places.

 

Sulfides in finely laminated Permian carbonates, which contain fine as well as very coarse-grained black carbonates, occur on the northwestern side of the Saiq Plateau in no longer accessible excavation materials. So far, the search for another outcrop failed, due to the sub-vertical wadi walls near-by. The strongly dominating pyrite is accompanied by trace amounts of sphalerite and less galena. Collectively, sulfides replaced carbonate laminae with fine crystalline impregnations and concentrated in up to decimeter-large lensoid concretionary shapes. Dark carbonaceous laminae and recrystallised coarse-grained materials contain finest graphite flakes. This again indicates temperatures of ~450 ºC, at which the graphite formation started during decarbonisation, also promoting a reducing regime (the sulfides show no signs of oxidation).

 

Our working hypothesis is that the thermal overprint (>450 ºC) coincided with the late Eocene to Oligocene doming event, leading to multiple mafic intrusions. Similar intrusions are known from the Muscat and Batain area and have the same age.

How to cite: Pracejus, B., Scharf, A., and Mattern, F.: Thermal overprinting of Mesozoic shelfal limestones on Jabal Akhdar, Oman, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3985, https://doi.org/10.5194/egusphere-egu22-3985, 2022.

EGU22-4246 | Presentations | TS7.4

Implications for the pre-Alpine evolution of the Eastern Alps – a U/Pb zircon study on the Austroalpine Schladming Nappe 

Isabella Haas, Walter Kurz, Daniela Gallhofer, and Christoph Hauzenberger

The Schladming Nappe, as a part of the Silvretta-Seckau Nappe System of the Eastern Alps, comprises pre-Alpine remnants of crystalline basement rocks which give important information for reconstructing the Variscan and even pre-Variscan history of the Alps.

The Schladming Nappe mainly consists of paragneisses being intruded by subsequently overprinted granitoids. U-Pb zircon ages were acquired through LA-MC-ICPMS to determine the magmatic emplacement of the metagranitoids and constrain the tectono-metamorphic history of the Schladming Nappe.

Within these meta-granitoids, several intrusive events can be distinguished: (1) a Cambrian event with 206Pb/238U zircon mean ages between 496±6.5 and 501±7 Ma, (2) a Late Devonian/Early Carboniferous event with zircon mean ages between 350±5 Ma and 371±5 Ma and (3) a Permian event with zircon mean ages between 261±3 Ma and 263±3.5 Ma. The youngest age group is only found in metagranitoids from the southeastern part of the Schladming Nappe. The tectonic contact to the metapelites of the Wölz Nappe system and therefore the affiliation of these Permian granitoids to the Schladming Nappe, however, is still enigmatic.

The various age groups can also be differentiated by their whole rock geochemistry. While all of the metagranitoids are peraluminous, the Cambrian age group exhibits higher SiO2 values compared to the Late Devonian age group. The Late Devonian age group shows higher contents of CaO, MgO, FeO, Al2O3, as well Sr and Ba and can be further divided into two subgroups, with one depicting a distinct negative Eu-anomaly (EuN/Eu*=0.44-0.69) and the other subgroup lacking one (EuN/Eu*=0.82-1.08). The Permian age group often displays high contents of K2O, Nb and Y.

The Late Cambrian to Early Ordovician metagranitoids can be classified as part of a magmatic arc system, probably belonging to the northern Gondwana margin. The early Variscan granitoids can also be interpreted as part of an active margin. The Permian granitoids show a within plate granite affiliation and can further be interpreted as A-type granitoids, probably related to post-Variscan lithospheric extension.

How to cite: Haas, I., Kurz, W., Gallhofer, D., and Hauzenberger, C.: Implications for the pre-Alpine evolution of the Eastern Alps – a U/Pb zircon study on the Austroalpine Schladming Nappe, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4246, https://doi.org/10.5194/egusphere-egu22-4246, 2022.

Situated between Africa and Eurasia in the eastern Mediterranean, the island of Cyprus has developed on the northern margin of the southern Neotethys by the accretion of three terrains, the Mamonia complex, the Troodos ophiolite, and the Kyrenia terrane. The Kyrenia terrane comprises a tectonic stack of Triassic to Eocene rock units interleaved with basic and acid volcanics and minor metamorphic inliers, alongside an Oligocene-Miocene flysch. Our U-Pb-Hf detrital zircon investigation in the Kyrenia Triassic to Eocene section reveals a large amount of Neoproterozoic zircons (950-600 Ma), alongside Silurian (∼430 Ma), Carboniferous (∼300 Ma), Triassic (∼240 Ma), and Upper Cretaceous (∼85 Ma) zircons. The Precambrian age profile of all three studied units resembles that of Paleozoic sandstones of the Tauride Block, as well as that of Paleozoic and Mesozoic sandstones found across North Africa. It is interpreted as reflecting the reworking of Paleozoic sandstone units from the Taurides or other peri-Gondwanan source. The presence of a substantial proportion of ~300 Ma zircons, as early as in Triassic sediments of the Kyrenia, is of significant interest because Carboniferous magmatism is confined to the Paleotethyan realm which is traced north of the Taurides. Deposition of the Kyrenia sequence closer to a Northern Tethyan province would better fit its detrital zircon signal. The detrital signal of the Kyrenia, indicative for Eurasian terranes north of the Mediterranean, also differs significantly from that of the Mamonia Complex (SW Cyprus) in which only Afro-Arabian sources are distinguished. Thus, in view of its unusual detrital zircon content, the Kyrenia sequence stands out in the Eastern Mediterranean as an exotic rock pile that cannot be straightforwardly correlated with its neighboring geologic environment.

How to cite: Glazer, A., Avigad, D., Morag, N., Güngör, T., and Gerdes, A.: Detrital zircon evidence for exotic elements in the southern Neotethys: A provenance study of Triassic-Eocene rock units in the Kyrenia terrane, Northern Cyprus, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5391, https://doi.org/10.5194/egusphere-egu22-5391, 2022.

EGU22-6471 | Presentations | TS7.4

Formation and contractional reactivation of the NW Sulu Sea (SE Asia) 

Patricia Cadenas and César R. Ranero

Located in SE Asia in between the Palawan and the Philippine islands, the lozenge-shaped Sulu Sea corresponds to a marginal sea that displays a complex seafloor morphology. The NE-SW trending Cagayan Ridge separates a southeastern deep-water domain, which is bounded by the Sulu Trench towards the east, from a shallower and narrower northwestern domain. Interpretations of low-resolution 2D streamer datasets, ODP Leg 124 drilling results, magnetic, geochemical, and geochronological studies, and gravity inversion results led to distinctive tectonic models, with contrasting basin formation mechanisms, and ages of opening and subsequent contractional reactivation. The debates remain because the structure of most of the Sulu Sea and its along-strike structural variability remain underexplored to date.

We focus on this work on the first detailed analysis of the structure and seismo-stratigraphy of the NW Sulu Sea. Based on the reprocessing, calibration of the Silangan-1 exploration borehole, and interpretation of > 5384 km of 2D seismic data along 19 regional profiles of an irregular grid that covers the whole NW Sulu Sea, we identify, map and interpret the seismo-stratigraphic horizons and units, major structures, and rift-related and syn-orogenic depocenters and structural domains. We define six seismo-stratigraphic units in the NW Sulu Sea, consisting of Quaternary to Paleogene sediments, which developed during an early phase of Paleogene to early Miocene extension, a following early to Middle Miocene phase of contraction, and a late Miocene to Quaternary stage of relative tectonic quiescence. While transpressional faults core uplifted basement areas, strike-slip, high-angle and low-angle oblique extensional faults crosscut continental crystalline basement of variable thickness and bound pull-apart basins, half-grabens and sags respectively. The distribution and trend of rift-related depocenters describe a strong structural segmentation and vary along NW-SE and NE-SW oriented zones. Thrust-cored anticlines, inverted transtensional and transpressional faults and mud diapirs deform the sediment pile and control the geometry of syn-orogenic depocenters distinctively across the NW Sulu Sea.

Normal and oblique trending sets of faults controlled the extension and compartmentalized the NW Sulu Sea. Subsequent contractional reactivation differentiated NE and SW basement and sedimentary domains, separated by the NW Sulu Break Elevation. These domains show a contrasting overall architecture, basement thickness, contractional structures and distribution of rift-related and syn-orogenic depocenters. Rift segmentation, and particularly, basement thickness variations, may have conditioned the type and distribution of contractional deformation.

How to cite: Cadenas, P. and R. Ranero, C.: Formation and contractional reactivation of the NW Sulu Sea (SE Asia), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6471, https://doi.org/10.5194/egusphere-egu22-6471, 2022.

EGU22-7096 | Presentations | TS7.4

Geodynamics of long-term continental subduction and Indian indentation at the India-Eurasia collision zone 

Kai Xue, Wouter P. Schellart, and Vincent Strak

India-Eurasia convergence velocities have dropped significantly from ~18 cm/yr in the Late Cretaceous-earliest Eocene to ~4-5 cm/yr since ~50 Ma. The mechanisms of convergence deceleration, continued convergence since ~50 Ma, long-term continental subduction and long-term Indian indentation into Eurasia still remain controversial. Many previous studies consider an external driving force for the long-term convergence, continental subduction and Indian indentation, and the initial India-Eurasia collision as the trigger for the deceleration. In this study, we investigate the mechanism(s) of the abrupt deceleration, the continued convergence, the long-term continental subduction and long-term Indian indentation using buoyancy-driven analog experiments. We conduct three large-scale experiments to simulate the subduction and collision process at the convergent boundary with different boundary conditions at the 660-km discontinuity, including an infinite viscosity step (the lower-upper-mantle viscosity ratio (ηLMUM) is infinitely high), no viscosity step (ηMUM =1) and an intermediate viscosity step. The experiment with infinite ηLMUM shows a deceleration when the slab tip reaches the 660-km discontinuity, while the other two experiments show a deceleration at the onset of continental subduction. Our experiments show that a higher ηLMUM favors a lower velocity drop at the onset of continental subduction, lower convergence velocities, reduced continental subduction and a higher indentation amount, and vice versa. Furthermore, our models suggest that in nature, with an intermediate-high ηLMUM, the negative buoyancy force of both upper and lower mantle slab segments is the main driver of long-term convergence, continental subduction and Indian indentation.

How to cite: Xue, K., Schellart, W. P., and Strak, V.: Geodynamics of long-term continental subduction and Indian indentation at the India-Eurasia collision zone, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7096, https://doi.org/10.5194/egusphere-egu22-7096, 2022.

EGU22-7993 | Presentations | TS7.4

Petrology and Geochemistry of intrusive igneous rock from the Inthanon zone, Northwestern Thailand 

Srett Santitharangkun, Christoph Hauzenberger, Daniela Gallhofer, and Etienne Skrzypek

Large plutons are common within the Inthanon Zone in Northwestern Thailand. These igneous rocks are also known as Central Granitoids Belt in mainland Southeast Asia. They are interpreted to be part of the suture zone between Sibumasu and Indochina and were emplaced mainly in the Upper Triassic.

Here, we present new petrological and geochemical data for the Central Granitoids Belt.  A geochronological study on selected samples will follow.  The sampled granitoids can be separated into three groups: (1) biotite granite, (2) hornblende granite, (3) syenite/monzonite. The samples consist of various light colored to dark grey granitoids due to the type and amount of mafic minerals (biotite or hornblende) present. The general mineral assemblage of all the intrusive igneous rocks is quartz + plagioclase + K-feldspar + biotite + apatite + zircon ± allanite ± titanite ± ilmenite. The biotite granites are mostly composed of biotite aggregates associated with accessory minerals: zircon, ilmenite, and apatite. The syenite/monzonite group usually contains additional clinopyroxene and hornblende. Plagioclase and hornblende of the syenite/monzonite group commonly exhibit a sieve texture.

The biotite granite group is typically peraluminous and belongs to the high-K calk-alkaline to shoshonitic series. The hornblende granite group is mostly peraluminous and of predominantly shoshonitic affinity. The syenite/monzonites are typically metaluminous but also belong to the shoshonitic series. The chondrite normalized rare earth element (REE) patterns are quite similar for all igneous rocks with elevated LREE, pronounced negative Eu anomaly and a flat HREE segment. The granite tectonic discrimination plots after Pearce et al. (1984) classify most samples as syn-collision granites (syn-COLG) and when using the Batchelor and Bowden (1985) discrimination diagram as syn-, late, and post-collisional.

The intrusive igneous rocks from Northwestern Thailand were presumably emplaced in a syn- to post-collisional setting when the Sibumasu block collided with the Sukhothai terrane and was eventually amalgamated to the Indochina block. This led to the closure of the Palaeotethys along the eastern area of the Sibumasu block.

Batchelor, R.A. and Bowden, P. (1985) Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48, 43-55.

Julian A Pearce, Nigel BW Harris, Andrew G Tindle (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-983.

 

How to cite: Santitharangkun, S., Hauzenberger, C., Gallhofer, D., and Skrzypek, E.: Petrology and Geochemistry of intrusive igneous rock from the Inthanon zone, Northwestern Thailand, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7993, https://doi.org/10.5194/egusphere-egu22-7993, 2022.

EGU22-9219 | Presentations | TS7.4 | Highlight

Mapping the extent of seismoturbidites near the southern Dead Sea Fault in the Gulf of Aqaba 

Matthieu Ribot, Sigurjón Jónsson, Yann Klinger, Ulaş Avsar, and Zeynep Bektaş

Despite multiple research efforts since the late 1950’s, many questions regarding the earthquake activity of the Dead Sea Fault (DSF) remain, in particular for its southernmost portion in the Gulf of Aqaba. This is due to its offshore location and little-known interactions with the Red Sea rift system. The emergence of the NEOM city-project in northern Saudi Arabia and the planned King Salman road crossing across the Gulf of Aqaba have made it important to find answers for these questions related to the earthquake hazard of the region. The last major earthquake in the Gulf of Aqaba occurred in 1995 along one of the main strike-slip fault segments in the gulf, bringing both extremities of the fault rupture closer to failure. Studies of the DSF have found that large events along the entire DSF cluster during relatively short active seismic periods lasting about 100-200 years, separated by longer quiescent periods of about 350-400 years. From a tectonic point of view, the time gap between 1995 and the previous major earthquake in AD1588 conforms to this scheme and suggests that the DSF might be ripe for a new earthquake sequence, with the 1995 earthquake as the starter. That said, new results from GPS and InSAR observations have pointed to possible fault creep in the southern part of the gulf, which would significantly decrease the seismic hazard in the area. To explore this possible creep and to test the clustering model, we investigate new sub-bottom profiling data acquired in December 2019 in the Gulf of Aqaba. We aim to map the extent of sand layers present in the different sub-basins of the gulf and to correlate them with seismoturbidite layers found in sediment cores collected in 2018. By looking at the geographic extent of these sand layers, we also aim to define the source of the coarse deposits, or at least, to determine whether they are related to the regular sediment influx or linked to turbidites generated by slope failures during large earthquakes. Our preliminary results indicate that the sub-bottom profiling data allow us to map sand layers up to a depth of about 8 meters. Considering a sedimentation rate in the gulf between 0.2 - 0.4 mm/year, we could be able to gain an overview of the sediment infill of the Gulf of Aqaba over the last 20 ky or more. Even if the resolution of the sub-bottom profiling data is lower than that of the sediment cores, and the assumptions made for the correlation of the sand layers, due to the scattered grid, do not help to constrain properly the source of the deposits, we can still propose a longer-term overview of the earthquake activity and discuss the temporal organization of the large events in the area.

How to cite: Ribot, M., Jónsson, S., Klinger, Y., Avsar, U., and Bektaş, Z.: Mapping the extent of seismoturbidites near the southern Dead Sea Fault in the Gulf of Aqaba, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9219, https://doi.org/10.5194/egusphere-egu22-9219, 2022.

EGU22-9365 | Presentations | TS7.4

Asymmetrical lithospheric necking of Red Sea rift 

Thamer Aldaajani, Hany Khalil, Philip Ball, Fabio Capitanio, and Khalid Almalki

The Red Sea rift exhibits two distinct rifting styles: in the north, the rifting is magma-poor, the crust is hyperextended and the lithospheric necking is asymmetric, in the south, rifting rapidly localized atop a symmetric lithospheric necking. One of the long-standing questions is what drives such different lithospheric necking style? We ran 2D high-resolution thermomechanical numerical simulations of lithospheric rifting to address the northern and southern Red Sea extensional end members and validate the models’ deformation patterns by comparing them against 2D data-driven structural models. The modelling investigates (a) the effect of rotational extension by varying extension velocities along the Red Sea, and (b) the thermal structure of the southern Red Sea due to plume impingement, while the analysis of the outcomes focuses on the early rifting stage, which involves normal rifting and dike intrusion. We find that asymmetrical lithospheric necking in the central and northern Red Sea is potentially driven by the velocity boundary conditions and inherited structures, mainly the Sirhan rift. The decoupling between the upper portion of the lithosphere and the asymmetrical lithospheric necking, which plays an essential role in the observed deformation patterns in the Arabian margin, is likely controlled by the lower crustal rheology and thickness. Furthermore, we find that the Afar plume near the southern Red Sea, which introduced in our models in form of thermal anomaly, promotes rifting localization.

How to cite: Aldaajani, T., Khalil, H., Ball, P., Capitanio, F., and Almalki, K.: Asymmetrical lithospheric necking of Red Sea rift, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9365, https://doi.org/10.5194/egusphere-egu22-9365, 2022.

The eastern Mediterranean Sea preserves crust that was trapped during the collision of Africa with Eurasia and the closure of the Neo-Tethyan Ocean. Thick sedimentary blanketing (10 to 15 km) complicates our ability to assess the nature of the crust, and therefore it has remained one of the least understood regions of the collision belt. In this presentation, I review recent marine geophysical observations (surface and deep-tow magnetics, high-resolution bathymetry and seismic reflection data) and discuss their geodynamic implications. The surface total field and vector magnetic anomalies from the Herodotus Basin reveal a sequence of long-wavelength NE-SW lineated anomalies that straddle the entire basin suggesting a deep two-dimensional magnetic source layer. The magnetic vector data indicate an abrupt transition from a 2D to a 3D magnetic structure along the eastern edge of the Herodotus Basin and west of the Eratosthenes Seamount, where a prominent gravity feature is found. These findings indicate that the Herodotus Basin preserves remnants of oceanic crust accreted along a mid-ocean ridge system that spread in an NW-SE direction. The African Plate's continuous northward and counterclockwise motion during the Paleozoic and Mesozoic allow predicting the crustal remanent magnetization directions, which dictate the shape of the present-day magnetic anomalies. The shape of the Herodotus anomalies best fit Carboniferous magnetization directions. The combination of surface and deep-tow magnetic data, as well as thermal and magnetic forward modeling, suggest that spreading was slow (~25 km/myr half spreading rates) and that the upper oceanic crust has been entirely demagnetized, probably due to the heating effect induced by the thick sedimentary coverage.

 

The stretched continental crust of the Levant Basin, found east of the Herodotus Basin, preserves a series of horsts and grabens that generally orient in an orthogonal direction relative to the spreading direction, suggesting that they may have formed concurrently with the initial opening of the Herodotus Basin. Earthquake data and long NW-SE bathymetric scars found within the northern edge of the Nile deep-sea fan suggest that an active fault belt transfers the motion from the Gulf of Suez toward the northern convergence boundaries. This fault belt is directed toward, and merges with, the continental-ocean boundary that straddles the eastern Herodotus Basin. This observation may indicate that the mechanical transition from the rather weak and stretched continental crust of the Levant to the relatively strong oceanic Herodotus crust has guided the location of the western boundary of the Sinai Microplate, formed during the Oligocene by the fragmentation of the African Plate.

How to cite: Granot, R.: Trapped remnant of the Tethyan realm: the influence of ancient tectonics on the present-day geodynamics of the eastern Mediterranean, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9408, https://doi.org/10.5194/egusphere-egu22-9408, 2022.

EGU22-11305 | Presentations | TS7.4

The Neotethyan Arabian necking zone exposed at the SE Oman mountains: field evidence and consequences 

Maxime Ducoux, Emmanuel Masini, Andreas Scharf, and Sylvain Calassou

The Late Cretaceous Oman Mountains are generally assumed to result from obduction followed by the inversion of the mid-Permian- to Triassic Neotethyan rifted margin. However, the key rift-related crustal features, such as a necking zone or hyper-extended rift domains remain inferred and poorly described so far. In this study, we investigate the tectono-stratigraphic record of the eastern part of the Oman Mountains where the exposed Tonian (Neoproterozoic) crystalline basement outcrops together with the pre- to syn-obduction sedimentary record in the Ja’alan massif area. The description of these units together with subsurface data enables to describe the former Arabian necking zone. The Ja’alan massif itself and the Arabian platform to the southwest represent the former proximal margin domain. It is characterized by the eroded basement sealed by post-obduction continental to shallow marine sediments. In contrast, the north-eastern side of the massif is flanked by Permian-Mesozoic deep marine post-rift sediments (Batain Group) equivalent to the Hawasina thrust sheet in the Oman Mountains. These two endmember paleogeographic units are separated by a major N20 dipping top-to-the-NE normal fault with dip-slip kinematics (slikensides with striae, S/C-fabric). The damage zone of this fault is characterized by a cataclastic and a gouges fault zone, overlain by slope facies with syn-kinematic polymictic mega-breccias reworking the adjacent basement. The breccias are grading finer upwards, contain conglomerate and sandstone interbeds interpreted as to slope-environment turbiditic channel deposits. This exhumation and rift-related record is unconformably covered by the post-obduction sequence affected by a late Cenozoic E/W-directed low-amplitude shortening. The intensity of shortening is increasing toward the NW leading to reactivate the Arabian Necking zone as a ramp for the Hawasina thrust system. Based on these observations, we propose a new geodynamic model showing that the final stage of the obduction result from the inversion of the former Arabian necking zone with significant impacts on the evaluation of (1) the shortening rates accommodated and (2) the former architecture of the Arabian Tethyan rifted margin. As the belt never recorded a mature continent-continent collision, we think that the Oman study case could significantly help to investigate the dynamics of hyper-extended rifted margins inversion at an early orogenic stage.

How to cite: Ducoux, M., Masini, E., Scharf, A., and Calassou, S.: The Neotethyan Arabian necking zone exposed at the SE Oman mountains: field evidence and consequences, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11305, https://doi.org/10.5194/egusphere-egu22-11305, 2022.

EGU22-11791 | Presentations | TS7.4

Geomorphology of the Mabahiss Deep area, Northern Red Sea: New insights from high-resolution multibeam bathymetric mapping 

Margherita Fittipaldi, Daniele Trippanera, Nico Augustin, Froukje M. van der Zwan, Alexander Petrovic, Dirk Metz, and Sigurjon Jónsson

The Red Sea is a unique place to study a young oceanic rift basin and the interplay between magma and tectonics at a young divergent plate boundary. The spreading rate of the Red Sea rift changes from ~17 mm/yr in the south to ~7 mm/yr in the north, and so does the morphology. The southern Red Sea is a continuous and well-developed oceanic rift, whereas the so-called deeps characterize the central portion with oceanic crust separated by shallower inter-trough zones, and the northern part contains more widely spaced deeps with extensive areas covered by sediments in between. While the central Red Sea morphology has been extensively studied, the structure of the northern Red Sea and its link to the central Red Sea are less clear. Indeed, the northern Red Sea rift, marked at its southern end by Mabahiss Deep, is offset by about 60 km to the central Red Sea axis by the still poorly understood Zabargad Fracture Zone.

Here we aim to improve the understanding of the volcano-tectonic setting of the Mabahiss Deep area with new high-resolution bathymetric data from multiple multibeam surveys with R/V Thuwal and R/V Pelagia. Our results show that the 15 km long, 9 km wide, and 2250 m deep Mabahiss Deep, and the 800 m high and 5 km wide central volcano, are the most prominent structures of the area. The deep is bordered by a series of Red Sea parallel normal faults on both sides, forming a graben-like structure and thus suggesting a rift-like morphology. The central volcano has a 2 km wide summit caldera containing several volcanic cones. Several normal faults cut its southern flank, and radial fractures are present on its summit. In the multibeam backscatter data, several recent lava flows (<10 kyrs) are visible on the northern and southern flanks of the volcano. Even if the ocean floor outside the deep is mainly covered by salt flows, limiting structural analysis of the surrounding areas, the Mabahiss Deep area and the central Red Sea have similar rift-like structures with stable axial MORB-volcanism, showing typical features found at other (ultra-)slow-spreading ridges, such as magma focusing on the segment centers. This suggests that although the Mabahiss Deep appears to be offset from the central Red Sea rift, the same processes are probably taking place in this area.

Our new high-resolution bathymetric mapping allows a more precise structural and geomorphological analysis of the Mabahiss Deep area that represents a starting point for understanding the overall structure of the poorly studied northern Red Sea.

How to cite: Fittipaldi, M., Trippanera, D., Augustin, N., van der Zwan, F. M., Petrovic, A., Metz, D., and Jónsson, S.: Geomorphology of the Mabahiss Deep area, Northern Red Sea: New insights from high-resolution multibeam bathymetric mapping, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11791, https://doi.org/10.5194/egusphere-egu22-11791, 2022.

EGU22-11825 | Presentations | TS7.4

The Norian magmatic rocks of Jabuka, Brusnik and Vis Islands (Croatia) and their bearing on the evolution of Triassic magmatism in the Adria Plate 

Matteo Velicogna, Marko Kudurna Prasek, Luca Ziberna, Angelo De Min, Valentina Brombin, Fred Jourdan, Paul R. Renne, and Andrea Marzoli

The magmatic bodies of Jabuka, Brusnik, and Vis Islands of the Adriatic Sea are located in the easternmost part of the Adria Plate (Adriatic Unit according to Slovenec & Šegvić, 2021), close to the External Dinarides (Pamić and Balen, 2005). The magmatic rocks on the islands are, from West to East, intrusive bodies on Jabuka, sub-intrusive on Brusnik, and effusive rocks on Vis.

Feldspar separates from Jabuka and Brusnik Islands yielded mini-plateau 40Ar/39Ar ages of 229.0 ± 5.4 Ma and 221.5 ± 2.5 Ma indicating that this magmatism is Carnian-Norian in age. The whole-rock geochemical compositions (major and trace elements, Sr-Nd isotopes) indicate that the magmatic rocks of the Croatian Islands range from tholeiitic to calc-alkaline, yielding a subduction signature. This signature is also shared by coeval magmas from the Adria Plate and may be related to crustal components subducted during the Hercynian orogeny and recycled within the mantle source(s) of this anorogenic magmatism.

How to cite: Velicogna, M., Prasek, M. K., Ziberna, L., De Min, A., Brombin, V., Jourdan, F., Renne, P. R., and Marzoli, A.: The Norian magmatic rocks of Jabuka, Brusnik and Vis Islands (Croatia) and their bearing on the evolution of Triassic magmatism in the Adria Plate, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11825, https://doi.org/10.5194/egusphere-egu22-11825, 2022.

Continental collision succeeds long term subduction of oceanic lithosphere into the earth's mantle whereby the negative buoyancy of the downgoing oceanic lithosphere (slab) provides the principal driving force for plate motions. Previous studies have shown that subduction-induced mantle flow could drive overriding plate shortening and orogenesis, and the arrival of the positively buoyant lithosphere at the trench affects the dynamics of the overriding plate and plate motions. The subsequent slab detachment at the subducted continent-ocean margin removes the driving force in the system and eventuates in cessation of subduction (Cloos, 1993)  and plate convergence. The India-Eurasia subduction-collision system has multiple inferred slab break-off episodes (Replumaz et al., 2010), yet convergence is still ongoing. Here, we present 2D-cartesian buoyancy-driven numerical models of continental collision after subduction of a long oceanic plate (~6000 km) in a whole mantle reservoir (2880km), investigating the dynamics of such systems in the presence of detached slabs. These models’ wide aspect ratio (6:1) allows for exploring deep subduction of oceanic slabs and detached slab(s), approximately at the centre of the domain, thereby minimising the effect of free slip sidewalls on obtained slab morphology in the mantle and associated mantle flow. Our results indicate that poloidal mantle flow induced by the sinking of the detached slab sustain long term convergence in collisional settings. Although 2D models lack the 3D components of mantle flow, these models can be used to understand the dynamics of the centre of >4000km wide subductions zones and facilitate interpretation in light of tomographic and plate reconstruction studies.

 

References:

Cloos, M. (1993). Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geological Society of America Bulletin, 105(6), 715-737.

Replumaz, A., Negredo, A. M., Guillot, S., & Villaseñor, A. (2010). Multiple episodes of continental subduction during India/Asia convergence: Insight from seismic tomography and tectonic reconstruction. Tectonophysics, 483(1-2), 125-134.

How to cite: Laik, A., Schellart, W., and Strak, V.: Convergence at continental collision zones: Insights from long-term 2D geodynamic models buoyancy-driven subduction and collision., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12441, https://doi.org/10.5194/egusphere-egu22-12441, 2022.

The Eocene Lower and Middle members of Rus Formation are exposed at the King Fahd University of Petroleum and Minerals (KFUPM) campus and contain 'odd' structural features. Previously, such structures were overlooked or misinterpreted by other researchers. In this study, we interpret these structures as hydroplastic kinematic indicators in the basal part of the Middle Rus Member. Their occurrence is related to the Rus soft-sediment detachment, a major displacement zone at the boundary/interface between the Lower and Middle Rus. The structures are fist-sized vugs coupled with carrot- or comet-trail imprints (VCT structures), previously translated calcite geodes. VCT structures demonstrate NNW (345°) transport/slip and are found on flat to low-dipping surfaces characterized as Y, R, and P shears according to the Rus detachment orientation. The Andersonian transtension stress regime is indicated by palaeostress analysis, but it was not enough to activate the Rus soft-sediment detachment. The negative effective principal stress σ3' and the exceptionally low frictional coefficient generated by fluid pressure resulted in detachment activity. Because it reveals the Arabian platform's instability in the larger area of the Dammam Dome during the Late Eocene, the soft-sediment Rus detachment can be considered a 'sensitive stress sensor' for the Zagros collision. The beginning of the Zagros collision, which was previously thought to occur during the Oligocene based on the well-known pre-Neogene unconformity, is credited with this instability.

How to cite: Osman, M. and Tranos, M.: New hydroplastic structures of the Eocene Rus Soft-sediment Detachment (Eastern Saudi Arabia) and their contribution to the dating of the Zagros Collision, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13058, https://doi.org/10.5194/egusphere-egu22-13058, 2022.

EGU22-13597 | Presentations | TS7.4

Mineralogy, structure and tectonic significance of quartz veins from the northern Saih Hatat Dome (eastern Oman Mountains) 

Andreas Scharf, Frank Mattern, Bernhard Pracejus, Ivan Callegari, Robert Bolhar, Sobhi Nasir, Saja Al-Wahaibi, Laila Al-Battashi, Marwa Al-Hadhrami, Thuraiya Al-Harthi, and Safiya Al-Suqri

The rocks of the Saih Hatat Dome (SHD) formed during and after two major geological events shaping Arabia: 1) Subduction of continental rocks in the course of the Late Cretaceous Semail Ophiolite obduction onto the Arabian Plate and 2) Exhumation of >16 km and high deformation/folding in the northeastern part of the SHD. The latter resulted in a ~20 km wide recumbent fold (Saih Hatat Fold Nappe). The sub-horizontal fold axis of this fold trends NNE in the northern SHD. The core of the SHD and the recumbent fold consist of dark Neoproterozoic meta-shales and meta-sandstones, while its margin (and upper/lower limbs of the recumbent fold) consist of Permian cliff-forming carbonates.

Within the northern SHD, numerous milky quartz veins occur. We structurally and mineralogical analyzed >500 of these veins, covering an area of ~200 km2. The veins vary in width from one centimeter to a few meters, while the length ranges between several decimeters to several decameters. Associated with the predominant milky quartz, are calcite, siderite, chlorite, albite, anorthite, actinolite, rutile, hematite, goethite, and pyrrhotite. Rare molybdenite aggregates seem to replace carbonate, in which it occurs exclusively. Quartz microstructures include bulging (BLG) recrystallization, sub-grain rotation (SGR) recrystallization, and undulose extinction. Sub-grains and triple junctions in quartz are common. The mineralogy and quartz microstructures indicate maximum peak temperature conditions of ~400-500°C.

At least two sets of veins can be distinguished. Both vein sets occur mostly in clusters and partly form vein swarms. The mineralogy and quartz microstructure of both vein sets is similar. The older set 1 has been folded by the Saih Hatat Fold Nappe. Thus, vein formation predates 76-70 Ma. Furthermore, veins of set 1 are often sub-parallelly oriented to the main foliation of the host rocks, and they may be boudinaged. They may form complicated vein structures. We assume that this vein set initially formed during the Permian Pangean/Tethys rifting. The second vein set is abundant, sub-vertically and strikes consistently E/W to ESE/WNW. These veins cut the overall moderately NW-dipping bedding surfaces of the ambient rocks. Set 2 veins either formed during exhumation of the dome (Late Cretaceous to early Eocene and late Eocene to Oligocene) or they are part of the NW-striking sinistral Hajar Shear Zone, which affected the entire eastern Oman Mountains during the Oligocene to early Miocene. Ongoing U-Pb dating of carbonates and further field survey will further contribute to the understanding of their age and tectonic setting.

How to cite: Scharf, A., Mattern, F., Pracejus, B., Callegari, I., Bolhar, R., Nasir, S., Al-Wahaibi, S., Al-Battashi, L., Al-Hadhrami, M., Al-Harthi, T., and Al-Suqri, S.: Mineralogy, structure and tectonic significance of quartz veins from the northern Saih Hatat Dome (eastern Oman Mountains), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13597, https://doi.org/10.5194/egusphere-egu22-13597, 2022.

GD9 – Modelling, Data collection and Inversion

EGU22-3730 | Presentations | GD9.1

Gravity kernel method for implicit geological modeling 

Zhouji Liang, Miguel De La Varga, and Florian Wellmann

Gravity is one of the most widely used geophysical data types in subsurface exploration. In the recent developments of stochastic geological modeling, gravity data serves as an additional constraint to the modeling construction and can be included in the modeling process as the likelihood function in a Bayesian workflow. A fast but also precise forward gravity simulation is key to the success of the geological modeling inverse problem.

In this study, we present a gravity kernel method, which is based on the widely adopted analytical solution on a discretized grid. As opposed to a globally refined regular mesh, we construct local tensor grids for each sensor, respecting the gravimeter locations and the local sensitivities. The kernel method is efficient in terms of both computing and memory use for meshless implicit geological modeling approaches. This design makes the method well suited for many-query applications like Bayesian machine learning using gradient information calculated from Automatic Differentiation (AD). Optimal grid design without knowing the underlying geometry is not straightforward before evaluating the model. Therefore, we further provide a novel perspective on a refinement strategy for the kernel method based on the sensitivity of the cell to the corresponding receiver. Synthetic results are presented and show superior performance compared to the traditional spatial convolution method.

How to cite: Liang, Z., De La Varga, M., and Wellmann, F.: Gravity kernel method for implicit geological modeling, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3730, https://doi.org/10.5194/egusphere-egu22-3730, 2022.

It is broadly accepted that magmatism plays a key dynamic role in continental and oceanic rifting. However, these dynamics remain poorly studied, largely due to the difficulty of consistently modelling liquid/solid interaction across the lithosphere. The RIFT-O-MAT project seeks to quantify the role of magma in rifting by using models that build upon the two-phase flow theory of magma/rock interaction. A key challenge is to extend the theory to account for the non-linear rheological behaviour of the host rocks, and investigate processes such as diking, faulting and their interaction (Keller et al., 2013). Here we present our progress in consistent numerical modelling of poro-viscoelastic-viscoplastic (VEVP) flow. We show that a VEVP model with a new, hyperbolic yield surface can help to robustly simulate both shear and tensile modes of plastic failure in a two-phase system. 

Failure of rocks (plasticity) is an essential ingredient in geodynamics models because Earth materials cannot sustain unbounded stresses. However, plasticity represents a non-trivial problem even for single-phase flow formulations with shear failure only. In two-phase systems, tensile failure of rocks can also occur due to an overpressured liquid phase. Robustly solving a discretised model that includes this physics presents severe challenges, and many questions remain as to effective solvers for these strongly nonlinear systems.

An appropriate rheological model is required to meet this challenge. The most straightforward choice is a Maxwell visco-elasto-plastic model, but this leads to grid-scale localisation and hence mesh-dependence. To obtain mesh-independent shear localisation, we employ the visco-elasto-viscoplastic model by introducing a viscous dashpot in parallel to the plasticity element. Whilst this formulation has shown promise in regularising shear failures in a single-phase flow model (de Borst and Duretz, 2020), its incorporation within two-phase systems has not been examined. We will show that the linear Griffith criteria for the tensile failure can lead to convergence issues whereas a new, hyperbolic yield surface is proposed to resolve these numerical issues. This yield surface provides a smooth transition between the two modes of failure.

The underlying PDEs are discretised using a conservative, finite-difference, staggered-grid framework implemented with PETSc (FD-PDE) that supports single-/two-phase flow magma dynamics. Here, we present simplified model problems using the FD-PDE framework for poro-viscoelastic-viscoplastic models designed to characterise the solution quality and assess both the discretisation and solver robustness. It has been observed that employing the hyperbolic yield surface improved the robustness in simulating plastic failures in both modes.

 

References

Keller, T., May, D. A., & Kaus, B. J. P., (2013). Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust, Geophysical Journal International, v195, 1406-1442, https://doi.org/10.1093/gji/ggt306.

de Borst, R., Duretz, T., (2020). On viscoplastic regularisation of strain-softening rocks and soils. International Journal for Numerical and Analytical Methods in Geomechanics, v44, 890-903. https://doi.org/10.1002/nag.3046.

How to cite: Li, Y., Pusok, A., May, D., and Katz, R.: Simulation of partially molten rocks with visco-elasto-viscoplastic rheology and a hyperbolic yield surface for plasticity, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5594, https://doi.org/10.5194/egusphere-egu22-5594, 2022.

