Presentation type:
CL – Climate: Past, Present & Future

The Miocene epoch, spanning 23.03-5.33Ma, was a dynamic climate of sustained, polar-amplified warmth that peaked during the Miocene Climatic Optimum (16.75-14.5Ma). Miocene atmospheric CO2 concentrations are typically reconstructed between 300-600 ppmv with estimates as high as 800-1100 ppmv during the MCO. With surface temperature reconstructions pointing to substantial midlatitude and polar warmth, it is unclear what processes maintained the much weaker-than-modern equator-to-pole temperature gradient. Emanating from community discussions at MioMeet (hosted by the Bolin Centre for Climate Research in 2019), Burls et al. (2021) synthesize several Miocene climate modeling efforts, together with available terrestrial and ocean surface temperature reconstructions. The range of model-data agreement was evaluated, highlighting robust mechanisms operating across the Miocene modelling efforts, as well as the regions where the differences across models (coming from a combination of model differences in imposed non-CO2 Miocene boundary conditions and model feedback strengths) result in a large spread in warming responses. This MioMIP1 effort was an ensemble of opportunity: the models, boundary conditions, and reference datasets were state-of-the-art, but also inhomogeneous and not ideal for a formal intermodel comparison effort. Building on MioMIP1, the Miocene community is currently drafting the experimental design for a coordinated set of MioMIP2 simulations wherein participating modelling groups will use common boundary conditions. This talk will review the take-home findings from MioMIP1 and the status of the community’s MioMIP2 effort.

How to cite: Burls, N.: Simulating Miocene warmth: insights from an opportunistic Multi-Model ensemble (MioMIP1) and efforts towards a coordinated intercomparison (MioMIP2), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6492, https://doi.org/10.5194/egusphere-egu23-6492, 2023.

EGU23-6667 | Orals | CL1

Potential role of methane and other non-CO2 trace gases in past warm climates 

Peter Hopcroft, Diane Segalla, Gilles Ramstein, and Thomas Pugh

Past warm climates allow the evaluation model predictions of the response of the Earth System to elevated greenhouse gas levels. However, Earth System model simulations routinely underestimate high-latitude warmth for past states, meaning that the forcings provided to models, the models themselves or the climate reconstructions are in error. We focus on the first of these and review the potential role of varying levels of atmospheric trace gases besides carbon dioxide (non-CO2 trace gases), which has been investigated in relatively few studies to date. Using a combination of terrestrial biogeochemistry models and simplified atmospheric chemistry scheme we make first-order estimates of the radiative forcing by non-CO2 trace gases for the mid-Pliocene and compare these with new results for the Miocene. We will discuss the main uncertainties involved and review potential avenues for future research.

How to cite: Hopcroft, P., Segalla, D., Ramstein, G., and Pugh, T.: Potential role of methane and other non-CO2 trace gases in past warm climates, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6667, https://doi.org/10.5194/egusphere-egu23-6667, 2023.

EGU23-8969 | Orals | CL1 | Highlight

Pliocene climate and the high latitudes: a data/model perspective 

Alan Haywood

It is well established that during intervals of the Pliocene epoch climatic conditions were both warmer and wetter than the pre-industrial era. Since the first global compilations of geological proxy data and climate modelling studies, it has been known that the pattern of surface temperature change during the Pliocene was not spatially uniform, with both geological data and models showing an amplification of surface temperature change at higher latitudes. This is a trait which the Pliocene shares with other warm(er) climate states in Earth history. Over the last two decades our appreciation of the character of climate and environmental change in the high latitudes has evolved significantly with (a) the availability of new and multi-proxy reconstructions, and (b) through the application of different climate, vegetation and ice sheet models, methodologies and intercomparison projects (PlioMIP1 and 2 and PLISMIP). We have become increasingly aware of the complex interaction of different sources of uncertainty (in proxies, models, model boundary conditions and forcings) when assessing the degree to which climate models are able to reproduce the magnitude of climate change indicated by geological data. It is clear that broad and simple assumptions cannot be made regarding the efficacy of either proxy reconstructions or climate model simulations for the Pliocene high latitudes, and that the picture of Pliocene climate at the higher latitudes, and how well models simulate it, is a nuanced one.

Whilst modelling studies have tended to agree in demonstrating the primacy of greenhouse gas forcing on Pliocene warming as a global average, it is increasingly apparent how important other factors such as palaeogeography and ice-sheet reconstructions can be in determining the local and regional pattern of climate change in the high latitudes. Yet, at present many of these aspects remain poorly constrained.

Energy balance analyses have demonstrated the importance of clear sky albedo, cloud albedo and heat transports in determining the degree of warming at the high latitudes in climate models. This has helped to inspire new climate modelling studies using perturbed physics in order to explore model uncertainty. However, our focus has largely been on the assessment of the ability of climate models to simulate mean annual temperature change, rather than the seasonal expression of temperature change. Recent work has demonstrated that a large ensemble of climate models is generally able to simulate warm season temperatures in the high latitudes of the Northern Hemisphere, with the apparent discrepancy in mean annual surface temperatures being driven largely by climate models underestimating the magnitude of warming during the cold season. If this is true, it would place a useful additional constraint on how Pliocene climate simulations need to evolve in order to match proxy reconstructions more closely. 

How to cite: Haywood, A.: Pliocene climate and the high latitudes: a data/model perspective, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8969, https://doi.org/10.5194/egusphere-egu23-8969, 2023.

EGU23-8995 | Orals | CL1

Efforts towards reconstructing ice sheets during the Pliocene 

Aisling Dolan, Daniel Hill, Alan Haywood, and Yvonne Smith

Understanding Polar climate and the stability of high-latitude ice sheets is incredibly important in light of predicted future climate change and the polar amplification of warming.  The mid-Pliocene warm period (3.3 to 3.0 Ma) has been a highly investigated time in Earth history and it is well established that during this time period temperatures were warmer and CO2 levels were elevated compared to that of the pre-industrial era.  Changes in the polar cryosphere are a key driver of Pliocene climate change and reduced equator-to-pole temperature gradients. During the mid-Pliocene, estimates of sea level change between 5m and 25m have been reconstructed based on geological evidence. Best estimates of maximum sea level rise are around 20m, suggesting a significant contribution to sea level from both the Greenland and Antarctic Ice sheets is likely at certain intervals within the mid-Pliocene. Despite the uncertainties, Pliocene sea level has become a key target for ice sheet models trying to simulate ice sheet melt and a test-bed for ice loss physics.

Alongside a series of modelling efforts to understand the broader Pliocene climate (PlioMIP1 and PlioMIP2), the Pliocene ice sheet modelling Intercomparison project (PLISMIP) was formed to investigate the dependency of ice sheet reconstructions on the specific climate or ice sheet model employed.   We detail investigations of ice sheet model parameterisations and initial conditions, climate model boundary conditions and the climate model used, and show the extent to which these impact our predictions of ice sheet configuration during the Pliocene. 

We consider the implications of having to prescribe an ice sheet configuration in large model intercomparison projects such as PlioMIP and how the results from PLISMIP and more recent independent ice sheet modelling work has influenced the experimental design in PlioMIP3 to include different ice sheet scenarios over Antarctica.  We also highlight key areas where there is the potential to use geological proxy data or employ enhanced modelling techniques to constrain our estimates of ice in a warmer world.  

How to cite: Dolan, A., Hill, D., Haywood, A., and Smith, Y.: Efforts towards reconstructing ice sheets during the Pliocene, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8995, https://doi.org/10.5194/egusphere-egu23-8995, 2023.

DeepMIP-Eocene is a community project dedicated to improving our understanding of the super-warm Eocene climate, ~50 million years ago. The objectives of the DeepMIP group include fostering closer links between the palaeoclimate modelling and data communities; designing and carrying out paleoclimate model simulations; creating and synthesising datasets to enable meaningful model-data comparisons; and analysing the results with the aims of evaluating the models, understanding the reasons behind the model-model and model-data differences, and, where possible, providing suggestions for model improvements.

DeepMIP-Eocene is nearing completion of its first phase.  In this talk, I will present the key results to emerge from this first phase.  This includes the large-scale modelled features of the Eocene climate (including the causes of polar amplification), model-data comparisons (including an assessment of whether models have improved over time), climate and Earth system sensitivity (derived from both proxies and models), ocean circulation (including an assessment of likely regions of deep water formation),  sea ice and Arctic climate,  and African and Australian hydroclimate.

I will finish with an outlook to the next phase of DeepMIP-Eocene, including new aspects of the experimental design and novel analyses.

How to cite: Lunt, D. and the The DeepMIP Team: DeepMIP-Eocene: A window to a super-warm world, 50 million years ago, through an model-model-proxy-proxy intercomparison approach, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9627, https://doi.org/10.5194/egusphere-egu23-9627, 2023.

EGU23-9880 | Orals | CL1

Cenozoic CO2: from the deep ocean to the atmosphere 

James Rae and the OldCO2NewArchives Collaborators

The Cenozoic is a time of climatic extremes: abrupt events and state changes pepper the transition from Hothouse warmth to the Pleistocene Icehouse, and these evolving climate regimes are accompanied by major changes in ocean chemistry and biota.  CO2 is thought to play a critical role in environmental change throughout this era, but despite recent progress, there is still much to learn on the Cenozoic evolution of the ocean-atmosphere CO2 system.  To address this, we present new reconstructions of ocean pH and atmospheric CO2 spanning the late Cretaceous to the Pleistocene, based on the boron isotope composition of benthic and planktic foraminifera.  These are accompanied by improved constraints on the secular evolution of seawater chemistry, which are critical for accurate and precise determination of ocean pH and atmospheric CO2 from boron isotopes.  Using the most reliable data and updated calculation routines, we find close coupling between the CO2 system of the deep ocean, the atmosphere, and climate over the last 66 million years.  Our data also highlight intervals of dynamic changes in the carbon cycle, such as the transition into the Early Eocene Climatic Optimum, where we suggest a novel link between changes in ocean circulation, redox, and the sulphur and carbon cycles.  Overall, our data demonstrate the persistence of CO2’s control on the climate system across varying boundary conditions, and the influence of both the long-term carbon cycle and shorter-term ocean biogeochemical cycling on Earth’s climate.

How to cite: Rae, J. and the OldCO2NewArchives Collaborators: Cenozoic CO2: from the deep ocean to the atmosphere, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9880, https://doi.org/10.5194/egusphere-egu23-9880, 2023.

EGU23-11669 | Orals | CL1

Effects of CO2 and Ocean Mixing on Miocene and Pliocene Temperature Gradients 

Gerrit Lohmann, Gregor Knorr, Akil Hossain, and Christian Stepanek


During the Cenozoic Era hothouse climate transformed to a state that allowed establishment of extensive ice-sheets. The transformation towards an overall cooler climate encompassed periods of relatively steady change of global temperatures which were interrupted by short-term aberrations of relatively rapid cooling or warming. Various drivers have been found to contribute to this complex process of climate cooling - among these drawdown of carbon dioxide, reorganized ocean circulation related to ocean gateway evolution, varying amplitude and geographic location of deep water upwelling and formation processes, and internal feedbacks related to changes in environmental and land surface conditions in particular at high latitudes and on the continents.

The fact that carbon dioxide as the most important current driver of climate change is not always proportionally linked to past changes in global temperatures underlines the importance of mechanisms beyond greenhouse gas drawdown that contributed to Cenozoic climate cooling. Several questions remain regarding mechanisms and drivers of climate evolution as reconstructed from Cenozoic proxy recorders: How can a low meridional temperature gradient be maintained at carbon dioxide concentrations that are in line with reconstructions and inference on relatively modest tropical tempatures? Which mechanisms contributed to extremely high deep sea temperatures ?

Here we propose that during the Miocene and the Pliocene enhanced vertical mixing in the ocean may provide potential explanations to some of these enigmas. We employ the global general circulation model, which contributed to PlioMIP, MioMIP, and DeepMIP (e.g., Stärz et al., 2017; Stepanek et al., 2020; Hossain et al., 2020), and study the impact of variations in vertical mixing in the ocean on large-scale climate patterns, meridional temperature gradient, and deep sea ocean temperatures. We find that both carbon dioxide and enhanced vertical mixing cause increased radiative feedback by reducing effective emissivity and surface albedo. For the Miocene, enhanced oceanic heat uptake due to invigorated vertical mixing causes intense warming of the deep ocean (5-10°C) and of the Arctic (>12°C). For the Pliocene we find that the impact of radiative forcing and enhanced vertical mixing is less relevant. This hints to a dependency of carbon dioxide and mixing sensitivity to background climate and ocean dynamics.

While our work is focused on climate modelling, we highlight that consideration of enhanced vertical mixing leads in our Miocene and Pliocene climate simulations to large-scale climate patterns that are in better agreement with specific aspects of proxy-based inference on past warm climates. To further corroborate our results we must compare our simulations with reconstructions of thermocline depth and seasonality - lower seasonality in reconstructions would be in line with higher heat capacity as facilitated by enhanced vertical mixing. Our ad-hoc enhanced mixing formulation for the Pliocene and Miocene (Lohmann et al., 2022) can be motivated by recent simulations with a strongly eddying ocean and an altered heat transport (Nooteboom et al, 2022). In the future, we make use of the eddy resolving model to evaluate the polar amplification of the system with respect to model resolution, gateway configuration, and background CO2.

How to cite: Lohmann, G., Knorr, G., Hossain, A., and Stepanek, C.: Effects of CO2 and Ocean Mixing on Miocene and Pliocene Temperature Gradients, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11669, https://doi.org/10.5194/egusphere-egu23-11669, 2023.

EGU23-14588 | Orals | CL1

Pliocene climate variability on glacial-interglacial timescales (PlioVAR): lessons learned from multi-proxy reconstructions of sea-surface temperatures and data-model comparisons 

Erin McClymont, Sze Ling Hi, Heather Ford, Julia Tindall, and Alan Haywood and the PlioVAR Working Group

The Pliocene epoch (~2.6-5.3 million years ago) offers an opportunity to study a climate state in long-term equilibrium with current or predicted near-future atmospheric CO2 concentrations. Compared to today, the late Pliocene was characterised by a globally warmer climate, with reduced continental ice volume and reduced ocean/atmosphere circulation intensity. Towards the end of the Pliocene, there was a marked increase in glaciation in the northern hemisphere and atmospheric CO2 concentrations declined.

The Past Global Changes (PAGES) PlioVAR working group co-ordinated a synthesis of marine data to characterise spatial and temporal variability of Pliocene climate, underpinned by high quality data sets and robust stratigraphies. Here we present some of the main findings of this synthesis effort, including new assessments of sea surface temperatures (SSTs) during the KM5c interglacial (~3.2 million years ago) and Pliocene-Pleistocene intensification of northern hemisphere glaciation. We outline our approaches to integrating multi-proxy reconstructions of sea-surface temperatures from a globally distributed suite of marine sediment cores, which included a review and assessment of the impacts of SST calibration choice and interpretation. We show that an improved relationship between proxy data and climate models could be generated by focussing on a single interglacial. Differences between proxies, and between proxies and models, tended to be associated with surface ocean fronts or currents, although seasonality may also be important. The transition towards enhanced northern hemisphere glaciation at the end of the Pliocene had asynchronous trends and patterns in SST as well as benthic stable isotope records. We consider how these results might inform our understanding of past climate forcings and feedbacks during both warm intervals of the past and the development of larger ice sheets in the northern hemisphere. Additional proxy data is required from high-latitude regions of both hemispheres, to assess polar amplification and meridional temperature gradients. Co-ordinated multiproxy SST analyses will also significantly enhance our understanding and interpretation of the signals they record, and provide additional detail for comprehensive data-model comparisons.

How to cite: McClymont, E., Hi, S. L., Ford, H., Tindall, J., and Haywood, A. and the PlioVAR Working Group: Pliocene climate variability on glacial-interglacial timescales (PlioVAR): lessons learned from multi-proxy reconstructions of sea-surface temperatures and data-model comparisons, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14588, https://doi.org/10.5194/egusphere-egu23-14588, 2023.

The reduction in the tropical to mid-latitude sea surface temperature gradient, as shown by proxy records across the Pacific, is a common feature of past warm intervals but remains difficult for climate models to replicate. This model-data discrepancy (termed “the low-gradient problem”) is potentially tied to the parameterizations of cloud and moist convection in the models, which remain highly uncertain and largely limit the confidence of predicted future climate change. Here, focusing on the mid-Pliocene (4 - 3 Ma) interval, for which climate forcing conditions are relatively well constrained and global SSTs are well sampled, two sets of atmosphere-dynamical ocean coupled simulations with (at 25 km) and without (at 100 km) weather-resolving atmospheric resolution using Community Earth System Model version 1.3 are compared to identify whether better resolved cloud and moist convection can ameliorate the low-gradient problem. Preliminary results show more extensive mid-Pliocene warming in the North Pacific relative to the preindustrial simulated in the high-resolution simulations compared to the low-resolution simulations, whereas tropical Pacific warming is similar in both sets of simulations. The approximate partial radiative perturbation method and heat transport decomposition will be implemented to quantify differences in the shortwave cloud effects and responses of atmospheric dry static and latent energy and ocean heat transport between the high- and low-resolution simulations. The contributions from better resolved clouds and moist convection to the amplified North Pacific warming in the high-resolution simulations will be further quantified.

How to cite: Feng, R.: Revisiting the low-gradient problem with weather-resolving atmosphere-ocean coupled simulations, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16511, https://doi.org/10.5194/egusphere-egu23-16511, 2023.

EGU23-12474 | ECS | Orals | CL3.1.2 | Arne Richter Award for Outstanding Early Career Scientists Lecture

The kids aren’t alright 

Wim Thiery

Under continued global warming, extreme events such as heatwaves will continue to rise in frequency, intensity, duration, and spatial extent over the next decades. Younger generations are therefore expected to face more such events across their lifetimes compared to older generations. This raises important questions about solidarity and fairness across generations that have fuelled a surge of climate protests led by young people in recent years, and that underpin questions of intergenerational equity raised in recent climate litigation. However, scientific analyses that explicitly consider the intergenerational equity dimension of the climate crisis are remarkably absent. Our standard scientific paradigm is to assess climate change in discrete time windows or at discrete levels of warming, a “period” approach that inhibits quantification of how much more extreme events a particular generation will experience over its lifetime compared to another. By developing a “cohort” perspective to quantify changes in lifetime exposure to climate extremes and compare across generations, we estimate that children born in 2020 will experience a two to sevenfold increase in extreme events, relative to the 1960 birth cohort, under current climate pledges. Building on this framework, we quantify where and when people start living an unprecedented life, as well as intergenerational differences in exposure to attributable extreme events. Furthermore, using a new water deficit indicator, we uncover spatiotemporal differences in lifetime water scarcity. Our results overall highlight a severe threat to the safety of young generations and call for drastic emission reductions to safeguard their future. Finally, this research is already being used in ongoing litigation (e.g. Duarte Agostinho and Others v. Portugal and 32 Other States), calling for more research in this direction to bolster the upcoming wave of climate lawsuits.

How to cite: Thiery, W.: The kids aren’t alright, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12474, https://doi.org/10.5194/egusphere-egu23-12474, 2023.

EGU23-1893 | Orals | MAL14 | Hans Oeschger Medal Lecture

Combining model results and paleodata using data assimilation 

Hugues Goosse

Observations and model results provide two complementary sources of information on past climate variations. The paleo -or proxy - data characterize the changes that occurred at a particular time while models can be used to infer the mechanisms responsible for those changes. Observations and model results are thus ideally used jointly and the first step before applying models to study past and future climate is to evaluate their ability to reproduce the signal recorded in the data. Paleodata and model results can also be combined more profoundly using data assimilation. While classical model-data comparison can only assess the skills of the model, data assimilation can guide the model results to have a better agreement with the real observed changes and thus to reproduce more accurately the processes at their origin.

The main challenges in paleo data assimilation will be reviewed here. Issues related to the generation of the model results, the model data comparison and the data assimilation technique itself will be addressed. Some recent achievements and perspectives will then be presented, first for spatial reconstructions based on data assimilation and secondly for the quantification of internal and forced climate variability as well as the role of atmospheric and oceanic circulation in past climate changes.

How to cite: Goosse, H.: Combining model results and paleodata using data assimilation, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1893, https://doi.org/10.5194/egusphere-egu23-1893, 2023.

EGU23-9748 | Orals | CL1.2 | Highlight | Milutin Milankovic Medal Lecture

Milankovitch cycles and the Arctic: insights from past interglacials 

Bette L. Otto-Bliesner

The Arctic is warming at a rate greater than the global average. End-of-summer minimum sea ice extent is declining and reaching new minimums for the historical record of the last 4 decades. The Greenland ice sheet is now losing more mass than it is gaining, with increased surface melting. Earth System Models suggest that these trends will continue in the future. The geologic past can be used to inform what could happen in the future. Emiliani in his 1972 Science paper commented on the relevance of paleoclimate for understanding our future Earth.

 

Interglacials of the last 800,000 years, including the present (Holocene) period, were warm with low land ice extent. In contrast to the current observed global warming trend, which is attributed primarily to anthropogenic increases in atmospheric greenhouse gases, regional warming during these interglacials was driven by changes in Earth’s orbital configuration. Although the circumstances are different, understanding the behavior, processes, and feedbacks in the Arctic provides insights relevant to what we might expect during future global warming.

 

Data compilations suggest that despite spatial heterogeneity, Marine Isotope Stages (MIS) 5e (Last Interglacial, ~129 to 116 ka) was globally strong. The Last Interglacial (LIG) is characterized by large positive solar insolation anomalies in the Arctic during boreal summer associated with the large eccentricity of the orbit and perihelion occurring close to the boreal summer solstice. The atmospheric carbon dioxide concentration was similar to the preindustrial period.

 

Geological proxy data for the LIG indicates that Arctic latitudes were warmer than present, boreal forests extended to the Arctic Ocean in vast regions, summer sea ice in the Arctic was much reduced, and Greenland ice sheet retreat contributed to the higher global mean sea level. Model simulations provide critical complements to this data as the they can quantify the sensitivity of the climate system to the forcings, and the processes and interplay of the different parts of the Arctic system on defining these responses. As John Kutzbach explained in a briefing for science writers, "climate forecasts suffer from lack of accountability. Their moment of truth is decades in the future. But when those same computer programs are used to hindcast the past, scientists know what the correct answer to the test should be."

 

Significant attention and progress have been made in modeling the LIG in the last 2 decades. Earth System Models now capture more realism of processes in the atmosphere, ocean, and sea ice, can couple to models of the Greenland ice sheet, and include representations of the response of Arctic vegetation to the NH high-latitude summer warming. Increases in computing power has allowed these models to be run at higher spatial resolution and to perform transient simulations to examine the evolving orbital forcing during the LIG.  The international PMIP4 simulations for 127 ka illustrated the importance of positive cryosphere and ocean feedbacks for a warmer Arctic. A CESM2-Greenland ice sheet, transient LIG simulation from 127 ka to 119 ka, established a key role of vegetation feedbacks on Arctic climate change.

How to cite: Otto-Bliesner, B. L.: Milankovitch cycles and the Arctic: insights from past interglacials, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9748, https://doi.org/10.5194/egusphere-egu23-9748, 2023.

CL1 – Past Climates

EGU23-188 | ECS | Orals | CL1.1

Long-term changes in Carbon accumulation in mountain peatbogs in the South-West of Norway 

Christian Quintana, Anne Bjune, Alistair Seddon, and Hanna Lee

There is relevant research on temporal carbon accumulation changes, mostly in arctic permafrost peatlands in Norway, but little is known about the differences and comparisons with more oceanic and lower latitude peatlands in the region, where rainfall is one of the main climatic drivers. Climate projections in Norway for 2031-2060 and 2071-2100 show a rise in mean temperature and an increase of annual rainfall with more intense seasonal events in western, eastern, and northern parts. Under this rationale, this study hypothesizes that temporal variability of temperature and precipitation during the Holocene led to weaker and stronger evapotranspiration and moisture signals affecting local and regional vegetation in peatland ecosystems, water-table changes, and carbon accumulation capacity. This study will contribute to the generation of evidence of the roles and interactions of hydrology, temperature, vegetation, and land use changes on peatbogs carbon accumulation capacity during the Holocene. It will help to disentangle the responses of the carbon budget at different time scales. Methods involve the use of a set of proxies such as pollen, testate amoeba, LOI and bulk density to reconstruct the peat composition rate, organic matter, water table, and local (and regional) vegetation. A generation of an age-depth model and further multivariate analysis will allow to investigate the relationship between the proxies and carbon accumulation rate over the Holocene to further understand the temperature/precipitation correlation and the effects of a changing climate on the carbon budget.

How to cite: Quintana, C., Bjune, A., Seddon, A., and Lee, H.: Long-term changes in Carbon accumulation in mountain peatbogs in the South-West of Norway, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-188, https://doi.org/10.5194/egusphere-egu23-188, 2023.

EGU23-1447 | ECS | Orals | CL1.1

Temperature and precipitation reconstruction for Last Glacial Central Europe reveals new insights into continental climate dynamics 

Charlotte Prud homme, Peter Fischer, Olaf Jöris, Sergey Gromov, Mathias Vinnepand, Christine Hatté, Hubert Vonhof, Olivier Moine, Pierre Antoine, Andreas Vött, and Kathryn Fitzsimmons

Over the last glacial period, the climate of the Northern Hemisphere experienced numerous abrupt variations on millennial to centennial timescales known as Dansgaard-Oeschger events. These events, characterised by rapid warming at the beginning of interstadials and gradual cooling back to stadial conditions are best documented in Greenland ice cores and North Atlantic marine records, while their propagation onto the continents and potential feedbacks are less well documented. In this context, loess palaeosol sequences in central Europe are valuable archives, often recording these climatic changes in the form of brown soils and tundra gley horizons - indicating milder interstadial conditions - intercalated with primary loess deposits reflecting cold stadial conditions.

To reconstruct palaeoclimate changes at high resolution we use singular material from loess sediments: fossil earthworm calcite granules (ECG). ECGs, composed of aggregated sparite crystals formed in the calciferous earthworm glands, are secreted daily at the soil surfacemostly by Lumbricus species and experience limited vertical mixing within the loess sedimentary column. ECGs are thus an excellent terrestrial material for palaeoclimate reconstructions using stable isotopic geochemistry and radiocarbon dating. ECGs have been collected from two temporally overlapping loess-palaeosol sequences along an NNW-SSE transect in the Rhine River valley of western Germany. We present warm-season land-surface temperature and precipitation estimates at millennial timescales spanning ~ 45-22 cal kBP (late OIS 3 - OIS 2).  We demonstrate that OIS 3-2 climate in the Rhine Valley was significantly cooler during the warm season and overall drier with annual precipitation reduced by up to 70%, compared to the present day. Interstadials were only slightly warmer (1-4°C) than stadial indicating strong attenuation compared to Greenland records. In combination with mesoscale wind and moisture transport modelling we can show that this region was dominated by westerlies and thereby inextricably linked to North Atlantic climate forcing.

The approach combining high-resolution age-depth modelling and geochemical proxy-based climate reconstruction can be readily adopted at other loess palaeosol sequences. We envisage a widespread application of this approach that would improve our understanding of regional variability over the European continent in response to North Atlantic climate changes over millennial to centennial timescales.

How to cite: Prud homme, C., Fischer, P., Jöris, O., Gromov, S., Vinnepand, M., Hatté, C., Vonhof, H., Moine, O., Antoine, P., Vött, A., and Fitzsimmons, K.: Temperature and precipitation reconstruction for Last Glacial Central Europe reveals new insights into continental climate dynamics, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1447, https://doi.org/10.5194/egusphere-egu23-1447, 2023.

EGU23-1460 | ECS | Posters on site | CL1.1

Warmer and wetter past interglacials in northeast Greenland recorded in speleothems 

Anika Donner, Gina E. Moseley, Werner Kofler, Laurent Marquer, Lena Friedrich, Christoph Spötl, and R. Lawrence Edwards

The Arctic is particularly sensitive to climate warming and the impacts of this warming are expected to have global consequences. In order to improve understanding of the Arctic’s amplified response, it is valuable to study past interglacial periods. In contrast to existing palaeoclimate records for some areas in the Arctic, Greenland prior to 130 ka remains under-investigated. Northeast Greenland, especially, is one of the regions where the effects of Arctic amplification are particularly pronounced, both within the observational period as well as modelled future scenarios. In this study, we utilise inactive speleothems from caves in northeast Greenland (80°N) to investigate the palaeoenvironment of the region. In today’s environment, speleothem deposition is prevented by an arid climate (ca. 200 mm a-1) and frozen ground. Accordingly, the presence of extensive speleothem deposits in the region suggests that there was at least one period of wetter and warmer climate in the recent geological past. The most recent significant speleothem deposition occurred during marine isotope stage 11 (MIS11). Prior to this, the extended MIS13-15 interglacial period was a period of exceptionally prolific speleothem deposition in northeast Greenland. During these two growth phases, the δ18O and δ13C variability show large centennial-scale excursions. Preliminary investigations into pollen preserved in MIS11 speleothem samples suggest an environment vastly different to today, where the landscape is mostly barren except for a few small alpine plants and shrubs. For MIS11, the samples indicate the presence of boreal coniferous species such as Picea, Abies and Pinus as well as others such as Corylus, Alnus, Ericaceae, Cyperaceae, and Poaceae. These results are in agreement with a record of MIS11 vegetation in a marine core off the coast of south Greenland, and while still being under investigation, this could imply that the reconstructed forestation of south Greenland during MIS11 reached further north. Preserved floral macrofossils and large amounts of spores in the speleothem samples indicate potential for further investigations of environmental conditions in northeast Greenland during a warmer and wetter past.      

How to cite: Donner, A., Moseley, G. E., Kofler, W., Marquer, L., Friedrich, L., Spötl, C., and Edwards, R. L.: Warmer and wetter past interglacials in northeast Greenland recorded in speleothems, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1460, https://doi.org/10.5194/egusphere-egu23-1460, 2023.

EGU23-1735 | ECS | Posters on site | CL1.1

Polycyclic Aromatic Hydrocarbons (PAHs) in speleothems. 

Julia Homann, Sebastian Breitenbach, Stacy Carolin, David Hodell, Jessica Oster, Cameron de Wet, and Thorsten Hoffmann

Secondary mineral deposits in caves, such as stalagmites, constitute valuable paleoclimate archives because they are largely protected from degradation by stable in-cave conditions and can be precisely dated In addition to established climate proxies such as stable isotopes and trace elements, organic proxies have become increasingly attractive in recent years for the study of paleo vegetation, wildfires, and hydrodynamics. [1]

Biomass burning events are major sources of atmospheric particulate matter that influences global and local climate. [2] Investigating fire proxies in paleoclimate archives may therefore help determine the interactions of climate, hydrology, and fire activity.

Polycyclic Aromatic Hydrocarbons (PAHs) are organic molecules made up of two or more fused aromatic rings. They stem from the incomplete combustion of organic matter. Their persistence in the environment makes them useful for the reconstruction of fire events from paleoenvironmental archives like sediments, peat, ice cores, and soils. [3-6] Their presence has also been reported in speleothems, however, only a limited range of PAHs seem to be transported into the cave and subsequently preserved in speleothem carbonate. [7, 8]

We present a new sample preparation method for the extraction of PAHs from speleothem and the subsequent extraction of levoglucosan, an anhydrosugar derived from the combustion of cellulose that also constitutes a marker for biomass burning. We apply this method to speleothems from Cenote Ch'en Mul, Mayapan, on the Yucátan peninsula, and White Moon Cave, California, to investigate the relationship between PAHs and levoglucosan. Such tandem approach will deepen our understanding of paleo-fire dynamics and strengthen proxy-based reconstructions.

[1] A. Blyth et al. Quat. Sci. Rev. 149 (2016) 1-17 [2] P. Yao et al. J. of Glaciology 59 (2013) 599-611 [3] Tan et al. Palaeogeography, Palaeoclimatology, Palaeoecology 560 (2020) 110015 [4] Argiriadis et al. Microchem. J. 156 (2020) 104821 [5] Vecchiato et al. Sci. Rep. (2020) 10:10661 [6] Chen et al. ACS Earth Space Chem. 2018, 2, 1262−1270 [7] Argiriadis et al. Anal. Chem. 2019, 91, 7007−7011 [8] Perrette et al. Chem. Geol. 251 (2008) 67–76

How to cite: Homann, J., Breitenbach, S., Carolin, S., Hodell, D., Oster, J., de Wet, C., and Hoffmann, T.: Polycyclic Aromatic Hydrocarbons (PAHs) in speleothems., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1735, https://doi.org/10.5194/egusphere-egu23-1735, 2023.

EGU23-2303 | ECS | Orals | CL1.1

Tracking methane fluxes using intact polar and core lipids in an aridity transect of the Okavango Delta (Botswana) 

Julie Lattaud, Mangaliso Gondwe, Darci Rush, Ellen Hopmans, Carole Helfter, and Cindy De Jonge

Wetland methane (CH4) emissions are the largest natural source in the global CH4 budget, contributing to roughly one third of total natural and anthropogenic emissions. As the second most important anthropogenic greenhouse gas in the atmosphere after CO2, CH4 is strongly associated with climate feedbacks. The different pathways of biochemical cycling of CH4, which exert a primary control on atmospheric CH4 concentrations through its production and biological consumption, remain poorly constrained. It is therefore crucial to understand and, if possible, quantify these variable CH4 sources to natural climate variability.

We studied a soil transect (up to seven sites, 250 m long) across a seasonal floodplain at Nxaraga on the south-west part of the Chief’s Island, Okavango Delta, Botswana, over three years (2018 – 2020, 50 samples in total). Previous studies showed a clear link between CH4 fluxes and soil water content in the area, with CH4 fluxes in the seasonally flooded soils of up to 492 nmol m-2 s-1.

To constrain biomass active in CH4 production (specifically, methanogenic archaea) intact and core isoprenoid lipids (and their stable carbon isotope signature) were quantified on a High Performance Liquid Chromatograph (HPLC) and on an high-resolution mass spectrometer ("Orbitrap"). To constrain biomass of CH4 oxidizers (i.e. bacterial methanotrophs), core (hopanol) and intact lipids (i.e., bacteriohopanepolyols (BHPs)) were analyzed non-derivatized on an Orbitrap. Confirming their proposed methanotroph source, BHP-aminopentol and methylcarbamate-BHP were detected and their variation correlated positively with those of hopanols and archaeol lipids. Methyl-amino BHPs however were not detected in the soils. In-depth study of their environmental variation points towards two bacterial communities depending on the pH, EC and water content of the soils. This will be confirmed or refuted by bacterial community profiling based on 16S RNA genes, and functional genes for methane oxidation

How to cite: Lattaud, J., Gondwe, M., Rush, D., Hopmans, E., Helfter, C., and De Jonge, C.: Tracking methane fluxes using intact polar and core lipids in an aridity transect of the Okavango Delta (Botswana), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2303, https://doi.org/10.5194/egusphere-egu23-2303, 2023.

EGU23-2706 | Posters on site | CL1.1

crestr: An R package to perform probabilistic climate reconstructions from palaeoecological datasets 

Manuel Chevalier and Brian M. Chase

Quantitative climate reconstructions are fundamental to better understanding past environmental changes and evaluating climate simulations. The proliferation of pollen-based reconstructions during the past decades has been instrumental in improving our understanding of past climate dynamics across various spatial and temporal scales. However, this knowledge has been mainly concentrated in North America and parts of Eurasia, and very few quantifications exist in the tropics. This global data imbalance is partly due to the sparser network of supporting pollen records in these regions and, in equal proportions, to the limitations of the most commonly used reconstruction techniques (e.g. the analogue technique or WA-PLS) in dealing with the specificities of tropical vegetation. To address this problem and produce the much-needed climate quantification from tropical regions, we propose using the probabilistic method CREST (Climate REconstruction SofTware) that uses probability density functions (‘pdfs’) fitted on modern occurrence plant data to reconstruct environmental parameters. CREST, which has been successfully employed in Africa and South America, offers many advantages over the classical approaches, including 1) a higher flexibility of application, 2) a better capacity to estimate uncertainties, and thanks to the recent developments of a dedicated R package crestr that includes a global calibration dataset, 3) CREST is applicable in every environment where plants currently grow. Considering these advantages, the large-scale application of CREST to quantitatively reconstruct important climate parameters from the existing tropical fossil pollen records should 1) help better integrate and interpret regional proxy compilations, 2) shed light on the spatiotemporal climate variability of tropical regions, and 3) determine the main modes of tropical climate variability. With this contribution, we will showcase the use of the crestr package with a novel temperature reconstruction derived from the 270,000-year-long, high-resolution pollen record from Laguna Fùquene in Colombia and discuss how this type of analysis could be generalised to determine spatial patterns of climate change from multi-record reconstructions

How to cite: Chevalier, M. and Chase, B. M.: crestr: An R package to perform probabilistic climate reconstructions from palaeoecological datasets, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2706, https://doi.org/10.5194/egusphere-egu23-2706, 2023.

EGU23-3736 | ECS | Posters on site | CL1.1

The Influence of Temperature on the Fall of the Guge Kingdom in Western Tibet, China 

Haichao Xie and Jie Liang

Branched glycerol dialkyl glycerol tetraethers (brGDGTs) from lacustrine sediments have been widely used to reconstruct mean annual air temperature (MAAT). Although many proxy calibrations relating brGDGT characteristics have been put forth, these calibrations may produce warm biases when applied to lakes in cold regions. We present an expanded Chinese lake surface sediment brGDGT-MAAT calibration with 29 new surface samples from cold regions along with 39 previously published from Chinese lakes. We deployed sediment traps in a meromictic lake, Dagze Co, and compared results with previously published data from a dimictic lake, Lake 578 in Greenland, to determine potential seasonal and depth-dependence of brGDGTs. In the meromictic lake, brGDGTs are primarily produced in the lake bottom water, whereas in the dimictic lake, the brGDGTs are produced throughout the water column and mainly reflect the annual bottom water temperature or mixing season water column temperature. We applied our refined calibration to a sediment core from Western Tibet to examine how fluctuations in temperature influenced the Guge Kingdom over the last 2,000 years. Our record reveals relatively warm temperatures during the Medieval Climate Anomaly, cooling of 2°C to -2°C during the Little Ice Age, warming into the eighteenth century, and stabilization after 1800 CE. The temperature variations coincided with a transition of dynasties in Western Tibet. Temperature sensitivity tests on barley distribution, the principal cultivated cereal in Tibet, suggest that a decline in temperature led to a decreased crop yield that may have factored into the disappearance of the Guge Kingdom.

How to cite: Xie, H. and Liang, J.: The Influence of Temperature on the Fall of the Guge Kingdom in Western Tibet, China, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3736, https://doi.org/10.5194/egusphere-egu23-3736, 2023.

EGU23-6593 | ECS | Orals | CL1.1

Applying Brillouin thermometry as a novel tool for reconstructing temperatures, depths, and seasonal biases of Holocene/Pleistocene Searles Lake, California 

Kristian Olson, Emmanuel Guillerm, Mark Peaple, Tim Lowenstein, Véronique Gardien, Frédéric Caupin, Sarah Feakins, Jessica Tierney, Justin Stroup, Steve Lund, and David McGee

Paleoclimate records from lakes of the southwestern USA have been limited by a lack of independent paleothermometers, resulting in conflicting characterizations of millennial-scale variability in temperature and moisture. Here a novel method called Brillouin thermometry is applied to halite-bearing dry intervals of the late Pleistocene/Holocene (45–0 ka) core record of Searles Lake, California. Halite from the sediment-water interface records lake bottom temperatures during dry, high salinity periods. Analysis of modern saline lakes of various chemistries, depths, climate zones, and mixing regimes shows that: 1) average bottom water temperature is approximately equal to mean annual air temperature, and 2) annual range of bottom water temperature is inversely proportional to lake depth. Brillouin temperatures for eight halite intervals 30.6 ka to 8.5 ka range from 11.8 ± 3.6 to 22.4 ± 3.2 °C. Bottom water temperature variability indicates paleolake depths of ~10 m during halite precipitation. Brillouin thermometric results are then assessed in comparison with two additional temperature proxy records from the same Searles Lake sediment core: 1) branched glycerol dialkyl glycerol tetraethers (brGDGTs) extracted from wet mud intervals, and 2) thermodynamic constraints from evaporite minerals and mineral sequences. Temperatures from brGDGTs for mud intervals 44.7 ka to 3.6 ka range from 13.4 ± 2.8 to 23.9 ± 3.0 °C. Comparisons of Brillouin/brGDGT temperatures with predicted equilibrium temperatures of salt crystallization indicate intervals where seasonal temperature variability forced the dissolution and/or recrystallization of existing temperature-sensitive evaporites. The multiproxy temperature record of Searles Lake agrees with other regional records at glacial/interglacial timescales but displays a wider degree of millennial-scale variability, with temperatures during the last glacial ranging from 8.3 °C below modern mean annual temperatures to 3.8 °C above.

How to cite: Olson, K., Guillerm, E., Peaple, M., Lowenstein, T., Gardien, V., Caupin, F., Feakins, S., Tierney, J., Stroup, J., Lund, S., and McGee, D.: Applying Brillouin thermometry as a novel tool for reconstructing temperatures, depths, and seasonal biases of Holocene/Pleistocene Searles Lake, California, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6593, https://doi.org/10.5194/egusphere-egu23-6593, 2023.

EGU23-8090 | ECS | Posters on site | CL1.1

A Late Holocene δ18O paleoclimate record from the afro-alpine Lake Garba Guracha, Bale Mountains Ethiopia: implications for human occupation/abandonment 

Samuel, Getachew Chernet, Lucas Bittner, Graciela Gil-Romera, and Michael Zech

The Late Holocene, being a period when human footprint in paleoenvironmental archives became increasingly apparent, records important information about how early humans adapted to ever changing climatic conditions. Garba Guracha is an afro-alpine cirque lake located in the Bale Mountains National Park in the southeastern highlands of Ethiopia. The reconstructed age depth model with a time resolution of 10 years/cm makes it one of the best climate archives in the highlands of Eastern Africa. A total of 15.5 meter core recording 16 ka of sedimentation was retrieved from the lake. Previous works done on the archive include: (i) establishing the age-depth model and determination of sedimentation rates using bulk sedimentary organic matter, bulk n-alkane and charcoal 14C ages (Bittner et al. 2020); (ii) multi-proxy paleoenvironment reconstruction using charcoal, diatoms, biomarkers, and stable isotopes (Bittner et al., 2022; Gil-Romera et al., 2019). Results from these works show a strong variability for the late Holocene that represents the termination of the African Humid Period (AHP) and increased fire intensity. This study focuses on the topmost sedimentary succession of the core representing the late Holocene (~5 ka to present) and implements δ18Osugar extracted from organic matter derived sugar biomarkers in high resolution (every 4 cm). The δ18Osugar record can be used for reconstructing the lake evaporation history. Furthermore, combing these new data with other data obtained from n-alkane, charcoal and archaeological studies will shade light on a possible climate human interactions in high alpine ecosystem.

References

Bittner, L., Bliedtner, M., Grady, D., Gil-Romera, G., Martin-Jones, C., Lemma, B., Mekonnen, B., et al., 2020. Revisiting afro-alpine Lake Garba Guracha in the Bale Mountains of Ethiopia: rationale, chronology, geochemistry, and paleoenvironmental implications. Journal of Paleolimnology 64, 293–314.

Bittner, L., Gil-Romera, G., Grady, D., Lamb, H., Lorenz, E., Weiner, M., Zech, M. (2022). The Holocene lake-evaporation history of the afro-alpine Lake Garba Guracha in the Bale Mountains, Ethiopia, based on δ18O records of sugar biomarker and diatoms. Quaternary Research, 105, 23-36.

Gil-Romera, G., Adolf, C., Benito Blas, M., Bittner, L., Johansson, M.M.U., Grady, D.D.A., Lamb, H.H.F., et al., 2019. Long-term fire resilience of the Ericaceous Belt, Bale Mountains, Ethiopia. Biology Letters 15, 20190357. 

How to cite: Chernet, S. G., Bittner, L., Gil-Romera, G., and Zech, M.: A Late Holocene δ18O paleoclimate record from the afro-alpine Lake Garba Guracha, Bale Mountains Ethiopia: implications for human occupation/abandonment, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8090, https://doi.org/10.5194/egusphere-egu23-8090, 2023.

EGU23-8094 | Posters on site | CL1.1

Dansgaard-Oeschger climate oscillation during the early MIS3 in Europe: evidence from a multi proxy (bulk & clumped stable isotopes and trace elements) speleothem record in Han-sur-Lesse, Belgium 

Marion Peral, Marta Marchegiano, Sophie Verheyden, Steven Goderis, Tom Van Helden, Frank Vanhaecke, Thibaut Van Acker, Jia Xuexue, Hai Cheng, and Philippe Claeys

The Marine Isotope Stage 3 (MIS 3) – a period between 60 and 27 ka ago during the last glacial cycle – experienced several abrupt climatic warming phases known as Dansgaard-Oeschger (DO) events. The DO events are abrupt transitions from cold (stadial) to mild (interstadial) climate conditions.

Speleothems are precious continental records and provide important climatic information at high resolution. However, during this time period, the north central Europe is less studied because the MIS 3 is generally not recorded, due to the climatic conditions. Here, we present the first Belgium continuous speleothem (flowstone) record covering the early MIS 3 (from 60 to 40 ka) from the Verviétois Gallery that is part of the Han sur Lesse cave system (southern Belgium). High resolution bulk stable isotope and elemental combined with U-Th dating are used to define the Belgium climatic variability. Additionally, clumped isotope measurements have been performed to reconstruct temperature to better constrain climatic response during the DO 16-12.

The multiproxy approach used to investigate the speleothem record shows a regional response to the global climate conditions during MIS3. The d13C and d18O values as well as the elemental analyses (Mg, Ba and Sr as water availability proxies and P and Zn as soil development) mirror the DO 16 and 12 events indicating dry-wet and cold-warm changes. During interstadials events low values of d18O and d13C and Mg, Ba and Sr content suggest wet/warm conditions, while the increase of isotopic and elemental values during the stadials support a climate deterioration with cooling and drier conditions. The clumped-isotope temperatures, performed on the DO 16 and 12, suggest warm interstadials (12OC +/- 2OC) and cold stadials (7OC +/- 2OC) climate.

During the DO12, a delay in the climatic amelioration and the vegetation is observed. This delay, also noted in south-west France cave (Villars cave), seems to be linked to a delay between increase of temperature and water availability allowing the soil above the cave to growth. Also, a climatic deterioration occurred after the DO11, with an increase time lag from the north to the south of Europe, showing a progressive cooling to the south Europe. It is interesting to note that this gradual cooling in Europe coincides, withing dating error bars, with the potential progressive north-south decline of the Neanderthals in Europe.

How to cite: Peral, M., Marchegiano, M., Verheyden, S., Goderis, S., Van Helden, T., Vanhaecke, F., Van Acker, T., Xuexue, J., Cheng, H., and Claeys, P.: Dansgaard-Oeschger climate oscillation during the early MIS3 in Europe: evidence from a multi proxy (bulk & clumped stable isotopes and trace elements) speleothem record in Han-sur-Lesse, Belgium, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8094, https://doi.org/10.5194/egusphere-egu23-8094, 2023.

EGU23-9130 | Orals | CL1.1

Retrieving the rainfall signature from the isotope composition of speleothem fluid inclusion water: progress and pitfalls 

Hubert Vonhof, Monika Markowska, Elan Levy, Alfredo Martinez Garcia, Sam Nicholson, and Julian Schroeder

Over recent years, a growing number of case studies have highlighted the relevance of fluid inclusion (FI) isotope analysis on speleothem calcite for the reconstruction of rainfall isotope variation back in time. Multiple studies documented FI isotope results consistent with projected local meteoric water line values, demonstrating that FI isotope analysis can provide unique and quantitative paleohydrological data. Several other studies have shown that FI isotope data can be compromised due to diagenetic effects, or (petrography-controlled) analytical artefacts. Such diagenetic or analytical artefacts typically have a detrimental impact on the accuracy of isotope equilibrium-based cave temperatures calculated from paired oxygen isotope values of FI water and host calcite.

Here, we will highlight some recent FI isotope records, discuss current views on the recognition of FI isotopic artefacts, and provide guidelines for the interpretation of FI isotope data as a paleo-rainfall proxy, with particular focus on direct comparison to novel TEX86 paleotemperatures that can be derived from the same speleothem calcite.

How to cite: Vonhof, H., Markowska, M., Levy, E., Martinez Garcia, A., Nicholson, S., and Schroeder, J.: Retrieving the rainfall signature from the isotope composition of speleothem fluid inclusion water: progress and pitfalls, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9130, https://doi.org/10.5194/egusphere-egu23-9130, 2023.

EGU23-9362 | Posters on site | CL1.1

Resurrecting lost forests – speleothems inform on environmental changes in northern Scotland during MIS 5e 

Sebastian F.M. Breitenbach, Julia Homann, Hamish Couper, Beth R.S. Fox, Ola Kwiecien, Tim J. Lawson, Thorsten Hoffmann, Gideon M. Henderson, and Tim C. Atkinson

Modern Northern Scotland is a largely barren landscape, with most of the natural temperate rainforest that covered the Atlantic side of Great Britain lost to active deforestation and overgrazing, mainly by sheep and deer (Shrubsole 2022). Pockets of relic temperate rainforest are reminders of the significant changes induced by the arrival of humans and their domestic animals. However, little is known about early Holocene and previous interglacial environmental conditions, and here we propose an unorthodox archive of natural vegetation cover of Scotland.

We present a new U-Th dated speleothem from the previous interglacial (MIS 5e/Ipswichian) and use stable oxygen and carbon isotope ratios, in tandem with lignin, a biopolymer with three monomers, to gain insight into last interglacial environmental conditions in Assynt, NW Scotland. The lignin monomer ratio provides information about relative changes between gymnosperm vs. angiosperm plant communities, and thus on changes in vegetation (e.g., from pine forest to moorland or grassland).

Flowstone TJL20080901 was found broken and recovered in 2008 from Rana Hole, a cave at 352 m above sea level overlain by heather moorland overlying blanket peat (Lawson & Dowswell 2022). Seven U-Th dates, analysed at Oxford University, show that this calcite flowstone was deposited between 127 and 119 ka BP during Marine Isotope Stage 5e, with an average growth rate between 20 and 40 μm/yr.

We suggest that speleothem δ13C indicates local infiltration and vegetation and soil composition, whereas δ18O reflects the history (source, temperature, seasonality) of the moisture feeding the cave stream from which the flowstone was precipitated. The lignin composition directly relates to local vegetation cover.

Our new multi-proxy record provides unique insights into environmental conditions in Assynt during MIS 5e, and the history of vegetation developing without human interference.

References

Homann et al. (2022) Linked fire activity and climate whiplash in California during the early Holocene. Nature Communications 13:7175

Lawson T. J. & Dowswell P. N. F. (2022) Caves of Assynt (3rd edition). Grampian Speleological Group. Edinburgh, 211 pages, ISBN 987-1-7397635-0-3

Shrubsole G. (2022) The lost rainforests of Britain. HarperCollins Publishers, 336 pages, ISBN 9780008527952

How to cite: Breitenbach, S. F. M., Homann, J., Couper, H., Fox, B. R. S., Kwiecien, O., Lawson, T. J., Hoffmann, T., Henderson, G. M., and Atkinson, T. C.: Resurrecting lost forests – speleothems inform on environmental changes in northern Scotland during MIS 5e, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9362, https://doi.org/10.5194/egusphere-egu23-9362, 2023.

EGU23-9507 | Posters on site | CL1.1

Timescales of volcanic impacts on terrestrial and aquatic ecosystems in the Eastern Mediterranean 

Nadine Pickarski, Ola Kwiecien, and Thomas Litt

Instrumental data show that while the impact of volcanic eruptions on their immediate vicinity is destructive, long-term consequences can be beneficial. However, beyond last millennia observational data and ancient oral history, the detailed insights into timescales and scopes of recovery remain largely unresolved. Here we illustrate the complex response of local and regional vegetation, aquatic ecosystem, and fire activity to volcanic eruptions in close connection to prevailing climate conditions and assess the recovery time in varve-years.

We selected five volcaniclastic layers in the annually laminated sediments from Lake Van (Turkey). Analysed intervals cover glacial, interglacial, stadial and interstadial snapshots (spanning from Marine Isotope Stages 3 to 9e) and facilitate studying ecosystem’s responses under different climatic boundary conditions. Using high-resolution pollen data, non-pollen palynomorphs, and microscopic charcoal particles (>20 µm) we attempted to disentangle climatic and volcanic forcing of natural environmental disturbances. Our results highlight that the thickness of subsequent volcanic deposits and the respective climatic conditions strongly influence the impact on terrestrial and aquatic ecosystems. Similarily, the vegetation types predominant before the volcanic eruption have a decisive influence on subsequent pollen productivity and vegetation composition. On land, the most common response to ash deposition is a sudden shift towards steppe herbaceous taxa and abrupt fire activity. The affected herbaceous vegetation can recover to pre-eruption levels in as few as 20 to 40 varve-years. On the contrary, the lake water experiences intensified productivity due to subsequent nutrient input and significant short-term increase in aquatic taxa and non-siliceous microfossils.