EGU22-5704 | Presentations | GD9.1 | Highlight

How composable software tools in Julia help developing multi-physics codes in geodynamics 

Boris Kaus, Nicolas Berlie, Valentin Churavy, Matias Cosarinsky, Thibault Duretz, Daniel Kiss, Jeremy Kozdon, Albert de Montserrat, Lucas Moser, Nils Medinger, Samuel Omlin, Ludovic Räss, Patrick Sanan, Arne Spang, Marcel Thielmann, and Ivan Utkin

Julia(https://julialang.org) recently emerged as a very powerful high-level computer language for (parallel) scientific computing, which allows you to “write codes like in MATLAB”, while “achieving the speed of Fortran/C”. A particular strength of Julia is that it is easy to write composable software packages that talk to each other. Here we will discuss our efforts in making Julia a development platform for geodynamic applications that significantly simplifies the process of going from a working solver to a production code which runs on massively parallel (GPU) machines.  We are working on a number of open-source packages that simplify certain steps that many geodynamics codes have in common:

  • GeoParams.jl (https://github.com/JuliaGeodynamics/GeoParams.jl) is a package in which you can specify constitutive relationships (e.g., creeplaws). It automatically handles the (non-)dimensionalization of all input parameters, includes pre-defined creep laws (e.g., dislocation and diffusion creep laws), plotting routine and includes computational routines that can be directly integrated in your code.
  • PETSc.jl (https://github.com/JuliaParallel/PETSc.jl) is the main interface from Julia to PETSc, including MPI support and automatic installations of PETSc (one of the main hurdles that existing users faced). We have recently extended the package to include an interface to DMSTAG, such that you create a staggered finite difference grid and assemble the stiffness matrix in a straightforward manner. You can use automatic differentiation tools in Julia to create the Jacobians for nonlinear equations, which again minimizes the required lines of code (compared to their C counterparts). At the same time, the full range of (nonlinear multigrid) PETSc solvers is available. This is thus very well suited to write implicit solvers.
  • ParallelStencil.jl (https://github.com/omlins/ParallelStencil.jl) and ImplicitGlobalGrid.jl (https://github.com/eth-cscs/ImplicitGlobalGrid.jl) are packages that are devoted to solving stencils in a very efficient manner on (parallel) GPU or CPU machines, which scales to very large GPU-based computers. It is particularly efficient in combination with pseudo-transient iterative solvers and allow running codes on modern architectures.
  • GeophysicalModelGenerator.jl (https://github.com/JuliaGeodynamics/GeophysicalModelGenerator.jl) is a package that gives you a simple way to collect geophysical/geological data of a certain region and combine that to construct a 3D geodynamic input model setup.

Ongoing efforts include the development of a grid generation and a marker and cell advection package that work, seamlessly with both ParallelStencil and PETSc. This will allow developers to apply both direct-iterative and pseudo-transient implicit solvers to the same problem, while only having to make minimal changes to the model setup. Combined, these packages will make the step from developing a new (nonlinear) solver to having an efficient (3D) production code much easier.

How to cite: Kaus, B., Berlie, N., Churavy, V., Cosarinsky, M., Duretz, T., Kiss, D., Kozdon, J., de Montserrat, A., Moser, L., Medinger, N., Omlin, S., Räss, L., Sanan, P., Spang, A., Thielmann, M., and Utkin, I.: How composable software tools in Julia help developing multi-physics codes in geodynamics, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5704, https://doi.org/10.5194/egusphere-egu22-5704, 2022.

One of the great challenges involved in modelling the lithosphere is its plastic behaviour, especially when dealing with compressible materials. Shear fractures are designated as mode 2 and 3 and can be described using a Linear Mohr Coulomb envelope  or a simplification of it like Drucker-Prager. Meanwhile, mode 1 fractures are created when the normal stresses become tensile  and require another yield function, such as the Griffith criterion or a tension cap function.

While the governing equations are well known and widely employed in engineering codes, they are usually expressed with a displacement formulation. Most geodynamic codes, on the other hand, use pressure and velocity as their primary variables. A numerically robust method that takes all plasticity modes into account in a staggered finite difference discretization remains an open task. Here we present a composite yield function implemented with pressure-velocity formulation, capable of producing produce shear and tensile failure.

We have implemented this in a new code that employed PETSc through the recently updated PETSc.jl Julia interface, while utilizing the automatic differentiation tools in julia. We found this workflow to significantly reduce the development time of complex nonlinear coupled codes.  

We will describe the implementation, propose regularization schemes and discuss benchmark cases and simple applications. We demonstrate Newton convergence for most cases and will discuss different methods to combine multiple plastic flow laws.

How to cite: Berlie, N., Kaus, B., Popov, A., Kiss, D., and Riel, N.: How to break the lithosphere: a compressible pressure-velocity formulation for elasto-visco-plastic rheologies that includes shear and tensile failure with dilation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6566, https://doi.org/10.5194/egusphere-egu22-6566, 2022.

EGU22-8816 | Presentations | GD9.1

GPU-based pseudo-transient finite difference solution for 3-D gravity- and shear-driven power-law viscous flow 

Emilie Macherel, Yuri Podladchikov, Ludovic Räss, and Stefan M. Schmalholz

Power-law viscous flow describes the first-order features of long-term lithosphere deformation. Due to the ellipticity of the Earth, the lithosphere is mechanically analogous to a shell, characterized by a double curvature. The mechanical characteristics of a shell are fundamentally different to the characteristics of plates, having no curvature in their undeformed state. The systematic quantification of the magnitude and the spatiotemporal distribution of strain, strain-rate and stress inside a deforming lithospheric shell is thus of major importance: stress is, for example, a key physical quantity that controls geodynamic processes such as metamorphic reactions, decompression melting, lithospheric flexure, subduction initiation or earthquakes. Calculating these stresses in a three-dimensional (3-D), geometrically and mechanically heterogeneous lithosphere requires high-resolution and high-performance computing.

 

Here, we present numerical simulations of 3-D power-law viscous flow. We employ the pseudo-transient finite difference (PTFD) method, which enables efficient simulations of high-resolution 3-D deformation processes by implementing an iterative implicit solution strategy of the governing equations. The main challenges for the PTFD method are to guarantee convergence, minimize the required iteration count and speed-up the iterations. We implemented the PTFD algorithm using the Julia language (julialang.org) to enable optimal parallel execution on multiple CPUs and GPUs using the ParallelStencil.jl module (https://github.com/omlins/ParallelStencil.jl). ParallelStencil.jl enables execution on multi-threaded CPUs and Nvidia GPUs using a single switch.

 

We present PTFD simulations of mechanically heterogeneous (weak and less dense spherical inclusion), incompressible 3-D power-law viscous flow under gravity in cartesian, cylindrical and spherical coordinates systems. The viscous flow is described by a linear combination of a linear viscous and a power-law viscous flow law, representing diffusion and dislocation creep, respectively. The iterative solution strategy builds upon pseudo-viscoelastic behavior to minimize the iteration count by exploiting the fundamental characteristics of viscoelastic wave propagation. We performed systematic numerical simulations to investigate the impact of (i) buoyancy versus shear forces and (ii) linear versus power-law viscous flow on the vertical velocity of the spherical inclusion under bulk strike-slip shearing. We report the systematic results using the controlling dimensionless numbers and compare the numerical results with analytical predictions for buoyancy-driven flow of inclusions in a power-law matrix. We also aim to unveil preliminary results for a vertically and locally loaded power-law viscous lithosphere showing the impact of different lithosphere curvatures on the resulting stress field.

How to cite: Macherel, E., Podladchikov, Y., Räss, L., and Schmalholz, S. M.: GPU-based pseudo-transient finite difference solution for 3-D gravity- and shear-driven power-law viscous flow, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8816, https://doi.org/10.5194/egusphere-egu22-8816, 2022.

EGU22-8849 | Presentations | GD9.1

Mass-Conserving Thermal Structure for Slabs in Instantaneous Models of Subduction 

Magali Billen, Menno Fraters, and Magalie Babin

Subduction is driven by difference in mass between the sinking plate and the surrounding mantle. The deformation calculated in numerical models of subduction is strongly dependent on the magnitude of the mass difference. The mass difference depends on the temperature of the slab. As the tectonic plate sinks it heats up, but it also cools down the surrounding mantle. The amount of heating and cooling is determined by conservation of thermal energy. Because the temperature also determines the thermal mass, conversing thermal energy also leads to conserving mass. For some studies, models of subduction are made to match the present day structure of a sinking plate. In this case, the temperature is defined to follow the observed geometry. In some previous studies, the temperature structure did not explicitly enforce conservation of energy or mass, and thus the density of the slab was not physically consistent, which is added source of uncertainty when analyzing the resulting flow and sensitivity of model results to mantle and slab rheology. Here we present a mass-conserving thermal structure for slabs that also creates a smoothly varying temperature structure. The thermal structure is based on a 1-D half-space cooling model (bottom) and an infinite space cooling model (top). It uses the age of the plate at the trench to determine the initial mass anomaly of the slab. The sinking velocity modifies the rate of heating and migration of the minimum temperature into the slab interior. The thermal model is calibrated against simple 2D subduction models in which the age and subduction velocity are held fixed. The new thermal structure has been implemented in the Geodynamic WorldBuilder (1), which can be used with different mantle convection software and is distributed as a plugin for ASPECT (2). Comparison of model results with the mass conserving slab thermal structure to the "plate" model from McKenzie (1970) is used to illustrate the differences in modeled results. References: 1. Fraters, M. R. T. et al., Solid earth, 2019. 2. Bangerth, W. et al., https://doi.org/10.5281/ZENODO.5131909, 2021.

How to cite: Billen, M., Fraters, M., and Babin, M.: Mass-Conserving Thermal Structure for Slabs in Instantaneous Models of Subduction, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8849, https://doi.org/10.5194/egusphere-egu22-8849, 2022.

Transient superstructures in mantle convection whose life and morphology vary with Rayleigh and Prandtl number have recently been demonstrated. These superstructures appear to be a two-scale phenomenon where smaller scale rolls organize into larger scale convection cells. Simulation of such superstructures requires the ability to model 3D convection in box with very large width/height ratio of order greater than 10, and with resolution to resolve the thermal boundary layer at Rayleigh numbers of 108 to 1010, respectively at least 100 height levels and 200 height levels. We achieve this with an efficient parallel implementation of the Lattice Boltzmann Method using Python which operates with high efficiency and linear speedup on thousands of cores. We present simulations with Rayleigh numbers of up to 1010 and Prandtl numbers from 1 to 100 to illustrate covering regimes from a magma ocean to solid mantle convection. We further present simulations using the LBM to model variable viscosity – specifically, temperature dependent– and illustrate the existence of pulsating plumes. We further demonstrate power law scaling between Nusselt number and Rayleigh number Nu  ~ Rag, which to first order is consistent with the Grossmann and Lohse theory.

How to cite: Mora, P., Morra, G., and Yuen, D.: Simulation of 3D transient superstructures in mantle convection and variable viscosity via the Lattice Boltzmann Method, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9069, https://doi.org/10.5194/egusphere-egu22-9069, 2022.

EGU22-9133 | Presentations | GD9.1

Testing a (quasi-)free base for modelling core-mantle boundary topography 

Tobias Rolf, Fabio Crameri, Björn H. Heyn, and Marcel Thielmann

The core-mantle boundary (CMB) is the most prominent compositional boundary inside the Earth. Its topography provides insight on lower mantle flow and the thermochemical structure above the CMB. Yet, CMB topography remains challenging to observe and estimates from seismology vary substantially. Numerical models of mantle convection provide complementary means to estimate CMB topography. Classically, topography is determined from the normal stresses acting on the CMB. However, this is known to face severe complications when applied to the surface boundary of the mantle, leading to non-Earth-like topographic scales and a different style of subduction. A (quasi-)free surface yields more Earth-like predictions, but for the CMB this comparison has never been made.

Here, we compare CMB topography predicted from mantle convection modelling using different treatments of the CMB. Specifically, we test the role of a ‘sticky core’, a quasi-fluid approximation the core. We compare results predicted by different codes (with either sticky core or true free base) and compare to a simple analytical case. Also, we simulate the evolution of subduction and deep thermochemical provinces to compare the topography of the (quasi-)free CMB and the free-slip approach. Initial results indicate that the sticky core approach can reproduce CMB topography reasonably well, but has rather high computational cost (grid resolution, number of particles). In analogy to the sticky air at the surface, the viscosity contrast of the sticky core layer determines the quality of predicted topography, with larger contrasts (≥103) leading to acceptable levels of artificial CMB topography. In dynamic flow cases with vigorous mantle convection, entrainment by plumes further complicates application of the sticky core, but can be tackled with an unmixing procedure. A true free base tends to better accuracy than the sticky core approach and avoids the problem with entrainment, but it also comes with additional computational costs as various forces at the CMB have to be taken into account.

How to cite: Rolf, T., Crameri, F., Heyn, B. H., and Thielmann, M.: Testing a (quasi-)free base for modelling core-mantle boundary topography, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9133, https://doi.org/10.5194/egusphere-egu22-9133, 2022.

EGU22-9232 | Presentations | GD9.1

Automatic generation of the adjoint of the StagYY mantle convection model 

Nicolas Coltice, Simon Blessing, Ralf Giering, and Paul Tackley

Motions within the Earth mantle and tectonics constitute a single self-organized system which is cooling the planet over its geological history. Since the end of the XXth century, models of mantle convection self-generating plate tectonic behavior have progressed to a state that makes them applicable to global tectonic problems. The possibility of combining geological and geophysical data with dynamic models to retrieve the recent history of mantle flow and tectonics becomes realistic. Therefore, it is a challenge to build inverse methods to study inverse and sensitivity problems in the Earth's mantle convection. We have automatically generated the tangent-linear and the adjoint source code from the StaggYY code (Tackley, Phys. Earth Planet. Int. 171, 7-18, 2008). The Fortran code of the model was translated to the corresponding derivative codes using TAF (Transformation of Algorithms in Fortran), source-to-source translator. All codes run in parallel mode, using MPI (Message Passing Interface). The economic taping strategy of TAF, including re-computations, and checkpointing, helps to keep the memory footprint of the adjoint code low and the performance high. We highlight some key features of the automatic differentiation, evaluate the performance of the adjoint code, and show first results from 2D and 3D sensitivity fields, focusing on the relationships between temperature in the mantle and tectonics. Ultimately the addjoint code shall be applied to inversion and assimilation problems using a bayesian framework.

How to cite: Coltice, N., Blessing, S., Giering, R., and Tackley, P.: Automatic generation of the adjoint of the StagYY mantle convection model, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9232, https://doi.org/10.5194/egusphere-egu22-9232, 2022.

EGU22-9815 | Presentations | GD9.1

Assessing the robustness and scalability of the accelerated pseudo-transient method towards exascale computing 

Ivan Utkin, Ludovic Rass, Thibault Duretz, Samuel Omlin, and Yury Podladchikov

The development of highly efficient, robust, and scalable numerical algorithms lags behind the rapid increase in massive parallelism of modern hardware. In this work, we address this challenge with the accelerated pseudo-transient iterative method. This method is motivated by the physical analogy between numerical iterations and transient processes converging to a steady state.

We analytically determine optimal iteration parameters for a variety of basic physical processes such as diffusion, diffusion-reaction and non-inertial viscous fluid flow featuring Maxwell viscoelastic rheology. We further confirm the validity of theoretical predictions with numerical experiments.

We provide an efficient numerical implementation of various pseudo-transient solvers on graphical processing units (GPUs) using the Julia language. We achieve a parallel efficiency over 96% on 2197 GPUs in distributed memory parallelisation weak scaling benchmarks. 2197 GPUs allow for unprecedented terascale solutions of 3D variable viscosity Stokes flow involving over 1.2 trillion degrees of freedom.

We verify the robustness of the method by handling contrasts up to 9 orders of magnitude in material parameters such as viscosity, and arbitrary distribution of viscous inclusions for different flow configurations. Moreover, we show that this method is well suited to tackle strongly nonlinear problems such as shear-banding in a visco-elasto-plastic medium.

We additionally motivate the accessibility of the method by its conciseness, flexibility, physically motivated derivation, and ease of implementation. This solution strategy has thus a great potential for future high-performance computing applications, and for paving the road to exascale in the geosciences and beyond.

How to cite: Utkin, I., Rass, L., Duretz, T., Omlin, S., and Podladchikov, Y.: Assessing the robustness and scalability of the accelerated pseudo-transient method towards exascale computing, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9815, https://doi.org/10.5194/egusphere-egu22-9815, 2022.

EGU22-10412 | Presentations | GD9.1

Rate and state friction on spontaneously evolving faults 

Casper Pranger, Patrick Sanan, Dave May, Laetitia Le Pourhiet, Ludovic Räss, and Alice Gabriel

The rate- and state-dependent friction (RSF) laws (Dieterich, 1979; Ruina, 1983) have been widely successful in capturing the behavior of sliding surfaces in laboratory settings, as well as reproducing a range of natural fault slip phenomena in numerical models.

Studies of exhumed fault zones make it clear that faults are not two-dimensional features at the junction of two distinct bodies of rock, but instead evolve into complex damage zones that show clear signs of multi-scale fracturing, grain diminution, hydro-thermal effects and chemical and petrological changes. Many of these observed factors have been experimentally verified, and several studies have furthered our theoretical understanding of earthquakes and other seismic phenomena as volumetric, bulk-rock processes, including Sleep (1995, 1997), Lyakhovsky and Ben-Zion et al. (2011, 2014a,b, 2016), Niemeijer and Spiers et al. (2007, 2016, 2018), Roubicek (2014), and Barbot (2019).

While the established numerical modeling approach of simulating faults as planar features undergoing friction can be a useful and powerful homogenization of small-scale volumetric processes, there are also cases where this practice falls short -- most notably when studying faults that grow and evolve in response to a changing tectonic environment. This is mainly due to the computational challenges associated with automating the construction of a fault-resolving conformal mesh.

Motivated by this issue, we formulate a generalization of RSF as a plastic or viscous flow law with generation, diffusion, and healing of damage that gives rise to mathematically and numerically well-behaved finite shear bands that closely mimic the behavior of the original laboratory-derived formulation (Pranger et al., submitted). The proposed formulation includes the well-known RSF laws for an infinitely thin fault as a limit case as the damage diffusion length scale tends to zero. We will show the behavior of this new bulk RSF formulation with results of high-resolution 1D and 2D numerical simulations.

Dieterich, J.H. (1979), J. Geophys. Res., 84 (B5), 2161.
Ruina, A. (1983), JGR: Solid Earth, 88 (B12), 10359–10370.
Sleep, N.H. (1995), JGR, 100 (B7), 13065–13080.
Sleep, N.H. (1997), JGR: Solid Earth 102 (B2), 2875–2895.
Roubíček, T. (2014), GJI 199.1, 286–295.
Lyakhovsky, Hamiel and Ben-Zion (2011), J. Mech. Phys. Solids, 59, 1752-1776.
Lyakhovsky and Ben-Zion (2014a), PAGeoph 171.11, 3099–3123.
Lyakhovsky and Ben-Zion (2014b), J. Mech. Phys. Solids 64, 184–197.
Lyakhovsky, Ben-Zion et al. (2016), GJI 206.2, 1126–1143.
Barbot (2019), Tectonophysics 765, 129–145.
Niemeijer and Spiers (2007), JGR 112, B10405,
Chen and Spiers (2016), JGR: Solid Earth 121, 8642–8665.
van den Ende, Chen et al. (2018), Tectonophysics 733, 273-295.
Pranger et al. (202X), ESSOAr (https://www.essoar.org/doi/10.1002/essoar.10508569.1)

How to cite: Pranger, C., Sanan, P., May, D., Le Pourhiet, L., Räss, L., and Gabriel, A.: Rate and state friction on spontaneously evolving faults, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10412, https://doi.org/10.5194/egusphere-egu22-10412, 2022.

EGU22-11131 | Presentations | GD9.1

The Face-Centered Finite Volume method for Geodynamic Modelling 

Thibault Duretz, Ludovic Räss, and Rubén Sevilla

The Face-Centered Finite Volume (FCFV) is a newly developed discretisation technique that has been applied to a variety of engineering problems. This approach is based on the hybridisable discontinuous Galerkin formulation with constant degree approximations. The FCFV is particularly attractive approach since it meets numerous essential criteria for successful geodynamic modelling. It offers full geometric flexibility, natural free surface boundary condition, second order accuracy velocity-field solutions, no oscillatory pressure modes, relatively low computational cost and adequate treatment of jump conditions at material interfaces. Here we present the implementation of Poisson and Stokes solvers in the Julia computing language. Here we present the implementation of Poisson and Stokes solvers using the performant Julia language. We discuss several solving strategies including direct-iterative and iterative pseudo-transient approaches, the latter executing efficiently on Graphical Processing Units. We extend the original FCFV Stokes formulation to account for discontinuous viscosity case and discuss the implementation of complex visco-elasto-plastic rheologies.

How to cite: Duretz, T., Räss, L., and Sevilla, R.: The Face-Centered Finite Volume method for Geodynamic Modelling, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11131, https://doi.org/10.5194/egusphere-egu22-11131, 2022.

EGU22-11469 | Presentations | GD9.1

Strain localization in a visco-elasto-plastic medium using strain-dependent weakening and healing rheology 

Lukas Fuchs, Thibault Duretz, and Thorsten W. Becker

The formation and maintenance of narrow, lithospheric shear zones and their importance in plate-tectonics remain one of the major problems in geodynamics. While the cause and consequence of strain localization and weakening within the lithosphere remain debated, it is clear that these processes play an essential role in lithospheric deformation across a wide range of spatio-temporal scales. Here, we analyze the efficiency of strain localization in a 2-D visco-elasto-plastic medium for a strain-dependent weakening and healing (SDWH) rheology using 2-D numerical, thermo-mechanical experiments with kinematic boundary conditions. Such a parameterized rheology successfully mimics more complex transient weakening and healing processes, akin to a grain-size sensitive composite (diffusion and dislocation creep) rheology. In addition, the SDWH rheology allows for memory of deformation. This enables self-consistent formation and reactivation of inherited weak zones within the lithosphere and sustains those weak zones over an extended period of time. We further analyze the resulting shear zone patterns and seek to answer the questions: What is the typical, effective intensity of strain localization? What are the dimensions of the resulting shear zones? Are such shear zones mesh-dependent in numerical models and, if so, can we exploit existing regularization approaches for the SDWH rheology?

How to cite: Fuchs, L., Duretz, T., and Becker, T. W.: Strain localization in a visco-elasto-plastic medium using strain-dependent weakening and healing rheology, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11469, https://doi.org/10.5194/egusphere-egu22-11469, 2022.

EGU22-11494 | Presentations | GD9.1

MAGEMin, a new and efficient Gibbs free energy minimizer: application to igneous systems 

Nicolas Riel, Boris Kaus, Eleanor Green, and Nicolas Berlie

Modelling stable mineral assemblage is crucial to calculate mineral stability relations in the Earth’s lithosphere e.g., to estimate thermobarometric conditions of exposed rocks and to quantify the fraction and composition of magma during partial melting. Accurate prediction models of stable phase are also fundamental to model trace element partitioning and to extract essential physical properties such as, fluid/melt/rock densities, heat capacity and seismic velocities. This thus forms a crucial step in linking geophysical observations with petrological constraints.

Here, we present a new Mineral Assemblage Gibbs free Energy Minimizer (MAGEMin). The package has been developed with the objective to provide a minimization routine that is easily callable and fulfilling several objectives. Firstly, the package aims to consistently compute for single point calculations at given pressure, temperature and bulk-rock composition with no needed a priori knowledge of the system. Secondly, the package has been developed for stability, performance and scalability in complex chemical systems. Finally, the code is fully parallel and we directly translate THERMOCALC formulation of solution models which yields easier and faster updates, less prone to implementation mistakes.

As a proof of concept we apply our new approach to the thermodynamic dataset for igneous systems of Holland et al. (2018). The database works in the NCKFMASHTOCr chemical system and has been updated to account for the new plagioclase model Holland et al. (2021).

How to cite: Riel, N., Kaus, B., Green, E., and Berlie, N.: MAGEMin, a new and efficient Gibbs free energy minimizer: application to igneous systems, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11494, https://doi.org/10.5194/egusphere-egu22-11494, 2022.

EGU22-12156 | Presentations | GD9.1

Dynamic mesh optimisation for efficient numerical simulation of density-driven flows: Application to the 2- and 3-D Elder problem 

Meissam L. Bahlali, Pablo Salinas, and Matthew D. Jackson

Density-driven flows in porous media are frequently encountered in natural systems and arise from the gravitational instabilities introduced by fluid density gradients. They have significant economic and environmental impacts, and numerical modelling is often used to predict the behaviour of these flows for risk assessment, reservoir characterisation or management. However, modelling density-driven flow in porous media is very challenging due to the nonlinear coupling between flow and transport equations, the large domains of interest and the wide range of time and space scales involved. Solving this type of problem numerically using a fixed mesh can be prohibitively expensive.  Here, we apply a dynamic mesh optimisation (DMO) technique along with a control-volume-finite element method to simulate density-driven flows. DMO allows the mesh resolution and geometry to vary during a simulation to minimize an error metric for one or more solution fields of interest, refining where needed and coarsening elsewhere. We apply DMO to the Elder problem for several Rayleigh numbers. We demonstrate that DMO accurately reproduces the unique two-dimensional (2D) solutions for low Rayleigh number cases at significantly lower computational cost compared to an equivalent fixed mesh, with speedup of order x16. For unstable high Rayleigh number cases, multiple steady-state solutions exist, and we show that they are all captured by our approach with high accuracy and significantly reduced computational cost, with speedup of order x6. The lower computational cost of simulations using DMO allows extension of the high Rayleigh number case to a three-dimensional (3D) configuration and we demonstrate new steady-state solutions that have not been observed previously. Early-time, transient 3D patterns represent combinations of the previously observed, steady-state 2D solutions, but all evolve to a single, steady-state finger in the late time limit.

How to cite: Bahlali, M. L., Salinas, P., and Jackson, M. D.: Dynamic mesh optimisation for efficient numerical simulation of density-driven flows: Application to the 2- and 3-D Elder problem, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12156, https://doi.org/10.5194/egusphere-egu22-12156, 2022.

EGU22-12398 | Presentations | GD9.1

Nonlinear solver acceleration based on machine learning applied to multiphase porous media flow 

Vinicius Silva, Pablo Salinas, Matthew Jackson, and Cristopher Pain

We present a machine learning strategy to accelerate the nonlinear solver convergence for multiphase porous media flow problems. The presented approach dynamically controls an acceleration method based on numerical relaxation. The methodology is implemented and demonstrated in a Picard iterative solver; however, it can also be used with other types of nonlinear solvers. The goal of the machine learning acceleration is to reduce the number of iterations required by the nonlinear solver by adjusting the value of the relaxation factor to the complexity/physics of the system. A set of dimensionless parameters is used to train and control the machine learning. In this way, a simple two-dimensional layered reservoir can be used for training while still exploring a large portion of the dimensionless parameter space. As a result, the training process is simplified, and the machine learning model can be applied to any type of reservoir models.

We demonstrate that the presented technique dramatically reduces the number of nonlinear iterations without sacrificing the quality of the results, even for models that are far more complex than the training case. The average reduction in the number of nonlinear iterations obtained due to the presented method is 24% and the reduction in runtime is 37%. It is worth noting that the optimum value of the relaxation factor is not known a-priori and it is problem specific. Hence, having an acceleration that adapts itself to the complexity/physics of the system throughout the numerical simulation is extremely valuable and has driven several publications in multiple fields.

The method presented here provides an easy way to deal with nonlinear system of equations that does not necessitate as much effort as a custom nonlinear solver while producing outstanding results. We believe that the machine learning acceleration is not limited to the multiphase porous media flow but extendable to any other system that can be studied based on dimensionless numbers, and that a relaxation technique can be used to stabilize the nonlinear solver.

How to cite: Silva, V., Salinas, P., Jackson, M., and Pain, C.: Nonlinear solver acceleration based on machine learning applied to multiphase porous media flow, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12398, https://doi.org/10.5194/egusphere-egu22-12398, 2022.

EGU22-1388 | Presentations | GD9.2

A high-resolution record of vertically-resolved seawater salinity in the Caribbean Sea mixed layer since 1700 AD. 

Amos Winter, Davide Zanchettin, Malcolm McCulloch, Manuel Rigo, Clark Sherman, and Angelo Rubino

The Caribbean Sea in the tropical Atlantic is one of the major heat engines of the Earth and a sensitive area for monitoring climate variability. Salinity changes in the Caribbean Sea record changes in ocean currents and can provide information about variations in ocean heat transport. Seawater salinity in the Caribbean Sea has been monitored in recent decades, nevertheless, of all oceanographic environmental parameters salinity information before the instrumental period remains limited, due to the difficulty of reconstructing salinity, arguably the most difficult natural archives to recreate. We were able to reconstruct salinity changes in the Caribbean Sea from 1700 to the present from southwest Puerto Rico using slowly growing and long-lived scelerosponges from southwest Puerto Rico. These well-dated sponges are known to precipitate their skeletons in isotopic equilibrium (i.e., their record is not affected much by vital effects) and were retrieved from various depths in the mixed layer, from the surface to 90 m depth. We were able to establish salinity changes by deconvoluting stable isotopes (d18O) and trace element (Sr/Ca) proxies taken from the sponges at regular intervals. In this contribution, we will present the salinity record and illustrate the process for salinity reconstruction. We will also discuss how we determine how salinity changes in our record relate to radiative forcing as well as connect them with dominant mechanisms operating in the region, including changes in the position of the InterTtropical Convergence Zone and intensity of the Atlantic meridional Overturning Circulation over time.

How to cite: Winter, A., Zanchettin, D., McCulloch, M., Rigo, M., Sherman, C., and Rubino, A.: A high-resolution record of vertically-resolved seawater salinity in the Caribbean Sea mixed layer since 1700 AD., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1388, https://doi.org/10.5194/egusphere-egu22-1388, 2022.

EGU22-3134 | Presentations | GD9.2

Reconstructing the climate of the Extremadura region (SW Spain) from documentary sources 

José M. Vaquero, María C. Gallego, Nieves Bravo-Paredes, Víctor M.S. Carrasco, and Irene Tovar

In recent years, our research group has tried to improve the knowledge of the historical climate of the Extremadura region, located in the interior of the southwest of the Iberian Peninsula. Some results can be highlighted:

  • Temperature and precipitation indices were constructed for the period 1750-1840 from the correspondence of the Duke of Feria (Fernández-Fernández et al., 2014, 2015, 2017).
  • We have recovered many “pro pluvia” rogation dates (Domínguez-Castro et al., 2021) and we have seen their relationship with the North Atlantic Oscillation (Bravo-Paredes et al., 2020).
  • We have studied the catastrophic floods of the Guadiana River since AD1500 (Bravo-Paredes et al., 2021).
  • We have recovered more than 700,000 meteorological data from the Extremadura region taken in the 19th and early 20th centuries (Vaquero et al., 2022), including some uncommon series (Bravo-Paredes et al., 2019).

In recent months, we have started a study of the meteorological information published by the regional press of Extremadura in the last 150 years and here we will present some preliminary results.

References

Bravo-Paredes, N. et al. (2019) Tellus B 71, 1663597.

Bravo-Paredes, N. et al. (2020) Atmosphere 11(3), 282.

Bravo-Paredes, N. et al. (2021) Science of the Total Environment 797, 149141.

Domínguez-Castro, F. et al. (2021) Scientific Data 8, 186.

Fernández-Fernández, M.I. et al. (2014) Climatic Change 126, 107.

Fernández-Fernández, M.I. et al. (2015) Climatic Change 129, 267.

Fernández-Fernández, M.I. et al. (2017) Climatic Change 141, 671.

Vaquero, J.M. et al. (2022) Geoscience Data Journal. https://doi.org/10.1002/gdj3.131

How to cite: Vaquero, J. M., Gallego, M. C., Bravo-Paredes, N., Carrasco, V. M. S., and Tovar, I.: Reconstructing the climate of the Extremadura region (SW Spain) from documentary sources, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3134, https://doi.org/10.5194/egusphere-egu22-3134, 2022.

EGU22-3906 | Presentations | GD9.2

Earthquake detection in time-series of laser strainmeter measurements as a first step towards automatic signal classification. 

Valentin Kasburg, Alexander Breuer, Martin Bücker, and Nina Kukowski

Geophysical observatories around the world collect data on various natural phenomena within the Earth and on its surface. Many of these measurements are made automatically, sometimes at high sampling rates, so that enormous amounts of data accumulate over the years. Continuous analysis is important to classify current phenomena and decide which data are important and which can be downsampled later.

At Moxa Geodynamic Observatory, located in central Germany, several laser strainmeters have been installed in subsurface galleries in order to measure strain of the Earth's crust. These instruments run in north-south, east-west, and northwest-southeast directions. Nano-strain rates are determined with a sampling rate of 0.1 Hz almost continuously over distances of 26 and 38 m, respectively, since summer 2011.

Signals of tectonically induced crustal deformation are superimposed by other signals of greater amplitude, e.g., tides, changes in atmospheric pressure, hydrologic events such as heavy rainfall, and earthquakes. Classification of these events is important to better associate jumps in the temporal vicinity and to distinguish anomalies from instrument failures. To avoid time-consuming pattern recognition by hand, algorithms are required to do most of the work automatically. Due to recent advances in the field of artificial intelligence, it is possible to implement time series algorithms that are capable of unifying and automating many steps of data analysis. Although artificial intelligence applications are increasingly used to support data analysis, their use for time series of geophysical origin so far is not widespread outside of seismology.

In this contribution, an approach to automatically detect earthquakes in the strain data using 1D Convolutional Neural Networks is presented, including the generation of artificial training data with time series data augmentation. Also the training process and generation of new training data, based on classification by hand and false predictions of the trained model is described. The 1D Convolutional Neural Networks are able to identify almost all earthquakes in the strain data and have F1 values > 0.99, showing that their application has the potential to significantly reduce the time required in signal classification of observatory time series data.

How to cite: Kasburg, V., Breuer, A., Bücker, M., and Kukowski, N.: Earthquake detection in time-series of laser strainmeter measurements as a first step towards automatic signal classification., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3906, https://doi.org/10.5194/egusphere-egu22-3906, 2022.

EGU22-6814 | Presentations | GD9.2

Long term deformation and seismic observations at the Mont Terri rock laboratory 

Dorothee Rebscher, Senecio Schefer, Finnegan Reichertz, Yves Guglielmi, William Foxall, Inma Gutiérrez, and Edi Meier

The Mont Terri rock laboratory, located in the Swiss Jura Mountains, is dedicated to research on argillaceous rocks. Since its founding in 1996, the objective is the hydrogeological, geochemical, and geotechnical characterisation of Opalinus Clay in the context of nuclear waste repositories. More recently, the work has broadened to additional fields, covering potential uses of the deep geological subsurface such as geological storage of carbon dioxide and geothermal energy. With the excellent infrastructure, a comprehensive database, and the broad scientific and technological expertise, knowledge is enhanced e.g. through the advancement and comparison of approaches as well as the development and testing of novel investigation methods. These, as well as studies on feasibility and risk assessment, are of benefit also for underground laboratories in general and in situ explorations in different rock types worldwide. Due to the long-term commitment and the available gallery space of the research facility, elaborate as well as decade-long experiments can be implemented.

In order to detect, quantify, and understand short- and long-term deformations in the Mont Terri rock laboratory, quasi continuous time series are established employing various monitoring techniques. The latter complement each other in regard to their spatial dimensions, operational frequency optima, and their point or integral information. The approach combines

  • a 50 m long uniaxial hydrostatic levelling system (HLS, Type “PSI”, positioned along a gallery wall, measuring principle: electrical plate capacitors),
  • four mini-arrays of very-broad-band triaxial seismometers, installed in the rock laboratory (one under the HLS) as well as outside the rock laboratory at the surface,
  • and an array of high resolution, biaxial platform tiltmeters, with instruments situated close to the HLS and in various parts of the rock laboratory, integrated in other in situ experiments.

The observed signals and their analysis differ in space and time. They range from the detection of local nanoseismic as well as large tele seismic events, to the determination of earth tides, and to the identification of seasonal trends versus other long term geodetic movements. Besides the mutual comparison of the three deformation measurements, the time series provide valuable input for numerous scientific questions such as the stability of the rock laboratory as a whole or in its parts, the influence of excavation, ventilation, or fluid injection on rock matrix and faults. Long data series of ambient parameters, essential for interpretation of the deformation records, such as temperature, pressure, and humidity, are recorded by sensors integrated in the above listed instruments and are also of interest in further experiments performed by the Mont Terri Consortium.

How to cite: Rebscher, D., Schefer, S., Reichertz, F., Guglielmi, Y., Foxall, W., Gutiérrez, I., and Meier, E.: Long term deformation and seismic observations at the Mont Terri rock laboratory, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6814, https://doi.org/10.5194/egusphere-egu22-6814, 2022.

EGU22-8343 | Presentations | GD9.2 | Highlight

Variations of the Earth magnetic field: From geomagnetic storms to field reversal 

Roman Leonhardt

The geomagnetic field, the Earth’s primary barrier against charged particles from the sun, varies on time scales from million years to sub-second fluctuations. In the past decades significant advances in measurement techniques, both ground and space based, paleo- and rock magnetic methods, as well as numerical and analytical simulations, improved our understanding of underlying processes and their consequences on our planet and on our society. Geomagnetic storms, often related to coronal mass ejections on the sun and their interaction with the Earth‘s magnetic field, pose a threat to our modern society as they affect satellites, disturb radio communication, and, in particular, damage power grids and cause electrical blackouts on a massive scale. Ground based measurements, which are used together with satellite data to investigate these events, point towards the occurrence of global scale major storms once every 100 years. When further looking at such observatory data, which is existing for the last few hundred years, it is also striking that the global Earth‘s magnetic field is gradually weakening, by more the 10% in the past 200 years. Paleo- and archeomagnetic investigations are used to extend our observational range into the past in order to clarify the significance and reasons of this field reduction. When looking even further into the past, complete flips of the geomagnetic field are recorded in geological archives like volcanic rocks and sediments. These geomagnetic field reversals, the last one happening about 770kyrs ago, are accompanied by strong reductions of the geomagnetic field strength and complex field behavior on the Earths surface, effects which are sometimes brought into connection with our modern observation of field reduction. This presentation will provide a comprehensive overview about geomagnetic field variations, and the necessity of using long timeseries for interpretation of its current state and future evolution.

How to cite: Leonhardt, R.: Variations of the Earth magnetic field: From geomagnetic storms to field reversal, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8343, https://doi.org/10.5194/egusphere-egu22-8343, 2022.

To achieve very low ambient noise and thus very good conditions for long-term geophysical observations at a high level of instrumental accuracy in order to decipher also faint signals from Earth and environmental processes, sensors often are installed in the subsurface in galleries or in boreholes. This however, makes it necessary to consider the potential influence of the geological setting and properties of the surrounding rock formations and overburden.
Moxa Geodynamic observatory, located in a remote part of the Thuringian slate mountains, approximately 30 km south of Jena, provides an ideal setting to address this topic as it comprises two galleries, which are running perpendicular to each other. As the observatory is built at the toe of a relatively steep slope, coverage of the galleries varies along them. Further, the tectonic structure and hydrological settings of the overburden is rather complex.
Instruments sensitive to deformation, which include three laser strain meters measuring nano-strain, borehole tiltmeters and a superconducting gravimeter CD-034, together with other instruments, e.g. a node for the Global Network of Optical Magnetometers for Exotic physics (GNOME), are installed in various positions in the building of the observatory, close to the building, and in the galleries. The laser strainmeters record along three galleries in north-south, east-west and NW-SE directions. Further, information on fluid flow is gained from downhole temperature measurements employing an optical fiber and several groundwater level indicators, some of them installed in shallow boreholes. Additionally, information on environmental parameters is coming from a climate station and on the subsurface tectonic structure from various near surface geophysical data sets. 
Here, we present first results of an ongoing project which combines actual deformation recordings, structural and drillhole information to decipher how the tectonic structure of the and groundwater movement within the overlying slope on top of the observatory’s galleries may impact on the various instrumental recordings.

How to cite: Kukowski, N., Kasburg, V., Goepel, A., Schwarze, C., Jahr, T., and Stolz, R.: Impact of the geological setting of the overburden on long-time series recorded at underground geophysical observatories: case study from the FSU Jena Geodynamic Observatory Moxa (Thuringia, central Germany, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11079, https://doi.org/10.5194/egusphere-egu22-11079, 2022.

EGU22-11916 | Presentations | GD9.2

Downscaling to high-resolution and correcting air temperature from the ERA5-Land over Ethiopia 

Mosisa Tujuba Wakjira, Nadav Peleg, and Peter Molnar

Climate information from in-situ observation networks can be used to significantly improve the accuracy of gridded climate datasets, even in data-scarce regions. We applied a bias correction and spatial disaggregation method on daily maximum and minimum ERA5-Land (ERA5L) 2-m air temperature dataset covering Ethiopia. Due to large gaps in the observed temperature data, the bias correction is based on the statistics rather than the complete time series. First, long-term daily, monthly and annual temperature statistics (mean and variance) were summarized for the time series obtained from 155 stations covering the period 1981-2010. Second, the temperature statistics were interpolated onto a 0.05° x 0.05° grid using an inverse non-Euclidean distance weighting approach. This method accounts for the effects of elevation, thus enabling downscaling of the temperature to a higher spatial resolution. Next, the ERA5L maximum and minimum temperature were bias-corrected using quantile mapping assuming a Gaussian distribution transfer function. The quantile mapping was performed at daily, monthly and annual time steps to reproduce the climatology, seasonality, and interannual variability of the data. The performance of the bias correction was evaluated using the leave-out-one cross-validation method. The cross-validation shows that the bias-corrected maximum (minimum) daily temperature has an improved mean absolute error value of 68% (52%) in comparison to the original ERA5L reanalysis air temperature bias. The bias-corrected dataset is therefore suggested as an alternative for the ERA5L and can be used in a wide range of applications in Ethiopia.

How to cite: Wakjira, M. T., Peleg, N., and Molnar, P.: Downscaling to high-resolution and correcting air temperature from the ERA5-Land over Ethiopia, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11916, https://doi.org/10.5194/egusphere-egu22-11916, 2022.

Geomagnetic activity is a measure aimed to quantify the effect of solar wind upon the Earth's magnetic environment. The main structures in solar wind driving geomagnetic activity are the coronal mass ejections (CME) and the high-speed solar wind streams together with related co-rotating interaction regions (HSS/CIR). While CMEs are closely related to sunspots and other active regions on solar surface, the HSSs are related to solar coronal holes, forming a proxy of solar polar magnetic fields. This gives an interesting possibility to obtain versatile information on solar activity and solar magnetic fields from geomagnetic activity.

Various indices have been developed to quantify and monitor global geomagnetic activity. The most often used indices of overall geomagnetic activity are the aa index, developed by P. Mayaud and running already since 1868, and the Kp/Ap index, developed by J. Bartels and running since 1932. Both aa and Kp/Ap depict the increase of geomagnetic activity during the first half of the 20th century, and a steep decline in the 2000s. However, although the two indices are constructed from midlatitude observations using roughly the same recipe, they depict notable differences during the 90-year overlapping interval. While the Kp/Ap index reaches a centennial maximum in the late 1950s, at the same time as sunspots, the aa index has its maximum only in 2003. Also, the Kp/Ap is systematically relatively more active in the first decades until 1960s, while aa is more active thereafter. The Dst index was developed to monitor geomagnetic storms and the ring current since 1957. We have corrected some early errors in the Dst index and extended its time interval to 1932. This extended storm index is called the Dxt index. Here we study these long-term geomagnetic indices and their differences. We also use their different dependences on the main solar wind drivers in order to obtain new information on the centennial evolution of solar activity and solar magnetic fields.

How to cite: Mursula, K.: Long-term geomagnetic activity: Comparison and analysis of geomagnetic activity indices during the last 90 years, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12745, https://doi.org/10.5194/egusphere-egu22-12745, 2022.

Modelling studies show that subduction initiation requires failure of the load-bearing crustal and mantle layers and critically depends on the buoyancy and strength contrast within the lithosphere. Such findings suggest that the probability of subduction initiation must increases in the vicinity of continental margins. Yet, direct evidence for subduction initiation at passive margin is scarce and the mechanisms of subduction initiation in this particular setting remains a recurrent and long-standing unresolved question. Therefore, our study focuses on the kinematic and rheologic key parameter combinations relevant for the formation of a subduction zone, with the aim of identifying the feasibility of subduction initiation at a passive margin setting. To challenge the existing limits and discriminate processes that fit conditions for subduction nucleation, we compare and combine analogue and numerical modelling techniques. In this work, numerical modelling allows exploring temperature driven feedback mechanisms whereas analogue modelling allows for mapping characteristic length scales of deformation against the mode of subduction initiation. Overall, model results highlight that the convergence rate, the strength contrast at the margin as well as the degree of crust-mantle coupling control the development of a shear zone at the base of the crust, and the propagation of deformation into the mantle lithosphere. In addition, comparison between analogue and numerical modelling results infers that shear heating, weak sediments, magmatic heterogeneities or a serpentinite mantle wedge, are important parameters for the development of a self-sustaining subduction zone. The relevance of the modelling results is demonstrated by comparing length-scales of deformation with observations from inverted continental passive margins and orogenic systems, such as the Alps and Dinarides. Models predict that primary response of the lithosphere to compression is by folding and that tectonic structures and early-stage length-scales of deformation can be used to predict the likeliness of subduction initiation at a passive margin.

How to cite: Auzemery, A.: A comparison of numerical and analogue models of subduction initiation at passive margins., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-356, https://doi.org/10.5194/egusphere-egu22-356, 2022.

We present a numerical scheme to study 3D fracture problems at a planar interface. This scheme is based on the spectral representation of the boundary integral equation method which involves the evaluation of elastodynamic convolutions at the interface. The advantage of this method is that it is numerically efficient as it calculates the field quantities only on the fracture plane rather than in the entire domain. In the current approach, spatial convolution is replaced by multiplication in the spectral domain which increase the computational efficiency. In the literature, Geubelle and Rice [1995] first introduced the 3D spectral representation of the formulation of Budiansky and Rice [1979]. In their approach, the time-convolution is performed of the displacement history at the interface. Later, 3D formulation for a bi-material interface was proposed by Breitenfeld and Geubelle [1998]. Recently, a spectral form of the Kostrov [1966] was proposed by Ranjith [2015] for 2D in-plane problems. In this approach, time-convolution is performed of the traction history at the interface. An advantage of this approach is that the convolution kernels for a bi-material interface can be expressed in closed form, whereas Breitenfeld and Geubelle [1998] had to obtain their convolution kernels numerically. In the present work, convolution kernels for 3D elastodynamic fracture problems at a bi-material interface are derived following the approach of Ranjith [2015].

How to cite: Gupta, A. and Kunnath, R.: Spectral formulation of the 3D elastodynamic boundary integral equations for a bi-material interface, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-767, https://doi.org/10.5194/egusphere-egu22-767, 2022.

The diapir structure is closely related to the distribution of oil and gas resources and has received extensive attention. In this regard, previous works have conducted much research on it. So far, many important achievements and understandings have been obtained on the formation environment and deformation styles of diapir structures, but there are few studies on the formation mechanism of salt or mud diapir initiation and its downbuilding. This study uses analog modeling to establish four sets of combined models of the basal silicon layer and overlying quartz sand, including the differences in initial geomorphology, the thickness of the covering layer above the ductile layer, sedimentary rate, and basal and lateral friction. Results show that the difference in geomorphology is the initial necessary condition for the formation of salt dome or mud dome structure, i.e., the extension, compression environment, and weak zone formed by tectonic activity are all conducive to the rapid start of the diapir structure. The formation of diapir downbuilding, rapid deposition loading, thick initial covering layer above the ductile layer, and significant basal and lateral friction will inhibit the development of early diapirs. In contrast, slow deposition rate, thin initial covering layer above the ductile layer, and reduced basal and lateral friction will promote the growth of early diapirs. Simultaneously, in the middle and late stages of diapir downbuilding, diapirs will grow and deform rapidly with the loading of the deposition rate. Based on the physical modeling results and natural deformation of the diapiric structure, comprehensive analysis shows that diapir downbuilding results from the combined effects of geomorphology, deposition rate, formation temperature and pressure, and diapir fluid depth. It is found that the salt diapir downbuilding in the North Sea Basin and mud diapir downbuilding in the Andaman back-arc basin are similar to the formation mechanism of analog modeling downbuilding in this paper.

 

Keywords: Diapir Structure; Downbuilding; Initial Geomorphology; Sedimentary Rate; Covering Thickness; Basal and Lateral Friction; Analogue Modeling

How to cite: He, W.: Diapiric initiation and formation mechanism of diapir’s downbuilding—Insights from analogue modeling, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1058, https://doi.org/10.5194/egusphere-egu22-1058, 2022.

EGU22-1670 | Presentations | TS9.1

Influence of Time-dependent Healing on Reactivation of Granular Shear Zones in analogue models: A Community Benchmark 

Michael Rudolf, Matthias Rosenau, and Onno Oncken

Inverted structures are some of the economically most important geological features worldwide. Besides their most common manifestation as traps for hydrocarbons, they are also interesting for the storage of CO2 and extraction of other resources such as heat, minerals or hydrogen. Analogue modelling is frequently used to understand the long-term geological evolution of basins and basin inversion as an addition to numerical and mathematical models. Most analogue models use granular materials, like sands and glass beads, to simulate the brittle-plastic rheology of the crust. The main driving mechanism for basin inversion, both in nature and analogue models is the reactivation of pre-existing structures. This is due to strain-dependent weakening which leads to a reduced strength of a fault or shear zone in comparison with the surrounding bulk material. If the structure comes to a rest, several mechanisms lead to a time-dependent restrengthening of the structure. Therefore, older structures are usually more resistant to reactivation than younger ones, in the same material. In this study we use an annular shear tester to quantify the healing of granular materials commonly used for analogue models. We take advantage of a large collection of analogue material samples at the Helmholtz Laboratory for Tectonic Modelling, coming from many laboratories worldwide. To estimate granular healing, we employ slide-hold-slide tests with hold times comparable to typical analogue models of basin inversion. We show that all materials tested exhibit healing which follows a power-law relation quantified by with a healing rate. For example, fused glass microbeads showed a healing rate of 0.025 per decade in hold time. This means that for a tenfold increase in hold time the strength required to reactivate the given fault increases by 2.5%. Consequently, if a fault is inactive for a longer period of time, it is slightly stronger in comparison with a fault with shorter inactivity. Comparing the healing exponent for several materials reveals that some materials show a stronger healing than others. Glass beads have a stronger healing than sands, with quartz sands having lower healing rates than garnet or feldspar sands. Geomechanical tests on natural materials (quartz and gypsum fault gouges) and measurements of seismic velocities across fault zones suggest that healing obeys a similar power law. The healing rates in real rocks are roughly equal or higher depending on the temperature and water saturation of the fault. Albeit small, this change in reactivation strength for analogue materials might have a strong influence on the structural style of inversion if the models are run with different timespans between extensional phase and compressional phase. With a typical range of experimental time-spans of a view seconds to several hours this may result in up to 10% difference in reactivation strength similar to the difference between static and dynamic friction. This becomes especially relevant, if the angles of the formed pre-existing structures are close to the angle of internal friction of the bulk material which is the default in models where reactivated structures have been formed self-consistently in a pre-inversion phase.

How to cite: Rudolf, M., Rosenau, M., and Oncken, O.: Influence of Time-dependent Healing on Reactivation of Granular Shear Zones in analogue models: A Community Benchmark, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1670, https://doi.org/10.5194/egusphere-egu22-1670, 2022.

EGU22-1970 | Presentations | TS9.1

Fault growth and rift propagation during rotational continental rifting: Insights from an analogue modelling study 

Timothy Schmid, Guido Schreurs, and Jürgen Adam

Continental rifts typically result from regional horizontal stretching of the lithosphere and in modelling studies, such rifts are typically assumed to be the result of orthogonal or oblique extension. However, in nature often V-shape rift geometries occur indicating an underlying rotational component that results in a divergence velocity gradient along plate boundaries. Consequently, the geometric, kinematic, and dynamic rift evolution in such rotational settings may significantly differ from those of orthogonal or oblique rifts. Here, we present new findings from an analogue modelling study using a crustal-scale model series with a rotational opening component to investigate the effect of such a rift-axis parallel divergence velocity gradient on fault growth and rift propagation towards the rotation axis.

We use a simplified two-layer system simulating an upper brittle and a lower ductile crust with an imposed initial mechanically weak zone on top of the viscous layer to ensure localized rifting. The experimental monitoring by means of a stereoscopic camera setup and X-Ray computed tomography (XRCT) enables a detailed and quantitative investigation of near-surface rift evolution and internal deformation, respectively. With the combination of 3D surface topography, 3D displacement fields, and XRCT, we gain a comprehensive understanding of deformation evolution in analogue models of rotational rifting. Our modelling results depict a novel characterization of normal fault growth under rotational extension and a rift evolution which is described by (1) rift propagation in two consecutive stages: A first stage showing bidirectional fault growth due to segment linkage with high rift propagation rates, and a second stage during which rift propagation occurs by unidirectional fault growth towards the rotation axis with linearly decreasing growth rates at decreasing distance to the rotation axis, (2) strain partitioning between competing conjugate normal faults with fault activity switching repeatedly from one segment of a normal fault to a segment on the oppositely dipping normal fault, and (3) active faulting migrating from the rift boundary faults inwards to intra-rift normal faults.

Our quantitative, spatiotemporal fault growth analysis reveals a characteristic segmentation of all deformation features listed above. The conclusion that the gradual decrease of the divergence velocity towards the rotation axis causes segmented deformation propagation is key and can help to understand natural examples of rotational rift settings such as the Taupo Rift Zone in New Zealand.

How to cite: Schmid, T., Schreurs, G., and Adam, J.: Fault growth and rift propagation during rotational continental rifting: Insights from an analogue modelling study, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1970, https://doi.org/10.5194/egusphere-egu22-1970, 2022.

EGU22-2743 | Presentations | TS9.1

Investigating Rift-Rift-Rift triple junctions through analogue and numerical modelling 

Daniele Maestrelli, Giacomo Corti, Sascha Brune, Derek Keir, and Federico Sani

Continental break-up at Rift-Rift-Rift triple junctions commonly represents the “prequel” of oceanic basin formation. Currently, the only directly observable example of a Rift-Rift-Rift setting is the Afar triple junction where the African, Arabian and Somalian plates interact to form three rift branches, two of which are experiencing oceanization (the Gulf of Aden and the Red Sea). The younger of the three (the Main Ethiopian Rift) is still undergoing continental extension. We performed analogue and numerical models simulating continental rifting in a Rift-Rift-Rift triple junction setting to investigate the resulting structural pattern and evolution. By adopting a parametrical approach, we modified the ratio between plate velocities, and we performed single-phase (all the three plates move) and two-phase models (with a first phase where only one plate moves and a second phase where all the three plates move). Additionally, the direction of extension was changed to induce orthogonal extension only in one of the three rift branches. Our single-phase models suggest that differential extension velocities in the rift branches determine the localization of the triple junction, which is located closer to the rift branch experiencing slower extension velocities. Furthermore, imposed velocities affect the distribution of deformation and the resulting pattern of faults. The effect of a faster plate is to favour the formation of structures trending orthogonal to dominant velocity vectors, while faults associated with the movement of the slower plates remain subordinate. In contrast, imposing similar velocities in all rift arms leads to the formation of a symmetric fault pattern at the triple junction, where the distribution of deformation is similar in the three rift branches. Two-phase models reveal high-angle faults interacting at the triple junction, confirming that differential extension velocities in the three rift branches strongly affect the fault pattern development and highlighting geometrical similarities with the Afar triple junction.

How to cite: Maestrelli, D., Corti, G., Brune, S., Keir, D., and Sani, F.: Investigating Rift-Rift-Rift triple junctions through analogue and numerical modelling, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2743, https://doi.org/10.5194/egusphere-egu22-2743, 2022.

EGU22-2847 | Presentations | TS9.1

The effect of brittle-ductile weakening on the formation of detachment faults at ultraslow spreading ridges 

Mingqi Liu, Antoine Rozel, and Taras Gerya

Large offset detachment faults form with exhuming mantle-derived rocks into the seafloor at the slow and ultralow spreading ridges. However, their formation mechanism still remains partly elusive.  The thick axial lithosphere of ultraslow spreading ridges detected by seismic studies may prevent the formation of detachment faults. Previous studies have proposed that only the combination of both serpentinization and grain size reduction in the mantle lithosphere can result in detachment faults which are consistent with the natural cases. Here, through 3D self-consistent magmatic-thermomechanical numerical models with both brittle/plastic strain weakening and grain size evolution, we systematically investigate effects of these coupled brittle-ductile weakening processes on the formation of detachment faults at ultraslow spreading ridges. Numerical results show that ultraslow ridges spontaneously break into shorter and warmer magma-rich (10-20% of the ridge length) and longer and colder magma-starved segments (80-90% of the ridge length). Small grain size formed in the deep root of detachment faults near the brittle-ductile transition depth at the magma-starved amagmatic segments. Then with mantle rocks exhumation into the surface, the decreasing temperature leads to the growth of small grain size, consistent with the deformation process of detachment fault systems in the amagmatic segments of the eastern part of the Southwest Indian Ridge. Through quantitatively exploring effects of grain size reduction and strain weakening, we obtained that strain weakening may be the primary factor to control the formation of detachment faults at the ultra-slow spreading ridges, although grain size evolution can also influence the spreading pattern in case of small (<= 1 mm) initial grain size of the lithospheric mantle. Furthermore, we also found that the weak ductile domain induced by the very small initial grain size (<= 0.1 mm) promotes the formation of detachment faults in the models without grain size evolution.

How to cite: Liu, M., Rozel, A., and Gerya, T.: The effect of brittle-ductile weakening on the formation of detachment faults at ultraslow spreading ridges, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2847, https://doi.org/10.5194/egusphere-egu22-2847, 2022.

EGU22-3265 | Presentations | TS9.1

Prediction of Off-Fault Deformation from Strike-slip Fault Structures in clay and sand experiments using Convolutional Neural Networks 

Michele Cooke, Hanna Elston, Laainam Chaipornkaew, Sarah Visage, Pauline Souloumniac, and Tapan Mukerji

Crustal deformation occurs both as localized slip along faults and distributed deformation off faults; however, we have few robust geologic estimates of off-fault deformation over multiple earthquake cycles. Scaled physical experiments simulate crustal strike-slip faulting and allow direct measurement of the ratio of fault slip to regional deformation, quantified as Kinematic Efficiency (KE). We offer an approach for KE prediction using a 2D Convolutional Neural Network (CNN) trained directly on images of fault maps produced by physical experiments of strike-slip loading of wet kaolin. A suite of experiments with different loading rate and basal boundary conditions, contribute over 13,000 fault maps throughout strike-slip fault evolution. Strain maps allow us to directly calculate KE and its uncertainty, utilized in the loss function and performance metric. The trained CNN achieves 91% accuracy in KE prediction of an unseen dataset. We then apply this CNN trained on wet kaolin experiments to strike-slip experiments in dry sand. The different rheology of sand and kaolin may lead to different relationships between fault geometry and off-fault deformation, which can be detected by differences in the predictive power of the CNN trained only on kaolin.  We also apply the trained CNN to crustal maps of off-fault deformation over coseismic, 10ka and 1 Ma time scales. The CNN predicted off-fault deformation overlap available geologic estimates.

How to cite: Cooke, M., Elston, H., Chaipornkaew, L., Visage, S., Souloumniac, P., and Mukerji, T.: Prediction of Off-Fault Deformation from Strike-slip Fault Structures in clay and sand experiments using Convolutional Neural Networks, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3265, https://doi.org/10.5194/egusphere-egu22-3265, 2022.

EGU22-4212 | Presentations | TS9.1

Sharing data and facilities in the analogue modelling community: the EPOS Multi-Scale Laboratories Thematic Core Service 

Francesca Funiciello, Matthias Rosenau, Stephane Dominguez, Ernst Willingshofer, Geertje ter Maat, Frank Zwaan, Fabio Corbi, Jan Olivier Eisermann, Benjamin Guillaume, Pauline Souloumiac, Silvia Brizzi, Giacomo Mastella, Riccardo Reitano, Elena Druguet, Guido Schreurs, and Claudio Faccenna and the EPOS Multi-Scale Laboratories Team

EPOS, the European Plate Observing System, is a unique e-infrastructure and collaborative environment for the solid earth science community in Europe and beyond (https://www.epos-eu.org/). A wide range of world-class experimental (analogue modelling and rock and melt physics) and analytical (paleomagnetic, geochemistry, microscopy) laboratory infrastructures are concerted in a “Thematic Core Service” (TCS) labelled “Multi-scale Laboratories” (MSL) (https://www.epos-eu.org/tcs/multi-scale-laboratories). Setting up mechanisms allowing for sharing metadata, data, and experimental facilities has been the main target achieved during the EPOS implementation phase. The TCS Multi-scale Laboratories offers coordination of the laboratories’ network, data services, and Trans-National access to laboratory facilities.

In the framework of data services, TCS Multi-Scale Laboratories promotes FAIR (Findable-Accessible-Interoperable-Re-Usable) (FAIR) sharing of experimental research data sets through Open Access data publications. Data sets are assigned with digital object identifiers (DOI) and are published under the CC BY license. Data publications are now conventionally citable in scientific journals and develop rapidly into a common bibliometric indicator and research metric. A dedicated metadata scheme (following international standards that are enriched with disciplinary controlled community vocabulary) facilitates ease exploration of the various data sets in a TCS catalogue (https://epos-msl.uu.nl/). Concerning analogue modelling, a growing number of data sets includes analogue material physical and mechanical properties and modelling results (raw data and processed products such as images, maps, graphs, animations, etc.) as well as software (for visualization, monitoring and analysis). The main geoscience data repository is currently GFZ Data Services, hosted at GFZ German Research Centre for Geosciences (https://dataservices.gfz-potsdam.de), but others are planned to be implemented within the next years.

In the framework of Trans-National access (TNA), TCS Multi-scale laboratories’ facilities are accessible to any researchers, creating new opportunities for synergy, collaboration and scientific innovation, according to TNAtrans-national access rules. TNA can be realized in the form of physical access (on-site experimenting and analysis), remote service (sample analysis) and virtual access (remotely operated processing). After three successful TNA calls, the pandemic has forced a moratorium on the TNA program.

The EPOS TCS Multiscale Laboratories framework is also providing the foundation for a comprehensive database of rock analogue materials, a dedicated bibliography, and facilitates the organization of community-wide activities (e.g., meetings, benchmarking) to stimulate collaboration among analogue laboratories and the exchange of know-how. Recent examples of these community efforts are also the contributions to the monthly MSL seminars, available on the MSL YouTube channel (https://www.youtube.com/channel/UCVNQFVql_TwcSBqgt3IR7mQ/featured), as well as the Special Issue on basin inversion in Solid Earth that is currently open for submissions  (https://www.solid-earth.net/articles_and_preprints/scheduled_sis.html#1160). 

How to cite: Funiciello, F., Rosenau, M., Dominguez, S., Willingshofer, E., ter Maat, G., Zwaan, F., Corbi, F., Eisermann, J. O., Guillaume, B., Souloumiac, P., Brizzi, S., Mastella, G., Reitano, R., Druguet, E., Schreurs, G., and Faccenna, C. and the EPOS Multi-Scale Laboratories Team: Sharing data and facilities in the analogue modelling community: the EPOS Multi-Scale Laboratories Thematic Core Service, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4212, https://doi.org/10.5194/egusphere-egu22-4212, 2022.

EGU22-5076 | Presentations | TS9.1

Numerical modelling of lithosphere-asthenosphere interaction and intraplate deformation in the Gulf of Guinea 

Jaime Almeida, Nicolas Riel, Marta Neres, Susana Custódio, and Stéphanie Dumont

Despite extensive research, intraplate deformation and associated earthquakes remain elusive. We argue that one potential reason for its occurrence is the interplay between the lithosphere and the upper mantle dynamic processes, specifically the lithosphere-asthenosphere interaction. To explore this possibility, we targeted the Gulf of Guinea and adjacent Western Africa, a region with low plate velocities and clear asthenosphere dynamics, which allows for the isolation of the underlying dynamic constraints which govern intraplate deformation. An in-depth understanding of intraplate deformation mechanisms will contribute towards the improvement of seismic hazard assessment away from plate boundaries.

Thus, here we present exploratory 3D numerical geodynamic models of the asthenosphere-lithosphere interaction in the Gulf of Guinea, ran with the state-of-the-art modelling code LaMEM. We employ different initial/boundary conditions such as: (a) different spreading rates for the Atlantic mid-ocean ridge (from 5 to 25 mm/yr), (b) rheological/lithological configurations (accounting for the cratonic/mobile nature of the region), (c) the presence/absence of weak zones (e.g., the Romanche/Central-African shear zones), and (d) the effect exerted by an active mantle plume. Seismicity data was employed to rank the models to ensure the validity of our results.

Preliminary results suggest that intraplate deformation within the Gulf of Guinea is influenced by the spreading rate of mid-ocean ridge, with stress being localized around the ocean-continent transition and existing shear zones.

This work was developed in the frame of SHAZAM (POCI-01-0415-FEDER-031475). FCT is further acknowledged for support through project UIDB/50019/2020-IDL.

How to cite: Almeida, J., Riel, N., Neres, M., Custódio, S., and Dumont, S.: Numerical modelling of lithosphere-asthenosphere interaction and intraplate deformation in the Gulf of Guinea, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5076, https://doi.org/10.5194/egusphere-egu22-5076, 2022.

EGU22-5879 | Presentations | TS9.1

The Expander: Growing fault networks under pure shear conditions 

Jun Liu, Matthias Rosenau, Sascha Brune, Ehsan Kosari, Onno Oncken, Michael Rudolf, and Thilo Wrona

The growth of faults is well studied with field methods, experiments and theoretical models. Fault evolution is largely established from a geometrical and kinematic point of view with respect to the growth of isolated faults and their mutual interaction. However, the dynamics of fault growth (e.g. stress shadowing, damage zone evolution, energy budgets) and the emergence of interactions over various spatial and temporal scales in larger fault networks is a topic of recent interest less illuminated so far. We here introduce a new experimental setup allowing to study “large-n” fault networks evolving in crustal-scale brittle and brittle-ductile analogue models. We document preliminary results helping to demonstrate and verify the capability of the approach.

The setup, called “The Expander”, builds on a traditional extensional setup with a basal rubber sheet expanded in one direction. The aspect ratio of the rubber sheet controls its lateral contraction (“Poisson’s effect”) and thus the bulk strain ratio under pure shear conditions. We can thus realize constrictional (prolate) to plane to flattening (oblate) kinematic basal boundary conditions depending on the sheet’s aspect ratio and whether we expand or relax the sheet. Evolving fault networks vary from anastomosing fold-and-thrust belts to conjugate sets of strike-slip fault networks to quasi-parallel normal fault populations, respectively. We apply digital image correlation (DIC) to track the kinematic surface evolution and photogrammetry (structure from motion, SFM) for topography evolution.

First observations suggest that strike-slip fault networks in a purely brittle crust under basal pure shear conditions evolve into compartments of synthetic faults, the size of which scale with brittle layer thickness similar to fault spacing. The scaling seems to be controlled by slip partitioned onto the individual faults and mediated by stress shadows. Numerical simulation of the experiment suggests that the compartmentalization might evolve further through sequential de-activation of smaller faults and collapse of deformation into a single regional scale master fault with or without prescribing a zone of crustal weakness (a “seed”). Further experiments are planned to test the fault pattern evolution for different mechanical stratigraphy (brittle-viscous layers, seeds) and kinematic boundary conditions.

How to cite: Liu, J., Rosenau, M., Brune, S., Kosari, E., Oncken, O., Rudolf, M., and Wrona, T.: The Expander: Growing fault networks under pure shear conditions, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5879, https://doi.org/10.5194/egusphere-egu22-5879, 2022.

EGU22-6358 | Presentations | TS9.1

Lithospheric-scale experiments of continental rifting monitored in an X-Ray CT scanner 

Frank Zwaan and Guido Schreurs

When simulating lithosphere-scale rifting processes, analogue modellers have their model lithosphere float on top of a dense fluid representing the sub-lithospheric mantle (i.e. the asthenosphere). Such models provide crucial insights into rift evolution, but monitoring model-internal deformation has always been a major challenge. Here we present the results of new rifting experiments performed with a novel lithospheric-scale modelling machine that allows for X-ray CT-scanner, uniquely revealing the models’ internal evolution.

Our models involve a 4-layer lithosphere, with brittle layers for the competent upper crust and upper lithospheric mantel, and viscous layers for the ductile lower crust and lower lithospheric mantle. This model lithosphere is placed in a basin of glucose syrup simulating the asthenosphere and contained by mobile sidewalls. When stretching the model by moving these sidewalls apart (inducing either orthogonal or oblique extension), deformation is accompanied by syrup flow and isostatic compensation. A weakness within the upper mantle serves to localize deformation along the central axis of the model. We use photogrammetry and PIV techniques for detailed analysis of surface deformation, whereas CT imagery and PIV analysis of CT-sections provide unprecedented insights into internal model evolution.

We find that early on in orthogonal extension models, deformation initiates along the weakness in the upper mantle layer. This deformation is then transferred into the upper crust via shear zones in the lower crust, generating a dual graben structure there. In parts of the model, one of the grabens can become dominant and as extension progresses, so that a large shear zone cutting through the whole lithosphere forms (asymmetric, simple-shear rifting). In other parts of the model deformation may be more distributed so that both grabens are well-developed (symmetric, pure shear rifting). Meanwhile, the on-going stretching and thinning of the lithosphere splits the upper mantle layer, and the simulated lower mantle (and especially the asthenosphere) rises towards the model surface, bringing the lower mantle layer in contact with the lower crustal layer (i.e. necking of the lithosphere).

In oblique extension models initial deformation also localizes in the upper mantle layer, but no clear surface structures develops (except for a broad topographic depression along the central model axis). By increasing the extension velocity and thus the coupling between the upper mantle and upper crust, faulting initiated in the upper crust, creating two bands of en echelon grabens. Also in these models, we observe lithospheric necking.

Our (final stage) model results are similar to previous works. Yet the new CT-imagery provides the first-ever direct insights (both qualitative and quantitative) into the internal evolution of lithospheric-scale rift models. Furthermore, this new and versatile modelling machine in combination with our CT-scanning abilities provides a broad range of opportunities for advanced future lithospheric-scale modelling studies.

 

 

Figure: 3D CT image of an oblique extension model. UC: upper crust, LC: Lower crust, ULM: upper lithospheric mantle, LLM: lower lithospheric mantle, As: asthenosphere

 

How to cite: Zwaan, F. and Schreurs, G.: Lithospheric-scale experiments of continental rifting monitored in an X-Ray CT scanner, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6358, https://doi.org/10.5194/egusphere-egu22-6358, 2022.

Cases where multiple tectonic regimes acted closely in space and time have been long recognized. The coexistence of thrust, strike-slip, and normal faulting has been documented in thick orogenic regions, in oblique convergent settings associated with strain partitioning, in areas of indentation tectonics and lateral escape, and synorogenic foreland rifting/transtension settings, where extension-transtension takes place in close spatiotemporal relation with plate-margin shortening. Here, we use analogue models to test how parameters like the crustal strength, basement inheritances, and relative rate of extrusion/indentation can be effective mechanisms to explain the coeval emplacement of thrust, strike-slip, and normal faults. We also investigate their effect on fault reactivation in previously extended basins.

We show that a strong crust can exhibit coeval thrust faults, strike-slip faults and normal faults for ratios of extrusion over indentation rates in between 1.4 and 2, as orientation and magitude of principal stresses spatially vary within the model. For a weaker crust, normal faults and thrusts faults cannot coexist at the same time. Inheritance, which is implemented through the presence of a seed simulating a preexisting weakness zone or through an initial phase of extension, controls the geometry of strike-slip faults, whose orientation departs from the Coulomb fracture criterion. Reactivation of former normal faults as normal faults is only possible for ratios of extrusion over indentation rates over 1, for both weak and strong crusts. For lower rates, pre-existing normal faults are reactivated as indentation-parallel strike-slip faults. Our experimental results are then compared with the tectonic evolution of the Eastern Anatolia, the Alps and the Central Patagonia.

How to cite: Guillaume, B. and Gianni, G.: Control of inheritance, crustal strength and relative rate of extrusion/indentation on 3D strain distribution and basin reactivation: insights from laboratory models, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7095, https://doi.org/10.5194/egusphere-egu22-7095, 2022.

EGU22-7776 | Presentations | TS9.1 | Highlight

Stochastic Chaos in Laboratory Earthquakes 

Adriano Gualandi, Davide Faranda, Chris Marone, and Gianmarco Mengaldo

Earthquakes are a complex natural phenomenon. They typically are the result of frictional instabilities along preexisting weakness zones called faults. The strain slowly builds up in the fragile Earth crust because of the presence of an external loading counterbalanced by friction forces at the faults’ interface. When the load cannot be balanced by the friction any further, the fault slips releasing the accumulated strain. Friction is a nonlinear phenomenon, and as such frictionally controlled systems may be subject to chaotic behavior. Seismic cycle analogs can be reproduced with rock friction experiments in the laboratory with a double direct shear apparatus. We show that laboratory earthquakes follow a low-dimensional random attractor. We explain the observations with a model of stochastic differential equations based on the rate- and state-friction framework. We show that small perturbations (less than 1‰) on the shear and normal stress can induce laboratory earthquakes aperiodic behavior with coefficient of variations of the order of some percent. The nonlinear nature of friction amplifies small scale perturbations, making mid-long term predictions of the system possible only statistically even for stick-slip events in a well controlled environment like the laboratory.

How to cite: Gualandi, A., Faranda, D., Marone, C., and Mengaldo, G.: Stochastic Chaos in Laboratory Earthquakes, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7776, https://doi.org/10.5194/egusphere-egu22-7776, 2022.

EGU22-8331 | Presentations | TS9.1

Analogue experiments of normal fault formation in multi-layers of alternating strength 

Utomi Izediunor, Susanne Buiter, and Joyce Schmatz

 As normal faults accumulate displacement, smearing of weaker fine-grained materials, such as clays, along their fault plane can reduce fault permeability and thus affect fluid flow in subsurface reservoirs, making clay smear development relevant for groundwater, geothermal and CO2 storage applications. Here we use analogue experiments to investigate the potential of smearing of weaker layers along fault planes in a multi-layer sequence of granular materials.  

The natural prototype is the interbedded limestone and marl sedimentary units of the Malm formation in a quarry in southern Germany. The normal faults in the quarry have small offset (usually < 50 cm) and dip between 40° – 65° predominantly trending NE – SW. We observe discontinuous marl smearing along the fault planes, which are surrounded by deformation zones with a dense tensile fracture population. Average limestone and marl bed thicknesses on both footwall and hanging wall is 32 cm and 4.5 cm, and 33 cm and 2.5 cm respectively.

Our analogue experiments are scaled to represent layers at quarry scale. We tested several sand and gypsum plaster mixtures using empirical and ring shear methods to find cohesive strength contrasts suitable for simulating the limestone-marl sequences. The material tests show that with increasing plaster content and confining pressure, cohesion increases, while the angle of internal friction shows a non-linear behaviour for plaster/sand mixtures. We here use sand for marl layers and gypsum for limestone. We sieve the materials in a 50 x 30 cm box of which half the base plate can drop down along a prescribed angle. We analyse deformation from 2D-timelapse and 3D-CT image data, using PIV and image analysis.

Models with sand (marl) layers within gypsum (limestone) without overburden show numerous mode I fractures at the free surface with localized fault planes. Shear zones are steep with dip angles in the range of 66° - 84°. Models with overburden form shear zones with dips ranging from 65° - 83°, forming less mode I fractures, but instead mainly shear fractures that cut across each cohesive layer. Sand smearing is observed to vary in models without overburden, while it is a consistent component of the fault zones at depth in models with overburden. We find that the quantity of sand smear is a function of the thickness of the embedded sand layers. The sand pours into large openings formed between cohesive gypsum powders with simultaneous mixing of the materials during fault displacement. This process causes an accumulation of sheared granular materials along the fault zone and in turn expands the shear zone width.