Our approach helps in understanding complex ecosystems subjected to a variety of influencing factors operating on different time scales. Our results show the importance of distinguishing between the impact of tephra deposition and volcanically-induced climate change for tracking short-term ecosystem changes superimposed on long-term trends.

How to cite: Pickarski, N., Kwiecien, O., and Litt, T.: Timescales of volcanic impacts on terrestrial and aquatic ecosystems in the Eastern Mediterranean, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9507, https://doi.org/10.5194/egusphere-egu23-9507, 2023.

EGU23-9780 | ECS | Orals | CL1.1

Quantifying Holocene temperature changes using bacterial and archaeal membrane lipids (GDGTs) in the Swiss Alps 

Fatemeh Ajallooeian, Sarah Nemiah Ladd, Nathalie Dubois, Carsten Schubert, Mark Alexander Lever, and Cindy De Jonge

Currently, Holocene paleoclimate research shows discrepancies in the timing and extent of the so-called Holocene “climate optimum” (1). To better understand this phenomenon in the alpine region, we examine the mean annual air temperature (MAT) record based on the distribution of Glycerol Dialkyl Glycerol Tetraethers (GDGTs) in a 14-m long sediment core from Lake Rot, Switzerland. This small eutrophic monomictic lake is characterized by a seasonally anoxic hypolimnion. An age model based on 20 calibrated 14C dates shows that the top 10 m of sediments reflect the early, middle, and late Holocene (10 cal. ka BP to recent).

 

To constrain environmental changes, we also look at total organic carbon (TOC), total inorganic carbon (TIC), total nitrogen (TN), and bulk organic matter δ13C and δ15N (n = 300). These indices give insight into the sources of organic matter in Lake Rot sediments. A stable and dominantly in-situ produced lacustrine source of organic matter is indicated by the range in C/N values (4-17) and d15N values (-0.37-5.84). Increasing TOC and δ13C values during the early Holocene (around 10 cal. ka BP), likely reflect elevated primary production in the lake during postglacial climate warming. Subsequently, high TIC values indicate a period with high calcite precipitation (10-8 cal. ka BP). Between 8-1.5 cal. ka BP, high TOC and very low TIC values indicate a dramatic change in the system, reflecting a higher production and/or conservation of organic matter. After this period, TOC decreases, showing a last increase in the top 50cm of the core, presenting signs of eutrophication. Lake Rot thus has experienced large changes in the last 10ka.

From a subset of 63 samples, GDGTs are analysed to reconstruct MAT using the methylation index of brGDGTs (MBT’5ME). Using a lake calibration (2), reconstructed average MAT is 8.4℃ (RMSE = 2.1℃). The absence of large temperature changes during the Holocene highlights that the MBT’5ME-based reconstructed temperatures are not influenced by the large changes in water chemistry recorded by the bulk TOC and TIC values. Instead, the temperature reconstruction reflects stable Holocene temperature ranges, presenting no expressed “climate optimum” in this core. The most recent reconstructed temperature of 9.7℃ resembles actual measured MAT (10.7℃).

Based on our results, the isoprenoid GDGT TEX86 is not applicable for the reconstruction of temperature in Lake Rot. This matches a recent study of perialpine lakes where the successful application of TEX86 was suggested to be limited to deep lakes (>100 m) (3). In addition, we will discuss whether production of in-situ brGDGTs in the water column and seasonality influence the sediment temperature record, as proposed by the authors and other studies (2,4).

 

1: Herzschuh et al., (2022). EGUsphere, 1-23.

2: Russell et al., (2018). Organic Geochemistry, 117, 56-69.

3: Damsté et al., (2022). Quaternary Science Reviews, 277, 107352.

4: Loomis et al., (2014). Geochimica et Cosmochimica Acta, 144, 173-187.

How to cite: Ajallooeian, F., Ladd, S. N., Dubois, N., Schubert, C., Lever, M. A., and De Jonge, C.: Quantifying Holocene temperature changes using bacterial and archaeal membrane lipids (GDGTs) in the Swiss Alps, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9780, https://doi.org/10.5194/egusphere-egu23-9780, 2023.

EGU23-10570 | ECS | Orals | CL1.1

Exploring Pacific Island hydroclimatic extremes using the South Pacific Drought Atlas 

Philippa Higgins, Jonathan Palmer, Fiona Johnson, Martin Andersen, and Chris Turney

Droughts are a natural occurrence in many small Pacific Islands and can have severe impacts on local populations and environments. The El Niño-Southern Oscillation (ENSO) is a well-known driver of drought in the South Pacific, but our understanding of extreme ENSO events and their influence on island hydroclimate is limited by the short instrumental record and the infrequency of ENSO extremes. To address this gap, we present the South Pacific Drought Atlas (SPaDA), a multi-proxy, spatially resolved reconstruction of the November-April Standardised Precipitation Evapotranspiration Index for the southwest Pacific islands. The reconstruction integrates coral proxies, which provide local information on the South Pacific hydroclimate but are limited in number and length, with a network of continental tree-ring chronologies targeting Pacific climate variability through remote teleconnections. The reconstruction demonstrates the benefits of multi-proxy reconstructions incorporating tree rings, which allow for the alignment of other proxy records without chronological error.

The SPaDA provides a 350-year, continuous dataset of climate information, which can be used to explore the occurrence of extreme events in the pre-instrumental period. The SPaDA closes the gap between existing paleo-reconstructions of point ENSO indices, and a spatially resolved drought atlas, allowing both the hydroclimate of individual islands and regional patterns of drought to be assessed. The benefit of a spatially resolved dataset to assess climate extremes in small Pacific islands is highlighted in the case of extreme El Niño events, which can have substantially different hydroclimatic impacts than more moderate events.

We used an Isolation Forest, an unsupervised machine learning algorithm, to identify anomalous hydroclimatic states in the SPaDA that may indicate the occurrence of an extreme event. Extreme El Niño events characterised by very strong southwest Pacific drought anomalies and a zonal South Pacific Convergence Zone orientation are shown to have occurred semi-regularly throughout the reconstruction interval, providing a valuable baseline to compare to climate model projections. By identifying the spatial patterns of drought resulting from extreme events, we can better understand the impacts these events may have on individual Pacific Islands in the future.

How to cite: Higgins, P., Palmer, J., Johnson, F., Andersen, M., and Turney, C.: Exploring Pacific Island hydroclimatic extremes using the South Pacific Drought Atlas, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10570, https://doi.org/10.5194/egusphere-egu23-10570, 2023.

EGU23-13521 | ECS | Orals | CL1.1

Cloudy with a chance it rained: Progress towards a proxy for palaeocloud 

Tamara Fletcher, Julia Tindall, Jochen Voss, and Alan Haywood

Cloud has profound impacts on climate, thus accurate cloud simulation is critical for accurate climate modelling. As the greatest source of uncertainty in such models, cloud drives discrepancies in the prediction of future climate. Cloud simulations are validated against recent observations; however, these records do not capture the climate space we are entering this century, limiting our ability to test model accuracy under near future conditions.

The best analogue for the 21st Century climate trajectory comes from the Pliocene. Reconstructions of Pliocene cloud regimes would provide critical validation data for climate model performance with respect to cloud. However, despite the wealth ways to reconstruct other climate variables, no method has been developed for reconstructing cloud in deep time.

We are working towards proxies capable of reconstructing past cloud, with the goal of establishing a global cloud database for the Pliocene. Our initial results demonstrate the relationship between vegetation and large-scale patterns in cloud in the modern, and tests the model derived from the modern data against palaeoclimate model vegetation and cloud.

How to cite: Fletcher, T., Tindall, J., Voss, J., and Haywood, A.: Cloudy with a chance it rained: Progress towards a proxy for palaeocloud, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13521, https://doi.org/10.5194/egusphere-egu23-13521, 2023.

EGU23-13661 | Posters on site | CL1.1

Development of new global lake brGDGT-temperature calibrations: advances, applications and challenges 

Emma Pearson, Steve Juggins, Stephen Roberts, Tony Phillips, Dominic Hodgson, David Naafs, Louise Foster, and Harry Allbrook

Quantitative paleoclimate reconstructions are fundamental to understand long-term trends in natural climate variability and to test climate models used to predict future climate change. Branched glycerol dialkyl glycerol tetrathers (brGDGTs) are bacterial cell membrane lipids, with a molecular structure that strongly depends on growth temperature, and global and regional lacustrine brGDGT-temperature calibrations have been used to reconstruct past temperatures using lake sediments from a range of environments.

Application of the global and regional Antarctic and sub-Antarctic brGDGT calibrations (Pearson et al., 2011; Foster et al., 2016) however, suggests a need to expand and improve reconstruction accuracy for cold, extreme environments (Roberts et al., 2017). We construct new global lacustrine brGDGT-temperature calibrations using datasets obtained via brGDGT analysis using two existing (single and dual column LCMS) analytical methods, and comprising Antarctic and sub-Antarctic samples, and other available published datasets.

Advancements in calibration studies principally comprise two main routes: one via expansion of calibration datasets, the other by improving reconstructions. We address both of these by both expanding existing datasets, and also by evaluating a range of different statistical approaches, all of which are subjected to rigorous cross-validation. For each of our calibration datasets we investigate a range of different statistical modelling approaches to predict mean annual temperature, mean summer temperature and mean temperature of months above freezing, where available, derived from field measurements and the gridded ERA5 dataset (Hersbach et al., 2019) across the whole and <15°C subset of the temperature range.

We apply our new calibrations to existing published lake sediment core records from contrasting environments to compare and evaluate the performance of the different analytical and statistical methods. Our findings highlight some of the complexities and caveats of the different methods and have important implications for the application of lacustrine brGDGT temperature calibrations to lakes at a global scale.

 

References

Foster LC, Pearson EJ, Juggins S, Hodgson DA, Saunders KM, Verleyen E, Roberts SJ. Development of a regional glycerol dialkyl glycerol tetraether (GDGT)–temperature calibration for Antarctic and sub-Antarctic lakes. Earth and Planetary Science Letters 2016, 433, 370-379.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N. (2019): ERA5 monthly averaged data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on 08-Sep-2020, 29-Mar-2021), 10.24381/cds.f17050d7

Pearson EJ, Juggins S, Talbot HM, Weckström J, Rosén P, Ryves D, Roberts S, Schmidt R. A lacustrine GDGT-temperature calibration from the Scandinavian Arctic to Antarctic: Renewed potential for the application of GDGT-paleothermometry in lakes. Geochimica et Cosmochimica Acta 2011, 75(20), 6225-6238.

Roberts SJ, Monien P, Foster LC, Loftfield J, Hocking EP, Schnetger B, Pearson EJ, Juggins S, Fretwell P, Ireland L, Ochyra R, Haworth AR, Allen CS, Moreton SG, Davies SJ, Brumsack H-J, Bentley MJ, Hodgson DA. Past penguin colony responses to explosive volcanism on the Antarctic Peninsula. Nature Communications 2017, 8, 14914.

How to cite: Pearson, E., Juggins, S., Roberts, S., Phillips, T., Hodgson, D., Naafs, D., Foster, L., and Allbrook, H.: Development of new global lake brGDGT-temperature calibrations: advances, applications and challenges, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13661, https://doi.org/10.5194/egusphere-egu23-13661, 2023.

EGU23-14517 | ECS | Posters on site | CL1.1

A Miocene (23–12.5 Ma) continental paleotemperature record from the northern Mediterranean region (Digne-Valensole Basin, SE France) 

Armelle Ballian, Maud J. M. Meijers, Katharina Methner, Isabelle Cojan, Damien Huyghe, Jens Fiebig, and Andreas Mulch

During the Middle Miocene the Earth’s climate shifted from a warm phase, the Miocene Climatic Optimum (MCO, 16.9–14.7 Ma), to a colder phase associated with the formation of major and permanent Antarctic ice sheets. This climatic shift, the Middle Miocene Climatic Transition (MMCT, 14.7–13.8 Ma), had significant impact on the composition and structure of major biomes (e.g. Jimenez-Moreno & Suc, 2007) and impacted worldwide ocean circulation (Holbourn et al., 2014) as well as terrestrial temperature and precipitation patterns (e.g. Methner et al., 2020). While the MCO and the subsequent MMCT are well described in marine records, quantitative continental paleoclimate records are still lacking when it comes to constraining the magnitude and rate of terrestrial environmental change. Collectively, δ18O, δ13C and Δ47 data from soil carbonates provide information about past environmental and climatic conditions, such as (seasonality of) precipitation, soil temperature as well as vegetation patterns. The formation of soil carbonates is mainly controlled by the interplay of environmental factors such as soil water composition, soil temperature, and soil CO2. We compare the stable (δ18O, δ13C) and clumped (Δ47) isotopic composition of pedogenic carbonate nodules of the Digne-Valensole Basin (SE France) with time equivalent counterparts from central Europe (Northern Alpine Molasse Basin, Switzerland) and present a ca. 23 – 12.5 Ma biostratigraphically-controlled clumped isotope paleotemperature record from the SW-foreland of the European Alps. Alluvial fan deposition and soil formation in the Digne-Valensole Basin occurred near sea level as documented by the intercalation of marine and continental facies (Cojan et al., 2013). Our Δ47 results from the Digne-Valensole Basin indicate relatively warm and stable carbonate formation temperatures (ca. 32°C) for the Early Miocene (23–19.5 Ma) followed by enhanced temperature fluctuations attaining maximum values at the onset of the MCO. The Digne-Valensole temperature pattern correlates with age-equivalent Δ47 temperatures from the Northern Alpine Foreland Basin. In both records, significant climatic changes can be observed at the onset of the MCO and the MMCT, which are documented by major rapid shifts in paleotemperatures (ca. 15°C within 300 ka). However, the proximity to the Mediterranean Basin is clearly visible in the Digne-Valensole records as expressed in rather high δ18O values of meteoric water that average ca. −3.5 ‰. Combining our data with the Northern Alpine foreland records results in a coherent climate pattern for the Alpine foreland during the Middle Miocene.

 

Cojan et al. (2013) https://doi.org/10.2113/gssgfbull.184.6.583

Holbourn et al. (2014) https://doi.org/10.1130/G34890.1

Jimenez-Moreno & Suc (2007) https://doi.org/10.1016/j.palaeo.2007.03.040

Methner et al. (2020) https://doi.org/10.1038/s41598-020-64743-5

 

How to cite: Ballian, A., Meijers, M. J. M., Methner, K., Cojan, I., Huyghe, D., Fiebig, J., and Mulch, A.: A Miocene (23–12.5 Ma) continental paleotemperature record from the northern Mediterranean region (Digne-Valensole Basin, SE France), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14517, https://doi.org/10.5194/egusphere-egu23-14517, 2023.

We aimed to understand relationship between fire and mining activities over the late Holocene, to predict modifications in study area are conditioned by climate change, and ongoing global warming could lead to wildfire changes or mining can cause change in landscapes, in region especially peatlands at mid-altitude. The reconstruction of long-term (thousands of years) wildfire regime and activity is possible by analyzing the abundance of carbonaceous vegetation fragments (charcoal) preserved in sediments accumulated in different depositional environments (e.g., peatlands). Charcoal is proxy used for reconstructing regional changes in wildfire regime and anthropogenic activity such as mining history, local soil and bedrock erosion was also reconstructed using a multi-proxy method: geochemistry, magnetic mineral properties and particle size analysis. Was analyzed sedimentary macroscopic charcoal from the Taul Mare (TG) peat bog, located in Lapus Mountains, northern Carpathians, Romania. The statistically analyses use a variate ordination method principal component analysis (PCA). The PCA was used to correlate fire regime, charcoal accumulation rate (CHAR), geochemistry, magnetic mineral properties and particle size using PAST4.11 software. Our results show correlation between morphological charcoal (e.g., wood, grass, etc.) in opposition with magnetic mineral properties and particle size having the highest values. This may be interpreted as reflecting climate change caused by anthropogenic activity in special mining having consequence in landscapes with changes in wildfire regime. The main results of PCA point to conclude the following: wildfire increase following anthropogenic activities; increases in wildfire have generally been accompanied by episodes of increased landscape openness and pastoral activities; the study area followed the mid-elevation mountains and proximity to landscape resources, pasture and mining. In conclusion our results show direct connection with statistically significant link between fire severity and magnetic mineral concentration, and direct relation between fires and erosion (regardless of severity). This study can offer information about previously unstudied environmental history in mid-elevation mountains, of the Northern Carpathians and highlights the importance of studies that what can improve our understanding of the fire regime caused by mining activities.

How to cite: Petras, A.: Peat core sequence in the Northern Carpathians, Romania. Fire and mining activities relationship over the late Holocene, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15079, https://doi.org/10.5194/egusphere-egu23-15079, 2023.

EGU23-16852 | ECS | Posters on site | CL1.1

A comparative study of cave system Ca isotope ratios with rainfall, δ13C, and trace element data: Implications for quantitative reconstructions of paleorainfall from speleothems 

Cameron de Wet, Elizabeth Griffith, Andrea Erhardt, Harold Bradbury, Alexandra Turchyn, and Jessica Oster

The development of quantitative records of past rainfall is an outstanding goal in the field of speleothem paleoclimatology and represents an essential step for benchmarking paleoclimate model simulations. However, most traditionally-employed speleothem proxies, including δ18O, δ13C, and trace-element-to-calcium ratios, respond to a number of complex climatic and environmental influences and typically provide only qualitative records of paleoclimate change. Variations in speleothem Ca isotope ratios (δ44Ca) are thought to be uniquely controlled by carbonate mineral precipitation above a drip site (prior carbonate precipitation, or PCP), which can be modeled as a Rayleigh fractionation process and calibrated with modern rainfall data. Thus, speleothem δ44Ca shows promise as a semi-quantitative proxy for past changes in local effective rainfall rates. However, few cave monitoring studies have focused specifically on the ways in which important factors, like host rock δ44Ca variability and geology, water flow path geometry, ventilation, and seasonal rainfall distribution affect δ44Ca signals in speleothems.

We present a comparative study of δ44Ca data and coeval measurements of δ13C and trace element ratios, established proxies for water infiltration, from cave drip waters, farmed calcite, and host rocks from three different cave systems in the United States- White Moon Cave (WMC) in coastal California, Lake Shasta Caverns (LSC) in northern California, and Blue Springs Cave (BSC) in east-central Tennessee. These cave systems are characterized by different hydroclimate, geology, flow path geometry, and seasonal infiltration characteristics.

To assess the relationship between Ca isotope variability and effective rainfall, we use Rayleigh fractionation equations to estimate the amount of PCP occurring at each cave site and compare these estimates with local rainfall rates, supplementing with drip rate information when possible.

The comparison of WMC, LSC, and BSC δ44Ca, δ13C, and trace element data from drip sites with different flow path geometry and from caves in different geologic and climate settings allows for these key factors to be assessed independently. This work, and the direct comparison between δ44Ca measurements and measured local rainfall rates in particular, aids in the refinement of speleothem δ44Ca as a new, semi-quantitative proxy for paleorainfall.

How to cite: de Wet, C., Griffith, E., Erhardt, A., Bradbury, H., Turchyn, A., and Oster, J.: A comparative study of cave system Ca isotope ratios with rainfall, δ13C, and trace element data: Implications for quantitative reconstructions of paleorainfall from speleothems, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16852, https://doi.org/10.5194/egusphere-egu23-16852, 2023.

EGU23-16916 | ECS | Posters on site | CL1.1

High-resolution reconstruction of the hydroclimate and palaeoenvironment of the last 5500 years in the Apuseni Mountains (NW Romania) 

Agnes Ruskal, Andrei-Cosmin Diaconu, Andrei Panait, Mariusz Gałka, Angelica Feurdean, and Ioan Tanțău

In the present study, we analyzed an ombrotrophic peat sequence from NW Romania using a multi-proxy approach (lithology, radiocarbon dating, loss on ignition, magnetic susceptibility, testate amoebae and plant macrofossil) in order to reconstruct the environmental and hydroclimate changes that occurred in the last 5500 years.

The studied sequence (Molhașul Mare de la Izbuc, Apuseni Mountains) started to accumulate in 5520 cal yr BP, debutting with a lacustrine phase and evolving into an ombrotrophic Sphagnum peat bog. The palaeoenvironmental stages of the peat bog were confirmed by the lithology, loss on ignition and magnetic susceptibility results. A pan-european testate amoebae-based transfer function was used for the quantitative reconstruction of the water table levels in the peatland. The depth to water-table (DWT) values ranged between 7.3 and 28.5 cm, suggesting wetter conditions in the first 2500 years of the sequence and drier ones between 2500 cal yr BP and the present days. The occurred hydrological shifts and the changes of the surface wetness were also confirmed by the plant macrofossil analyses.

We identified and assessed the local effects of several rapid climate change events that occurred in Europe such as the Piora Oscillation, Middle Bronze Age Cold Event, Iron Age Cold Event, Roman Climate Optimum, Dark Age Cold Event, Medieval Warm Period, Little Ice Age, Great Famine in Europe, the Sporer, Maunder and Dalton Minimum Events and the Year Without Summer.

Our high resolution study is among the few quantitative DWT reconstructions in Romania. Our results contribute to obtaining a broader image and a better understanding of the palaeoenvironmental, palaohydrological and palaeoclimate changes in Romania and in Central Eastern Europe during the past 5500 years.

How to cite: Ruskal, A., Diaconu, A.-C., Panait, A., Gałka, M., Feurdean, A., and Tanțău, I.: High-resolution reconstruction of the hydroclimate and palaeoenvironment of the last 5500 years in the Apuseni Mountains (NW Romania), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16916, https://doi.org/10.5194/egusphere-egu23-16916, 2023.

EGU23-1048 | Orals | CL1.2 | Highlight

The relative role of orbital, CO2 and ice sheet forcing on Pleistocene climate 

Charles Williams, Natalie Lord, Daniel Lunt, Alan Kennedy-Asser, David Richards, Michel Crucifix, Anne Kontula, Mike Thorne, Paul Valdes, Gavin Foster, and Erin McClymont

During the last ~2.5 million years, the Quaternary period, Earth's climate fluctuated between a series of glacials and interglacials, driven by long-term internal forcings such as those in atmospheric CO2 concentrations and ice sheet extent, and external forcings such as the orbital parameters of the Earth around the Sun.  Climate models provide a useful tool for addressing questions concerning the driving mechanisms, dynamics, feedbacks, and sensitivity of the climate system associated with these variations.  However, the structural complexity of such models means that they require significant computational resources, especially when running long (> one million year) transient simulations, and as such are not suitable for exploring orbital-scale variability on these timescales. 

 

Instead, here we use a climate model to calibrate a faster statistical model, or emulator, and use this to simulate the evolution of long-term palaeoclimate during the Quaternary period; firstly during the late Pleistocene (the last 800 thousand years) and secondly the entire Quaternary (the last 2.58 million years).  The emulator is driven by five forcing components: CO2, ice volume, and three orbital parameters.  We firstly compare the simulation with proxy records, and secondly investigate which forcing component is contributing the most to the simulation.

 

The results suggest that the emulator performs well and generally agrees with the proxy records available during the late Pleistocene, for both temperature and precipitation, especially concerning the timing and duration of the various glacial-interglacial cycles.  There are, however, some instances of discrepancies, especially concerning the minima and maxima of the cycles.  A factorial experiment shows that CO2 concentrations and ice volumes changes drive the most variability.  The efficiency of the emulator approach also allows us to carry out a quasi-transient simulation through the entire Quaternary period, and allows projections of possible future drilling results from deep Antarctic ice cores.  

How to cite: Williams, C., Lord, N., Lunt, D., Kennedy-Asser, A., Richards, D., Crucifix, M., Kontula, A., Thorne, M., Valdes, P., Foster, G., and McClymont, E.: The relative role of orbital, CO2 and ice sheet forcing on Pleistocene climate, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1048, https://doi.org/10.5194/egusphere-egu23-1048, 2023.

EGU23-1311 | ECS | Orals | CL1.2 | Highlight

The role of dispersal limitation in the post-glacial forest expansion of southern and central Europe 

Deborah Zani, Heike Lischke, and Veiko Lehsten

The global vegetation cover underwent strong changes during the past glacial cycle. These have been driven by climatic fluctuations but also by spatiotemporal vegetation dynamics, including migration to new climatologically suitable areas and interactions with other species. However, how much migration lag contributed to the vegetation change after the Last Glacial Maximum (LGM) is often not clear. We used the newly-implemented model LPJ-GM 2.0 to simulate the vegetation change of southern and central Europe from the end of the LGM (18.5 ka) to the preindustrial era (1.5 ka). The model couples a migration module to the dynamic global vegetation model LPJ-GUESS, thus allowing species to migrate simultaneously while interacting with each other. We compared two dispersal settings (free dispersal and dispersal limitation) against pollen data to test the reliability of the migration module to provide realistic paleo-vegetation reconstructions for biome and species distributions. Furthermore, we calculated range shifts of the leading edges and centroids to detect potential species-specific migration lags and range filling delays across simulation time. Our results show that the setting with dispersal limitation is better at capturing the initial post-glacial expansion of non-boreal forests in southern and central Europe than the scenario assuming free dispersal. Range shift analysis shows significant migration lags for most tree species at times of sudden temperature rise (start of the Bølling–Allerød warming event and following the Younger Dryas). Overall, our study suggests that it is necessary to include migration processes when simulating vegetation range expansion under rapid climate change, with implications for future vegetation projections.

How to cite: Zani, D., Lischke, H., and Lehsten, V.: The role of dispersal limitation in the post-glacial forest expansion of southern and central Europe, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1311, https://doi.org/10.5194/egusphere-egu23-1311, 2023.

EGU23-2372 | ECS | Posters on site | CL1.2

A model-based exploration of mid-Holocene anti-phase climate variations in the Central Andes 

Ardhra Sedhu-Madhavan, Sebastian G. Mutz, Daniel Boateng, and Todd A. Ehlers

The Andes’ elevation of ~4 km and great meridional extent of ~50°S to 10°N greatly influences the spatial climate patterns across the South American continent. Apart from latitude and altitude, quasi-stable pressure systems modify the climate of the region. The Bolivian high, an upper-level anticyclonic circulation over the central part of the continent, is one such feature and has a strong impact on atmospheric moisture transport and the regional hydroclimate of the Central Andes. Orbitally forced shifts in the Bolivian High have been hypothesised to be responsible for anti-phase palaeoclimate changes in Peru in the mid-Holocene, such as the increase in humidity in the Palpa region and synchronous extreme drought near Lake Titicaca [e.g., Mächtle et al. 2013]. However, this hypothesis has not been tested, and it has not been determined how much of the mid-Holocene hydroclimate change in the Central Andes can be explained by changes in regional pressure systems. Here, we test the hypothesis that mid-Holocene orbital variations and palaeogeographical changes modified pressure fields and regional moisture transport, and lead to anti-phase changes in regional hydroclimate. We test this hypothesis using the physics-based, isotope-tracking climate model ECHAM5-wiso. More specifically, we analyse pre-industrial and mid-Holocene paleoclimate simulations [Mutz et al. 2018]  to track changes in pressure fields and moisture transport. We then assess their impacts on regional hydroclimate in the Central Andes. Results indicate that: (a) the climate models reproduce the observed synchronous anti-phase (wetter and drier) climate changes documented in different parts of Peru, and (b) these can be explained by changes in the regional pressure and wind fields. Taken together, previous proxy-based observations and model results present here indicate that orbital variations drive changes in the regional pressure systems and lead to spatially heterogenous variations in hydroclimate across the Central Andes.

How to cite: Sedhu-Madhavan, A., G. Mutz, S., Boateng, D., and A. Ehlers, T.: A model-based exploration of mid-Holocene anti-phase climate variations in the Central Andes, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2372, https://doi.org/10.5194/egusphere-egu23-2372, 2023.

EGU23-2586 | ECS | Orals | CL1.2

The last glacial cycle transiently simulated with a coupled climate-ice sheet model 

Frerk Pöppelmeier, Fortunat Joos, and Thomas F. Stocker

Understanding climate variability from millennial to glacial-interglacial timescales remains challenging due to the complex and non-linear feedbacks between ice, ocean, and atmosphere. Although the ever-increasing number of reconstructions has helped to form compelling hypotheses for the evolution of ocean and atmosphere circulation or ice sheet extent over the last glacial cycle, climate models, required for systematically testing these hypotheses, struggle to dynamically and comprehensively simulate such long time periods as a result of the large computational costs. Here, we therefore coupled a dynamical ice sheet model to the Bern3D Earth system model of intermediate complexity, that allows for simulating multiple glacial-interglacial cycles in reasonable time. To test the fully-coupled model, we explore the climate evolution over the entire last glacial cycle in a transient simulation forced by the orbital configuration and greenhouse gas and aerosol concentrations. We are able to simulate Global Mean Surface Temperature (GMST) in fair agreement with reconstructions exhibiting a gradual cooling trend since the last interglacial that is interrupted by two more rapid cooling events during the early Marine Isotope Stage (MIS) 4 and Last Glacial Maximum (LGM). The glacial-interglacial GMST and mean ocean temperature differences are 5 °C and 1.6 °C, respectively. Ice volume shows pronounced variability on orbital timescales mirroring northern hemispheric summer insolation. From early MIS3 to the LGM ice volume roughly doubles in good agreement with recent sea-level reconstructions. The Atlantic overturning circulation shows larger variability during the relatively warm MIS5 than during the cooler MIS3, however we note that Dansgaard-Oeschger events are not intrinsically simulated in our setup. At the LGM the Atlantic overturning has a strength of about 14 Sv, which is a reduction by about one quarter compared to the pre-industrial. We thus demonstrate that the new coupled model is able to realistically simulate glacial-interglacial cycles, which allows as to systematically investigate the sensitivities to parameters such as equilibrium climate sensitivity or aerosol radiative forcing during the last glacial cycle.

How to cite: Pöppelmeier, F., Joos, F., and Stocker, T. F.: The last glacial cycle transiently simulated with a coupled climate-ice sheet model, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2586, https://doi.org/10.5194/egusphere-egu23-2586, 2023.

EGU23-2885 | ECS | Orals | CL1.2

Atmosphere-mediated response of the Southern Hemisphere hydroclimate in simulations of spontaneous Dansgaard-Oeschger-like oscillations 

Irene Trombini, Nils Weitzel, Muriel Racky, Paul Valdes, and Kira Rehfeld

Dansgaard-Oeschger (DO) events are the most iconic mode of millennial-scale variability during the last glacial period. The manifestation of DO events outside the North Atlantic region and mechanisms responsible for the propagation of the North Atlantic signal across the globe are still little understood. Propagation of DO events to the Southern Hemisphere (SH) has first been explained by oceanic processes, that result in a muted and delayed signal in the Antarctic ice core record, known as Antarctic Isotope Maxima (AIM). Recent ice core-based reconstructions found an additional short-timescale response (years-to-decades, compared to centuries for the oceanic processes) in phase with the climate changes in Greenland. This fast response has been interpreted as the result of atmospheric transport processes. Shifts in the intertropical convergence zone and SH mid-latitude westerlies are seen as mediators of this response.

Here, we investigate the propagation of abrupt climate changes in the North Atlantic region to the SH in general circulation model simulations with spontaneous DO-like oscillations under glacial conditions. We study the relative timing of changes in temperature, hydroclimate, and atmospheric circulation and compare our results with ice core and speleothem based reconstructions. In the simulations, the timing of changes in different elements of the climate system varies on a continuum of timescales from months to centuries. This indicates the existence of more complex propagation mechanisms than the simple separation into an atmospheric and an oceanic mode. Our work emphasizes that future analysis of simulations of DO-like events should focus not just on the mechanisms responsible for the spontaneous oscillations but also on the spatio-temporal fingerprint of the oscillations across the globe.

How to cite: Trombini, I., Weitzel, N., Racky, M., Valdes, P., and Rehfeld, K.: Atmosphere-mediated response of the Southern Hemisphere hydroclimate in simulations of spontaneous Dansgaard-Oeschger-like oscillations, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2885, https://doi.org/10.5194/egusphere-egu23-2885, 2023.

EGU23-4683 | ECS | Orals | CL1.2

Reduction in ENSO variability during the mid-Holocene: a multi-model perspective 

Shivangi Tiwari, Francesco S. R. Pausata, Allegra N. LeGrande, Michael L. Griffiths, Hugo Beltrami, Anne de Vernal, Clay R. Tabor, Daniel Litchmore, Deepak Chandan, and W. Richard Peltier

Paleoclimatic reconstructions have suggested a reduction inthe variability of the El Niño Southern Oscillation (ENSO) during the mid-Holocene (MH). Model simulations have largely failed to capture thisreduction, potentially due to the inadequate representation of the Green Sahara.The presence of a vegetated Sahara has been shown to have significant impacts on both regional and remote climate but remains inadequately addressed in Paleoclimate Modelling Intercomparison Project / Coupled Model Intercomparison Project (PMIP/CMIP) boundary conditions. Specifically, the incorporation of a Green Sahara has been shown to impact ENSO variability through perturbations to the Walker Circulation. In this study, we evaluate the MH (6,000 years BP) ENSO signatures of simulations from four models, namely —EC-Earth 3.1, iCESM 1.2, University of Toronto version of CCSM4 and GISS Model E2.1-G. Two simulations are considered for each model—a standard PMIP simulation (MHPMIP) with the mid-Holocene orbital parameters and greenhouse gas concentrations with vegetation prescribed to preindustrial conditions, as well as a Green Sahara simulation (MHGS) which additionally incorporates factors such as enhanced vegetation, reduced dust, presence of lakes, and land and soil feedbacks. All models show a reduction in ENSO variability due to the incorporation of Green Sahara conditions. This variability is interpreted in the context of perturbations to the Walker Circulation, triggered by the strengthening of the West African Monsoon.

How to cite: Tiwari, S., Pausata, F. S. R., LeGrande, A. N., Griffiths, M. L., Beltrami, H., de Vernal, A., Tabor, C. R., Litchmore, D., Chandan, D., and Peltier, W. R.: Reduction in ENSO variability during the mid-Holocene: a multi-model perspective, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4683, https://doi.org/10.5194/egusphere-egu23-4683, 2023.

EGU23-4963 | Orals | CL1.2

New insights of the East Asian summer monsoon variability over the past 800 kyr from a transient simulation with CLIMBER-2 

Liya Jin, Andrey Ganopolski, Matteo Willeit, Huayu Lu, Fahu Chen, and Xiaojian Zhang

The East Asian summer monsoon (EASM) is a major component of the global climate system with its variability closely associated with regional changes of rainfall, impacting the lives of over one sixth of the global population strongly. Understanding the periodicities of summer rainfall influenced by the EASM is beneficial to its future projections. However, the mechanism of the response of the EASM associated summer rainfall fluctuations to orbital-scale forcing during the late Pleistocene remains far from being well understood. Here, we provide an 800-kyr long series of EASM rainfall variations by extracting data from multiple transient simulations of CLIMBER-2 over the past 3 million years. Despite a coarse model resolution, the CLIMBER-2 captures a realistic spatial distribution and magnitude of present-day summer (June-July-August) rainfall, especially in East Asia. The CLIMBER-2 model simulates correct magnitude and timing of the last eight glacial cycles in respect to both global ice sheet volume (expressed in δ18O) and CO2 concentration. Both the simulation and reconstructions reveal predominant 100-ky and 41-ky cycles of global ice sheet volume and CO2 concentration, although precession (23- and 19-kyr) bands dominate high-latitude summer insolation. The EASM intensity is traditionally measured by the monsoonal circulation, i.e. the low-level southerly winds in summer over East Asia. Cross-spectral analysis confirms high coherence between model and proxy at 19-kyr and 41-kyr bands implying a strong low-latitude process modulated by precession. Unlike the EASM circulation from the CLIMBER-2, simulated boreal summer rainfall in East Asia, denoted as “EASM rainfall” shows pronounced 41- and 100-kyr cycles, resembling the loess record over the past 800 kyr. The simulation results reveal a decoupling between EASM rainfall and EASM circulation, which probably is a reasonable explanation for the conflicts in proxy records, and also reflects complicated mechanisms of the EASM system on glacial–interglacial timescales.

How to cite: Jin, L., Ganopolski, A., Willeit, M., Lu, H., Chen, F., and Zhang, X.: New insights of the East Asian summer monsoon variability over the past 800 kyr from a transient simulation with CLIMBER-2, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4963, https://doi.org/10.5194/egusphere-egu23-4963, 2023.

EGU23-5982 | ECS | Posters on site | CL1.2

Vegetation Simulation from the Colonization of Land Plants to the Present 

Jiaqi Guo, Yongyun Hu, and Yonggang Liu

Climate affects vegetation growth and distribution, and vegetation affects climate by modifying the exchange of carbon, water, momentum, and energy between atmosphere and land throughout evolution history. Therefore, reproducing the vegetation distribution is of great significance for understanding climate evolution, vegetation evolution, and their interaction. However, a systematic map of global vegetation distribution since the colonization of land plants (about 480 million years ago; Ma) has remained to be determined. Here, Community Earth System Model (CESM) version 1.2.2 and BIOME4 vegetation model are applied to simulate vegetation during the past 480 million years based on modern vegetation parameters. First, the simulations reveal multiple maps of global vegetation from 480 Ma to pre-industrial (PI) period with a 10-million-year interval. 28 biomes show different distribution characteristics with the evolution of climate, and parts of characteristics are supported by palaeobotanical evidence. Second, the potential biomass as a measure of plant growth is analyzed to explore causes of vegetation variations here. The results illustrate plant growth and expansion is significantly affected by terrestrial temperature and CO2 concentration, followed by terrestrial precipitation. Besides, more land area in the middle and low latitudes can be more conducive to plant flourish in geological history. The simulations provide a reference for paleo-vegetation data and some insights into the interaction between climate and vegetation evolution.

How to cite: Guo, J., Hu, Y., and Liu, Y.: Vegetation Simulation from the Colonization of Land Plants to the Present, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5982, https://doi.org/10.5194/egusphere-egu23-5982, 2023.

EGU23-6063 | Orals | CL1.2

Effects of LGM sea surface temperature and sea ice extent on the isotope-temperature slope at polar ice core sites 

Alexandre Cauquoin, Ayako Abe-Ouchi, Takashi Obase, Wing-Le Chan, André Paul, and Martin Werner

Stable water isotopes in polar ice cores are widely used to reconstruct past temperature variations over several orbital climatic cycles. One way to calibrate the isotope-temperature relationship is to apply the present-day spatial relationship as a surrogate for the temporal one. However, this method leads to large uncertainties because several factors like the sea surface conditions or the origin and the transport of water vapor influence the isotope-temperature temporal slope. In this study, we investigate how the sea surface temperature (SST), the sea ice extent and the strength of the Atlantic Meridional Overturning Circulation (AMOC) affect these temporal slopes in Greenland and Antarctica for Last Glacial Maximum (LGM, ~21 000 years ago) to preindustrial climate change. For that, we use the isotope-enabled atmosphere climate model ECHAM6-wiso [1, 2], forced with a set of sea surface boundary condition datasets based on reconstructions (GLOMAP [3] and Tierney et al. (2020) [4]) or MIROC 4m simulation outputs [5]. We found that the isotope-temperature temporal slopes in East Antarctic coastal areas are mainly controlled by the sea ice extent, while the sea surface temperature cooling affects more the temporal slope values inland. Mixed effects on isotope-temperature temporal slopes are simulated in West Antarctica with sea surface boundary conditions changes, because the transport of water vapor from the Southern Ocean to this area can dampen the influence of temperature on the changes of the isotopic composition of precipitation and snow. In the Greenland area, the isotope-temperature temporal slopes are influenced by the sea surface temperatures very near the coasts of the continent. The greater the LGM cooling off the coast of southeast Greenland, the larger the temporal slopes. The presence or absence of sea ice very near the coast has a large influence in Baffin Bay and the Greenland Sea and influences the slopes at some inland ice cores stations. We emphasize that the extent far south of the sea ice is not so important. On the other hand, the seasonal variations of sea ice distribution, especially its retreat in summer, influence the water vapor transport in this region and the modeled isotope-temperature temporal slopes in the eastern part of Greenland. A stronger LGM AMOC decreases LGM to preindustrial isotopic anomalies in precipitation in Greenland, degrading the isotopic model-data agreement. The AMOC strength does not modify the temporal slopes over inner Greenland, and only a little on the coasts along the Greenland Sea where the changes in surface temperature and sea ice distribution due to the AMOC strength mainly occur.

[1] Cauquoin and Werner, J. Adv. Model. Earth Syst., 13, https://doi.org/10.1029/2021MS002532, 2021.

[2] Cauquoin et al., Clim. Past, 15, 1913–1937, https://doi.org/10.5194/cp-15-1913-2019, 2019.

[3] Paul et al., Clim. Past, 17, 805–824, https://doi.org/10.5194/cp-17-805-2021, 2021.

[4] Tierney et al., Nature, 584, 569–573, https://doi.org/10.1038/s41586-020-2617-x, 2020.

[5] Obase and Abe-Ouchi, Geophys. Res. Lett., 46, 11 397–11 405, https://doi.org/10.1029/2019GL084675, 2019.

How to cite: Cauquoin, A., Abe-Ouchi, A., Obase, T., Chan, W.-L., Paul, A., and Werner, M.: Effects of LGM sea surface temperature and sea ice extent on the isotope-temperature slope at polar ice core sites, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6063, https://doi.org/10.5194/egusphere-egu23-6063, 2023.

EGU23-6289 | Orals | CL1.2

Mid Holocene dynamic vegetation highlights unavoidable climate feedbacks 

Pascale Braconnot, Nicolas Viovy, and Olivier Marti

Green Sahara and a northern limit of forest in the northern hemisphere are key characteristics of the differences between the mid Holocene and present-day climate. However, the strength of vegetation feedback and the ability of state-of-the-art climate model to properly represent it still an issue. A reason is that vegetation lies at the critical zone between land and atmosphere. Its variations depend on interconnected factors such as light, energy, water and carbon and, in turn, affect climate and environmental factors. These interconnexions makes it difficult to disentangle the factors that affect the representation of vegetation in a fully interactive model. Dynamical vegetation introduces additional degrees of freedom in climate simulations, so that a model that produces reasonable results when vegetation is prescribed might not be able to properly reproduce the full coupled system, when feedbacks that are not dominant when the system is constraint induce first order cascading effects in coupled mode. Here we investigate the climate-vegetation feedback in mid-Holocene and pre-industrial simulation with the IPSL climate models using 3 different settings of the dynamical vegetation that combining differences in the choice of representation of photosynthesis, bare soil evaporation and parameters defining the vegetation competition and distribution. We show that whatever the set up the major differences expected between the mid-Holocene and preindustrial climates remains similar, but the realisms of the simulated climate can be very different due to cascading climate-vegetation feedbacks that trigger vegetation growth and snow-ice-temperature-soil feedbacks.  Interestingly, with this IPSLCM6 version of the IPSL model (Boucher et al., 2020) all the mid-Holocene simulations produce vegetation in the Sahara-Sahel region compatible with the green Sahara period, but the representation of boreal forests is strongly affected by the different vegetation modeling choices.

How to cite: Braconnot, P., Viovy, N., and Marti, O.: Mid Holocene dynamic vegetation highlights unavoidable climate feedbacks, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6289, https://doi.org/10.5194/egusphere-egu23-6289, 2023.

EGU23-6376 | ECS | Posters on site | CL1.2

Response of East Asian summer monsoon climate to North Atlantic meltwater during the Younger Dryas 

Jie Wu, Zhengguo Shi, and Yongheng Yang

The Younger Dryas (YD) event, recognized as one of the most typical abrupt climate changes on the millennial time scale, results in striking cooling in most regions of the North Atlantic. The most acceptable hypothesis believes that this event is related to a large volume of meltwater fluxes injected into the North Atlantic. In remote Asia, various paleoclimate reconstructions have revealed that the East Asian summer monsoon (EASM) is significantly depressed during the cold YD episode. However, the effect of North Atlantic meltwater-induced cooling on the whole downstream Eurasian regions and its potential dynamics remains been not fully explored till now. In this study, the responses of Asian climate characteristics during the YD episode, especially the EASM, are evaluated based on modeling data from the Simulation of the Transient Climate of the Last 21,000 years (TraCE 21ka). The results show that the cooling signal during the YD, which is mainly caused by meltwater flux, spreads from the North Atlantic to the whole Eurasia. In agreement with the paleoclimatic proxies, the simulated EASM is obviously weakened. The summer precipitation is also suppressed over East, South, and Central Asia. Dynamically, the North Atlantic cooling produces an eastward propagated wave train across the mid-latitude Eurasia, which facilitates weaker EASM circulation. The weakened land-sea thermal contrast over East Asia also contributes to the monsoon decrease during YD cooling.

How to cite: Wu, J., Shi, Z., and Yang, Y.: Response of East Asian summer monsoon climate to North Atlantic meltwater during the Younger Dryas, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6376, https://doi.org/10.5194/egusphere-egu23-6376, 2023.

EGU23-6514 | Orals | CL1.2 | Highlight

Northern Hemispheric extratropical cyclones during glacial times: impact of orbital forcing and ice sheet height 

Christoph C. Raible, Martina Messmer, Joanthan Buzan, and Emmanuele Russo

Extratropical cyclones are a major source of natural hazards in the mid latitudes as wind and precipitation extremes are associated to this weather phenomenon. Still the response of extratropical cyclones and their characteristics to strong external forcing changes is not yet fully understood. In particular, the impact of the orbital forcing as well as variations of the major ice sheets during glacial times on extratropical cyclones have not been investigated so far.  

Thus, the aim of this study is to fill this gap and to assess the impact of orbital forcing and northern hemispheric ice sheet height variations on extratropical cyclones and their characteristics during winter and summer. The main research tool is the Community Earth System Model CESM1.2. We performed a set of time slice sensitivity simulations under preindustrial (PI) conditions and for the following different glacial periods: Last Glacial Maximum (LGM), Marine Isotopic stage 4 (MIS4), MIS6, and MIS8. Additionally, we vary the northern hemispheric ice sheet height for all the different glacial periods by 33%, 66%, 100% and 125% of the ice sheet reconstructed for the LGM. For each of the simulations the extratropical cyclones are identified with a Lagrangian cyclone detection and tracking algorithm, which delivers a set of different cyclone characteristics, such as, cyclone frequency maps, cyclone area, central pressure, cyclone depth, precipitation associated to the extratropical cyclones as well as extremes in cyclone depth and extratropical cyclone-related precipitation. These cyclone characteristics are investigated for the winter and the summer season separately.

Preliminary results show that the extratropical cyclone tracks are shifted southwards on the Northern Hemisphere during the winter season. This has rather strong implication for the Mediterranean, with an increase of precipitation during glacial times over the western Mediterranean. This increase is modulated when changing the ice sheet height as extratropical cyclone tracks shift further south with increasing northern hemispheric ice sheet height. The orbital forcing shows a higher impact during the summer season, where mean precipitation is further reduced over Europe when comparing MIS4 and MIS8 with LGM. The role of the cyclones for these changes in summer needs to be assessed as well as the implication in the North Pacific.

How to cite: Raible, C. C., Messmer, M., Buzan, J., and Russo, E.: Northern Hemispheric extratropical cyclones during glacial times: impact of orbital forcing and ice sheet height, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6514, https://doi.org/10.5194/egusphere-egu23-6514, 2023.

EGU23-6932 | Orals | CL1.2 | Highlight

The Warm Winter Paradox in the mid-Pliocene Warm Period - a focus on model parameterisations. 

Julia Tindall, Alan Haywood, and Paul Valdes

Modelling results from PlioMIP2 (Pliocene Model Intercomparison Project Phase 2) are in strong disagreement with terrestrial proxy data over the high latitudes for the winter season.  This disagreement is large:  models simulate winter temperatures ~20°C cooler than the data suggests.  We term this the ‘warm winter paradox’.

We have shown that the warm winter paradox cannot be easily resolved.  For example, changing model boundary conditions to account for orbital and CO2 uncertainty have only a small effect on winter temperatures.

Here we use the Hadley Centre General Circulation Model, HadCM3, to investigate whether accounting for uncertainties in model parameterisations could improve the model data agreement for the Pliocene winter.  A new set of parameters for HadCM3, which improve model-data agreement for the Eocene, will be used to investigate the Pliocene climate.  We will show that the new parameters in HadCM3 lead to additional winter Pliocene warming at some locations, although a large model-data disagreement remains.   The new model parameters do not improve the Pliocene data-model comparison as much as they do for the Eocene.  This may indicate that finding a single set of parameters capable of producing an optimised simulation of warm climate states in general is not possible, and that further exploration of model parameter uncertainty is warranted; or that the cause of model data disagreements in the high latitudes may be time period specific.   

How to cite: Tindall, J., Haywood, A., and Valdes, P.: The Warm Winter Paradox in the mid-Pliocene Warm Period - a focus on model parameterisations., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6932, https://doi.org/10.5194/egusphere-egu23-6932, 2023.

EGU23-7448 | ECS | Orals | CL1.2

A multi-model assessment of the early last deglaciation (PMIP4 LDv1) 

Brooke Snoll, Ruza Ivanovic, Lauren Gregoire, and Sam Sherriff-Tadano and the PMIP4 Working Group

At the onset of the last deglaciation, beginning ~19 thousand years ago, ice sheets that covered the Northern Hemisphere at the Last Glacial Maximum started to melt, Earth began to warm, and sea levels rose. This time period is defined by major long-term, millennial-scale, climate transitions from the cold glacial to warm interglacial state, as well as many short-term, centennial- to decadal-scale warmings and coolings of more than 5 °C, sudden reorganisations of basin-wide circulations, and jumps in sea level of tons of meters. Long transient simulations of the deglaciation have been increasingly performed to better understand the long and short term processes, examine different possible scenarios, and compare model output to observable records. The Paleoclimate Modelling Intercomparison Project (PMIP) has provided a framework for an international coordinated effort in simulating the last deglaciation whilst encompassing a broad range of models and model complexities. This study is a multi-model intercomparison of 17 simulations of the last deglaciation from nine different climate models. Unlike other multi-model intercomparison projects, these simulations do not follow one particular experimental design but follow an intentionally flexible protocol suitable for all participants. The design of the protocol provides the opportunity to compare results from models using different forcings and examine a variety of scenarios, hence, representing the range of uncertainty in climate predictions of the time period. One particularly challenging choice to make in the experimental design is how to incorporate the resultant freshwater flux from the melting ice sheets. This research focusses on the divergence between climate trajectories in the simulations as a result of the meltwater scenario preferred by the modelling groups as well as other experimental design choices and their impact on the onset of the deglaciation. These results provide a better understanding of modelling this time period as well as model biases and uncertainty with respect to deglacial forcings and the observable proxy records. 

How to cite: Snoll, B., Ivanovic, R., Gregoire, L., and Sherriff-Tadano, S. and the PMIP4 Working Group: A multi-model assessment of the early last deglaciation (PMIP4 LDv1), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7448, https://doi.org/10.5194/egusphere-egu23-7448, 2023.

EGU23-7454 | ECS | Posters on site | CL1.2

An oscillating Atlantic Meridional Overturning Circulation during the last glacial period 

Yvan Romé, Ruza Ivanovic, and Lauren Gregoire

Abrupt climate changes over the last glacial period (~ 115 to 12 thousand years ago) are often associated with reorganisation of the Atlantic Meridional Overturning Circulation (AMOC). It has been suggested that the AMOC can exist in more than one stable mode, but the mechanisms leading to switches between different regimes are still not understood. It is also unclear how disruptions of the ocean circulation are connected to millennial-scale climate variability, such as Dansgaard-Oeschger events or abrupt transitions during the late last deglaciation. 

Most attempts at theorising glacial millennial-scale variability have involved looking at heat and salt transfers between the subtropical and subpolar gyres. This is often referred to as the ‘salt oscillator’ mechanism, which in turn controlled the intensity of the North Atlantic current. We propose that the salt oscillator is in fact part of a larger motion combining harmonic and stochastic dynamics spanning through all components of the climate system when triggered by an initial excitation. Only under certain combinations of boundary conditions and forcings can multiple stable states coexist, sometimes leading to the activation of a pseudo-oscillating regime for thousands of years. 

Based on a new set of last glacial maximum (~21 thousand years ago) simulations that oscillate when forced with snapshots of the early last deglaciation meltwater history, we propose a new way of visualising the stability of the AMOC and its shifts between different stable modes. We provide a detailed analysis of the heat and salinity tendencies in a comprehensive description of the different oscillating modes. Finally, we discuss how the freshwater forcing framework fits into the broader theory of glacial abrupt climate changes.