The experiments with overburden show steep dipping fragmented fault zones, as well as the formation of tensile fractures that form in, and cut through cohesive beds, similar to what is observed in the quarry. Sand smearing processes of rolling and mixing in dilatant portions during displacement is however more brittle in nature than ductile smearing observed in the quarry.

How to cite: Izediunor, U., Buiter, S., and Schmatz, J.: Analogue experiments of normal fault formation in multi-layers of alternating strength, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8331, https://doi.org/10.5194/egusphere-egu22-8331, 2022.

EGU22-8822 | Presentations | TS9.1

Transform versus non-transform offsets controlled by offset length and the variation in magmatic accretion within the offset zone 

Jana Schierjott, Garrett Ito, Mark Behn, Thomas Morrow, Xiaochuan Tian, and Boris Kaus

Transform faults and non-transform offsets define the bounds of mid-ocean ridge spreading segments, but tectonic and magmatic controls on the length of segments and the morphology of intervening offsets are poorly understood. A general observation at intermediate and slow-spreading oceanic environments is that localized strike-slip motion along transform faults tends to occur on larger offsets in space or crustal age, whereas more diffuse deformation at non-transform zones occurs at shorter offsets distances. In addition, variables such as lithospheric thickness, the size and spacing of faults, and the fraction (M) of extension accommodated by magmatic accretion (rather than faulting) are known to influence the overall morphology of the ridge segment and its vicinity. We hypothesize that the decrease in the amount of magmatic extension along the ridge segment towards the discontinuity along with the ridge segment offset play a role in defining the transition between transform and non-transform offsets.

In this study, we employ a 3D-numerical model to investigate how the relative amounts of fault- or magma-accommodated spreading and distance offset (D) between ridge segments control the development of transform versus non-transform offsets. Our model employs a ridge-like initial temperature structure, with magma intrusion simulated by adding a divergence to the right-hand-side of the continuity equation within a magmatic accretion zone at the ridge axis. M, the fraction of magmatically compensated spreading inside the magmatic accretion zone, can be varied along strike. By using a visco-elasto-plastic formulation the model can simulate the spontaneous formation and evolution of normal faults that accommodate part of the spreading. The temperature field is allowed to evolve and the model accounts for an increased, temperature-dependent conductivity around each ridge segment. We vary both the offset distance D separating two axes of magmatic accretion as well as the length L over which M decreases along the ridge axes towards the discontinuity. We find that increasing L leads to non-transform offsets, particularly for small offset distances D. As D increases, the occurrence of the offset zone is less prominently dominated by L. Depending on M, the style of faulting differs along the magmatic segments. While for M>0.5 we observe migrating faults creating topography similar to abyssal hills, values for M that are smaller or equal to 0.5 lead to stationary faults which are located closer to the ridge axis. 

How to cite: Schierjott, J., Ito, G., Behn, M., Morrow, T., Tian, X., and Kaus, B.: Transform versus non-transform offsets controlled by offset length and the variation in magmatic accretion within the offset zone, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8822, https://doi.org/10.5194/egusphere-egu22-8822, 2022.

EGU22-9653 | Presentations | TS9.1

Ultrasonic imaging of analogue scale models 

Jasper Smits, Fred Beekman, Ivan Vasconcelos, Ernst Willingshofer, Kasper Van Wijk, and Liviu Matenco

Since the 19th century pioneering work of Sir James Hall, physical analogue modelling has been proven a valuable method for the study of geological phenomena and has significantly contributed to understanding fundamental mechanisms of crust and lithosphere deformation. Traditionally, in such analogue scale models, structural deformation is monitored and quantified using top-view images or cross-sections, where the latter allow for portraying the final state of internal deformation of the model in great detail. Monitoring the evolution of internal deformation while the experiment is running is however a major challenge, and currently is possible only with X-ray scanning using medical-type CT scanners. These, however, put stringent limitations on size of the model and, thus, the possible geometric configurations related to different modelling setups.

To tackle these limitations, we are developing a novel method to image the evolving interior of analogue scale models using ultrasonic techniques. Similar to reflection seismology used in field studies, the internal structure of the analogue model can be imaged using sound waves. We employ a completely non-contact and non-invasive method, utilizing a laser Doppler vibrometer to detect the arrivals of seismic body waves at the model surface. A laser pulse from a powerful pulsed laser acts as a point source and is used to introduce acoustic waves in the model. By moving the detector and source, acoustic data is recorded for a number of source-recorder combinations, allowing the reconstruction of the internal layering and structure along cross sections, as will be illustrated by the results of several tests with analogue models and other samples. By developing this technique, we provide novel tools to characterize the acoustic behaviour of subsurface structures under well-controlled laboratory conditions with the aim of improving our understanding of waveforms and wave propagation in analogue models and earth materials in general.

How to cite: Smits, J., Beekman, F., Vasconcelos, I., Willingshofer, E., Van Wijk, K., and Matenco, L.: Ultrasonic imaging of analogue scale models, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9653, https://doi.org/10.5194/egusphere-egu22-9653, 2022.

The South Atlantic played a key role in the formulation of plate tectonic theory, and plate modelling has come a long way since the very first computer-assisted reconstructions of this ocean basin in the 1960s. This basin remains an active area of exploration interest as well as an excellent case study to discuss the past, present and future of plate modelling and to reflect on the reasons why discrepancies still remain, decades later, between alternative models reconstructing its geological history.

Today, high-resolution studies featuring multiple closely spaced static reconstructions give the opportunity to determine plate motions and their changes through time in more detail than ever before. They act as the foundation stones for many modern-day interpretations and simulations, providing context for regional geological and tectonic studies, and constraints for predictions of past climates, depositional environments, the evolution of stress regimes and, ultimately, the location of natural resources. Defining accurate sets of rotations that describe plate motion, as well as quantifying the uncertainties in them, is thus increasingly important.

As well as becoming more sophisticated, modelling techniques have also somewhat diversified in recent years. This is well illustrated by the fact that, for any one region on the planet, it is relatively easy to find alternative (and often irreconcilable) plate reconstructions built either on the basis of different data, different methodologies, or both. This prompts the question “how does one choose the right plate model” (and is there even such a thing as the “right” plate model). Focusing on the South Atlantic basin and using recently released version 6.0 of the Neftex plate model, I will discuss how unlocking the next generation of plate models requires implementing a global approach anchored on the principles of geodynamics.

How to cite: Perez Diaz, L.: From deep time to the future: unlocking the next generation of plate models, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9952, https://doi.org/10.5194/egusphere-egu22-9952, 2022.

EGU22-10156 | Presentations | TS9.1

New granular rock-analogue materials for simulation of multi-scale fault and fracture processes 

Luigi Massaro, Jürgen Adam, Elham Jonade, and Yasuhiro Yamada

Dynamically scaled experiments allow the direct comparison of geometrical, kinematical and mechanical processes between model and nature. The geometrical scaling factor defines the model resolution, which depends mainly on the density and cohesive strength ratios of model material and natural rocks. Granular materials such as quartz sands are ideal for the simulation of upper crustal deformation processes as a result of similar nonlinear deformation behaviour of granular flow and brittle rock deformation. We compared the geometrical scaling factor of common analogue materials applied in tectonic models and identified a gap in model resolution corresponding to the outcrop and structural scale (1–100 m).

In this study, we present a new granular rock-analogue material (GRAM) with a dynamic scaling suitable for the simulation of fault and fracture processes in analogue experiments. The proposed material is composed of silica sand and hemihydrate powder and is suitable to form cohesive aggregates capable of deforming by tensile and shear failure under variable stress conditions. Based on dynamical shear tests, GRAM is characterized by a similar stress-strain curve as dry silica sand, has a cohesive strength of 7.88 kPa and an average density of 1.36 g cm−3. The derived geometrical scaling factor is 1 cm in model = 10.65 m in nature. For a large-scale test, GRAM material was applied in strike-slip analogue experiments. Early results demonstrate the potential of GRAM to simulate fault and fracture processes, and their interaction in fault zones and damage zones during different stages of fault evolution in dynamically scaled analogue experiments.

How to cite: Massaro, L., Adam, J., Jonade, E., and Yamada, Y.: New granular rock-analogue materials for simulation of multi-scale fault and fracture processes, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10156, https://doi.org/10.5194/egusphere-egu22-10156, 2022.

EGU22-10624 | Presentations | TS9.1

Stretch and fold: Multistage analogue experiments of rifting, inversion, and orogenesis 

Anindita Samsu, Peter Betts, Fatemeh Amirpoorsaeed, Alexander Cruden, and Weronika Gorczyk

Analogue models are powerful tools for investigating extensional and convergent tectonic processes in 4D and at multiple scales. However, rarely do we introduce two successive phases of tectonism in a single analogue experiment to study the interaction between structures from two kinematically distinct tectonic events. Here we showcase a series of analogue experiments in which lithospheric-scale models are extended and subsequently shortened, simulating rifting followed by inversion and mountain building.

In our experiments, we simulate rifting by extending a multi-layer, brittle-ductile model lithosphere; this initial model is analogous to a hot, thickened lithosphere immediately after orogenesis. We demonstrate that the absence or presence of a narrow, pre-existing weakness in the lithospheric mantle results in end-member models of either wide or narrow rifting, respectively. Extension is immediately followed by shortening of the model, where we observe that contractional structures are localised along pre-existing rift basins. Analyses of particle imaging velocimetry (PIV) data reveal that shortening is accommodated by several mechanisms, including reverse reactivation of normal faults and buckling and/or inversion within pre-existing basins. We also show that these findings are consistent with field and geophysical observations from northern Australia as well as previous numerical experiments.

How to cite: Samsu, A., Betts, P., Amirpoorsaeed, F., Cruden, A., and Gorczyk, W.: Stretch and fold: Multistage analogue experiments of rifting, inversion, and orogenesis, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10624, https://doi.org/10.5194/egusphere-egu22-10624, 2022.

EGU22-10849 | Presentations | TS9.1 | Highlight

Experimental study on the conditions of inclusions capturing during diamond growth in the upper mantle 

Nadezda Chertkova, Anna Spivak, Anastasiia Burova, Egor Zakharchenko, Yuriy Litvin, Oleg Safonov, and Andrey Bobrov

Primary inclusions in natural diamonds provide unique information about deep-seated mantle minerals and fluids. Findings of the VI and VII modifications of H2O-ice as inclusions in diamonds show the presence of aqueous fluids at different depths in the diamond-bearing mantle (Kagi et al., 2000; Tschauner et al., 2018). In this work, we apply various experimental techniques for the investigation of mineral associations and H2O phases, captured as inclusions in diamonds, in the pressure range from 4 to 8 GPa and at temperatures from 500 °C to 1250 °C. In situ observations using diamond anvil cell (DAC) technique revealed crystallization of ice VII in association with ilmenite and olivine minerals upon cooling from 890 °C at 4 GPa, in agreement with the data, obtained from natural samples by Tschauner et al. (2018). Heating of this assemblage to 1200 °C at 6 GPa results in the formation of another mineral association, which includes ilmenite, pyroxene and clinohumite. Obtained experimental results can be used to reconstruct the pressure and temperature conditions of mineral and fluid inclusions capturing upon diamond growth and transfer in the lithosphere.  

This work was supported by grant No. 20-77-00079 from the Russian Science Foundation.

How to cite: Chertkova, N., Spivak, A., Burova, A., Zakharchenko, E., Litvin, Y., Safonov, O., and Bobrov, A.: Experimental study on the conditions of inclusions capturing during diamond growth in the upper mantle, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10849, https://doi.org/10.5194/egusphere-egu22-10849, 2022.

EGU22-11034 | Presentations | TS9.1

Condition for the formation of the Mozambique ridge (physical modelling) 

Anastasiia Tolstova, Evgene Dubinin, and Andrey Grokholsky

The Mozambique Ridge is located in the southwestern Indian Ocean between
two Mesozoic ocean basins: the Natal Basin and the Mozambique Basin. The
Mozambique ridge is formed from several bathymetric plateaus rising to 3500 m from
the seabed. It is believed that the origin of the ridge is associated with its partial
separation from the outskirts of the African continent due to the activities of the Karoo
hotspot. Recent studies show that the northeastern part of the ridge is thinned
continental crust covered with sediments, and the southern part is characterized by a
large number of extrusion centers indicating increased igneous activity. Experimental
studies described in this work showed that the formation of the Mozambique ridge
occurred in the context of the destruction of the Afro-Antarctic continent with
structural heterogeneities in the lithosphere of the African continent and the influence
of the Karoo hotspot.
This work was supported by the Russian Science Foundation
(project no. № 22-27-00110).

How to cite: Tolstova, A., Dubinin, E., and Grokholsky, A.: Condition for the formation of the Mozambique ridge (physical modelling), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11034, https://doi.org/10.5194/egusphere-egu22-11034, 2022.

EGU22-11360 | Presentations | TS9.1

Effects of multiple detachments in thin-skinned fold and thrust belts: insights from analogue modelling 

Bianca Copot, Dan M. Tamas, Alexandra Tamas, Csaba Krezsek, Zsolt Schleder, Alexandru Lapadat, and Sorin Filipescu

Thin-skinned fold and thrust belts present exploration challenges in many places worldwide. The presence of multiple detachments in the stratigraphic sequence also adds to the complexity of such fold and thrust belts. This study aims to understand more about the effects of multiple detachments in thin-skinned fold and thrust belts through scaled analogue modelling experiments. Our main area of interest is Romania's prolific onshore hydrocarbon area, the foreland of the Eastern Carpathian Bend Zone. Here, one of the large uncertainties is if the Oligocene to lower Miocene strata experienced any shortening before salt deposition. If so, what would be the difference in the observed geometries?

Scaled sandbox models with layered brittle and ductile materials were used to gain critical insights into the structural evolution of this fold and thrust belt (ECBZ) and to reduce the above-mentioned uncertainties. The materials used in these experiments are: coloured dry quartz sand (for modelling brittle behaviour), silicone (for ductile behaviour of the salt), 200-300 μm glass microspheres and a mixture of silicone and granular materials (for the other detachment levels).

The experimental setup consists of a computerized deformation device that pulls a mobile plate at a constant rate beneath a fixed deformation box with one glass sidewall, one end of the box acting as a static buttress. Deformation monitoring has been achieved using top-view 3D digital image correlation techniques (DPIV- Digital Particle Image Velocimetry). The models were serially sectioned and photographed after post-experiment treatment (wetting and consolidation). The sections were used to build and interpret 3D digital models of the experiments.

Duplex structures mainly characterize the deformation in the sub-silicone. Some particular geometries observed in the sub-silicone (salt) sequence are buckle folds and lift-off folds. These mainly occur when the detachments within the sub-silicone mechanical stratigraphy consist of silicone/granular mixture. Although not traditionally interpreted and observed in the area, these results raise the possibility of alternative interpretations. The supra-silicone (salt) deformation is less complex, characterized by both fore- and backthrusts, most of them initiating as detachment folds, similar to what is seen in our area of interest.

Experimental results reduce exploration uncertainties by bringing more insights into the control and effects of multiple detachments on the structural development of fold and thrust belts. These modelling results also bring new possible interpretations in areas poorly constrained by seismic and well data.

How to cite: Copot, B., Tamas, D. M., Tamas, A., Krezsek, C., Schleder, Z., Lapadat, A., and Filipescu, S.: Effects of multiple detachments in thin-skinned fold and thrust belts: insights from analogue modelling, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11360, https://doi.org/10.5194/egusphere-egu22-11360, 2022.

EGU22-11517 | Presentations | TS9.1

Large scale detachment folding of thermally softened crust within a closing orocline in the Chinese Altai - insights from analog modeling 

Tan Shu, Prokop Závada, Ondřej Krýza, Yingde Jiang, and Karel Schulmann

The ribbon-like Altai accretionary sedimentary wedge, representing the SW exteriors of the the Tuva-Mongol Orocline, suffered important Devonian and Permian deformation, metamorphism and melting. The last Permian deformation was associated with massive lower crustal melting, granulitization and lateral lower crustal flow of anatectic material. This lateral transfer was controlled by upwelling of the mantle below the extended parts of the crust. The subsequent Permian shortening led to development of a series of crustal scale detachment folds cored by migmatite-magmatite complexes and surrounded by weakly metamorphosed rocks in marginal synforms.

 

The current study aims to understand the geometry, kinematics and dynamics of such large scale folding in the Chinese Altai during compression of thermally softened crust confined in the Tuva-Mongol Orocline. In such a setting, the angle of convergence is progressively increasing during collision, as the curvature of the orocline increases. To visualize and quantify this process, we employed analog modeling by using paraffin wax for ductile lower crust and sand-cenosphere mixture for brittle upper crust. The model domains (60cm×70cm×3cm) are preheated for 15 hours to attain a stable initial thermal and rheological gradient. The base of the models sustains the temperature at 51 °C (the melting point for the paraffin wax) while the top part of the model is heated to 48 °C by convective air. Strain in the models is quantified from the top view using the stereoscopic digital image correlation system from Lavision GmbH. The models are shortened by movement of indenter wall driven by a step-motor. Three series of experiments were designed to simulate the above detachment folds. In the first series of models, the indenter wall is perpendicular to the shortening direction. In the second scenario, the indenter wall is initially obliquely oriented to the shortening direction. As for last scenario, the angle of convergence α (defined as the angle between the plate motion vector and the plate boundary) is continuously increased from initial 60° to 90°. This last mode mimics the effect of the closing orocline confining the thermally softened crust. All models display progressive development of an array of folds with crestal grabens that are cored by molten and partially molten wax. We describe how the style of folding, degree of strain partitioning and distribution of transcurrent movements differ between the modes of convergence.

How to cite: Shu, T., Závada, P., Krýza, O., Jiang, Y., and Schulmann, K.: Large scale detachment folding of thermally softened crust within a closing orocline in the Chinese Altai - insights from analog modeling, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11517, https://doi.org/10.5194/egusphere-egu22-11517, 2022.

Atmospheric water management or cloud seeding technologies might be effectively applied to assess the impacts from changing climate on water security and renewable energy use. During said assessments it might be possible to exploit their observations to mitigate the negative impacts from climate change by enhancing the water supply as part of a water security plan, and/or by effectively removing low-level supercooled cloud decks/fogs to facilitate renewable energy use providing added sunshine during typically overcast day-time periods. Cloud seeding technologies are used to positively affect the natural hydrologic cycle, while respecting and avoiding damage to public health, safety and the environment.  This talk summarizes atmospheric water management technologies and their use, how these technologies might be applied as part of a strategy to ensure water security and how their application might provide a potential opportunity for recouping lost energy potential.

How to cite: DeFelice, T.: The role atmospheric water management technologies might play in Nature-based solutions (NbS), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1941, https://doi.org/10.5194/egusphere-egu22-1941, 2022.

EGU22-2263 | Presentations | GI6.3

EasyGeoModels: a New Tool to Investigate Seismic and Volcanic Deformations Retrieved through Geodetic Data. Software Implementation and Examples on the Campi Flegrei Caldera and the 2016 Amatrice Earthquake 

Giuseppe Solaro, Sabatino Buonanno, Raffaele Castaldo, Claudio De Luca, Adele Fusco, Mariarosaria Manzo, Susi Pepe, Pietro Tizzani, Emanuela Valerio, Giovanni Zeni, Simone Atzori, and Riccardo Lanari

The increasingly widespread use of space geodesy has resulted in numerous, high-quality surface deformation data sets. DInSAR, for instance, is a well-established satellite technique for investigating tectonically active and volcanic areas characterized by a wide spatial extent of the inherent deformation. These geodetic data can provide important constraints on the involved fault geometry and on its slip distribution as well as on the type and position of an active magmatic source. For this reason, over last years, many researchers have developed robust and semiautomatic methods for inverting suitable models to infer the source type and geometry characteristics from the retrieved surface deformations.

In this work we will present a new software we have implemented, named easyGeoModels, that can be used by geophysicists but also by less skilled users who are interested in sources modeling to determine ground deformation in both seismo-tectonic and volcanic contexts. This software is characterized by some innovative aspects compared to existing similar tools, such as (i) the presence of an easy-to-use graphic interface that allows the user, even if not particularly expert, to manage the data to be inverted, the input parameters of one or more sources, the choice of the deformation source (s), effective and simple way; (ii) the possibility of selecting the GPS data to be inverted, simply by selecting the area of interest: in this case the software will automatically consider for the inversion only the GPS stations present in the selected area and will download the relative data from the Nevada Geodetic Laboratory site; (iii) the generation of output files in Geotiff, KMZ and Shapefile format, which allow a faster and more immediate visualization through GIS tools or Google Earth.

Finally, as applications, we will show some preliminary results obtained through the easyGeoModels software on areas characterized by huge deformation both in a volcanic context, such as that of the Campi Flegrei caldera, and a seismo-tectonic one, as for the case of the Amatrice earthquake (central Italy) which occurred on 24 August 2016.

How to cite: Solaro, G., Buonanno, S., Castaldo, R., De Luca, C., Fusco, A., Manzo, M., Pepe, S., Tizzani, P., Valerio, E., Zeni, G., Atzori, S., and Lanari, R.: EasyGeoModels: a New Tool to Investigate Seismic and Volcanic Deformations Retrieved through Geodetic Data. Software Implementation and Examples on the Campi Flegrei Caldera and the 2016 Amatrice Earthquake, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2263, https://doi.org/10.5194/egusphere-egu22-2263, 2022.

EGU22-4876 | Presentations | GI6.3 | Highlight

Geodetic imaging of the magma ascent process during the 2021 Cumbre Vieja (La Palma, Canary Islands) eruption 

Monika Przeor, José Barrancos, Raffaele Castaldo, Luca D’Auria, Antonio Pepe, Susi Pepe, Takeshi Sagiya, Giuseppe Solaro, and Pietro Tizzani

On the 11th of September of 2021, a seismic sequence began on La Palma (Canary Islands), followed by a rapid and significant ground deformation reaching more than 10 cm in the vertical component of the permanent GNSS station ARID (Aridane) operated by the Instituto Volcanológico de Canarias (INVOLCAN). The pre-eruptive episode lasted only nine days and was characterized by an intense deformation in the western part of the island and intense seismicity with the upward migration of hypocenters. After the onset of the eruption, which occurred on the 19th of September of 2021, the deformation increased a few cm more, reaching a maximum on the 22nd of September and subsequently showing a nearly steady deflation trend in the following months.

We obtained a Sentinel-1 DInSAR dataset along both ascending and descending orbits, starting from the 27th of February of 2021 and the 13th of January of 2021, respectively. We selected the study area at the radial distance of 13 km from the eruption point (Latitude: 28.612; Longitude: -17.866) to realize an inverse model of the geometry of the causative sources of the observed ground deformation. While the ascending orbit that passed on the 18th of September indicated mainly a dike intrusion in the shallow depth, the descending orbit from the 20th of September seemed to indicate a deformation caused by at least two sources: the pre-eruptive intrusion and the nearly-vertical eruptive dike. The deeper source spatially coincides with the location of most of the pre-eruptive volcano-tectonic hypocenters.

Finally, based on the preliminary inverse model of the DInSAR dataset, we applied the geodetic imaging of D’Auria et al., (2015) to retrieve the time-varying spatial distribution of volumetric ground deformation sources. The final results show the kinematics of the upward dike propagation and magma ascent.

 

References

D’Auria, L., Pepe, S., Castaldo, R., Giudicepietro, F., Macedonio, G., Ricciolino, P., ... & Zinno, I. (2015). Magma injection beneath the urban area of Naples: a new mechanism for the 2012–2013 volcanic unrest at Campi Flegrei caldera. Scientific reports, 5(1), 1-11.

How to cite: Przeor, M., Barrancos, J., Castaldo, R., D’Auria, L., Pepe, A., Pepe, S., Sagiya, T., Solaro, G., and Tizzani, P.: Geodetic imaging of the magma ascent process during the 2021 Cumbre Vieja (La Palma, Canary Islands) eruption, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4876, https://doi.org/10.5194/egusphere-egu22-4876, 2022.

EGU22-5431 | Presentations | GI6.3

Modeling Potential Impacts of Gas Exploitation on the Israeli Marine Ecosystem Using Ecopath with Ecosim 

Ella Lahav, Peleg Astrahan, Eyal Ofir, Gideon Gal, and Revital Bookman

Exploration, production, extraction and transport of fossil fuels in the marine environment are accompanied by an inherent risk to the surrounding ecosystems as a result of the on-going operations or due to technical faults, accidents or geo-hazards. Limited work has been conducted on potential impacts on the Mediterranean marine ecosystem due to the lack of information on organism responses to hydrocarbon pollution. In this study, we used the Ecopath with Ecosim (EwE) modeling software which is designed for policy evaluation and provides assessments of impacts of various stressors on an ecosystem. An existing EwE based Ecospace food-web model of the Israeli Exclusive Economic Zone (EEZ) was enhanced to include local organism response curves to various levels of contaminants, such as crude oil, in the water and on the sea floor sediments. The goal of this study is to evaluate and quantify the possible ecological impacts of pollution events that might occur due to fossil fuel exploitation related activities. Multiple spatial static and dynamic scenarios, describing various pollution quantities and a range of habitats and locations were constructed. Using the enhanced Ecospace models for assessing the potential impacts of gas exploitation on organism biomass, the spatial and temporal distribution and food-web functioning was tested and evaluated. The results of this study will show a quantitative assessment of the expected ecological impacts that could assist decision makers in developing management and conservation strategies.

How to cite: Lahav, E., Astrahan, P., Ofir, E., Gal, G., and Bookman, R.: Modeling Potential Impacts of Gas Exploitation on the Israeli Marine Ecosystem Using Ecopath with Ecosim, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5431, https://doi.org/10.5194/egusphere-egu22-5431, 2022.

EGU22-5618 | Presentations | GI6.3

Slope stability monitoring system via three-dimensional simulations of rockfalls in Ischia island, Southern Italy 

Ada De Matteo, Massimiliano Alvioli, Antonello Bonfante, Maurizio Buonanno, Raffaele Castaldo, and Pietro Tizzani

Volcanoes are dynamically active systems in continuous evolution. This behaviour is emphasized by many different processes, e.g., fumarolic activity, earthquakes, volcanic slope instabilities and volcanic climax eruptions. Volcanic edifices experience slope instability as consequence of different solicitations such as i) eruption mechanism and depositional process, ii) tectonic stresses, iii) extreme weather conditions; all these events induce the mobilization of unstable fractured volcanic flanks.

Several methods exist to gather information about slope stability and to map trajectories followed by individual falling rocks in individual slopes. These methods involve direct field observation, laser scanning, terrestrial or aerial photogrammetry. Such information is useful to infer the likely location of future rockfalls, and represent a valuable input for the application of three-dimensional models for rockfall trajectories.

The Ischia island is volcano-tectonic horst that is a part of the Phlegrean Volcanic District, Southern Italy. It covers an area of about 46 km2 and it has experienced a remarkable ground uplift events due to a resurgence phenomenon. Slope instability is correlated both with earthquakes events and with volcanism phenomena. Specifically, evidences suggest that rockfalls occurred as an effect of the gravitational instability on the major scarps generated by the rapid resurgence, eased by the widespread rock fracturing.

We present results of an analysis relevant to the most probable individual masses trajectories of rockfall affecting the slopes of Ischia island. We first identified the prospective rockfall sources through an expert-mapping of source area in sample locations and statistical analysis on the whole island. Probabilistic sources are the main input of the three-dimensional rockfalls simulation software STONE.

The software assumes point-like masses falling under the sole action of gravity and the constraints of topography, and it calculates trajectories dominated by ballistic dynamics during falling, bouncing and rolling on the ground. Analysis of high-definition critical sector pictures, achieved by using UAV (Unmanned Aerial Vehicle) platform, will allow a detailed localization of source areas and an additional more robust simulations.

The procedure can be viewed as a multiscale analysis and allows besting allocating computational efforts and economic resources, focusing on a more detailed analysis on the slopes identified as the most risky ones during the first, large-scale analysis of the whole area.

How to cite: De Matteo, A., Alvioli, M., Bonfante, A., Buonanno, M., Castaldo, R., and Tizzani, P.: Slope stability monitoring system via three-dimensional simulations of rockfalls in Ischia island, Southern Italy, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5618, https://doi.org/10.5194/egusphere-egu22-5618, 2022.

EGU22-6226 | Presentations | GI6.3

The framework for improving air quality monitoring over Indian cities 

Arindam Roy, Athanasios Nenes, and Satoshi Takahama

Indian air quality monitoring guideline is directly adopted from World Health Organization (1977) guidelines without place-based modification. According to Indian air quality guidelines (2003), the location of monitoring sites should be determined from air quality modeling and previous air quality information. If such information is not available, the use of emission densities, wind data, land-use patterns and population information is recommended for prioritizing areas for air quality monitoring. The mixed land-use distribution over Indian cities and randomly distributed sources pose serious challenges, as Indian cities (unlike in other parts of the world) are characterized by a lack of distinct residential, commercial, and industrial regions, so the concept of “homogeneous emissions” (which have guided site monitoring decisions) simply does not apply. In addition, the decision-making data emission and population information, are either not available or outdated for Indian cities. Unlike the cities in Global North, the Indian urban-scape has distinguished features in terms of land use, source and population distribution which has not been addressed in air quality guidelines.

We have developed an implementable place-based framework to address the above problem of establishing effective new air quality stations in India and other regions with complex land-use patterns. Four Indian million-plus cities were selected for the present study; Lucknow, Pune, Nashik and Kanpur. We broadly classified air quality monitoring objectives into three; monitoring population exposure, measurements for compliance with the national standards and characterization of sources. Each monitoring station over four cities was evaluated and metadata has been created for each station to identify its monitoring objective for each of the stations. We find that present air quality monitoring networks are highly inadequate in characterizing average population exposure throughout each city, as current stations are predominantly located at the site of pedestrian exposure, and are not representative of the city-wide exposure.

Possible new sites for monitoring were identified using night-time light data, satellite-derived PM2.5, existing emission inventories, land-use patterns and other ancillary open-sourced data. Over Lucknow, Pune and Nashik, setting up stations at highly populated areas is recommended to fulfill the knowledge gaps on the average population exposure. Over Kanpur, it was recommended to incorporate stations to measure short-term pollution exposure in traffic and industrial sites. Rapidly developing peri-urban regions were identified using night-time light data and recommendations were provided for setting up monitoring stations in these regions.

How to cite: Roy, A., Nenes, A., and Takahama, S.: The framework for improving air quality monitoring over Indian cities, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6226, https://doi.org/10.5194/egusphere-egu22-6226, 2022.

EGU22-6374 | Presentations | GI6.3

Geochemical monitoring of the Tenerife North-East and North West Rift Zones by means of diffuse degassing surveys 

Lía Pitti Pimienta, Fátima Rodríguez, María Asensio-Ramos, Gladys Melián, Daniel Di Nardo, Alba Martín-Lorenzo, Mar Alonso, Rubén García-Hernández, Víctor Ortega, David Martínez Van Dorth, María Cordero, Tai Albertos, Pedro A. Hernández, and Nemesio M. Pérez

Tenerife (2,034 km2), the largest island of the Canarian archipelago, is characterized by three volcanic rifts NW-SE, NE-SW and N-S oriented, with a central volcanic structure in the middle, Las Cañadas Caldera, hosting Teide-Pico Viejo volcanic complex. The North-West Rift-Zone (NWRZ) is one of the youngest and most active volcanic systems of the island, where three historical eruptions (Boca Cangrejo in 16th Century, Arenas Negras in 1706 and Chinyero in 1909) have occurred, whereas the North-East Rift-Zone (NERZ) is more complex than the others due to the existence of Pedro Gil stratovolcano that broke the main NE-SW structure 0.8 Ma ago. The most recent eruptive activity along the NERZ took place during 1704 and 1705 across 13 km of fissural eruption in Siete Fuentes (Arafo-Fasnia). To monitor potential volcanic activity through a multidisciplinary approach, diffuse degassing studies have been carried out since 2000 at the NWRZ (72 km2) and since 2001 at the NERZ (210 km2) in a yearly basis. Long-term variations in the diffuse CO2 output in the NWRZ have shown a temporal correlation with the onsets of seismic activity at Tenerife, supporting unrest of the volcanic system, as is also suggested by anomalous seismic activity recorded in the studied area during April, 2004 and October, 2016 (Hernández et al., 2017). In-situ measurements of CO2 efflux from the surface environment were performed according to the accumulation chamber method using a portable non-dispersive infrared (NDIR) sensor. Soil CO2 efflux values for the 2021 survey ranged between non-detectable values and 104 g·m-2·d-1, with an average value of 8 g·m-2·d-1 for NWRZ. For NERZ, soil CO2 efflux values ranged between non-detectable values and 79 g·m2·d-1, with an average value of 7 g·m-2·d-1. The probability plot technique applied to the data allowed to distinguish different geochemical populations. Background population represented 49.2% and 74.0% of the total data for NWRZ and NERZ, respectively, with a mean value (1.7 - 2.0 g·m-2·d-1) similar to the background values calculated for other volcanic systems in the Canary Islands with similar soils, vegetation and climate (Hernández et al. 2017). Peak population represented 0.9 and 0.7% for NWRZ and NERZ, respectively and with a mean value of 45 and 57 g·m-2·d-1. Soil CO2 efflux contour maps were constructed to identify spatial-temporal anomalies and to quantify the total CO2 emission using the sequential Gaussian simulation (sGs) interpolation method. Diffuse emission rate of 506 ± 22 t·d-1 for NWRZ and 1,509 ± 58 t·d-1 NERZ were obtained. The normalized CO2 emission value by area was estimated in 7.03 t·d-1·km-1 for NWRZ and in 7.2 t·d-1·km-1 for NERZ. The monitorization of the diffuse CO2 emission contributes to detect early warning signals of volcanic unrest, especially in areas where visible degassing is non-existent as in the Tenerife NWRZ and NERZ.

Hernández et al. (2017). Bull Volcanol, 79:30, DOI 10.1007/s00445-017-1109-9.

How to cite: Pitti Pimienta, L., Rodríguez, F., Asensio-Ramos, M., Melián, G., Di Nardo, D., Martín-Lorenzo, A., Alonso, M., García-Hernández, R., Ortega, V., Martínez Van Dorth, D., Cordero, M., Albertos, T., Hernández, P. A., and Pérez, N. M.: Geochemical monitoring of the Tenerife North-East and North West Rift Zones by means of diffuse degassing surveys, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6374, https://doi.org/10.5194/egusphere-egu22-6374, 2022.

Two moderate earthquakes with magnitude ML5.0 happened on 11th of November 2020 near the Mavrovo lake in northwestern Macedonia. The lake is an artificial lake with a dam built between 1947 and filled by 1953. Its maximum length is 10km, width is 5km and the depth is 50m. Given its water volume, it is possible that geological factors causing earthquakes could also affect the hydrobiological characteristics of the flow system surrounding the lake.

A list of 180 earthquakes registered by the local stations with magnitudes equal or greater than ML1.7 was analysed in terms of temporal and spatial distribution around the lake. No specific clustering of events was noticed in the foreshock period from July 2020. In the aftershock period, the most numerous events lasted about a month after the main events. However, there was another period of increased seismicity during March 2021, followed by gradual decrease onwards. The distribution of epicentres was mainly along the terrain of Radika river and a few smaller tributaries to the lake system.

A comparative analysis was done with the dataset collected by the program run at the department of Biology at the Faculty of Natural Sciences, University UKIM in Skopje. Environmental investigations in Europe have shown stress reactions of hydrobionts in respect to water temperature and heavy metal pollution, for example the influence of radioactive radiation. Earthquake-induced seismic changes most often affect the chemical-physical properties of water quality and temperature stratification, i.e., mixing of water masses. In our research, we analyse for the first time the relationship between the seismological activities in the Jul 2020-Nov 2021 period in details and a possible impact to environment thru the population of macrozoobenthos from Mavrovo Lake.

How to cite: Sinadinovski, C. and Smiljkov, S.: Numerical analysis of Seismic and Hydrobiological data around lake Mavrovo in the period Jul.2020-Nov.2021, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6452, https://doi.org/10.5194/egusphere-egu22-6452, 2022.

EGU22-6468 | Presentations | GI6.3

Measuring greenhouse gas fluxes – what methods do we have versus what methods do we need? 

David Bastviken, Julie Wilk, Nguyen Thanh Duc, Magnus Gålfalk, Martin Karlson, Tina Neset, Tomasz Opach, Alex Enrich Prast, and Ingrid Sundgren

Appropriate methods to measure greenhouse gas (GHG) fluxes are critical for our ability to detect fluxes, understand regulation, make adequate priorities for climate change mitigation efforts, and verify that these efforts are effective. Ideally, we need reliable, accessible, and affordable measurements at relevant scales. We surveyed present GHG flux measurement methods, identified from an analysis of >11000 scientific publications and a questionnaire to sector professionals and analysed method pros and cons versus needs for novel methodology. While existing methods are well-suited for addressing certain questions, this presentation presents fundamental limitations relative to GHG flux measurement needs for verifiable and transparent action to mitigate many types of emissions. Cost and non-academic accessibility are key aspects, along with fundamental measurement performance. These method limitations contribute to the difficulties in verifying GHG mitigation efforts for transparency and accountability under the Paris agreement. Resolving this mismatch between method capacity and societal needs is urgently needed for effective climate mitigation. This type of methodological mismatch is common but seems to get high priority in other knowledge domains. The obvious need to prioritize development of accurate diagnosis methods for effective treatments in healthcare is one example. This presentation provides guidance regarding the need to prioritize the development of novel GHG flux measurement methods.

How to cite: Bastviken, D., Wilk, J., Duc, N. T., Gålfalk, M., Karlson, M., Neset, T., Opach, T., Enrich Prast, A., and Sundgren, I.: Measuring greenhouse gas fluxes – what methods do we have versus what methods do we need?, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6468, https://doi.org/10.5194/egusphere-egu22-6468, 2022.

EGU22-8458 | Presentations | GI6.3

Temporal evolution of dissolved gases in groundwater of Tenerife Island 

Cecilia Amonte, Nemesio M. Pérez, Gladys V. Melián, María Asensio-Ramos, Eleazar Padrón, Pedro A. Hernández, and Ana Meire Feijoo

The oceanic active volcanic island of Tenerife (2,034 km2) is the largest of the Canarian archipelago. There are more than 1,000 galleries (horizontal drillings) in the island, which are used for groundwater exploitation and allow reaching the aquifer at different depths and elevations. This work presents the first extensive study on the temporal variation of dissolved gases in groundwaters from Fuente del Valle and San Fernando galleries (Tenerife, Spain) since April 2016 to June 2020. This investigation is focused on the chemical and isotopic content of several dissolved gas species (CO2, He, O2, N2 and CH4) present in the groundwaters and its relationship with the seismic activity registered in the island. The results show CO2 as the major dissolved gas specie in the groundwater from both galleries presenting a mean value of 260 cm3STP·L-1 and 69 cm3STP·L-1 for Fuente del Valle and San Fernando, respectively. The average δ13C-CO2 data (-3.9‰ for Fuente del Valle and -6.4‰ for San Fernando) suggest a clear endogenous origin as result of interaction of them with deep-origin fluid. A bubbling gas sample from Fuente del Valle gallery was analysed, obtaining a CO2 rich gas (87 Vol.%) with a considerable He enrichment (7.3 ppm). The isotopic data of both components in the bubbling gas support the results obtained in the dissolved gases, showing an endogenous component that could be affected by the different activity of the hydrothermal system. During the study period, an important seismic swarm occurred on October 2, 2016, followed by an increase of the seismic activity in and around Tenerife. After this event, important geochemical variations were registered in the dissolved gas species, such as dissolved CO2 and He content and the CO2/O2, He/CO2, He/N2 and CH4/CO2 ratios. These findings suggest an injection of fluids into the hydrothermal system during October 2016, a fact that evidences the connection between the groundwaters and the hydrothermal system. The present work demonstrates the importance of dissolved gases studies in groundwater for volcanic surveillance.

How to cite: Amonte, C., Pérez, N. M., Melián, G. V., Asensio-Ramos, M., Padrón, E., Hernández, P. A., and Meire Feijoo, A.: Temporal evolution of dissolved gases in groundwater of Tenerife Island, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8458, https://doi.org/10.5194/egusphere-egu22-8458, 2022.

Land surface temperature (LST) is a manifestation of the surface thermal environment (LSTE) and an important driver of physical processes of surface land energy balance at local to global scales. Tenerife is one of the most heterogeneous islands among the Canaries from a climatological and bio-geographical point of view. We study the surface thermal conditions of the volcanic island with remote sensing techniques. In particular, we consider a time series of Landsat 8 (L8) level 2A images for the period 2013 to 2019 to estimate LST from surface reflectance (SR) and brightness Temperature (BT) images. A total of 26 L8 dates were selected based on cloud cover information from metadata (land cloud cover < 10%) to estimate pixel-level LST with an algorithm based on Radiative Transfer Equations (RTE). The algorithm relies on the Normalized Difference Vegetation Index (NDVI) for estimating emissivity pixel by pixel. We apply the Independent Component Analysis (ICA) that revealed to be a powerful tool for data mining and, in particular, to separate multivariate LST dataset into a finite number of components, which have the maximum relative statistical independence. The ICA allowed separating the land surface temperature time series of Tenerife into 11 components that can be associated with geographic and bioclimatic zones of the island. The first ten components are related to physical factors, the 11th component, on the contrary, presented a more complex pattern resulting possibly from its small amplitude and the combination of various factors into a single component. The signal components recognized with the ICA technique, especially in areas of active volcanism, could be the basis for the space-time monitoring of the endogenous component of the LST due to surface hydrothermal and/or geothermal activity. Results are encouraging, although the 16-day revisit frequency of Landsat reduces the frequency of observation that could be increased by applying techniques of data fusion of medium and coarse spatial resolution images. The use of such systems for automatic processing and analysis of thermal images may in the future be a fundamental tool for the surveillance of the background activity of active and dormant volcanoes worldwide.

How to cite: Stroppiana, D., Przeor, M., D’Auria, L., and Tizzani, P.: Analysis of thermal regimes at Tenerife(Canary Islands) with Independent Component Analysis applied to time series of Remotely Sensed Land Surface Temperatures, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8580, https://doi.org/10.5194/egusphere-egu22-8580, 2022.

EGU22-9376 | Presentations | GI6.3

An IoT based approach to ultra high resolution air quality mapping thorigh field calibrated monitoring devices 

Saverio De Vito, Grazia Fattoruso, and Domenico Toscano

Recent advances in IoT and chemical sensors calibration technologies have led to the proposal of Hierarchical air quality monitoring networks. They are indeed complex systems relying on sensing nodes which differs from size, cost, accuracy, technology, maintenance needs while having the potential to empower smart cities and communiities with increased knowledge  on the highly spatiotemporal variance Air Quality phenomenon (see [1]). The AirHeritage project, funded by Urban Innovative Action program have developed and implemented a hierarchical monitoring system which allows for offering real time assessments and model based forecasting services including 7 fixed low cost sensors station, one (mobile and temporary located) regulatory grade analyzer and a citizen science based ultra high resolution AQ mapping tool based on field calibrated mobile analyzers. This work will analyze the preliminary results of the project by focusing on the machine learning driven sensors calibration methodology and citizen science based air quality mapping campaigns. Thirty chemical and particulate matter multisensory devices have been deployed in Portici, a 4Km2 city located 7 km south of Naples which is  affected by significant car traffic. The devices have been  entrusted to local citizens association for implementing 1 preliminary validation campaign (see [2]) and 3 opportunistic 2-months duration monitoring campaigns. Each 6 months, the devices undergoes a minimum 3 weeks colocation period with a regulatory grade analyzer allowing for training and validation dataset building. Multilinear regression sw components are trained to reach ppb level accuracy (MAE <10ug/m^3 for NO2 and O3, <15ug/M^3 for PM2.5 and PM10, <300ug/M^3 for CO) and encoded in a companion smartphone APP which allows the users for real time assessment of personal exposure. In particular, a novel AQI strongly based on European Air Quality Index ([3]) have been developed for AQ real time data communication. Data have been collected using a custom IoT device management platform entrusted with inception, storage and data-viz roles. Finally data have been used to build UHR (UHR) AQ maps, using spatial binning approach (25mx25m) and median computation for each bin receiving more than 30 measurements during the campaign. The resulting maps have hown the possibility to allow for pinpointing city AQ hotpots which will allows fact-based remediation policies in cities lacking objective technologies to locally assess concentration exposure.  

 

[1] Nuria Castell et Al., Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?, Environment International, Volume 99, 2017, Pages 293-302 ISSN 0160-4120, https://doi.org/10.1016/j.envint.2016.12.007.

[2] De Vito, S, et al., Crowdsensing IoT Architecture for Pervasive Air Quality and Exposome Monitoring: Design, Development, Calibration, and Long-Term Validation. Sensors 202121, 5219. https://doi.org/10.3390/s21155219

[3] https://airindex.eea.europa.eu/Map/AQI/Viewer/

How to cite: De Vito, S., Fattoruso, G., and Toscano, D.: An IoT based approach to ultra high resolution air quality mapping thorigh field calibrated monitoring devices, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9376, https://doi.org/10.5194/egusphere-egu22-9376, 2022.

EGU22-10290 | Presentations | GI6.3

Soil gas Rn monitoring at Cumbre Vieja prior and during the 2021 eruption, La Palma, Canary Islands 

Daniel Di Nardo, Eleazar Padrón, Claudia Rodríguez-Pérez, Germán D. Padilla, José Barrancos, Pedro A. Hernández, María Asensio-Ramos, and Nemesio M. Pérez

Cumbre Vieja volcano (La Palma, Canary Islands, Spain) suffered a volcanic eruption that started on September 19 and finished on December 13, 2021. The eruption is considered the longest volcanic event since data are available on the island: it finished after 85 days and 8 hours of duration and 1,219 hectares of lava flows. La Palma Island is the fifth in extension (706 km2) and the second in elevation (2,423 m a.s.l.) of the Canarian archipelago. Cumbre Vieja volcano, where the volcanic activity has taken place exclusively in the last 123 ka, forms the sand outhern part of the island. In 2017, two remarkable seismic swarms interrupted a seismic silence of 46 years in Cumbre Vieja volcano with earthquakes located beneath Cumbre Vieja volcano at depths ranging between 14 and 28 km with a maximum magnitude of 2.7. Five additional seismic swarms were registered in 2020 and four in 2021. The eruption started ~1 week after the start of the last seismic swarm.

As part of the INVOLCAN volcano monitoring program of Cumbre Vieja, soil gas radon (222Rn) and thoron (220Rn) is being monitored at five sites in Cumbre Vieja using SARAD RTM2010-2 RTM 1688-2 portable radon monitors. 222Rn and 220Rn are two radioactive isotopes of radon with a half-life of 3.8 days and 54.4 seconds, respectively. Both isotopes can diffuse easily trough the soil and can be detected at very low concentrations, but their migration in large scales, ten to hundreds of meters, is supported by advection (pressure changes) and is related to the existence of a carrier gas source (geothermal fluids or fluids linked to magmatic and metamorphic phenomena), and to the existence of preferential routes for degassing (deep faults). Previous results on the monitoring of soil Rn in the Canary Islands with volcano monitoring purposes are promising (Padilla et al, 2013).     

The most remarkable result of the Rn monitoring network of Cumbre Vieja was observed in LPA01 station, located at the north-east of Cumbre Vieja. Since mid-March 2021, soil 222Rn activity experienced a sustained until reaching maximum values of ~1.0E+4 222Rn Bq/m3 days before the eruption onset. During the eruptive period, soil 222Rn activity showed a gradual decreasing trend. The increase of magmatic-gas pressure due to magma movement towards the surface and the transport of anomalous 222Rn originated from hydrofracturing of rock, from direct magma degassing or from both, is the most plausible explanation for the increases in radon activity before the eruption onset observed at LPA01. As soil gas radon activity increased prior to the eruption onset, this monitoring technique can be efficiently used as an initial warning sign of the pressurization of magma beneath La Palma Island.

Padilla, G. D., et al. (2013), Geochem. Geophys. Geosyst., 14, 432–447, doi:10.1029/2012GC004375.

 

How to cite: Di Nardo, D., Padrón, E., Rodríguez-Pérez, C., Padilla, G. D., Barrancos, J., Hernández, P. A., Asensio-Ramos, M., and Pérez, N. M.: Soil gas Rn monitoring at Cumbre Vieja prior and during the 2021 eruption, La Palma, Canary Islands, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10290, https://doi.org/10.5194/egusphere-egu22-10290, 2022.

EGU22-10603 | Presentations | GI6.3 | Highlight

The "Campania Trasparente" multiscale and multimedia monitoring project: an unprecedented experience in Italy. 

Stefano Albanese, Annamaria Lima, Annalise Guarino, Chengkai Qu, Domenico Cicchella, Mauro Esposito, Pellegrino Cerino, Antonio Pizzolante, and Benedetto De Vivo

In 2015, the "Campania Trasparente" project (http://www.campaniatrasparente.it), a monitoring plan focused on assessing the environmental conditions of the territory of the Campania region, started thanks to the financial support of the regional government. The project's general management was in charge of the Experimental Zooprophylactic Institute of Southern Italy (IZSM).
In the project framework, the collection and analysis of many environmental and biological samples (including soil and air and human blood specimen) were completed. The primary aim of the whole project was to explore the existence of a link between the presence of some illnesses in the local population and the status of the environment and generate a reliable database to assess local foodstuff healthiness.
Six research units were active in the framework of the project. As for soil and air, the Environmental Geochemistry Working Group (EGWG) at the Department of Earth, Environment and Resources Sciences, University of Naples Federico II, was in charge of most of the research activities. Specifically, the EGWG completed the elaboration of the data on potentially toxic metals/metalloids (PTMs) and organic contaminants (PAHs, OCPs, Dioxins) in the regional soils and air.
The monitoring of air contaminants lasted more than one year, and it was completed employing passive air samplers (PAS) and deposimeters spread across the whole region.
Three volumes were published, including statistical elaborations and geochemical maps of all the contaminants analysed to provide both the regional government and local scientific and professional community with a reliable tool to approach local environmental problems starting from a sound base of knowledge.
Geochemical distribution patterns of potentially toxic elements (PTEs), for example, were used to establish local geochemical background/baseline intervals for those metals (naturally enriched in regional soils) found to systematically overcome the national environmental guidelines (set by the Legislative Decree 152/2006).
Data from the air, analysed in terms of concentration and time variation, were, instead, fundamental to discriminate the areas of the regional territory characterised by heavy contamination associated with the emission of organic compounds from anthropic sources.

The integration of all the data generated within the "Campania Trasparente" framework, including the data proceeding from the Susceptible Population Exposure Study (SPES), focusing on human biomonitoring (based on blood), allowed the development of a regional-wide conceptual model to be used as a base to generate highly specialised risk assessments for regional population and local communities affected by specific environmental problems.

How to cite: Albanese, S., Lima, A., Guarino, A., Qu, C., Cicchella, D., Esposito, M., Cerino, P., Pizzolante, A., and De Vivo, B.: The "Campania Trasparente" multiscale and multimedia monitoring project: an unprecedented experience in Italy., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10603, https://doi.org/10.5194/egusphere-egu22-10603, 2022.

EGU22-10659 | Presentations | GI6.3

Long-term variations of diffuse CO2, He and H2 at the summit crater of Teide volcano, Tenerife, Canary Islands during 1999-2021 

Germán D. Padilla, Fátima Rodríguez, María Asensio-Ramos, Gladys V. Melián, Mar Alonso, Alba Martín-Lorenzo, Beverley C. Coldwell, Claudia Rodríguez, Jose M. Santana de León, Eleazar Padrón, José Barrancos, Luca D'Auria, Pedro A. Hernández, and Nemesio M. Pérez

Tenerife Island (2,034 km2) is the largest island of the Canarian archipelago. Its structure is controlled by a volcano-tectonic rift-system with NW, NE and NS directions, with the Teide-Pico Viejo volcanic system located in the intersection. Teide is 3,718 m.a.s.l. high and its last eruption occurred in 1798 through an adventive cone of Teide-Pico Viejo volcanic complex. Although Teide volcano shows a weak fumarolic system, volcanic gas emissions observed in the summit cone consist mostly of diffuse CO2 degassing.

 

In this study we investigate the Teide-Pico Viejo volcanic system evolution using a comprehensive diffuse degassing geochemical dataset 216 geochemical surveys have been performed during the period 1999-2021 at the summit crater of Teide Volcano covering an area of 6,972 m2. Diffuse CO2 emission was estimated in 38 sampling sites, homogeneously distributed inside the crater, by means of a portable non dispersive infrared (NDIR) CO2 fluxmeter using the accumulation chamber method. Additionally, soil gases were sampled at 40 cm depth using a metallic probe with a 60 cc hypodermic syringe and stored in 10 cc glass vials and send to the laboratory to analyse the He and H2 content by means of quadrupole mass spectrometry and micro-gas chromatography, respectively. To estimate the He and H2 emission rates at each sampling point, the diffusive component was estimated following the Fick’s law and the convective emission component model was estimated following the Darcy’s law. In all cases, spatial distribution maps were constructed averaging the results of 100 simulations following the sequential Gaussian simulation (sGs) algorithm, in order to estimate CO2, He and H2 emission rates.

 

During 22 years of the studied period, CO2 emissions ranged from 2.0 to 345.9 t/d, He emissions between 0.013 and 4.5 kg/d and H2 between 1.3 and 64.4 kg/d. On October 2, 2016, a seismic swarm of long-period events was recorded on Tenerife followed by an increase of the seismic activity in and around the island (D’Auria et al., 2019; Padrón et al., 2021). Several geochemical parameters showed significant changes during ∼June–August of 2016 and 1–2 months before the occurrence of the October 2, 2016, long-period seismic swarm (Padrón et al., 2021). Diffuse degassing studies as useful to conclude that the origin of the 2 October 2016 seismic swarm an input of magmatic fluids triggered by an injection of fresh magma and convective mixing. Thenceforth, relatively high values have been obtained in the three soil gases species studied at the crater of Teide, with the maximum emission rates values registered during 2021. This increase reflects a process of pressurization of the volcanic-hydrothermal system. This increment in CO2, He and H2 emissions indicate changes in the activity of the system and can be useful to understand the behaviour of the volcanic system and to forecast future volcanic activity. Monitoring the diffuse degassing rates has demonstrated to be an essential tool for the prediction of future seismic–volcanic unrest, and has become important to reduce volcanic risk in Tenerife.

D'Auria, L., et al. (2019). J. Geophys. Res.124,8739-8752

Padrón, E., et al., (2021). J. Geophys. Res.126,e2020JB020318

How to cite: Padilla, G. D., Rodríguez, F., Asensio-Ramos, M., Melián, G. V., Alonso, M., Martín-Lorenzo, A., Coldwell, B. C., Rodríguez, C., Santana de León, J. M., Padrón, E., Barrancos, J., D'Auria, L., Hernández, P. A., and Pérez, N. M.: Long-term variations of diffuse CO2, He and H2 at the summit crater of Teide volcano, Tenerife, Canary Islands during 1999-2021, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10659, https://doi.org/10.5194/egusphere-egu22-10659, 2022.

EGU22-11493 | Presentations | GI6.3

Analysis and Modelling of 2009-2013 Unrest Episodes at Campi Flegrei Caldera 

Raffaele Castaldo, Giuseppe Solaro, and Pietro Tizzani

Geodetic modelling is a valuable tool to infer volume and geometry of volcanic source system; it represents a key procedure for detecting and characterizing unrest and eruption episodes. In this study, we analyse the 2009–2013 uplift phenomenon at Campi Flegrei (CF) caldera in terms of spatial and temporal variations of the stress/strain field due to the effect of the retrieved inflating source. We start by performing a 3D stationary finite element (FE) modelling of geodetic datasets to retrieve the geometry and location of the deformation source. The geometry of FE domain takes into account both the topography and the bathymetry of the whole caldera. For what concern the definition of domain elastic parameters, we take into account the Vp/Vs distribution from seismic tomography. We optimize our model parameters by exploiting two different geodetic datasets: the GPS data and DInSAR measurements. The modelling results suggest that the best-fit source is a three-axis oblate spheroid ~3 km deep, similar to a sill-like body. Furthermore, in order to verify the reliability of the geometry model results, we calculate the Total Horizontal Derivative (THD) of the vertical velocity component and compare it with those performed with the DInSAR measurements. Subsequently, starting from the same FE modelling domain, we explore a 3D time-dependent FE model, comparing the spatial and temporal distribution of the shear stress and volumetric strain with the seismic swarms beneath the caldera. Finally, We found that low values of shear stress are observed corresponding with the shallow hydrothermal system where low-magnitude earthquakes occur, whereas high values of shear stress are found at depths of about 3 km, where high-magnitude earthquakes nucleate.

How to cite: Castaldo, R., Solaro, G., and Tizzani, P.: Analysis and Modelling of 2009-2013 Unrest Episodes at Campi Flegrei Caldera, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11493, https://doi.org/10.5194/egusphere-egu22-11493, 2022.

EGU22-11874 | Presentations | GI6.3

Time evolution of Land Surface Temperature (LST) in active volcanic areas detected via integration of satellite and ground-based measurements: the Campi Flegrei caldera (Southern Italy) case study. 

Andrea Barone, Daniela Stroppiana, Raffaele Castaldo, Stefano Caliro, Giovanni Chiodini, Luca D'Auria, Gianluca Gola, Ferdinando Parisi, Susi Pepe, Giuseppe Solaro, and Pietro Tizzani

Thermal features of environmental systems are increasingly investigated after the development of remote sensing technologies; the increasing availability of Earth Observation (EO) missions allows the retrieval of the Land Surface Temperature (LST) parameter, which is widely used for a large variety of applications (Galve et al., 2018). In volcanic environment, the LST is an indicator of the spatial distribution of thermal anomalies at the ground surface, supporting designed tools for monitoring purposes (Caputo et al., 2019); therefore, LST can be used to understand endogenous processes and to model thermal sources.

In this framework, we present the results of activities carried out in the FLUIDs PRIN project, which aims at the characterization and modeling of fluids migration at different scales (https://www.prinfluids.it/). We propose a multi-scale analysis of thermal data at Campi Flegrei caldera (CFc); this area is well known for hosting thermal processes related to both magmatic and hydrothermal systems (Chiodini et al., 2015; Castaldo et al., 2021). Accordingly, data collected at different scales are suitable to search out local thermal trends with respect to regional ones. In particular, in this work we compare LST estimated from Landsat satellite images covering the entire volcanic area and ground measurements nearby the Solfatara crater.

Firstly, we exploit Landsat data to derive time series of LST by applying an algorithm based on Radiative Transfer Equations (RTE) (Qin et al., 2001; Jimenez-Munoz et al., 2014). The algorithm exploits both thermal infrared (TIR) and visible/near infrared (VIS/NIR) bands of different Landsat missions in the period 2000-2021; we used time series imagery from Landsat 5 (L5), Landsat 7 (L7) and Landsat 8 (L8) satellite missions to retrieve the thermal patterns of the CFc area with spatial resolutions of 30 m for VIS/NIR bands and 60 m to 120 m for TIR bands. Theoretical frequency of acquisition of the Landsat missions is 16 days that is reduced over the study area by cloud cover: Landsat images with high cloud cover were in fact discarded from the time series.

In particular, we process both the daily acquisitions as well nighttime data to provide thermal features at the ground surface in the absence of solar radiation. To emphasize the thermal anomalies of endogenous phenomena, the retrieved LST time-series are corrected following these steps: (i) removal of spatial and temporal outliers; (ii) correction for adiabatic gradient of the air with the altitude; (iii) detection and removal of the seasonal component.

Regarding to the ground-based acquisitions, we consider the data collected by the Osservatorio Vesuviano, National Institute of Geophysics and Volcanology (OV- INGV, Italy, Naples); the dataset consists of 151 thermal measurements distributed within the 2004-2021 time-interval and acquired inside the Solfatara and Pisciarelli areas at a depth of 0.01 m below the ground surface. Similarly, we process this dataset following corrections (i) and (iii).

Finally, we compare the temporal evolution of thermal patterns retrieved by the satellite and ground-based measurements, highlighting the supporting information provided by LST and its integration with data at ground.

How to cite: Barone, A., Stroppiana, D., Castaldo, R., Caliro, S., Chiodini, G., D'Auria, L., Gola, G., Parisi, F., Pepe, S., Solaro, G., and Tizzani, P.: Time evolution of Land Surface Temperature (LST) in active volcanic areas detected via integration of satellite and ground-based measurements: the Campi Flegrei caldera (Southern Italy) case study., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11874, https://doi.org/10.5194/egusphere-egu22-11874, 2022.

EGU22-11990 | Presentations | GI6.3

Integrating geophysical, geochemical, petrological and geological data for the thermal and rheological characterization of unconventional geothermal fields: the case study of Long Valley Caldera 

Gianluca Gola, Andrea Barone, Raffaele Castaldo, Giovanni Chiodini, Luca D'Auria, Rubén García-Hernández, Susi Pepe, Giuseppe Solaro, and Pietro Tizzani

We propose a novel multidisciplinary approach to image the thermo-rheological stratification beneath active volcanic areas, such as Long Valley Caldera (LVC), which hosts a magmatic-hydrothermal system. Geothermal facilities near the Casa Diablo locality supply 40 MWe from three binary power plants, exploiting about 850 kg s−1 of 160–180 °C water that circulates within the volcanic sediments 200 to 350 meters deep. We performed a thermal fluid dynamic model via optimization procedure of the thermal conditions of the crust. We characterize the topology of the hot magmatic bodies and the hot fluid circulation (the permeable fault-zones), using both a novel imaging of the a and b parameters of the Gutenberg-Richter law and an innovative procedure analysis of P-wave tomographic models. The optimization procedure provides the permeability of a reservoir (5.0 × 10−14 m2) and of the fault-zone (5.0 · 10−14 – 1.0 × 10−13 m2), as well as the temperature of the magma body (750–800°C). The imaging of the rheological properties of the crust indicates that the brittle/ductile transition occurs about 5 km b.s.l. depth, beneath the resurgent dome. There are again deeper brittle conditions about 15 km b.s.l., agreeing with the previous observations. The comparison between the conductive and the conductive-convective heat transfer models highlights that the deeper fluid circulation efficiently cools the volumes above the magmatic body, transferring the heat to the shallow geothermal system. This process has a significant impact on the rheological properties of the upper crust as the migration of the B/D transition. Our findings show an active magmatic system (6–10 km deep) and confirm that LVC is a long-life silicic caldera system. Furthermore, the occurrence of deep-seated, super-hot geothermal resources 4.5 – 5.0 km deep, possibly in supercritical conditions, cannot be ruled out.

How to cite: Gola, G., Barone, A., Castaldo, R., Chiodini, G., D'Auria, L., García-Hernández, R., Pepe, S., Solaro, G., and Tizzani, P.: Integrating geophysical, geochemical, petrological and geological data for the thermal and rheological characterization of unconventional geothermal fields: the case study of Long Valley Caldera, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11990, https://doi.org/10.5194/egusphere-egu22-11990, 2022.

EGU22-12331 | Presentations | GI6.3 | Highlight

The evaluation of soil organic carbon through VIS-NIR spectroscopy to support the soil health monitoring 

Haitham Ezzy, Anna Brook, Claudio Ciavatta, Francesca Ventura, Marco Vignudelli, and Antonello Bonfante

Increasing the organic matter content of the soil has been presented in the:”4per1000″ proposal as a significant climate mitigation measure able to support the achievement of Sustainable Development Goal 13 - Climate Action of United Nations.

At the same time, the report of the Mission Board for Soil health and Food, "Caring for soil is caring for life," indicates that one of the targets that must be reached by 2030 is the conservation and increase of soil organic carbon stock.  De facto, the panel clearly indicates the soil organic carbon as one of the indicators that can be used to monitor soil health, and at the same time, if the current soil use is sustainable or not.

Thus it is to be expected that the monitoring of SOC will become requested to check and monitor the sustainability of agricultural practices realized in the agricultural areas. For all the above reasons, the development of a reliable and fast indirect methods to evaluate the SOC is necessary to support different stakeholders (government, municipality, farmer) to monitor SOC at different spatial scales (national, regional, local).

Over the past two decades, data mining approaches in spatial modeling of soil organic carbon using machine learning techniques and artificial neural network (ANN) to investigate the amount of carbon in the soil using remote sensing data has been widely considered. Accordingly, this study aims to design an accurate and robust neural network model to estimate the soil organic carbon using the data-based field-portable spectrometer and laboratory-based visible and near-infrared (VIS/NIR, 350−2500 nm) spectroscopy of soils. The measurements will be on two sets of the same soil samples, the first by the standard protocol of requested laboratories for soil scanning, The second set of the soil samples without any cultivation to simulate the soil condition in the sampling field emphasizes the predictive capabilities to achieve fast, cheap and accurate soil status. Carbon soil parameter will determine using, multivariate regression method used for prediction with Least absolute shrinkage and selection operator regression (Lasso) in interval way (high, medium, and low). The results will increase accuracy, precision, and cost-effectiveness over traditional ex-situ methods.

The contribution has been realized within the international EIT Food project MOSOM (Mapping of Soil Organic Matter; https://www.eitfood.eu/projects/mosom)

How to cite: Ezzy, H., Brook, A., Ciavatta, C., Ventura, F., Vignudelli, M., and Bonfante, A.: The evaluation of soil organic carbon through VIS-NIR spectroscopy to support the soil health monitoring, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12331, https://doi.org/10.5194/egusphere-egu22-12331, 2022.

EGU22-12364 | Presentations | GI6.3

Stromboli Volcano observations through the Airborne X-band Interferometric SAR (AXIS) system 

Paolo Berardino, Antonio Natale, Carmen Esposito, Gianfranco Palmese, Riccardo Lanari, and Stefano Perna

Synthetic Aperture Radar (SAR) represents nowadays a well-established tool for day and night and all-weather microwave Earth Oobservation (EO) [1]. In last decades, a number of procedures EO techniques based on SAR data have been indeed devised developed for investigating several natural and anthropic phenomena the monitoring of affecting our planet. Among these, SAR Interferometry (InSAR) and Differential SAR Interferometry (DInSAR) undoubtedly represent a powerful techniques to characterize the deformation processes associated to several natural phenomena, such as eEarthquakes, landslides, subsidences andor volcanic unrest events [2] - [4].

In particular, such techniques can benefit of the operational flexibility offered by airborne SAR systems, which allow us to frequently monitor fast-evolving phenomena, timely reach the region of interest in case of emergency, and observe the same scene under arbitrary flight tracks.

In this work, we present the results relevant to multiple radar surveys carried out over the Stromboli Island, in Italy, through the Italian Airborne X-band Interferometric SAR (AXIS) system. The latter is based on the Frequency Modulated Continuous Wave (FMCW) technology, and is equipped with a three-antenna single-pass interferometric layout [5].

The considered dataset has been collected during three different acquisition campaigns, carried out from July 2019 to June 2021, and consists of radar data acquired along four flight directions (SW-NE, NW-SE, NE-SW, SE-NW), as to describe flight circuits around the island and to illuminate the Stromboli volcano under different points of view.

References

[1] Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, K. P. Papathanassiou, “A tutorial on Synthetic Aperture Radar”, IEEE Geoscience and Remote Sensing Magazine, pp. 6-43, March 2013.

[2] Bamler, R., Hartl, P., 1998. Synthetic Aperture Radar Interferometry. Inverse problems, 14(4), R1.

[3] P. Berardino, G. Fornaro, R. Lanari and E. Sansosti, “A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms”, IEEE Trans. Geosci. Remote Sens., vol. 40, no. 11, pp. 2375-2383, Nov. 2002.

[4] R. Lanari, M. Bonano, F. Casu, C. De Luca, M. Manunta, M. Manzo, G. Onorato, I. Zinno, “Automatic Generation of Sentinel-1 Continental Scale DInSAR Deformation Time Series through an Extended P-SBAS Processing Pipeline in a Cloud Computing Environment”, Remote Sensing, 2020, 12, 2961.

[5] C. Esposito, A. Natale, G. Palmese, P. Berardino, R. Lanari, S. Perna, “On the Capabilities of the Italian Airborne FMCW AXIS InSAR System”, Remote Sens. 2020, 12, 539.

 

How to cite: Berardino, P., Natale, A., Esposito, C., Palmese, G., Lanari, R., and Perna, S.: Stromboli Volcano observations through the Airborne X-band Interferometric SAR (AXIS) system, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12364, https://doi.org/10.5194/egusphere-egu22-12364, 2022.

EGU22-12927 | Presentations | GI6.3 | Highlight

FRA.SI.project - AN INTEGRATED MULTI-SCALE METHODOLOGIES FOR THE ZONATION OF LANDSLIDE-INDUCED HAZARD IN ITALY 

Pietro Tizzani, Paola Reichenbach, Federica Fiorucci, Massimiliano Alvioli, Massimiliano Moscatelli, and Antonello Bonfante and the Fra.Si. Team

Fra. Si. a national research project supported by the Ministry of the Environment and Land and Sea Protection, develops a coherent set of multiscale methodologies for the assessment and zoning of earthquake-induced landslide hazards. To achieve the goal, the project operates at different geographical, temporal, and organizational scales, and in different geological, geomorphological, and seismic-tectonic contexts. Given the complexity, variability, and extent of earthquake-induced landslides in Italy, operating at multiple scales allows you to (a) maximize the use of available data and information; (b) propose methodologies and experiment with models that operate at different scales and in different contexts, exploiting their peculiarities at the most congenial scales and coherently exporting the results at different scales; and (c) obtain results at scales of interest for different users.

The project defines a univocal and coherent methodological framework for the assessment and zoning of earthquake-induced landslide hazard, integrating existing information and data on earthquake-induced landslide in Italy, available to proponents, available in technical literature and from "open" sources - in favor of the cost-effectiveness of the proposal. The integration exploits a coherent set of modeling tools, expert (heuristic) and numerical (statistical and probabilistic, physically-based, FEM, optimization models). The methodology considers the problem at multiple scales, including: (a) three geographic scales - the national synoptic scale, the regional mesoscale and the local scale; (b) two time scales - the pre-event scale typical of territorial planning and the deferred time of civil protection, and the post-event scale, characteristic of real civil protection time; and (c) different organizational and management scales - from spatial planning and soil defense, including post-seismic reconstruction, to civil protection rapid response. Furthermore, the methodology considers the characteristics of the seismic-induced landslide and the associated hazard in the main geological, geomorphological and seismic-tectonic contexts in Italy.

The project develops methodologies and products for different users and/or users. The former concern methodologies for (i) the synoptic zoning of the hazard caused by earthquake-induced landslides in Italy; (ii) the zoning and quantification of the danger from earthquake-induced landslides on a regional scale; (iii) the quantification of the danger of single deep landslides in the seismic phase; and for (iv) the identification and geological-technical modeling of deep co-seismic landslides starting from advanced DInSAR analyzes from post-seismic satellites.

How to cite: Tizzani, P., Reichenbach, P., Fiorucci, F., Alvioli, M., Moscatelli, M., and Bonfante, A. and the Fra.Si. Team: FRA.SI.project - AN INTEGRATED MULTI-SCALE METHODOLOGIES FOR THE ZONATION OF LANDSLIDE-INDUCED HAZARD IN ITALY, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12927, https://doi.org/10.5194/egusphere-egu22-12927, 2022.

EGU22-650 | Presentations | G4.3

Investigation of different geoid computation techniques in the frame of the ModernGravNet project 

Vassilios Grigoriadis, Vassilios Andritsanos, Dimitrios Natsiopoulos, and Georgios Vergos

In the frame of the “Modernization of the Hellenic Gravity Network” project, we aim at computing a high resolution and accuracy geoid for Greece. For this reason, we selected initially two test areas in northern and southern Greece covering an area of about 100 km2 each, where gravity and GNSS/leveling measurements were carried out. Based on these recent, well documented and reliable measurements, we investigate the use of different techniques for the determination of the geoid, including Least-Squares Collocation, FFT and Input-Output Systems, following the Remove-Compute-Restore approach. For the remove/restore part, we examine different Residual Terrain Modeling schemes along with the use of older and recent Global Geopotential Models. Moreover, we compute the geoid-quasigeoid separation term using different approaches. We then validate the results obtained against the new GNSS/leveling measurements across the test areas and draw conclusions towards the determination of a regional geoid for Greece.

How to cite: Grigoriadis, V., Andritsanos, V., Natsiopoulos, D., and Vergos, G.: Investigation of different geoid computation techniques in the frame of the ModernGravNet project, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-650, https://doi.org/10.5194/egusphere-egu22-650, 2022.

EGU22-711 | Presentations | G4.3

The deep structure of the Richat magmatic intrusion (northern Mauritania) from geophysical modelling. Insights into its kinematics of emplacement 

El Houssein Abdeina, Sara Bazin, Gilles Chazot, Hervé Bertrand, Bernard Le Gall, Nasrrddine Youbi, Mohamed Salem Sabar, Mohamed Khalil Bensalah, and Moulay Ahmed Boumehdi

The famous circular structure of Richat, sometimes referred to as “the eye of Africa”, is located in the northwestern part of the Taoudeni basin, in the central part of the Mauritanian Adrar plateaus. It is expressed at the surface as a slightly elliptical depression, about 40 kilometers in diameter, marked by concentric ridges of Proterozoic-Lower Paleozoic sediments. Its origin as resulting from either a meteorite impact or a deep magmatic intrusion, has been long debated. Modelling of high-resolution airborne magnetic data as well as satellite gravity data reinforces the intrusion hypothesis. Geophysical modelling has been calibrated by determinations of rock properties from various types of magmatic lithologies sampled in the field. The three complementary types of geophysical data allow us to image at various scales and depths the buried structures of the Richat magmatic complex, to determine the areas most affected by hydrothermal alteration and finally to elaborate a kinematic model for its emplacement. We emphasize that : (1) the Richat intrusion is characterized by the presence of two important circular magnetic signals that coincide with gabbroic ring dykes partly exposed at the surface, (2) its overall circular structure rests above a deep mafic (gabbroic) body, (3) the upwelling of magma at the surface has been facilitated by the presence of concentric faults and (4) the central zone of the complex recorded intense hydrothermal alteration. This case study aims to provide insights for similar types of magma-induced ring structures observed worldwide.

How to cite: Abdeina, E. H., Bazin, S., Chazot, G., Bertrand, H., Le Gall, B., Youbi, N., Sabar, M. S., Bensalah, M. K., and Boumehdi, M. A.: The deep structure of the Richat magmatic intrusion (northern Mauritania) from geophysical modelling. Insights into its kinematics of emplacement, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-711, https://doi.org/10.5194/egusphere-egu22-711, 2022.

EGU22-780 | Presentations | G4.3

Effect of Gravity Data Coverage on the Gravity Field Recovery: Case Study for Egypt (Africa) and Austria 

Hussein Abd-Elmotaal and Norbert Kühtreiber

The coverage of the gravity data plays an important role in the geoid determination. This paper tries to answer whether different geoid determination techniques would be affected similarly by such gravity data coverage. The paper presents the determination of the gravimetric geoid in two different countries where the gravity coverage is quite different. Egypt (representing the same situation in Africa) has sparse gravity data coverage over relatively large area, while Austria has quite dense gravity coverage in a significantly smaller area. Two different geoid determination techniques are tested. They are Stokes’ integral with modified Stokes kernel, for better combination of the gravity field wavelengths, and the least-squares collocation technique. The geoid determination has been performed within the framework of the non-ambiguous window remove-restore technique (Abd-Elmotaal and Kühtreiber, 2003). For Stokes’ geoid determination technique, the Meissl (1971) modified kernel has been used with numerical tests to obtain the best cap size for both geoids in Egypt and Austria. For the least-squares collocation technique, a modelled covariance function is needed. The Tscherning-Rapp (Tscherning and Rapp, 1974) covariance function model has been used after being fitted to the empirically determined covariance function. The paper gives a smart method for such covariance function fitting. All geoids are fitted to GNSS/levelling geoids for both countries. For each country, the computed two geoids are compared and the correlation between their differences versus the gravity coverage is comprehensively discussed.

How to cite: Abd-Elmotaal, H. and Kühtreiber, N.: Effect of Gravity Data Coverage on the Gravity Field Recovery: Case Study for Egypt (Africa) and Austria, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-780, https://doi.org/10.5194/egusphere-egu22-780, 2022.