How to cite: Romé, Y., Ivanovic, R., and Gregoire, L.: An oscillating Atlantic Meridional Overturning Circulation during the last glacial period, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7454, https://doi.org/10.5194/egusphere-egu23-7454, 2023.

EGU23-8172 | ECS | Posters on site | CL1.2

Coupled climate-carbon simulations of the Penultimate Deglaciation and Last Interglacial in the PLASIM-GENIE model 

Tim Cutler, Philip Holden, Pallavi Anand, and Neil Edwards

Theoretical understanding of paleoclimate change such as deglaciations comes primarily from time slice simulations in state-of-the-art atmosphere-ocean general circulation models, where multimillennial transient simulations would be too computationally expensive. Such steady state runs may be missing long-timescale processes involving ocean circulation or the carbon cycle, which could be captured by long transient simulations. The PLASIM-GENIE (Planet Simulator – Grid-Enabled Integrated Earth System) model is capable of running fast, multimillennial climate-carbon cycle simulations, comprising a fully 3D spectral atmosphere and frictional geostrophic ocean with marine and terrestrial carbon cycle modules. Here, we present comparisons between steady state and pseudo-transient experiments in PLASIM-GENIE, starting from the Penultimate Glacial Maximum (140,000 years before present) through the Last Interglacial, applying the PMIP4 Penultimate Deglaciation protocol. In pseudo-transient simulations, the model is stopped at every 500 years and restarted with updated prescribed ice sheets, orbital forcings, meltwater fluxes and relaxed CO2 (with an active carbon cycle). These are compared to steady state time-slice simulations where the model is spun-up at each 500-year interval, to test for hysteresis in atmosphere, ocean and carbon cycle processes. Particular focus is on the timing of Atlantic Meridional Overturning Circulation weakening and recovery. We supplement these baseline simulations with a series of sensitivity experiments where individual forcings are varied.

How to cite: Cutler, T., Holden, P., Anand, P., and Edwards, N.: Coupled climate-carbon simulations of the Penultimate Deglaciation and Last Interglacial in the PLASIM-GENIE model, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8172, https://doi.org/10.5194/egusphere-egu23-8172, 2023.

EGU23-8251 | Posters on site | CL1.2

Effects of glacial conditions on the circulation and water vapor sources of Indian monsoon precipitation 

Thejna Tharammal, Govindasamy Bala, Jesse Nusbaumer, and Andre Paul

Climate records suggest a weaker Indian monsoon circulation and drier conditions in the continent during the Last Glacial Maximum (LGM, ~19-23 ka BP). This is mainly due to circulation changes caused by high-latitude ice sheets, tropical and high-latitude SST changes, and lower atmospheric CO2 concentrations compared to pre-industrial (PI). Such changes in boundary conditions and circulation are likely to cause changes in the water vapor sources of monsoon precipitation, with implications for precipitation reconstructions using water isotope proxies. We use the water isotope/water tagging-enabled Community Earth System Model (iCESM) to study the effects of glacial conditions on the sources of water vapor and isotope ratios of precipitation for the Indian monsoon precipitation. We conduct time slice experiments for the PI and the LGM periods following the PMIP4 guidelines. iCESM was successful in identifying the water vapor sources of present-day Indian summer monsoon precipitation, namely the Indian Ocean sources and precipitation recycling. The detailed results of this study will be presented at the meeting.

How to cite: Tharammal, T., Bala, G., Nusbaumer, J., and Paul, A.: Effects of glacial conditions on the circulation and water vapor sources of Indian monsoon precipitation, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8251, https://doi.org/10.5194/egusphere-egu23-8251, 2023.

EGU23-8404 | ECS | Orals | CL1.2 | Highlight

Multimodel comparison of weathering fluxes during the last deglaciation 

Fanny Lhardy, Bo Liu, Matteo Willeit, Nathaelle Bouttes, Takasumi Kurahashi-Nakamura, Stefan Hagemann, and Tatiana Ilyina

The global carbon cycle is a complex system with many drivers, including slow ones such as the chemical weathering of rocks. At long enough timescales, changes in weathering rates influence CO2 consumption, but also the river loads of carbon, nutrients, and alkalinity. In particular, the global ocean inventory of alkalinity is a critical driver of carbon sequestration into the ocean. Thus, any transitory imbalance between the sources and sinks of alkalinity can lead to changes in ocean chemistry and impact atmospheric CO2 concentration. During the last deglaciation (ca. 19-11 ka BP), the Earth’s climate transitioned from cold and arid to comparatively warmer and wetter conditions. Simultaneously, large ice sheets melted and led to a significant rise of sea level (ca. +120 m), which reduced the size of the exposed continental shelves. Loess deposits were also gradually eroded. These changes logically influenced the chemical weathering of rocks because weathering rates depend on climate variables (runoff and temperature), land-sea distribution and lithology. Some modelling studies and proxy reconstructions suggest little net changes over this period. Yet, the deglacial changes of weathering rates remain poorly constrained.

Most Earth System Models do not explicitly represent weathering and the consequent river fluxes. Moreover, the alkalinity inventory is often assumed constant in models, despite the fact that proxy data suggest an elevated total alkalinity at the Last Glacial Maximum (and the likely changes of its sources and sinks). These choices can potentially bias the model representation of the global carbon cycle, whose deglacial variations have been notoriously hard to simulate for decades. In this study, we calculate weathering fluxes of phosphorus and alkalinity (among others) using reconstructed lithological maps, and model results from transient runs of the last deglaciation and/or time-slice runs of the Last Glacial Maximum and pre-industrial period. To improve robustness, we compare the evolution and spatial distribution of weathering fluxes in different models. We demonstrate that while the increase of runoff during deglaciation enhances weathering, the rise of sea level and the erosion of loess deposits tend to have a counterbalancing effect on the river loads. Our model ensemble tends to show inconsistent deglacial changes of some river loads (e.g. for phosphorus), depending both on runoff biases and on the representation of land-sea distribution. Still, all models indicate a significant decrease of river alkalinity from the LGM to the pre-industrial. Using these findings, we discuss the implications of an explicit representation of weathering fluxes for the global carbon cycle in transient runs with Earth System Models.

How to cite: Lhardy, F., Liu, B., Willeit, M., Bouttes, N., Kurahashi-Nakamura, T., Hagemann, S., and Ilyina, T.: Multimodel comparison of weathering fluxes during the last deglaciation, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8404, https://doi.org/10.5194/egusphere-egu23-8404, 2023.

EGU23-8546 | ECS | Orals | CL1.2

Transitions in the Northern Hemisphere glaciation process 

Stefanie Talento, Andrey Ganopolski, and Matteo Willeit

We use the new Earth system model of intermediate complexity CLIMBER-X to investigate pathways of Northern Hemisphere (NH) glaciation. We perform experiments in which different combinations of orbital forcing and atmospheric CO2 concentration are maintained constant in time. Each model simulation is run for 300 thousand years (kyr) starting from present-day conditions, and using an acceleration technique with asynchronous coupling between the climate and ice sheet model components.

We find that in the pathway to a NH glaciation, several bifurcations might occur. The bifurcations separate a diversity of stable configurations, which have different spatial and temporal prints. We identify four different bifurcations, separating five different equilibrium states: (i) completely ice-free conditions, (ii) present-day (ice only over Greenland), weak glaciation (with ice coverage north and west of Hudson Bay, Greenland and Scandinavia), (iv) Last Glacial Maximum – type of glaciation (with large North American and medium-size Eurasian ice sheets) and (v) mega-glaciation (full ice coverage over both North America and Eurasia).

The transitions are also clustered in terms of differential timescales. While the North-American continent full glaciation has a development timescale of ~ 100 kyr, an extensive ice coverage of the Eurasian continent involves a much longer time-frame of ~ 250 kyr. This could explain why a complete glaciation of the Eurasian continent was never observed. This result is also consistent with previous studies in the sense that one glaciation cycle is not long enough for the Eurasian ice sheet to fully grow.

How to cite: Talento, S., Ganopolski, A., and Willeit, M.: Transitions in the Northern Hemisphere glaciation process, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8546, https://doi.org/10.5194/egusphere-egu23-8546, 2023.

EGU23-8827 | Orals | CL1.2 | Highlight

Are high sensitivity models compatible with the Last Glacial Maximum? 

Navjit Sagoo and Thorsten Mauritsen

The wide range of Effective Climate Sensitivity (ECS) values in climate models are driven by inter-model spread in cloud feedbacks. The most recent generation of models (CMIP6) show an increase in both average ECS values as well as the appearance of very high ECS values (> 4.5 K) compared to the previous generation which has been attributed to an increase in the strength of total cloud feedbacks in CMIP6. Constraining ECS and in particular the high range of ECS values is paramount for reliable predictions of future climate change. The Last Glacial Maximum (LGM) is an out-of-sample climate for modern models and thus provides a valuable evaluation test for these models. This work explores whether models with high ECS values are compatible with the Last Glacial Maximum (LGM) climate and whether we can use the LGM to constrain a plausible upper boundary of ECS. We create a single model ensemble with a wide range of ECS values by modifying cloud feedbacks in the MPI-ESM1.2 model. We simulate the LGM with this ensemble and compare it with four different paleo-reconstructions. Our results indicate models with an ECS > 4 K are incompatible with the existing LGM climate reconstructions: global surface air temperature (SAT) anomalies are too cold compared to reconstructions and ultimately become unstable due to sea ice dynamics in the model. Our study indicates that models with large total cloud feedbacks and high ECS values are not plausible during the LGM. This study highlights the value of using paleoclimates to benchmark models particularly in areas where existing validation techniques are not yet sufficient i.e. constraining cloud feedbacks.

How to cite: Sagoo, N. and Mauritsen, T.: Are high sensitivity models compatible with the Last Glacial Maximum?, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8827, https://doi.org/10.5194/egusphere-egu23-8827, 2023.

EGU23-9705 | ECS | Posters on site | CL1.2

On the global synchronicity of glacial vegetation changes 

Nils Weitzel, Moritz Adam, Maria Fernanda Sanchez Goñi, Marie-Pierre Ledru, Vincent Montade, Coralie Zorzi, and Kira Rehfeld

Vegetation responds to local climate and carbon dioxide changes with response times ranging from decades to millennia, depending on location, spatial scale, and vegetation characteristic. Here, we focus on orbital timescales, for which all available estimates suggest an equilibrium of vegetation and climate. Over the course of the last glacial period, global mean temperature varied between minima during Marine Isotope Stage (MIS) 4 and MIS2, and a maximum in MIS3. If orbital-scale climate changes followed this global trend across most of the globe, we would expect vegetation changes to feature a similar temporal evolution.

Leveraging a global compilation of pollen records, we quantify the synchronicity of orbital-scale vegetation changes within and across regions during the last glacial period. We use the arboreal pollen fraction, statistical mode decompositions, and key taxa as indicators for forest cover changes. Our results suggest that a globally coherent forest cover minimum occurred during MIS2. However, we do not find evidence for other periods of coherent forest cover trends across the globe or either hemisphere. This indicates that vegetation changes were more regionally confined during earlier parts of the last glacial. As chronologies become more uncertain further back in time, we examine the likelihood of dating errors to explain the absence of globally coherent vegetation changes during MIS4 and MIS3. Finally, we compare our results with simulations of climate and vegetation to assess if models capture the diagnosed forest cover trends found in the pollen records. Moreover, this comparison allows us to infer the influence of temperature, moisture availability, and carbon dioxide on vegetation variations during the last glacial period.

How to cite: Weitzel, N., Adam, M., Sanchez Goñi, M. F., Ledru, M.-P., Montade, V., Zorzi, C., and Rehfeld, K.: On the global synchronicity of glacial vegetation changes, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9705, https://doi.org/10.5194/egusphere-egu23-9705, 2023.

EGU23-9748 | Orals | CL1.2 | Highlight | Milutin Milankovic Medal Lecture

Milankovitch cycles and the Arctic: insights from past interglacials 

Bette L. Otto-Bliesner

The Arctic is warming at a rate greater than the global average. End-of-summer minimum sea ice extent is declining and reaching new minimums for the historical record of the last 4 decades. The Greenland ice sheet is now losing more mass than it is gaining, with increased surface melting. Earth System Models suggest that these trends will continue in the future. The geologic past can be used to inform what could happen in the future. Emiliani in his 1972 Science paper commented on the relevance of paleoclimate for understanding our future Earth.

 

Interglacials of the last 800,000 years, including the present (Holocene) period, were warm with low land ice extent. In contrast to the current observed global warming trend, which is attributed primarily to anthropogenic increases in atmospheric greenhouse gases, regional warming during these interglacials was driven by changes in Earth’s orbital configuration. Although the circumstances are different, understanding the behavior, processes, and feedbacks in the Arctic provides insights relevant to what we might expect during future global warming.

 

Data compilations suggest that despite spatial heterogeneity, Marine Isotope Stages (MIS) 5e (Last Interglacial, ~129 to 116 ka) was globally strong. The Last Interglacial (LIG) is characterized by large positive solar insolation anomalies in the Arctic during boreal summer associated with the large eccentricity of the orbit and perihelion occurring close to the boreal summer solstice. The atmospheric carbon dioxide concentration was similar to the preindustrial period.

 

Geological proxy data for the LIG indicates that Arctic latitudes were warmer than present, boreal forests extended to the Arctic Ocean in vast regions, summer sea ice in the Arctic was much reduced, and Greenland ice sheet retreat contributed to the higher global mean sea level. Model simulations provide critical complements to this data as the they can quantify the sensitivity of the climate system to the forcings, and the processes and interplay of the different parts of the Arctic system on defining these responses. As John Kutzbach explained in a briefing for science writers, "climate forecasts suffer from lack of accountability. Their moment of truth is decades in the future. But when those same computer programs are used to hindcast the past, scientists know what the correct answer to the test should be."

 

Significant attention and progress have been made in modeling the LIG in the last 2 decades. Earth System Models now capture more realism of processes in the atmosphere, ocean, and sea ice, can couple to models of the Greenland ice sheet, and include representations of the response of Arctic vegetation to the NH high-latitude summer warming. Increases in computing power has allowed these models to be run at higher spatial resolution and to perform transient simulations to examine the evolving orbital forcing during the LIG.  The international PMIP4 simulations for 127 ka illustrated the importance of positive cryosphere and ocean feedbacks for a warmer Arctic. A CESM2-Greenland ice sheet, transient LIG simulation from 127 ka to 119 ka, established a key role of vegetation feedbacks on Arctic climate change.

How to cite: Otto-Bliesner, B. L.: Milankovitch cycles and the Arctic: insights from past interglacials, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9748, https://doi.org/10.5194/egusphere-egu23-9748, 2023.

Reliable projections of future climate change are vital for mitigation and adaptation efforts. Such efforts require not only projections of mean changes but of changes in variability, too, since those directly affect the occurrence of extremes. The evaluation of climate models regarding their ability to simulate expected changes in variability of temperature and precipitation relies on the comparison of observations with simulations of past and present-day climate. As such, studying past periods of warming furthers the understanding of the climate system and its projected changes. However, the response of the climate system to forcings depends on the background state. Thus, understanding how insights from studies of the past transfer to future projections and the limitations of this transfer is vital.

Here, we present an analysis of temperature and precipitation variability in transient simulations of the Last Deglaciation and projected future climate. To this end, we analyze how the distributions of temperature and precipitation change as exemplified by the moments of the distribution, i.e. variance, skewness and kurtosis. We identify trends in the projections and compare them to results for the Last Deglaciation and present commonalities and differences between the responses in these climate states. We further present how these changes relate to differences in the background state, forcings, and the timescales on which these forcings act as well as the limitations imposed by these differences. Based on this analysis of the state-dependency of variability and its change with a warming mean state, we present conclusions on how past climates can inform and support studies of future climate change.

How to cite: Ziegler, E. and Rehfeld, K.: Past and future changes of temperature and precipitation variability in climate model projections and transient simulations of the Last Deglaciation, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9813, https://doi.org/10.5194/egusphere-egu23-9813, 2023.

EGU23-10048 | Posters on site | CL1.2

From the last interglacial to the future – new insights into climate change from the PalMod Earth System modelling framework 

Kerstin Fieg, Mojib Latif, Tatjana Ilyina, and Michael Schulz

The PalMod project funded by the German Federal Ministry of Education and Research (BMBF) aims at filling gaps in our understanding of the dynamics and variability of the Earth system during the last glacial-interglacial cycle. Major goals are to enhance Earth system models (ESMs), to identify potential tipping points that could become important in a warming world, and to perform long-term projections with the advanced the ESMs. 

In PalMod Phases I and II, we focussed on three key epochs, the last glacial inception, MIS3, and the last deglaciation. In PalMod Phase III, we will use the new insights from the first two phases to perform more advanced climate projections into the next millennia. Special focus areas are rapid climate transitions, permafrost melting, and ice-sheet instability and sea level rise.  

How to cite: Fieg, K., Latif, M., Ilyina, T., and Schulz, M.: From the last interglacial to the future – new insights into climate change from the PalMod Earth System modelling framework, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10048, https://doi.org/10.5194/egusphere-egu23-10048, 2023.

EGU23-11127 | Orals | CL1.2 | Highlight

Rapid expansion of ice sheet area in transient simulations of the last glacial inception 

Matteo Willeit, Stefanie Talento, and Andrey Ganopolski

We present transient simulations of the last glacial inception using the Earth system model CLIMBER-X with interactive ice sheets and visco-elastic solid-Earth response. The simulations are initialized at the Eemian interglacial (125 ka) and run until 100 ka, driven by prescribed changes in orbital configuration and greenhouse gas concentrations from ice core data.
CLIMBER-X simulates a robust ice sheet expansion over North America and Scandinavia through MIS5d, in accordance with proxy data. However, we show that the crossing of a bifurcation point in the ice-covered area, which leads to a rapid (~7 million square km over a few centuries) expansion of ice sheets over North America, is critical to get a large enough ice volume to match the sea level drop of ~40 m indicated by reconstructions during the last glacial inception. As a consequence of the presence of this bifurcation point, the model results are highly sensitive to climate model biases. We also show that in the model the vegetation feedback plays an important role during glacial inception.
Further results suggest that, as long as the system responds almost linearly to insolation changes during the last glacial inception, the model results are not very sensitive to changes in the ice sheet model resolution and the acceleration factor used to speed-up the climate component. This is not valid, however, when the system response is characterized by strongly-nonlinear processes, such as a rapid increase in ice-covered area.

How to cite: Willeit, M., Talento, S., and Ganopolski, A.: Rapid expansion of ice sheet area in transient simulations of the last glacial inception, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11127, https://doi.org/10.5194/egusphere-egu23-11127, 2023.

EGU23-11206 | Orals | CL1.2

Holocene forest-cover changes in Europe - a comparison of dynamic vegetation model results and pollen-based REVEALS reconstructions 

Anne Dallmeyer, Anneli Poska, Laurent Marquer, Andrea Seim, and Marie-José Gaillard-Lemdahl

We compare Holocene forest-cover changes in Europe derived from a transient MPI-ESM1.2 simulation with high spatial resolution time-slice simulations conducted in LPJ-GUESS and pollen-based quantitative reconstructions of forest cover based on the REVEALS model (pol-RVs). The dynamic vegetation models and pol-RVs agree with respect to the general temporal trends in forest cover for most parts of Europe, with a large forest cover during the mid-Holocene and substantially smaller forest cover closer to the present time. However, the age of the start of decrease in forest cover varies between regions, and is much older in the pol-RVs than in the models. The pol-RVs suggest much earlier anthropogenic deforestation than the prescribed land-use in the models starting 2000 years ago. While LPJ-GUESS generally overestimates forest cover compared to pol-RVs, MPI-ESM indicates lower percentages of forest cover than pol-RVs, particularly in Central Europe. A comparison of the simulated climate with chironomid-based climate reconstructions reveal that model-data mismatches in forest cover are in most cases not driven by biases in the climate. Instead, sensitivity experiments show that the model results strongly depend on the models tuning regarding natural disturbance regimes (e.g. fire and wind throw). The frequency and strength of disturbances are – like most of the parameters in the vegetation models – static and calibrated to modern conditions. However, these parameter values may not be valid during climate and vegetation states totally different from today’s. In particular, the mid-Holocene natural forests were probably more stable and less sensitive to disturbances than present day forests that are heavily altered by human interventions. Our analysis highlights the fact that such model settings are inappropriate for paleo-simulations and complicate model-data comparisons with additional challenges. Moreover, our study suggests that land-use is the main driver of forest decline in Europe during the mid- and late-Holocene.

How to cite: Dallmeyer, A., Poska, A., Marquer, L., Seim, A., and Gaillard-Lemdahl, M.-J.: Holocene forest-cover changes in Europe - a comparison of dynamic vegetation model results and pollen-based REVEALS reconstructions, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11206, https://doi.org/10.5194/egusphere-egu23-11206, 2023.

EGU23-12139 | ECS | Orals | CL1.2

Sensitivity of the glacial marine biological pump to particle sinking and dust deposition in MPI-ESM 

Bo Liu, Joeran Maerz, and Tatiana Ilyina

The marine biological carbon pump substantially contributes to the glacial-interglacial CO2 change. Compared to the late Holocene, proxy data for the Last Glacial Maximum (LGM) generally agree on an increased export production, associated with an enhanced marine biological carbon pump, in the subantarctic region of the Southern Ocean (SO). By contrast, global export production during the LGM is poorly constrained due to the sparseness and uncertainty of proxy data. The efficiency of the biological pump is mainly controlled by phytoplankton growth, ocean circulation and the sinking and remineralisation of organic matter. Previous modelling studies primarily focused on the sensitivity regarding the former two factors. By far, few studies have discussed the impact of marine particle sinking on glacial ocean biogeochemistry.

In this study, we examine the impact of two different sinking schemes for biogenic particles on the LGM ocean biogeochemistry in the Max Planck Institute Earth System Model (MPI-ESM). In the default sinking scheme, sinking velocities of particulate organic matter (POM), biogenic minerals (CaCO3 and opal) and dust are prescribed and kept the same between LGM and pre-industrial (PI) state. Such a scheme is also widely applied in other ocean biogeochemical models. In a new Microstructure, Multiscale, Mechanistic, Marine Aggregates in the Global Ocean (M4AGO) sinking scheme, the size, microstructure, heterogeneous composition, density and porosity of marine aggregates, consisting of POM, CaCO3, opal and dust, are explicitly represented, and the sinking speed is prognostically computed. We discuss the effect of the two particle sinking schemes under two LGM circulation states: “deep LGM AMOC” with a similar NADW/AABW boundary compared to PI, which is produced in many existing models, and “shallow LGM AMOC” with a shallower NADW/AABW boundary, which agrees better with proxy data. Furthermore, we conducted sensitivity studies regarding LGM dust deposition as the latter is subject to considerable uncertainties.

We find that for the deep LGM AMOC, the difference between the impact of the two particle sinking schemes on the ocean biogeochemical tracers is small. On the contrary, for shallow LGM AMOC, the M4AGO scheme yields more remerineralised carbon in the deep ocean and, therefore, better agreement with δ13C data, suggesting the quantitative impact of particle sinking schemes strongly depends on the background LGM circulation state. For the default sinking scheme, increased glacial dust deposition increases iron fertilisation and thus leads to a rise in both primary production and export production. For the M4AGO scheme, however, the iron fertilisation effect is surpassed by the ballasting effect that reduces the surface nutrient concentration, and LGM primary production decreases with dust deposition. This preliminary result shows that the new marine aggregate sinking scheme adds further complexities to the marine biological carbon pump response to the climate states. Our further analysis will encompass the other nutrients and dissolved oxygen, as well as the comparison to corresponding proxy data. 

How to cite: Liu, B., Maerz, J., and Ilyina, T.: Sensitivity of the glacial marine biological pump to particle sinking and dust deposition in MPI-ESM, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12139, https://doi.org/10.5194/egusphere-egu23-12139, 2023.

EGU23-12646 | ECS | Orals | CL1.2

On the sensitivity of the ocean response to LGM and MIS3-forcings 

Chetankumar Jalihal, Ute Merkel, Matthias Prange, and Uwe Mikolajewicz

The AMOC has undergone abrupt and quasi-periodic changes during the MIS-3. The prevailing background climatic conditions that produce such behavior in AMOC have yet to be fully understood. Previous studies have demonstrated that some climate models tend to have an oscillatory behavior in their AMOC under specific conditions that vary from model to model. A systematic study that compares these conditions across models is missing. Moreover, the relative impact of greenhouse gas and icesheet forcings on the mean strength of AMOC remain unresolved.

 

Here, we present our results from CMIP/PMIP style simulations with MIS-3 boundary conditions. This study has been carried out under the PalMOD project. Based on the minimum and maximum ice sheet extent and greenhouse gas radiative forcing, we carried out a set of 4 experiments. These experiments are the LGM, 38ka, LGM_38kaghg (LGM topography with 38ka greenhouse gas concentrations), and 38ka_LGMghg (38ka topography with LGM greenhouse gas concentrations). We have used two Earth system models (ESM), Viz. the MPI-ESM and the CESM. The experiments in MPI-ESM were carried out with two versions of the river run-off directions - one in which run-off directions are compatible with the topography and the other where run-off directions are set to that of the modern-day. Thus, we have three sets of simulations for each experiment.

 

A robust feature across these simulations is that during the MIS-3, the mean strength of AMOC is sensitive to changes in greenhouse gases, and the changes in ice sheets do not significantly affect the AMOC. The density of water in the North Atlantic Deep-Water formation (NADW) region does not change significantly in response to these forcings. However, the variations in the density in the Arctic and Southern Ocean deep-water formation region drive variations in AMOC strength. The AMOC in CESM undergoes Dansgaard-Oeschger (DO) like oscillations in the 38ka LGMghg simulation. No oscillations are found in any MPI-ESM experiments with the run-off adapted for topography. However, Bo-like oscillations appear in the LGM simulation with modern run-off. This highlights the importance of model parameters and the location of freshwater input into the ocean in determining the conditions that lead to oscillatory behavior in AMOC.

How to cite: Jalihal, C., Merkel, U., Prange, M., and Mikolajewicz, U.: On the sensitivity of the ocean response to LGM and MIS3-forcings, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12646, https://doi.org/10.5194/egusphere-egu23-12646, 2023.

EGU23-13276 | Orals | CL1.2 | Highlight

A multi-centennial mode of North Atlantic climate variability throughout the Last Glacial Maximum 

Matthias Prange, Lukas Jonkers, Ute Merkel, Michael Schulz, and Pepijn Bakker

Paleoclimate proxy records from the North Atlantic region reveal substantially greater multi-centennial temperature variability during the Last Glacial Maximum (LGM) compared to the current interglacial. As there was no obvious change in external forcing, causes for the increased variability remain unknown. Here we provide a mechanism for enhanced multi-centennial North Atlantic climate variability during the LGM based on experiments with the coupled climate model CESM. The model simulates an internal mode of multi-centennial variability, which is associated with variations in the Atlantic meridional overturning circulation. In accordance with high-resolution proxy records from the glacial North Atlantic, this mode induces highest surface temperature variability in subpolar and mid latitudes and almost no variance in low latitudes. Greenland surface air temperature varies by up to 4°C, which is in line with multi-centennial variability reconstructed from ice cores. We show that this mode is based on a salt-oscillator mechanism and emerges only under full LGM climate forcing. Moderate deviations from full-glacial boundary conditions lead to its disappearance. We further argue that the multi-centennial mode has to be distinguished from millennial-scale Dansgaard-Oeschger oscillations.

How to cite: Prange, M., Jonkers, L., Merkel, U., Schulz, M., and Bakker, P.: A multi-centennial mode of North Atlantic climate variability throughout the Last Glacial Maximum, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13276, https://doi.org/10.5194/egusphere-egu23-13276, 2023.

EGU23-13781 | ECS | Posters on site | CL1.2

Waterbelt states controlled by sea-ice thermodynamics 

Johannes Hörner and Aiko Voigt

Snowball Earth refers to multiple periods in the Neoproterozoic during which geological evidence indicates that Earth was largely covered in ice. A Snowball Earth results from a runaway ice-albedo feedback, but it is still under debate how the feedback stopped: with fully ice-covered oceans or with a strip of open water around the equator. 

The latter are called waterbelt states and are an attractive explanation for the Snowball Earth events because they provide a refugium for the survival of photosynthetic aquatic life, while still explaining Neoproterozoic geology. Waterbelt states can be stabilised by bare sea ice in the subtropical desert regions with lower surface albedo stopping the ice-albedo feedback. However, the sea-ice model used in climate simulations can have a significant impact on the snow cover of ice and hence the surface albedo. 

Here we investigate the robustness of waterbelt states with respect to the thermodynamical representation of sea ice. We compare two thermodynamical sea-ice models, an idealised 0-layer Semtner model and a 3-layer Winton model that takes into account the heat capacity of ice. We deploy the atmospheric part of the ICON-ESM model (ICOsahedral Nonhydrostatic - Earth System Model) in a comprehensive set of simulations to determine the extent of the waterbelt hysteresis. 

The thermodynamic representation of sea ice strongly influences snow cover on sea ice over the range of all climate states. Including heat capacity by using the 3-layer Winton model increases snow cover and enhances the ice-albedo feedback. The hysteresis of the stable waterbelt state found using the 0-layer model disappears when using the 3-layer model. This questions the relevance of a subtropical bare sea-ice edge for waterbelt states and might help explain drastically varying model results on waterbelt states in the literature.

How to cite: Hörner, J. and Voigt, A.: Waterbelt states controlled by sea-ice thermodynamics, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13781, https://doi.org/10.5194/egusphere-egu23-13781, 2023.

EGU23-15633 | Posters on site | CL1.2 | Highlight

The impact of CO2 and ice sheet changes on the deglacial AMOC sensitivity to freshwater perturbations in three different Earth System Models 

Gregor Knorr, Marie Kapsch, Matthias Prange, Uwe Mikolajewicz, Dragan Latinovic, Ute Merkel, Lu Niu, Lars Ackermann, Xiaoxu Shi, and Gerrit Lohmann

During deglaciation disintegration of large-scale continental ice sheets represents a continuous threat to reduce the strength of the Atlantic meridional overturning circulation (AMOC) via meltwater perturbations to the northern high latitudes. Nevertheless, an abrupt AMOC recovery is detected half-way through the last deglaciation and  a growing number of studies using Earth System Models (ESMs) of varying complexity have shown that atmospheric CO2 concentrations and ice sheet volume can influence the operational mode of the AMOC, eventually including the coexistence of multiple states and associated threshold behavior for intermediate climate states between full glacial (e.g. Last Glacial Maximum, LGM) and full interglacial (e.g. pre-industrial, PD)  conditions. In this study we present results from coordinated sensitivity experiments conducted as part of the German climate modeling initiative (PalMod), using three complex ESMs (AWI-ESM, CESM and MPI-ESM). Besides differences in the impact of CO2 and ice volume changes, we also investigate how variations in these boundary conditions control the AMOC sensitivity to deglacial meltwater injections in the North Atlantic. We find that the AMOC strength responds to ice sheet and/or CO2 changes in all models, with partly opposing effects.  A similar AMOC strength for PD and LGM conditions is detected in AWI-ESM and MPI-ESM, while CESM shows a weaker LGM AMOC. This weaker LGM state is also characterized by a relatively pronounced AMOC sensitivity to freshwater perturbations. Our inter-comparison experiments suggest that this specific behavior in CESM can be detected for atmospheric concentrations between LGM and intermediate levels of ~220 ppm. This further corroborates in particular the impact of CO2 changes to modulate the trajectory of deglacial climate changes by an alteration of the AMOC susceptibility to meltwater injections as recently suggested (Sun et al., Glob. Planet. Change, 2021; Barker & Knorr, Nat. Commun., 2021).

 

 

 

References:

Sun, Y., Knorr, G., Zhang, X., Tarasov, L., Barker, S., Werner, M. and G. Lohmann (2022): Ice sheet decline and rising atmospheric CO2 control AMOC sensitivity to deglacial meltwater discharge. Global and Planetary Change 210. https://doi.org/10.1016/j.gloplacha.2022.10375

Barker, S. and G.  Knorr (2021): Millennial scale feedbacks determine the shape and rapidity of glacial termination. Nature Communications 12, 2273. https://doi.org/10.1038/s41467-021-22388-6

How to cite: Knorr, G., Kapsch, M., Prange, M., Mikolajewicz, U., Latinovic, D., Merkel, U., Niu, L., Ackermann, L., Shi, X., and Lohmann, G.: The impact of CO2 and ice sheet changes on the deglacial AMOC sensitivity to freshwater perturbations in three different Earth System Models, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15633, https://doi.org/10.5194/egusphere-egu23-15633, 2023.

Paleo records indicate significant variation in sea level and temperature proxies between different glacial cycles. What is unclear is the extent to which these differences are due to noise in the physical system versus a robust response to external forcings. When one considers what is happening with each individual ice sheet, variations between glacial cycles are largely unknown, given the few relevant records available to constrain ice sheet extent before the Eemian. 

To explore both the controls on past ice sheet and climate evolution and explore bounds on what the evolution might actually have looked like, we are running ensemble simulations of the last two glacial cycles with the fully coupled ice/climate model LCice. LCice is a coupled version of the Loveclim EMIC and GSM glacial systems model with hybrid shallow shelf and shallow ice flow and global visco-elastic glacio-isostatic adjustment. The current configuration includes all 4 ice sheet complexes and is subject to only orbital and greenhouse gas forcing.

To answer the above questions, we present ensemble results for the last two glacial inceptions, focusing on what key ice sheet and climate characteristics are robust across the ensemble and what are not. The role of key forcings and feedbacks are also isolated through a set of sensitivity experiments.  

How to cite: Geng, M. and Tarasov, L.: A comparison of the last two glacial inceptions via fully coupled transient ice and climate modelling., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16335, https://doi.org/10.5194/egusphere-egu23-16335, 2023.

EGU23-16377 | Orals | CL1.2 | Highlight

Angiosperms leaf evolution and the Cretaceous continental hydrological cycle : accounting for paleotraits in paleoclimate numerical simulations 

Pierre Sepulchre, Julia Bres, Quentin Pikeroen, Nicolas Viovy, and Nicolas Vuichard

Land cover, and thereby vegetation, can alter climate through biogeochemical and biogeophysical effects. Specifically, plants mediate radiative and turbulent fluxes between the surface and atmosphere and contribute to defining temperature and precipitation patterns in continental areas. In recent decades, pioneering works based both on fossil records and climate modelling have shown that vegetation parameterization is pivotal for accurately simulating past climates. Here, we focused on the Cretaceous, during which the radiation of angiosperms was accompanied by a physiological revolution characterized in the fossil record by an increase in the density of leaf veins and, ultimately, an unprecedented rise in their stomatal conductance. Emulating such an evolution of leaf traits, quantifying their consequences on plant productivity and transpiration, and identifying the associated feedbacks in the Cretaceous climate is a very challenging task. We addressed this triple problem by embedding the reconstruction of physiological paleotraits from the fossil record within the IPSL-CM5A2 earth system model, which land surface scheme allows for the interaction between stomatal conductance and carbon assimilation.

We built and evaluated vegetation parameterizations accounting for the increase in stomatal conductance during angiosperm radiation, which is consistent with the fossil record, by altering the hydraulic and photosynthetic capacities of plants in a coupled fashion. These experiments, combined with two extreme atmospheric pCO2 scenarios, show that a systematic increase in transpiration is simulated when vegetation shifts from a proto-angiosperm state to a modern-like state, and that its magnitude is related to primary productivity modulated by light, water stress, and evaporative demand. Under a high pCO2 scenario, only stomatal conductance plays a role, and the feedback of vegetation change consists mainly of more intense water recycling and rainfall over the continents. At low pCO2, the effect of the high stomatal conductance on transpiration is enhanced by the development of vegetation cover, resulting in more transpiration and higher precipitation rates at all latitudes. Enhanced turbulent fluxes lead to a surface cooling that outcompete the warming linked to the lower surface albedo. Our results suggest a larger impact of angiosperms on climate when atmospheric pCO2 is decreasing, and stresses the importance of accounting for fossil-based paleotraits in paleoclimate simulations.

How to cite: Sepulchre, P., Bres, J., Pikeroen, Q., Viovy, N., and Vuichard, N.: Angiosperms leaf evolution and the Cretaceous continental hydrological cycle : accounting for paleotraits in paleoclimate numerical simulations, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16377, https://doi.org/10.5194/egusphere-egu23-16377, 2023.

EGU23-16871 | ECS | Orals | CL1.2

Species distribution models fail to predict paleozoological occurrences during the Holocene Green Sahara phase 

Ignacio Lazagabaster, Juliet Spedding, Irene Solano-Regadera, Chris Thomas, Salima Ikram, Severus Snape, and Jakob Bro-Jorgensen

Paleoclimatic simulations are powerful tools to investigate past faunal biogeographical patterns, but they can fail to capture complex climatic conditions at specific regional or temporal scales. Here we show that species distribution models (SDMs) do not predict the expansion of suitable habitats for mammals that were present in the Sahara during the African Humid Period (AHP) according to radiocarbon-dated paleozoological records. We illustrate this issue by modeling the current and past distribution of the hartebeest (Alcelaphus buselaphus), a typical African savanna antelope with a wide Sub-Saharan distribution. Its Holocene paleozoological record shows that its distribution during the AHP included large areas of the Sahara and the northern African Mediterranean coast, from Morocco to Egypt and the Levant. We use Bayesian additive regression trees (BARTs) with an MCMC algorithm in combination with current climate and occurrence data to generate posterior distributions of habitat suitability, evaluate variable importance, and generate variable partial-dependence plots. From these, we learn that annual precipitation is the most important climatic variable determining the hartebeest’s current distribution. We then projected habitat suitability onto various paleoclimatic scenarios during the AHP and found that the estimated precipitation did not reach the minimum required for the viability of hartebeest populations. These results highlight the potential of the fossil record to test the regional precision of paleoclimatic simulations, ultimately helping to generate more realistic past environmental scenarios.

How to cite: Lazagabaster, I., Spedding, J., Solano-Regadera, I., Thomas, C., Ikram, S., Snape, S., and Bro-Jorgensen, J.: Species distribution models fail to predict paleozoological occurrences during the Holocene Green Sahara phase, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16871, https://doi.org/10.5194/egusphere-egu23-16871, 2023.

EGU23-17590 | Orals | CL1.2

Simulating Changes in Tropical Cyclone Activity During the Deglaciation 

Clay Tabor, Marcus Lofverstrom, Isabel Montañez, Jessica Oster, and Colin Zarzycki

How tropical cyclones respond to climate change remains an open question. Due to recent increases in computing power and climate model resolution, it is now possible to explicitly simulate tropical cyclone genesis and life cycle over long temporal and spatial scales. So far, most high-resolution simulations have explored tropical cyclones under present-day and future climate conditions. There has been little work on tropical cyclone activity in past climates. Here, we help fill in this gap with high resolution simulations of the last deglaciation including the Last Glacial Maximum (LGM; 21-ka), Heinrich Stadial 1 (HS1; 16-ka), and Preindustrial (PI; 1850 CE). We use the water isotope tracer enabled version of the Community Earth System Model version 1.3 (iCESM1.3) at ~0.25° horizontal resolution to simulate climate and the TempestExtremes algorithm to track tropical cyclone features. Our preliminary results show intriguing spatial changes in tropical cyclone activity at the LGM relative to PI. The Atlantic and Indian basins produce less tropical cyclones while the Western Pacific produces more tropical cyclones at the LGM. Furthermore, tropical cyclone frequency decreases in the southern hemisphere but remains similar in the northern hemisphere. The LGM simulation also produces fewer strong storms (greater than 49 m/s). Further investigation will explore the physical mechanisms for the simulated tropical cyclone responses during the deglaciation as well as the effects of freshwater flux into the North Atlantic on tropical cyclone activity.

How to cite: Tabor, C., Lofverstrom, M., Montañez, I., Oster, J., and Zarzycki, C.: Simulating Changes in Tropical Cyclone Activity During the Deglaciation, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-17590, https://doi.org/10.5194/egusphere-egu23-17590, 2023.

EGU23-157 | ECS | Posters on site | CL1.5

Excess methane, ethane, and propane production in Greenland ice core samples and a first characterization of the δ13C-CH4 and δD-CH4 signature 

Michaela Mühl, Jochen Schmitt, Barbara Seth, James E. Lee, Jon S. Edwards, Edward J. Brook, Thomas Blunier, and Hubertus Fischer

Air trapped in polar ice provides unique records of the past atmospheric composition ranging from key greenhouse gases such as methane (CH4) to short-lived trace gases like ethane (C2H6) and propane (C3H8). Interpreting these data in terms of atmospheric changes requires that the analyzed species accurately reflect the past atmospheric composition.

Recent comparisons of Greenland CH4 records obtained using different extraction techniques revealed discrepancies in the CH4 concentration for the last glacial. Elevated methane levels (excess methane or CH4(exs)) were detected in dust rich ice core sections measured by discrete melt extraction techniques pointing to an artefact sensitive to the measurement technique. To shed light on the underlying mechanism, we analyzed Greenland ice core samples for methane and other short-chain alkanes (ethane and propane) covering the time interval from 12 to 42 kyr using a classic wet extraction technique. The artefact production happens during the melting and extraction step (in extractu) and reaches 14 to 91 ppb CH4(exs) in dusty ice samples. For the first time in ice core analyses, we document a co-production of excess methane, ethane, and propane (excess alkanes) with the observed concentrations for ethane and propane exceeding, at least by a factor of 10, their past atmospheric concentration. Independent of the produced amounts, excess alkanes were produced in a fixed molar ratio of approximately 14:2:1, indicating a common production. We also discovered that the amount of excess alkanes scales generally with the amount of mineral dust (or Ca2+ as a proxy for mineral dust) within the ice samples. Moreover, applying the Keeling-plot approach we are able to isotopically characterize CH4(exs) revealing a relatively heavy carbon isotopic signature of (-46.4 ± 2.4) ‰ and a light deuterium isotopic signature of (-326 ± 57) ‰ of the excess methane in the samples analyzed.

The co-production ratios of excess alkanes and the isotopic composition of excess methane allows us to confine potential formation processes. We discovered that this specific alkane pattern is not in line with an anaerobic methanogenic origin but indicative for abiotic decomposition of organic matter as also found in sediments, soils, and plant leaves. From the present-day state of research little is known about this process and there is urgent need to improve our understanding for future ice core measurements. Moreover, the already existing discrete records of atmospheric CH4 in Greenland ice need to be corrected for excess CH4 contribution (CH4(exs), δ13C-CH4(exs), δD-CH4(exs)) in dust-rich intervals.

While the size of the excess methane production has little effect on reconstructed radiative forcing changes of CH4 in the past, it is in the same range as the Inter-Polar Difference (IPD) for CH4. Knowing the empirical relation of excess CH4(exs)/ Ca2+ and CH4(exs)/ C2H6 allows us to derive a first-order correction of existing CH4 data sets to revise previous interpretations of the relative contribution of high latitude northern hemispheric CH4 sources based on the IPD.

How to cite: Mühl, M., Schmitt, J., Seth, B., Lee, J. E., Edwards, J. S., Brook, E. J., Blunier, T., and Fischer, H.: Excess methane, ethane, and propane production in Greenland ice core samples and a first characterization of the δ13C-CH4 and δD-CH4 signature, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-157, https://doi.org/10.5194/egusphere-egu23-157, 2023.

EGU23-1327 | ECS | Orals | CL1.5

Non-target screening of organic aerosol tracers applied to a high-alpine firn core 

Carla Huber, Daniil Salionov, François Burgay, Anja Eichler, Theo Jenk, Sasa Bjelic, and Margit Schwikowski

Ice cores are unique natural archives that provide important information about the past evolution of the Earth’s atmosphere. Whereas the inorganic atmospheric aerosol fraction is well characterized, the organic composition is less understood. The organic aerosol burden is consistently underestimated in the current state-of-the-art models, thus highlighting major gaps in our understanding of the pathways by which organic aerosols accumulate and evolve in the atmosphere. So far, organic aerosols in ice cores have been primarily reported as either bulk (e.g., water insoluble or dissolved organic carbon) or specific parameters (e.g., biomass burning tracers).
To provide a more comprehensive characterization of the organic fraction, we applied a non-target screening approach optimised for determining oxidation products of volatile organic compounds to a firn core collected on the Corbassière glacier (Grand Combin, Swiss Alps), in 2020, covering the period 2008-2020. In comparison with a firn core drilled two years earlier (2018), we observe a drastic disturbance of seasonal trends for certain species, such as major ions at depths corresponding to the annual layers from 2008 to 2016, induced by meltwater percolation.

As organic tracers are present in low concentrations in the firn core, we performed solid phase extraction. The organic tracers were analysed with high-resolution mass spectrometry based on Orbitrap technology coupled with liquid chromatography. This technique makes it possible to study a wide range of individual compounds at low concentration and to identify them with MS/MS fragmentation. We can attribute molecular formulas to detected compounds by comparing the MS/MS spectra with spectral libraries (e.g., mzCloud) or reference standards. With this approach we will present a unique record of molecular composition of organic aerosol in the Corbassière firn core.
Furthermore, this firn core presents a unique opportunity to examine the effect of melting on the organic tracers. We found that specific burning tracers (e.g., vanillic acid, vanillin and syringaldehyde) are less affected than other biomass tracers (e.g., pinic acid) by meltwater percolation. In general, we observe a decrease in concentration of the organic tracers in the same firn core section where we also observe a decrease in major ion concentrations.

How to cite: Huber, C., Salionov, D., Burgay, F., Eichler, A., Jenk, T., Bjelic, S., and Schwikowski, M.: Non-target screening of organic aerosol tracers applied to a high-alpine firn core, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1327, https://doi.org/10.5194/egusphere-egu23-1327, 2023.

EGU23-1684 | Posters on site | CL1.5

The next generation U.S. National Science Foundation Ice Core Facility: supporting state-of-the-art science. 

Lindsay Powers, Andrei Kurbatov, Charles Kershaw, Geoffrey Hargreaves, Curtis Labombard, and Tyler J. Fudge

The National Science Foundation Ice Core Facility (NSF-ICF, fka NICL) is in the process of building a new facility including freezer and scientist support space. The facility is being designed to minimize environmental impacts while maximizing ice core curation and science support. In preparation for the new facility, we are updating research equipment and integrating ice core data collection and processing by assigning International Generic Sample Numbers (IGSN) to advance the “FAIR”ness and establish clear provenance of samples, fostering the next generation of linked research data products. The NSF-ICF team, in collaboration with the US ice  core science community, has established a metadata schema for the assignment of IGSNs to ice cores and samples. In addition, in close coordination with the US ice core community, we are adding equipment modules that expand traditional sets of physical property, visual stratigraphy, and electrical conductance ice core measurements. One such module is an ice core hyperspectral imaging (HSI) system. Adapted for the cold laboratory settings, the SPECIM SisuSCS HSI system can collect up to 224 bands using a continuous line-scanning mode in the visible and near-infrared (VNIR) 400-1000 nm spectral region. A modular system design allows expansion of spectral properties in the future. The second module is an updated multitrack electrical conductance system. These new data will guide real time optimization of sampling for planned analyses during ice core processing, especially for ice with deformed or highly compressed layering. The aim is to facilitate the collection of robust, long-term, and FAIR data archives for every future ice core section processed at NSF-ICF. The NSF-ICF is fully funded by the National Science Foundation and operated by the U.S. Geological Survey.

How to cite: Powers, L., Kurbatov, A., Kershaw, C., Hargreaves, G., Labombard, C., and Fudge, T. J.: The next generation U.S. National Science Foundation Ice Core Facility: supporting state-of-the-art science., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1684, https://doi.org/10.5194/egusphere-egu23-1684, 2023.

EGU23-2398 | ECS | Orals | CL1.5 | Highlight

A Novel Method for Quantifying Terrestrial SOA-Markers in Antarctic Ice 

Emilia Bushrod, Elizabeth Thomas, and Chiara Giorio

Terrestrially emitted biogenic volatile organic compounds (BVOCs) can be oxidised within the troposphere and become components in secondary organic aerosol (SOA). SOA can be transported and deposited at glacial regions. Due to Antarctica’s geography being removed from the terrestrial sources of BVOCs, it was unclear if SOA-markers of such BVOCs could become incorporated in Antarctic ice, at a detectable concentration. Terrestrial SOA-markers have never before been found to be present in Antarctic ice cores, until this study. The implementation of liquid chromatography coupled with triple quadrupole mass spectrometry has allowed for the development of a novel method that can detect targeted organic compounds at concentrations as low as 1.5ppt. Using this method, 2-methylerythritol, a SOA-marker of isoprene, has been detected in Jurassic, an ice core drilled in Antarctica. Though difficult to quantify due to the low concentration, this is the first time that such a compound has been found in Antarctic ice.

How to cite: Bushrod, E., Thomas, E., and Giorio, C.: A Novel Method for Quantifying Terrestrial SOA-Markers in Antarctic Ice, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2398, https://doi.org/10.5194/egusphere-egu23-2398, 2023.

EGU23-2498 | ECS | Posters on site | CL1.5

239Pu concentrations reconstructed using three Antarctic ice cores during 1940-1980 CE 

Jinhwa Shin, Seungmi Lee, Heejin Hwang, and Yeongcheol Han

The radioisotope Plutonium-239 (239Pu) was artificially produced to the environment by atmospheric nuclear weapons tests during 1940-1980 CE. Although 239Pu is the most abundant one among isotopes of Plutonium, it exists in Antarctic ice cores at very low level of sub-fg g-1. Accordingly, the historical records of 239Pu fallout in Antarctica have not been well reconstructed. In this study, we determined 239Pu concentrations in three coastal ice cores in Northern Victoria Land, East Antarctica. Discrete samples with sub-annual resolution for the period 1940-1980 CE were analyzed using inductively coupled plasma sector field mass spectrometry (ICP-SFMS) without purification or preconcentration. The fallout records of the three sites showed consistent fluctuations and also agreed with the records recovered from inland dome sites (Hwang et al., 2019), which allowed for constructing an Antarctic composite record. The composite 239Pu record was characterized by two major peaks in 1954 and 1964 CE and a minor peak in 1970s, which could be ascribed to the major atmospheric nuclear test events. Those synchronous 239Pu peaks are expected to serve as useful age markers in other regions in Antarctica, which can improve depth-age relationships of ice core records and enable more precise interregional comparisons. In addition, it will contribute to a more precise comparison of ice core records with reanalysis data back to the 1950s (e.g., ERA5).

How to cite: Shin, J., Lee, S., Hwang, H., and Han, Y.: 239Pu concentrations reconstructed using three Antarctic ice cores during 1940-1980 CE, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2498, https://doi.org/10.5194/egusphere-egu23-2498, 2023.

EGU23-3195 | Orals | CL1.5

Skytrain Ice Rise, Antarctica, during the last glacial period 

Eric Wolff, Mackenzie Grieman, Helene Hoffmann, Jack Humby, Robert Mulvaney, Christoph Nehrbass-Ahles, Sentia Goursaud Oger, Rachael Rhodes, and Isobel Rowell

Antarctic ice core records covering the last glacial cycle generally reflect a common climate and environmental history overlain with local influences such as changes in altitude, atmospheric circulation, local dust sources, or regional sea ice extent. Here we investigate records from the 651 m Skytrain Ice Rise core, drilled within the WACSWAIN (WArm Climate Stability of the West Antarctic ice sheet in the last Interglacial) project. This ice rise is adjacent to the Ronne Ice Shelf and the WAIS, and extends into the last interglacial period, including a continuous record of the last glacial cycle.   

The water isotope record shows the clearly recognisable pattern of all the Antarctic Isotopic Maxima of the last 100 kyr, but with different amplitudes to those seen in the well-known WAIS Divide or EPICA ice cores. We will consider what these differences in amplitude tell us about ice elevation at Skytrain, using total air content data to aid our interpretation. The information from sea salt ions can tell us about ice shelf extent, and taking the water isotopes and ions together will allow us to diagnose the status of the Ronne Ice Shelf throughout the glacial. Terrestrial material (Ca, dust) reflects both a common continent-wide input of dust from other continents (especially South America) but also local inputs. We will use the differences for terrestrial dust between Skytrain Ice Rise and other sites to diagnose the input of local dust from the Ellsworth Mountains.

Finally combining all three sources of information we expect to make statements about the wider advance and retreat of the West Antarctic Ice Sheet and Ronne Ice Shelf in the region surrounding Skytrain Ice Rise.

How to cite: Wolff, E., Grieman, M., Hoffmann, H., Humby, J., Mulvaney, R., Nehrbass-Ahles, C., Goursaud Oger, S., Rhodes, R., and Rowell, I.: Skytrain Ice Rise, Antarctica, during the last glacial period, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3195, https://doi.org/10.5194/egusphere-egu23-3195, 2023.