EGU22-787 | Presentations | G4.3

GOCE SGG data downward continuation to the Earth’s Surface 

Georgios S. Vergos, Eleftherios A. Pitenis, Elisavet G. Mamagiannou, Dimitrios A. Natsiopoulos, and Ilias N. Tziavos

The combination of GOCE Satellite Gravity Gradiometer (SGG) data with local free-air gravity anomalies, towards the estimation of improved geoid and gravity field models, requires their downward continuation to the Earth’s surface (ES). Within the GeoGravGOCE project, which aims to explore the local improvements in geoid and gravity field modeling offered by GOCE, optimal combination of GOCE and surface data was sought in order to acquire insights of their contribution especially over poorly surveyed areas. GOCE SGG data are first pre-processed, to filter out noise and reduce long-wavelength correlated errors, and are consequently reduced to a mean orbit (MO) so that downward continuation to the Earth’s surface can be carried out. The reduction from the orbit level to a MO was performed by estimating GGM gradient grids per 1 km from the MO to the maximum orbital level, and then linearly interpolating for the reduction from the actual satellite height. Having determined the filtered GOCE filtered SGG data to a MO, the next step referred to their downward continuation to the ES. Gravity anomalies from XGM2016 generated on the ES have been used as ground truth and were upward continued to the MO in the spectral domain through the input output system theory method. The evaluation of GOCE SGG data to the MO with GGM-derived gradients is performed using a Monte-Carlo annihilation method finding the global minimum of a cost function that may possess several local minima. The GOCE data that satisfy the aforementioned criteria of this simulated annealing method are frozen and the steps mentioned above are repeated until all generated SGG data meet the criterion. The developed procedure can be successfully applied for downward continuation of GOCE SGG from a MO to the ES for regional gravity field applications. The present work summarizes the results achieved while the evaluation is performed against local free-air gravity anomalies and residuals to XGM2019.

How to cite: Vergos, G. S., Pitenis, E. A., Mamagiannou, E. G., Natsiopoulos, D. A., and Tziavos, I. N.: GOCE SGG data downward continuation to the Earth’s Surface, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-787, https://doi.org/10.5194/egusphere-egu22-787, 2022.

EGU22-927 | Presentations | G4.3

Practical implementation of the IHRF employing local gravity data and geoid models 

Riccardo Barzaghi and Georgios Vergos

With the definition of the International Height Reference System (IHRS) and the development of a roadmap for its implementation through the International Height Reference Frame (IHRF), an analytical evaluation of the various approaches for the practical determination of potential values at IHRF is necessary. In this work we focus on two main approaches to estimate geopotential values at IHRF stations. The first approach resides on the use of either local gravity anomalies and gravity disturbances around each site and the geopotential determination based on Stokes’ and Molodensky’s boundary value problems, respectively. In this scheme, the influence of the classical residual terrain model (RTM) reduction as well as that of RTM effects based on spherical harmonics expansion of the topographic potential are investigated. Furthermore, the introduction of possible biases within the various pre- and post-processing steps are thoroughly investigated, as e.g., during the estimation of station geometric heights, along with the influence of the quasi-geoid to geoid separation estimation. In the second approach, we investigate the determination of geopotential values based on either national and regional geoid models, i.e., resembling the case that access to local gravity data is not available, and the determination has to be based on some available geoid model. In the present work we analyze the theoretical and methodological steps that need to be followed in each approach, identifying the possible sources of biases. Finally, some early results are presented aiming at providing a roadmap and an error assessment for the practical realization of the IHRF.

How to cite: Barzaghi, R. and Vergos, G.: Practical implementation of the IHRF employing local gravity data and geoid models, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-927, https://doi.org/10.5194/egusphere-egu22-927, 2022.

EGU22-1602 | Presentations | G4.3

Comparison between towed absolute and shipborne 3C fluxgate magnetic measurements in shallow water. Applications for marine geophysical surveys. 

Hugo Reiller, Jean-François Oehler, Sylvain Lucas, Guy Marquis, Didier Rouxel, and Marc Munschy

We compare marine magnetic measurements simultaneously acquired with absolute and three-component fluxgate sensors to evaluate their respective benefits for marine geophysical mapping and detection surveys.

Shom collected the data in shallow waters, in the Bay of Brest (France) and in the Iroise Sea, during two cruises in the Fall 2021. As per standard practice, an absolute Overhauser magnetometer was towed 180 m behind the 60 m-long Laplace and Lapérouse hydrographic vessels. In addition, two vector magnetometers were temporarily installed at the top of the ship’s mast and on the roof of a 10 m-long launch. Scalar data were processed following Shom’s standards: shift to sensor position, layback adjustments, removal of gyrations and spikes, filtering and calculation of magnetic anomalies by removing the IGRF model (Alken et al., 2021) and reducing external variations measured at a local reference station. Vector data were corrected for the strong magnetic fields generated by the hull and other steel components of the ship by the application of a “scalar compensation” using a least-squares regression analysis (Leliak, 1961) on data from figures of merit. The compensated vector data then need to be low-pass filtered to remove uncorrected variations of attitude and heading. Magnetic anomalies were finally computed by removing the median value for each profile and reducing external variations from the same local reference station.

Our first results show that maps of total-field anomalies derived from vector data acquired on the ship are very close to those of the absolute data upward-continued to the altitude of the mast. This similarity suggests that it is possible to perform good-quality magnetic surveys without the constraint of having to tow an instrument. The different processing steps however raise the detection threshold for anthropogenic objects lying on the seafloor or partially buried. Vector data acquired on smaller launchs are much more complicated to compensate as ranges of pitch, roll and heading variations are greater than for a large ship and potentially imperfectly sampled by the figures of merit.

How to cite: Reiller, H., Oehler, J.-F., Lucas, S., Marquis, G., Rouxel, D., and Munschy, M.: Comparison between towed absolute and shipborne 3C fluxgate magnetic measurements in shallow water. Applications for marine geophysical surveys., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1602, https://doi.org/10.5194/egusphere-egu22-1602, 2022.

EGU22-1673 | Presentations | G4.3

Crustal structures from receiver functions and gravity analysis in central Mongolia 

Alexandra Guy, Christel Tiberi, and Saandar Mijiddorj

3D forward gravity modelling combined with receiver function analysis characterize the structures of the southern part of the Mongolian collage. Recently, a multidisciplinary approach integrating potential field analysis with geology and magmatic geochemistry demonstrate that relamination of an allochtonous felsic to intermediate lower crust played a major role in southern Mongolia structure. Relamination of material induces a homogeneous layer in the lower crust, which contrasts with the highly heterogeneous upper crustal part composed of different lithotectonic domains. The seismic signals of the 48 stations of the MOBAL2003 and the IRIS-PASSCAL experiments were analyzed to get the receiver functions. The resulting crustal thickness variation is first compared with the topography of the Moho determined by the 3D forward modeling of the GOCE gravity gradients. In addition, seismic stations south of the Hangay dome display significant signal related to the occurrence of a low velocity zone (LVZ) at lower crustal level. The receiver function analysis also revealed a significant difference between the crustal structures of the Hangay dome and the tectonic zones in the south. Finally, these seismic analysis inputs such as crustal thickness, strike and dips of the seismic interfaces as well as the boundaries and the lithologies of the different tectonic zones constitute the starting points from the 3D forward gravity modelling. The combination of these two independent methods enhances the occurrence and the extent of a low velocity and a low density zone (LVLDZ) at lower crustal level beneath central Mongolia. These LVLDZ may demonstrate the existence of the relamination of a hydrous material in southern Mongolia.

How to cite: Guy, A., Tiberi, C., and Mijiddorj, S.: Crustal structures from receiver functions and gravity analysis in central Mongolia, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1673, https://doi.org/10.5194/egusphere-egu22-1673, 2022.

EGU22-1899 | Presentations | G4.3

Bathymetric Effects on Geoid Modeling 

Xiaopeng Li, Miao Lin, Jordan Krcmaric, Yuanyuan Jia, Ck Shum, and Daniel Roman

Bathymetric data over lake areas are not included in previous NGS (National Geodetic Survey) geoid model computations. Mean lake surfaces are used as the bare rock surface during the modeling. This approximation treats the water body as rocks with the same size, and causes errors that can be avoided. This study uses the bathymetric model to rigorously compute the volume of water bodies instead of treating them as rocks, during geoid modeling. To make fair comparisons and show the effects clearly, three sets of geoid models are generated with the same theory currently used at NGS, and with the same parameters. Model-Base is computed without bathymetric information of the water body. In this model, the real water bodies are simply replaced by rocks. Model-Condensed and Model-Density are generated with bathymetric information. The treatments of water bodies are different between the two models, but both are based on the hypothesis of mass conservation. The water bodies are condensed into the equivalent rocks in the Model-Condensed, leading to the geometrical shape changes in the lake area. In the Model-Density, the density of each topographical column bounded by the lake surface and geoid is taken as the average of the density of water and rock bodies included in this column, resulting in the density changes in the lake area. The study area is focused on the Great Lakes area of North America. The geoid model differences between Model-Condensed and Model-Base range from -18 to 25 mm, forming a Gaussian distribution. The distribution of the geoid model differences between Model-Density and Model-Base are not in a Gaussian form, and their values are in the range between -1 and 18 mm. Both the nearby GNSS/Leveling bench marks from US and the multi-year averaged altimetry data are used to validate the results. Consistent geoid model precision improvements of about 2 mm are confirmed around the Lake Superior, which is the deepest and largest lake, over all selected frequency bands of the Stokes’s kernel. The numerical results prove the importance of considering water bodies in the determination of a high-accuracy geoid model over the Great Lakes area.

How to cite: Li, X., Lin, M., Krcmaric, J., Jia, Y., Shum, C., and Roman, D.: Bathymetric Effects on Geoid Modeling, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1899, https://doi.org/10.5194/egusphere-egu22-1899, 2022.

EGU22-2625 | Presentations | G4.3

Magnetic and gravimetric modeling of the Monchique magmatic intrusion in south Portugal 

Gabriela Camargo, Marta Neres, Machiel Bos, Bento Martins, Susana Custódio, and Pedro Terrinha

The Monchique alkaline complex (MAC) crops out in southern Portugal with a roughly elliptical shape of about 80 km2 elongated along ENE-WSW direction. The MAC dates to Late Cretaceous (69-72 Ma) and intrudes the Carboniferous Flysh formation of the South Portuguese Zone. At the surface, it comprises two main types of syenites: a central homogeneous nepheline syenite surrounded by a heterogeneous syenite unit, and some less expressive outcrops of mafic rocks (gabbros, hornfels, breccia and basalts). This igneous complex belongs to the Upper Cretaceous West Iberia alkaline magmatic event, characterized by alkaline magmatism of sublithospheric origin and active from approximately 100 Ma to 69 Ma.

The Monchique region hosts the most active seismic cluster of mainland Portugal, with low magnitude earthquakes (M < 4) that occur along lineations with NNE–SSW and WNW–ESE preferred orientation.

In this work we study the Monchique region through gravimetric and magnetic methods in order to: 1) better understand how the MAC influences the geomagnetic and gravimetric field in the region; 2) to create a new and consistent 2D and 3D model for the intrusion; and 3) to help constraining the origin of the observed seismicity and its possible relation with the existence of subcropping magmatic bodies.

We process recently acquired data - ground gravity survey (49 points) and drone-borne aeromagnetic survey – and integrate it with existing data. The interpretation of gravimetric results is complemented by density analysis of magmatic and host rocks. We perform 3D magnetic and gravity inversion to model the geometry of gravity and magnetic sources, and 2D magnetic forward modeling along a representative profile.

The calculated Bouguer gravity anomaly shows a positive gradient towards the southwest with a negative peak in the center of the Monchique mountain. However, when applied the terrain correction (complete Bouguer anomaly), this peak vanishes. This is justified by the similar mean density values for the syenite and host rocks, respectively 2560 kg/m3 and 2529 kg/m3.

The new aeromagnetic data allows for mapping the Monchique magnetic anomaly with unprecedented detail and reveal a 10 km elongated anomaly with 30 m wavelength with maximum 1707 nT amplitude. 3D susceptibility inversion models show a 15km long body with maximum depth between 5-10km, and susceptibility >0.02 SI, in agreement with previous susceptibility analysis in the region. The highest magnetic signal is found at Picota hill (east), but the deepest parts of the intrusion seem to be bellow Foia hill (west). It is noteworthy that earthquake hypocenters concentrate at depths of 5-20 km, thus below most of the modeled magmatic intrusion.  

This work was developed for the MSc thesis of GCC, in the frame of ATLAS project (PTDC/CTA-GEF/31272/2017), POCI-01-0145-FEDER-031272, FEDER-COMPETE/POCI 2020) partly funded by FCT. FCT is further acknowledged for support through projects UIDB/50019/2020-IDL, PTDC/CTA-GEF/1666/2020 and PTDC/CTA-GEF/6674/2020.

How to cite: Camargo, G., Neres, M., Bos, M., Martins, B., Custódio, S., and Terrinha, P.: Magnetic and gravimetric modeling of the Monchique magmatic intrusion in south Portugal, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2625, https://doi.org/10.5194/egusphere-egu22-2625, 2022.

The presence of subglacial sediments is important in enabling streaming ice flow and may be a critical controlling factor in determining the onset regions of ice streams. Improving our knowledge of the location of sedimentary basins underlying large ice sheets will improve our understanding of how the substrate influences the ice streams.  Advancing our understanding of the interaction between subglacial sediments and ice flow is critical for predictions of ice sheet behavior and the consequences on future climate change. To date, no comprehensive distribution of onshore and offshore sedimentary basins over Antarctica has been developed. The goal of this project is to use a combination of large-scale datasets to characterize known basins and identify new sedimentary basins to produce a continent-wide mapping of sedimentary basins and provide improved basal parametrizations conditions that have the potential to support more realistic ice sheet models. The proposed work is divided into three main steps. In the first step, the Random Forest (RF), a supervised machine learning algorithm, is used to identify sedimentary basins in Antarctica. In the second step, a regression analyses between aerogravity data and topography is done to evaluate the gravity signal related to superficial heterogeneities (i.e. sediments) and compare the results to the depth of magnetic sources using the Werner deconvolution method. Last, the correlation between sedimentary basins and ice streams is investigated. Here, we will present the preliminary results from Step 1. The Random Forest uses ensemble learning method for classification and regression. The classification rules for this present work are based on the geophysical parameters of major known sedimentary basins. First we classify the known basins with all available geophysical compilations including topography, gravity and magnetic anomalies, sedimentary thickness, crustal thickness, geothermal heat flux, information on the geology, rocky type and bedrock geochemistry, and then use the Random Forest machine learning algorithm to classify the geology underneath the ice into consolidated rock and sediments based on these parameters.

How to cite: Constantino, R. R., Tinto, K. J., and Bell, R. E.: Using random forest machine learning algorithm to help investigating the relationship between subglacial sediments and ice flow in Antarctica, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2658, https://doi.org/10.5194/egusphere-egu22-2658, 2022.

EGU22-3409 | Presentations | G4.3

Short-wavelength Bouguer anomaly and folding with disclination in the northeastern Japan 

Mitsuhiro Hirano and Hiroyuki Nagahama

In the northeastern Japan arc with the active compressive stress field since ~3 Ma, it is reported that a characteristic relationship between crustal deformation including faulting and short-wavelength (< 160 km) Bouguer anomalies. According to previous studies, active faults tend to be located in negative regions, which are caused by cracks and volumetric strain due to accumulated fault dislocation. Especially, it is shown that in strain concentration zones with active faults and muti folding, the effect of accumulated fault dislocation forms the negative zones of gravity anomaly along the northeastern Japan arc, impacting the pattern of short-wavelength Bouguer anomalies throughout the entire arc. In this presentation, we extend this concept further and discuss the positive and negative zones of gravity zones along the entire northeastern Japan arc from the geometrical viewpoint of folding with one of the defect, disclination. Folding is described by Euler-Schouten curvature tensor, which defines the protrusion of included space (e.g., two-dimensional Riemannian space) from enveloping space (e.g., three-dimensional Euclid space). Based on previous studies, the density of earthquake occurrence is proportional to the curvature of the plastic folding deformation of the crust, which is related to Euler-Schouten curvature, and fault dislocation also accumulates at the regions with its high curvature. The row (accumulation) of fault dislocation can be replaced by the disclination, and Riemann-Christoffel curvature, derived from Euler-Schouten curvature tensor, also expresses disclination density. In particular, angular folding with local curvature accompanied by a pair of disclination is called Kink folding, forming the mass-loss or mass-excess regions around disclination. Since Kink folding can approximately be the same as the undulating region bounded by several faults (fault block) in strain concentration zones, it is expected that the northeastern Japan arc has not only negative zones of gravity anomaly but also positive zones along the arc due to the mass-loss or mass-excess regions around disclination. Therefore, we conclude that the positive and negative zones of gravity anomaly along the northeastern Japan arc reflect the geometric condition of the crust with disclination.

How to cite: Hirano, M. and Nagahama, H.: Short-wavelength Bouguer anomaly and folding with disclination in the northeastern Japan, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3409, https://doi.org/10.5194/egusphere-egu22-3409, 2022.

EGU22-3615 | Presentations | G4.3

Moho depth evaluation using GOCE gradient data and Least Square Collocation over Iran 

Carlo Iapige De Gaetani, Hadi Heydarizadeh Shali, Sabah Ramouz, Abdolreza Safari, and Riccardo Barzaghi

Investigating the crustal architecture, specifically the discontinuity interface between the upper mantle and lower crust of the Earth, so-called Moho, can be done in three prevailing techniques, namely lithology, seismicity, and gravity. In contrast to using the information from analyzing the characteristics of rocks and seismic waves, which are sparsed and expensive, inverting gravity data of satellite missions such as GOCE and GRACE is a suitable alternative for such purposes.

The present paper attempts to map the Moho surface using the gravity data as we considered a simplified Earth model based on three shells including the core, mantle and crust with a potential T on a given sphere outside this body. In this notation, by subtracting the topographic effects, compensating for density anomalies in the crust, and other known constants from the observation that are given on and outside the mean Earth radius, one is left with the potential of a single layer on the mean Moho sphere by taking into consideration the Helmert condensation approach. In planar approximation, this is to say that the topography is formally referred to an xy plane and also the condensation surface which is a plane, situated at a depth D below the previous one. Therefore, relating the topographic load of a mass column with height h over the same elementary area element at depth d, the measure of how deep the crust is sinking into the mantle material as a consequence of the load, we can interpret the Moho variations with respect to some mean crustal thickness.

To do this inversion, we applied the Least Square Collocation (LSC) approach which uses the functional relationships between the quantities, the auto-covariance and cross-covariance matrices based on a covariance function between observations and the unknowns. Practically, after constructing the required residual data, an empirical covariance is estimated, then fitted to analytical one to define the required covariance models.

Finally, the Moho variations has been estimated in an active tectonic zone created by the continental collision of the Arabian plate from South-West and Turan shield from North-East with respect to a mean Moho depth equal to 45 km. Results of this study are comparable and much the same with other studies so that different rheological zones of Iranian plateau can be seen in this estimated map of Moho. For instance, a maximum depth is estimated for Sanandaj-Sirjan zones in South-East and minimum depth for Caspian Sea in North.

How to cite: De Gaetani, C. I., Heydarizadeh Shali, H., Ramouz, S., Safari, A., and Barzaghi, R.: Moho depth evaluation using GOCE gradient data and Least Square Collocation over Iran, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3615, https://doi.org/10.5194/egusphere-egu22-3615, 2022.

EGU22-4230 | Presentations | G4.3

Crowd modelling: Launching an open gravity-modelling call to challenge the Balmuccia peridotite body 

György Hetényi, Ludovic Baron, Matteo Scarponi, Shiba Subedi, Konstantinos Michailos, Fergus Dal, Anna Gerle, Benoît Petri, Antonio Langone, Andrew Greenwood, Luca Ziberna, Mattia Pistone, Alberto Zanetti, and Othmar Müntener

Modelling of geophysical data is often subject to choices made by the researcher undertaking the work. The level of structural complexity in the model, the bounds on parameters imposed by a priori knowledge, the thoroughness and efficiency in exploring the parameter space may all lead to bias in determining what the best fitting models can be.

To avoid bias from our own ideas in constraining the subsurface shape of a given density anomaly, we hereby invite anyone interested to create their own models. This is planned by sharing the same gravity data measured in the field, the same digital elevation model, the main features of the local geological maps, and bounds on the encountered rock density values. These data will be shared openly, in the form of a modelling challenge: each participating researcher or group is expected to submit their solution(s). All these will be compared during a dedicated workshop, ultimately resulting in a joint publication.

The target of this modelling challenge is the world-famous Balmuccia peridotite body (45.84°N, 8.16°E) in the Ivrea-Verbano Zone (IVZ). Here mantle rocks are naturally exposed at the surface, in the broader context of the IVZ, a middle- to lower crustal terrain along the Europe-Adria plate boundary’s eastern side. The surface exposure of the Balmuccia peridotite is ~ 4.4 km N-S by 0.6 km E-W, with outcrop elevation changes exceeding 1000 m. About 150 new gravity data points have been measured within a radius of 3 km from the centre of the peridotite body, along more or less accessible paths and slopes. The measurements have been carried out with a Scintrex CG-5 relative gravimeter, tied to a reference point, and all points located via differential GPS with typical vertical precision of a few cm. Farther away regional gravity data is available at few km spacing.

Beyond the modelling challenge, the interest in constraining the subsurface shape of the Balmuccia peridotite body is its future target role in the ICDP DIVE continental drilling project (www.dive2ivrea.org).

How to cite: Hetényi, G., Baron, L., Scarponi, M., Subedi, S., Michailos, K., Dal, F., Gerle, A., Petri, B., Langone, A., Greenwood, A., Ziberna, L., Pistone, M., Zanetti, A., and Müntener, O.: Crowd modelling: Launching an open gravity-modelling call to challenge the Balmuccia peridotite body, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4230, https://doi.org/10.5194/egusphere-egu22-4230, 2022.

EGU22-4803 | Presentations | G4.3

Separation of gravimetric and magnetic anomalies with different degrees of regionality in the Eastern Carpathians, Romania 

Natalia-Silvia Asimopolos and Laurentiu Asimopolos

The gravity and magnetic anomalies separation operation consists in determining the number of sources, the characteristics of each (depth, density, shape, and dimensions) so as to result in cumulative total anomaly, measured at the Earth’s surface. This separation has to be done in the context of the fundamental ambiguity of gravimetric and magnetic information, based on the cause-effect ratio. There are various methods for achieving this separation of anomalies. This paper presents some examples of the use of the moving average method and the polynomial trend surfaces. In particular, we presented the results of the mobile mediation with different windows compared to the tendency surfaces with different degrees, for a case study in Eastern Carpathians mountains area. For this study we used data available from several sources.

From the International Gravimetric Bureau we used gravimetric data for the WGM2012 geoglobal model: Bouguer anomaly for density 2.67 g / cm3, outdoor anomaly, isostatic anomaly, gravitational disturbance and altitude.

From the geophysics portal of the Geological Institute of Romania we used the magnetic data resulting both from the scanning of the national geomagnetic maps and from the catalogs of measurements from the archive. We also used the deep geological sections made on the basis of seismic data, corroborated with gravimetric and magnetic data that cross the Eastern Carpathians.

Other data used for depth correlations were the isobath map of the Moho surface, the Conrad surface, the geoid, and the quasigeoid.

For the study of deep tectonics based on all the data used we used the correlation coefficient between various parameters, calculated in movable windows of different sizes both in plan and in space. For this we have developed specific calculation programs.  The moving average is a direct method for separating regional effects and local (residual) effects. Polynomial trend surfaces analysis contributes to the recognition, isolation and measurement of trends that can be calculated and represented by analytical equations, thus achieving a separation in regional and local variations. The analytical expressions of the polynomial trends based on the least squares method were calculated, highlighting the regional trend caused by the deep structures. Then, by calculating the residual values resulting from the difference between the initial values and the trend values from the network nodes used, we highlighted the superficial local effects. We also obtained information about the regional trend caused by geological structures at medium and large depths, by calculating the difference between gravity parameters, obtained with different moving average windows or tendency surfaces with different degrees, interpolated in same network.

How to cite: Asimopolos, N.-S. and Asimopolos, L.: Separation of gravimetric and magnetic anomalies with different degrees of regionality in the Eastern Carpathians, Romania, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4803, https://doi.org/10.5194/egusphere-egu22-4803, 2022.

EGU22-6489 | Presentations | G4.3

Drone-magnetic survey along the Alentejo coast (SW Portugal): a quest for the intruded Messejana fault 

Diogo Rodrigues, Marta Neres, Pedro Terrinha, Machiel Bos, and Bento Martins
 
 

How to cite: Rodrigues, D., Neres, M., Terrinha, P., Bos, M., and Martins, B.: Drone-magnetic survey along the Alentejo coast (SW Portugal): a quest for the intruded Messejana fault, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6489, https://doi.org/10.5194/egusphere-egu22-6489, 2022.

EGU22-6615 | Presentations | G4.3

Examination of magnetic map variability and uncertainty: crustal magnetic anomalies in oceanic areas 

Richard Saltus, Arnaud Chulliat, Brian Meyer, and Martin Bates

To paraphrase a common model aphorism: “all magnetic maps are wrong, some are useful”. In other words, all maps of the Earth’s magnetic field are subject to uncertainty, both observationally and dynamically. Depending on the intended use of the map, this uncertainty will have varying implications. For those of us who build and use magnetic maps it is important to gain understanding of the uncertainty in these maps to ensure that they are clearly presented and suitable for a given use.

Uncertainty evaluation is a general challenge that affects all magnetic maps and models, but here we concentrate on maps of magnetic anomalies (i.e., perturbations of the Earth’s main field primarily due to variations in magnetic minerals in the crust and shallow mantle) in oceanic areas.

Magnetic anomaly maps for oceanic regions are typically representations of gridded data. The grids are built from available data which generally consists of marine trackline data with a range of ages, collection parameters and uncertainty in original observations. Data coverage and trackline geometries are highly variable around the world. For example, near-shore regions in the Northern Hemisphere tend to be well sampled, whereas open ocean portions of the Southern Hemisphere are poorly sampled.

Quantification of cell by cell uncertainty for magnetic anomaly grids can be subdivided into two regimes: cells containing data and cells without data. For cells containing data, factors such as point-wise observation uncertainty, number of observations, and spatial distribution of data, can be analysed to estimate grid value uncertainty. For interpolated cells, factors such as distance to nearest data cells, local field behavior, and uncertainty in surrounding cells are relevant.

Using NOAA/NCEI trackline marine data for portions of the Caribbean Sea and North Atlantic we are constructing and testing uncertainty models and methods for representing this uncertainty for a variety of magnetic map uses. For a marine magnetic anomaly grid of a portion of the North Atlantic at a 4 km grid interval (the same grid interval used by our global EMAG2 magnetic anomaly compilation), the calculated cell level uncertainty ranges from 20 nT to 150 nT with a mean value of 90 nT. This mean value is similar to the average grid uncertainty of 100 nT/cell that we estimated for marine areas of EMAG2v3. Different gridding approaches, including kriging or minimum curvature algorithms, yield variations in individual cell values, but these variations fall within our estimated uncertainty ranges. 

How to cite: Saltus, R., Chulliat, A., Meyer, B., and Bates, M.: Examination of magnetic map variability and uncertainty: crustal magnetic anomalies in oceanic areas, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6615, https://doi.org/10.5194/egusphere-egu22-6615, 2022.

EGU22-6671 | Presentations | G4.3

Accuracy requirements of the gravity measurements for sub-centimetre geoid 

Ismael Foroughi, Spiros Pagiatakis, Mehdi Goli, and Stephen Ferguson

In this contribution, we estimate the uncertainty (error) of the input gravity measurements needed for the determination of the geoid with an internal sub-centimetre accuracy. The accuracy of the geoid height is a function of the resolution/accuracy of the input gravity and topographical data, and the methodology used to solve a geodetic boundary value problem. The purpose of this study is to estimate the maximum allowable error in the terrestrial gravity measurements based on a required standard deviation of the error in the geoid heights (e.g., ≤1cm). This is done with an assumption of a known Digital Elevation Model (DEM), and an Earth Gravitational Model (EGM) along with their error estimates.

 

We use the one-step integration method (one-step kernel) for the determination of the geoid. In this method, the anomalous gravity at any surface above the geoid is estimated by integrating over the geoid-level disturbing potentials in harmonic space. By applying the covariance law to the one-step integration method, the error of the gravity measurements at the Earth's surface can be estimated using the expected error of the geoid heights. Taking advantage of the remove-compute-restore technique, we estimate the error of the residual surface gravity measurements using the (known) error estimates of the topographical and EGM corrections.  

 

We select the Colorado test area (35°N - 40°N, 250°E - 258°E) to generate a 1¢×1¢ grid of geoid random errors with a standard deviation of 1cm. We use the topographical data from the Shuttle Radar Topography Mission (SRTM) Ver. 3.0. and the global model of DIR_R5 up to degree/order 140 to apply the remove-compute-restore technique. The uncertainty estimate of the SRTM heights and the covariance matrix of the spherical harmonic coefficients of the DIR_R5 are used to calculate the errors of the topographical gravitational attraction and low-degree EGM signals on the geoid heights and surface anomalous gravity data.

 

Our preliminary results show that to achieve a sub-centimetre accuracy in the Colorado area, we require grid surface gravity measurements with a standard deviation of less than 2.5mGal. This result is optimistic as in the geoid determination process, the anomalous gravity data are downward continued from the Earth’s surface to the geoid, whereas this step is not required in our experience. Besides, we assume a constant standard deviation of 1cm for all the errors of the geoid heights, whereas such high accuracy may not be needed in high mountains. We will provide further results for the elevation-dependent geoid error and also investigate the effect of downward continuation on our results.     

How to cite: Foroughi, I., Pagiatakis, S., Goli, M., and Ferguson, S.: Accuracy requirements of the gravity measurements for sub-centimetre geoid, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6671, https://doi.org/10.5194/egusphere-egu22-6671, 2022.

EGU22-7769 | Presentations | G4.3

Two-dimensional gravity and magnetic model along a new WARR profile in the transition zone from the Precambrian to Palaeozoic platform in the southern Baltic 

Małgorzata Ponikowska, Stanislaw Mazur, Tomasz Janik, Dariusz Wójcik, Michał Malinowski, Christian Hübscher, and Ingo Heyde

Defining a transition zone between the Precambrian East European Craton (EEC) and the Palaeozoic West European Platform (WEP) is still a matter of discussion despite a large body of geophysical and geological data. The main tectonic feature of the transition zone is the Teisseyre-Tornquist Zone (TTZ), which has been variously interpreted over the past decades mainly because of a thick (c. 10 km) Palaeozoic and Mesozoic sedimentary cover masking its crustal architecture.  We investigated the crustal structure of the TTZ using a 270-km long wide-angle reflection/refraction profile (WARR) measured along 15 ocean-bottom seismometers and 2 land stations during the course of the RV MARIA S. MERIAN expedition ‘MSM52’. This NE to SW profile is oriented nearly parallel to the Polish coast, located ~ 48 km south of the Danish island of Bornholm. We prepared a two-dimensional gravity and magnetic forward model along this profile, using the Geosoft GM-SYS software with layers of infinite length. The basis for the potential field modelling is a seismic velocity model that has been prepared through trial-and-error forward modelling.

The seismic velocity model shows a continuity of the lower and middle crust of the EEC towards the basement of the WEP. The synthetic magnetic profile is smooth and indicates that the seismic data accurately revealed the geometry and depth of the magnetic (crystalline) basement. However, the model was unable to replicate short-wavelength, high-amplitude magnetic anomalies in the ENE section of the profile, probably representing iron oxide mineralisation in the crystalline basement of the EEC. The gravity model shows 3 areas of misfit between the synthetic and observed gravity profile. The most prominent misfit coincides with the NE boundary of the TTZ. To remedy the misfit, we produced two alternative gravity models that deviate from the seismic velocity model in the problematic area. One model postulates a crustal keel underneath the NE section of the TTZ and the other suggests the presence of a middle crust magmatic intrusion. Both models equally and adequately reduce the misfit of the gravity model.

Our models suggest a SW-ward continuation of the Baltica middle and lower crust through the TTZ and seem to preclude the coincidence of the Caledonian Thor suture with the TTZ. An important perturbation of the upper crust and sedimentary cover within the latter is mostly associated with the superimposed effects of Devonian-Carboniferous and Permian-Mesozoic extension. The only conspicuous compressional event confirmed by our data is the Late Cretaceous-Paleogene inversion of the Permian-Mesozoic basin. Due to limited resolution, our models did not reveal the effects of Caledonian nor Variscan shortening, including the Caledonian Deformation Front.

This study was funded by the Polish National Science Centre grant no UMO-2017/27/B/ST10/02316.

How to cite: Ponikowska, M., Mazur, S., Janik, T., Wójcik, D., Malinowski, M., Hübscher, C., and Heyde, I.: Two-dimensional gravity and magnetic model along a new WARR profile in the transition zone from the Precambrian to Palaeozoic platform in the southern Baltic, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7769, https://doi.org/10.5194/egusphere-egu22-7769, 2022.

EGU22-8228 | Presentations | G4.3

New insights to characterize the La Cerdanya basin structure from 3D gravity modelling 

Pilar Clariana, Roberto Muñoz, Concepción Ayala, Fabián Bellmunt, Perla Piña-Varas, Ruth Soto, Anna Gabàs, Albert Macau, Félix Rubio, Carmen Rey-Moral, and Joan Martí

The acquisition and interpretation of gravity and magnetic data represents a cost-effective tool in geophysics since it allows to determine the geometry and distribution of the density and magnetic properties at depth of the subsurface rocks. The study area, where gravity and magnetic data have been interpreted, is the La Cerdanya basin (Eastern Pyrenees), a Neogene ENE-WSW oriented half graben located in the Axial Zone, the central part of the Pyrenees mainly formed by Paleozoic rocks. It is situated in the NW block of the La Tet fault and its Neogene sediments lie unconformably on top of the Paleozoic basement. Its dimensions are approximately 30 km long and 7 km wide. The tectonic evolution and geometry of the La Cerdanya basin is not well known and this work aims to add new constraints to help solving the Neogene tectonic evolution of the Eastern Pyrenees and to improve the knowledge of its 3D geometry. 

The magnetic anomaly map of the study area, based on airborne magnetic data, shows very little contrasts of the magnetic properties between the Neogene rocks of the La Cerdanya basin and the Paleozoic rocks surrounding it. Gravity data consist of previous and new acquired gravimetric stations and the residual Bouguer anomaly map shows density contrasts big enough to model the geometry of the basin and the neighbor intrusive bodies. They have been incorporated into a 3D geological model based on available geological and petrophysical data using the 3D GeoModeller software. The 3D potential fields model has been made taking into account the three most representative units outcropping in the study area: the Neogene rocks, the Late Carboniferous intrusive bodies and the Paleozoic basement. The resulting potential fields response of the model is consistent with the observed data. The 3D model shows a basin slightly deeper than shown in previous works and has helped to better define the 3D geometry of the basin and the along-strike geometry of the La Tet fault.

How to cite: Clariana, P., Muñoz, R., Ayala, C., Bellmunt, F., Piña-Varas, P., Soto, R., Gabàs, A., Macau, A., Rubio, F., Rey-Moral, C., and Martí, J.: New insights to characterize the La Cerdanya basin structure from 3D gravity modelling, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8228, https://doi.org/10.5194/egusphere-egu22-8228, 2022.

Magnetic surveys employing Uncrewed Aerial Systems (UAS) allow a fast and affordable acquisition of high-resolution data. We developed a self-built carbon-fiber frame which can be used to attach magnetometers 0.5 m below an UAS. In order to remove undesired signals from the magnetic recordings that originate from the aircraft and that can cause strong heading errors, we apply calibration processes often referred to as magnetic compensation. These processes are usually applied for manned aerial surveys for both scalar and vector magnetometer data and require flying a calibration pattern prior to a survey. We recently published open-source software written in Python to process data and compute compensations for both scalar and vector magnetometers. We tested our method with two commercially available magnetometer systems (scalar and vector) by flying dense grid patterns over a test site using different suspension methods (magnetometer system attached to 2.8 m long tethers, fixed on the landing gear of the UAS, and fixed on our frame configuration). The accuracy of the magnetic recordings was assessed using both standard deviations of the calibration pattern and tie-line cross-over differences from the grid survey. Our frame configuration resulted after magnetic compensation in the highest accuracy of all configurations tested. The frame also allows for the acquisition of aeromagnetic data under a wide range of flight conditions. This is of great advantage compared to the often-used tethered solutions to avoid recording the aircraft’s signals. Since tethered payloads are prone to rotations and swing motions, they require skilled pilots and can be difficult to fly safely. In contrast to that, our system is easy to use and due to its high in-flight stability, even fully autonomous flights are possible. Since the calibration flights that are required for magnetic compensation need to be collected in areas with low magnetic gradients, it can be difficult to find suitable locations in areas with strong magnetic gradients – such as in volcanic and geothermally active regions. However, a survey collected at the location of the calibration site can be used to evaluate the geological magnetic signal. The compensation process involves then two successive evaluations of the compensation parameters. First, an approximate evaluation of the compensation parameters is done assuming a constant value of the magnetic field at the calibration site. The resulting compensation parameters are then used to compensate the survey data collected over the calibration site and evaluate the magnetic field along the calibration pattern trajectory. Second, the compensation parameters are reevaluated taking the magnetic field variations into account. We tested this double calibration scheme on recordings that were collected over the Krafla geothermal area in the Northern Volcanic Zone of Iceland. The double calibrated data resulted in higher accuracy than a single calibration showing that this method can improve magnetic compensation in magnetically high-gradient areas.

How to cite: Kaub, L., Bouligand, C., and Glen, J. M. G.: Collecting and calibrating magnetic data from surveys with Uncrewed Aerial Systems (UAS) and an approach for regions with strong magnetic gradients, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11258, https://doi.org/10.5194/egusphere-egu22-11258, 2022.

EGU22-11302 | Presentations | G4.3

Gravimetric quasi-geoid of the Baltic Sea and comparison to GNSS levelling, DTU21 and tide gauges 

Hergeir Teitsson and René Forsberg

A gravimetric quasi-geoid model, based on the latest FAMOS database release, has been computed for the Baltic Sea region, aiming for a best-possible model on the sea, while not focusing on the surrounding land.