EGU23-3787 | Orals | CL1.5

Sulfate isotopes over termination II - Source decomposition and Southern Ocean productivity changes 

Hubertus Fischer, Andrea Burke, James Rae, Eric Wolff, Helena Pryer, Emily Doyle, Mirko Severi, Bradley Markle, Maria Hörhold, Johannes Freitag, and Tobias Erhardt

An important ingredient in the glacial reduction of atmospheric CO2 is the increase of marine biological productivity in the Southern Ocean region due to an alleviation of Fe limitation in glacial times. This is indeed documented in marine sediments north of the modern Antarctic Polar Front (APF). In contrast, productivity south of it appears to be reduced, however the marine information is incomplete due to the prevalence of winter and summer sea ice in major parts of this region during glacial times. The high-resolution Antarctic ice core sulfate aerosol record, which, among other sources, is influenced by the marine biogenic emission of dimethylsulfide, was so far unable to provide unambiguous estimates of such productivity changes. In particular, sulfate deposition fluxes in the EPICA Dome C ice core (EDC) showed no glacial/interglacial changes whatsoever, while the same data in the EPICA Dronning Maud Land core (EDML) suggested a slight increase in the glacial, despite the fact that these records should be dominated by biogenic sources south of the APF.

New high-precision stable sulfur isotope measurements on ice core sulfate over termination II on the EDML core together with high-resolution sulfate, sea-salt and mineral dust aerosol concentration records allow us for the first time to perform a quantitative decomposition of the sea salt, terrestrial, volcanic and biogenic sulfate contributions. This shows that despite a significant increase in terrestrial sulfate in the glacial, marine biogenic emissions are still by far the dominating source of sulfate during that time at least for the Atlantic sector of Antarctica but likely for the entire Antarctic plateau.

Using a simple atmospheric aerosol transport model to correct for the loss of sulfate aerosol en route by wet and dry deposition, we are able to reconstruct the atmospheric sulfate aerosol concentrations changes over the Atlantic sector of the Southern Ocean source region mainly south of the APF. This shows that despite lower sulfate ice concentrations at EDML during interglacials, atmospheric aerosol concentration at the ocean source south of the APF - hence marine biogenic sulfur emissions - were up to a factor of 2 higher during the last interglacial and the late termination II than during the penultimate glacial maximum.

How to cite: Fischer, H., Burke, A., Rae, J., Wolff, E., Pryer, H., Doyle, E., Severi, M., Markle, B., Hörhold, M., Freitag, J., and Erhardt, T.: Sulfate isotopes over termination II - Source decomposition and Southern Ocean productivity changes, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3787, https://doi.org/10.5194/egusphere-egu23-3787, 2023.

One of the primary proxies for ancient atmospheric air compositions is the fossil air occluded in polar ice sheets. Ice cores are significant archives for the atmospheric Greenhouse Gas (GHG) concentrations during the last 800 kyr (thousand years). GHG records from polar ice cores have provided valuable information on past climatic, atmospheric, and glaciological changes. For example, nitrous oxide (N2O) is a long-lived GHG and gives us information on nitrogen cycles. However, the time resolution and missing gaps of N2O records limit our understanding of the control mechanisms in the atmosphere. One of the well-known state-of-the-art methods is AI (Artificial Intelligence) techniques, and its main branch is ML (Machine Learning) method. To fill the N2O gaps during the last 800 kyr, we used CO2 and CH4 concentration data from Antarctic ice cores (Vostok and EPICA Dome C ice cores). The ML methods were run in two steps. First, the gap parts were deleted from the time series, and modeling was performed with CO2 and CH4 concentration data with six various ML methods (Linear, Support Vector Machine, Tree, Gaussian Process Regression (GPR), Artificial Neural Network (ANN), and Ensemble). Then, the best model was selected for the second step to reconstruct the N2O in the data gaps. Although other AI methods revealed acceptable results in the first step, the GPR method produced a high-quality simulation with R2= 0.86, RMSE= 7.38 ppb, and MAE= 4.15 ppb. Finally, the simulation for the N2O gaps was performed with the GPR method. Our results confirm that AI techniques have a high potential to produce continuous paleo atmospheric GHG concentrations. Future research includes modeling with other AI and ML methods and applying the AI techniques to other ice core records, such as water isotope ratios (temperature proxy) over various past periods.

How to cite: Salehnia, N. and Ahn, J.: Filling N2O data gaps during the last 800,000 years via Artificial Intelligence Techniques, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4873, https://doi.org/10.5194/egusphere-egu23-4873, 2023.

EGU23-6627 | Orals | CL1.5

Bipolar volcanic ice-core synchronization of the last glacial cycle 

Anders Svensson and the Bipolar volcano team

Precise synchronization of climate records is essential for deducing the dynamics of the climate system. Ice cores from the Greenland and Antarctic ice sheets have previously been synchronized by the use of cosmogenic isotopes, gas concentrations, and traces of large volcanic eruptions. Identification of identical sequences of volcanic sulfate depositions at both poles have been applied to synchronize ice cores in the Holocene, in the last deglaciation, in Marine Isotope Stage 3 (MIS3) and around the Indonesian Toba eruption occurring close to 74 ka. We now extend this inter-hemispheric volcanic synchronization approach to also cover MIS2 (16.5-24.5 ka BP), MIS4 and part of MIS5 (60-110 ka BP) allowing for a precise bipolar synchronization of the entire last glacial period. The synchronization is based on some 250 volcanic eruptions that are identified as acidity spikes in both Greenland and Antarctica. Similar to previous work, the identification of volcanic sequences at the two poles is supported by annual layer counting in both Greenland and Antarctica, although the identification of annual layers becomes increasingly difficult with depth. To support the synchronization we investigate the deduced annual layer thicknesses (not requiring layer counting) and the inferred depth-depth relation between synchronized ice cores. The precise bipolar synchronization allows to determine the exact inter-hemispheric phasing of abrupt climate change during the last glacial, and to investigate a possible relation between abrupt climate change and volcanism. Furthermore, the frequency and magnitude of large volcanic eruptions of the last glacial can be established.

How to cite: Svensson, A. and the Bipolar volcano team: Bipolar volcanic ice-core synchronization of the last glacial cycle, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6627, https://doi.org/10.5194/egusphere-egu23-6627, 2023.

EGU23-8369 | Posters on site | CL1.5

Optimal sampling resolution for water isotope records in ice cores 

Fyntan Shaw, Andrew Dolman, Torben Kunz, Vasileios Gkinis, and Thomas Laepple

Water isotopes in ice cores offer a window into the climate of the past. Often the measurement of these water isotopes is done discretely, with the ice cores cut into many regularly spaced samples. Determining the optimal sampling rate for these measurements is a question of balancing high temporal resolution with processing time and effort. Furthermore, the effect of isotopic diffusion smooths the record, attenuating high frequency variability far below the measurement noise level. This results in some climate information becoming unobtainable and limits the usefulness of very high resolution data. Deconvolving (un-diffusing) the time-series can further enhance the signal but strongly depends on the precision of the isotope data that is mainly determined by the measurement error.

Here, we discuss the optimal measurement specifications in terms of sampling resolution and precision for different uses of the water isotope data, such as the estimation of the diffusion length, the direct interpretation of the time-series and the interpretation of the time-series after it has been deconvolved. We do this theoretically, based on how we model diffusion, and empirically through simulations of surrogate ice core records. Our findings can provide guidance on how to process new deep ice cores such as the Oldest Ice Core record.

How to cite: Shaw, F., Dolman, A., Kunz, T., Gkinis, V., and Laepple, T.: Optimal sampling resolution for water isotope records in ice cores, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8369, https://doi.org/10.5194/egusphere-egu23-8369, 2023.

EGU23-9346 | ECS | Posters on site | CL1.5

Analysis of organic aerosol markers and chiral compounds in an ice core from the Siberian Altai using UHPLC-HRMS 

Johanna Schäfer, Francois Burgay, Thomas Singer, Margit Schwikowski, and Thorsten Hoffmann

The assessment of global warming and its far-reaching influences on our planet necessitates reliable and accurate climate models. For this purpose, past atmospheric conditions like aerosol composition must be studied to understand their influence on the Earth’s climate. Ice cores are valuable climate archives that preserve organic compounds from atmospheric aerosols, which can be utilized as marker species for their respective emission sources.

Secondary organic aerosols (SOAs) are formed in the atmosphere by the oxidation of volatile organic compounds (VOCs), which can be either of anthropogenic or biogenic origin. The most common precursors of SOAs are monoterpenes, which are naturally emitted by vegetation in large amounts. Furthermore, organic compounds formed during biomass burning events contribute to the aerosol budget and allow the reconstruction of paleo-fire activity. Of great interest as a marker species is the anhydrosugar levoglucosan, which is formed during the combustion of cellulose. In addition to its combustion products, intact polymeric lignin, digested via alkaline oxidative degradation, can provide information about the type of vegetation which it originated from. A large variety of these markers were analyzed in an ice core extracted from the Belukha glacier located in the Altai region of Southern Siberia covering a time span of three centuries. A sample preparation method including multiple solid phase extractions and UHPLC-HRMS analysis was employed.

Chiral compounds have the same molecular formula and atom connectivity but act like mirror images of each other. In most environmental studies, no distinction is made between these so-called enantiomers. However, chirality can affect chemical and physical properties and thus influence particle formation reactions in the atmosphere. The enantiomeric ratio of a chiral compound can also further elucidate possible emission sources. Here we present the first chiral analysis of monoterpene oxidation products in ice cores and thus on a long-term scale. For this purpose, a multiple heartcut two-dimensional liquid chromatography method (mLC-LC) was developed that allows the simultaneous determination of the enantiomeric ratios of the monoterpene oxidation products cis-pinic acid and cis-pinonic acid in complex ice core samples. This novel method was successfully applied to Belukha ice core samples.

How to cite: Schäfer, J., Burgay, F., Singer, T., Schwikowski, M., and Hoffmann, T.: Analysis of organic aerosol markers and chiral compounds in an ice core from the Siberian Altai using UHPLC-HRMS, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9346, https://doi.org/10.5194/egusphere-egu23-9346, 2023.

EGU23-10179 | Posters on site | CL1.5

Isotope diffusion in ice enhanced by vein-water flow 

Felix Ng

Diffusive smoothing of signals on the water stable isotopes in ice sheets limits the climatic information retrievable from these ice-core proxies. Previous theories explained how, in polycrystalline ice below the firn, fast diffusion in the network of intergranular water veins short-circuits the slow diffusion in crystal grains to cause “excess diffusion”, enhancing the signal smoothing rate above that implied by self-diffusion in ice monocrystals. However, the controls of excess diffusion remain poorly understood. I show that vein-water flow amplifies excess diffusion, by altering the three-dimensional field of isotope concentrations and isotope transfer between the veins and crystals. The rate of signal smoothing depends not only on temperature, vein and grain sizes, and signal wavelength, but also on vein-water flow velocity, which can increase the rate by 1 to 2 orders of magnitude. This modulation can significantly impact signal smoothing at ice-core sites in Greenland and Antarctica, as demonstrated by simulations for the GRIP and EPICA Dome C sites, which show sensitive modulation of their diffusion-length profiles when vein-water flow velocities reach ~ 101–102 m yr–1. Thus vein-flow mediated excess diffusion may help explain the mismatch between modelled and spectrally-derived diffusion lengths in other ice cores. I also show that excess diffusion biases the spectral estimation of diffusion lengths from isotopic signals and the reconstruction of surface temperature from diffusion-length profiles. These findings caution against using the single-crystal isotopic diffusivity to represent the bulk-ice diffusivity. The need to predict excess diffusion in ice cores calls for extensive study of isotope records for its occurrence and better understanding of vein-scale hydrology in ice sheets.

How to cite: Ng, F.: Isotope diffusion in ice enhanced by vein-water flow, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10179, https://doi.org/10.5194/egusphere-egu23-10179, 2023.

EGU23-10308 | ECS | Orals | CL1.5 | Highlight

New ice core proxy for reconstructing past wind variability in the Atlantic sector of the Southern Hemisphere Westerly Wind belt 

Dieter Tetzner, Elizabeth Thomas, and Claire Allen

The Southern Hemisphere Westerly Winds play a critical role in the global climate system by modulating the upwelling and the transfer of heat and carbon between the atmosphere and the ocean. Since observations started, the core of the westerly wind belt has increased in strength and has contracted towards Antarctica. It has been proposed that these deviations are among the main drivers of the observed widespread warming in West Antarctica. However, the lack of long-term wind records in the Southern Hemisphere mid-latitudes hinders our ability to assess the wider context of the recently observed changes.

Here, we present the diatom record preserved in an ice core retrieved from the Ellsworth Land region, West Antarctica. The diatom abundances and species assemblages from this ice core represent the regional variability in wind strength and atmospheric circulation patterns over the Atlantic sector of the Southern Ocean. We use this novel proxy to produce an annual reconstruction of winds in the Atlantic sector of the Southern Hemisphere Westerly Wind belt over the last 300 years. This wind reconstruction allows tracking changes in the strength and position of the westerly winds during the late Little Ice age and exploring the link between the recent increase in wind strength, greenhouse gases and ozone depletion in the atmosphere.

How to cite: Tetzner, D., Thomas, E., and Allen, C.: New ice core proxy for reconstructing past wind variability in the Atlantic sector of the Southern Hemisphere Westerly Wind belt, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10308, https://doi.org/10.5194/egusphere-egu23-10308, 2023.

EGU23-11819 | ECS | Posters virtual | CL1.5

Greenhouse gas (CO2, CH4) alteration in shallow ice at Larsen blue-ice area, Northern Victoria Land, East Antarctica 

Giyoon Lee, Jinho Ahn, Ikumi Oyabu, Kajal Kumari, and Kenji Kawamura

CO2 and CH4 records from polar ice cores have greatly enhanced our understanding of the control mechanisms of atmospheric greenhouse gas (GHG) concentrations and their relationship to surface temperature. However, multiple ice cores show offsets of 1–3 % and concerns about in situ production in trapped air were raised. Recently, GHGs in shallow ice cores from blue-ice areas (BIAs) in Antarctica show excess CO2 and CH4 concentration values and even extremely lower CH4 concentration than other non-contaminated ice core records at the same gas ages. We aim to decipher the processes of GHG production and CH4 destruction in the shallow ice at Larsen BIA. CH4 concentration records from the Larsen BIA generally show an increasing trend from the subsurface to a depth of ~0.35–1.15 m. Then gradually decreases until it reaches the true ancient atmospheric CH4 values at ~4.6 m depth. In contrast, CO2 concentration in the Larsen blue ice shows a gradual decrease from the subsurface until a depth of ~4.6 m where the concentration variation stabilizes, but still has a 10–20 ppm difference with other existing non-contaminated ice core records. These alterations might be due to mixing with modern air through cracks and/or microbial activity inside the occluded air bubbles. The vertical distribution of δ15N-N2 in several Larsen BIA ice cores indicates that alteration by modern atmospheric air is not significant at the top ~10 m. Depleted δ18Oatm in a depth of ~0.15–1.65 m might indicate in situ microbial activity consuming O2 gas in Larsen blue ice samples, but δ18Oatm values in a depth of 1.95–10 m might indicate little microbial activity. Our future study may include analysis of Pb concentration and isotopes to investigate the effect of modern aerosol intrusion. In addition, we may measure CH4 concentration in ice after receiving UV light in order to check whether UV photolysis is included in the mechanism for CH4 destruction.

How to cite: Lee, G., Ahn, J., Oyabu, I., Kumari, K., and Kawamura, K.: Greenhouse gas (CO2, CH4) alteration in shallow ice at Larsen blue-ice area, Northern Victoria Land, East Antarctica, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11819, https://doi.org/10.5194/egusphere-egu23-11819, 2023.

EGU23-12369 | ECS | Orals | CL1.5

Lagrangian modeling used for improving ice core interpretation 

Andreas Plach, Sabine Eckhardt, Ignacio Pisso, Joseph R. McConnell, and Andreas Stohl

Atmospheric transport modeling with the Lagrangian Particle Dispersion Model (LPDM) FLEXPART has been used for the interpretation of ice core records in several studies in the recent past. Here we present (1) the methodology and results of a study looking into the historical black carbon (BC) emissions based on inverse modeling of ice core records, (2) discuss preliminary results and further plans for a similar study looking into the historical sulphur dioxide (SO2) emissions, (3) and give a short overview of other ice core studies using FLEXPART simulations.

Both, BC and SO2 emissions, are caused by anthropogenic as well as natural processes, e.g., (incomplete) combustion of fossil fuels / biomass and volcanic eruptions. And, both negatively influence our health and environment, e.g., causing premature mortality, lowering surface albedo, producing acid rain. However, both species also act as climate forcers, and therefore an accurate knowledge of past BC/SO2 emissions is essential to quantify and model associated global climate forcing. Nowadays, commonly used bottom-up BC/SO2 emission inventories for historical Earth System Modeling (ESM), e.g., for the Coupled Model Intercomparison Project Phase 5 / Phase 6 (CMIP5/CMIP6) are poorly constrained by observations prior to the late 20th century.

In a recent study, we revisit and evaluate these historical 1850 to 2000 BC emission inventories used for ESM simulations, based on an array of deposition ice core records, Lagrangian atmospheric modeling with the FLEXPART model, and an objective inversion technique in order to bring the spatial-temporal patterns of emission inventories in accordance with observed deposition at the ice core sites. We find substantial discrepancies between our reconstructed BC emissions and the existing bottom-up inventories which do not fully capture the complex spatial-temporal BC emission patterns. Our findings imply changes to existing historical BC radiative forcing estimates are necessary, with potential implications for observation-constrained climate sensitivity.

How to cite: Plach, A., Eckhardt, S., Pisso, I., McConnell, J. R., and Stohl, A.: Lagrangian modeling used for improving ice core interpretation, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12369, https://doi.org/10.5194/egusphere-egu23-12369, 2023.

EGU23-12385 | Posters on site | CL1.5 | Highlight

Recent heavy metal pollution from the territory of the former Soviet Union (FSU) – ice core records and emission estimates 

Anja Eichler, Petr Nalivaika, Theo Jenk, Thomas Singer, Sergey Kakareka, Tamara Kukharchyk, Stella Eyrikh, Tatjana Papina, Andreas Plach, and Margit Schwikowski

Atmospheric heavy metal pollution caused by metal smelting, mining, waste incineration and fossil fuel combustion presents a significant issue for human health and the environment. Anthropogenic emissions from the territory of the former Soviet Union (FSU) considerably influenced atmospheric concentrations of heavy metals. However, due to scarce monitoring data and fragmentary reporting, emissions quantities from this region are not well-known and it is even unclear if emissions decreased or increased after collapse of the Soviet Union. This is underlined by the fact that existing ice-core records and emission estimates based on national inventories for the FSU reveal an opposing trend for the most recent ~30 years. 

Here we present new records of post-Soviet Union anthropogenic heavy metal  emissions (Bi, Cd, Cu, Pb, Sb, Zn) derived from three ice cores; from the Mongolian Altai (Tsambagarav ice core, period 1710-2009 AD) and the Siberian Altai (two Belukha ice cores, period 1680-2018 AD), covering a large regional footprint of emissions. The major source region of air pollution arriving at the Altai is primarily the territory of the FSU except for the eastern-most Siberian parts. Heavy metal concentrations at ultra-trace levels in the studied ice cores were analysed using inductively coupled plasma sector-field mass spectrometry (ICP-SF-MS). These records were complemented with new heavy metal emission estimates based on the available inventory data (1975-2015 AD) to derive a robust reconstruction of recent FSU heavy metal emissions. Consistent with the emission estimates, ice-core concentrations of Cd, Cu, Pb, Sb, Zn during the 2010s correspond to 20-40% of the maximum values in the 1970s and are comparable to their 1940s-1950s levels. A similar magnitude was also estimated for the decrease in Bi between 1975 and 2015, however, ice-core concentrations do not show a substantial downward trend.

How to cite: Eichler, A., Nalivaika, P., Jenk, T., Singer, T., Kakareka, S., Kukharchyk, T., Eyrikh, S., Papina, T., Plach, A., and Schwikowski, M.: Recent heavy metal pollution from the territory of the former Soviet Union (FSU) – ice core records and emission estimates, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12385, https://doi.org/10.5194/egusphere-egu23-12385, 2023.

EGU23-12653 | ECS | Orals | CL1.5

Characterisation of multi-scale deformation in NEGIS from microstructure analysis of the EastGRIP ice core 

Johanna Kerch, Kyra Streng, Nicolas Stoll, Jan Eichler, Julien Westhoff, Daniela Jansen, Paul Bons, and Ilka Weikusat

We present the results from a microstructural analysis of more than 1000 thin section samples from the East Greenland Ice Core Project (EastGRIP) ice core that is being drilled at the onset of the fast-flowing North East Greenland Ice Stream (NEGIS) since 2017, focusing on the grain boundary network and bubbles.

The data were recorded directly at the drilling site with a Large Area Scanning Macroscope from the polished and sublimated surface of samples from between 0 and 2121 m ice depth. Most samples are cut vertically, along the core axis, but a selected number of perpendicular vertical and horizontal sections from volume samples are included, providing the opportunity to deduce the three-dimensional microstructure in these depths. Processing of the image data was done with the open source software Ice Microstructure Analyser, extracting a fully digitalized grain boundary network by applying machine learning for the classification of grain boundaries and air inclusions.

We analysed the shape-preferred orientation (SPO) of grains and bubbles based on statistically computed parameters from the data set under consideration of available azimuthal core-orientation data reconstructed from visual stratigraphy data. These SPO parameters include grain size distribution, grain shape and derived measures like perimeter ratio and aspect ratio, and grain boundary orientation angle.

The data show varying trends throughout the core and on different length scales, supporting and complementing earlier observations in the crystallographic-preferred orientation data from the same set of samples. We provide microstructural evidence for dynamic recrystallisation driven by deformation throughout the core. Specifically, we will discuss our findings of heterogeneities that point to internal deformation due to the occurrence of high strain localisation and link them to the observed complex pattern of anisotropy in the ice column.

How to cite: Kerch, J., Streng, K., Stoll, N., Eichler, J., Westhoff, J., Jansen, D., Bons, P., and Weikusat, I.: Characterisation of multi-scale deformation in NEGIS from microstructure analysis of the EastGRIP ice core, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12653, https://doi.org/10.5194/egusphere-egu23-12653, 2023.

EGU23-14208 | Posters on site | CL1.5

Optimal coring locations for high resolution climate reconstructions from the East Antarctic Plateau 

Thomas Laepple, Remi Dallmayr, Maria Hörhold, Nora Hirsch, Daniela Jansen, Melanie Behrens, Thomas Münch, and Johannes Freitag

Oxygen isotopes of snow, firn, and ice cores provide valuable information on past climate variations. Yet, multiple processes, such as stratigraphic noise and the advection of spatial isotope variations linked to topographic anomalies create non-climatic variations (‘noise’) in the ice-core record and limit the quality of high-resolution climate reconstructions. All of these processes are site specific and vary depending on the environmental conditions at and around the ice-core location.  In the last years, based on field studies, numerical experiments and theoretical considerations, we improved our quantitative understanding of these noise generating processes and their dependency on the depositional conditions. Building on this work, we here ask the question how the potential quality of ice-core based climate reconstructions depends on the drilling site location.  Making use of digital elevation models,  ice flow-velocity maps and statistical relationships between the surface topography, accumulation anomalies,  isotopic anomalies and stratigraphic noise, we predict the site and time-scale dependent noise contribution to ice-core records of the last millennium. The created maps provide a step towards choosing optimal ice coring and  sampling locations for high-resolution climate reconstructions from Antarctic ice-cores and provide testable predictions for the quality of future ice-core records.




How to cite: Laepple, T., Dallmayr, R., Hörhold, M., Hirsch, N., Jansen, D., Behrens, M., Münch, T., and Freitag, J.: Optimal coring locations for high resolution climate reconstructions from the East Antarctic Plateau, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14208, https://doi.org/10.5194/egusphere-egu23-14208, 2023.

EGU23-14700 | Posters on site | CL1.5

On the importance of atmosphere-snow humidity exchange for the climate signal stored in the snow isotopic composition 

Hans Christian Steen-Larsen, Laura Dietrich, Sonja Wahl, Michael Town, Abigail Hughes, Maria Hoerhold, Alexandra Zuhr, Melanie Behrens, Xavier Fettweis, and Martin Werner

Research over the last five years dedicated to identifying and quantifying the processes responsible for driving the climate signal in the isotopic composition of the snow have documented the role of the humidity exchange between the snow and atmosphere in changing the initial precipitation isotopic composition. Laboratory and field experiments combined with direct vapor isotope flux measurements have shown that not only does the depositional flux changes the surface snow isotopic composition, but sublimation from the snow surface induces isotopic fractionation leading to changes in the snow isotopic composition. Thus, it was shown that for the EastGRIP ice core location, including fractionation during sublimation, atmosphere-snow exchange processes explain between 35 and 50 % of the day-to-day variations in the snow surface signal when no precipitation occurs.

Until recently, it was unknown on which time scales these surface exchange processes are important for the isotope signal.

Here we combine direct accumulation and eddy-covariance humidity flux measurements with high resolution regional climate model simulations. Focusing on the EastGRIP ice core site, we find that during the summer season up to 40% of the accumulation is sublimated and about 10% is re-deposited. Such relative high fluxes compared to the amount of precipitated snow would naturally lead to an influence of the seasonal isotopic composition of the snow.

By combining outputs from an isotope-enabled general circulation model (ECHAMwiso) and a regional polar climate model (MAR) with the SNOWISO exchange and snowpack model, we find that the influence on the snowpack isotopic composition is not only isolated to the summer isotope signal but influences the full seasonal cycle. In fact, we find that that the atmosphere-snow exchange influence on the annual mean isotopic composition results in a significant bias in the source region condition deduced from the isotopic composition of the ice core.

How to cite: Steen-Larsen, H. C., Dietrich, L., Wahl, S., Town, M., Hughes, A., Hoerhold, M., Zuhr, A., Behrens, M., Fettweis, X., and Werner, M.: On the importance of atmosphere-snow humidity exchange for the climate signal stored in the snow isotopic composition, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14700, https://doi.org/10.5194/egusphere-egu23-14700, 2023.

EGU23-14843 | ECS | Orals | CL1.5

New climate records from Sherman Island and insights into coastal West Antarctic climate variability over the last 1000 years 

Isobel Rowell, Robert Mulvaney, Dieter Tetzner, Liz Thomas, Mackenzie Grieman, Carlos Martin, Helena Pryer, Julius Rix, and Eric Wolff

The West Antarctic Ice Sheet (WAIS) is vulnerable to retreat as a result of climate change and has the potential to contribute several metres to global sea level in the coming centuries. Glaciers flowing into the Amundsen Sea, in particular the Thwaites and Pine Island Glaciers, are undergoing accelerated mass loss. Ice core records from the Amundsen coast in this region are lacking and WAIS cores typically extend back in time from a few decades, up to approximately 300 years before present. Here we present new climate records from Sherman Island, located in the Abbott Ice Shelf and close to Pine Island and Thwaites. These records extend to greater than 1000 years before present, more than doubling the length of existing coastal WAIS records. Trends in stable water isotopes are compared with proximal cores to set the Sherman Island data into a regional spatial context over the last few hundred years. We find that Sherman Island demonstrates no overall trend in stable water isotope ratios or in accumulation rate over the last 50 to 100 years, in contrast to other sites, and we relate this finding to previously identified changes in the Southern Annular Mode and Amundsen Sea. We investigate atmospheric transport to the site using reanalysis data and records of chemical impurities in the Sherman Island samples. The data present an exciting and significant new contribution to palaeoclimatic datasets and reconstructive efforts including the PAGES-2k network. Importantly, taken together the records from this unique site will help to set the current changes in this highly vulnerable sector of the WAIS into the context of the last millennium. 

How to cite: Rowell, I., Mulvaney, R., Tetzner, D., Thomas, L., Grieman, M., Martin, C., Pryer, H., Rix, J., and Wolff, E.: New climate records from Sherman Island and insights into coastal West Antarctic climate variability over the last 1000 years, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14843, https://doi.org/10.5194/egusphere-egu23-14843, 2023.

EGU23-14910 | ECS | Posters on site | CL1.5

Interlaboratory Calibration for Laser Ablation of Ice Cores 

Lela Gadrani, Andrei V. Kurbatov, Elena Korotkikh, Pascal Bohleber, Paul A. Mayewski, and Michael Handley

We report interlaboratory comparisons of a methodology to measure and calculate concentrations of impurities in ice core samples using the Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) system developed at the W. M. Keck Laser Ice Facility at the Climate Change Institute, University of Maine (UMaine). Here, we will summarize results of measured artificial samples with known levels of  Ca, Al, Fe, Mg, Na, Cu, Pb. We adapted a method for LA-ICP-MS analysis of the frozen standard that was developed in the laboratory at Ca’ Foscari University of Venice, and we tested its applicability to the UMaine system. This work will help to measure and interpret very old and highly compressed ice core records from the Allan Hills Blue Ice Area, Antarctica, sampled with different analytical tools.  

How to cite: Gadrani, L., Kurbatov, A. V., Korotkikh, E., Bohleber, P., Mayewski, P. A., and Handley, M.: Interlaboratory Calibration for Laser Ablation of Ice Cores, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14910, https://doi.org/10.5194/egusphere-egu23-14910, 2023.

EGU23-15249 | ECS | Posters on site | CL1.5

Investigating two possible schemes of Laser Ablation – Cavity Ring Down Spectrometry for water isotope measurements on ice cores 

Eirini Malegiannaki, Vasileios Gkinis, Simon Alexander Munk Wael Fassel, Daniele Zannoni, Giuliano Dreossi, Barbara Stenni, Hans Christian Steen-Larsen, Pascal Bohleber, Carlo Barbante, and Dorthe Dahl-Jensen

Thinning of the deep ice core layers must be considered when the water isotopic composition of the Oldest Ice Core is to be analyzed. From an experimental point of view, a novel instrument combining a micro-destructive cold femtosecond - Laser Ablation (LA) sampling system, that provides high spatial resolution together with minimal usage of ice sample, and a Cavity Ring Down Spectrometer is being built for high-quality water isotope measurements. Laser ablation results in crater formation and its morphology depends on the laser parameters used. Optical images that show crater morphology under different experimental conditions allow crater characterization towards an efficient cold LA sampling. An ablation chamber and a transfer line are both the connecting parts between the LA system and the CRDS instrument. They are to be designed and constructed in the optimal size and shape to collect the ablated mass and guarantee its smooth delivery to the CRDS analyzer with minimum disturbance. 

Coupling a Laser Ablation system with a CRDS analyzer has already been achieved using a laser operating at the nanosecond regime and a cryo-cell as the ablation chamber. Comparison of the two Laser Ablation systems, by the means of ice sampling and collection of the ablated material, will be of great importance to understand the ablation mechanism and post-ablation processes on ice and further develop a system dedicated to water isotope measurements. 

How to cite: Malegiannaki, E., Gkinis, V., Munk Wael Fassel, S. A., Zannoni, D., Dreossi, G., Stenni, B., Steen-Larsen, H. C., Bohleber, P., Barbante, C., and Dahl-Jensen, D.: Investigating two possible schemes of Laser Ablation – Cavity Ring Down Spectrometry for water isotope measurements on ice cores, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15249, https://doi.org/10.5194/egusphere-egu23-15249, 2023.

EGU23-1312 | ECS | Posters on site | SSP1.5

Analyses of Heatwaves in Observational and Modelled Data for Africa 

Katrin Ziegler, Daniel Abel, Torsten Weber, Lorenz König, and Heiko Paeth

The WASCAL WRAP2.0 project LANDSURF aims to calculate and compare different climatological and agrometeorological indices to support stakeholders and farmers in adapting to climate change and its impact in Africa.

This study, which was conducted in the framework of LANDSURF, focuses on the number and duration of heatwaves as rising temperature and resulting heat were found to limit crop yield and thus lower food security in different African regions. We calculated the heat wave duration index (HWDI) for reanalysis data, three regional climate models (RCMs) (REMO2015, RegCM4-7, and CCLM5-0-15) from CORDEX CORE, and their respective forcing data to validate the models over a historical climatological period (1981-2010) and investigate the change of the HWDI for three climatologies of the near-, mid-, and long-term future until 2100 using the two Representative Concentration Pathways (RCPs) 2.6 and 8.5.

How to cite: Ziegler, K., Abel, D., Weber, T., König, L., and Paeth, H.: Analyses of Heatwaves in Observational and Modelled Data for Africa, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1312, https://doi.org/10.5194/egusphere-egu23-1312, 2023.

EGU23-1586 | Orals | SSP1.5 | Highlight

When the desert was a lake: Tectonics, climate, river piracy and hominids in the Kalahari 

Liviu Giosan, Juan Pablo Canales, Sarah Ivory, Zhixiong Shen, Cindy De Jonge, Timothy Eglinton, Julie Lattaud, Nicole Russo, Negar Haghipour, Florin Filip, Nitesh Khonde, Andrew Carter, Eduardo Garzanti, Sergio Ando, Fulvio Franchi, Koobakile Kgosiemang, Sallie Burrough, David Thomas, Read Mapeo, and Kebabonye Laletsang and the OKAMAK Extended Team

The Okavango rift zone/delta and the Makgadikgadi paleo-megalake form a dynamic system in northern Kalahari, where tectonic activity, climate change, sedimentation, and biota have interacted in a complex pattern. Previous research suggested that the region may have been a hotspot for hominid evolution.

Here we present results from the first scientific deep drilling project (OKAMAK) in the northern Kalahari, Botswana. Two drill cores, OKA (230 meters) and MAK (210 m), were drilled in the Okavango delta and Makgadikgadi paleolake. Cores recovered shallow and deep-water sands, muds and evaporitic lithologies of the Cenozoic Kalahari Group extending across the unconformity into the Cretaceous/Jurassic Karoo Group sandstones.

We discuss initial stratigraphy, chronologies and paleoenvironmental information for this novel sedimentary record, present hypotheses to be tested on the complex climate of the region, history of river piracy, evolution of the delta and infilling phases of Makgadikgadi and assess the international collaborative potential of this yet to be fully understood region within a future multi-platform ICDP-IODP initiative.

How to cite: Giosan, L., Canales, J. P., Ivory, S., Shen, Z., De Jonge, C., Eglinton, T., Lattaud, J., Russo, N., Haghipour, N., Filip, F., Khonde, N., Carter, A., Garzanti, E., Ando, S., Franchi, F., Kgosiemang, K., Burrough, S., Thomas, D., Mapeo, R., and Laletsang, K. and the OKAMAK Extended Team: When the desert was a lake: Tectonics, climate, river piracy and hominids in the Kalahari, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1586, https://doi.org/10.5194/egusphere-egu23-1586, 2023.

Tectonic activity impacts the environment and identifying the influence of active faulting on environmental factors, such as vegetation growth and soil formation patterns, is valuable in better understanding ecosystem functions. We applied remote sensing techniques to illustrate how tectonic activity and lithology of bedrock influence temporal and spatial patterns of vegetation and soil parameters in a climatically sensitive, fault-controlled river basin in the Kenya-Tanzania transboundary region.

The Mara River Basin lies in a region of previously unrecognised tectonic activity, characterised by subrecent extensional faulting along the Utimbara and Isuria faults. Faulting leads to spatially variable erosion and soil formation rates as well as disruption and modification of drainage systems. All these factors might be expected to exert controls on ecosystem dynamics on a range of lengths and timescales. We investigate tectonic controls on ecological processes in the Mara River Basin using a combination of geospatial mapping and multispectral image analysis. To map fault structures and to reveal signs of recent tectonic activity along the Utimbara and Isuria faults, we use high-resolution digital elevation models derived from 12m TanDEM-X data. To investigate spatiotemporal vegetation patterns and soil formation, we use a 5-year Normalised Difference Vegetation Index (NDVI) time-series, Clay Mineral Ratio (CMR) and Moisture Stress Index (MSI) derived from Sentinel 2 data. 

Whilst lithology does exert some control on ecological properties, we also observe that the downthrown hanging wall of the faults, especially directly adjacent to the escarpment, is consistently associated with a higher degree of vegetation, wetland formation and clay distribution. Analysis of spectral indices shows that the overall spatial pattern of vegetation cover is seasonally low in the flat plains and perennially high in the vicinity of more complex, tectonically influenced structures. The NDVI highlights several locations with permanently healthy vegetation along the escarpment which extend downslope for several kilometres. Our study shows that in the Mara River Basin, active normal faulting is an important stabiliser of vegetation growth patterns. We interpret this effect to be caused by favourable hydrological and pedological conditions along the escarpments and tectonically induced structures such as subrecent surface ruptures and a series of small, fault-bounded alluvial fans exposing systematically high vegetation and clay values. This implies that tectonic activity has a direct beneficial influence on ecological processes in this climatically sensitive region. As future climate change in the area is expected to lead to accelerated habitat desiccation and deterioration of vegetation quality, suitable habitats for wildlife will progressively reduce and will likely be limited to tectonically active locations. Long-term insights into tectonic processes and the interplay between geology and soils can thus be useful for recent and future ecosystem management since the understanding of an area from a geological perspective can complement the understanding of other natural processes within it.

How to cite: Ludat, A. L. and Kübler, S.: The influence of tectonic surface faulting on vegetation growth and soil formation of the Mara River Basin, East Africa, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1589, https://doi.org/10.5194/egusphere-egu23-1589, 2023.

The study of the ancient anthropological sites of the Levantine Corridor is very significant for understanding the evolution of ancient hominins and the time of their dispersal from East Africa to the Caucasus and Eurasia (Eppelbaum and Katz, 2022a). In such geologically complex regions as the northern Levantine Corridor (in the area of ​​development of the Dead Sea Transform's pluvial basins in the Eastern Mediterranean), the application of single Earth Science methods, as a rule, is ineffective. Therefore, we analyzed in detail, for the first time, an integrated geological-geophysical data set: paleomagnetic correlation, magnetostratigraphy, and paleomagnetic and paleogeographic mapping (considering radiometric data) (e.g., Eppelbaum and Katz, 2022b), event, cyclic and eco-stratigraphy, lithological-facies analysis, and tectonic-geodynamic constructions with the attraction of the hydrospheric disturbances' data. One of the most important sites is the multi-layered site of 'Ubeidiya, located in the Kinnarot Basin. The age of this site was reviewed several times and is now determined as 1.6-1.2 Ma. Based on the numerous geological-paleomagnetic data analysis, the first integrated structural-paleomagnetic-event stratigraphic chart of the northern Levantine ancient hominin sites was developed. The results of the paleomagnetic mapping of the Sea of Galilee, Kinnarot, and Hula basins were used to construct the first palinspastic map for this region (for the period of 3.6 – 2.0 Ma). This map unmasked the tectonic-magmatic evaluation of this area and confirmed our assumption that the 'Ubeidiya Formation belonged to the Gelasian. It has been shown that the correlation of the 'Ubeidiya Formation with the Lower Matuyama Chron (C2r) is most likely correct than with its upper part (close in location to the strata with artifacts from the Evron quarry (Israel)). The correlation with the excellent radiometrically and paleomagnetically dated Zarqa section (western Jordan) (2.52 - 1.98 Ma) testifies that the 'Ubeidiya section most likely cannot be younger than this rock series. First, it follows from the event-stratigraphic and paleomagnetic correlation characteristics. The event-stratigraphic and rhythm-stratigraphic analyses indicate that the 'Ubeidiya and Erq El-Ahmar (Israel) formations do not contain a significant break and form a single sequence of the lacustrine-alluvial cycles of the Gauss and Matuyama Chrons. The analysis of finds of marine foraminifers confirms the paleogeographic relationship between the fluvial-lacustrine stratum (formation) of 'Ubeidiya and the transgressive Middle Akchagylian-Gelasian marine basin located nearby. Thus, the multifactor geological-geophysical analysis indicated that the ages of the most ancient archaeological sites of 'Ubeidiya and Zarqa correspond to the extremum of the Middle Akchagylian-Gelasian hydrospheric maximum (2.6–1.9 Ma) in contrast to the earlier suggested Middle Calabrian (1.6–1.2 Ma) age of the 'Ubeidiya site. The new proposed age may require revising the global process of dispersing hominins from Africa to the north.

References

Eppelbaum, L.V. and Katz, Y.I., 2022a. Combined Zonation of the African-Levantine-Caucasian Areal of Ancient Hominin: Review and Integrated Analysis of Paleogeographical, Stratigraphic and Geophysical-Geodynamical Data. Geosciences (Switzerland), 27, No. 1, 1-23.

Eppelbaum, L.V. and Katz, Y.I., 2022b. Paleomagnetic-geodynamic mapping of the transition zone from ocean to the continent: A review. Applied Sciences, 12, Advances in Applied Geophysics, 1-20.

 

 

How to cite: Eppelbaum, L. and Katz, Y.: Combined paleomagnetic, paleogeographic, and event stratigraphy studies increase the age of the anthropological site 'Ubeidiya in the Levantine Corridor (northern Israel) by 1.0 Ma, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1598, https://doi.org/10.5194/egusphere-egu23-1598, 2023.

EGU23-2109 | ECS | Orals | SSP1.5

Response of benthic foraminiferal assemblages off NW Africa to climate change during the past 27.000 years 

Sofía Barragán-Montilla, Stefan Mulitza, Heather J. Johnstone, and Heiko Pälike

Benthic foraminifera (BF) typically constitute around 50% of the eukaryotic biomass of seafloor environments and are excellent recorders of bottom water environmental and geochemical changes in the past. In the last 27.000 years, major climatic oscillations including the Heinrich Stadial 1 (HS1), Bølling–Allerød (B-A) and Younger Dryas (YD) shaped the climate of a big part of the northern hemisphere. Although the response of the ocean surface to these events is well documented, information about the response of benthic ecosystems is still limited.

To better understand how BF responded to major climatic shifts in the last 27.000 years, we analyzed the benthic foraminifera content from core GeoB9512-5 (15°29.90'N/17°56.88'W, 793 m water depth) off NW Africa. Our high-resolution sediment record covers the last 27.000 years of the eastern North Atlantic, including the Heinrich Stadial 2 (HS2), Last Glacial Maximum (LGM), HS1, B-A and YD.

Taxonomic and quantitative analyses were used to reconstruct changes in bottom water oxygenation and organic matter fluxes and show that BF assemblages shifted in coincidence with the major climatic periods documented for the North Atlantic. After the LGM, Bottom water salinity, oxygenation and quantity/quality of organic matter played a major role in BF distribution and are linked to transient changes in BF diversity in the last 27.000 years.

The LGM showed no major diversity changes for thousands of years, while BF distribution shifted rapidly during HS1, B-A and YD. Low-diversity intervals during the HS1, B-A and the last 6.000 years are typically dominated by stress species in times of oxygen decrease and high organic matter content at bottom waters. These short intervals (typically lasting 500-1300 years) are commonly intercalated by low-duration high-diversity periods, associated with higher bottom water oxygenation and relatively lower organic matter content. Additionally, relatively abundant porcelaneous BF during HS1, LGM and HS1 indicate relatively higher salinity than the observed in the last 14.000 years.

Our results show that BF at intermediate depths at the NE Atlantic off NW Africa are strongly influenced by changes in bottom water paleoenvironmental conditions potentially linked to major climatic events. Bottom water oxygenation played a major role in BF diversity, observed by alternating low-diversity periods in times of low oxic conditions and high-diversity intervals in high oxic bottom waters. At the same time, bottom water salinity favored porcelaneous BF distribution during LGM and HS1 times and increasing hyaline-calcareous BF show decreased salinity in this part of the NE Atlantic after the end of the HS1.

How to cite: Barragán-Montilla, S., Mulitza, S., Johnstone, H. J., and Pälike, H.: Response of benthic foraminiferal assemblages off NW Africa to climate change during the past 27.000 years, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2109, https://doi.org/10.5194/egusphere-egu23-2109, 2023.

The environmental and living conditions of a region are shaped by its relief, geology and climate, and control factors like hydrology and soil formation. While long-term climatic fluctuations and associated changes in environmental conditions are commonly viewed as the dominant natural factor in human evolution, the role of geological and pedological processes has so far received little attention. However, it makes a big difference to consider the effects of large-scale environmental changes in a homogeneous "static" landscape or to include the multitude of dynamic landscape factors that can lead to strong local effects with regard to the structure of the landscape and the availability of water and food.

The NE Aegean is a key region of Pleistocene hominin presence at the crossroad between Africa, Asia and Europe situated in a geologically highly unstable region. Rodafnidia, an open-air Lower Paleolithic site on Lesbos, has revealed a unique Acheulean assemblage from excavated fluvio-lacustrine deposits dated between 476 and 164 ka BP. This site and its surrounding region represent a key location to study hominin subsistence and mobility and to investigate potential trans-Aegean migration corridors during Pleistocene sea-level lowstands. Geologically, Rodafnidia is situated on middle Pleistocene fluvial sediments consisting mainly of reworked early Miocene ignimbrites, and Pliocene marly limestones and marls, whereas the wider region is characterized by strong geochemical and pedochemical contrasts including nutritionally depleted soils on ophiolitic rocks, highly productive soils on marshy coastal deposits along the Kalloni Gulf, and a series of fault-controlled thermal sulfur springs at Lisvori and Polichnitos. We hypothesize that the attractiveness of Rodafnidia site for hominin presence was influenced by the local geology and tectonic activity controlling the long-term soil nutritional status of the region. We employ a combined geological-pedological study to unravel the paleoenvironmental conditions of the wider region. Our approach offers, in return, valuable insights into hominin-landscape interaction, relevant to landuse, resource exploitation and dispersal potential.

Our systematic sampling and analysis of rocks, soil and water offers clues to the soil nutritional characteristics of the main lithological units exposed in the wider Rodafnidia area. Results reveal distinct differences in the nutritional status of soils developed on different geological substrates. While volcanic soils in the immediate Rodafnidia region and marshy soils along the coast comprise well-balanced nutritional levels, serpentinite soils dominating the ophiolitic highlands display highly problematic properties such as low Ca/Mg ratios and enhanced heavy metal concentrations. Soils on hot spring deposits are puzzling as they display both beneficial characteristics (high soil organic carbon, high calcium) and potentially harmful enhanced heavy metal levels.

In a pedological context, Rodafinidia is located in a narrow zone of highly productive, nutrient rich soils in a wider region of geologically induced nutrient deficiencies. During sea-level lowstands, hominins along with other continental fauna could have crossed terrestrial passages between western Asia and the Eastern Aegean, and sites like Rodafnidia emerge as likely beneficial locations for hominin subsistence strategies. 

How to cite: Kübler, S., Tsakanikou, P., Galanidou, N., and Iliopoulos, G.: Soil nutritional gradients as long-term proxy for hominin subsistence strategies in geologically dynamic settings: the case of Acheulean Rodafnidia on Lesbos island, NE Aegean, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3287, https://doi.org/10.5194/egusphere-egu23-3287, 2023.

EGU23-4141 | ECS | Posters on site | SSP1.5

Future projection of the African easterly waves in a high-resolution AGCM 

Jerry Raj, Hamza Kunhu Bangalath, and Georgiy Stenchikov

African Easterly Waves (AEWs) are a significant control of West African rainfall and the associated Mesoscale Convective Systems (MCSs) and squall lines embedded within them. More than 40% of the total MCSs over the region are associated with AEWs and these MCSs account for approximately 80% of the total annual rainfall over the Sahel. Approximately 60% of all Atlantic hurricanes and 80% of major hurricanes have their genesis associated with AEWs. Simulating the features of AEWs, such as their westward propagation off the east Atlantic coast, is challenging for coarse-resolution climate models. In this study, we use High-Resolution Atmospheric Model (HiRAM) to simulate AEWs and analyze their future projections by the end of the 21st century. The simulations are performed globally at a horizontal resolution of 25km. The model uses shallow convective parameterization for moist convection and stratiform cloudiness. Future projections are conducted using representative concentration pathway 8.5. AEWs are separated with respect to their periods as 3–5 and 6–9-day period AEWs, and bandpass filtering is used to filter the waves from the mean flow. HiRAM simulates the structure and propagation of the waves well; however, it tends to overestimate the associated precipitation. In the future, the AEW precipitation and intensity of the circulation will considerably increase. The northward extent of the AEW track also shows a significant increase in the future. Enhanced baroclinic overturning and eddy available potential energy generated due to diabatic heating is also observed in the future.

How to cite: Raj, J., Bangalath, H. K., and Stenchikov, G.: Future projection of the African easterly waves in a high-resolution AGCM, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4141, https://doi.org/10.5194/egusphere-egu23-4141, 2023.

EGU23-5277 | Orals | SSP1.5 | Highlight

Early Warning Signals for the Termination of the African Humid Period(s) 

Martin H. Trauth, Asfawossen Asrat, Markus L. Fischer, Peter O. Hopcroft, Verena Foerster, Stefanie Kaboth-Bahr, Henry F. Lamb, Norbert Marwan, Mark A. Maslin, Frank Schäbitz, and Paul J. Valdes

The study of the mid-Holocene climate tipping point in tropical and subtropical Africa is the subject of current research, not only because there is a comparatively simple but nonlinear relationship between the change in cause (orbital forcing) and the accelerated response of the monsoon system, but also because the African monsoon is an example of a potentially positive evolution of living conditions for humans: modeling results suggest that the Sahel is expanding northward in the wake of human-induced recent global warming, with green belts spreading northward. New literature distinguishes tipping elements such as the African monsoon according to the nature of the cause and the response of the climate system. Research here focuses primarily on tipping points of the type, which is characterized by a critical slowing down and a decreasing recovery from perturbations. The African monsoon, on the other hand, is an example of the tipping point of the type, which is characterized by flickering before the transition. The two types also differ in the nature of their early warning signals (EWS). These EWS are increasingly becoming the focus of research, as they are particularly important for predicting possible tipping of climate in the future of our planet. For the African monsoon system, flickering between two stable states near the transition has been predicted by modeling, but has not yet been demonstrated on paleoclimate time series.

The paleoenvironmental record from the Chew Bahir Basin in the southern Ethiopian Rift, which documents the climate history of eastern Africa of the past ~620 ka with decadal resolution in some parts provides the possibility to examine the termination of the African Humid Period (AHP, ~15–5 kyr BP) with regard to the possible occurrence of EWS. Thanks to six well-dated short sediment cores (<17 m, <47 kyr BP) and two long cores (~290 m, <620 ka BP) we can not only study the last climate transition at ~5.5 kyr BP in detail, but also similar transitions including possible EWS long before the first occurrence of Homo sapiens at ~318 ka BP on the African continent. The analysis of the Chew Bahir record reveals a rapid (~880 yr) change of climate at ~5.5 kyr BP in response to a relatively modest change in orbital forcing that appears to be typical of climate tipping points. If this is the case then 14 dry events at the end of the AHP and 7 wet events after the transition, each of them 20–80 yrs long and recurring every 160±40 yrs, could indeed indicate a pronounced flickering between wet and dry conditions at the end of the AHP, providing significant EWS of an imminent tipping point. Compared to the low-frequency cyclicity of climate variability before and after the termination of the AHP, the flickering occurs on time scales equivalent to a few human generations and it is very likely (albeit speculative) that people were conscious of these changes and adapted their lifestyles to the rapid changes in water and food availability.

How to cite: Trauth, M. H., Asrat, A., Fischer, M. L., Hopcroft, P. O., Foerster, V., Kaboth-Bahr, S., Lamb, H. F., Marwan, N., Maslin, M. A., Schäbitz, F., and Valdes, P. J.: Early Warning Signals for the Termination of the African Humid Period(s), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5277, https://doi.org/10.5194/egusphere-egu23-5277, 2023.

Which routes did Homo sapiens take when spreading from Africa to Eurasia? The climatic conditions changed and with them the living conditions. Over the past twelve years, a research team has deciphered the complex interplay of cultural innovations, mobility and environmental changes funded by the German Research Foundation (Collaborative Research Center 806 "Our Way to Europe"). Our working group in Bonn specifically investigated when and where migration corridors or barriers existed  from a paleoecological and paleoclimatological point of view. It turned out that the Levant, as the only permanent land bridge between Africa and Eurasia during the Quaternary, was the key region as a migration corridor for modern humans. Cores from the Dead Sea Deep Drilling Project (ICDP) were investigated, in which the environmental and climate history of the last 200 ka is excellently preserved and documented. In particular, pollen analysis allows changes in vegetation cover to be identified and environmental and climatic conditions to be reconstructed. These data illustrate that the Levant could only have served as a corridor when, under more favorable conditions, for example, neither deserts nor dense forests impeded the spread of modern humans.

How to cite: Litt, T.: Paleoecology/paleoclimate of the Levant and its impact on the spread of modern humans from Africa to Europe, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5707, https://doi.org/10.5194/egusphere-egu23-5707, 2023.