 The geoid computation is based on the FFT remove-compute-restore method. XGM2019 is used as global reference field, with a Wong-Gore linear tapering from 180 to 200. No terrain corrections are included in the computation, since these are not expected to contribute to the accuracy of the model on the sea.

The gravimetric quasi-geoid model is compared to a GNSS-levelled ITRF2008 zero-tide dataset, the altimetry based DTU21 Mean Sea Surface dataset, and to a few tide gauge stations distributed throughout the region. Some preliminary comparisons to the GNSS-levelling dataset indicates that the gravimetric geoid has an accuracy of ±25 mm in the region surrounding the Baltic Sea.

How to cite: Teitsson, H. and Forsberg, R.: Gravimetric quasi-geoid of the Baltic Sea and comparison to GNSS levelling, DTU21 and tide gauges, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11302, https://doi.org/10.5194/egusphere-egu22-11302, 2022.

EGU22-12321 | Presentations | G4.3

eXperimental jOint inveRsioN (XORN) project: first results of a 3D joint gravity and magnetic inversion 

Martina Capponi and Daniele Sampietro

The Earth crust represents less than 1% of the volume of our planet but is exceptionally important as it preserves the signs of the geological events that shaped our planet. This thin layer is the place where the natural resources we need can be accessed (e.g.  critical raw materials, geothermal energy, water, oil and gas, minerals, etc.). For these reasons, a thorough understanding of its structure is crucial for both scientific and industrial future activities. It is well known that potential fields methods, exploiting gravity and magnetic fields, are among the most important tools to recover fundamental information on the Earth crust. In recent years, thanks to the increasing availability of seismic/seismological data and to gravity and magnetic satellite missions, the crust has been thoroughly investigated and modelled at global and continental scales. However, despite this progress, it remains poorly understood in many regions as global models are often too coarse to provide detailed information about the regional and local dynamics.  

With this respect, the challenge to be faced nowadays is represented by the development of ad-hoc techniques to fully exploit these different geophysical global data and to merge them with regional datasets compiled at the Earth’s surface. Currently, the different sources of information when analysed individually suffer from non-uniqueness. Magnetic and gravity signals detect different crustal parameters and rarely coincide because various combinations of geological structures generate similar observations outside the sources. A promising solution is represented by the joint processing in a consistent way of both gravity and magnetic fields data, possibly incorporating the available geological knowledge and constraints coming from seismic acquisitions, in such a way to reduce the space of possible solutions. 

In the eXperimental jOint inveRsioN (XORN) project, funded by the European Space Agency through the EO4society program, Geomatics Research & Development srl (GReD) together with Laboratoire Magmas et Volcans (LMV) of Clermont Auvergne University will develop an innovative algorithm aiming at performing complete 3D joint inversion of gravity and magnetic fields properly constrained by geological a-priori qualitative information. The developed algorithm will be used within the project to recover a 3D regional model of the Earth crust in the Mediterranean Area in terms of density and magnetic susceptibility distribution within the volume, and in terms of depths of the main geological horizons. Within this regional case study particular attention will be given to the bathymetric layer thus defining and testing a strategy that could potentially be applied worldwide to improve our knowledge of this layer which is fundamental for every application that aims at studying (e.g. for tsunami hazards), conserving and sustainably using the oceans, seas and marine resources. 

The first results about technical developments will be here presented together with preliminary modelling aspects of the Mediterranean test case. 

How to cite: Capponi, M. and Sampietro, D.: eXperimental jOint inveRsioN (XORN) project: first results of a 3D joint gravity and magnetic inversion, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12321, https://doi.org/10.5194/egusphere-egu22-12321, 2022.

EGU22-12459 | Presentations | G4.3

Geologic and Tectonic units in the Iranian Plateau from present and future satellite missions 

Carla Braitenberg, Tommaso Pivetta, Alberto Pastorutti, and Magdala Tesauro

The objective of this work is to investigate the geologic and tectonic units in the Iranian plateau in relation to the information that can be obtained from the gravity field observed from space. The objective requires to collect seismologic tomography, seismicity, geodetic observations of crustal movements, a database of active faults, active seismic investigations of sediment depths, heat flow measurements and to use this information as a constraint for gravity inversion with the present available satellite-derived gravity field. The gravity field correlated to the topography defines blocks of the plateau, which indicates varying crustal rigidity (Pivetta and Braitenberg, 2020). We find that mechanisms of vertical growth are tied to crustal thickening, coherently identified from the gravity field, seismic tomography and isostasy. Persistent high density crustal blocks are identified for instance SE of Isfahan, which require further investigation and validation, also in relation to magmatism. The study is embedded in a major project addressing the “Intraplate deformation, magmatism and topographic evolution of a diffuse collisional belt: Insights into the geodynamics of the Arabia-Eurasia collisional zones” financed by the Italian Ministry (PRIN 2017). When defining the density structure and its uncertainties, the question appears, what improvements on the knowledge of the structure, seismic faults, and on the block-structure can be expected from future gravity missions, with a payload of quantum gradiometers and atom-clocks in a multi satellite configuration. The geophysical sensitivity to quantum gravimetry in space is of interest to the MOCAST+ ASI project, a follower project of the MOCASS ASI project, in which the geophysical sensitivity of the quantum gradiometer payload has been studied (Pivetta et al., 2021).

Pivetta, T., & Braitenberg, C. (2020). Sensitivity of gravity and topography regressions to earth and planetary structures. Tectonophysics, 774, 228299. https://doi.org/10.1016/j.tecto.2019.228299

Pivetta, T., Braitenberg, C. & Barbolla, D.F. (2021) Geophysical Challenges for Future Satellite Gravity Missions: Assessing the Impact of MOCASS Mission. Pure Appl. Geophys. https://doi.org/10.1007/s00024-021-02774-3

How to cite: Braitenberg, C., Pivetta, T., Pastorutti, A., and Tesauro, M.: Geologic and Tectonic units in the Iranian Plateau from present and future satellite missions, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12459, https://doi.org/10.5194/egusphere-egu22-12459, 2022.

EGU22-12634 | Presentations | G4.3

Lithospheric architecture across the Zagros Orogen as sensed by the integration of isostatic analysis, gravity inversion, and seismic tomography 

Alberto Pastorutti, Carla Braitenberg, Tommaso Pivetta, and Magdala Tesauro

Regional-scale geophysics is a central tool in improving the knowledge on geologic and tectonic units and on their structural relationships in a complex convergent setting. Harmonization, reduction, and integrated modelling of data such as gravity models and seismic tomographies allows to constrain the geometry and properties of geologic bodies at depth and to test hypotheses on their evolution. In the context of an interdisciplinary project involving multiple Italian institutions, “Intraplate deformation, magmatism and topographic evolution of a diffuse collisional belt: Insights into the geodynamics of the Arabia-Eurasia collisional zones”, we present the result of an integrated analysis across the Zagros Orogen. It represents the most active collisional zone in the Iranian plateau, consequent to the NE-ward subduction of the Neo-Tethyan Ocean.

 

We integrate models of surface topography and gravity through isostatic analysis, i.e. by enquiring the relationship connecting the two observables – the former expressing the load on the lithosphere, the latter a proxy of the crust-mantle boundary undulations. We developed and employed two independent methods, one relying on plate flexure and providing estimates on the spatial distribution of the integrated rigidity of the lithosphere, the other a non-parametric residualization method, based on topo-gravity regression analysis (Pivetta and Braitenberg, 2020). We refine their estimates by including the additional information provided by locally available models of sedimentary infills, in order to correct the loads, and by seismological Moho depth data (e.g. Gvirtzman et al., 2016), to mitigate ambiguities in the crustal thickness inferred from gravity inversion. This analysis allowed the isolation of different rigidity domains - which reflect the assemblage of tectonic provinces and the shallow expression of deep structures - and to obtain the anomalous quantities (e.g. residual gravity disturbance, residual topography) which the initial model does not explain. These include intra-crustal loads, which correlate with areas affected by magmatism and can provide further constrain on the geometry of buried structures.

 

We then improve these estimates with the data derived from seismic tomographies, including the recent shear-wave velocity model by Kaviani et al. (2020). By employing a velocity-to-density conversion strategy and gravity forward modelling, we show the impact of prior reduction of gravity data for upper-mantle signal sources. In addition to that, we use tomography-derived temperature modelling to estimate the variations of lithospheric strength profiles throughout the study area, comparing it with the independently estimated flexural rigidity.

 

Pivetta, T., & Braitenberg, C. (2020). Sensitivity of gravity and topography regressions to earth and planetary structures. Tectonophysics, 774, 228299. https://doi.org/10.1016/j.tecto.2019.228299

Gvirtzman, Z., Faccenna, C., & Becker, T. W. (2016). Isostasy, flexure, and dynamic topography. Tectonophysics, 683, 255–271. https://doi.org/10.1016/j.tecto.2016.05.041

Kaviani, A., Paul, A., Moradi, A., Mai, P. M., Pilia, S., Boschi, L., Rümpker, G., Lu, Y., Zheng, T., Sandvol, E. (2020). Crustal and uppermost mantle shear wave velocity structure beneath the Middle East from surface wave tomography. Geophysical Journal International, 221(2), 1349–1365. https://doi.org/10.1093/gji/ggaa075

How to cite: Pastorutti, A., Braitenberg, C., Pivetta, T., and Tesauro, M.: Lithospheric architecture across the Zagros Orogen as sensed by the integration of isostatic analysis, gravity inversion, and seismic tomography, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12634, https://doi.org/10.5194/egusphere-egu22-12634, 2022.

EGU22-12704 | Presentations | G4.3

Joint inversion of gravity and electromagnetic data — New constraints on the 3-D structure of the lithosphere beneath Central Mongolia 

Matthew Joseph Comeau, Max Moorkamp, Michael Becken, and Alexey Kuvshinov

Joint inversion of complementary datasets is an important tool to gather new insights and aid interpretation, especially in regions which show structural complexity. Using the joint inversion framework jif3D [1] with a newly developed coupling for density and resistivity, based on a variation of information approach which is a machine-learning method that constructs a possible relationship between the properties [2], we combine satellite gravity measurements with electromagnetic data, from broadband and long-period magnetotellurics [3,4,5,6].

Central Mongolia is located in the continental interior, far from tectonic plate boundaries, yet has a high-elevation plateau and enigmatic widespread low-volume basaltic volcanism [7,8,9]. The processes responsible for developing this region remain unexplained and there are questions about its tectonic evolution. A recent project employed thermo-mechanical numerical modeling [10] to simulate the temporal evolution of various tectonic scenarios, offering an opportunity to test hypotheses and determine which are physically plausible mechanisms. Constraints on lithospheric properties, e.g., density distribution, are important for evaluating the geodynamic models. Furthermore, they can help shed light on questions regarding the nature of lower crustal electrical conductors [11], which may be related to tectonically-significant low-viscosity zones.

We will present preliminary results that provide new constraints on the 3-D structure of the lithosphere beneath Central Mongolia, as well as a roadmap for moving towards integrating geophysical results into geodynamic modeling to better understand the evolution of the lithosphere.

 

References:

[1]  Moorkamp, M. et al. 2011. A framework for 3-D joint inversion of MT, gravity and seismic refraction data. Geophysical Journal International, 184(1). https://doi.org/10.1111/j.1365-246X.2010.04856.x 

[2]  Moorkamp, M., 2021. Deciphering the state of the lower crust and upper mantle with multi-physics inversion. ESSOAr. https://doi.org/10.1002/essoar.10508095.1 

[3]  Comeau, M.J., et al., 2018. Evidence for fluid and melt generation in response to an asthenospheric upwelling beneath the Hangai Dome, Mongolia. Earth and Planetary Science Letters, 487. https://doi.org/10.1016/j.epsl.2018.02.007 

[4]  Käufl, J.S., et al., 2020. Magnetotelluric multiscale 3-D inversion reveals crustal and upper mantle structure beneath the Hangai and Gobi-Altai region in Mongolia. Geophysical Journal International, 221(2). https://doi.org/10.1093/gji/ggaa039 

[5]  Becken, M., et al., 2021a. Magnetotelluric Study of the Hangai Dome, Mongolia. GFZ Data Services. https://doi.org/10.5880/GIPP-MT.201613.1 

[6]  Becken, M., et al., 2021b. Magnetotelluric Study of the Hangai Dome, Mongolia: Phase II. GFZ Data Services. https://doi.org/10.5880/GIPP-MT.201706.1 

[7]  Comeau, M.J., et al., 2021a. Images of a continental intraplate volcanic system: from surface to mantle source. Earth and Planetary Science Letters, 587. https://doi.org/10.1016/j.epsl.2021.117307 

[8]  Papadopoulou, M., et al., 2020. Unravelling intraplate Cenozoic magmatism in Mongolia: Reflections from the present-day mantle or a legacy from the past? Proceedings of the EGU. https://doi.org/10.5194/egusphere-egu2020-12002 

[9]  Ancuta, L.D., et al., 2018. Whole-rock 40Ar/39Ar geochronology, geochemistry, and stratigraphy of intraplate Cenozoic volcanic rocks, central Mongolia. Geological Society of America Bulletin, 130. https://doi.org/10.1130/b31788.1 

[10]  Comeau, M.J., et al., 2021b. Geodynamic modeling of lithospheric removal and surface deformation: Application to intraplate uplift in Central Mongolia. Journal of Geophysical Research: Solid Earth, 126(5). https://doi.org/10.1029/2020JB021304

[11]  Comeau, M.J., et al., 2020. Compaction driven fluid localization as an explanation for lower crustal electrical conductors in an intracontinental setting. Geophysical Research Letters, 47(19). https://doi.org/10.1029/2020gl088455 

 

 

 

How to cite: Comeau, M. J., Moorkamp, M., Becken, M., and Kuvshinov, A.: Joint inversion of gravity and electromagnetic data — New constraints on the 3-D structure of the lithosphere beneath Central Mongolia, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12704, https://doi.org/10.5194/egusphere-egu22-12704, 2022.

The U.S. National Geodetic Survey (NGS), an office of the National Oceanic and Atmospheric Administration (NOAA), is preparing for the release of a new vertical datum, the North American-Pacific Geopotential Datum of 2022 (NAPGD2022). This new datum will be based on a high degree spherical harmonic model of the Earth’s gravitational potential, and will yield a geoid undulation model (GEOID2022) to calculate orthometric heights from GNSS-derived ellipsoid heights.

As part of the preparation for the new vertical datum, NGS has computed annual experimental geoid models (xGEOID) since 2014. The xGEOID model released in 2020 (xGEOID20) uses an updated digital elevation model (DEM) composed of TanDEM-X, MERIT, and USGS 3DEP data. The DEMs are merged together to create a seamless elevation model across the extent of the xGEOID20 model. The accuracy of the merged DEM is tested using independent datasets such as GPS observations on leveled bench marks and ground elevations from ICESat-2. The effect of the updated DEM on the geoid model is also determined by comparing geoid models computed with previous DEMs to the new xGEOID20 model, and with comparisons to the NGS Geoid Slope Validation Survey lines.

How to cite: Krcmaric, J.: Development and evaluation of the xGEOID20 Digital Elevation Model at NGS, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13101, https://doi.org/10.5194/egusphere-egu22-13101, 2022.

EGU22-13195 | Presentations | G4.3

4D Antarctica: recent aeromagnetic, aerogravity and satellite data compilations provide a new tool to estimate subglacial geothermal heat flux 

Fausto Ferraccioli, Ben Mather, Egidio Armadillo, Rene Forsberg, Jörg Ebbing, Jonathan Ford, Karsten Gohl, Graeme Eagles, Chris Green, Javier Fullea, Massimo Verdoya, and Juan Luis Carillo de la Cruz

Geothermal heat flux (GHF), coupled with subglacial topography and hydrology, influences the flow of the overlying Antarctic ice sheet. GHF is related to crustal and lithospheric structure and composition and tectonothermal evolution, and is also modulated by subglacial sedimentary basins and bedrock morphology. Despite its importance for both solid earth and cryosphere studies, our knowledge of Antarctic GHF heterogeneity remains limited compared to other continents- especially at regional scale. This is due to the paucity of direct measurements and the spatial gap wrt much larger scale geophysical proxies for GHF, based on continental-scale magnetic and seismological predictions that also differ considerably from each other in several regions. To reduce this major knowledge gap, the international community is increasingly active in analysing geophysical, geological and glaciological datasets to help constrain GHF (e.g. Burton-Johnson et al., SCAR-SERCE White Paper, 2020). Here we focus on 4D Antarctica- an ESA project that aims to help link bedrock, crust, lithosphere and GHF studies, by analysing recent airborne and satellite-derived potential field datasets. 

We present our recent aeromagnetic, aerogravity and satellite data compilations for 5 study regions, including the Amundsen Sea Embayment sector of the West Antarctic Ice Sheet (e.g. Dziadek et al., 2021- Communications Earth & Environment) and the Wilkes Subglacial Basin (WSB), the Recovery glacier catchment, the South Pole and Gamburtsev Subglacial Mountains and East Antarctic Rift region. We apply Curie Depth Point (CDP) estimation on existing aeromagnetic datasets and compilations in our study regions conformed with SWARM satellite magnetic data (Ebbing et al., 2021- Scientific Reports). We tested the application of different methods, including the centroid (e.g. Martos et al., 2017, GRL) and Bayesian inversion approaches of Curie depth and uncertainty (e.g. Mather and Fullea, 2019- Solid Earth) and defractal and geostatistical methods (e.g. Carrillo-de la Cruz et al., 2021- Geothermics). We then compare our CDP results with crust and lithosphere thickness and interpretations of crustal and lithospheric setting.

Using our new aeromagnetic interpretations we define Precambrian and early Paleozoic subglacial basement in East Antarctica that is mostly concealed beneath Phanerozoic sedimentary basins and ice sheet cover. This enables us to discuss whether different basement provinces differ in terms of CDP estimates (as expected), or if these are either not or only partially resolved. A particularly informative case is the WSB. Here our magnetic assessments of GHF heterogeneity for the Terre Adelie Craton, Wilkes Terrane and Ross Orogen can be indirectly tested by exploiting independent geological and geophysical information derived from their Australians correlatives, namely the Gawler and Curnamona cratons and the Delamerian Orogen. 

Our Curie depth estimates yield geologically reasonable thermal boundary conditions required to initialise new thermal modelling efforts in several study areas. However, developing 3D models of crust and lithosphere thickness and intracrustal composition (as a proxy for the ranges of radiogenic heat production and thermal conductivity) with reasonably detailed crustal architecture, derived from both potential field and seismological datasets is a key next step to constrain Antarctic geothermal heat flux heterogeneity at higher-resolution ice stream scale.  

How to cite: Ferraccioli, F., Mather, B., Armadillo, E., Forsberg, R., Ebbing, J., Ford, J., Gohl, K., Eagles, G., Green, C., Fullea, J., Verdoya, M., and Carillo de la Cruz, J. L.: 4D Antarctica: recent aeromagnetic, aerogravity and satellite data compilations provide a new tool to estimate subglacial geothermal heat flux, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13195, https://doi.org/10.5194/egusphere-egu22-13195, 2022.

EGU22-13231 | Presentations | G4.3

Geostatistical Gravity Inversion for Estimating Sub-Ice-Bathymetry 

Jonas Liebsch, Jörg Ebbing, Hannes Eisermann, and Graeme Eagles

Sub-ice-bathymetry is an important boundary condition when modelling the evolution of ice shelves and ice sheets. Radar sounding is a proven method to reveal the sub-ice-topography beneath grounded ice. However, it fails to image the bathymetry beneath the floating ice shelves due to the strong radar reflectivity of sea water. As an alternative, the inversion of gravity measurements has been used increasingly frequently in recent years. To overcome the ambiguity of inverse modelling, this method benefits from independent depth constraints derived from direct measurements distributed throughout the model area, such as by active seismic, hydroacoustic, and radar methods.

Here, we present a novel geostatistical approach to gravity inversion and compare it to the classical and more commonly used FFT approach. Instead of only fitting individual points, we also include the spatial continuity of the sub-ice morphology. To do so, we calculate a variogram that fits the available depth measurements and derive a covariance matrix from it. The covariance matrix and an initial bathymetry model obtained by kriging together describe an a-priori probability density. For the inversion, the model bathymetry is related to the measured gravity using a quasi-Newton method, for which the derived probability density serves as the inversion’s regularization term. We successfully apply the algorithm to airborne gravity data across the Ekström ice shelf (Antarctica) and compare our results with those of previous studies based on the classical approach. The simplified addition of constraints both for the geometry and the density structure in our approach proves to be advantageous.

How to cite: Liebsch, J., Ebbing, J., Eisermann, H., and Eagles, G.: Geostatistical Gravity Inversion for Estimating Sub-Ice-Bathymetry, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13231, https://doi.org/10.5194/egusphere-egu22-13231, 2022.

EGU22-376 | Presentations | SM5.6

Three-dimensional electrical conductivity structure of the contiguous US from USArray MT data 

Federico Munch and Alexander Grayver

Knowledge about the electrical conductivity structure of the Earth's interior is a key to understanding its thermo-chemical state and evaluate the impact of space weather events. USMTArray is a high quality data set of magnetotelluric measurements that addresses both of these problems. Covering ~70% of the contiguous United States on a quasi-regular 70 km spaced grid, this unique publicly available data led to the development of several regional 3D electrical conductivity models. However, an inversion of the entire data set demands novel multi-scale imaging approaches that can handle and take advantage of a large range of spatial scales contained in the data. We present a 3D electrical conductivity model of the contiguous United States derived from the inversion of ~1100 USArray magnetotelluric stations. The use of state-of-the-art modeling techniques based on high-order finite-element methods allows us to take into account complex coastline and reconstruct Earth’s conductivity across many scales. The retrieved electrical conductivity variations are in overall agreement with well-known continental structures such as the active tectonic processes within the western United States (e.g., Yellowstone hotspot, Basin and Range extension, and subduction of the Juan de Fuca slab) as well as the presence of deep roots (~250 km) beneath cratons.

How to cite: Munch, F. and Grayver, A.: Three-dimensional electrical conductivity structure of the contiguous US from USArray MT data, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-376, https://doi.org/10.5194/egusphere-egu22-376, 2022.

EGU22-562 | Presentations | SM5.6

Toward a three-dimensional tomographic model of the Pacific upper mantle with full resolution and uncertainties 

Franck Latallerie, Christophe Zaroli, Sophie Lambotte, and Alessia Maggi

Tomographic models suffer from unevenly distributed noisy data and therefore have complicated resolution and uncertainties that can hinder their interpretation. Using linear Backus & Gilbert inversion, it is possible to obtain tomographic models with resolution and uncertainties in a single step. Using such a method, we aim to produce a three-dimensional tomographic model of the Pacific upper mantle from surface-wave data. To linearise the forward problem, we use finite-frequency theory to describe the sensitivity of surface-wave phase-delays to the three-dimensional shear-wave velocity. We build a data-base of phase-delay measurements for surface-waves that cross the Pacific Ocean. We estimate the data uncertainties caused by measurement errors using a multitaper technique and those caused by poor knowledge of the seismic source and crust by a Monte-Carlo method. Using the Backus & Gilbert approach, the phase-delay dataset, and the data uncertainty estimates, we obtain a model of the shear-wave velocity of the Pacific upper mantle together with its three-dimensional resolution and uncertainties. These allow us to discuss, using robust statistical arguments, the existence and the three-dimensional organisation of structures we expect to see in the Pacific upper mantle, such as plume-like upwellings or small-scale sub-lithospheric convections.

How to cite: Latallerie, F., Zaroli, C., Lambotte, S., and Maggi, A.: Toward a three-dimensional tomographic model of the Pacific upper mantle with full resolution and uncertainties, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-562, https://doi.org/10.5194/egusphere-egu22-562, 2022.

EGU22-1567 | Presentations | SM5.6

LitMod3D_4inv: Multi-observable and multi-scale geophysical inversions for the physical state of the Earth. 

Ilya Fomin, Juan Afonso, and Constanza Manassero

Characterising the physical state of the Earth's interior with high resolution requires the joint inversion of complementary geophysical datasets. LitMod3D_4inv is a method/software that allows regional and continental scale joint inversions within a probabilistic framework for the 3D thermochemical structure of the lithosphere and upper mantle. The software can simultaneously invert gravity anomalies, geoid height, gravity gradients, Love and Rayleigh surface-wave dispersion curves, receiver functions, body-wave travel times, surface heat flow, absolute elevation and magnetotelluric data, or any combination of them. The result is a collection of Earth models (a probabilistic distribution) with exceptional explicative power and robust estimates for uncertainties.

We use equations of state and Gibbs free energy minimisation routines to produce self-consistent sets of the seismic velocities, densities, and other properties from the actual parameters (unknowns) of the inversion – mantle chemical compositions, thermal profiles, and properties of the crustal layers (thickness, reference densities, Vp/Vs). The code relies on highly-optimised solvers for gravity, seismic, and magnetotelluric forward problems and multi-level hybrid parallel architecture to make use of multiple interacting markov chains. The modular structure of the code allows for extending the set of solvers to include new observables or to implement new Markov chain Monte Carlo algorithms.

In this presentation we will discuss recent developments in the LitMod3D_4inv suite and illustrate their performance with real examples in eastern Canada, in southern and central Africa, and north eastern Australia.

How to cite: Fomin, I., Afonso, J., and Manassero, C.: LitMod3D_4inv: Multi-observable and multi-scale geophysical inversions for the physical state of the Earth., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1567, https://doi.org/10.5194/egusphere-egu22-1567, 2022.

EGU22-1920 | Presentations | SM5.6

Imaging oceanic basins with wave equation and radiative transfer models 

Chiara Nardoni, Luca De Siena, Fabio Cammarano, Fabrizio Magrini, and Elisabetta Mattei

When seismic information is used to map Earth structures, a primary challenge is modelling the response of seismic wavefields to strong lateral variations in medium properties. These variations are especially relevant across oceanic basins with mixed continental-oceanic crust and including magmatic systems. These highly-scattering and absorption media produce stochastic signatures that are hard to separate from complex coherent reverberations due to shallow Moho. The discrimination between these two effects is fundamental for improving full-waveform techniques when imaging oceanic basins at regional and global scales. Here, we present a joint tomographic and modelling approach focusing on the ~1 Hz frequency band, where seismic scattering and attenuation mechanisms are predominantly resonant. Firstly, we image late-time coda attenuation as a marker of seismic absorption across the Italian peninsula and the Tyrrhenian Sea. Regional-scale data provide the ideal benchmark to explore the potential of attenuation imaging using radiative-transfer-derived sensitivity kernels in a mixed continental-oceanic crust. Then, we explore the response of seismic wavefield to structural variations combining coda-attenuation imaging with simulations based on radiative transfer and wave-equation modelling. The results provide evidence of intra-crustal reverberations and energy leakage in the mantle, finally being able to map Moho depths with regional earthquakes. This work is an ideal forward model of seismic wavefields recorded across the oceanic crust for future full-waveform inversions and imaging of crustal discontinuities.

How to cite: Nardoni, C., De Siena, L., Cammarano, F., Magrini, F., and Mattei, E.: Imaging oceanic basins with wave equation and radiative transfer models, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1920, https://doi.org/10.5194/egusphere-egu22-1920, 2022.

EGU22-2459 | Presentations | SM5.6

Surface-wave tomography of the South-East Asia by joint inversion of Rayleigh and Love phase velocities from seismic ambient noise and teleseismic earthquakes 

Fabrizio Magrini, Luca De Siena, Simone Pilia, Nicholas Rawlinson, and Boris Kaus

South-East Asia hosts the largest and most complicated subduction system of our planet, associated with extensive volcanism and seismicity. Obtaining high-resolution seismic images of South-East Asia can provide important constraints on the lateral variations of physical parameters such as density, composition, temperature, and viscosity of this dynamic patchwork. In turn, this has relevant implications on our ability to forecast its geodynamic evolution by numerical modeling. In this study, we join all the publicly-available seismic data distributed across the Malay Peninsula, Sumatra, Java, Sulawesi, South Borneo, and North Australia (amounting of 468 broad-band seismic receivers) with the continuous seismograms from 70 receivers recently installed in North Borneo, resulting in an unprecedented seismic coverage of the region.
We first use such data to extract Rayleigh and Love phase velocities based on both seismic ambient noise and teleseismic earthquakes. Overall, we retrieve 14,036 Rayleigh- and 12,005 Love-wave dispersion curves, covering surface-wave periods between 3 and 150 s and sensitive to both the shallow crust and the upper mantle. We then invert the dispersion curves for phase-velocity maps at different periods, using a linearized-inversion algorithm based on the ray theory with a roughness damping constraint. In doing so, we adopt an adaptive parameterization, allowing for a finer resolution of the resulting maps in the areas characterized by a relatively high density of measurements. At relatively short periods (<20 s), the phase-velocity maps are characterized by strong lateral heterogeneities. We find, for example, relatively low velocities in correspondence of the Central- and South-Sumatra Basin, ascribed to thick sedimentary layers, and higher velocities in the (adjacent) Barisan Mountains. Low velocities also characterize a large region approximately centered onto the Merapi volcano (Central Java), the Mentawai islands (in correspondence of the Mentawai Fault System), the Sahul Shelf (including the East Timor island), and the marine region between east Borneo and Sulawesi. Relatively high velocities are found below the Banda Sea. The amplitude of such lateral variations quickly decreases at larger periods and, among the most pronounced features, we observe relatively low velocities in the north-east of Borneo (as opposed to its south-western part), and high velocities in the Celebes Sea (north of the North-Sulawesi Trench).
At the time of writing, we are planning to translate the phase-velocity maps thus retrieved into shear-wave velocity (Vs) as a function of depth. Specifically, we plan to extract one Rayleigh- and one Love-wave phase-velocity profile for each grid cell constituting our phase-velocity maps, and (non-linearly) jointly invert them for Vs using the neighbourhood algorithm. The resulting 3-D tomographic model will thus be interpreted in light of the existing literature on the study area, involving (but not limited to) geodynamic and geologic models, geophysical, geochemical, and geodetic observations.

How to cite: Magrini, F., De Siena, L., Pilia, S., Rawlinson, N., and Kaus, B.: Surface-wave tomography of the South-East Asia by joint inversion of Rayleigh and Love phase velocities from seismic ambient noise and teleseismic earthquakes, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2459, https://doi.org/10.5194/egusphere-egu22-2459, 2022.

EGU22-2686 | Presentations | SM5.6

Scattering and Absorption Imaging of the North Anatolian Fault Zone, northern Turkey 

Panayiota Sketsiou, David Cornwell, and Luca De Siena

The North Anatolian Fault (NAF) is a right-lateral, strike-slip fault in the northern part of the Anatolian peninsula. It is estimated to have a length of up to 1500 km, extending westwards between the Karliova Triple Junction, where it nucleates, to the Aegean Sea. In the west and close to the Sea of Marmara, the NAF splays into northern (NNAF) and southern (SNAF) strands. The splay of the western part of the NAF separates the area into three primary terranes: the Istanbul Zone (north of the northern strand), the Armutlu-Almacik Block (between the two strands of the fault) and the Sakarya Zone (south of the southern strand).

There have been a series of high-magnitude earthquakes along the NAF since the 1930s, migrating from east to west. In order to investigate the western part of the North Anatolian Fault Zone (NAFZ), which is the most seismically active at the moment, the Dense Array for North Anatolia (DANA) temporary seismic network was deployed for 18 months between 2012 and 2013. A set of local earthquakes, recorded by DANA, were utilised to study the 2D scattering and coda attenuation structure in the western NAFZ, between 1 and 18 Hz. P-wave arrival times were manually picked and the events were re-located using the Non-Linear Location software. Peak-delay travel times were calculated as a measure of forward scattering, and the exponential decay of the coda wave envelopes was used to invert for the absorption structure using multiple scattering sensitivity kernels.

The obtained models are 2D averages of the first 10-15 km of the crust, where the majority of the seismic activity is located and they have been compared to recent geophysical studies in the same area. The scattering structure, between 1 and 6 Hz, highlights the three main tectonic units in the area. The absorption structure is generally more heterogeneous than the scattering structure, with the overall absorption decreasing as the frequency increases. The lithological variations and heterogeneity between and within the three terranes of the area, arising from the complex tectonic history of the region, are believed to be the main reasons for the scattering and absorption observations made. The high absorption zones observed along the two branches of the fault, and especially the southern branch, is a very important finding, as the signature of the southern branch in geophysical studies is often unclear.

How to cite: Sketsiou, P., Cornwell, D., and De Siena, L.: Scattering and Absorption Imaging of the North Anatolian Fault Zone, northern Turkey, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2686, https://doi.org/10.5194/egusphere-egu22-2686, 2022.

EGU22-3257 | Presentations | SM5.6

Using K-Means Clustering to Compare Adjoint Waveform Tomography Models of California and Nevada 

Claire Doody, Arthur Rodgers, Christian Boehm, Michael Afanasiev, Lion Krischer, Andrea Chiang, and Nathan Simmons

Full waveform inversion models by adjoint methods represent the most detailed seismic tomography models currently available for waveform simulations. However, the influence of starting models on final inversion results is rarely studied due to computational expense. To study this influence, we present three adjoint waveform tomography models of California and Nevada using three different starting models:  the SPiRaL global model (Simmons et al., 2021), the CSEM_NA model (Krischer et al., 2018), and the WUS256 model (Rodgers et al., 2021). Each model uses the same dataset of 103 events between magnitudes 4.5 and 6.5 that occurred from January 1, 2000 to October 31st, 2020. For each event, 175-475 stations record data, creating dense path coverage over California. The model iterations are computed using Salvus. We begin by  running iterations for each starting model at three period bands: 30-100 seconds, 25-100 seconds, and 20-100 seconds. For each period band, we run iterations until the average misfit for all events is no longer reduced; over all period bands, we run more than 55 iterations and see misfit reductions of up to 40% in some period bands. Each model shows velocity anomalies of up to 20%, but the difference in VS values between the models can be significant. Most of these differences seem to correlate with small-scale differences in the starting models. To test whether these differences between the models could affect the interpretation of their results, we utilize k-means clustering to analyze the similarities in large-scale structure in all three models (e.g. Lekic and Romanowicz, 2011). We separate each model into a crustal layer (0-30km depth) and uppermost mantle layer (30-150km), then run a k-means clustering algorithm on absolute Vs wavespeeds and anisotropy [(Vsh/Vsv)^2] separately. We show that regardless of the differences seen on visual inspection, all three models can resolve tectonic-scale structures equally.

 

This work was supported by LLNL Laboratory Directed Research and Development project 20-ERD-008. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-830615.

How to cite: Doody, C., Rodgers, A., Boehm, C., Afanasiev, M., Krischer, L., Chiang, A., and Simmons, N.: Using K-Means Clustering to Compare Adjoint Waveform Tomography Models of California and Nevada, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3257, https://doi.org/10.5194/egusphere-egu22-3257, 2022.

EGU22-3507 | Presentations | SM5.6

Seismotomographic structure of the central zone of Kamchatka suprasubduction complex according to the dense seismological networks data 

Natalia Bushenkova, Olga Bergal-Kuvikas, Evgeny I. Gordeev, Danila Chebrov, Ivan Koulakov, Ilyas Abkadyrov, Andrey Jakovlev, Tatiana Stupina, Angelika Novgorodova, and Svetlana Droznina

The strongest earthquakes and the largest explosive eruptions are confined to plate convergent boundaries. Many geodynamics aspects attract the scientific community's attention since answers to the most important questions cannot be obtained without reliable information about the deep structure. Geophysical studies of the crust and mantle provide essential information for lithospheric blocks interactions, mantle convection and fluid migration. This data is necessary to identify reliable criteria for assessing volcanic and seismic risk.

The studied area is central Kamchatka, where the cities of Petropavlovsk-Kamchatsky, Elizovo, and Vilyuchinks are located. It includes territory from the Gorely and Mutnovsky volcanoes in the south to the Bakening volcano and the Verkhneavachinskaya caldera in the north. It extends from the eastern to the western peninsula coasts. The study area includes the Avachinskaya group of volcanoes, the Vilyuchinsky and Zhupanovsky volcanoes, Karymshina caldera and a number of monogenic cinder cones. This region is assumed to be located at a transition between two principle different subduction regimes in the north and south of Kamchatka. Previous studies are sparse and have poor resolution due to the low density and uneven distribution of seismic stations.

In this study, we used a large dataset recorded by a new dense temporary network deployed in 2019-2020, which was specially designed for performing high-quality seismic tomographic studies of the suprasubduction complex structure (crust and upper mantle) beneath central Kamchatka. This dataset was supplemented by data recorded by (1) the temporary network operated on the Avachinskaya group of volcanoes in 2018-2019 and (2) the permanent stations Kamchatka branch of the Federal Research Center of the GS RAS. The seismic model is based on the data from 2687 local earthquakes that occurred during the operation of the mentioned temporary networks and were recorded by 134 regional stationary and temporary stations. In the tomographic inversion we used 59088 travel times of P-waves and 34697 of S-waves.

The new model makes it possible to trace zones of fluid and melt release from the slab, their migration in the mantle wedge and crust, and allows assessing their role in feeding the magmatic systems. Volcanoes of the Avachinskaya group have a common magma plumbing system at a depth more than 50 km, which could be traced from the slab. The Vilyuchinsky volcano feds through an intermediate large magma chamber located at a depth of 30-55 km, which is also related to the feeding of the Bolshebannaya hydrothermal system situated to the west. This large chamber fed from a conduit originated on the slab at more than 70 km depth. The feeding system of the Gorely and Mutnovsky volcanoes is traced to the slab at depths of more than 100 km.

This work was supported by the Russian Science Foundation (project No. 22-27-00215) and the Ministry of Education and Science of the Russian Federation (megagrant No. 14.W03.31.0033). 

How to cite: Bushenkova, N., Bergal-Kuvikas, O., Gordeev, E. I., Chebrov, D., Koulakov, I., Abkadyrov, I., Jakovlev, A., Stupina, T., Novgorodova, A., and Droznina, S.: Seismotomographic structure of the central zone of Kamchatka suprasubduction complex according to the dense seismological networks data, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3507, https://doi.org/10.5194/egusphere-egu22-3507, 2022.