EGU23-5829 | Orals | SSP1.5

Holocene oceanographic variability linked to the Guinea Dome development recorded in a deep-sea sediment core off Cabo Verde 

Irene Pérez-Rodríguez, Thor H. Hansteen, Julie C. Schindlbeck-Belo, Dirk Nürnberg, Steffen Kutterolf, Veerle A.I. Huvenne, Kelsey Archer Barnhill, Erik Simon-Lledó, Susan Evans, Beatriz Vinha, Ángela Mosquera Giménez, and Covadonga Orejas

The Guinea Dome, located in the eastern tropical North Atlantic, is produced by cyclonic circulation associated with the eastward North Equatorial Countercurrent, the northward Mauritanian Current and the westward North Equatorial Current, which causes the uplift of the isotherms in the Guinea Dome. This oceanographic feature is important for the regional atmosphere-ocean dynamics, and its variability was suggested to be linked with precipitation changes in North Africa, at least at a decadal scale. Characterizing the development of the dome through the Holocene will contribute to understand the prominent environmental changes that occurred regionally during this period, as evidenced by the green-to-desert Sahara transition at the end of the African Humid Period (ca. 6,000 years ago).

A 35cm sediment multicore, extracted southwest off Cabo Verde during the iMirabilis2 scientific cruise, at a water depth of 4,394 m, is being investigated. We present planktonic foraminifera counts and X-ray fluorescence (XRF) scanning data to reconstruct palaeoceanographic and sediment input changes during the Holocene. An age-depth model for the sediment core was established with three samples dated by the radiocarbon method, indicating that the sediment was deposited from 11,180 to 1,257 calibrated years before present (cal. BP).

Planktonic foraminifera results show a gradual but important change in the assemblages throughout the core, where the abundance of species preferring warmer waters increase by 44% towards the top of the core. These results are interpreted as warming of the surface water masses during the Holocene, as a result of reduced influence of the Guinea Dome due to its change of location to a more southern position and/or as a consequence of a weakening of the dome. X-ray fluorescence scan variations along the core show that the faunal shift is encompassed by differences in the terrigenous sediment supply, indicating changes in the inland climate regime. For instance, changes in the Ti/Fe, Ti/Al and Al/Ca ratios are proxies for the fluvial/aeolian sedimentary input and the hinterland climate variability. An increase of the high river discharge indicators is displayed between 10 and 6 kyr BP, probably as a consequence of the increased precipitation that took place during the African Humid Period.

Further ongoing geochemical analyses of foraminifera shells will provide information regarding the temperature, salinity and productivity of both, the mixed layer and the sub-thermocline, which will improve the characterization of the variability that the Guinea Dome experienced during the Holocene.

How to cite: Pérez-Rodríguez, I., Hansteen, T. H., Schindlbeck-Belo, J. C., Nürnberg, D., Kutterolf, S., Huvenne, V. A. I., Barnhill, K. A., Simon-Lledó, E., Evans, S., Vinha, B., Mosquera Giménez, Á., and Orejas, C.: Holocene oceanographic variability linked to the Guinea Dome development recorded in a deep-sea sediment core off Cabo Verde, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5829, https://doi.org/10.5194/egusphere-egu23-5829, 2023.

EGU23-6585 | ECS | Orals | SSP1.5

Influence of climate and atmospheric circulation changes on water balance of Mount Kenya and surroundings 

Martina Messmer, Santos J. González Rojí, Christoph C. Raible, and Thomas F. Stocker

Climate over Kenya is rather heterogeneous and exceptionally dry for a region located in the tropics. This is related to various large-scale drivers, such as Lake Victoria, the complex topography, and the vicinity to the ocean. In consequence water resources are scarce and several stakeholders depend on these. Hence, it is important to understand how precipitation amounts and patterns change under global warming. A special focus is on Mount Kenya, one of the most important freshwater towers in Kenya. To investigate these changes, we employ the Weather Research and Forecasting (WRF) model V3.8.1 to downscale a 30-year period for the present and the future climate, based on global climate simulations. The present period covers the years 1981–2010, and the future is run once for the mitigation scenario RCP2.6 and for the high-emission scenario RCP8.5 for the years 2071–2100.

Changes in precipitation and temperature are well noticeable in the region of Mount Kenya. The projection indicates an increase in precipitation for the two rainy seasons (March to May, and October to November), while precipitation is reduced in the dry season. Extreme precipitation around Mount Kenya shows increases in the future during the rainy season, whereby the two different scenarios show a similar increase in extreme precipitation. This result is a bit surprising and needs further investigation. As expected, temperatures are projected to increase over all of Kenya, and particularly along the slopes of Mount Kenya in all months. For temperature there is a clear difference in the warming between the two scenarios, as RCP8.5 shows a much stronger change in temperature than RCP2.6. The summit of Mount Kenya reaches temperatures in the future that today are found at an elevation of around 3,200 m above sea level (a.s.l.). This warming can substantially affect the endemic vegetation along the slopes of Mount Kenya. Assuming that the tree line is limited by temperature and not precipitation, as the latter is abundant, it could move from around 3,000 m a.s.l. up to 3,700 m a.s.l. The strong increase in temperature further affects the remaining glacier, which is currently an important water storage during dry months. The projected increase in precipitation over entire Kenya will therefore increase water availability and reduce fire danger. Nevertheless, the combined increase in temperature and precipitation could affect human and animal wellbeing, as heat stress may be increased.

All these results are based on a single regional and global climate model. Preliminary results indicate that the rainy season is clearly underestimated in the present simulation, compared to simulations obtained by a downscaling of the reanalysis ERA5. This indicates that important components of the atmosphere are not correctly captured by the model. These could include land-atmosphere interactions, misrepresentation of land cover, biases in sea surface temperatures and related changes in the atmospheric circulations. Thus, the atmospheric circulation and interactions with the land surface have to be assessed in further studies.

How to cite: Messmer, M., González Rojí, S. J., Raible, C. C., and Stocker, T. F.: Influence of climate and atmospheric circulation changes on water balance of Mount Kenya and surroundings, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6585, https://doi.org/10.5194/egusphere-egu23-6585, 2023.

EGU23-8109 | ECS | Posters on site | SSP1.5

Arid occupation of south-eastern Arabia: A new Late Pleistocene site at Wadi Asklat, south-central Oman—dating and paleoenvironmental reconstruction. 

Roman Garba, Matthew Meredith-Williams, Stephanie Neuhuber, Susanne Gier, and Vitalii Usyk

The Arabian Peninsula was, up until recently, thought to have been depopulated during the more arid phases between MIS5 and Holocene interglacials, and in particular during MIS3 and MIS2. Within the last few years there have been five new sites dated to this arid phase, demonstrating that at the very least there were episodic occupation events on the Arabian Peninsula, and potentially refugial populations. The increasing number of sites potentially lends weight to the hypothesis for a more continuous refugial population on the Arabian Peninsula, as opposed to multiple-short lived events. The human adaptation to harsh environment during transition from humid period is a focus of this research project. Here we present preliminary dates from the newly recorded site at Wadi Asklat in Duqm, south-central Oman, where stratified lithic technology has been identified within a alluvial terrace sediment sequence. Two OSL samples at depth of 100 and 125 cm were taken to understand site chronology together with geomorphic processes. The paleoenvironmental samples were collected for palynological and pedological analyses. The preliminary clay mineral analysis identified palygorskite, illite, chlorite, smectite in layer at depth 90 to 110 cm suggesting a soil formation process. The lithic artifact at depth of 115 cm was preliminarily identified as Kombewa core with two bidirectional negatives made on crested flake. In addition, a several stratified sites have also been identified within the area, however except for the Wadi Asklat site these are at present undated. The association of many of the new sites with river terraces, including Wadi Asklat, indicate an important link between human activity and water which was no doubt heightened during arid phases. The results contribute to our knowledge of population dynamics and settlement patterns in this under-studied region of central Oman. The research is as a joint effort of ARDUQ expedition led by Archaeological Institute Prague (Czechia) and LARiO expedition led by La Trobe University Melbourne (Australia).

How to cite: Garba, R., Meredith-Williams, M., Neuhuber, S., Gier, S., and Usyk, V.: Arid occupation of south-eastern Arabia: A new Late Pleistocene site at Wadi Asklat, south-central Oman—dating and paleoenvironmental reconstruction., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8109, https://doi.org/10.5194/egusphere-egu23-8109, 2023.

EGU23-10095 | Orals | SSP1.5 | Highlight

Did the North Atlantic Ocean play a role driving Green Sahara conditions during the Late Pliocene and Early Pleistocene? 

Anya Crocker, Amy Jewell, Bryce Mitsunaga, Solana Buchanan, Thomas Westerhold, Ursula Röhl, Chuang Xuan, James Russell, Timothy Herbert, and Paul Wilson

North Africa is one of the most vulnerable regions on Earth to anthropogenically-driven climate change, but also one of the least equipped to deal with the consequences. Predictions of precipitation levels over the forthcoming centuries diverge, not only in magnitude, but also in the sign of change. One key aspect of this uncertainty comes from the role of Atlantic Ocean sea surface temperatures (SST), which are known to exert a strong control over precipitation in North Africa and are implicated in both the major Sahelian drought of the late 20th century and extreme droughts associated with the Heinrich events of the last glacial period.

 

To better understand how African hydroclimate responds to SST variability across a range of climate states, we reconstruct changes in the ocean and atmosphere through the transition from the Pliocene epoch (when atmospheric CO2 levels were comparable to present) into the cooler Pleistocene. We present data from Ocean Drilling Project Site 659, which is situated in the subtropical North Atlantic beneath the major modern summer Saharan dust plume. Our dust accumulation and X-ray fluorescence core scan data record repeated shifts between highly arid conditions and humid intervals with vegetated or “Green Sahara” conditions over much of northern Africa. The amplitude of these humid events is modulated by both global climate state and variability in solar insolation, with three unusually long intervals of low dust emissions (each lasting ca. 100 kyr) occurring at times when insolation variability was weak. We also present new paired alkenone-derived SST estimates and multi-species planktonic foraminiferal isotope records from 3.5–2.3 Myr ago to explore the role of North Atlantic dynamics in driving African hydroclimate variability. Our records help to develop the environmental framework needed to assess evolutionary outcomes on land and improve our understanding of the mechanisms driving precipitation variability in North Africa.

How to cite: Crocker, A., Jewell, A., Mitsunaga, B., Buchanan, S., Westerhold, T., Röhl, U., Xuan, C., Russell, J., Herbert, T., and Wilson, P.: Did the North Atlantic Ocean play a role driving Green Sahara conditions during the Late Pliocene and Early Pleistocene?, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10095, https://doi.org/10.5194/egusphere-egu23-10095, 2023.

EGU23-14071 | ECS | Orals | SSP1.5

Variable Hydroclimate in the Suguta-Turkana Valley, Kenya during the Early Middle-Pleistocene Transition 

Elena Robakiewicz, R. Bernhardt Owen, Alan Deino, Martin Trauth, and Annett Junginger

The Early Mid-Pleistocene Transition (EMPT) between 1,200–700 ka represents a major global climate transition from dominantly 41,000-year to 100,000-year glacial cycles. The forces and mechanisms behind this transition, and the response of African environments, is not well understood. The active volcanism and tectonics of the East African Rift System (EARS) add complexity to environmental systems and can erase important proxy records, inhibiting studies of lacustrine dynamics. As a result, there is minimal understanding of how this transition impacted the region’s lake systems, with implications for hominin migration. At paleolake Suguta in the northern Kenya Rift, however, flood basalts cap lacustrine EMPT-aged deposits and help preserve these strata and their valuable paleoenvironmental record. This research presents a high-resolution reconstruction of hydrological change from approximately 930 to 830 ka during the EMPT at the Suguta-Turkana Valley in the northern Kenya Rift. Paleolake dynamics are reconstructed from a 41 m sedimentary section using diatom morphology, sedimentology, and x-ray fluorescence analysis. Lake levels varied during the EMPT, particularly from ~885–830 ka, ranging from deep stratified lakes, shallow, well-mixed lakes, and complete desiccation. This record identifies hydroclimate variability at several thousand year-resolution within the Suguta-Turkana Valley during the EMPT, illuminating a period where generally little is known about terrestrial environmental change.

How to cite: Robakiewicz, E., Owen, R. B., Deino, A., Trauth, M., and Junginger, A.: Variable Hydroclimate in the Suguta-Turkana Valley, Kenya during the Early Middle-Pleistocene Transition, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14071, https://doi.org/10.5194/egusphere-egu23-14071, 2023.

Climate change is often linked with evolutionary processes, but the effect of this driver is mediated by the environment in which the organisms live. In relation to hominins, climatic conditions play an important role in determining the availability of resources critical to development and evolution, including water, materials for tools, and food. Over the last c. 1 million years the spatial distribution of water and vegetative resources across Africa has shifted dramatically, and in tandem. The most significant change in this time period occurred c. 300,000 years ago when the predominance of wetter conditions, and relatively more abundant vegetative resources, shifted from western to eastern Africa. Around this time Homo sapiens and Middle Stone Age technologies emerged. While the changing landscape of Africa would not have necessarily have excluded hominins from occupying particular regions, they would have altered the chances for interaction between different populations through the creation of new geographic connections. These new connections between hominin populations would have promoted different cultural and genetic exchanges, which consequently could have driven development and evolutionary processes. To understand the environmental backdrop to hominin development and evolution we need to explore the changes that occurred within the landscapes in which they lived. Here landscape scale (site specific) changes in environmental resources are considered from key locations in western and eastern Africa. These insights are then placed within the context of climate and vegetation change across the continent to develop ideas about how the changing landscapes could have facilitated, and driven, cultural development and evolutionary processes in hominins during the Pleistocene.

How to cite: Gosling, W.: Hominin life and evolution across changing African landscapes in the Pleistocene, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14725, https://doi.org/10.5194/egusphere-egu23-14725, 2023.

EGU23-14878 | Posters on site | SSP1.5

Track and trace: how aeolian dust can help to understand East African climate 

Inka Meyer, Dirk Verschuren, and Marc De Batist

Samples of present-day aeolian dust collected with the help of various kinds of dust sampling devices are currently a widely used resource to measure distinct characteristics of aeolian transported material, such as variations in the amount of dust flux over space and/or time, chemical and mineralogical composition and isotopic signatures of the material to ultimately infer the origin of the aeolian transported sediment, to understand transport pathways and to identify the sensitivity of aeolian dust to changes in local or global climate variability. However, so far the majority of samples captured by dust traps originate from classical desert environments, such as the Saharan desert or the Australian or Asian deserts. Due to smaller sample amounts, longer depositional periods, difficulties in installing the traps, and labor-intensive trap maintenance, continuous dust-trap records from semi-arid regions are rare.

In this study we present a record of aeolian dust deposits from the semi-arid region at Lake Chala, in SE Kenya/ NE Tanzania, comprising a nearly continuous sampling period of 5 years from three different locations. The first dust traps were installed in 2016 during the ICDP DeepCHALLA drilling and deliver a monthly record of dust characteristics in the area. A combination of microscopic investigations, detailed grain-size measurements, as well as mineralogical analysis allows us to infer changes in the amount and characteristics of the monthly deposited aeolian sediments and provide a first insight into seasonal changes and fluctuations of atmospheric forcing factors responsible for dust transport and the deposition in our study area.

How to cite: Meyer, I., Verschuren, D., and De Batist, M.: Track and trace: how aeolian dust can help to understand East African climate, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14878, https://doi.org/10.5194/egusphere-egu23-14878, 2023.

EGU23-15774 | ECS | Posters on site | SSP1.5

Palaeoproteomics of skeletal fossils reveals hominins evolution and behaviours: several case studies from East Asia 

Huan Xia, Dongju Zhang, and Fahu Chen

The analysis of ancient DNA and paleoproteomics can identify biological materials, such as fossils, construct phylogenetic relationships between extinct and extant species, and has been widely applied in archaeology and paleontology. In general, proteins degrade more slowly than DNA and could be persevered in fossils over 60 million. Although less phylogenetic information was obtained than ancient DNA, paleoproteomics analysis becomes an indispensable method for studying biological evolution and hominins behaviours with its high throughput, low cost, and low contamination. Based on several cases of applying paleoproteomics analysis in archaeological and paleontological sites from East Asia, I will present two main methods, LC-MS/MS and MALDI-TOF MS, and how paleoproteomics reveals the evolutionary history and behaviours of hominins in East Asia, aiming to provide a research background of this field.

How to cite: Xia, H., Zhang, D., and Chen, F.: Palaeoproteomics of skeletal fossils reveals hominins evolution and behaviours: several case studies from East Asia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15774, https://doi.org/10.5194/egusphere-egu23-15774, 2023.

EGU23-17267 | Posters on site | SSP1.5

Mid-Pleistocene volcano-tectonic fragmentation of the Turkana-Suguta Megalake 

Annett Junginger, Simon Kuebler, Carolina Rosca, R. Bernhard Owen, Alan Deino, Craig Feibel, Martin. H. Trauth, and Hubert Vonhof

The East African Rift System (EARS) is a key location for studying Plio-Pleistocene paleoclimate and hominin inhabitance. The region experienced profound reorganization during this interval as a response to volcanism, tectonics and climate change, and arguably detailed spatiotemporally coherent climate datasets could provide evidence of causal links between geologic change and hominin evolution.  However, continued tectonism, erosion, burial and volcanism obscures much of this information. Despite its rich fossil record, the Turkana basin in the northern Kenya Rift is no exception. It has been hypothesized that Lake Turkana and paleo-Lake Suguta to its south formed one 530-650 km long mega-lake before 221 ka ago, and was a major barrier for E-W dispersal of hominids and other terrestrial fauna. Here we present new information on basin development based on paleolandscape modeling and 87Sr/86Sr analysis on microfossils of newly discovered paleo-lake sequences in the Suguta Valley, permitting reconstruction of volcano-tectonic processes 900-700 ka ago. Contrary to previous assumptions, results suggest that two to three lakes separated by tectono-volcanic barriers formed instead of one mega-lake. These results have implications for previously formulated hypotheses about mega-lakes preventing W-E migration and exchange and suggest that during the early Middle Pleistocene E-W migrations were possible.

How to cite: Junginger, A., Kuebler, S., Rosca, C., Owen, R. B., Deino, A., Feibel, C., Trauth, M. H., and Vonhof, H.: Mid-Pleistocene volcano-tectonic fragmentation of the Turkana-Suguta Megalake, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-17267, https://doi.org/10.5194/egusphere-egu23-17267, 2023.

Long-term and abrupt changes in precipitation (P) patterns remain ambiguous in a warmer climate. Modern studies project that a warmer climate will cause intensification of the hydrological cycle. However, paleoclimate evidence from the warm period, i.e., the Medieval Climate Anomaly (MCA; 800-1400 AD), contradicts this because, during MCA, some regions were humid (wet), while others had arid (dry) climates. Here, we investigated the P response to variations in the temperature (T) and Atlantic Meridional Overturning Circulation (AMOC) variation throughout the Northern Hemisphere (NH) using 75 for P, 17 for the AMOC, and 48 records for T from NOAA and PAGES paleoclimate databases.

Our results show a continuous weakening trend in AMOC from the 9th to 13th centuries. The weakened AMOC has probably altered the atmospheric heat and water vapor distribution, and consequently the hydroclimate around the NH. The hydroclimate over the eastern North America and the Western Europe looks more vulnerable to weak AMOC as it shifted from warm-humid to cold-arid climates. Weak AMOC induces motion in Inter-Tropical Convergence Zone (ITCZ) southwards. Our results show signals of an ITCZ shift over equatorial Africa and southern Asia with the warm and humid response. Although warm (cold) climates are not always associated with increased (decreased) P, they may also lead to arid (humid) climates. Overall, we found that when T is higher than their average, the hydrological conditions are arid, but when T is similar or close to the average level, the conditions are humid. However, these hydroclimate responses may vary according to the regionally available water resources. Therefore, an improved understanding of long-term T variability and AMOC trend changes, specifically during warmer periods, could provide relevant insights into the present and future climates.

How to cite: Pratap, S., Markonis, Y., and R. Blöcher, J.: Understanding Atlantic Meridional Overturning Circulation and linked variations in precipitation and temperature distribution during the warmer climate, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-129, https://doi.org/10.5194/egusphere-egu23-129, 2023.

EGU23-551 | ECS | Orals | SSP2.2

Eocene seismicity and paleogeography of the Central Crimea 

Ekaterina Chizhova, Ekaterina A. Lygina, Natalia V. Pravikova, Tatiana Yu. Tveritinova, and Elizaveta A. Krasnova

The nature of Cretaceous-Eocene boundary is one of the outstanding questions of Crimea Geology. The new data are presented to show that the Cretaceous-Eocene boundary can be established in the Central Crimea very accurately by using the method of quantitative genetic analyses including the Isotope Geochemistry. Integrated lithostratigraphic investigations and Isotope composition of Carbon/Oxygen were conducted on the Cretaceous -Eocene section of the western slope of Ak-Kaya mount (Belogorsk, Crimea). Four layers of different types of rocks were investigated, where the layer 1 and 2 belong to the Maastrichtian, 3 and 4 to the Eocene.

The top of the Maastrichtian layer is characterized by a differently oriented fracture system, including large paleoseismic dislocations or a seismogenic trench. The fracture networks are connected and filled with material similar to the Eocene basal horizon including fragments of various sizes of Maastrichtian rocks.

Five microfacial types of the collected rock samples were distinguished as a result of microscopic examination. Also X-ray phase analysis, δ13С and δ18О isotopic analysis and X-ray fluorescence analysis were made to specify and compare the mineral composition of Maastrichtian and Eocene rocks. These analyzes allowed to specify paleogeographic conditions. In addition, measurements of fractures in the Cretaceous–Eocene boundary deposits were made to determine the stages of deformation of the whole structure.

As a result of the research, it was obtained:

1) throughout the entire studied geological interval, sedimentation occurred in a shallow sea of normal salinity. However, conditions were probably more humid in the Eocene, based on lower salinity values.

2) Three major stages of deformation were identified: pre-Eocene, Eocene, and post-Eocene.

3) The average temperature of the formation of Maastrichtian rocks is 19-22°C, and Eocene rocks is 24-27°C. The increase in temperature up to 38°C during the formation of the Eocene basal horizon may be associated with the global climatic event EECO (Early Eocene Climate Optimum). The synchronicity of the formation of steep submeridional fractures and the basal horizon of the Eocene has been proved. It is shown that the Eocene deformation stage corresponds to the formation of paleoseismic dislocations during the main phase of tectonic activity in the Pontids (Eastern Turkey).

How to cite: Chizhova, E., Lygina, E. A., Pravikova, N. V., Tveritinova, T. Yu., and Krasnova, E. A.: Eocene seismicity and paleogeography of the Central Crimea, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-551, https://doi.org/10.5194/egusphere-egu23-551, 2023.

EGU23-2714 | Orals | SSP2.2 | Highlight

Exploring links between the North Atlantic Igneous Province and Paleocene–Eocene climate change using sedimentary mercury 

Joost Frieling, Tamsin Mather, Morgan Jones, Isabel Fendley, Weimu Xu, Christian Berndt, Sverre Planke, and Carlos Alvarez Zarikian and the IODP Expedition 396 scientists

The North Atlantic Igneous Province (NAIP), a large igneous province (LIP), was emplaced between ~62 and 50 million years ago (Ma), with a voluminous burst of volcanic activity centred around 56-54 Ma. Global paleoclimate reconstructions from this Paleocene and Early Eocene interval indicate progressively warmer conditions, with several superimposed warming events or ‘hyperthermals’, such as the PaleoceneEocene Thermal Maximum (PETM; 56 Ma). These hyperthermals represent transient massive perturbations to the carbon cycle, marked by substantial global warming, ocean acidification and negative stable carbon isotope excursions. International Ocean Discovery Program Expedition 396 to the Mid-Norwegian continental margin recovered a suite of PaleoceneEocene sedimentary and igneous materials. This notably includes a unique and extremely expanded succession comprising of up to ~80m of PETM (ash-rich) sediments and volcanic ash layers infilling a hydrothermal vent crater. The craters on the Mid-Norwegian margin and similar structures associated with other LIPs were previously identified as surface expressions of a potent carbon release mechanism: the venting of thermogenic carbon generated in the thermal aureoles around volcanic dikes and sills intruded into the underlying sedimentary basins.

In recent years, much progress has been made towards understanding the role of deep earth processes and particularly LIP volcanism on paleoclimate through the application and refinement of proxies as sedimentary mercury (Hg) content. Large scale and especially LIP volcanism are considered important Hg emitters that may result in increased sedimentary Hg content. Here, we present high-resolution bulk sedimentary Hg content data from the sedimentary strata within the hydrothermal crater, spanning the PETM. We use our new data with biostratigraphic, stable carbon isotope, and lithological constraints, to shed light on the timing of hydrothermal crater formation, duration and re-activation of hydrothermal activity within the crater after formation. Finally, these new findings are placed in a global Hg and carbon cycle framework to assess the timing, characteristics, and impact of NAIP activity during the PETM.

How to cite: Frieling, J., Mather, T., Jones, M., Fendley, I., Xu, W., Berndt, C., Planke, S., and Alvarez Zarikian, C. and the IODP Expedition 396 scientists: Exploring links between the North Atlantic Igneous Province and Paleocene–Eocene climate change using sedimentary mercury, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2714, https://doi.org/10.5194/egusphere-egu23-2714, 2023.

EGU23-5618 | ECS | Posters on site | SSP2.2

A Novel Approach to Constraining Carboniferous Tidal Currents using Bedforms in Tidal Rhythmites 

Jennifer Hewitt, Jaco Baas, Justyna Bulawa, Amy Ewing, Brennan O'Connell, and Mattias Green

A novel methodology shows that the dimensions of current ripples within tidal rhythmites can be used as a proxy for tidal current velocity, allowing us to contribute to the validation of numerical tidal model simulations. Our understanding of changing tides through geological history is facilitated by tidal simulations, which are generally poorly constrained due to the limited availability of proxy data. We aim to rectify this by developing a new type of geological proxy for tides based on sedimentary textures and structures, as bedforms are widely reported but uncommonly measured in the literature. The Carboniferous is a particularly data-rich time period with globally abundant tidal lithofacies including tidal rhythmites; successions of rhythmically alternating coarser and finer layers which can be used to describe tidal cyclicity, changes in the Earth – Moon system, and palaeoenvironmental conditions. Using data collected from a previously unstudied succession of Late Carboniferous (318 Ma) tidal rhythmites in Pembrokeshire, South Wales, UK, and empirical relationships identified through a series of flume studies in the literature, we deducted that the current ripples in our studied outcrop were formed at tidal flow velocities ranging between 0.28 and 0.34 m s-1. The latest palaeogeographical reconstructions depict South Wales as entirely continental, however the studied section revealed evidence of deposition in a shallow-marine palaeoenvironment. Identifying these palaeoenvironmental inaccuracies such as these allows us to rectify the palaeogeographical reconstructions; once tuned, the numerical tidal model simulation matched well with our proxy results. These promising findings demonstrate proof-of-concept of utilising bedforms as a proxy for palaeotides as well as its feasibility to validate tidal model simulations of other geological time periods and areas.  

How to cite: Hewitt, J., Baas, J., Bulawa, J., Ewing, A., O'Connell, B., and Green, M.: A Novel Approach to Constraining Carboniferous Tidal Currents using Bedforms in Tidal Rhythmites, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5618, https://doi.org/10.5194/egusphere-egu23-5618, 2023.

EGU23-5657 | ECS | Orals | SSP2.2

Planktonic Foraminiferal δ13Corg as a novel proxy for Carbon Cycling 

Tommaso Paoloni, Babette Hoogakker, Helen Grant, Patrick Keenan, and Helliot Hamilton

It has been hypothesized that lower atmospheric CO2 concentrations and lower temperatures during glacial times caused the enrichment of carbon isotopes of particulate organic material (δ13Corg-POM) produced in the surface ocean. Some downcore measurements of organic carbon isotopes of bulk sediments show such a trend, however, others do not. The lack of a coherent picture could be due to issues relating to the bulk sediments, including diagenetic alteration, the nature of the organic material, input of allochthonous material, and sediment redistribution.

Recent work by Hoogakker et al. (2022) shows that planktonic foraminifera-bound organic carbon δ13C values (δ13CFBOM) are remarkably similar to those of δ13Corg-POM. Here we present the first down-core organic carbon isotope record of planktonic foraminifera-bound organic carbon (δ13CFBOM) from the Southern Ocean (ODP Site 1088), to test for a glacial enrichment in δ13Corg-POM. The samples (Globigerina bulloides, Globorotalia truncatulinoides, and G. inflata) cover the last 20,000 years.

Our δ13CFBOM results show a slight positive trend toward the Last Glacial Maximum (LGM), in accordance with the hypothesized δ13Corg-POM trend, but not to the extent as shown in some bulk sediments from more tropical latitudes. We discuss our results in the context of predicted past δ13Corg-POM using ice core atmospheric pCO2 concentrations, G. bulloides calcification DIC (from inorganic carbon isotopes), and temperature (using Mg/Ca). 

How to cite: Paoloni, T., Hoogakker, B., Grant, H., Keenan, P., and Hamilton, H.: Planktonic Foraminiferal δ13Corg as a novel proxy for Carbon Cycling, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5657, https://doi.org/10.5194/egusphere-egu23-5657, 2023.

EGU23-5912 | Posters on site | SSP2.2

A comparison study of Mg/Ca-, alkenone- and TEX86-derived temperatures for the Brazilian Margin during Marine Isotope Stages 6–5 

André Bahr, Andrea Jaeschke, Alicia Hou, Christiano M. Chiessi, Ana Luiza Spadano Albuquerque, Janet Rethemeyer, and Oliver Friedrich

The reconstruction of accurate sea-surface temperatures (SST) is of utmost importance due to the central role of the ocean in the global climate system. Yet SST-proxies might be influenced by a number of environmental processes that may potentially bias the accurate reconstruction of the target variable. Here, we investigate the fidelity of SST reconstructions for the Western Tropical South Atlantic (WTSA) for Marine Isotope Stages (MIS) 6–5, utilizing a core collected off eastern Brazil at ~20°S. This interval was selected as previous SST estimates based on Mg/Ca ratios of planktic foraminifera suggested a peculiar pooling of warm surface waters in the WTSA during MIS 6 despite glacial boundary conditions. To ground-truth the Mg/Ca-based SST data we generated SST reconstructions from the same core using both, alkenone and TEX86 paleothermometers. Comparison with alkenone-based temperature estimates corroborate the previous Mg/Ca-based SST reconstructions, supporting the presumed warm-water anomaly during MIS 6. In contrast, while core top samples indicate that TEX86-derived temperatures represent annual mean SST, the TEX86-derived paleo-temperatures are up to 6°C colder than Mg/Ca- and alkenone-based SST reconstructions. We interpret the periods of anomalously cold TEX86-temperatures as a result of a vertical migration of the TEX86 producers (heterotrophic marine Thaumarchaeota) to deeper water depths in response to an increase in food availability during phases of enhanced fluvial suspension input.

How to cite: Bahr, A., Jaeschke, A., Hou, A., Chiessi, C. M., Spadano Albuquerque, A. L., Rethemeyer, J., and Friedrich, O.: A comparison study of Mg/Ca-, alkenone- and TEX86-derived temperatures for the Brazilian Margin during Marine Isotope Stages 6–5, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5912, https://doi.org/10.5194/egusphere-egu23-5912, 2023.

The ~1800–800 Ma period is known as the 'Boring Billion (BB)' because of the relative stasis of the carbon isotope record during this time. However, geochemical data from the Paleo-Mesoproterozoic strata deposited in different areas indicate heterogeneity and complexity of the oxygen contents in the oceans, which hampers paleoenvironmental reconstructions from this period. In addition, very little research has been carried out on the Palaeoproterozoic strata of the North China Craton (NCC). In this study, we report analyses of U-Pb isotopes, elemental abundances, Fe speciation, and molecular markers from the Huangqikou formation in the northwestern part of the Ordos Basin (OB), NCC. The Huangqikou formation was deposited in the rift valley at about 1736 Ma. Our new data, combined with previous analyses, suggest that the warm and humid depositional environment of the Huangqikou formation in the Helanshan area evolved from a marine foreshore setting to a marine backshore setting, with increasing degree of seawater hypoxia. But a relatively oxygenated environment corresponded to the lower part. On the other hand, the Huangqikou formation in the Zhuozishan area evolved from a terrestrial deltaic environment to a marine foreshore environment, with cumulatively reducing conditions. This study points out that the late Paleoproterozoic strata deposited in the western part of the NCC might mainly formed in reduced seawater. But some degree of oxidation had occurred in the surface water during this period, which proves the oxygenation of the surface environment during the early period of Earth evolution.

How to cite: Ma, Q., Zhou, Y., and Zerkle, A.: Sea water chemistry in the late Paleoproterozoic: Insight from the Huangqikou formation, western part of the North China Craton, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5965, https://doi.org/10.5194/egusphere-egu23-5965, 2023.

EGU23-6265 | ECS | Posters virtual | SSP2.2

Geochemical and palynological analyses of the Shivee Ovoo coal deposit (Choir-Nyalga basin, Central Mongolia)-palaeoclimatic implications 

Nyamsambuu Odgerel, Niiden Ichinnorov, Hitoshi Hasegawa, Bat Orshikh Erdenetsogt, Luvsanchultem Jargal, and Sukhbat Purevsuren

The Shivee Ovoo is one of the big industrial mine of continental Choir-Nyalga basin in central Mongolia. The depositional environment and petroleum source rock potential of major coal-bearing strata in the Choir-Nyalga basin has been studied (Erdenetsogt et al., 2009, 2022), and age of the deposits (Khukhteeg Formation) has been assigned to Aptian-Albian on the basis of radiometiric age of intercalated tuff  (Hasegawa et al. 2018). We carried out a geochemical and palynological study on 10 samples (47 m mine wall) collected from Shivee Ovoo.

Geochemical analysis completed for major, trace, and rare earth elements (REE) in the SGS laboratory in Mongolia. Palynological study was carried out at the Basic Research Laboratory of National University of Mongolia. Fossil palynomorphs were investigated by LM using single grain technique (Hesse et al., 2009). As a result of geochemical analysis of major oxides, SiO2   hasthe highest content with 44.2%-66.9%. Following this Al2O3 (16.24%-19.14%), K2O (1.03%-4.09%) and TFe2O3 (total iron) (1.75%-3.36%) are the second most abundant oxides. The rest of the oxides (MgO, Na2O, P2 O5, MnO, CaO and TiO2) have concentration of less than 2.31%. The Al/Si ratio was between 0.26-0.41, SiO2 is related with quartz. The chemical weathering parameter CIA varies 71.3-81.6, with an average of 78.97, showing intermediate chemical weathering. Also, the Zr/Rb ratio 0.93 it can be seen the hydrodynamic force was weak. Generally, V/Cr:1.18, U/Th: 0.4, δU:1.68 implies oxidation environment. All weathering parameters show oxidation environment during sedimentation indicating that the paleoclimate is a warm and humid.

Palynological data,  6 of the 10 samples contain rich palynological fossils providing important information on the paleovegetation and paleoclimates. Sporomorph plants in the Khukhteeg formation contain 23 genera, 32 species. The palynological percentages of plants Cyathidites 32%, Baculatisporites 20%, Osmundacidites 11.1%, Gingkocycadopites 11%. Dominant plants mainly belong to the Filicales of the ferns represented by Osmundacidites and Dicksoniaceae. The plants 63.1% grow swamps, wet valleys, subtropical temperate zones. This palynological and geochemical data indicate that the at 47m depth Khukhteeg formation had a warm subtropical climate was at that time.

REFERENCES

Erdenetsogt, B. O., Lee, I., Bat-Erdene, D., & Jargal, L. (2009). Mongolian coal-bearing basins: geological settings, coal characteristics, distribution, and resources. International Journal of Coal Geology80(2), 87-104.

Erdenetsogt, B. O., Hong, S. K., Choi, J., & Lee, I. (2022). Depositional environment and petroleum source rock potential of Mesozoic lacustrine sedimentary rocks in central Mongolia. Marine and Petroleum Geology140, 105646.

Hasegawa, H., Ando, H., Hasebe, N., Ichinnorov, N., Ohta, T., Hasegawa, T., Yamamoto, M., Li, G.,  Erdenetsogt, B-O., Ulrich, H., Murata, T.,  Shinya, H.,  Enerel, G., Oyunjargal, G., Munkhtsetseg, O., Suzuki,N., Irino, T.,  Yamamoto, K., (2018). Depositional ages and characteristics of Middle–Upper Jurassic and Lower Cretaceous lacustrine deposits in southeastern Mongolia. Island Arc. 2018; e12243. 17 https://doi.org/10.1111/iar.12243

Hesse, M., Halbritter.H., Zetter, R., Weber, M., Buchner, R., Frosch-Radivo,A. & Ulrich,S. (2009). Pollen terminology-an illustrated handbook. Wein: Springer.

 

How to cite: Odgerel, N., Ichinnorov, N., Hasegawa, H., Erdenetsogt, B. O., Jargal, L., and Purevsuren, S.: Geochemical and palynological analyses of the Shivee Ovoo coal deposit (Choir-Nyalga basin, Central Mongolia)-palaeoclimatic implications, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6265, https://doi.org/10.5194/egusphere-egu23-6265, 2023.

EGU23-6929 | Posters on site | SSP2.2

Aspects of the geomorphology of the Late Palaeozoic glaciated landscape of Namibia as revealed by photogrammetry 

Daniel Le Heron, Christoph Kettler, Pierre Dietrich, Neil Griffis, Isabel Montañez, and Ricarda Wohlschlägl

The geometry of unconformities carved by deep time ice sheets is often obscured and restricted by discontinuous exposure, or outcrop conditions that do not readily permit the examination of glacial unconformities (for example, steeply dipping strata). Here, we present new uncrewed aerial vehicle (UAV) data from selected outcrops across northern, central and southern Namibia to shed new light on the nature of the basal Dwyka unconformity. This includes the onlap relationship of basal diamictites onto the Gomatum palaeo-fjord system in northern Namibia, highly complex mapped ice flow orientations elsewhere in the northern Kaokoveld, previously undiscovered grooves along the Fish River area, and a spectacular set of subglacial grooves along the border with South Africa along the Orange River. In the latter two cases, photogrammetric methods integrating orthophotos and digital elevation models reveal the presence of subglacial grooves for the first time, since the features are too subtle to observed using conventional approaches at outcrop. Furthermore, subglacial grooves often show different orientations to striations and fabrics measured in overlying diamictites, raising fresh questions about the nature of small-scale flow variations beneath Late Palaeozoic ice sheets.

How to cite: Le Heron, D., Kettler, C., Dietrich, P., Griffis, N., Montañez, I., and Wohlschlägl, R.: Aspects of the geomorphology of the Late Palaeozoic glaciated landscape of Namibia as revealed by photogrammetry, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6929, https://doi.org/10.5194/egusphere-egu23-6929, 2023.

EGU23-7230 | ECS | Posters on site | SSP2.2

Late Paleozoic glaciated landscape in northern Africa as an outstandingly well-preserved analogue to Quaternary deglaciated areas 

Ricarda Wohlschlägl, Christoph Kettler, Daniel Le Heron, and András Zboray

The Ennedi sandstone plateau in Chad in north-central Africa exposes an outstanding example of an ice stream paleo-landscape that is of Paleozoic age. This assemblage of paleo-glacial structures is of comparable quality to that found in Quaternary deglaciated landscapes. A wide range of exceptionally well-preserved proglacial, ice-marginal and subglacial features are visible due to the absence of vegetation in the desert environment. Paleo-ice stream pathways contain swarms of large-scale glacial lineations distributed over the whole plateau that tell the story of a dying ice sheet during the late Paleozoic. A putative grounding zone wedge within a paleo-ice stream pathway allows the position of the former coastline to be reconstructed as it is assumed that ice streams terminated into a former ocean basin. Based on the convex topography and its position orthogonal to the large-scale glacial lineations, we present the first geomorphological interpretation of a grounding zone wedge in the Paleozoic record. Additionally, a unique system of inverted channel sediments in close proximity to glacial structures might record different phases of meltwater release during ice retreat. In summary, the Ennedi paleo-glacial landscape provides an excellent natural laboratory to understand the spatial relationship between subglacial, ice-marginal and proglacial components of a former ice sheet, with emphasis on exceptional outcrop quality that can be used to further our understanding of some Quaternary glaciated landscapes.

How to cite: Wohlschlägl, R., Kettler, C., Le Heron, D., and Zboray, A.: Late Paleozoic glaciated landscape in northern Africa as an outstandingly well-preserved analogue to Quaternary deglaciated areas, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7230, https://doi.org/10.5194/egusphere-egu23-7230, 2023.

EGU23-7618 | ECS | Posters virtual | SSP2.2

Disentangling regional and global signatures from benthic foraminifera records during the Late Miocene-Early Pliocene Biogenic Bloom (IODP Site U1506 and ODP Site 1085) 

Maria Elena Gastaldello, Claudia Agnini, Thomas Westerhold, Anna Joy Drury, Rupert Sutherland, Michelle K. Drake, Adriane R. Lam, Gerald R. Dickens, Edoardo Dallanave, Stephen Burns, and Laia Alegret

The Late Miocene-Early Pliocene Biogenic Bloom (~ 9-3.5 Ma) is a paleoceanographic event defined by anomalously high marine biological productivity and associated with changes in the marine carbon cycle. Marine sedimentary records in the Indian, Pacific, and Atlantic oceans, point to a significant increase in primary productivity across low-latitude oceanic regions maintained for several millions of years. Surface primary productivity is typically limited by the availability of nutrients; whose residence times are fairly short in the global ocean. Therefore, the global nature and the multimillion years duration of the Biogenic Bloom make this event a paleoceanographic puzzle. Two main explanations for these anomalously high productivity conditions have been proposed: a major redistribution of nutrients triggering an intensification of regional upwelling; or an absolute increase of nutrients delivery to the oceans. We investigated the Biogenic Bloom at IODP Site U1506 (Tasman Sea, southwest Pacific Ocean, 1505 m water depth) and at ODP Site 1085 (Cape Basin, southeast Atlantic Ocean, 1713 m water depth). For these sites we generated implemented age models and quantitative benthic foraminiferal records across an interval spanning from the Tortonian (Late Miocene) to the Zanclean (Early Pliocene). The benthic foraminiferal assemblage analysis shows that the Biogenic Bloom was a complex, multiphase event rather than a single uniform period of sustained high marine water productivity. Both sites record changes that can be interpreted in terms of modification of productivity conditions. Intervals with low diversity and abundant opportunistic and phytodetritus exploiting taxa (PET) are indicative of transient pulsed food supply, high oxygen levels, and oligotrophic conditions. Intervals characterized by increased diversity, higher relative abundance of uvigerinids and buliminids, and relative lower abundance of PET instead suggest lower oxygen and /or more eutrophic conditions. However, the two sites show a different taxonomic composition of the benthic foraminiferal assemblages. The dominating PET comprise distinct species at different the study sites, with Globocassidulina crassa and Globocassidulina subglobosa displaying high abundance at Site U1506, and Epistominella exigua and Alabaminella weddellensis at Site 1085. While showing common features, the Biogenic Bloom is also characterized by unique regional responses at different study sites which highlight the need for further high-resolution records to provide global mechanisms and dynamics for the Biogenic Bloom event.

Acknowledgments

The authors acknowledge funding from University of Padova DOR grant, CARIPARO Foundation Ph.D. scholarship, Fondazione Ing. Aldo Gini scholarship, and Spanish Ministry of Economy and Competitiveness and FEDER funds (PID2019-105537RB-I00).

How to cite: Gastaldello, M. E., Agnini, C., Westerhold, T., Drury, A. J., Sutherland, R., Drake, M. K., Lam, A. R., Dickens, G. R., Dallanave, E., Burns, S., and Alegret, L.: Disentangling regional and global signatures from benthic foraminifera records during the Late Miocene-Early Pliocene Biogenic Bloom (IODP Site U1506 and ODP Site 1085), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7618, https://doi.org/10.5194/egusphere-egu23-7618, 2023.

EGU23-7830 | ECS | Posters on site | SSP2.2

Carbon and nitrogen isotope stratigraphy of the Cambrian SPICE record in the UK 

Francesca Warren, Darren R. Gröcke, Martin Smith, and Matthias Sinnesael

Carbon isotope fluctuations have been determined globally within the late Cambrian with particular focus on the Steptoean Positive Carbon Isotope Excursion (SPICE) and the negative Hellnmaria-Red Tops Boundary/Top of the Cambrian Excursion (HERB/TOCE). These events correspond to global anoxia/euxinia, increased global weathering of organic rich material and a shift in dissolved inorganic carbon availability. We have extended our knowledge of SPICE and HERB/TOCE in the UK by conducting coupled carbon and nitrogen isotope analysis of cores (Merevale 1, 3) and quarry samples from Warwickshire (Oldbury Quarry). Our organic δ13C record replicates the changes previously published for SPICE in other global records. The bulk sediment δ15N record reveals a rapid positive excursion at the start of SPICE followed by a gradual decline through the remaining SPICE interval. We interpret the δ15N record as reflecting expansion of the oxygen minimum zone into the upper water column and replacing nitrification with denitrification processes. Denitrification is also supported during the SPICE interval from previously published iron-speciation data from the same cores. The negative δ13C HERB/TOCE record is coupled with a more subtle δ15N positive excursion. There is a paucity of organic carbon isotope records through this time interval, and hence a lack of global comparability is possible. The shift in δ13C and δ15N, coupled with changes in redox conditions in Cambrian oceans may also reflect biological shifts between red and green phytoplankton superfamilies making up the upper water column community. Additional research on organic carbon, nitrogen and redox proxies are required to ascertain the link between phytoplankton superfamily dominance, species richness, diversity and/or the onset of the Phytoplankton Revolution and the Great Ordovician Biodiversity Event.

How to cite: Warren, F., Gröcke, D. R., Smith, M., and Sinnesael, M.: Carbon and nitrogen isotope stratigraphy of the Cambrian SPICE record in the UK, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7830, https://doi.org/10.5194/egusphere-egu23-7830, 2023.

EGU23-8260 | ECS | Posters on site | SSP2.2

Climatic differences between Estonia and Svalbard during the second half of the Holocene 

Katre Luik and Hannes Tõnisson

This overview compares various environmental publications to find out the contrasts and similarities in climatic conditions in the last 6000 years in Estonia and Svalbard.

Both regions with their geographical differences are sensitive to climate change, Estonia on the meeting borderline with maritime and continental air masses and Svalbard at the end of the North Atlantic Cyclone track with very changeable climatic conditions. The study aims to find out how the colder and warmer periods differ in the larger time scale such as the Middle and Late Holocene.

The Holocene in Estonia and Svalbard experienced dramatic climate changes including several cold and warm episodes.  A variation of paleoclimatic records was compared with other geological proxies (lake sediments, glaciers, pollen, coastal and dune belt formation data presented in scientific publications) and a good correspondence between cold and warm climate periods was found in both areas. 

The climate conditions were warm and dry during the Middle Holocene with step wise cooling, no glacigenic input in Svalbard, water level in Estonian lakes extremely low; abrupt decrease in temperature appeared around 4000 BP and 2500 BP in both areas. Approximately 4500 years BP, North Atlantic Oscillation (NAO) changed its phase from primarily positive NAO conditions to weakly positive NAO roughly for the next 2500 years. Around 4000 BP dry conditions changed to humid in Estonia and remained so for a thousand years (broad-leaved trees declined and pine forests became dominant approximately 3000 BP; stormy period ∼3300 - 3000 BP recorded in ancient beach formations), the climate likely shifted towards maritime; in Svalbard more intense precipitation stages were recorded in lakes runoff ∼3150 – 3000 BP. The next 2000 years the temperature appeared stabilised, Estonia mostly dry (more continental climate again) with a strong storm period characterised by large beach ridges  in the NW of the country formed ∼2300 - 2000 BP, Svalbard cool and moist with possible glacier advance around 2000 BP and a 400-year humid phase in 1600 - 1350 BP. The Little Ice Age (LIA) occurred around 600 - 100 BP in Svalbard and 500 - 200 BP in Estonia. During the LIA, precipitation and storminess increased in Svalbard whereas the Estonian climate turned more continental (dry and cool) with prevailing northern storms, clearly reflecting in the morphology and shape of dunes formed during this period.

Despite the distinct climatic conditions between Estonia and Svalbard there's no major differences in climate in the last 6000 years, still some noticeable shifts occur. Several detectable changes taking place in both areas were noticed around 3300 - 3000 BP: weaker NAO+ phase, humid conditions in Svalbard, exceptionally stormy period in Estonia followed by explicit changes in dominant tree species. During LIA more continental climate was dominating in Estonia while maritime influence was increasing in Svalbard. Similar opposite  shifts in the past cannot be ruled out and need further investigations and more precise dating information. 

How to cite: Luik, K. and Tõnisson, H.: Climatic differences between Estonia and Svalbard during the second half of the Holocene, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8260, https://doi.org/10.5194/egusphere-egu23-8260, 2023.

EGU23-8719 | ECS | Orals | SSP2.2

Extraterrestrial 3He-based reconstruction of sedimentation rates across the Paleocene-Eocene transition at ODP Site 1209 (North Pacific) 

Nicolas Pige, Guillaume Suan, Pierre Henri Blard, and Emanuela Mattioli

Numerous hyperthermal events have been documented through the Paleocene-Eocene transition. The best known hyperthermal event is the Paleocene-Eocene Thermal Maximum (PETM; around 56Ma), a period that led to surface and bottom water warming of about 5°C within a few millennia at tropical latitudes. It is therefore considered as one of the best analogues of current global warming. The PETM is also characterized by an abrupt 3-4 per mil negative δ13C excursion in deep marine core sediments and by a thin clay-rich layer associated with the PETM onset, most often interpreted as carbonate dissolution due to the shoaling of the CCD. The duration represented by these clays and carbonates is of peculiar interest to constrain the exported carbonate production dynamics of surface ocean and its dissolution throughout the water column. This is key to produce realistic carbon budgets across hyperthermal events.

To this end, we generated a new 4 Ma (57.5-53.5) record of extraterrestrial 3He-derived sedimentation rates from pelagic sediments recording at least 10 hyperthermal events at ODP Site 1209 (North Pacific). Our main results indicate that carbonate sedimentation dropped drastically during the PETM onset (minimum of 0.02 cm/ka) and recovered rapidly during the recovery phase of the event (around 0.7 cm/ka). Surprisingly, the sedimentation rate is low (0.3 cm/ka) after the recovery until the Eocene Thermal Maximum 2 (ETM2; around 54Ma). After this major event, the sedimentation rate increased abruptly (0.7 cm/ka) over the last 500 ka of the studied interval due to the overabundance of Zygrhablithus bijugatus a large rod-shaped nannofossil whose ecology is poorly understood yet.

Comparisons between the new record of extraterrestrial 3He-derived sedimentation rate and dissolution proxies from this and previous studies lead us to challenge the widely accepted model previously proposed for hyperthermal events, which assumes that the CaCO3 accumulation is mainly controlled by dissolution.

How to cite: Pige, N., Suan, G., Blard, P. H., and Mattioli, E.: Extraterrestrial 3He-based reconstruction of sedimentation rates across the Paleocene-Eocene transition at ODP Site 1209 (North Pacific), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8719, https://doi.org/10.5194/egusphere-egu23-8719, 2023.

EGU23-8831 | Orals | SSP2.2

Sea surface temperature evolution of the North Atlantic Ocean across the Eocene-Oligocene Transition 

Kasia K. Sliwinska, David K. Hutchinson, Devika Varma, Tirza Weitkamp, Emma Sheldon, Diederik Liebrand, Helen K. Coxall, Agatha M. de Boer, and Stefan Schouten

When a permanent ice cap developed on Antarctica during the Eocene–Oligocene transition (EOT; ~34.44 to 33.65 million years ago (Ma)), Earth witnessed a transition from a greenhouse towards a glacially driven climate. Evidence of high-latitude cooling and increased latitudinal temperature gradients across the EOT has been found in both marine and terrestrial environments. However, the timing and magnitude of temperature change in the North Atlantic remains poorly constrained.

Here, we used two independent organic geochemical palaeothermometers derived from (i) alkenones and (ii) Glycerol Dialkyl Glycerol Tetraether (GDGT) lipids, to reconstruct sea surface temperature (SST) evolution across the EOT from the southern Labrador Sea (Sites: ODP 647 and DSDP 112). In the Labrador Sea alkenones do not appear until the earliest Oligocene (both sites) while GDGT lipids (analysed in Site 647 only) provides a well-constrained temperature record across the EOT.  