EGU22-3755 | Presentations | SM5.6

Receiver Function analysis of noise reduced OBS data recorded at the ultra-slow spreading Knipovich Ridge 

Theresa Rein, Zahra Zali, Frank Krüger, and Vera Schlindwein

Ultra-slow spreading ridges are characterized by huge volcanic complexes which are separated by up to 150 km long amagmatic segments. The mechanisms controlling the ultra-slow spreading ridges are not yet fully understood. With the aim to better understand the spreading mechanisms and the flow of the magma beneath the volcanic complexes an ocean-bottom array has been installed along a segment of the ultra-slow spreading Knipovich Ridge in the Greenland sea. The array consists of 23 LOBSTER-type ocean bottom seismometers (OBS) from the DEPAS pool and 5 LOBSTERs from the Institute of Geophysics of the Polish Academy of Sciences. We aim to constrain the crustal and mantle structure beneath the segment of the Knipovich Ridge by using receiver functions calculated from teleseismic events.

Seismic data, recorded on the ocean bottom, are highly contaminated by different noise sources, which are dominating at frequencies below 1 Hz. During the experiment the DEPAS-LOBSTERs were equipped with a MCS recorder and a Güralp CMG-40T seismometer (changed now to 6D6 recorder and Trillium Compact seismometer). This characteristic design introduces electronic noise at selected stations at frequencies below 0.2 Hz. Recently head-buoy-strumming has been identified as additional noise source at frequencies above 0.5 Hz during tidal currents. Hence, most teleseismic signals are masked by the high noise level, especially on the horizontal components. However, a good signal to noise ratio on both, the vertical and horizontal components is crucial for seismological analysis, especially the receiver function method. Applying the HPS noise reduction algorithm on OBS data, as shown by Zali et al (submitted in 2021), allows to separate percussive or transient signals, such as the teleseismic earthquake from more harmonic and monochromatic signals, such as most of the noise generated at the ocean bottom.

The results of the HPS noise reduction algorithm processing of selected KNIPAS station data show a significantly reduced noise level below 1 Hz on all seismogram components, especially on the horizontals. Here, the signal-to-noise ratio increased by up to 3.2-3.7 (average by 1.4-1.6). The increased signal-to-noise ratio on the noise reduced data allows for more reliable receiver function results and their interpretation. Here, we show the reduced noise level on the OBS data and compare the receiver function results calculated from original data with the results from noise-reduced data.

How to cite: Rein, T., Zali, Z., Krüger, F., and Schlindwein, V.: Receiver Function analysis of noise reduced OBS data recorded at the ultra-slow spreading Knipovich Ridge, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3755, https://doi.org/10.5194/egusphere-egu22-3755, 2022.

EGU22-3850 | Presentations | SM5.6

Joint Geophysical and Petrological Inversion to Image the Lithosphere and Asthenosphere Beneath Ireland and Britain 

Emma Chambers, Raffaele Bonadio, Sergei Lebedev, Javier Fullea, Duygu Kiyan, Christopher Bean, Brian O'Reilly, Patrick Meere, Meysam Rezaeifar, Gaurav Tomar, and Tao Ye and the DIG Team

DIG (De-risking Ireland’s Geothermal Potential) integrates inter-disciplinary and multi-scale datasets in order to investigate Ireland’s low-enthalpy geothermal energy potential. Recent deployments of broadband seismic stations and the output surface-wave measurements yield dense data sampling of the crust and mantle beneath Ireland and neighbouring Great Britain, which can be used to determine the lithospheric and asthenospheric structure at a regional scale. In addition, we integrate magnetotelluric measurements, forming the foundations for a region-scale, multi-parameter modelling of the thermal and compositional structure of the lithosphere.

In this study, we utilise the large seismic dataset and extract Rayleigh and Love-wave phase velocity dispersion curves, measured for pairs of stations across Ireland and Great Britain. The measurements were performed using two methods with complementary period ranges; the teleseismic cross-correlation method and the waveform inversion method, yielding a 4-500 s period range for the dispersion curves. The joint analysis of Rayleigh and Love measurements constrains the isotropic-average shear-wave velocity, relatable to temperature and composition, providing essential constraints on the thermal structure of the region’s lithosphere. We demonstrate this by inverting the data using an integrated joint geophysical-petrological thermodynamically self-consistent approach (Fullea et al., GJI 2021), where seismic velocities, electrical conductivity, and density are dependent on mineralogy, temperature, composition, water content, and the presence of melt. The multi-parameter models produced by the integrated inversions fit the surface-wave and other data, revealing the temperatures and geothermal gradients within the crust and mantle, which will be used for future geothermal exploration and utilisation.

The project is funded by the Sustainable Energy Authority of Ireland under the SEAI Research, Development & Demonstration Funding Programme 2019 (grant number 19/RDD/522) and by the Geological Survey of Ireland.

How to cite: Chambers, E., Bonadio, R., Lebedev, S., Fullea, J., Kiyan, D., Bean, C., O'Reilly, B., Meere, P., Rezaeifar, M., Tomar, G., and Ye, T. and the DIG Team: Joint Geophysical and Petrological Inversion to Image the Lithosphere and Asthenosphere Beneath Ireland and Britain, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3850, https://doi.org/10.5194/egusphere-egu22-3850, 2022.

EGU22-4037 | Presentations | SM5.6

Ray theoretical investigations using matching pursuits 

Volker Michel, Naomi Schneider, Karin Sigloch, and Eoghan Totten

The three-dimensional structure of the Earth's interior shapes its geomagnetic and gravity fields, and can thus be constrained by observing these fields. 3-D Earth structure also causes seismological observables to deviate from those predicted for approximated, spherically symmetrical reference models. Travel time tomography is the inverse problem that uses these observed differences to constrain the 3-D structure of the interior.
On the planetary scale, i.e. in a spherical geometry, this linearized inverse problem has been parameterized with a variety of basis systems, either global (e.g. spherical harmonics) or local (e.g. finite elements). The Geomathematics Group Siegen has developed alternative approximation methods for certain applications from the geosciences: the Inverse Problem Matching Pursuits (IPMPs). These methods combine different basis systems by calculating an approximation in a so-called best basis, which is chosen iteratively from a so-called dictionary, an intentionally overcomplete set of diverse trial functions. In each iteration, the choice of the next best basis element reduces the Tikhonov functional. A particular numerical expertise has been gained for applications on spheres or balls. Hence, the methods were successfully applied to, for instance, the downward continuation of the gravitational potential as well as the MEG-/EEG-problem from medical imaging.
Our aim is to remodel the IPMPs for travel time tomography. This includes developing the data-dependent operator, deciding for specific trial functions and applying the operator to them. We also have to define termination criteria and develop the regularization in theory and practice. We introduce the IPMPs and show results from our remodelling.

How to cite: Michel, V., Schneider, N., Sigloch, K., and Totten, E.: Ray theoretical investigations using matching pursuits, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4037, https://doi.org/10.5194/egusphere-egu22-4037, 2022.

EGU22-4477 | Presentations | SM5.6

Optimal resolution tomography with error tracking and the structure of the crust and upper mantle beneath Ireland and Britain 

Raffaele Bonadio, Sergei Lebedev, Thomas Meier, Pierre Arroucau, Andrew J. Schaeffer, Andrea Licciardi, Matthew R. Agius, Clare Horan, Louise Collins, Brian M. O'Really, Peter W. Readman, and Ireland Array Working Group

The maximum achievable resolution of a tomographic model varies spatially and depends on the data sampling and errors in the data. The significant and continual measurement-error decreases in seismology and data-redundancy increases have reduced the impact of random errors on tomographic models. Systematic errors, however, are resistant to data redundancy and their effect on the model is difficult to predict; often this results in models dominated by noise if the target resolution is too high. Here, we develop a method for finding the optimal resolving length at every point, implementing it for surface-wave tomography. As in the Backus-Gilbert method, every solution at a point results from an entire-system inversion, and the model error is reduced by increasing the model-parameter averaging. The key advantage of our method consists in its direct, empirical evaluation of the posterior model error at a point.

We first measure interstation phase velocities at simultaneously recording station pairs and compute phase-velocity maps at densely, logarithmically spaced periods. Numerous versions of the maps with varying smoothness are then computed, ranging from very rough to very smooth. Phase-velocity curves extracted from the maps at every point can be inverted for shear-velocity (VS) profiles. As we show, errors in these phase-velocity curves increase nearly monotonically with the map roughness. We evaluate the error by isolating the roughness of the phase-velocity curve that cannot be explained by any Earth structure and determine the optimal resolving length at a point such that the error of the local phase-velocity curve is below a threshold.

A 3-D VS model is then computed by the inversion of the composite phase-velocity maps with an optimal resolution at every point. Importantly, the optimal resolving length does not scale with the density of the data coverage: some of the best-sampled locations display relatively low lateral resolution, due to systematic errors in the data.

We apply this method to image the lithosphere and underlying mantle beneath Ireland and Britain. Our very large data produces a total of 11238 inter-station dispersion curves, spanning a very broad total period range (4–500 s), yielding unprecedented data coverage of the area and providing state-of-the-art regional resolution from the crust to the deep asthenosphere. Our tomography reveals pronounced, previously unknown variations in the lithospheric thickness beneath Ireland and Britain, with implications for their Caledonian assembly and for the mechanisms of the British Tertiary Igneous Province magmatism.

How to cite: Bonadio, R., Lebedev, S., Meier, T., Arroucau, P., Schaeffer, A. J., Licciardi, A., Agius, M. R., Horan, C., Collins, L., O'Really, B. M., Readman, P. W., and Working Group, I. A.: Optimal resolution tomography with error tracking and the structure of the crust and upper mantle beneath Ireland and Britain, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4477, https://doi.org/10.5194/egusphere-egu22-4477, 2022.

EGU22-4784 | Presentations | SM5.6

Seismic and multi-parameter 1D reference models of the upper mantle 

Chiara Civiero, Sergei Lebedev, Yihe Xu, Raffaele Bonadio, and Javier Fullea

1D reference Earth models are widely used by the geoscience community and include global, regional and tectonic-type reference models. Seismic 1D profiles are used routinely as reference in imaging studies. Multi-parameter models can also include density, composition, attenuation, lithospheric thickness and other parameters, of interest in a broad range of studies. The recent growth in the number of seismic stations worldwide has yielded a dramatic increase in the global sampling of the Earth with seismic data and presents an opportunity for an improvement in the global and tectonic-type reference models. Concurrent developments in computational petrology have provided methods to constrain self-consistent multi-parameter Earth models with seismic and other data. Here, we use a large global dataset of Love and Rayleigh fundamental mode, phase-velocity measurements, performed with multimode waveform inversion using all available broadband data since the 1990s, and compute phase-velocity maps at densely spaced periods in a broad, 17-310 s period range. We then invert the phase velocity curves averaged globally and across 8 tectonic environments (4 continental: Archean cratons, stable platforms, recently active continents, and active rift zones; and 4 oceanic: old, intermediate and young oceans, and backarc regions) for 1D reference models of the upper mantle. For each tectonic type, a multi-parameter 1D model is computed in a petrological inversion, where the lithospheric thickness and temperature at the bottom of the lithosphere and in the underlying mantle are the inversion parameters, and steady-state conductive lithospheric geotherms are assumed. Lithospheric and asthenospheric compositions are taken from geochemical databases, and seismic velocities, densities and Q are computed from composition, temperature and pressure using computational petrology and thermodynamic databases. The models quantify the age dependence of the lithospheric thickness and temperature in continents and oceans. Radial anisotropy is also determined and shows notable variations with depth and with tectonic environments. For most tectonic types, the smooth, accurate observed phase velocity curves can be fit by the 1D models with a misfit under 0.1-0.2% of the phase velocity value. Additionally, we compute models with minimal complexity of seismic velocity structure, also fitting the data but without a sub-lithospheric low-velocity zone as in the thermal multi-parameter models. These purely seismic models, similar in appearance to ak135, do not correspond to realistic geotherms but provide useful reference for seismic imaging studies in different environments.

How to cite: Civiero, C., Lebedev, S., Xu, Y., Bonadio, R., and Fullea, J.: Seismic and multi-parameter 1D reference models of the upper mantle, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4784, https://doi.org/10.5194/egusphere-egu22-4784, 2022.

EGU22-4870 | Presentations | SM5.6

Shear-velocity structure and dynamics beneath the Central Mediterranean inferred from seismic surface waves 

Matthew Agius, Fabrizio Magrini, Giovanni Diaferia, Emanuel Kastle, Fabio Cammarano, Claudio Faccenna, Francesca Funiciello, and Mark van der Meijde

The evolution of the Sicily Channel Rift Zone (SCRZ), located south of the Central Mediterranean, is thought to accommodate the regional tectonic stresses of the Calabrian subduction system. It is unclear whether the rifting of the SCRZ is passive from far-field extensional stresses or active from mantle upwelling beneath. To map the structure and dynamics of the region, we measure Rayleigh- and Love-wave phase velocities from ambient seismic noise and invert for an isotropic 3-D shear-velocity and radial anisotropic model. Variations of crustal S-velocities coincide with topographic and tectonic features: slow under high elevation, fast beneath deep sea. The Tyrrhenian Sea has a <10 km thin crust, followed by the SCRZ (∼20 km). The thickest crust is beneath the Apennine-Maghrebian mountains (∼50 km). Areas experiencing extension and intraplate volcanism have positive crustal radial anisotropy (VSH>VSV); areas experiencing compression and subduction-related volcanism have negative anisotropy (VSH<VSV). The crustal anisotropy across the Channel shows the extent of the SW-NE extension. Beneath the Tyrrhenian Sea, we find very low sub-Moho S-velocities. In contrast, the SCRZ has a thin mantle lithosphere underlain by a low-velocity zone. The lithosphere-asthenosphere boundary rises from 40-60 km depth beneath Sicily and Tunisia to ∼33 km beneath the SCRZ. Upper mantle, negative radial anisotropy beneath the SCRZ suggests vertical mantle flow. We hypothesize a more active mantle upwelling beneath the rift than previously thought from an interplay between poloidal and toroidal fluxes related to the Calabrian slab, which in turn produces uplift at the surface and induces volcanism.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 843696.

How to cite: Agius, M., Magrini, F., Diaferia, G., Kastle, E., Cammarano, F., Faccenna, C., Funiciello, F., and van der Meijde, M.: Shear-velocity structure and dynamics beneath the Central Mediterranean inferred from seismic surface waves, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4870, https://doi.org/10.5194/egusphere-egu22-4870, 2022.

EGU22-5885 | Presentations | SM5.6

Seismic Attenuation of India, Himalaya and Tibet using Lg-coda waves 

Dibyajyoti Chaudhuri, Ayon Ghosh, Shubham Sharma, and Supriyo Mitra

We present maps to show the lateral variation of Lg coda attenuation at 1-Hz across India, Himalaya and Tibet. We use vertical component waveforms from regional earthquakes (epicentral distance<3500 km and Mw>5) recorded by the IISER-K seismological network, ones operated by the Indian Meteorological Department, and data acquired from the IRIS-DMC. Lg-coda waves are modeled as single back-scattered energy, sampling an ellipsoidal volume. The attenuation of Lg-coda is quantified using the quality factor (Q), which is frequency dependent. We use the stacked spectral ratio (SSR) method to calculate the single-trace Lg-coda Q at 1 Hz (Qo) and its frequency dependence (η). A moving-window stack of scaled-logarithmic ratios of spectral amplitudes, for window length of 25.6 s and different central lapse time, is computed for each frequency. Through a linear regression of log (stacked spectral ratio) and log (frequency), using least-squares fitting, we obtain (1-η) and log(Qo), respectively. Lg-coda is selected in a frequency range of 0.2-5 Hz, with coda window starting at 3.15 km/s. Our total coda window lengths vary between 140 s to 780 s. Our preliminary results show low Q values (~200-400) in the Eastern and Western Himalaya - possibly because of scattering of seismic energy from structural heterogeneities. Most of the Indian Shield and the intraplate regions of Shillong Plateau and Brahmaputra valley are characterized by intermediate to high Q values (~600-800), indicating fairly efficient propagation of seismic energy. Intermediate values of Q (~400-500) occur in the Indo-Burman Ranges which may be due to the cold elastic subducting oceanic lithosphere. Patches of low Q in the Tibetan Plateau (~200) are possibly the result of high temperatures and partial melts present in the crust. Our results show how the nature of the Indian Plate changes as we go from an active continent-continent collision zone in the north to eastward subduction of transitional material at the Indo-Burma ranges. Our plots of Qo and η as a function of epicentral distance, coda length and magnitude show no systematic variations.



How to cite: Chaudhuri, D., Ghosh, A., Sharma, S., and Mitra, S.: Seismic Attenuation of India, Himalaya and Tibet using Lg-coda waves, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5885, https://doi.org/10.5194/egusphere-egu22-5885, 2022.

EGU22-6235 | Presentations | SM5.6

Exploring the Earth's mantle structure based on joint gravimetric and seismometric group-velocity dispersion curves of Rayleigh waves 

Kamila Karkowska, Monika Wilde-Piórko, Przemysław Dykowski, Marcin Sękowski, and Marcin Polkowski

Gravimetric data show excellent capabilities in long-period seismology. Tidal gravimeters can detect surface waves of periods even up to 500-600 s, while a typical broad-band seismic sensor, due to its mechanical limitation, can detect them only up to the periods of 200-300 s. Consequently, gravimetric data can complement seismic recordings for longer periods, depending on what seismometer the station is equipped with and what seismometer’s cut-off period is. A superconducting gravimeter can act as a single-dimension (only vertical component) of a very broad-band seismometer. 

We selected over a dozen stations worldwide with co-located typical broad-band seismic sensors and superconducting gravimeters. A time series from broad-band seismometers have been downloaded from Incorporated Research Institutions for Seismology (IRIS) database. The raw gravimetric data (1-Hz or 1-min) are available in the International Geodynamics and Earth Tide Service (IGETS) database. Some of the data were made available courtesy of the station’s operators. 

This study presents a joint analysis of the gravimetric and seismometric data to determine group-velocity dispersion curves of Rayleigh surface waves. We created a database of recordings of earthquakes for all stations and instruments. Following, we calculated the individual group-velocity dispersion curves of fundamental-mode Rayleigh waves. Simultaneous seismic and gravity recordings at the same location allow exploring a broader response for incoming seismic waves. In this way, one joint group-velocity dispersion curve of Rayleigh surface waves for a broader range of periods has been estimated for all stations. All curves were then inverted by linear inversion and Monte Carlo methods to calculate a distribution of shear-wave seismic velocity with depth in the Earth’s mantle.    

This work was done within the research project No. 2017/27/B/ST10/01600 financed from the Polish National Science Centre funds.

How to cite: Karkowska, K., Wilde-Piórko, M., Dykowski, P., Sękowski, M., and Polkowski, M.: Exploring the Earth's mantle structure based on joint gravimetric and seismometric group-velocity dispersion curves of Rayleigh waves, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6235, https://doi.org/10.5194/egusphere-egu22-6235, 2022.

EGU22-6399 | Presentations | SM5.6

Hamiltonian Monte Carlo Inversion of Surface Wave Dispersion to Evaluate their Potential to Constrain the Density Distribution in the Earth. 

Ariane Lanteri, Lars Gebraad, Andrea Zunino, and Andreas Fichtner

We present a probabilistic approach to constrain the density distribution in the Earth based on surface wave dispersion. Despite its outstanding importance in studies of the Earth’s thermo-chemical state and dynamics, 3D density variations remain poorly known, thereby posing one of the major challenges in geophysics.

Since the sensitivity of most seismic data to density is small compared to sensitivity with respect to seismic velocities, regularisation in traditional deterministic inversion tends to bias the recovered density image significantly. To avoid this issue, we propose to solve a regularisation-free Bayesian inference problem using the Hamiltonian Monte Carlo Markov Chain algorithm.

In the interest of simplicity, we consider anisotropic stratified media, where dispersion curves and corresponding sensitivity kernels can be computed semi-analytically. Exploiting derivative information for efficient sampling, Hamiltonian Monte Carlo approximates the posterior probability density of all model parameters, namely the P-wave velocities vPV and vPH , the S-wave velocities vSV and vSH , the anisotropy parameter η, and, of course, density ρ.

The proposed method forms the foundation of an open-source tool box that can be used to assess the unbiased ability of surface wave dispersion data, characterised in terms of frequency and modal content, to constrain density variations and their trade-offs with other Earth model parameters.

How to cite: Lanteri, A., Gebraad, L., Zunino, A., and Fichtner, A.: Hamiltonian Monte Carlo Inversion of Surface Wave Dispersion to Evaluate their Potential to Constrain the Density Distribution in the Earth., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6399, https://doi.org/10.5194/egusphere-egu22-6399, 2022.

EGU22-6428 | Presentations | SM5.6

Interrogating the volume of the East Irish Sea sedimentary basins using probabilistic tomographic results 

Xuebin Zhao, Andrew Curtis, and Xin Zhang
The ultimate goal of a scientific investigation is usually to find answers to specific questions: what is the size of a subsurface body? Does a hypothesised subsurface feature exist? Which competing model is most consistent with observations? The answers to these and many other questions are low-dimensional, yet must often be inferred from high-dimensional models and data. To address the questions, existing information is reviewed, an experiment is designed and performed to acquire new data, and the most likely answer is estimated. Typically the answer is interpreted from geological and geophysical data or models, but is biased because only one particular forward function (model-data relationship) is considered, one inversion method is applied, and because human interpretation is a biased process. Interrogation theory provides a systematic way to answer specific questions using statistically unbiased estimators. It combines forward, design, inverse and decision theory, and focuses them to maximise information on the space of possible answers.

This study estimates the volume of the East Irish Sea sedimentary basins in the UK using 3D shear wave speed models derived from surface wave dispersion inversions. In order to answer volume-related questions, it is first necessary to define a target function that translates any (high-dimensional) model into (1-dimensional) volumes of interest. A key revelation of this study is that while the majority of computation may be spent solving inverse problems probabilistically, much of the skill and human effort involved in answering real-world questions may be spent defining and calculating those target function values in a clear and unbiased manner.

How to cite: Zhao, X., Curtis, A., and Zhang, X.: Interrogating the volume of the East Irish Sea sedimentary basins using probabilistic tomographic results, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6428, https://doi.org/10.5194/egusphere-egu22-6428, 2022.

EGU22-6780 | Presentations | SM5.6

An unusually long eclogitic lower crustal body imaged by the Korean nuclear explosion 

Xiaoqing Zhang, Hans Thybo, Irina M. Artemieva, Tao Xu, and Zhiming Bai

The Sino-Korean Craton (SKC), which consists of the North China Craton (NCC) in China and North Korea, is one of the oldest cratons on earth. Since the Paleozoic, the SKC has experienced multiple subductions of the peripheral plates and the northeastern SKC is located in a junction area. Its characteristics are being investigated by geophysical and geochemical methods, which provides insights into the formation and subsequent evolution of the continental lithosphere.

We interpret the crustal structure of the northeastern SKC with the refraction/wide-angle reflection perspective using North Korean Nuclear Explosion sources recorded by 40 permanent and 7 temporary broadband stations, which were operated by the China Earthquake Administration and the Institute of Geology and Geophysics, Chinese Academy of Science, respectively.

Primary reflection phases from a discontinuity at 30km depth have an apparent velocity of about 6.2 km/s. This phase is observed to 1200km ultra-long offset, which shows that the average crustal velocity is extremely low. Another spectacular observation is of extremely strong phases which we interpret as Moho to surface multiples of all main phases in the seismic sections. Clear upper mantle refractions (Pn) are observed with an apparent velocity around 8.05 km/s as first arrivals over the offset range 300-1000 km. All observations show that the crust of northeastern SKC is very thin (about 30km), it has a low average crust velocity (6.2km/s), and the velocity contrast at the Moho discontinuity is extraordinarily strong.

We detect the “Seismic Moho” discontinuity, which is marked by a very strong and sharp increase in velocity. We interpret this “Seismic Moho” as the top of a layer consisting of the lower crust in eclogite facies. This “Seismic Moho” does not coincide with the true Crust-Mantle Boundary, which is defined by a change from felsic/intermediate/mafic crustal rocks to the dominantly ultramafic rocks of the upper mantle in petrological terms.

How to cite: Zhang, X., Thybo, H., Artemieva, I. M., Xu, T., and Bai, Z.: An unusually long eclogitic lower crustal body imaged by the Korean nuclear explosion, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6780, https://doi.org/10.5194/egusphere-egu22-6780, 2022.

We present the theory and applications of the Distributional Finite Difference Method (DFD). The DFD method is an efficient tool for modeling the propagation of elastic waves in heterogeneous media in the time domain. It decomposes the modeling domain into multiple elements that can have arbitrary sizes. When using large elements, the DFD algorithm resembles the finite difference method because the wavefield is updated using operations involving band diagonal matrices only. This makes the DFD method computationally efficient. When small elements are employed, the DFD method permits to mesh complicated structures as in the finite element or the spectral element methods. We present numerical examples showing that the proposed algorithm accurately accounts for free surfaces, solid-fluid interfaces and accommodates non-conformal meshes. Seismograms obtained using the proposed method are compared to those computed using analytical solutions and the spectral element method. The DFD method requires fewer points per wavelength (down to 3) than the spectral element method (5 points per wavelength) to achieve comparable accuracy. We present examples demonstrating the advantages of the DFD method for modeling wave propagation in the Earth at the global and regional scales. 

How to cite: masson, Y.: Modeling seismic wave propagation in the earth using the distributional finite difference method, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6893, https://doi.org/10.5194/egusphere-egu22-6893, 2022.

EGU22-7544 | Presentations | SM5.6

Global gravity gradient inversion reveals variability of cratonic crust 

Peter Haas, Jörg Ebbing, and Wolfgang Szwillus

In this contribution, we present a global estimate of crustal thickness with emphasis to cratons. In an inverse scheme, satellite gravity gradient data are inverted for the Moho depth, exploiting laterally variable density contrasts based on seismic tomography. Our results are constrained by an active source seismic data base, as well as a tectonic regionalization map, derived from seismic tomography. For the global analysis, we implement a moving window approach to perform the gravity inversion, followed by interpolating the estimated density contrasts of common tectonic units with a flood-fill algorithm.

The estimated Moho depth and density contrasts are especially interesting for the cratons of the Earth. Our results reveal a surprising variability of patterns with average Moho depth between 32-42 km, reflecting an individual tectonic history of each craton. Statistical patterns of Moho depth and density contrasts are discussed for the individual cratons and linked to their stabilization age. For example, Australia shows the lowest average Moho depth (32.7 km), indicating early stabilization in the Archean and removal of a dense lower protocrust. This observation matches well with receiver function studies. The globally inverted Moho depth is validated by gridded seismic Moho depth information, which shows that for many cratons the inverted Moho depth is within expected uncertainties of the seismic Moho depth. In addition, the formerly connected cratons of South America and Africa are analyzed and discussed in a Gondwana reconstruction. Here, the once-connected West African and Amazonian Cratons have a shallow Moho depth, indicating that only little tectonic activity occurred during the Phanerozoic. The tectonically-linked Congo and Sao Francisco Cratons have intermediate Moho depths, with the Congo Craton having a slightly shallower Moho depth. This could reflect dynamic support of the upper mantle on the African side.

How to cite: Haas, P., Ebbing, J., and Szwillus, W.: Global gravity gradient inversion reveals variability of cratonic crust, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7544, https://doi.org/10.5194/egusphere-egu22-7544, 2022.

EGU22-7668 | Presentations | SM5.6

Ambient noise tomography of post-subduction setting in northern Borneo enhanced with machine learning 

Joseph Fone, Simone Pilia, Nicholas Rawlinson, and Song Hou

Given that subduction is an important driver of plate tectonics on Earth, it is notable that the effects of subduction termination are often complex and poorly understood. Northern Borneo is a prime example of a post-subduction environment, where two subduction zones have terminated within the last 20 Ma. The region however has seen very few seismic studies likely due to the low levels of seismicity in the region compared to the rest of Southeast Asia and due to the challenging deployment environment. The goal of the northern Borneo Orogeny Seismic Survey (nBOSS) network, which operated between 2018 and 2020 and consisted of 47 broadband instruments, was to provide constraints and answer first order questions about the structure of the lithosphere and asthenosphere in this post-subduction setting. Waveform data from this network were supplemented with data recorded by 33 permanent instruments operated by the Malaysian meteorological authority, METMalaysia. In this study we produce the first model of the crustal shear wave velocity structure under northern Borneo using surface wave ambient noise tomography to try and better understand the effects of subduction termination on the crust and to better understand the present day structure of the crust in this region which has not been imaged in this way before. We use a trans-dimensional tomography to produce variable resolution 2D Rayleigh wave phase velocity maps in the period range 2-30 seconds sampled every 2 seconds. Then to produce the final 3D shear wave velocity model a series of 1D inversions were used in combination with a neural network that is trained to find a generalised solution to the 1D inverse problem for this data set. This helps to prevent artefacts forming in the final model as a result of there being no lateral correlations in the 1D inversions by providing the more region specific trained neural network to perform the bulk of the 1D inversions. The result is a model that shows a detailed 3D shear wave velocity structure of the crust that matches expected velocity anomalies from known geological features. This includes the large sedimentary basins in the region, which are revealed as large slow velocity anomalies. Our new model agrees with results from other methods used to study this region, including receiver functions and surface wave tomography.

How to cite: Fone, J., Pilia, S., Rawlinson, N., and Hou, S.: Ambient noise tomography of post-subduction setting in northern Borneo enhanced with machine learning, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7668, https://doi.org/10.5194/egusphere-egu22-7668, 2022.

EGU22-7767 | Presentations | SM5.6

A consistent full waveform inversion scheme for imaging heterogeneous isotropic elastic media 

Li-Yu Kan, Sébastien Chevrot, and Vadim Monteiller

Multi-parameter teleseismic full-waveform inversion (FWI) can provide key insights on the composition and thermal state of the lithosphere. In the isotropic version of such inversions, one classically inverts for a set of independent model parameters,  for example (density, Vp, Vs). In this study, we demonstrate that by introducing model covariance matrices with non-diagonal terms to FWI, i.e. accounting for the existing correlations between density, Vp, and Vs, has a dramatic impact on the quality of the reconstructed models. We perform synthetic tests using with a simple subduction model. The teleseismic and regional wavefields are computed with our FK-SEM hybrid method. We invert vertical and radial component P waveforms from four teleseismic events coming from different epicentral distances and azimuths. We use a hierarchical iterative l-BFGS inversion, starting at long period (T > 10 s) to obtain a long wavelength model, and then progressively decreasing the spatial smoothing and cut-off period to 5 s and then 2.5 s. We also demonstrate that a complete non-diagonal model covariance matrix allows us to make the inversion results consistent, i.e. independent of the model parameterization. The inversions which account for the correlations between model parameters provide better models especially for density and Vs, less numerical artifacts, and are characterized by a faster convergence rate compared to inversions performed by assuming that model parameters are independent.

How to cite: Kan, L.-Y., Chevrot, S., and Monteiller, V.: A consistent full waveform inversion scheme for imaging heterogeneous isotropic elastic media, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7767, https://doi.org/10.5194/egusphere-egu22-7767, 2022.

EGU22-8121 | Presentations | SM5.6

Subduction history of the Caribbean from upper-mantle seismic imaging and plate reconstruction 

Benedikt Braszus, Saskia Goes, Rob Allen, Andreas Rietbrock, and Jenny Collier and the VoiLA Team

Even though the Caribbean region is constantly struck by the impact of geological hazards, the details of the Caribbean plate's evolution are still not completely understood. This interdisciplinary study combines and jointly interprets seismic tomography data with trench positions derived from plate reconstruction which constrains some of the most important events governing the evolution of the Caribbean plate. 
Our new teleseismic P-wave tomography model of the upper mantle beneath the Caribbean includes manually processed and analysed data from 32 ocean-bottom seismometers installed for 16 months during the VoiLA experiment as well as recordings from 192 permanent and temporary land stations. Reconstruction tests show improved resolution compared to previous models and a sufficient recovery of a synthetic anomaly assimilating the Caribbean slab. 
Based on reconstructed trench positions we attribute slab fragments residing in depths of 700-1200km to 90–115 Myr old westward subduction along the Great Arc of the Caribbean (GAC) prior to Caribbean Large Igneous Province volcanism, rather than to eastward dipping Farallon subduction. 
In the mantle transition zone, the imaged slab coincides with predicted trench positions from 50-70 Ma with a slab window approximately at the location of the subducted Proto-Caribbean spreading ridge.
Along the otherwise continous slab in the shallow upper mantle from Hispanola to Grenada several tears are interpreted as ruptures along fault zones in the Proto-Caribbean crust as well as the subducted extinct Proto-Caribbean spreading ridge. 

How to cite: Braszus, B., Goes, S., Allen, R., Rietbrock, A., and Collier, J. and the VoiLA Team: Subduction history of the Caribbean from upper-mantle seismic imaging and plate reconstruction, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8121, https://doi.org/10.5194/egusphere-egu22-8121, 2022.

EGU22-8319 | Presentations | SM5.6

3D Variational Full-Waveform Inversion 

Xin Zhang, Muhong Zhou, Angus Lomas, York Zheng, and Andrew Curtis

Seismic full-waveform inversion (FWI) produces high resolution images of the subsurface by exploiting information in full seismic waveforms, and has been applied at global, regional and industrial spatial scales. FWI is traditionally solved by using optimization, in which one seeks a best model by minimizing the misfit between observed waveforms and model predicted waveforms. Due to the nonlinearity of the physical relationship between model parameters and waveforms, a good starting model is often required to produce a reasonable model. In addition, the optimization methods cannot produce accurate uncertainty estimates, which are required to better interpret the results.

To estimate uncertainties more accurately, nonlinear Bayesian methods have been deployed to solve the FWI problem. Monte Carlo sampling is one such algorithm but it is computationally expensive, and all Markov chain Monte Carlo-based methods are difficult to parallelise fully. Variational inference provides an efficient, fully parallelisable alternative methodology. This is a class of methods that optimize an approximation to a probability distribution describing post-inversion parameter uncertainties. Both Monte Carlo and variational full waveform inversion (VFWI) have been applied previously to solve 2D FWI problems, but neither of them have been applied to 3D FWI. In this study we apply the VFWI method to a 3D FWI problem. Specifically we use Stein variational gradient descent (SVGD) method to solve the 3D Bayesian FWI problem and to obtain an optimised set of samples of the full posterior probability distribution. The aim of this study is to explore performance of the method in 3D, to assess the computational requirements and to provide useful information for practitioners. Our results demonstrate that the 3D VFWI is practical, at least for small problems, and can be applied to image the subsurface in reality.

How to cite: Zhang, X., Zhou, M., Lomas, A., Zheng, Y., and Curtis, A.: 3D Variational Full-Waveform Inversion, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8319, https://doi.org/10.5194/egusphere-egu22-8319, 2022.

EGU22-9636 | Presentations | SM5.6

Machine learning-based attenuation of steeply dipping events of seismic reflection image beneath the Korean Peninsula 

Youngseok Song, Joongmoo Byun, Sooyoon Kim, Yonggyu Choi, and Sungmyung Bae

Seismic reflection images derived by ambient-noise seismic interferometry (SI) can show subsurface structures without active sources. To image and interpret the upper mantle structures and tectonic boundaries beneath the southern part of Korean Peninsula, we applied SI method to seismic ambient noise data recorded at 119 seismic stations on the Korean Peninsula in 2014 (from the seismic network of the Korean Meteorological Administration). The factor that makes interpretation difficult is the steeply dipping events in reflection images. Most of these events of apparent steeply dips show as true reflection events from steep geologic boundaries. Therefore, we need to attenuate these events to interpret true reflection events. These events overlap many times. Also, the value of the slope has several values close to half of the Rayleigh waves or P waves. To attenuate these events with these complex features, we used machine learning techniques. We attenuated our steeply dipping events by applying the Extraction of diffractions method. As the steeply dipping events are attenuated, horizontal events were strengthened, and noises were attenuated. We can more clearly identify the reflection events of the Moho discontinuity and the lithosphere/asthenosphere (LAB) boundary near the two-way reflection times of 7-11 s and 17-22 s respectively.

How to cite: Song, Y., Byun, J., Kim, S., Choi, Y., and Bae, S.: Machine learning-based attenuation of steeply dipping events of seismic reflection image beneath the Korean Peninsula, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9636, https://doi.org/10.5194/egusphere-egu22-9636, 2022.

EGU22-10232 | Presentations | SM5.6

A new Integrated lithological model of the Iberian crust 

Carlos Clemente-Gómez, Javier Fullea, and Mariano S. Arnaiz-Rodríguez

The Earth’s crust hosts most of the geo-resources of societal interests (e.g. minerals, geothermal energy etc.). Integrative approaches combining geophysical and petrological observations to study the mantle assuming thermodynamic equilibrium are relatively common nowadays. However, in contrast to the mantle, where thermodynamic equilibrium is prevalent, vast portions of the crust are thermodynamically metastable. This is because equilibration processes are essentially temperature activated and the temperature in the crust is usually too low to trigger them. Consequently, the mineralogical assemblage of crustal rocks is mostly decoupled from the in situ pressure and temperature conditions, reflecting instead the conditions present at the moment of rock formation. Here we present a new methodology for integrated geophysical-petrological multi-data modelling of the crust. Our primary constraining data are fundamental mode Rayleigh wave surface wave dispersion curves determined by interstation cross-correlation measurements and teleseisms, as well as surface elevation (isostasy) and heat flow. Additional prior information is provided by P-wave velocities coming from controlled source and body wave tomography data. The inversion is framed within an integrated geophysical-petrological setting where mantle seismic velocities and densities are computed thermodynamically as a function of the in situ temperature and compositional conditions. In this work we develop a new parameterization of the crust where we first invert following global statistical correlations between Vp, Vs and crustal densities for different lithologies in a two-layered model. In a second step we compute the rock physical properties for different metamorphic facies and water contents using computational petrology to derive a plausible and consistent lithological model. In order to optimize the inversion procedure, we perform a sensitivity  analysis assessing the resolution of the different data sets. The new methodology is applied to the Iberian Peninsula and adjacent margins where we jointly invert for both the crustal and lithospheric mantle structure.

How to cite: Clemente-Gómez, C., Fullea, J., and Arnaiz-Rodríguez, M. S.: A new Integrated lithological model of the Iberian crust, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10232, https://doi.org/10.5194/egusphere-egu22-10232, 2022.

GD10 – Short Courses and General Interest

CC BY 4.0