Our SST records provide the most detailed record for the northern North Atlantic through the 1 Myr leading up to the EOT onset, and reveals a distinctive cooling step of ~3 ºC (from 27 to 24 ºC), between 34.9 and 34.3 Ma, ~500 kyr prior to Antarctic glaciation. This cooling step, when compared visually to other SST records, is asynchronous across North and South Atlantic sites. This illustrates a considerable spatiotemporal variability in SST evolution in the northern sector of the North Atlantic and the Norwegian-Greenland Sea. Overall, the cooling step fits within a phase of general SST cooling recorded across sites in the North Atlantic in the 5 Myr interval bracketing the EOT.

We used a modelling study (GFDL CM2.1) to try and reconcile the observation of pre-EOT cooling with the hypothesis that Atlantic Meridional Overturning Circulation (AMOC) switched on or intensified on the lead up to the EOT, which would be expected to have warmed the North Atlantic region. Results suggest that a reduction in atmospheric CO2 from 800 to 400 ppm may be sufficient to counter warming from an AMOC start-up. In the model, the AMOC start-up is initiated during closure of the Arctic–Atlantic gateway.

While the model simulations applied here are not yet in full equilibrium, and the experiments are idealized, the results, together with the proxy data, highlight the heterogeneity of basin-scale surface ocean responses to the EOT thermohaline changes, with sharp temperature contrasts expected across the northern North Atlantic as positions of the subtropical and subpolar gyre systems shift in response to climatic and oceanic adjustments.

How to cite: Sliwinska, K. K., Hutchinson, D. K., Varma, D., Weitkamp, T., Sheldon, E., Liebrand, D., Coxall, H. K., de Boer, A. M., and Schouten, S.: Sea surface temperature evolution of the North Atlantic Ocean across the Eocene-Oligocene Transition, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8831, https://doi.org/10.5194/egusphere-egu23-8831, 2023.

EGU23-10010 | ECS | Orals | SSP2.2

Alkenones confirmed in sediments from high southern latitudes during the Cretaceous and Paleocene: results from the Transkei Basin (IODP Site U1581) 

Kelsey Doiron, Simon Brassell, Peter Bijl, Thomas Wager, Jens Herrle, Gabriele Uenzelmann-Neben, Steven Bohaty, and Laurel Childress and the Expedition 392 Science Party

Preliminary examination of the biomarker composition of Paleocene to Campanian (~63-74 Ma) organic-rich sediments recovered from the Transkei Basin (Hole U1581B; 35° 41’S, 29° 39’E), offshore South Africa, during IODP Expedition 392 reveals suites of alkenones and alkyl alkenoates derived from haptophyte algae. This discovery augments evidence for the temporal continuity of their occurrence since the early Aptian and expands their paleogeographic range to high southern latitudes (~60°S) during the Cretaceous and Paleocene. In addition, the similarity of alkenone distributions between Maastrichtian and Danian samples suggests a conformity in the biosynthetic pathways for their production across the K/Pg boundary likely attesting to the survival of their source haptophytes and recovery after the extinction event. Alkenone distributions in the Transkei Basin sediments are dominated by series of C37 to C40 diunsaturated components and remain broadly consistent throughout the Cretaceous to Paleocene stratigraphic  succession. The presence of both the C38 alkadien-2-one and C39 alkadien-3-one represents the earliest recognition of these compounds thereby extending the advent for biosynthesis of both methyl and ethyl alkenones to the Campanian (~74 Ma). These sediments also contain C37 methyl and both C38 and C40 ethyl alkadienoates. No C37, C38 or C39 triunsaturated alkenones were detected in the Paleocene through Campanian succession but minor amounts of a C40 alkatrien-3-one were confirmed in Cretaceous samples based on its elution time and diagnostic mass spectrum. This finding raises the question why only the C40 triunsaturated component is observed, coupled with pervasive evidence that C37 to C39 triunsaturated alkenones emerge after the Early Eocene Climatic Optimum (EECO). Among extant haptophytes, C40 alkenones occur in species within phylogenic Group II, notably Isochrysis, but are absent in extant marine species comprising phylogenic Group III. These observed distributions of alkenones in the marine realm can be best explained as evidence for contributions from both Isochrysidaceae and Noelaerhabdaceae following their divergence in the early Cretaceous.  

How to cite: Doiron, K., Brassell, S., Bijl, P., Wager, T., Herrle, J., Uenzelmann-Neben, G., Bohaty, S., and Childress, L. and the Expedition 392 Science Party: Alkenones confirmed in sediments from high southern latitudes during the Cretaceous and Paleocene: results from the Transkei Basin (IODP Site U1581), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10010, https://doi.org/10.5194/egusphere-egu23-10010, 2023.

EGU23-10905 | Posters on site | SSP2.2

Tracking climate changes in the Gulf of California and the Eastern Tropical Pacific Ocean during the past 18,000 yr 

Ligia Perez-Cruz, Mauricio Velázquez-Aguilar, Andrea Lefranc-Flores, Abdel Siffedine, and Jaime Urrutia-Fucugauchi

The location, sedimentology, and oceanographic characteristics of the southern Gulf of California make it suitable for investigating the Quaternary climate changes of the Eastern Tropical Pacific Ocean (ETPO). We investigate changes in precipitation, ocean patterns and variations in paleoproductivity in the Eastern Tropical Pacific Ocean related to insolation, migrations, and dynamics of the of Intertropical Convergence Zone (ITCZ), the North America Monsoon (NAM), and inter-hemispheric teleconnections. Proxy records are obtained from sediments in the marginal Alfonso Basin, situated in the southwestern sector of the Gulf of California near its junction with the Pacific Ocean. The age model was based on eleven radiocarbon dates, the MARINE 20 calibration curve, and a reservoir age of 253 + 18 years. 
High-resolution records of elemental geochemistry, magnetic properties, and radiolarian assemblages are used to track climate changes in the tropical climate system at millennial and centennial time scales over the past 18,500 yr. Geochemical and magnetic proxies revealed an increase of precipitation at  ~17,500 and 16,536 yr, in the Bolling Allerod (from ~14,988 to 14,057 yr), and during the early Holocene. Humid conditions predominated between ~7,404 and 5,200 cal yr BP. Records indicate a climatic shift at ~4,860 cal yr BP, suggesting increased aridity and the strength of winds to continue through the late Holocene. Roughly 4000 cal yr BP the productivity increased as a result of the intensification of the winds. Paleoprecipitation changes are associated with ITCZ latitudinal migration and the NAM responding to insolation changes during the Holocene. Aeolian and fluvial inputs, marked by variations in Ti, K, Fe, Zr/Ti and magnetic properties, indicate that precipitation-controlled changes in summer monsoon rainfall primarily forced terrigenous supply throughout the mid-Holocene. We propose that these conditions arise from the northern hemisphere's high insolation at low latitudes, with the average position of the ITCZ migrating northward. Development of the NAM amplifies the seasonality and promotes increased precipitation during summer seasons. 
During the late Holocene, terrigenous input appears mainly controlled by the intensification of the NW winds. The record indicates a drop-in precipitation and abrupt enhancement of Aeolian activity. 
Radiolarian assemblages reveal the upper layers of two water masses (TSW and GCW), suggesting that the advection of coastal currents and mesoscale features controlled these conditions. The dominance of  Phormostichoartus corbula, Lithomelissa thoracites, and Arachnocorallium calvata, surface dwellers species reveal the Gulf of California Water and relatively high productivity during the BA, and in the transition to the middle to late Holocene, Botryostrobus aquilonaris suggests that during the deglaciation, (~17,468 to 15,426 yr), and at ~12,604 yr the occurrence of the California Current in the Alfonso Basin. Tetrapyle octacantha group represents the dominance of Superficial Tropical Water in the Alfonso basin, associated with conditions of marked stratification in the water column and oligotrophic conditions in the superficial layer during the Holocene Climatic Optimum and the Medieval Warm Period. which fluctuated due to variations in mesoscale gyres and also coastal upwellings off the western coast could contribute.

How to cite: Perez-Cruz, L., Velázquez-Aguilar, M., Lefranc-Flores, A., Siffedine, A., and Urrutia-Fucugauchi, J.: Tracking climate changes in the Gulf of California and the Eastern Tropical Pacific Ocean during the past 18,000 yr, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10905, https://doi.org/10.5194/egusphere-egu23-10905, 2023.

EGU23-11475 | Posters on site | SSP2.2

Effects of the Indian Ocean Monsoon oscillation during the Pleistocene-Holocene transition on the palinomorphic records in the NW Arabian Sea. 

Patricia Rodrigues, Hermann Behling, Gösta Hoffmann, and Wilfried Bauer

The Indian Ocean Monsoon is one of the largest land-ocean coupled events on Earth. Its occurrence is not only of climatic importance but also has a considerable economic impact on the livelihood of people/countries within its coverage zone. The monsoon winds travelling over the Arabian Sea (AS) carry moisture and bring rainfall to the southern part of the Sultanate of Oman and over a broad area of the Indian continent. In addition to rainfall, the monsoon also causes an intense and extensive deep-water upwelling along the coast and offshore of East Africa and the southern Arabian Peninsula. This intense and pronounced upwelling increases the productivity turning the western Arabian Sea into one of the most productive regions in the world.  In this poster we display partial results of a high-resolution study aiming at identifying monsoonal climatic changes recorded in marine sediments from the northwestern Arabian Sea during the late Pleistocene-Mid Holocene. It was carried out on 11 samples taken from an offshore core IODP Leg 117-721A-1H-1-W. An interval from 80 to 30 cm has been selected and samples have been taken every 3 cm.  We show here results obtained from 6 radiocarbon dating together with the study of palynomorphs. The main objective is to qualitatively identify and characterize pollen grains and spores, as well as the non-pollen palynomorphs (NPP) present in the samples, correlating them with other study sites in the AS. In addition, we evaluate their potential as paleoenvironmental indicators. Samples have presented a low number of pollen grains and spore, which has ranged from 3 to 27 identified specimens. The deeper/older samples have presented a higher concentration of pollen grains. However, due to the low content of specimens, quantitative paleoenvironmental conclusion could not be drawn. Nonetheless, non-pollen palynomorphs are relatively abundant throughout samples. Dinocysts represent the most abundant type of NPP, followed by fungi, microscopic remains of algae and others still not identified. Palynological studies carried on the NW Arabian Sea are scarce and NPP identification and characterization have not been done at the study site yet. Therefore, our work presents novelty on recognizing palinomorphic imprints left by Indian Ocean Monsoon oscillation during the transition Pleistocene-Holocene off the Omani coast.

How to cite: Rodrigues, P., Behling, H., Hoffmann, G., and Bauer, W.: Effects of the Indian Ocean Monsoon oscillation during the Pleistocene-Holocene transition on the palinomorphic records in the NW Arabian Sea., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11475, https://doi.org/10.5194/egusphere-egu23-11475, 2023.

EGU23-12410 | Posters on site | SSP2.2

Late Quaternary climate variability in Madagascar and its connection to South-East Africa hydroclimate changes and atmospheric circulation patterns 

Elin Norström, Rienk Smittenberg, Anneli Ekblom, Simon Haberle, and Christos Katrantsiotis

Madagascar is characterized by high climatic heterogeneity and its topography plays a key role in modulating the regional hydroclimate variability in South and East Africa. However, knowledge on past climate of Madagascar very limited, in line with the general scarcity of paleoclimate records from the southern tropics and subtropics. We generated a 26 kyr paleoclimate record from Madagascar, located in the southwestern Indian Ocean spanning the Last Glacial Maximum (LGM) to the late Holocene. In particular, we present a deuterium/hydrogen isotopic ratio of terrestrial leaf waxes (δ2Hwax) from a sediment core taken from the central eastern part of the island near the capital Antananarivo. The δ2H records of both the aquatic and terrestrial plant derived n-alkanes exhibit similar long-term trends implying that they all record changes in the isotopic composition of source water, namely meteoric water that recharges soil and lake waters. In this tropical region, the δ2H variability of precipitation recorded by n-alkanes δ2H is mainly influenced by the amount effect resulting in lower values for periods with high rainfall. We observe five long-term trends: (i) stable and relatively dry conditions during the Last Glacial Maximum (LGM) (ii) gradually wetter conditions from 17.5 ka to 11.5 ka, especially during the Heinrich stadial 1 (HS1) and the Younger Dryas (YD) (iii) an arid interval from 11.5 ka to 8.5 ka, and (iv) a general trend to more humid climate until 3.0 ka, followed by (v) a drier interval until 1.0 ka. The Madagascar climatic signal is opposite to other records from South Africa and East Africa records especially during the YD and early to middle Holocene period. This regional dipole mode is consistent with the modern rainfall anomaly pattern associated with the variability of Mozambique Channel Trough and the migration of austral summer Intertropical Convergence Zone (ITCZ) position as a response to changes in local summer insolation orbital and/or Northern Hemisphere cold events, such as the YD and HS1.

How to cite: Norström, E., Smittenberg, R., Ekblom, A., Haberle, S., and Katrantsiotis, C.: Late Quaternary climate variability in Madagascar and its connection to South-East Africa hydroclimate changes and atmospheric circulation patterns, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12410, https://doi.org/10.5194/egusphere-egu23-12410, 2023.

EGU23-12950 | Orals | SSP2.2

Sulphur isotopes in Permian–Triassic evaporites: an 80‐million‐year record of pyrite burial 

Jack Salisbury, Darren Gröcke, H.D.R. Ashleigh Cheung, Lee Kump, Tom McKie, and Alastair Ruffell

The Permian–Triassic time interval is associated with major perturbations in the biogeochemical cycling of several redox-sensitive elements. In particular, sulphur isotope ratios (δ34S) reveal substantial perturbations in sedimentary sulphates. Despite this, few studies utilise this δ34S variability for long-term high-resolution correlation. Through the sulphur isotope analysis of sedimentary evaporites of the Staithes S-20 borehole (northeast England), we have generated the most stratigraphically complete evaporite sulphur isotope (δ34Sevap) curve from a single stratigraphic section for the late Permian to Late Triassic. The Staithes S-20 record and its comparison with the global δ34Sevap curve demonstrate the utility of sulphur isotope data for stratigraphic correlation and dating, especially evaporite bearing sequences. The δ34Sevap data for the late Permian to Late Triassic were incorporated into a biogeochemical box model to yield estimates for the pyrite burial flux with time. We propose three significant pyrite burial events (i.e. PBEs) throughout the Triassic. Our model outputs predict a major increase in pyrite burial over the Permian/Triassic boundary, possibly driven by Siberian Traps volcanism. After ~10 million years, the pyrite burial flux achieves relative stability until the latest Triassic.  

How to cite: Salisbury, J., Gröcke, D., Cheung, H. D. R. A., Kump, L., McKie, T., and Ruffell, A.: Sulphur isotopes in Permian–Triassic evaporites: an 80‐million‐year record of pyrite burial, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12950, https://doi.org/10.5194/egusphere-egu23-12950, 2023.

EGU23-13034 | ECS | Posters on site | SSP2.2

A Siderian Snowball Earth? Multiscale and interdisciplinary Analyses of the Makganyene Formation, South Africa 

Sabine Wimmer, Daniel P. Le Heron, Marie E. Busfield, and Albertus J.B. Smith

Snowball Earth events, or at least intense glaciations, belong to one of the most important types of events in Earth’s Deep Time climate record. The Siderian (2.45–2.22 Ga) contained several such events, during which a diamictite-dominated succession named the Makganyene Formation was deposited in the Griqualand West Basin, South Africa. By comparison to their younger cousins in the Cryogenian, Siderian diamictites have been subject to comparatively less sedimentological investigation, although they have much potential in terms of reconstructing aspects of paleoclimate and former ice-sheet behaviour. In this study, multiscale and interdisciplinary analyses of both field and core data provide new insights into the sedimentology and deposition of the Makganyene and thereby aspects of its associated glaciation in the Siderian. Outcrop and core descriptions were supplemented by polarised light microscopic and scanning electron microscopic analyses, including element distribution maps for Al, Ca, Fe, Mg, Si and Ti. We propose that the deposits are the record of grounding zone wedge (GZW) deposition at the ice margin, with a contribution of iceberg-rain out, subglacial deposition and localised mass flow deposition playing a role. We show how interdisciplinary perspectives enrich the overall picture and allow a more accurate interpretation of the Makganyene Formation as a glacigenic sediment. 

How to cite: Wimmer, S., Le Heron, D. P., Busfield, M. E., and Smith, A. J. B.: A Siderian Snowball Earth? Multiscale and interdisciplinary Analyses of the Makganyene Formation, South Africa, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13034, https://doi.org/10.5194/egusphere-egu23-13034, 2023.

EGU23-13268 | Posters on site | SSP2.2

Devonian mass extinctions: cumulative or cataclysmic? 

David Bond, Sarah Greene, Jason Hilton, Gilda Lopes, Jing Lu, John Marshall, Ye Wang, Charles Wellman, and Runsheng Yin

The Late Devonian Mass Extinction is the least understood of the ‘Big 5’ extinctions in virtually every aspect: timing, effects and causes - and there is little knowledge of the coupling of events on land and in the ocean. At one extreme, the marine crisis is viewed as a rapid, cataclysmic event at the Frasnian/Famennian boundary (the “Kellwasser Event”) followed by another crisis 13 Myr later (the “Hangenberg Event”). Alternatively, these Late and end-Devonian extinctions are viewed as a cumulative series of minor events, drawn out over the entire Devonian. Our project aims to resolve these through study of the spectacular Devonian sedimentary succession in northern Spain that is both remarkably complete and laterally extensive, providing a transect across an entire Devonian marine shelf from deep marine to near terrestrial environments. We present initial results from Piedrasecha, north of Léon. We analysed 47 samples spanning the Frasnian Nocedo Formation, and the Famennian-Tournasian (Carboniferous) Fueyo, Ermita and Baleas Formations. Combined geochemical and palynological analyses reveal:

1) δ13Corg values are stable around -26‰ through the Frasnian and Famennian prior to a 2‰ negative shift associated with the onset of black mudstones at the base of the Baleas Formation (latest Famennian). This is likely a muted expression of the Hangenberg Event negative δ13Corg excursion.

2) Redox proxies (Th/U, Mo/Al, V/Al and U/Al) indicate bottom waters remained oxygenated until the latest Famennian, when weakly dysoxic (at worst) conditions developed. There is no obvious expression of Kellwasser Event anoxia in this offshore setting, and only a weak manifestation of Hangenberg oxygen restriction.

3) An order of magnitude shift in productivity proxy values (Ba/Al, Ni/Al, Zn/Al and P/Al) in the latest Famennian suggests that the Hangenberg Event is associated with increased primary productivity.

4) Mercury is enriched in the upper Frasnian Nocedo Formation where it withstands normalisation to TOC (Hg/TOC values reach 388 ppb/wt%, similar to those reported for the Upper Kellwasser Horizon elsewhere). This mercury might derive from large igneous province volcanism and is potentially a chemostratigraphic marker for the Kellwasser Event, though we require better stratigraphic control to evaluate this. Significant Hg enrichments (up to 160 ppb) in the latest Famennian Baleas Formation do not withstand normalisation, as TOC reaches 4.7 wt% at this level. The succession is thermally mature and since TOC drops with thermal maturity, Hg/TOC values might be elevated in comparison to original values.

5) Palynomorph assemblages are dominated by simple spores and Geminospora. The latter derives from the Mid-Late Devonian forest tree Archaeopteris. This suggests a rather homogenous vegetation typical of Late Devonian settings where successive extinctions stripped out diversity from terrestrial floras. However, it may be that in this distal section we are sampling spores that have been winnowed during transport. Work on other sections will enable us to test this.

We have sampled 14 further sections providing a complete Devonian succession and with >500 samples in preparation we hope to resolve whether the Late and end-Devonian crises were the result of cumulative stresses, or were indeed cataclysmic events.

How to cite: Bond, D., Greene, S., Hilton, J., Lopes, G., Lu, J., Marshall, J., Wang, Y., Wellman, C., and Yin, R.: Devonian mass extinctions: cumulative or cataclysmic?, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13268, https://doi.org/10.5194/egusphere-egu23-13268, 2023.

The distribution of the bryozoans in the shallow-marine-estuarine sediments of the late Early–Late Eocene La Meseta Formation, Seymour Island shows a sharp decline in bryozoan biodiversity between the lower, basal transgressive facies of Telm1 and upper part of the formation (Telm6-7) at the end of Eocene (Hara 2001). In the lowermost part of LMF (Telm1) the cheilostome bryozoans, preserved as internal moulds systematically belonging to buguloids and catenicelloideans, at the present day are widely distributed in the tropical-warm temperate latitudes and deposited in the shallow-water settings (Hara 2015). Within a 2 meters thick interval of the basal transgressive facies of Telm1 unit, the most common are multilamellar colonies, showing a great variety of shapes dominated by celleporiforms and cerioporids.

The middle part of (LMF, Telm4-5) reveal a presence of the microporoideans and disc-shaped lunulitiform - warm-loving, free-living bryozoans. Environmentally, Recent, lunulitids are known to occur in warm, shallow-shelf conditions, at temperatures of 10-29˚C, on coarse, sandy to muddy bottom, what suggest the shallow-water setting for the middle part of the LMF.

10 million years older, the Cape Melville Formation on King George Island dated as Early Miocene is dominated by the infaunal bivalves, which provide a unique fossil record in the Antarctic Peninsula region during the latest Oligocene to earliest Miocene interglacial to glacial transition. Only one bryozoan was described identified as Aspidostoma melvillensis (Hara and Crame, 2004).

The shallow-marine, pectinid-rich biofacies of the Pecten Conglomerate of CIF, Cockburn Island, taxonomically shows the mosaic pattern in occurrence of bryozoan taxa, which are known from the Middle and Late Cretaceous, another originated in the Paleogene, as well as those which are solely common in the Neogene. Exclusively encrusting colony growth-form of the Pliocene biota suggests sedimentation in the shallow-water environment and indicates an interglacial palaeoenvironment of the CIF Formation (Hara & Crame, in revision).

The cold-water geographical distribution of the Recent bryozoans with dominant Neocheilostomatina of Buguloidea and the ascophoran lepraliomorphs of Smittinoidea and Schizoporelloidea, shows a dynamic history of this highly endemic fauna, which evolved over long period of time.

Hara, U. 2001. Bryozoa from the Eocene of Seymour Island, Antarctic Peninsula. Palaeontologia Polonica, In: Palaeontological Results of the Polish Antarctic Expeditions, Part III, 60, 33-156.

Hara U., 2015. Bryozoan internal moulds from the La Meseta Formation (Eocene) of Seymour Island, Antarctic Peninsula. Polish Polar Research, 36: 25-49.

  • Hara and J. A. Crame 2004. A new aspidostomatid bryozoan from the Cape Melville Formation (lower Miocene) of King George Island, West Antarctica. Antarctic Sciences, 16, 319-327.

 

 

How to cite: Hara, U.: Cenozoic bryozoan biota: their palaeoecology and climatic environmental significance  in Antarctic ecosystems , EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14043, https://doi.org/10.5194/egusphere-egu23-14043, 2023.

EGU23-14508 | Posters virtual | SSP2.2

Bathyal bivalve assemblages of the eastern Mediterranean record the Early-Middle Pleistocene transition 

Efterpi Koskeridou, Danae Thivaiou, Konstantina Agiadi, Frédéric Quillévéré, Pierre Moissette, and Jean-Jacques Cornée

Molluscs, and among them bivalves, are organisms known for their ability to precisely record paleoenvironmental changes, both in shallow and deep marine settings. When looking into the recent geological past, bivalve assemblages offer information on the climatic changes that have impacted their taxonomic compositions. In the eastern Mediterranean, assemblages of bathyal bivalves are scarce. In order to investigate the impact of climatic changes on deep-water bivalve communities during the Early-Middle Pleistocene Transition, we focus here on two well-dated sections on Rhodes Island (Greece) corresponding to the Lindos Bay Formation. The sections of Lindos and Lardos present a continuous sedimentation of fine, marly sediments, and cover the Marine Isotopic Stages (MIS) 32 to 18. A total of 15 samples were analysed, resulting in the recovery of 31 species of bathyal bivalves. The depositional depths of these samples are estimated to be between 150 and 500 m. All samples are dominated by Protobranch bivalves, with the larger diversity found in families Nuculanidae and Yoldiidae. Three species, found only in cool intervals, are now extinct: Ledella nicotrae, Katadesmia confusa, and Pseudoneilonella pusio. Differences in sample composition are thought to be due mainly to climatic rather than bathymetric conditions. Although the associations in most MIS are similar to those found in the Italian Pleistocene deposits, those of the MIS 21 interglacial (Nucula nucleusSaccella commutataCyclopecten hoskynsiLimea crassa) and the MIS 20 glacial (Saccella commutataBathyspinula excisaYoldiella curtaBathyarca spp.) are new for the Mediterranean region. These results imply that there were significant changes in bathyal bivalve associations during the climatic transitions of the Early-Middle Pleistocene and that modern bathyal associations of bivalves have been stabilized after the Middle Pleistocene.

How to cite: Koskeridou, E., Thivaiou, D., Agiadi, K., Quillévéré, F., Moissette, P., and Cornée, J.-J.: Bathyal bivalve assemblages of the eastern Mediterranean record the Early-Middle Pleistocene transition, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14508, https://doi.org/10.5194/egusphere-egu23-14508, 2023.

EGU23-14596 | ECS | Orals | SSP2.2

Multiproxy constraints on recovery processes during the hyperthermal Toarcian Oceanic Anoxic Event 

Alicia Fantasia, Thierry Adatte, Jorge E. Spangenberg, Emanuela Mattioli, Marcel Regelous, Christian Salazar, Romain Millot, Stéphane Bodin, Thomas Letulle, Mikhail Rogov, and Guillaume Suan

Extreme and rapid climatic and environmental perturbations have punctuated Earth history. The causes and consequences of these past global-change events are relatively well constrained, but how the system can naturally recover through feedbacks remain largely unconstrained. The Toarcian in the Early Jurassic is an ideal time interval to understand the response of Earth system to rapid climate change. Indeed, it was marked by one of the most extreme hyperthermal events of the Phanerozoic accompanied by major environmental changes, named the Toarcian Oceanic Anoxic Event (T-OAE, ca. 183 Ma). Most studies have focused on the triggering mechanisms and the palaeoenvironmental response, whereas the recovery phase has been less studied. Increased chemical weathering of silicate rocks and burial of organic carbon are the two primary natural mechanisms generally proposed as negative feedbacks controlling the recovery. However, to date, the response of these feedbacks, their efficiency, and their timing are still uncertain, hampering an accurate view of the carbon cycle-climate dynamics. This study aims to tackle this lack of empirical data by providing a multi-proxy dataset combining sedimentological observations, mineralogical and geochemical analyses. Four worldwide distributed sites have been selected for this study: Fontaneilles in France (Grand Causses Basin), Vilyui in Siberia (Siberian Basin), Agua de la Falda in Chile (Andean Basin), and Ait Athmane in Morocco (High Atlas Basin). Our high-resolution carbon isotope records allow us to correlate the studied sites to trace the global carbon cycle dynamics in the aftermath of the Toarcian event. Lithium isotope ratios are used to trace global weathering rates and to understand processes that control the long-term carbon cycle. Our results indicate that higher silicate weathering rates during the Toarcian hyperthermal likely helped the climate system recover and return to cooler climatic conditions. High mercury and tellurium concentrations recorded after the T-OAE interval suggest that protracted Karoo-Ferrar volcanic activity may have played a role in the recovery.

How to cite: Fantasia, A., Adatte, T., Spangenberg, J. E., Mattioli, E., Regelous, M., Salazar, C., Millot, R., Bodin, S., Letulle, T., Rogov, M., and Suan, G.: Multiproxy constraints on recovery processes during the hyperthermal Toarcian Oceanic Anoxic Event, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14596, https://doi.org/10.5194/egusphere-egu23-14596, 2023.

EGU23-15207 | Posters on site | SSP2.2

A climate perturbation at the Middle –Late Jurassic Transition? Evaluating the isotopic evidence 

Gregory Price, Bernát Heszler, Lauren-Marie Tansley Charlton, and Jade Cox

The Jurassic greenhouse is punctuated by short cooling intervals with at times postulated polar ice-sheet development. For example, oxygen isotope records of belemnite rostra and fish teeth from the Russian Platform, eastern France and western Switzerland have been interpreted to reveal a prominent decrease in seawater temperature during the Late Callovian–Early Oxfordian. This is in part the basis for a proposed an ice age at the Middle-Late Jurassic Transition. In contrast relatively constant oxygen isotope records and therefore seawater temperatures and carbon isotope values characterized by significant scatter but showing more positive values during the middle and late Callovian have been reported from elsewhere. The aim of this research has been to determine a stable isotope stratigraphy (from belemnites and oysters) principally from the Callovian-Oxfordian interval (from southern England) and integrate these data with existing data to assess the pattern of carbon and oxygen isotopic change.  Our marine macrofossil record reveals isotopic patterns that are generally comparable with other European basins. Carbon isotopic trends are consistent with bulk carbonate carbon isotope records displaying systematic fluctuations, the largest of which (Middle Callovian, Calloviense/Jason Zones to Early Oxfordian, Mariae Zone) corresponds to previously identified phases of environmental perturbation. Such a trend may have resulted from enhanced burial and preservation of organic matter, leaving the seawater more positive in terms of carbon. Cooling post-dates this positive carbon isotope excursion. Inferred cooling, derived from our oxygen isotope data from southern England, occurs within the Late Callovian and Oxfordian (Athleta to Mariae zones). Enhanced carbon burial and atmospheric carbon dioxide draw down may have induced cooling. In this study the analysis of a single region (southern England) allows some constraints on potential variable that may influence isotope records.

 

How to cite: Price, G., Heszler, B., Tansley Charlton, L.-M., and Cox, J.: A climate perturbation at the Middle –Late Jurassic Transition? Evaluating the isotopic evidence, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15207, https://doi.org/10.5194/egusphere-egu23-15207, 2023.

EGU23-17352 | Orals | SSP2.2 | Highlight

Tracing ocean circulation using neodymium isotopes – promises and limitations 

Katharina Pahnke, Torben Struve, Mika Sutorius, Henning Waltemathe, and Martin Zander

Neodymium (Nd) isotopes have been applied for decades now to trace ocean circulation both in the present and past oceans. Their tracer utility stems from the characteristic Nd isotope signature of different rocks and their imprint on seawater as well as the biological inactivity of Nd and its appropriate residence time in the ocean, allowing for the determination of water mass provenance and flow paths. However, the application of this tracer, especially for the reconstruction of past ocean circulation changes, has been challenged based on uncertainties e. g. in the magnitude of the benthic flux of Nd to deep waters, Nd isotope exchange and input at ocean margins, and diagenetic alterations of the original bottom water Nd isotope signature in sediments.

Based on recent studies of dissolved Nd isotope distributions in surface to deep waters we show the power of Nd isotopes for tracing the provenance of currents and water masses particularly within restricted geographic regions. Using additional trace metal and isotope data from marine sediments analyzed alongside authigenic Nd isotopes, we explore the validity and limits of Nd isotopes as tracer of past ocean circulation changes.

How to cite: Pahnke, K., Struve, T., Sutorius, M., Waltemathe, H., and Zander, M.: Tracing ocean circulation using neodymium isotopes – promises and limitations, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-17352, https://doi.org/10.5194/egusphere-egu23-17352, 2023.

EGU23-17389 | Orals | SSP2.2

A millennial-scale record of mean annual air temperatures spanning 70 ka over the Cretaceous-Paleogene boundary 

Lauren O'Connor, Rhodri Jerrett, Gregory Price, Bart van Dongen, Emily Crampton-Flood, and Sabine Lengger

The Cretaceous-Paleogene (K-Pg) boundary experienced major environmental perturbations due to volcanism and bolide impact, as well as the most famous mass extinction in geologic history. However, the response of the climate system to these drivers at different timescales, and thus their relationship to the mass extinction is highly debated. In particular, the role of climate change in biodiversity patterns immediately preceding the boundary is poorly understood. 


Lipids from fossil peats (coals) provide an opportunity to reconstruct terrestrial temperatures across the Cretaceous–Paleogene boundary at a millennial-scale resolution. Here we present mean annual air temperature records spanning ~70 ka over the K-Pg boundary, from sites across North America (palaeolatitudes 45–55 degrees N). Our data show that temperatures ranged from 16–29 degrees C, more than 10 degrees C higher modern temperatures at equivalent latitudes in North America.


Using 5-ka temporal bins, our data show that MAATs peaked at ~26 degrees C in the last millennia of the Cretaceous, following 35 ka of warming from ~23 degrees C. Peak warmth was followed by ~5 degrees C cooling over the following 30 ka. We observe no “impact winter” nor a spike in temperature immediately following the boundary. If such phenomena occurred, their duration was below the resolution of our record: ~1 ka. Our record also shows a previously unrecognised brief interval of cooling from 10 to 5 ka pre-boundary.


Our study places new bounds on millennial-scale trends in MAAT change in the terrestrial realm and demonstrates large and rapid temperature swings across the K-Pg interval. These data allow for improved understanding of the role of climate in the decline of Cretaceous flora and fauna and may help elucidate the relative influence of volcanism and bolide impact on terrestrial temperatures.

How to cite: O'Connor, L., Jerrett, R., Price, G., van Dongen, B., Crampton-Flood, E., and Lengger, S.: A millennial-scale record of mean annual air temperatures spanning 70 ka over the Cretaceous-Paleogene boundary, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-17389, https://doi.org/10.5194/egusphere-egu23-17389, 2023.

EGU23-274 | ECS | Orals | SSP4.2

Late quaternary carbonate (pteropod) preservation in the Indian Ocean sediments: inferences on the paleoclimate and paleoceanography 

Sreevidya Edayiliam, Sijin Kumar Adukkam Veedu, and Nagender Nath Bejugam

To evaluate the preservation pattern of pteropods and their relationship with climatic and oceanographic history in the Laccadive Sea, a temporal variation analysis of pteropod abundance was done. For that, we employed preservation indices from calcite (Globigerina bulloides%, Globorotalia menardii abundance), as well as aragonite (e.g., total pteropod abundance, Limacina Dissolution Index (LDX), fragmentation ratio). To determine if pteropod shells have been preserved over time, we used estimated pteropod abundance. The pteropod preservation record displays excellent preservation during cold stadials, evidenced by the lower values of aragonite dissolution proxies than during the interglacials/interstadials, similar to the preservation records from other northern Indian Ocean cores evidenced by the lower values of aragonite dissolution proxies than during the interglacials/interstadials. The shallow aragonite compensation depth (ACD), weaker oxygen minimum zone (OMZ), and the lower southwest monsoon (SWM)-induced productivity are thought to be the cause of the basin-wide pteropod preservation events during the cold stadials (ACD). Additionally, during an intense northeast monsoon (NEM), the advection of cold, low-saline waters from the Bay of Bengal to the Laccadive Sea, as well as the intrusion of southern-sourced intermediate water ventilation, may have caused a deep vertical mixing of oxygen-rich surface waters, raised the pH of thermocline waters and deepened the ACD. However, the local fluctuations in the water mass properties, such as the increased productivity maxima, the intense OMZ, and shallow ACD, as well as changes in the aragonite, are responsible for the poor pteropod abundance, poor preservation and strong dissolution during the Holocene, Bølling-Allerød (B/A) and interstadial periods.

The calcification proxy indicates that the aragonite undersaturation and reduced calcification occurred during 19-16.5 kyr, preferably due to the depletion in the oceanic alkalinity caused by enhanced upwelling-induced carbonate ion exchange between the intermediate and deep water. In contrast, the preferential dissolution of smaller shells in the sediments (marked by increased average shell size and higher values of Limacina dissolution index (LDX) corresponds to strengthened OMZ and shallower ACD, pointing towards the post-depositional dissolution of aragonite shells. Therefore, the overall decrease of pteropod content of the deposits in the stadial/interstadials suggests a combination of monsoon-associated changes in water column properties, variability in aragonite saturation, intermediate water ventilation and sediment rate.

How to cite: Edayiliam, S., Adukkam Veedu, S. K., and Bejugam, N. N.: Late quaternary carbonate (pteropod) preservation in the Indian Ocean sediments: inferences on the paleoclimate and paleoceanography, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-274, https://doi.org/10.5194/egusphere-egu23-274, 2023.

EGU23-618 | ECS | Posters virtual | SSP4.2

Reconstruction of a paleo-seagrass ecosystem using molluscan paleoecology and stable isotope geochemistry: A case study from the Quilon Limestone (Miocene), India. 

Venu Gopal Kella, Amitaprajna Mallik, Devapriya Chattopadhyay, and Naveen Gandhi

Seagrasses are a vital part of the marine ecosystem, owing to their contribution to oceanic primary productivity and supporting highly diverse marine ecosystems. The fossil record of seagrasses is rare because of their poor preservation potential. Sedimentological and taphonomic indicators are generally used to identify the paleo seagrass habitat. The fossil record of seagrass-associated taxa such as foraminifera, corals, bryozoans, molluscs, and sirenians can also provide indirect evidence of this specific habitat. These constitute Indirect Paleo-Seagrass Indicators (IPSIs). The early Miocene (Burdigalian) fossil assemblage of Quilon limestone of Kerala, India, has been interpreted as a seagrass habitat based on the species association of gastropods, bryozoans, and foraminifera. This is the only reported seagrass ecosystem from West Indian Province (WIP). In our study, we attempt to develop a new multi-proxy approach using morphology, ecology, and geochemical signatures of seagrass-associated molluscs from the Quilon Formation and evaluate its potential to reconstruct a paleo-seagrass ecosystem.

Our sample consisted of ~2000 specimens of microbivalves representing nine families of bivalves. We also included previously reported 16 families of macrobivalves in our ecological analysis. The molluscan community of the Quilon Formation is dominated by families that are mobile (67%), infaunal (65%), and suspension feeders (78%) in comparison to other ecological guilds. The seagrass ecosystem, characterized by soft substratum and high suspension load, favors these ecological strategies. The high proportional abundance of Lucinidae bivalves (8.9%) in the assemblage agrees with the expectation of dominance of chemosymbionts in the seagrass meadows. The small body size (<10mm ) and low predation intensity (drilling frequency 0.06, repair scar frequency 0.04) reported from this community also match the expected pattern of a seagrass ecosystem serving as a nursery.

We analyzed molluscan shells from Quilon limestone for stable isotope ratios. We also supplemented this data with published data of present and past seagrass-associated molluscs. Using this data, we evaluated the influence of ecological variables in shaping the stable isotope signature of molluscs in the seagrass ecosystem. The 𝛅13C values of bivalves ranged from -3 to 3 ‰  and of gastropods ranged from -1 to 4 ‰. Our results show that deposit feeders and grazers have 𝛅13C values in comparison to chemosymbionts. The herbivores and carnivores have comparable 𝛅13C and 𝛅18O isotopic values implying a limited role of diet in shaping the isotopic signature of seagrass molluscs. 

The multi-proxy results support the previous interpretation of Quilon limestone as a seagrass ecosystem. This study provides insight into using a multi-proxy approach of combining molluscan taxonomy, morphology, ecology, and geochemistry in developing a reliable IPSI for identifying paleo-seagrass ecosystems.

How to cite: Kella, V. G., Mallik, A., Chattopadhyay, D., and Gandhi, N.: Reconstruction of a paleo-seagrass ecosystem using molluscan paleoecology and stable isotope geochemistry: A case study from the Quilon Limestone (Miocene), India., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-618, https://doi.org/10.5194/egusphere-egu23-618, 2023.

EGU23-635 | ECS | Posters virtual | SSP4.2

Deglacial- Holocene carbonate preservation in the Bay of Bengal 

Gayathri Narath Meethal, Sreevidya Edayiliam, Bhoi Subhakanta, Sahoo Subham Kesari, and Sijinkumar Adukkam Veedu

Deep-sea carbonate dissolution/preservation history is important to better understand marine carbonate system and surface ocean productivity. To understand carbonate dissolution during the last deglacial and Holocene periods in the Eastern BoB, we analyzed foraminifera carbonate dissolution indices viz., perfect test ratio (PTR) of Globorotalia menardii, Menardii fragmentation index (MFI), percentage of total resistant species (RSP), and percentage of total susceptible species (SSP). The core yielded rich assemblages of planktonic foraminifera though retrieved from deeper water depth (3019 m) of the Eastern Bay of Bengal. In general, the preservation is better during last glacial period on record (16-11.7 ka) and poor during Holocene. During Holocene, carbonate dissolution is intense in the early Holocene (12.5 to 8 ka), marked by increased MFI, and decreased PTR values along with less abundance of susceptible species. A slight decrease in the MFI was seen from 8 to 4.9 ka. The late Holocene period was characterized by less MFI and high PTR values. In general, MFI (PTR) was high (low) during the early Holocene compared to the deglacial and mid to late Holocene periods. Interestingly, the dissolution record shows a good relationship with Indian summer monsoon variability. The intense dissolution of the early Holocene might be due to changes in water column chemistry due to the increased river runoff and direct precipitation. We compared our data with existing records from the Andaman Sea and the Central Indian Ocean. The assemblages from the Bay of Bengal show a high degree of dissolution and low preservation during interglacial periods. The result of this study explains that dissolution is more pronounced during the warm interglacial and interstadials and MFI and PTR can be a potential proxy for quantitatively tracking deep marine CaCO3 dissolution in the Bay of Bengal.

 

Keywords: Carbonate dissolution; Planktonic foraminifera, Globorotalia Menardii, deglacial, Holocene.

 

How to cite: Narath Meethal, G., Edayiliam, S., Subhakanta, B., Subham Kesari, S., and Adukkam Veedu, S.: Deglacial- Holocene carbonate preservation in the Bay of Bengal, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-635, https://doi.org/10.5194/egusphere-egu23-635, 2023.

Stable isotope (δ18O and δ13C) record of the shells of Crassostrea has served as trusted sclerochronological recorders for deciphering the life history and the interannual ambient seawater conditions including temperature and salinity. Several species of Crassostrea are found in modern estuarine system throughout the world. The Bay of Bengal (BOB) in the northern Indian ocean is one such region which experiences the lowest salinity in the tropics due to exceptional and complex hydrological dynamics associated to the Indian monsoon. In this study, we utilized three shells of the endemic species, that are cemented together.  We collected the specimens from Chandipur-on-sea BOB, in the eastern coast of India to understand the relationship between isotope signatures of the shells (δ18Oshell and δ13Cshell), growth history and the environmental parameters (temperature and salinity).

In terms of the microstructural variation within the shells, samples collected from the foliated layer as compared to the chalky calcite layer of the cross sectional hinge region demonstrates no significant difference in their isotopic values. The theoretical isotope profile model based on the satellite data for monthly temperature and salinity data provided the background pattern which when compared to the observed isotope values demonstrated no significant difference for Cha 2 and Cha 3, however, the isotope value of Cha 1 shifted significantly towards negative values. The isotope profile for all the individuals are sinusoidal with repeating δ18Oshell and δ13Cshell minima in the form of relatively sharper and narrower negative half cycles and demonstrates negative offset from the predicted model someimes. We infer the negative shifts and offset of the isotope minimas to be attributed to the lower salinity due to river runoff and precipitation during summer monsoon in this region which also leads to slow or limited growth of the oysters. The grey foliated calcitic bands within the chalky calcitic layers do not incorporate the amplitudes or a particular trend of the isotopic profiles representing no seasonal signature and hence cannot be utilised as age indicators for C.cuttackensis. However, the count of minimas in the isotope profiles revealed the age to be slightly more than 1 year for Cha1 and Cha3 whereas Cha 2 lived for three years atleast. The corresponding growth rates for length and height of the shells decreases with ontogeny, more so for the length than height validating the elongated shape of C.cuttackensis in their adulthood. When compared, the calculated growth rates for C.cuttackensis is highest among all other present and past Crassostrea species globally.

How to cite: Dutta, S. and Chattopadhyay, D.: Signature of monsoon driven salinity fluctuations in stable isotope (oxygen and carbon) record of bivalve shells: Insights from the sclerochronology of three confluent individuals from the Bay of Bengal, India, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-796, https://doi.org/10.5194/egusphere-egu23-796, 2023.

The Precambrian stromatolites are essential proxies for early life on earth. However, recent studies on abiogenic features having gross similarity with biogenic forms have made it difficult to prove their unequivocal biogenecity. Key morphological indicators of stromatolite biogenecity include- its morphological variations, biostrome development, growth through high-energy conditions, and lamina accretion through microbial precipitation, trapping, and binding. A representative outcrop of the Proterozoic stromatolites belonging to the Bhander Limestone and a small horizon present at the base of Sirbu Shale Member, Upper Vindhyan Group of Vindhyan Basin, central India is studied during the present endeavor. Six different stromatolite morphotypes were identified within the studied intervals. Among them, five morphotypes are present within the Bhander Limestone such as large laterally-linked domal stromatolites (S1), columnar stromatolites (both bioherm (S2) and biostrome (S3) type), small-headed stromatolites (S4) and stratiform stromatolites (S5).

Numerous cycles are observed between these morphotypes, especially between the columnar and the small-headed stromatolites. The thickness of the individual cycle varies between 32 cm to 162 cm. The cycles always start with the columnar morphotype (average thickness~57.71 cm) and end with the small-headed morphotype (average thickness ~16.90 cm). The former morphotype (average column height and diameter 7.39 cm and 3.38 cm) shows different variety-branched patterns, vertical and inclined nature. Vertically oriented columns are parallel in nature. The width of the inter-columnar area between the individual parallel columns is variable (average thickness~1.33 cm). The filling material is carbonate cement, stromatolite debris, and chunks. The presence of stromatolite debris within the inter-columnar area indicates agitation within the depositional site. The inclined and branched columnar morphotypes tend to develop bioherm (S2), while the vertically oriented, parallel-natured columnar stromatolites form the biostrome (S3). At the end of each cycle, microbial laminites (thickness ranging from 1 to 8.5 cm) is frequently observed. Occasionally microbial laminites are also present when columnar stromatolites transit to small-headed stromatolites. The latter morphotype has an average column diameter of 1.84 cm. The cyclic alternation of columnar and small-headed stromatolite morphotypes indicates a shift in water depth within the depositional zone, which could be caused by seasonal fluctuation, diurnal cycles, or tectonic factors. Gradual thickness increment of the small-headed morphotypes within the individual cycles towards the upper part of the studied interval indicates a progressive shallowing. A petrographic study reveals the presence of alternate dark-colored micritic and light-colored spar-bearing laminae. The dark micritic laminae attest deposition took place under microbial influence. The sixth morphotype is cabbage-shaped domal stromatolite (S6) (average column height and diameter are 27.11 cm and 20.75 cm, respectively), present only at the basal part of the Sirbu Shale. These domal stromatolites occur above an alternating sand-shale sequence bearing emergence features and form bioherms. Under the microscope, this morphotype shows the presence of ooids and peloids within the dark micritic laminae. Both macro and micro scale variations recorded within the studied stromatolites of the Meso-Neoproterozoic Vindhyan Basin are inkling towards their biogenic origin.

How to cite: Choudhuri, A., Jambhule, D., Sinha, S., and Srimani, S.: Morphological variability of stromatolites and their cyclicity as an indicator of biogenicity- example from a Proterozoic carbonate platform of Vindhyan Supergroup, India, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2272, https://doi.org/10.5194/egusphere-egu23-2272, 2023.

EGU23-2432 | ECS | Posters virtual | SSP4.2

Paleoclimate and paleoenvironment reconstructions from Middle Eocene successions in Egypt: Geochemical and micropaleontological approaches 

Mostafa Mohamed Sayed, Petra Heinz, Ibrahim Mohamed Abd El-Gaied, and Michael Wagreich

Forty-three rock samples have been collected from two sections, exposed at south east Beni-Suef area, Egypt. These samples showed richness in benthic foraminiferal assemblages and only rare occurrences of index planktonic foraminifera. The studied outcrops were lithologically subdivided into two Middle Eocene rock units named from base to top as follow: (1) the Qarara Formation (Lutetian) and (2) the El Fashn Formation (Bartonian). The investigated rock samples yielded 160 foraminifera species and subspecies which belonging to 4 suborders, 19 superfamilies, 34 families and 59 genera. The stratigraphic distribution of the identified species allowed us to construct four local benthic biozones which are: (1) Bolivina carinata Lowest Occurrence Zone (Lutetian), (2) Bulimina jacksonensis Lowest Occurrence Zone, (3) Nonion scaphum Lowest Occurrence Zone and (4) Brizalina cooki / Nonionella insecta Concurrent-Range Zone (Bartonian). These biozones were described and discussed in detail and correlated to equivalents recorded before in Egypt. The rareness of index planktonic foraminifers through the studied sections did not allow a biozonation. The shale samples showed low TOC values which may be related to high sediment influx and/or subjected to oxidation conditions. Bulk rock geochemistry, consistend with the benthic foraminifera ecological preferences, showed that the studied sections were deposited in moderate to high oxygen levels, warm climatic conditions and typical shelf marine settings. The identified species showed strong similarities with southern Tethys areas such as Libya, reflecting migration via trans-Sahara seaway, and minor similarities with those identified from the northwestern Tethys (Italy, France, Spain, England) province attributed to the benthic nature which limit their ability to move for a long distance and related to cooler, latitudinal zoned climatic conditions which was unsuitable for their biological demands.

How to cite: Mohamed Sayed, M., Heinz, P., Mohamed Abd El-Gaied, I., and Wagreich, M.: Paleoclimate and paleoenvironment reconstructions from Middle Eocene successions in Egypt: Geochemical and micropaleontological approaches, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2432, https://doi.org/10.5194/egusphere-egu23-2432, 2023.

EGU23-4915 | ECS | Posters on site | SSP4.2 | Highlight

A data-model comparison of shallow marine seasonality during the Mid-Pliocene 

Niels de Winter, Julia Tindall, Andy Johnson, Barbara Goudsmit, Nina Wichern, Fynn Huygen, Stijn Goolaerts, Frank Wesselingh, Philippe Claeys, and Martin Ziegler

Accurate projections of future climate scenarios require a detailed understanding of the behavior of Earth’s climate system under varying radiative forcing scenarios. The mid-Piacenzian Warm Period (mPWP; 3.3 – 3.0 Ma) was characterized by atmospheric CO2 concentrations comparable to present-day values (~400 ppmV), while global mean annual temperatures were roughly 2-3 degrees warmer compared to pre-industrial climate (Haywood et al., 2020). Seasonally resolved climate records from fossil bivalve shells offer a snapshot of short-term variability in temperature and salinity under the mild greenhouse conditions of the mPWP (Wichern et al., 2022).

In this study, we combine a large dataset of clumped isotope measurements incrementally sampled in fossil shells from the North Sea area during the mPWP with climate model simulations for the same time period using the PlioMIP model comparison framework. This combination of data and models allows us to test whether the climate models in PlioMIP can pick up the sub-annual scale variability in temperature and salinity (reconstructed via the oxygen isotope composition of the paleo-seawater). We show that, in contrast to continental reconstructions used in previous PlioMIP data-model comparisons (Tindall et al., 2022), our shallow marine data is reproduced well by PlioMIP models. On average, both model and data show considerably (4-5°C) warmer summer sea surface temperatures during the mPWP while winter temperatures remain relatively close to pre-industrial values. This suggests that the North Sea region can expect warming concentrated in the summer season in response to elevated atmospheric CO2 conditions.

References

Haywood, A. M., Tindall, J. C., Dowsett, H. J., Dolan, A. M., Foley, K. M., Hunter, S. J., Hill, D. J., Chan, W.-L., Abe-Ouchi, A., Stepanek, C., Lohmann, G., Chandan, D., Peltier, W. R., Tan, N., Contoux, C., Ramstein, G., Li, X., Zhang, Z., Guo, C., Nisancioglu, K. H., Zhang, Q., Li, Q., Kamae, Y., Chandler, M. A., Sohl, L. E., Otto-Bliesner, B. L., Feng, R., Brady, E. C., Von der Heydt, A. S., Baatsen, M. L. J., and Lunt, D. J.: A return to large-scale features of Pliocene climate: the Pliocene Model Intercomparison Project Phase 2, Climate of the Past, 2020.

Tindall, J. C., Haywood, A. M., Salzmann, U., Dolan, A. M., and Fletcher, T.: The warm winter paradox in the Pliocene northern high latitudes, Climate of the Past, 18, 1385–1405, https://doi.org/10.5194/cp-18-1385-2022, 2022.

Wichern, N. M. A., de Winter, N. J., Johnson, A. L. A., Goolaerts, S., Wesselingh, F., Hamers, M. F., Kaskes, P., Claeys, P., and Ziegler, M.: The fossil bivalve <em>Angulus benedeni benedeni</em>: a potential seasonally resolved stable isotope-based climate archive to investigate Pliocene temperatures in the southern North Sea basin, EGUsphere, 1–53, https://doi.org/10.5194/egusphere-2022-951, 2022.

How to cite: de Winter, N., Tindall, J., Johnson, A., Goudsmit, B., Wichern, N., Huygen, F., Goolaerts, S., Wesselingh, F., Claeys, P., and Ziegler, M.: A data-model comparison of shallow marine seasonality during the Mid-Pliocene, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4915, https://doi.org/10.5194/egusphere-egu23-4915, 2023.

EGU23-5544 | ECS | Orals | SSP4.2

Developing a robust biogeochemical framework of the coccolith vital effects for more reliable paleoclimatic reconstructions 

Goulwen Le Guevel, Fabrice Minoletti, Carla Geisen, and Michael Hermoso

The major climatic forcing parameters on Earth climate are temperature and the atmospheric concentrations of CO2. Even if their evolutions covaried to the first-order, the geological record show periods with non-linear evolution between those two parameters. Such delinking requires accurate paleoclimate reconstructions with implications for the modelling studies of our future climate.

pCO2 and Sea Surface Temperature (SST) reconstructions are usually quantified using proxies relying on both the organic matter produced by coccolithophores (UK37’ index and δ13Calkenones) and calcite of foraminiferal tests (δ11B, δ18O, Mg/Ca). These proxies have been very useful for a variety of paleoclimatic advances, yet present unresolved and potentially important biases. As an example, alkenone carbon isotopes are not able to register low to moderate pCO2 levels (Badger et al., 2019). This is notoriously a major issue for paleoclimate reconstructions of the last 6 My (Plio-Pleistocene period).

Our approach is to use a unique archive – the coccoliths – for determination of coeval SST and pCO2. Coccoliths are small calcite plates produced by unicellular photosynthetic algae called coccolithophores. They are a very promising substrate to analyse for paleoclimate studies because they calcify in the uppermost water column and because their isotopic ratios are sensitive to both photosynthesis and calcification (Hermoso et al. 2020). Therefore, these isotopic ratios provide physiological and metabolic information about coccolithophores of the past. In order to infer paleoclimates from the sedimentary archives, we have to deconvolve the isotopic biological imprint (vital effect) from the environment signal. For the evaluation of the vital effects, we have undertaken a large-scaled culture experiments with various strains of coccolithophore grown under various CO2 concentrations and pH (Le Guevel et al. in prep). Even if we have managed culture until 1400ppm and 7.55 unit of pH, we were particularly interested in low pCO2 and high pH conditions because the bibliography is lacking of vital effect for Plio-Pleistocène applications. All the selected strains produce coccoliths within the size range of the one we find predominantly in the marine sediments throughout geological times.

We document a large decrease of the carbon differential vital effect with the CO2 concentration increase between Gephyrocapsa oceanica and Coccolithus braarudii. This is consistent with previous studies but the absolute values are slightly different and we provide a more precise dataset at low to moderate pCO2 than the previous ones (Rickaby et al., 2010; Hermoso et al., 2016). We propose the first study of the oxygen and carbon vital effect of the Helicosphaera carteri group with combined CO2/pH changes. Taken together, the culture data and measurements of the isotopic composition of the calcite biominerals allows better paleoreconstructions of SST and aqueous CO2.

How to cite: Le Guevel, G., Minoletti, F., Geisen, C., and Hermoso, M.: Developing a robust biogeochemical framework of the coccolith vital effects for more reliable paleoclimatic reconstructions, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5544, https://doi.org/10.5194/egusphere-egu23-5544, 2023.

EGU23-6697 | ECS | Orals | SSP4.2

Reconstructing Holocene body size changes of Adriatic gobies using radiocarbon dating and sclerochronological analyses of modern and fossil otoliths 

Isabella Leonhard, Konstantina Agiadi, Rafal Nawrot, Emilia Jarochowska, and Martin Zuschin

Climate warming is expected to lead to a reduction in the body size of marine organisms, a trend already observed in commercial fishes, but the effects of temperature rise on size distribution in exploited populations are difficult to separate from the impact of overfishing and other anthropogenic stressors. We aim to test the hypothesis that fish body sizes, as well as growth rates changed during the late Holocene and Anthropocene in the northern Adriatic Sea due to environmental perturbations caused by climate warming. We perform sclerochronological analysis on modern otoliths from fish sampled alive, as well as radiocarbon-dated fossil otoliths of non-commercial, demersal gobies (Gobius niger Linnaeus, 1758) sampled from a sediment core taken off Piran (Slovenia) to quantify changes in body size and growth parameters throughout the Holocene. Otoliths are the aragonitic structures of the fish’ inner ear with species-specific morphology, and thanks to their incremental growth, they serve as unique environmental and life-history archive. Moreover, otolith size correlates with fish size. We use otoliths cut in half to perform both sclerochronology and radiocarbon dating, obtaining a high-resolution time series of changes in fish body size, growth dynamics and life history parameters. We employ backscatter electron (BSE) imaging and electron probe microanalysis (EPMA) to identify body sizes and growth dynamics, as well as to correlate their growth increments with climatic and other environmental parameters. The reconstructed changes in body size and growth rates of very common, non-commercial fish species over the last 7.000 years, can serve as an ecological baseline for evaluating the magnitude of ongoing temperature rise and future shifts in fish populations in response to global warming.

How to cite: Leonhard, I., Agiadi, K., Nawrot, R., Jarochowska, E., and Zuschin, M.: Reconstructing Holocene body size changes of Adriatic gobies using radiocarbon dating and sclerochronological analyses of modern and fossil otoliths, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6697, https://doi.org/10.5194/egusphere-egu23-6697, 2023.

EGU23-9157 | ECS | Posters on site | SSP4.2

Mineralogical, elemental, stable and clumped isotope composition of modern bryozoan skeletons. 

Marie Pesnin, Thaler Caroline, Daëron Mathieu, Kadda Medjoubi, Nomade Sebastien, and Rollion-Bard Claire

Bryozoans are one of the most invasive phyla on Earth. Since their appearance in the Upper Ordovician period, a fair proportion of these colonial organisms have developed innovative adaptation strategies, like the ability to form a carbonate skeleton. Despite the fact that these reef builders can represent up to 80% of the carbonate production of some sedimentary formation, bryozoans have been poorly studied compared to other bio-carbonate archives. The diversity of bryozoan morphology is an impediment to their identification and their use for paleoenvironmental reconstruction. The morphology of the carbonate chambers (zoecium) varies not only from one species to another, but also as a function of physiological or environmental parameters. Moreover, depending on the species, bryozoan carbonate skeleton can be polycrystalline. The abundance of each carbonate polymorph can vary spatially within the colony, which has implications for the interpretation of the geochemical record. In order to retrieve useful paleoenvironmental information from this extensive record, we thus need to fill the gaps in our knowledge of bryozoan mineralization mechanisms.

In this contribution, we characterized the mineralogical and isotopic composition of different species of bryozoan living in the same microenvironments and identical species from different locations. Samples were collected from the Western Mediterranean (Marine station of Banyuls sur Mer, France) and North Atlantic (Marine station of Roscoff, France) coasts, where environmental parameters are continuously measured. Mineral characterization by XRD measurements were done on portions of each bryozoan colonies from base to the top and completed by 3D X-Ray diffraction imaging at a nanometric scale on a single zoecium. These mineralogical characterizations were matched with δ18O, δ13C analysis and clumped isotope (Δ47) measurements. Using environmental data (T, pH, S, δ18Ow and δ13CDIC) collected in situ, the measured isotopic signatures were compared to their respective expected values (assuming pseudo-equilibrium carbonate precipitation). This comparative work yields some unexpected discrepancies from the “equilibrium” line and between different species originated from the same site in both δ18O and δ13C compositions. Δ47measurements, performed on 4 selected species (Pentapora foliacea, Cellaria fistulosa, Sertella beaniana, Tubicellepora avicularis) revealed that the magnitude of apparent isotopic disequilibrium observed in bryozoan is not related to the mineralogical composition of the skeleton nor to the species but rather to the living environment of the organisms. Surprisingly only bryozoan originated from the Mediterranean Sea seems to precipitated their skeleton out of isotopic equilibrium for Δ47. These results permit to discuss the origin of this “isotopic vital effect”, its relation to environmental conditions, and the use of bryozoan as a new paleo-tracer.

Key words: Bryozoan – 3D X-Ray map - Clumped isotopes – Stable isotopes - Isotopic disequilibrium.

How to cite: Pesnin, M., Caroline, T., Mathieu, D., Medjoubi, K., Sebastien, N., and Claire, R.-B.: Mineralogical, elemental, stable and clumped isotope composition of modern bryozoan skeletons., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9157, https://doi.org/10.5194/egusphere-egu23-9157, 2023.

EGU23-10717 | ECS | Orals | SSP4.2

The fate of Arsenic during early microbialite taphonomy: Implications for chemical biosignature preservation 

Clément G.L. Pollier, Caroline H. Koschik, Brooke E. Vitek, Zhenghui Wu, Erica P. Suosaari, R. Pamela Reid, and Amanda M. Oehlert

Organo-sedimentary structures built by benthic microbial communities, known as microbialites, dominated the fossil record for the first 3 billion years of Earth’s history. Various microbial metabolisms contribute to microbialite lithification, each of which can be based on biogeochemical cycling of elements capable of supporting life. Arsenic (As), a common element on the surface of Precambrian Earth, has been proposed to have supported the development of early life associated with the construction of primitive microbial carbonates. These As-based metabolisms have left evidence of their existence within the 2.7 Ga old Tumbiana stromatolites, showing the potential of this metalloid to serve as an archive of the dynamic interplay between microbes, minerals, and their environment of deposition throughout Earth’s history. However, significant changes in the geochemical composition of microbialites likely occur during early taphonomic modification and later diagenetic alteration. Therefore, establishing the mechanisms driving the arsenic geochemistry of ancient microbialites can be challenging.

Motivated by these challenges, our objective was to evaluate the mechanisms controlling the initial incorporation of arsenic into actively accreting microbialites, as well as the preservation of the [As] signal during early taphonomic alteration of the structure. Hamelin Pool (Western Australia) is one of the few modern systems that host As-based metabolisms in the microbial communities involved in microbialite accretion. Conventional terminology recognizes four types of microbial mats that produce recognizable internal microfabrics in Hamelin Pool microbialites: pustular, smooth, colloform, and transitional mat types. Over time, these initial microfabrics all follow a similar evolution subdivided into two successive stages: (1) precipitation of micrite along laminations and around clots and; (2) precipitation of aragonitic marine cement. Therefore, Hamelin Pool microbialite fabrics provide a unique and step-wise window into the processes that form ancient microfabrics, particularly highlighting the importance of their early taphonomic evolution in the fate of the As biosignal originally incorporated during initial accretion of the structure.

Based on microbialites collected from Hamelin Pool that have been characterized petrographically, we evaluated the evolution of [As] recorded in the Hamelin Pool microbialites at all stages of deposition and early taphonomic modifications. Results were interpreted in relation to the distinct microbial mats and their metabolisms, as well as the physicochemical and geological variability of the depositional environment. To accomplish this, we conducted a sequential leaching experiment to chemically isolate the organic matter and carbonate fractions, and measured As concentrations on a triple-quadrupole inductively coupled mass spectrometer (Agilent 8900 ICP-QQQ). Preliminary results show that elevated As concentrations are initially incorporated into microbial organic matter before being transferred to the carbonate fraction through successive stages of early taphonomic alteration. Because the carbonate fraction is diagenetically more resistant than the organic matter, this discovery could have major implications for the preservation of geochemical biosignatures in the geological record of microbialites. Our results serve as a first step towards improving the utility of [As] as an indicator of biogenicity in the fossil record of early Earth and, possibly, other planets such as Mars.

How to cite: Pollier, C. G. L., Koschik, C. H., Vitek, B. E., Wu, Z., Suosaari, E. P., Reid, R. P., and Oehlert, A. M.: The fate of Arsenic during early microbialite taphonomy: Implications for chemical biosignature preservation, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10717, https://doi.org/10.5194/egusphere-egu23-10717, 2023.

EGU23-12060 | Posters on site | SSP4.2 | Highlight

Tropical Climate Variability and Coral Reefs - A Past to Future Perspective on Current Rates of Change at Ultra-High Resolution 

Thomas Felis, Miriam Pfeiffer, and Jessica Hargreaves and the SPP2299 Programme

Climate change, in particular the rise in tropical sea surface temperatures, is the greatest threat to coral reef ecosystems today and causes climatic extremes affecting the livelihood of tropical societies. Assessing how future warming will change coral reef ecosystems and tropical climate variability is therefore of extreme urgency. Ultra-high resolution (monthly, weekly) coral geochemistry provides a tool to understand the temporal response of corals and coral reefs to ongoing climate and environmental change, to reconstruct past tropical climate and environmental variability, and to use these data in conjunction with advanced statistical methods, earth system modelling and observed ecosystem responses for improved projections of future changes in tropical climate and coral reef ecosystems. The recently established Priority Programme “Tropical Climate Variability and Coral Reefs - A Past to Future Perspective on Current Rates of Change at Ultra-High Resolution” (SPP 2299, https://www.spp2299.tropicalclimatecorals.de/) of the German Research Foundation (DFG) aims to enhance our current understanding of tropical marine climate variability and its impact on coral reef ecosystems in a warming world, by quantifying climatic and environmental changes during both the ongoing warming and past warm periods on timescales relevant for society. The programme aims to provide an ultra-high resolution past to future perspective on current rates of change to project how tropical marine climate variability and coral reef ecosystems will change in a warming world. Information on the organisational structure and research topics of this collaborative programme, which involves ten universities and five research centres from all over Germany, will be provided.

How to cite: Felis, T., Pfeiffer, M., and Hargreaves, J. and the SPP2299 Programme: Tropical Climate Variability and Coral Reefs - A Past to Future Perspective on Current Rates of Change at Ultra-High Resolution, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12060, https://doi.org/10.5194/egusphere-egu23-12060, 2023.

EGU23-12307 | ECS | Orals | SSP4.2

Novel investigative techniques on calcareous red algae build-ups: photogrammetry and CT-scan on Coralligenous from Marzamemi (Sicily) 

Pietro Bazzicalupo, Valentina Alice Bracchi, Andrea Giulia Varzi, Luca Fallati, Alessandra Savini, Antonietta Rosso, Rossana Sanfilippo, Adriano Guido, Mara Cipriani, and Daniela Maria Basso

Crustose coralline algae (CCA) form Coralligenous build-ups, which are ranked among the most important ecosystems in the Mediterranean shelf. Their skeletal framework hosts a variety of epi- and infaunal communities, which compete for space, contributing to the reef growth, or weaken the structure throughout bio-erosive activities. Investigating the relationship between the algal framework and these hosted communities is of extreme importance for ecological and palaeoecological purposes and monitoring goals. 

In this frame, the Italian project “CRESCIBLUREEF - Grown in the blue: new technologies for the knowledge and conservation of the Mediterranean reefs”, is aimed at investigating coralligenous reefs present in the  area off the Marzamemi village (South-East Sicily). 

Two build-ups have been collected: the first one at 37 m depth, from an area rich in coralligenous cover, and the second one at 36 m depth, from a submarine channel with sparsely distributed build-ups. We present here two new investigative techniques, so far seldom applied for the characterization of the Coralligenous. The first approach involved the quantification of the surficial cover, with the use of an image analysis software, both before and after the removal of their ephemeral canopy of unmineralized organisms.These models were then analysed using Object-Based Image Analysis (OBIA) algorithms that allowed the quantification of the surficial cover. Moreover, the analysis allowed the identification and categorisation of the organisms and materials on the external part of the build-ups, confirming the primary role of CCA as the major component of the samples. Afterwards, a Computed-Tomography (CT) scan was used - for the first time with Coralligenous - to reconstruct the inner structure of the build-ups and, together with radiocarbon dating, to infer the build-ups age and growth rate. CT analysis divided the framework into four main categories based on their density (Low, Medium, High and Ultra High). The structure’s cavities, either primary or developed through taphonomic processes, have been measured as porosity. The overall highly-resolved analysis points to a complex and nonlinear growth of the build-ups. The understanding of the structural density, porosity, growth rate, and surficial cover of the build-ups is shedding some light on the Coralligenous inception and growth. 

How to cite: Bazzicalupo, P., Bracchi, V. A., Varzi, A. G., Fallati, L., Savini, A., Rosso, A., Sanfilippo, R., Guido, A., Cipriani, M., and Basso, D. M.: Novel investigative techniques on calcareous red algae build-ups: photogrammetry and CT-scan on Coralligenous from Marzamemi (Sicily), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12307, https://doi.org/10.5194/egusphere-egu23-12307, 2023.

EGU23-12561 | ECS | Posters virtual | SSP4.2 | Highlight

Multi-specific calibration of the B isotope proxy in calcareous red algae for pH reconstruction 

Giulia Piazza, Eduardo Paredes, Valentina Alice Bracchi, Leopoldo David Pena, Jason M. Hall-Spencer, Chiara Ferrara, Isabel Cacho, and Daniela Basso

Calcareous red algae have calcified cell walls constituted by high-Mg calcite or aragonite (Morse et al., 2006). They are considered suitable paleoclimate archives due to their worldwide distribution and their longevity through indeterminate growth (Kamenos et al., 2008). Boron isotopes (δ11B) measured in their calcified thallus are considered a pH proxy (Hemming and Hanson, 1992). In seawater, boron occurs as boric acid and borate ion. Both species are enriched in 11B as pH increases, with boric acid characterized by an enrichment factor of 27‰ compared to borate. The boron isotope proxy theory states that borate is exclusively incorporated in the mineral lattice (Hemming and Hanson, 1992). Therefore, if we measure δ11B in carbonates, we can derive the seawater pH at the time of precipitation. Literature data on δ11B in calcareous red algae are sparse, and the mechanisms of boron incorporation are still poorly known (Piazza et al., 2022). We tested the boron isotope-pH proxy on calcareous red algae grown at 1 m depth close to CO2 seeps off the coasts of Ischia (Italy), and Methana (Greece), which are both characterized by a broad range of natural pH in seawater (from 6.80 ± 0.43 to 8.08 ± 0.07 units). Environmental data characterizing the seawater during the algal growth were extracted from CMEMS products (Marine Copernicus Service Information), or provided by literature. The δ11B values in the algae (δ11Balgae) analysed by Multi Collector Inductively-Coupled Plasma Mass Spectrometry ranged from 22.23‰ to 26.59‰, calibrated over a range of δ11B in aqueous borate (δ11Bborate) extending from 12.68‰ to 18.05‰. A crystallographic control over boron incorporation was shown by the difference in the isotopic composition of carbonate polymorphs, with Mg-calcite enriched in 11B compared to aragonite. Values of δ11Balgae higher than δ11Bborate could be attributed to the up-regulation of the calcifying fluid pH exerted by the algae. We proposed a multi-specific calibration using literature data of boron isotopes in cultured coralline algae combined with our new data on wild-grown specimens, widening the range of pH considered for δ11B calibrations so far. The proposed calibration is particularly useful when experimental calibration is not possible, such as in the fossil record and in the case of ambiguous identifications.

References

Hemming N. G. & Hanson G. N. 1992. Boron isotopic composition and concentration in modern marine carbonates. Geochim. Cosmochim. Acta, 56, 537-543.

Kamenos N. A., Cusack M. & Moore P. G. 2008. Coralline algae are global paleothermometers with bi-weekly resolution. Geochim. Cosmochim. Acta, 72, 771-779.

Morse J. W., Andersson A. J. & Mackenzie F. T. 2006. Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and ‘‘ocean acidification’’: role of high Mg-calcites. Geochim. Cosmochim. Acta, 70, 5814-5830.

Piazza G., Bracchi V. A., Langone A., Meroni A. N. & Basso D. 2022. Growth rate rather than temperature affects the B / Ca ratio in the calcareous red alga Lithothamnion corallioides. Biogeosciences, 19, 1047-1065.

How to cite: Piazza, G., Paredes, E., Bracchi, V. A., Pena, L. D., Hall-Spencer, J. M., Ferrara, C., Cacho, I., and Basso, D.: Multi-specific calibration of the B isotope proxy in calcareous red algae for pH reconstruction, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12561, https://doi.org/10.5194/egusphere-egu23-12561, 2023.

EGU23-15203 | ECS | Orals | SSP4.2 | Highlight

A new clumped isotope-temperature calibration of cultured coccoliths under different pCO2 and temperature conditions 

Alexander J. Clark, Ismael Torres Romero, Madalina Jaggi, Stefano M. Bernasconi, and Heather Stoll

Carbonate clumped isotope thermometry, based on the temperature-dependence of clumping of 13C and 18O in the carbonate molecule (Δ47) is a promising tool for paleoclimate reconstruction. In the last few years many discrepancies among Δ47-temperature calibrations have been resolved across the range of relevant paleoclimate temperatures (Meinicke et al., 2020; Anderson et al., 2021). However, there might be other environmental effects on biogenic carbonates from parameters such as the pCO2 and growth rates of the organisms that are still unresolved. We provide a new assessment of the temperature dependence of clumped isotopes in laboratory grown biogenic carbonate at well-constrained experimental conditions, with results from three species of coccolithophores across a growth temperature range of 6-27°C. The three cultured species cover a range of growth rates, growth conditions and species-specific carbon and oxygen vital effects. Because variations in pCO2 and media carbon chemistry are known to trigger vital effects in carbon and oxygen isotopes in coccoliths, we decoupled the temperature solubility effect on CO2 by manipulating culture CO2 independently. Three pCO2 levels at reduced, present day and elevated levels; 200, 400 and 1000 ppm respectively, were kept constant for at least two different temperatures through a continuous culturing set-up. Our new multi-parameter comparison, using updated standardization approaches, provides a critical test of previous conclusions (Katz et al., 2017) that coccolithophore clumped isotopes show little to no vital effects and are close to abiotic equilibrium. Thus, we have performed the first calibration of coccolith calcite and clumped isotopes combining different temperature and pCO2 conditions.

References:

Anderson, N. T., J. R. Kelson, S. Kele, M. Daëron, M. Bonifacie, J. Horita, T. J. Mackey, et al. 2021. "A Unified Clumped Isotope Thermometer Calibration (0.5–1,100°C) Using Carbonate‐Based Standardization." Geophysical Research Letters 48 (7).

Katz, A., M. Bonifacie, M. Hermoso, P. Cartigny, D. Calmels. 2017. “Laboratory-grown coccoliths exhibit no vital effect in clumped isotope (Δ47) composition on a range of geologically relevant temperatures.” Geochimica et Cosmochimica Acta 208: 335-353.

Meinicke, N., S.L. Ho, B. Hannisdal, D. Nürnberg, A. Tripati, R. Schiebel, and A.N. Meckler. 2020. "A robust calibration of the clumped isotopes to temperature relationship for foraminifers." Geochimica et Cosmochimica Acta 270: 160-183.

How to cite: Clark, A. J., Torres Romero, I., Jaggi, M., Bernasconi, S. M., and Stoll, H.: A new clumped isotope-temperature calibration of cultured coccoliths under different pCO2 and temperature conditions, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15203, https://doi.org/10.5194/egusphere-egu23-15203, 2023.

EGU23-16355 | ECS | Posters on site | SSP4.2

Evaluation of the effect of calcification intensity on the isotopical composition of coccolith calcite 

Alba Gonzalez-Lanchas and Rosalind E.M. Rickaby

To understand how coccolithophore calcification rates evolved, it is critical to disentangle which environmental parameters controls the flow of energy from photosynthesis to calcification.

The values of coccolith vital effects, the offset of the isotopic composition of coccoliths from abiogenic calcite equilibrium, are not yet unilaterally understood. Models from observations in cultures indicate that such geochemical value is controlled, in some extent, by the changes in calcification intensity (McClelland et al., 2017). However, confirmation from observations in the natural environment remains scarce, up to date.

In order to explore the suitability of coccolith isotopical values to produce consistent estimations of calcification intensity, we analyze d13C values measured in size separated coccoliths from natural assemblages in core top records across different latitudes of the Atlantic Ocean. Micro separation of coccoliths and extraction from sediments are carried out with the application of the method by Minoletti et al. (2009) and serve to produce nearly monospecific size-separated coccolith fractions.

Our preliminary results allow investigation on the variance of size-separated coccolith vital effects together with independent estimations of PIC/POC production (Particulate Inorganic Carbon/Particulate Organic Carbon) and regional changes in environmental conditions trough the Atlantic Ocean.

References:

McClelland, H. L. O., Bruggeman, J., Hermoso, M., & Rickaby, R. E. M. (2017). The origin of carbon isotope vital effects in coccolith calcite. Nature communications, 8(1), 1-16.

Minoletti, F., Hermoso, M., & Gressier, V. (2009). Separation of sedimentary micron-sized particles for palaeoceanography and calcareous nannoplankton biogeochemistry. Nature protocols, 4(1), 14-24.

 

How to cite: Gonzalez-Lanchas, A. and Rickaby, R. E. M.: Evaluation of the effect of calcification intensity on the isotopical composition of coccolith calcite, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16355, https://doi.org/10.5194/egusphere-egu23-16355, 2023.

EGU23-2364 | ECS | Orals | GMPV8.5

Measuring volcanic ash optical properties with high-spectral resolution infrared sounders: role of refractive indices 

Alexandre Deguine, Lieven Clarisse, Hervé Herbin, and Denis Petitprez

Hyperspectral infrared sounders like IASI are used to track and quantify volcanic ash in the atmosphere. The retrieval process of physical quantities like particle radius and mass depends critically on the assumed spectrally dependent complex refractive indices that are used. Traditionally, the Pollack et al. (1973) dataset were used almost exclusively. These indices are however based on measurements of rock slabs and in recent years two datasets have become available from laboratory measurements of ash in suspension, the Reed et al. (2018) and Deguine et al. (2020) dataset. In this work, we compare for the first time the three most important datasets of CRI with respect to the three most common ash types (basaltic, andesitic and rhyolitic). The results show significant influence of the dataset used on the retrieved physical quantities. When it comes to basaltic and andesitic ash, both the Deguine and Reed samples outperform Pollack in terms of able to reconstruct the satellite observed spectra. However, all datasets overestimate the extinction near 1250 cm−1, which could possibly be related to the lack of sensitivity of spectrometers (water vapour continuum) leading to a poor signal over noise ratio in this spectral region. While this is not a guarantee that the retrieved quantities are closer to the physical reality, being able to reconstruct the observed spectra is a prerequisite of constructing a consistent physical model. Finally, a case study on the 7 May 2010 plume of the Eyjafjallajokull eruption is presented. For this case study, the differences are found to be mostly related in retrieved altitudes. It is clear that while the availability of CRI based on ash suspended in air is an important milestone, a lot of further research is needed to strengthen the theoretical basis of infrared retrievals of volcanic ash. A comprehensive database of reliable in-situ measurements of volcanic clouds would in this perspective be most welcome.

A. Deguine, D. Petitprez, L. Clarisse, S. Gudmundsson, V. Outes, G. Villarosa, and H. Herbin, “Complex refractive index of volcanic ash aerosol in the infrared, visible, and ultraviolet,” Applied Optics, vol. 59, no. 4, p. 884, jan 2020.

J. B. Pollack, O. B. Toon, and B. N. Khare, “Optical properties of some terrestrial rocks and glasses,” Icarus, vol. 19, no. 3, pp. 372–389, jul 1973.

B. E. Reed, D. M. Peters, R. McPheat, and R. G. Grainger, “The complex refractive index of volcanic ash aerosol retrieved from spectral mass extinction,” Journal of Geophysical Research, vol. 123, no. 2, pp. 1339–1350, jan 2018.

How to cite: Deguine, A., Clarisse, L., Herbin, H., and Petitprez, D.: Measuring volcanic ash optical properties with high-spectral resolution infrared sounders: role of refractive indices, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2364, https://doi.org/10.5194/egusphere-egu23-2364, 2023.

Volcanic eruptions used to cause huge disasters which usually bring about many fatalities and property damages, especially a big city near the volcanoes. The Taipei metropolitan city is located at the foot of Tatun Volcano Group (TVO), which has been identified as an active volcano. Meanwhile, several volcanic islands are distributed in the offshore of northern Taiwan, which may be the active volcanoes. Thus, the past eruptive behaviors and mechanisms, characteristics of products, volcanic history and activity, etc.

Based on the field observations, geomorphologic analyses, characteristics of ejecta, as well as the cases of world volcanoes, the explosive craters distributed in both sides of Chihsingshan volcano were produced by the phreatic eruption. Generally, two models of phreatic eruption have been proposed. One is a deeper hydrothermal system fed by magmatic gases being sealed and produces overpressure sufficient to drive explosive eruptions, and the other where magmatic gases are supplied via open-vent degassing to a near-surface hydrothermal system, vaporizing liquid water which drives the phreatic eruptions. The mechanism of Chihsingshan phreatic eruption is similar to the type I, which has hydrothermal reservoir underneath the volcano. Comparing other types of phreatic eruption in the world, for example, Mt. Ontake (Japan)、Inyo Craters (USA) and Tarawera Rift (New Zealand), they have similar common characteristics, (i) occurred in rifting conditions, (ii) heat source from magma intruded along the faults, (iii) had water body, such as groundwater, lakes or hydrothermal fluids, etc. near the conduit of magma. The geology and mechanism of phreatic eruption in the Chihsingshan volcano is more or less similar to the 2014 phreatic eruption of Mt. Ontake, Japan.

How to cite: Song, S.-R.: Characteristics of Latest Eruption in the Tatun Volcano Group, North Taiwan, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3795, https://doi.org/10.5194/egusphere-egu23-3795, 2023.

EGU23-4626 | ECS | Orals | GMPV8.5

A millennial-scale tephra event-stratigraphic record of the South China Sea since the penultimate interglacial 

Deming Kong, Weijia Feng, jiawen Yang, Chuang Bao, and Min-Te Chen

Large volcanic eruptions have significant impacts on climate and environmental changes. The deposition of tephra in marine sediments may serve as an eruption recorder, but it has not been extensively studied in the western Pacific. This study explored a millennial-scale tephra event-stratigraphy with multiple indicators in a sediment core collected from the eastern South China Sea (SCS) basin. The magnetic susceptibility (MS), Fe and Mn concentration determined by X-ray fluorescence (XRF), and identification of individual ash particles were used to identify tephra layers and reconstruct the history of volcanic activity. Nine visible volcaniclastic units (VVU) and two cryptotephra layers have been identified based on their distinct features, as manifested by high MS, Fe, and Mn concentrations, and single-peak grain size distribution. The VVUs and cryptotephra layers reveal elevated volcanic activities. Using the radiocarbon age model and oxygen isotope stratigraphy, these episodes could roughly correspond to the following periods: 1-11 ka, 16-17 ka, 27-31 ka, 41-42 ka, 45-46 ka, 49-50 ka, 77-80 ka, 90-91 ka, 97-99 ka, 116-126 ka, and 132-140 ka. The alkenone-derived SST has significant glacial cycles and good synchronicity with other SCS SST records, which could partially help build the preliminary age model. Despite possible age errors larger than 1 kyr, the discovery and timing of tephra layers provide a preliminary framework to further investigate the impact of historical volcanic eruptions on climate changes.

How to cite: Kong, D., Feng, W., Yang, J., Bao, C., and Chen, M.-T.: A millennial-scale tephra event-stratigraphic record of the South China Sea since the penultimate interglacial, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4626, https://doi.org/10.5194/egusphere-egu23-4626, 2023.

Volcanic sulfur dioxide (SO2) is a gaseous precursor that is transformed into secondary sulfate aerosols (SO42-) by several intricate chemical and physical atmospheric processes. It is currently unclear how quickly sulfate aerosols are produced in volcanic plumes, particularly in tropospheric plumes. We jointly analyze Aura/OMI SO2 observations to constrain the sulfur-rich emissions and identify the volcanic plume dispersion pattern as well as multi-angle, multi-wavelength, and polarizing PARASOL/POLDER-3 observations that are particularly sensitive to fine mode particles to gain a better understanding of the lifecycle of volcanic sulfate aerosols. The GRASP/Component[1] (Generalized retrieval of Aerosol and Surface Properties) algorithm gives us details about the soluble and insoluble aerosol components in both fine and coarse modes based on their complex refractive indices in addition to standard optical characteristics. In order to provide insight into SO2 to particle conversion rate, we analyze the degassing of the Kilauea volcano (Hawaii, USA) between 2006 to 2012, which includes periods of passive and eruptive degassing.

We demonstrate that Kilauea SO2-rich pixels from OMI measurements are broadly collocated with poorly-absorbing fine aerosol-rich pixels from POLDER measurements (fine AOD (440nm) ranging from 0.1 to 0.4, SSA (440nm) ranging from 0.95 to 1.0). We show that these volcanic particles also differ from long-distance transported man-made and natural fine-absorbing particles seen across the Kilauea domain from the Asian region in terms of their absorption characteristics. We, therefore attribute these fine mode particles to sulfate aerosols that result from the conversion of Kilauea SO2 emissions.

In comparison to SO2-rich plumes, Kilauea aerosol-rich plumes have a significantly wider spread and are characterized by an excess anomaly in fine AOD and high SSA values. Irrespective of the degassing strength, a pattern consistent with the oxidation of SO2 to secondary sulfate aerosols is observed where the SO2 concentration gradually drops with plume dispersion while the fine AOD gradually increases, peaking at a distance of around 800–3000 km from the Kilauea source. Depending on the intensity of volcanic activity, the season, and enduring local meteorological conditions, different time scales for oxidation of SO2 and geographical dispersion of the Kilauea aerosol plumes are observed. We conducted additional analysis on the coarse AOD and coarse components to look for ash signals inside the plume. Furthermore, the complex refractive index of Kilauea particles, retrieved by the GRASP/Component algorithm, indicates an imaginary part (0.003-0.005) that is slightly higher than that of volcanic basaltic ash, as determined by laboratory experiments, while the real part (1.49-1.52) lies well in between pure sulfate (1.40-1.46) and basaltic ash (1.56-1.63). These refractive index values imply that Kilauea particles are not pure sulfate aerosols but instead contain some spectrally absorbing elements that may point to the existence of fine ash or sulfate-coated ash particles within the plume.

[1] Li, L., Dubovik, O., Derimian, Y., Schuster, G. L., Lapyonok, T., Litvinov, P., Ducos, F., Fuertes, D., Chen, C., Li, Z., Lopatin, A., Torres, B., and Che, H.: Retrieval of aerosol components directly from satellite and ground-based measurements, Atmos. Chem. Phys., 19, 13409–13443, https://doi.org/10.5194/acp-19- 13409-2019, 2019.

How to cite: Panda, S. R., Boichu, M., Derimian, Y., Dubovik, O., and Behera, A. K.: Insight into the conversion of SO2 to sulphate aerosols in volcanic plumes from the joint analysis of hyperspectral OMI and multi-angular polarimetric POLDER satellite observations, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5423, https://doi.org/10.5194/egusphere-egu23-5423, 2023.

EGU23-7027 | ECS | Posters on site | GMPV8.5

First archive of extensive N-fixation by volcanic lightning and implications for the prebiotic Earth 

Adeline Aroskay, Erwan Martin, Slimane Bekki, Joël Savarino, Jean-Luc Le Pennec, Abidin Temel, Nelida Manrique, Rigoberto Aguilar, Marco Rivera, and Sophie Szopa

On Earth, most of the nitrogen (N) accessible for life is trapped in dinitrogen (N2), which is the most stable atmospheric molecule. In order to be metabolised by living organisms, N2 has to be converted into assimilable forms, also called fixed N. Nowadays, nearly all the N-fixation is achieved through biological and anthropogenic processes. However, in early environments of the Earth, before the emergence of life, N-fixation must have occurred via natural abiotic processes. Electrical discharges, including from thunderstorms and also lightning associated with volcanic eruptions is one of the most invoked processes. The occurence of volcanic lightning during explosive eruptions is frequent, and convincing laboratory experimentations support the role of this phenomenon, however no evidence of substantial N-fixation has been found in volcanic records.
Here we report on the discovery of large amounts of nitrates in volcanic deposits from Neogene caldera-forming eruptions, which are well correlated with the concentrations of species directly emitted by volcanoes such as sulphur and chlorine. The multi-isotopic composition (δ18O, Δ17O) of the nitrates reveals that they originate from the atmospheric oxidation of nitrogen oxides formed by volcanic lightning that occur during the eruption. According to these volcanic nitrate records, our first estimates suggest that about 60 Tg of N can be fixed during a large explosive event. Our findings hint at a unique role potentially played by subaerial explosive eruptions in supplying essential ingredients for the emergence of life on Earth.

How to cite: Aroskay, A., Martin, E., Bekki, S., Savarino, J., Le Pennec, J.-L., Temel, A., Manrique, N., Aguilar, R., Rivera, M., and Szopa, S.: First archive of extensive N-fixation by volcanic lightning and implications for the prebiotic Earth, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7027, https://doi.org/10.5194/egusphere-egu23-7027, 2023.

EGU23-7268 | ECS | Orals | GMPV8.5

Dispersion modeling of the volcanic sulfur dioxide plumes from the simultaneous eruptive activity of Stromboli and Mt Etna on 28 August 2019 

Giuseppe Castorina, Agostino Semprebello, Alessandro Gattuso, Francesco Italiano, Giuseppe Salerno, Pasquale Sellitto, and Umberto Rizza

During the summer of 2019, both Mt. Etna and Stromboli volcanoes in Sicily were in the stage of no ordinary activity. Mt. Etna was featured by mild strombolian activity from the summit South East Crater producing a moderate SO2–ash rich plume 4 km above sea level (asl). Meanwhile, at 120 km far from Etna, on 3 July and 28August, the ordinary and typical mild explosive eruptive activity of Stromboli was interrupted by two paroxysms. Both events were characterized by pyroclastic flows and consistent emission of ash–SO2 rich plume, which spread up to height of 5–6 km asl.
In this work, we explored the spatial dispersion of the volcanic plumes released by both Mt. Etna and Stromboli on August 28 by employing the Weather Research and Forecasting Chemistry (WRF–Chem) model. The simulation was specifically configured and run by considering the time-variable Eruptive Source Parameters (ESPs) related to the SO2 flux data for Stromboli and Mount Etna observed from ground by the FLAME DOAS scanning spectrometers network.
In order to assess the predictive performance of the WRF–Chem model, the simulated SO2 dispersion maps were compared with data retrieved on 28 August from TROPOMI and OMI sensors onboard Sentinel–5p and Aura satellites. The results show a good agreement between WRF–Chem and satellite data. In fact, the simulated total mass of the emitted SO2 from the two volcanoes has the same order of magnitude as the satellite data. However, for the case of Stromboli, the total SO2 mass predicted by the WRF–Chem simulation is underestimated; this is likely due to inhibition of the real syn-eruptive SO2 detection by FLAME due to the extreme ash–rich volcanic plume released during the paroxysm.
In conclusion, the results of these two test–cases demonstrate the feasibility of WRF–Chem model with a time-variable ESPs in reproducing different levels of volcanic SO2 and their dispersion into the atmosphere. For these reasons, our approach could represent an effective support for the assessment of local–to-regional air quality and flight security and, in case of particularly intense events, also on a global scale.

How to cite: Castorina, G., Semprebello, A., Gattuso, A., Italiano, F., Salerno, G., Sellitto, P., and Rizza, U.: Dispersion modeling of the volcanic sulfur dioxide plumes from the simultaneous eruptive activity of Stromboli and Mt Etna on 28 August 2019, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7268, https://doi.org/10.5194/egusphere-egu23-7268, 2023.

EGU23-7369 | ECS | Orals | GMPV8.5 | Highlight

The evolution and dynamics of the sulfate aerosol plume in the stratosphere after the exceptional Tonga eruption of 15 January 2022 

Clair Duchamp, Bernard Legras, Pasquale Sellitto, Aurélien Podglajen, Elisa Carboni, Richard Siddans, Jens-Uwe Grooss, Felix Ploeger, and Sergey Khaykin

We use a combination of seven space-borne instruments to study the unprecedented stratospheric plume after the Tonga eruption of 15 January 2022.

The aerosol plume was initially formed of two clouds at 30 and 28 km mostly composed of submicron-sized sulfate particles, without ashes washed-out within the first day following the eruption. The large amount of injected water vapour led to a fast conversion of SO2 to sulfate aerosols and induced a descent of the plume to 24-26 km over the first 3 weeks by radiative cooling. Whereas SO2 has returned to background levels by the end of January, volcanic sulfates and water still persisted after 6 months, mainly confined between 35°S and 20°N until June due to the zonal symmetry of the summer stratospheric circulation at 22-26 km. Sulfate particles, undergoing hygroscopic growth and coagulation, sediment and gradually separate from the moisture anomaly entrained in the ascending branch Brewer-Dobson circulation. Sulfate aerosol optical depths derived from the IASI infrared sounder show that during the first two months the aerosol plume was not simply diluted and dispersed passively but rather organized in concentrated patches. Space-borne lidar winds suggest that those structures, generated by shear-induced instabilities, were associated with vorticity anomalies that may have enhanced the duration and impact of the plume.

Reference: ACP Highlight, DOI: 10.5194/acp-22-14957-2022

How to cite: Duchamp, C., Legras, B., Sellitto, P., Podglajen, A., Carboni, E., Siddans, R., Grooss, J.-U., Ploeger, F., and Khaykin, S.: The evolution and dynamics of the sulfate aerosol plume in the stratosphere after the exceptional Tonga eruption of 15 January 2022, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7369, https://doi.org/10.5194/egusphere-egu23-7369, 2023.

EGU23-7516 | ECS | Posters on site | GMPV8.5

Rapid gas measurements in volcanic plumes with UAVs: online and offline measurements of various trace gases with light UAVs 

Niklas Karbach, Bastien Geil, Jonas Blumenroth, Heiko Bozem, Christian von Glahn, Peter Hoor, Nicole Bobrowski, and Thorsten Hoffmann

To protect people and infrastructures in the immediate vicinity of active volcanoes, monitoring the gas composition of the emitted plume is crucial. In order to react quickly to sudden changes in this composition, frequent measurements are key, as different ratios like the halogen/sulfur or the CO2/SO2 ratio can give hints on changing volcanic activity due to their different solubility in magma.   

However, monitoring the chemical composition of the volcanic plume is not an easy task, especially since stationary ground-based gas monitoring stations do not always measure the concentration in the plume, only under certain meteorological conditions, and remote sensing methods are not available for all gases of interest. In this case, human interaction is required to move the measurement equipment to the location of interest, which is close to the active vent. Not only does this pose a serious health risk, it is also burdensome, as the researcher must climb the volcano, take the measurements, climb back down, and analyze the results. This lengthy procedure can be sped up and facilitated by using lightweight drones to take the measurements. Sensors and various other instruments, such as miniaturized alkaline traps or impregnated syringe filters that employ an electrophilic addition to a double bond to selectively absorb halogen species in the oxidation states -1, ±0 and +1, can be mounted on the drone and controlled via a radio link to a ground station. The online results can then be used during the flight to locate the plume to ensure efficient sampling with the absorbers. The landing site of the drone is usually located far away from active vents, which significantly reduces health hazards and speeds up the process.

This poster presents such a drone with its advanced sensor system and absorbers for the determination and quantification of CO2, SO2, acidic gases and halogen species and its deployment during a measurement campaign on Etna in July 2022.

How to cite: Karbach, N., Geil, B., Blumenroth, J., Bozem, H., von Glahn, C., Hoor, P., Bobrowski, N., and Hoffmann, T.: Rapid gas measurements in volcanic plumes with UAVs: online and offline measurements of various trace gases with light UAVs, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7516, https://doi.org/10.5194/egusphere-egu23-7516, 2023.

EGU23-8281 | Posters on site | GMPV8.5

A case study of two simultaneous extreme aerosol events in the Mediterranean: The Mount Etna series of eruptions and major Saharan dust event in February 2021 

Pasquale Sellitto, Giuseppe Salerno, Stefano Corradini, Irène Xueref-Remy, Aurélie Riandet, Clémence Bellon, Sergey Khaykin, Gerard Ancellet, Simone Lilli, Ellsworth J. Welton, Antonella Boselli, Alessia Sannino, Juan Cuesta, Henda Guermazi, Maxim Eremenko, Luca Merucci, Dario Stelitano, Lorenzo Guerrieri, and Bernard Legras

During the extended activity of Mount Etna volcano in February-April 2021, three distinct paroxysmal events took place from 21 to 26 February, which were associated with a very uncommon transport of the injected upper-tropospheric plumes towards the north. A major Saharan dust outbreak to central Europe occurred in the same period. Using a synergy of observations and modelling, we characterise the three-dimensional dispersion of these volcanic plumes and we disentangle their optical and radiative signature from the simultaneous Saharan dust transport. In the region of interest for our study, the volcanic and the dust plumes remain completely vertically-separated, thus facilitating the detection and spatiotemporal characterisation of the dispersion, properties and radiative impacts of these two different aerosol plumes, using vertically-resolved observations. With a satellite-based source inversion, we estimate the emitted sulphur dioxide (SO2) mass at an integrated value of 55 kt and plumes injections at up to 12 km altitudes, which qualifies this series as an extreme event for Mount Etna activity spectrum. Then, we combine Lagrangian dispersion modelling, initialised with measured temporally-resolved SO2 emission fluxes and altitudes, with satellite observations to track the dispersion of the individual volcanic and dust plumes. The general transport towards the north allowed the height-resolved downwind monitoring of the volcanic and dust plumes at selected observatories in France, Italy and Israel, using LiDARs and photometric aerosol observations. A specific effort has been dedicated to the characterisation of the volcanic aerosol plumes. Volcanic-specific aerosol optical depths in the visible spectral range ranging from about 0.004 to 0.03 and local daily average shortwave radiative forcing ranging from about -0.2 to -1.2 W/m2 (at the top of atmosphere) and from about -0.2 to -3.0 W/m2 (at the surface) are found. The composition (possible presence of ash), aerosol optical depth and radiative forcing of the volcanic plumes has a large inter- and intra-plume variability and thus depend strongly on the position of the sampled section of the plumes. The dust optical depth and radiative impact largely outweigh volcanic aerosols when the two plumes are co-located, for this event. This case study points at the complexity of the Mediterranean aerosol environment and pave the way to future studies at longer timescales, exploiting the available observational and modelling capabilities and their synergies.

How to cite: Sellitto, P., Salerno, G., Corradini, S., Xueref-Remy, I., Riandet, A., Bellon, C., Khaykin, S., Ancellet, G., Lilli, S., Welton, E. J., Boselli, A., Sannino, A., Cuesta, J., Guermazi, H., Eremenko, M., Merucci, L., Stelitano, D., Guerrieri, L., and Legras, B.: A case study of two simultaneous extreme aerosol events in the Mediterranean: The Mount Etna series of eruptions and major Saharan dust event in February 2021, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8281, https://doi.org/10.5194/egusphere-egu23-8281, 2023.

EGU23-8559 | ECS | Orals | GMPV8.5

Laki 1783-84 AD tephra linked mercury enrichment in peat at Brackloon Wood, Mayo, Ireland. 

Lucy Blennerhassett and Dr. Emma Tomlinson

Mercury is a significant volcanic volatile species from effusive and explosive activity1. Understanding its emission to the atmosphere from volcanic activity, aids our understanding of the global mercury cycle and its environmental impacts. Sedimentary and ice core records can be archives of these mercury enrichments2,3.

The Laki 1783-84 AD fissure eruption in Iceland was significant due to its voluminous outpouring of basaltic lava, copious sulphur emissions and widespread environmental effects locally and across the Northern Hemisphere4,5. Extreme weather events were recorded in Europe and North America, owing to a veil of sulphur dioxide that remained at the tropopause for over a year5. Due to the phreatomagmatic and thus explosive nature of Laki, a significant eruption plume was produced4. As such, cryptotephra shards have been located at distal locations from Iceland including ice cores in Svalbard and Greenland6,7 and in an Irish woodland peat at Brackloon Wood, Co. Mayo8. There is evidence to suggest significant heavy metal emission to the atmosphere during the Laki eruption, however these records are currently restricted to Greenland ice cores9. Previous heavy metal findings linked to Laki do not include mercury, despite its significance as a volcanic volatile, and a potentially environmentally damaging heavy metal. Therefore, to expand our knowledge of the Laki 1783-84 AD eruption plume, its associated emissions, and environmental consequences we returned to the woodland peat site in Brackloon Wood, Co. Mayo, Ireland.

Analysis of a 50 cm peat core using an AMA 254 mercury analyser was combined with a novel technique to find tephra using BSE (back scattered electron) imaging and geochemical discrimination using SEM-EDX (scanning electron microscopy-energy dispersive x-ray). The Laki tephra is successfully located using this method and coincides with a visible enrichment in mercury relative to background concentrations and organic matter. An age-depth model developed using the tephra layer and two radiocarbon dates indicate a strong likelihood that such enrichments are a product of volcanic emission. Such a finding can expand our understanding of heavy metal deposition during Laki 1783-84 AD away from the poles and to our knowledge, demonstrates the first direct exploration of mercury enrichment in distal peat for this eruption. As a secondary test of volcanic volatile enrichment, trace element analysis of the same bulk peat will be conducted to explore enrichments in other volcanic volatiles such as sulphur, cadmium, lead, copper and zinc.

 

1. Pyle, D. M. & Mather, T. A. Atmos. Environ. 37, 5115–5124 (2003).

2. Schuster, P. F. et al.,. Environ. Sci. Technol. 36, 2303–2310 (2002).

3. Roos-Barraclough, F. et al.,. Earth Planet. Sci. Lett. 202, 435–451 (2002).

4. Thordarson, T. & Self, S. Bull. Volcanol. 55, 233–263 (1993).

5. Thordarson, T. & Self, S., J. Geophys. Res 108, 4011 (2003).

6. Kekonen, T. et al., Polar Res. 24, 33–40 (2005).

7. Wei, L. et al., Geophys. Res. Lett. 35, L16501 (2008).

8. Reilly, E. & Mitchell, F. J., Holocene 25, 241–252 (2015).

9. Hong, S. et al., Earth Planet. Sci. Lett. 144, 605–610 (1996).

 

How to cite: Blennerhassett, L. and Tomlinson, Dr. E.: Laki 1783-84 AD tephra linked mercury enrichment in peat at Brackloon Wood, Mayo, Ireland., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8559, https://doi.org/10.5194/egusphere-egu23-8559, 2023.

EGU23-9128 | Posters on site | GMPV8.5

Ground-based volcanic ash detection with low-cost sensors – a case study at the 2021 Cumbre Vieja eruption 

Jose Pacheco, Diogo Henriques, Sérgio Oliveira, Alexandra Moutinho, Fátima Viveiros, Diamantino Henriques, Pedro Hernández, and Nemesio Pèrez

The Tajogaite eruption of Cumbre Vieja volcano, in 2021, was a basaltic fissure eruption characterised by a variety of eruptive styles ranging from the predominantly strombolian activity, to lava fountaining, ash emission and effusive activity. The eruption lasted nearly 3 months, produced an extensive lava field and about 45.106 m3 of tephra. Although its intensity varied throughout the entire duration of the eruption, the eruptive plume had a typical height of about 3500 m asl and reached a maximum of 8500 m asl just hours before the end of the eruption, on the 13th of December. Ash is, therefore, a significant hazard to consider not only during the eruption, but also on the post-eruption phase.

To measure ash in the air around the volcano, during the last stage of the eruption and the following weeks, an experiment was devised based on a proximal network of several ground-based low-cost sensors, measuring suspended particulate matter (PM10, PM2.5) concentration, air temperature, and relative humidity.

The results showed that, during the documented period, the daily mass concentration of particulate matter in the air reproduced the peak on the eruptive column high at the end of the eruption. After the eruption several significant resuspension events were detected simultaneously in several stations; in addition, after the eruption, a major event of “calima” dust intrusion largely exceeded all recorded eruptive events. Overall, even after the eruption, the 24-hour average exposure to PM2.5 surpassed the guidelines of the World Health Organization.

 

 

This work was partially funded by FCT – Fundação para a Ciência e Tecnologia, under project SONDA - Synchronous Oceanic and Atmospheric Data Acquisition (PTDC/EME-SIS/1960/2020) and INTERREG MAC under the project VOLRISKMAC-II - Fortalecimiento de las capacidades de I+D+i para el desarrollo de la resiliencia frente a emergencias volcánicas en la Macaronesia.

How to cite: Pacheco, J., Henriques, D., Oliveira, S., Moutinho, A., Viveiros, F., Henriques, D., Hernández, P., and Pèrez, N.: Ground-based volcanic ash detection with low-cost sensors – a case study at the 2021 Cumbre Vieja eruption, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9128, https://doi.org/10.5194/egusphere-egu23-9128, 2023.

EGU23-9143 | Orals | GMPV8.5

Quantifying volcanic gas emission rates from infrasound and SO2 cameras: potentials, limitations, and volcanological implications. 

Dario Delle Donne, Giorgio Lacanna, Marcello Bitetto, Giacomo Ulivieri, Maurizio Ripepe, and Alessandro Aiuppa

Volcanic degassing, a persistent manifestation of active volcanoes, provides crucial information on the dynamics of the magmatic feeding systems, and allows identifying the phases of volcanic unrest in the runup to volcanic eruptions. While thus determining volcanic degassing rates is a central topic in modern Volcanology, direct volcanic gas flux observations by classic spectroscopic techniques are challenged by (i) the need of adequate illumination (by sunlight) and clear weather conditions (ii) difficulties in robustly estimating plume speed velocity and transport direction, and (iii) a variety of optical and radiative transfer issues. Because of these, volcanic gas flux records are often sparse and incomplete, and affected by intrinsic noise that may prevent from fully resolving the gas emission changes associated with changing volcanic activity. To overcome such limitations, measuring the infrasound produced by the expansion of over-pressurized volcanic gas in the atmosphere, using infrasonic arrays, offers as a promising alternative/complementary tool to quantify and locate degassing at active volcanoes. Here, we report on 2-year long (April 2017—March 2019) period of combined measurements of the SO2 flux and of volcano-acoustic emissions produced by regular mild persistent strombolian activity and passive degassing of Stromboli Volcano (Sicily, Italy). These were obtained by a permanent monitoring SO2 camera and a five-element short-aperture (~300 m) infrasonic array. Our results highlight substantial temporal changes in degassing activity, that reflect the recurrent episodes of activations/inactivation of multiple distinct degassing sources within the crater area, as coherently tracked by SO2 and infrasound together. A simple waveform modeling of the infrasonic record, assuming a monopole acoustical source, suggests that infrasonic degassing, comprising of explosive events and continuous puffing activity, dominates the total persistent degassing budget as tracked by the SO2 camera.

How to cite: Delle Donne, D., Lacanna, G., Bitetto, M., Ulivieri, G., Ripepe, M., and Aiuppa, A.: Quantifying volcanic gas emission rates from infrasound and SO2 cameras: potentials, limitations, and volcanological implications., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9143, https://doi.org/10.5194/egusphere-egu23-9143, 2023.

Sulfate aerosols are a primary driver of climate impacts during and following volcanic eruptions and form from erupted SO2 gas. However, the amount of SO2 that is delivered to the stratosphere is not clearly related to the amount dissolved in the magma (the ‘sulfur excess problem’). Therefore, magma properties and eruption magnitude are not necessarily predictive of climate impacts from eruptions, which is exacerbated by the as-yet unknown importance of the insulated, hot transport pathway. During a magnitude 6 explosive volcanic eruption there is up to 100 seconds of transport between the magma fragmentation depth – where volcanic ash is formed and the mixture accelerates – and the Earth’s surface. Here, we present a numerical implementation of a theoretical framework which predicts the rapid reactions between gases and volcanic ash in this transport interval, which include: (1) iron oxidation state changes; (2) SO2 uptake via calcium sulfate surface crystallization; (3) HCl uptake via NaCl surface crystallization; and (4) incipient nanolite crystallization that may be related to (1). In all cases, these processes are rate-limited by a suite of diffusive exchanges between the ash bulk and surface, for which our model solves. To demonstrate the upscaled importance of these processes, we couple our models to volcanic plume simulations (using a 1991 Pinatubo baseline simulation), and output the bulk SO2 that can be captured by ash. We find that depending on the source parameters of the eruption, anywhere between 30 and 100 wt.% of the total erupted SO2 can be removed from the plume gas and captured by ash. This effectively changes the sink of SO2 from the stratosphere to the hydrosphere, as CaSO4 crystals are soluble and ultimately wash into the environment following ash deposition. We propose that these hot sulfur scrubbing processes may be crucial in mediating SO2 delivery to the atmosphere, and therefore may explain much of the complexities associated with correlating eruption magnitude with climate impacts in the recent past or back into the Last Glacial period.

How to cite: Vasseur, J., Wadsworth, F., Paine, A., and Dingwell, D.: Hot volcanic ash filters eruptive SO2 during hot transport in conduits and the lower plume: A predictive model with implications for the climate impacts of volcanic eruptions, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11407, https://doi.org/10.5194/egusphere-egu23-11407, 2023.

EGU23-11832 | Orals | GMPV8.5

Remote SO2 flux by UV and TIR ground based cameras at Sabancaya volcano (Peru), cross comparison and validation with satellite data 

Stefano Corradini, Giuseppe Salerno, Robin Campion, Lorenzo Guerrieri, Luca Merucci, and Dario Stelitano

During the 14th IAVCEI Field Workshop held in Peru from 6 to 14 November 2022, SO2 plume measurements were carried out remotely in the volcanic plume of Sabancaya volcano. Sabancaya is an active stratovolcano located in southern Peru (15.787°S, 71.857°W), Sabancaya’s first historical record of an eruption dates to 1750 and the most recent eruption began in November 2016. Volcanic activity consist of rhythm vulcanian explosions, which produce a gas-ash rich plumes which rose few km above the summit terrace. On 10 and 11 November 2022, side-by-side observation by UV and TIR ground-based cameras were remotely carried out with the object to observe the passive and active SO2 burden from the volcanic plume of Sambacaya. Two UV cameras systems were employed observing the volcanic plume at 2- and 5-seconds time steps and calibrating SO2 amounts by coupling SO2 DOAS inverted column densities ad and SO2-quartz cell amounts. The TIR camera (named VIRSO2) is a novel system developed for the detection of volcanic plumes, the estimation of the height and the determination of columnar content and the SO2 flux. It allows acquisition of high frequency data both during the day and at night. It is equipped with 3 cameras, two broadband TIR (7-14 micron) and a VIS, capable of acquiring data simultaneously. For the quantitative estimation of SO2, an 8.7 μm filter is installed in front of one of the TIR camera. Retrieved cameras products were cross-compared and validated in order to determinate limit an uncertainty of both methods and results were also compared with those obtained by S5p-TROPOMI instrument.

Preliminary results show a feasible strength between the three ground and space-based techniques. Within the uncertainties of each method, differences between inverted SO2 column densities and emission rates arise from field of view geometrical sampling set-up and radiative transfer. Results gathered in this study prove the promising application of ground-based TIR in volcanic plume SO2 observation.

How to cite: Corradini, S., Salerno, G., Campion, R., Guerrieri, L., Merucci, L., and Stelitano, D.: Remote SO2 flux by UV and TIR ground based cameras at Sabancaya volcano (Peru), cross comparison and validation with satellite data, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11832, https://doi.org/10.5194/egusphere-egu23-11832, 2023.

EGU23-12069 | ECS | Orals | GMPV8.5

Explicit simulation of volcanic eruption plumes in atmospheric models: first results and implications 

Sascha Bierbauer, Gholam Ali Hoshyaripour, Julia Bruckert, Daniel Reinert, and Bernhard Vogel

Explosive volcanic eruptions emit large amounts of solid and gaseous materials into the atmosphere, thereby affect weather and climate and pose hazards to human health and aviation. To constrain those impacts it is important to understand dynamical, microphysical and chemical evolution of the eruption plumes. Especially the density of a plume and atmospheric conditions control the dynamical development of an eruption plume. To simulate those plumes correctly the flow field has to be described as a multi-constituent multiphase flow system. This is realized in eruption plume models but not in the conventional atmospheric models. The latter neglect the partial density of ash particles in relation to total air mass and cannot treat for the effect of ash particles on dynamics during simulations. To overcome this limitation, we use a modified version of ICOsahedral Nonhydrostatic model with Aerosols and Reactive Trace gases (ICON-ART) in which we extended the existing equation set. This version of ICON-ART can consider a source of total mass during the eruption as well as a mass sink due to sedimentation of ash and other constituents. The mass source is accounted by an additional source term for total density, and the mass sink is accounted by implementing the lower boundary condition of the vertical velocity at the surface. This leads to a conserved dry air mass and changing total air mass, which affects dynamics and is crucial for handling multiphase flows correctly. Additionally, a momentum forcing as well as a temperature forcing cause the strong updraft within the plume region.

We simulated the real case of the Raikoke eruption in 2019 in a LES-mode for more detailed investigations of the plume. In this experiment, in addition to ash, we also emit water vapor which might lead to an additional upward motion in the convective plume region due to latent heat release when clouds develop. The results show that the model is able to reproduce the observed plume geometry vertically and horizontally. Moreover, we simulated gravity waves that developed during the eruption around the volcano. In combination with microphysics and aerosol dynamics, the new implementations in ICON-ART enable detailed investigations of volcanic plume development across scales.

How to cite: Bierbauer, S., Hoshyaripour, G. A., Bruckert, J., Reinert, D., and Vogel, B.: Explicit simulation of volcanic eruption plumes in atmospheric models: first results and implications, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12069, https://doi.org/10.5194/egusphere-egu23-12069, 2023.

EGU23-13755 | ECS | Posters on site | GMPV8.5

Inversion techniques on volcanic emissions and the use for quantitative dispersion modeling: The case of Etna eruption on 12 March 2021 

Anna Kampouri, Vasilis Amiridis, Ondřej Tichý, Nikolaos Evangeliou, Stavros Solomos, Anna Gialitaki, Eleni Marinou, Antonis Gkikas, Emmanouil Proestakis, Simona Scollo, Luca Merucci, Lucia Mona, Nikolaos Papagiannopoulos, and Prodromos Zanis

Modeling the dispersion of volcanic particles released during explosive eruptions is crucially dependent on the knowledge of the source term of the eruption and the source strength as a function of altitude and time. Forecasting volcanic ash transport is vital for aviation but rather inaccurate for quantitative predictions of the fate of volcanic particle emissions. Here we demonstrate an inverse modeling framework that couples the output of a Lagrangian dispersion model with remote sensing observations to estimate the emission rates of volcanic particles released from the Etna eruption. We use an inversion algorithm (Tichy et al., 2020) where the distance between the model and observations is optimized under the assumption that the source term is either sparse or smooth. The Bayesian formalism allows the algorithm to estimate these characteristics together with the source term itself and thus normalize the inversion problem. This methodology uses source receptor relationships as an input from the FLEXPART (flexible particle dispersion) model constrained by ground-based Lidar measurements and satellite observations of SO2 and ash emissions. The case study analyzed here refers to the Etna eruption on 12 March 2021, with the volcanic plume being well captured by the lidar measurements of the PANGEA observatory located at Antikythera island in southwest Greece. A dense aerosol layer, suspending in the height range between 7.5 and 12.5 km (19:30 - 21:30 UTC), has been captured by the PollyXT lidar. For the inversion simulations, we also use data acquired by the Spin-stabilised Enhanced Visible and Infrared Imager (SEVIRI) instrument, mounted on the Meteosat Second Generation (MSG) geostationary satellite. The aforementioned observations serve as a priori source information to estimate the volcanic ash and SO2 source strength, depending on altitude and time, coupled with the output of the FLEXPART model. Our results are efficient for real-time application and could supply ash forecasting models with an accurate estimation of the mass rate of very fine ash during explosive eruptions. Improved forecasts of the dispersed volcanic plumes following the suggested inverse modeling framework would then allow for more effective emergency preparedness for aviation to ensure safety during volcanic eruptions.

 

This research was also supported by the following projects: ERC grant D-TECT (agreement no. 725698); EU H2020 E-shape project (Grant Agreement n. 820852); PANCEA project (MIS 502151) under the Action NSRF 2014-2020, co-financed by Greece and the European Union. The research was supported by data and services obtained from the PANhellenic Geophysical Observatory of Antikythera (PANGEA) of the National Observatory of Athens (NOA), Greece. O. Tichy was supported by the Czech Science Foundation, grant no. GA20-27939S.

 

Tichy, O.; Ulrych, L.; Smidl, V.; Evangeliou, N.; Stohl, A. On the tuning of atmospheric inverse methods: comparisons with the European Tracer Experiment (ETEX) and Chernobyl datasets using the atmospheric transport model FLEXPART, Geosci. Model Dev. (2020), 13, 5917-5934.

How to cite: Kampouri, A., Amiridis, V., Tichý, O., Evangeliou, N., Solomos, S., Gialitaki, A., Marinou, E., Gkikas, A., Proestakis, E., Scollo, S., Merucci, L., Mona, L., Papagiannopoulos, N., and Zanis, P.: Inversion techniques on volcanic emissions and the use for quantitative dispersion modeling: The case of Etna eruption on 12 March 2021, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13755, https://doi.org/10.5194/egusphere-egu23-13755, 2023.

EGU23-14820 | ECS | Posters on site | GMPV8.5

Pattern of volcanic degassing at open-vent volcanoes using TROPOMI SO2 time-series from COBRA retrievals 

Jordi Van Mieghem, Hugues Brenot, Benoît Smets, and Nicolas Theys

Sensitive and accurate detection of SO2 from remote sensing is essential to monitor volcanic degassing. The main objective of this study is to understand the dynamics of SO2 gas emissions at open-vent volcanoes between major eruptive events, using Sentinel-5P TROPOMI-based SO2 measurements.

Time-series of SO2 mass are analysed at 10 open-vent volcanoes (Ambrym, Erebus, Erta Ale, Kilauea, Masaya, Nyamuragira, Nyiragongo, Stromboli, Villarica, Yasur) using a newly developed TROPOMI SO2 product generated by the Covariance Based Retrieval Algorithm (COBRA; Theys et al., 2021). Compared to the current operational SO2 TROPOMI product (which uses the Differential Optical Absorption Spectroscopy technique), the COBRA dataset has improved performances and reduce both the noise and bias on the data, allowing a more refined study of degassing from open-vent volcanoes.

Time-series have been obtained for SO2 emissions over a period from 2018 to early 2023. For the 10 selected persistently active volcanoes, the SO2 behaviours are analysed and compared, showing cyclic and sporadic variations, as well as peaks of emission when a flank or major eruption occur. Patterns in SO2 time-series during and between major eruptive events are discussed to assess the potential use (and limitations) of these measurements as a tool for early warning and volcanic crisis management.

Reference:

Theys, N., Fioletov, V., Li, C., De Smedt, I., Lerot, C., McLinden, C., Krotkov, N., Griffin, D., Clarisse, L., Hedelt, P., Loyola, D., Wagner, T., Kumar, V., Innes, A., Ribas, R., Hendrick, F., Vlietinck, J., Brenot, H., Van Roozendael, M. (2021). A sulfur dioxide Covariance-Based Retrieval Algorithm (COBRA): application to TROPOMI reveals new emission sources. Atmospheric Chemistry and Physics, 21(22), 16727-16744.

How to cite: Van Mieghem, J., Brenot, H., Smets, B., and Theys, N.: Pattern of volcanic degassing at open-vent volcanoes using TROPOMI SO2 time-series from COBRA retrievals, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14820, https://doi.org/10.5194/egusphere-egu23-14820, 2023.

EGU23-15216 | ECS | Posters on site | GMPV8.5

Trace element transport processes in volcanic gases 

Celine Mandon and Andri Stefansson

Despite our perception of gold as a shiny precious metal, a small amount of gold is actually transported by magmatic gases and emitted in the atmosphere at most volcanoes on Earth. This gaseous transport is made possible by the very nature of volcanic gases: high-temperature non-ideal water vapor-dominated mixture of gases, also containing other major constituents such as sulfur, carbon dioxide and halogens. This combination allows for volatile transport of virtually all elements from the periodic table, through the formation of gaseous compounds between trace elements and major gas species. However, the complexity of volcanic gases also makes them difficult to apprehend; little is known on the solubility and behavior of trace elements. Moreover, the gas composition varies from one volcano to another, while changes in pressure and temperature occur between gas exsolution from the magma and emission at the surface. Interactions between the gas phase and surrounding rocks and fluids can furthermore affect volcanic gases on their way to the surface. In this work, we explore the transport processes controlling the abundance of trace elements in volcanic gases. We use major and trace element composition from fumarolic gases from Vulcano, Italy sampled over a 14-year period and during both background emissions and unrest. We also work with a compilation of high-temperature gas compositions, from fumaroles and volcanic plumes, from various tectonic settings. This data is then used for thermochemical calculations using the HSC Chemistry software. We will explore the factors that affect the trace element transport in volcanic gases, such as 1) cooling of the gas from the exsolution temperature to the emission temperature at the surface, 2) pressure decrease from the depth of exsolution to atmospheric pressure, 3) composition of the gas and therefore ligand availability, 4) transport rate and its effect on mineral deposition from the gas.

How to cite: Mandon, C. and Stefansson, A.: Trace element transport processes in volcanic gases, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15216, https://doi.org/10.5194/egusphere-egu23-15216, 2023.

EGU23-15716 | Posters on site | GMPV8.5

Tephrochronology and geochemical correlation of Middle Pleistocene distal tephra deposits in Armenia 

Edmond Grigoryan, Khachatur Meliksetian, Hripsime Gevorgyan, Ivan Savov, Gevorg Navasardyan, Marina Bangoyan, and Tatevik Boyakhchyan

Widespread volcanism played significant role in geological history of Anatolian-Armenian-Iranian orogenic plateau formed as a result of continental collision of Arabian and Eurasia. Among diverse chemical compositions and eruption styles, reported for volcanoes of Armenian highlands, noteworthy are distal tephra fallout deposits and voluminous ignimbrite shields resulted from violent explosive volcanic eruptions with VEI estimations ranging form 4 to 6. Obviously, such eruptions had significant impact on climate, human occupation and migrations in the entire region and provide insights to volcanic hazards in the region.  One difficulty in the identifying and studying explosive eruptions during Pleistocene, is that many tephra fallout deposits are not preserved in the geologic records, since unconsolidated deposits erode rapidly, particularly in mountain topography. In Armenia, there is a sparse geologic record of tephra fallouts, except where these deposits are preserved beneath pyroclastic flows, which presumably occurred very soon after tephra deposition. Such tephra deposits, are known in Armenia in underlying ignimbrite units related to activity of Aragats stratovolcano (Gevorgyan et al., 2018), beneath Ani ignimbrite in western part of Armenia and activity of Irind and Pemzashen volcanoes. Alternatively, tephra deposits can be preserved if layers are rapidly covered by loess deposits or colluvium deposits or landslides shortly after the eruption and tephra deposition occurs. Such conditions are known for distal tephra fall deposits from Ararat volcano in Ararat depression and in NE Armenia near Ijevan. A big number of finds of  Paleolithic stone tools, and resent achievements in studying Paleolithic archeology in south Caucasus region provide evidences of early human occupation in the territory of south Caucasus.  This contribution  aims to fill gaps in our knowledge of distal tephra layers identified in Armenia, namely in  north-east, south and central parts of Armenia.  New data based on detailed geochemical investigations and 40Ar/39Ar age determinations of distal tephra layers originated from violent explosive eruptions, reported in this study, can contribute to establish chronostratigraphic horizons as marker layers for paleoclimate and archaeological records during Middle-Upper Pleistocene in the entire region. Tephra layers preserved in Pleistocene sedimentary sequences in Armenia provide important information about these violent explosive eruptions that are significant for the geological evolution and the human geography of the entire region.

How to cite: Grigoryan, E., Meliksetian, K., Gevorgyan, H., Savov, I., Navasardyan, G., Bangoyan, M., and Boyakhchyan, T.: Tephrochronology and geochemical correlation of Middle Pleistocene distal tephra deposits in Armenia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15716, https://doi.org/10.5194/egusphere-egu23-15716, 2023.

CL1.1 – Deep Time

The Miocene Climatic Optimum (MCO) is an intriguing period of global climate history. Spanning from approximately 17 to 14 Ma, the MCO saw increased concentrations of greenhouse gasses and a rise in global temperature of 6 to 7 degrees Celsius. The MCO disrupted the long-term cooling trend of the Cenozoic and is often invoked as a potential analogue for understanding contemporary global climate change. It is not well understood, however, if and how the dynamics that drove the MCO (e.g., orbital pacing) may have conditioned regional-scale climate phenomena, particularly those associated with the interior of continents. Here we establish detailed, orbital-scale, terrestrial environmental responses to the MCO using magneto-cyclostratigraphic chronology. We identify six drought events in the Asian interior that are associated with prominent δ13C positive excursions, δ18O cooling Mi-events, global SST and sea-level fluctuations, as well as with the 405-kyr eccentricity band. We also document antiphase variability of precipitation across the monsoon-westerly influenced boundary. We contend that a predominant long eccentricity signal was of overriding significance as an orbital factor in regulating the rhythm of climatic change during the MCO.

How to cite: cao, Y.: Predominant orbital forcing on Asian hydroclimate linked with deep-sea records during the Miocene Climate Optimum, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-194, https://doi.org/10.5194/egusphere-egu23-194, 2023.

EGU23-227 | ECS | Orals | CL1.1.1

Orbital control of relative sea level changes in the Plio-Pleistocene of the Northeast Brazilian Equatorial Margin. 

Lucas Tortarolo, Marina Rabineau, Christian Gorini, Slah Boulila, Damien Do Couto, Tadeu Dos Reis, and Cleverson Guizan Silva

We address the evolution of the shelf architecture of the Northeast Brazilian Equatorial Margin during the Plio-Pleistocene, using a coupled approach of sequence stratigraphy based on 3D seismic data, and cyclostratigraphy based on well-log data. The main purpose of this study is to highlight the major forcing processes that control evolution and architecture of the shelf during the Plio-Pleistocene.

Our results reveal nine pronounced seismic sequences within the Plio-Pleistocene series, which are correlated to the long 405-kyr eccentricity cycles. Inside the two youngest 405-kyr cycles, we observe nine Falling Stage System Tracts (FSST) matching the short (97-128 kyr) eccentricity cycles. Finally, we identify three major depositional episodes (mega-sequences) in the Plio-Pleistocene: (i) the first episode (from ~4 to ~2.4 Ma) is characterized by small amplitudes of sea-level variations with low to none erosive structures and the absence of clear transgressive series, (ii) the second phase (from ~2.4 to ~0.9 Ma) records a drastic increase of erosional features as well as the apparition of thicker transgressive series and slope failures, and (iii) the third phase (from ~0.9 to present-day) is characterized by a dramatic change in the shelf geometry, most of the sediments are deposited on the slope during FSST while the outer shelf is greatly exposed and eroded during low sea levels. Our results suggest that long-term increase in amplitude of sea level variation is the main driver of the geometrical changes of the Brazilian shelf.  

Boundaries of mega-sequences at 0.9 and 2.4 Ma likely reflect major climatic phases at respectively the Intensification of Northern Hemisphere Glaciation and the Mid-Pleistocene Transition. A significant change in the shelf architecture at around 0.4 Ma, acting as a prominent shift in the depositional system from one prograding to another aggrading, is likely related to the substantial sea-level rise together with the long-lasting Marine Isotopic Stage 11. We conclude that changes in the Brazilian shelf geometry during the Plio-Pleistocene was likely paced by orbitally forced sea-level cycles superimposed on long-term trends and phases in the climate and sea level.

How to cite: Tortarolo, L., Rabineau, M., Gorini, C., Boulila, S., Do Couto, D., Dos Reis, T., and Guizan Silva, C.: Orbital control of relative sea level changes in the Plio-Pleistocene of the Northeast Brazilian Equatorial Margin., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-227, https://doi.org/10.5194/egusphere-egu23-227, 2023.

When astronomical cycles can be reliably identified in the sedimentary record, they can provide a basis for paleoclimatic interpretations and the construction of an astrochronology. However, different paleoclimate proxies carry different astronomical-climatic-depositional information, which can display distinct orbital frequency features in strata. How to evaluate response of varied sedimentary environments to astronomical forcing remains a mystery. Here, we developed the Random-length Average Orbital Power Ratio calculation (RAOPR) method to evaluate the average power ratio distributions within a specific time interval. We have applied this new method to the theoretical eccentricity-tilt-precession (ETP) plus noise series and a ~24 million-year-long Cretaceous terrestrial stratigraphic record. From the merged ETP plus noise series and geological record, we observed different orbital signal component distributions. For the Cretaceous terrestrial Songliao Basin, we combined the integratePower method to retrieve the long-term orbital variations and used the RAOPR method to evaluate the orbital signal distribution in different lithological formations (or depositional environment intervals). We found that in different sedimentary environments, orbital signals show significant discrepancy both in magnitudes and ratios, indicating different depositional processes and local geological events have resulted in emergence, amplification, displacement and suppression of orbital frequency. Our study highlights the interaction between the external orbital forcing and internal climatic and/or depositional feedbacks and their influence on assessing the orbital signals from the stratigraphic successions.

How to cite: Huang, H.: Evaluation of the terrestrial sedimentary system response to astronomical forcing, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1588, https://doi.org/10.5194/egusphere-egu23-1588, 2023.

EGU23-2331 | Orals | CL1.1.1

The long-term stability of the deep ocean carbon storage feedback mechanisms across the Plio- and Pleistocene 

David Naafs, Rich Pancost, Jerome Blewett, Vittoria Lauretano, Jens Hefter, Simon Pounton, Ruediger Stein, and Gerald Haug

Storing carbon in the deep ocean is a key-feedback mechanism that allows astronomical forcing to drive the late Pleistocene glacial/interglacial variations. As carbon storage is intrinsically linked to oxygenation, proxies for sediment oxygenation have been used to quantify changes in carbon storage during the late Pleistocene. However, evidence for astronomically-paced changes in carbon storage beyond the late Pleistocene is limited, hindering our understanding of the stability of this feedback mechanisms.

Here we used molecular fossils (biomarkers) in marine sediment cores that span the last ~3.5 million years to assess the long-term impact of astronomical forcing on deep ocean oxygenation, and hence carbon storage, and explore the stability of this deep ocean feedback mechanism. Using high-resolution records from three independent cores from the North Atlantic, we find that the concentration of biomarkers from anaerobic bacteria is eccentricity paced during the middle and late Pleistocene with high abundances during glacials and absence during interglacials. We interpret this data to reflect a decrease in oxygenation and hence increase in carbon storage during the most recent glacials. Across the MPT this pacing changes to obliquity forcing and we show that this forcing is persistent into the late Pliocene, highlighting the stability of this feedback mechanism. However, prior to 2.7 Myr we find no biomarkers of anaerobic bacteria across the North Atlantic, suggesting reduced carbon storage prior to the intensification of the glaciation of the Northern Hemisphere. Our findings indicate that the lowering of atmospheric CO2 by the sequestration of carbon in the deep ocean in response to astronomical forcing persisted throughout the Quaternary and was essential for the development of Plio/Pleistocene ice ages, but this feedback mechanisms did not persist into the warm Pliocene.

How to cite: Naafs, D., Pancost, R., Blewett, J., Lauretano, V., Hefter, J., Pounton, S., Stein, R., and Haug, G.: The long-term stability of the deep ocean carbon storage feedback mechanisms across the Plio- and Pleistocene, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2331, https://doi.org/10.5194/egusphere-egu23-2331, 2023.

EGU23-3597 | ECS | Orals | CL1.1.1

A wavelet-based workflow for cyclostratigraphic studies using the WaverideR R package 

Michiel Arts and Anne-Christine Da Silva

Cyclostratigraphic studies are based on accurately identifying astronomical cycles in the geological record. In excellent geological records, observed cycles can be directly coupled to their corresponding astronomical cycles. In more complex records spectral analysis techniques are needed to identify astronomical cycles. Most cyclostratigraphic studies utilise spectral analysis techniques based on the Fast Fourier transform (FFT). FFT-based spectral analysis techniques are excellent in identifying orbital cycles when the signal is stationary (e.g., the sedimentation rate is constant). To track changes in the sedimentation rate, a sliding window-based FFT analysis is often implemented, resulting in a frequency versus depth/time plot highlighting frequency changes and/or changes in the sedimentation rate. Windowed FFT-based techniques have one significant drawback: the window size has a fixed length, which limits the frequency range that can be analysed. The Continuous Wavelet Transform (CWT) avoids this drawback because the wavelet scales proportionally to the length of the analysed period. Current wavelet-based software/packages lack the features needed to complete a cyclostratigraphic study; therefore, the WaverideR R package (https://stratigraphy.eu/downloads) was developed, which contains all the essential functions required to do a CWT-based cyclostratigraphic analysis. To highlight the functionalities and versatility of the functions of the WaverideR R package, set functions are applied to three records; the Holocene Total Solar Irradiance (TSI) record, the Miocene ODP 926 greyscale record, and the Devonian Sullivan core magnetic susceptibility record.  The TSI record analysis highlights the WaverideR package's ability to change the omega (cycles within a wavelet) and extract cycles from the wavelet directly. The study of the Miocene ODP 926 greyscale shows how the WaverideR package can directly extract astronomical cycles in the depth domain and anchor this astronomical cycle to the astronomical solution. The analysis of the Devonian Sullivan core magnetic susceptibility record shows how the WaverideR package can trace the 405 kyr eccentricity cycle in a wavelet spectrum and create a floating age model, identify cycles in the time domain and then extract those cycles and the features of those extracted cycles such as its spectral power and its amplitude from the wavelet spectra. 

How to cite: Arts, M. and Da Silva, A.-C.: A wavelet-based workflow for cyclostratigraphic studies using the WaverideR R package, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3597, https://doi.org/10.5194/egusphere-egu23-3597, 2023.

The dynamical evolution of the solar system is chaotic with a Lyapunov time of only ~5 Myr for the inner planets. Due to the chaos it is fundamentally impossible to accurately predict the solar system's orbital evolution beyond ~50 Myr based on present astronomical observations. We recently developed a method to overcome the problem by using the geologic record to constrain astronomical solutions in the past. Our resulting optimal astronomical solution (called ZB18a) shows exceptional agreement with geologic records to ~58 Ma (Myr ago) and a characteristic resonance transition around 50~Ma. Here we show that ZB18a and integration of Earth's and Mars' spin vector based on ZB18a yield reduced variations in Earth's and Mars' orbital inclination and Earth's obliquity (axial tilt) from ~58 to ~48 Ma. The changes in the obliquities have important implications for the climate histories of Earth and Mars. For instance, reduced variations in Earth's obliquity from ~58 to ~48 Ma would have affected Earth's climate across the late Paleocene - early Eocene (LPEE). Remarkably, a nearly ubiquitous phenomenon in long-term geologic records across the LPEE is a very weak or absent obliquity signal. We propose here that the reduced amplitude in Earth's obliquity, as predicted by our astronomical solution ZB18a, contributed to the weak/absent obliquity signal in geologic records from ~58 to ~48 Ma. Dynamical chaos in the solar system hence not only affects its orbital properties, but also the long-term evolution of planetary climate through eccentricity and the link between inclination and axial tilt.

How to cite: Zeebe, R.: Missing Obliquity Signal in Late Paleocene and Early Eocene Climate Records due to Solar System Chaos, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3965, https://doi.org/10.5194/egusphere-egu23-3965, 2023.

EGU23-4198 | ECS | Orals | CL1.1.1 | Highlight

Response of the Snowball Earth Climate to Orbital Forcing at High CO2 Level 

Jiacheng Wu and Yonggang Liu

It is commonly accepted that the Milankovitch cycles have modulated the glacial-interglacial cycles during the Quaternary Period. However, how the climate during the Neoproterozoic snowball Earth events, the most extreme glaciations that have occurred on Earth, was affected by the orbital forcings remains largely unclear. Especially, whether the snowball Earth deglaciation might occur more easily at some orbital configurations than others is an important question. Here a coupled atmosphere-land model (CAM3 and CLM3) is used to investigate the response of temperature and hydrological cycle during a snowball Earth to this forcing at an atmospheric CO2 level of ~0.1 bar. To simplify the analysis, we have chosen to remove the continents. The results show that the climate is very different under different orbital configurations. The globally averaged annual surface temperature can differ by 2.4 °C while the difference in the monthly mean can reach 3.7 °C in the subtropical region. Surprisingly, we find that the Milankovitch theory does not only work in the extratropical region but also in the tropics; the snow thickness in the tropical region is inversely proportional to the summer insolation received in this region. After adding an explicit meltpond module, we find that the threshold CO2 that is needed to trigger the deglaciation may be reduced from 0.12 bar (low eccentricity) to 0.07 bar (high eccentricity). Moreover, the summer insolation in the tropics is more important than that in the subtropical region for the formation of a perennial meltwater belt. Hence, we conclude that the orbital forcing is important to the snowball Earth climate at its late stage and would assist Earth to get out of this state when the eccentricity was high.

How to cite: Wu, J. and Liu, Y.: Response of the Snowball Earth Climate to Orbital Forcing at High CO2 Level, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4198, https://doi.org/10.5194/egusphere-egu23-4198, 2023.

EGU23-4300 | ECS | Orals | CL1.1.1

Simulated cycles of East Asian temperature and precipitation over the past 425 ka 

Gaowen Dai and Zhongshi Zhang

Records from a wide range of geological archives covering the last few glacial-interglacial cycles show large inconsistencies in the East Asian summer monsoon variability, which severely hampers our understanding of the evolution and potential mechanisms of the regional East Asian climate on orbital timescales. Here, we examine the simulated temperature and precipitation in East Asia based on a series of equilibrium simulations conducted for the past 425 ka, and we investigate the sensitivity of temperature and precipitation to potential forcings. Our simulations show that, in East Asia, the seasonal mean temperature is dominated by a ∼20-kyr cycle, and the annual mean temperature (AMT) is dominated by a ∼100-kyr cycle, which is consistent with previous modeling efforts and geological reconstructions. Additional sensitivity experiments indicate that the greenhouse gas concentration, in combination with the ice volume, is the dominant force for the variations of AMT in East Asia on orbital timescales. For the precipitation in East Asia, our equilibrium simulations and additional sensitivity experiments, together with comprehensive model-data intercomparison analysis, suggest that the cycles of simulated annual mean precipitation over East Asia are highly model-dependent, although the dominant ∼20-kyr cycle in summer precipitation appears to be a robust feature. Overall, the results highlight the large model uncertainty with regard to the relative roles of forcings in hydroclimate variations in East Asia on orbital time scales. There is, therefore, an urgent need to implement more realistic precipitation schemes in models in order to decrease the model spread in simulated precipitation.

How to cite: Dai, G. and Zhang, Z.: Simulated cycles of East Asian temperature and precipitation over the past 425 ka, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4300, https://doi.org/10.5194/egusphere-egu23-4300, 2023.

EGU23-5479 | ECS | Orals | CL1.1.1

North African Humid Periods over the past 800000 years – Timing, Amplitude and Forcing 

Edward Armstrong, Miikka Tallavaara, Peter Hopcroft, and Paul Valdes

The Sahara region has experienced periodic wet periods over the Quaternary and beyond. These North African Humid Periods (NAHPs) are astronomically paced by precession which controls the position of the African monsoon system. However, most IPCC-class climate models cannot generate enough precipitation to reconcile the magnitude of these events and so the driving mechanisms remain poorly constrained. Here, we present an 800kyr climate dataset produced using a recently developed version of the HadCM3B coupled climate model that simulates 20 NAHPs over the past 800kyr which have good agreement with the timing and amplitude of NAHPs identified in proxy data. Our results confirm that precession determines their pacing, but we identify that their amplitude is strongly linked to eccentricity via its control over ice sheet extent. During glacials, cooling due to enhanced ice-sheet albedo suppresses the amplitude of the NAHPs during periods of precession minima. Our results highlight the importance of both precession and eccentricity, and the role of high latitude processes in determining the timing and amplitude of the NAHPs. This may have implications for the out of Africa dispersal of plants and animals throughout the Quaternary.

How to cite: Armstrong, E., Tallavaara, M., Hopcroft, P., and Valdes, P.: North African Humid Periods over the past 800000 years – Timing, Amplitude and Forcing, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5479, https://doi.org/10.5194/egusphere-egu23-5479, 2023.

EGU23-6175 | ECS | Posters on site | CL1.1.1

Strengthened East Asian winter monsoon associated with insolation and Arctic sea ice since the middle Holocene 

Peng Zhou, Zhengguo Shi, and Xinzhou Li

The East Asian winter monsoon (EAWM) is one of the most important Asian climate systems, with a huge influence on social, agricultural productivity, and economic development. Sub-orbital-scale variations of the East Asian winter monsoon (EAWM) since the mid-Holocene and its associated mechanisms, however, are still not fully understood. Based on a high-resolution transient simulation, here we present a continuous climate evolution of EAWM in response to orbital forcing. Similar to the record proxy, the simulated EAWM variations exhibit a strengthening trend since the mid-Holocene, especially in the spring. Following the orbitally-induced decay of Northern Hemisphere summer insolation during the Holocene, growing Arctic Sea ice persists into winter and increases the latitudinal temperature gradient between low- and high latitudes, which lead to the strengthening of wintertime EAWM. While the intensified springtime EAWM can be attributed to the enhanced temperature gradient caused by solar insolation at different latitudes, rather than local insolation. Our results indicate that insolation forcing and Arctic Sea ice have played a key role in driving Holocene EAWM changes by enhancing temperature gradient between low and high latitudes.

How to cite: Zhou, P., Shi, Z., and Li, X.: Strengthened East Asian winter monsoon associated with insolation and Arctic sea ice since the middle Holocene, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6175, https://doi.org/10.5194/egusphere-egu23-6175, 2023.

EGU23-9202 | ECS | Orals | CL1.1.1 | Highlight

Orbital pacing of Southeast Atlantic carbonate deposition since the Oligocene (30-0 Ma): tracing entwined climate and carbon cycle interactions 

Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David De Vleeschouwer, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens

The last 30 million years (Myr) of Cenozoic climate change broadly charted the transformation from a world with solitary Antarctic ice sheets through to a bipolar glaciated Earth. Highly resolved records of carbonate content (%CaCO3) provide insight into regional impacts of ever shifting climate, cryosphere and carbon cycle interactions. Here, we use X-ray fluorescence (XRF) ln(Ca/Fe) data collected at Ocean Drilling Program Site 1264 (Angola Basin side of Walvis Ridge, SE Atlantic Ocean) to generate the first SE Atlantic %CaCO3 record spanning 30-0 Myr ago (Ma). Minimal changes in terrigenous-derived XRF data supports that the %CaCO3 reflects the balance between productivity and dissolution in this region. This XRF data also helped to formulate a comprehensive and continuous depth and age model for the entirety of Site 1264 (~316 m; 30-0 Ma). These verified depth and age models constitute a key framework for future palaeoceanographic studies at this location.

We identify three phases with distinctly different orbital imprints of CaCO3 deposition in the SE Atlantic. The shifts between these phases broadly occur across major developments in climate, the cryosphere and/or the carbon cycle: 1) strong ~110 kyr eccentricity pacing prevails during Oligo-Miocene global warmth (~30-13 Ma); 2) eccentricity-modulated precession imprints more strongly after the mid Miocene Climate Transition (mMCT) (~14-8 Ma); 3) strong obliquity pacing prevails in the late Miocene (~7.7-3.3 Ma) following widespread cooling and the increasing influence of high-latitude processes.

The lowest %CaCO3 (92-94%) occur between 18.5-14.5 Ma, potentially reflecting increased dissolution or decreased productivity driven by widespread early Miocene warmth. Deposition recovered after the mMCT (~14 Ma), likely associated with changes in regional surface and/or deep-water circulation following Antarctic reglaciation. The highest Site 1264 %CaCO3 and MARs indicate the late Miocene Biogenic Bloom (LMBB) occurs between ~7.8-3.3 Ma. The LMBB’s onset (~7.8 Ma) and peak productivity (~7 Ma) at 1264 are contemporaneous with the LMBB in the equatorial Pacific Ocean; however the termination is ~1 Myr later in the Atlantic compared to the Pacific. Globally synchronous patterns in the LMBB, including the onset and peak, may be driven by an increased nutrient input into the global ocean, for instance from enhanced aeolian dust and/or weathering fluxes. Regional diachrony and variability in the LMBB’s expression may be driven by regional differences in cooling, continental aridification and/or changes in ocean circulation during the latest Miocene.

How to cite: Drury, A. J., Liebrand, D., Westerhold, T., Beddow, H. M., De Vleeschouwer, D., Hodell, D. A., Rohlfs, N., Wilkens, R. H., Lyle, M., Bell, D. B., Kroon, D., Pälike, H., and Lourens, L. J.: Orbital pacing of Southeast Atlantic carbonate deposition since the Oligocene (30-0 Ma): tracing entwined climate and carbon cycle interactions, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9202, https://doi.org/10.5194/egusphere-egu23-9202, 2023.

EGU23-9980 | ECS | Orals | CL1.1.1 | Highlight

Recurrent humid phases interrupt an overall aridity trend in Arabia over the past 8 million years creating windows of opportunity for biogeographic dispersals 

Monika Markowska, Hubert B. Vonhof, Huw S. Groucutt, Michael D. Petraglia, Denis Scholz, Michael Weber, Axel Gerdes, Alfredo Martinez-Garcia, Matthew Stewart, Ashley N. Martin, Nicholas Drake, Paul S. Breeze, Samuel L. Nicholson, Dominik Fleitmann, and Gerald Haug

The Saharo-Arabian desert is part of the largest near-continuous chain of drylands stretching from north-western Africa to the northern China. This harsh and often hyper-arid belt acts as a transition zone separating major biogeographic realms, including the Palearctic, Afrotropics and Indomalayan. This aridity is thought responsible for the creation of unique geographic endemism between Africa and Eurasia. However, there are no direct hydroclimate records from the Arabian hyper-arid interior before the mid-Pleistocene, leaving the terrestrial hydroclimate and the role of Arabia as a biogeographic crossroads or barrier largely unknown.

We use desert speleothems preserved from the northern Arabian interior to identify past humid phases over the last 8 million years. These are particularly useful terrestrial climate archives as they act as underground rain gauges, requiring a minimum of ~300 mm a-1 precipitation, pedogenesis and vegetation cover to form. Moreover, they can be accurately and precisely dated and are subsequently a valuable tool in identifying past large-scale hydrological and vegetation changes in ancient drylands. Our data reveal evidence of multiple ‘windows of opportunity’ of climate amelioration, allowing biogeographic exchange and dispersals to occur across the Arabian hyper-arid zone. Further, the novel analyses of the isotopic composition (d18O and d2H) of speleothem fluid inclusion waters, representing ‘fossil rainwater’, reveal the diminishing influence of tropical rain-belt precipitation in Arabia across Earth’s transition from a largely ‘ice-free’ northern hemisphere to an ‘ice-age’ world. The extent of Arabian aridity may thus be important in controlling biogeographic dispersals through the Arabian corridor, becoming increasingly less favourable through time. This is supported by fossil evidence which suggest that exchange between biogeographic regions across the Old World Savannah Biome were favoured in the Late Miocene, but became increasingly latitudinally fragmented from the Pliocene onwards. These results have significant implications for understanding the drivers of dryland aridity in non-polar deserts globally. 

How to cite: Markowska, M., Vonhof, H. B., Groucutt, H. S., Petraglia, M. D., Scholz, D., Weber, M., Gerdes, A., Martinez-Garcia, A., Stewart, M., Martin, A. N., Drake, N., Breeze, P. S., Nicholson, S. L., Fleitmann, D., and Haug, G.: Recurrent humid phases interrupt an overall aridity trend in Arabia over the past 8 million years creating windows of opportunity for biogeographic dispersals, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9980, https://doi.org/10.5194/egusphere-egu23-9980, 2023.

EGU23-10022 | Posters on site | CL1.1.1

Global carbon cycle response to Milanković forcing 

Miho Ishizu, Axel Timmerman, and Kyung-Sook Yun

To gain a deeper understanding of why atmospheric CO2 varied on Milanković timescales, we conducted a 3 million-year transient carbon cycle simulation with the intermediate-complexity Grid Enabled Integrated Earth System (cGENIE). To this end we nudged ocean temperature and salinity obtained from a previously conducted 3 million-year climate simulation conducted with the Community Earth System Model (CESM1.2) into the cGENIE ocean model. The cGENIE model captures key processes relevant for the longterm behaviour of the carbon cycle, including ocean biogeochemistry, vegetation, land surface weathering and sedimentary dynamics. Here we will present the first results from a series of transient glacial-interglacial simulations cGENIE simulations which identify the role of ocean circulation, sea ice, solubility and land vegetation changes as drivers of low frequency pCO2 variability. We will further discuss the effects of iron fertilization and carbonate compensation.  

How to cite: Ishizu, M., Timmerman, A., and Yun, K.-S.: Global carbon cycle response to Milanković forcing, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10022, https://doi.org/10.5194/egusphere-egu23-10022, 2023.

EGU23-10195 | ECS | Orals | CL1.1.1

Last Interglacial Saharo-Arabian palaeoclimate variability and Homo sapiens dispersal: insights from the speleothem record of Southern Arabia 

Samuel Nicholson, Matthew Jacobson, Huw Groucutt, Monika Markowska, Hubert Vonhof, Rob Hosfield, Alistair Pike, Stephen Burns, Albert Matter, and Dominik Fleitmann

The fluctuating climatic conditions of the Saharo-Arabian desert belt are increasingly important for both palaeoclimatic and palaeoanthropological debates. Currently, Saharo-Arabia acts as a vast biogeographic barrier between the Afrotropical and Palaearctic realms. On orbital timescales, northward incursions of the African (ASM) and Indian (ISM) Summer Monsoons activated fluvio-lacustrine systems and led to the formation of grassland habitats. The formation of these habitats has been considered a crucial factor in Homo sapiens dispersals into the Saharo-Arabian deserts and beyond. The so-called “northern route” favours a terrestrial dispersal through green palaeohydrological corridors. However, a maritime “southern route” during the sea-level low-stand of Glacial Termination-II (T-II) has also been proposed. The precise phasing between the onset of wetter conditions and rising sea-levels may thus be a crucial factor for testing these alternative hypotheses. Here, we present a precisely dated high-resolution (<100 yrs) stalagmite record from Mukalla Cave, Yemen, at a key location on the “southern route”. Wetter conditions in Southern Arabia prevailed from ~127.7 to ~121.1 ka BP and occurred when sea-levels were already higher than at present, revealing a phase-lag of several thousand-years between sea-level rise and the onset of pluvial conditions. This lag is likely related to the colder conditions of Heinrich Stadial-11, which supressed the interhemispheric pressure gradient and the ASM and ISM throughout T-II despite rising insolation. δ18Oca values indicate rainfall intensity during the ~127.7 to ~121.1 ka BP interval 1) followed low-latitude insolation, and 2) was the greatest in the last 130,000 years.  Additionally, a mixed C3/C4 grassland environment, as revealed by stalagmite δ13Cca values, was present in the now desert interior of Yemen. Combined with archaeological evidence, we discuss the potential implications our results have for H. sapiens biogeographical shifts and dispersal processes across Saharo-Arabia during early MIS 5.

 

How to cite: Nicholson, S., Jacobson, M., Groucutt, H., Markowska, M., Vonhof, H., Hosfield, R., Pike, A., Burns, S., Matter, A., and Fleitmann, D.: Last Interglacial Saharo-Arabian palaeoclimate variability and Homo sapiens dispersal: insights from the speleothem record of Southern Arabia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10195, https://doi.org/10.5194/egusphere-egu23-10195, 2023.

The geometry of the Earth's orbit, and the movements around its axis, result in periodic changes in the solar radiation received by the Earth's surface. These cyclic variations throughout geologic time cause climatic changes that manifest in the hydrologic cycle and atmospheric and oceanic circulation. In turn, these processes result in sedimentary cycles that, although masked by diagenetic processes, record the Earth's orbital rhythm.

In the Middle Magdalena Valley Basin (VMM), the Cenomanian-Turonian interval is represented by the rocks of the La Luna Formation, which has a cyclic lithological character, since it consists of intercalation of limestones and shales rich in organic matter. 

This work seeks to understand the mechanisms that control cyclic sedimentation and organic matter accumulation in the Middle Magdalena Valley basin, as well as to calculate the temporal duration of stratigraphic cycles and determine whether these are related to eccentricity, obliquity, or precession. Also, We will compare with intervals in the tropical belt where previous studies have been carried out to determine whether the observed pattern is local (controlled by basin geometry) or regional (changes in the hydrological cycle caused by orbital parameters).

We present lithologic information from the Cenomanian-Turonian interval at Pozo la Luna-1, which has a thickness of 573 ft and consists of a succession of limestones with wackestone texture, locally with foraminiferal packstones, interbedded with thin to medium layers of marls and bentonites (<1cm).

Results from the δ13Corg content suggest that OAE2 is recorded in this section and is 69.18 ft thick with δ13C values between -27.18 and -23.94. Four phases of the OAE2 are interpreted: 1) build-up 2) Trough 3) Plateau and 4) Recovery. The time series analyses are developed in the "Astrochron" package (22). They are run on 1146 data of K/Th and Th/K ratios, distributed every 0.5ft. The methods "multi-taper method spectrogram of evolutive harmonic analysis", and "Evolutive average spectral misfit (eASM)" will be applied to detect the presence of cycles along the stratigraphic profile and to estimate their statistical significance compared to a noise level at different confidence intervals.

How to cite: Valencia Arias, C.: Orbital variations in the Cenomanian-Turonian, paleoclimatic implications and their relationship with the accumulation of organic-rich intervals in the Middle Magdalena Valley basin, Colombia., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10761, https://doi.org/10.5194/egusphere-egu23-10761, 2023.

EGU23-11747 | ECS | Posters on site | CL1.1.1

Cyclostratigraphic calibration of the Miaolingian Series (Middle Cambrian, Southern Scandinavia, Sweden) 

Valentin Jamart, Damien Pas, Jorge E. Spangenberg, Thierry Adatte, Arne T. Nielsen, Niels H. Schovsbo, Nicolas R. Thibault, and Allison C. Daley

The Cambrian Period recorded critical evolutionary events and geochemical changes. These changes, such as the “Cambrian Explosion” (Briggs, 2015; Peng et al., 2020) and the “Cambrian Substrate Revolution” (Mángano & Buatois, 2017; Peng et al., 2020) can persist for many millions of years or can be a short carbon isotopic excursion or anoxic event. Despite the significance of this period for the history of life on Earth, it features a remarkably poorly defined time scale owing to 1) the paucity of high-precision radioisotope age data, 2) the generalized endemism (especially during the lower Cambrian) and 3) the lack of well-preserved exposures.

Recent advances in time-series methods for identifying Milankovitch cycles have accelerated the refinement of the Phanerozoic GTS and the invariant set of periods for the Earth’s orbital eccentricity for at least the last 600 Ma have allowed for the building of high-resolution floating astronomical time scales (ATS) for Mesozoic and Paleozoic sequences.

A crucial issue in unraveling Milankovitch cyclicity in Paleozoic successions is the selection of suitable sedimentary sequences, which are able to record orbitally-forced climatic cycles continuously. A recent cyclostratigraphic study by Zhao et al. (2022) on the middle and upper portion of the Albjära-1 drill core confirmed the record of such cycles in a time interval that extends from the lower Guzhangian to the Lower Ordovician. In this study, we conducted a high-resolution (1 mm) XRF core scanning on the lower portion (27 m) of the Albjära-1 drill-core to assess Milankovitch cyclicity recorded by variations in detrital input proxies and built a floating ATS for the middle Wuliuan-lower Guzhangian interval. Our ATS is in stratigraphic continuity with Zhao et al.’s (2022) ATS, thus allowing us to use the U/Pb absolute age anchor below the Cambrian-Ordovician boundary (486.78 ± 0.53 Ma) and expand their ATS to the middle Wuliuan.

The core recovery is close to 100%. The first 5 m are characterized by sandy limestone of the Gislöv Formation, and the overlying 22 m consist of deep-water black shales of the Alum Shale Formation, from which 151 samples were taken each 15 cm for δ13Corg analysis.

The combination of both δ13Corg and XRF elemental analyses allows for precise integration of the ATS in the global Cambrian geochemical framework and provides better insight into the timing and origin of geochemical fluctuations during the studied time interval.

 

REFERENCES

Briggs, D. E. G. (2015). The Cambrian explosion. Current Biology, 25 (19), R864-R868. https://doi.org/10.1016/j.cub.2015.04.047

Mángano, M. G., & Buatois, L. A. (2017). The Cambrian revolutions: Trace-fossil record, timing, links and geobiological impact. Earth-Science Reviews,173, 96-108. https://doi.org/10.1016/j.earscirev.2017.08.009

Peng, S.-C., Babcock, L. E., & Ahlberg, P. (2020). The Cambrian Period. In F. Gradstein, J. G. Ogg, M. D. Schmitz, & G. M. Ogg (Eds.), Geological Time Scale 2020 (Vol. 2, pp. 565-629). Elsevier. https://doi.org/10.1016/B978-0-12-824360-2.00019-X

Zhao, Z., Thibault, N.R., Dahl, T.W., Schovsbo, N.H., Sørensen, A.L., Rasmussen, C.M.Ø., and Nielsen, A.T. (2022). Synchronizing rock clocks in the late Cambrian. Nature Communications, 13, 1-11. https://doi.org/10.1038/s41467-022-29651-4

How to cite: Jamart, V., Pas, D., Spangenberg, J. E., Adatte, T., Nielsen, A. T., Schovsbo, N. H., Thibault, N. R., and Daley, A. C.: Cyclostratigraphic calibration of the Miaolingian Series (Middle Cambrian, Southern Scandinavia, Sweden), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11747, https://doi.org/10.5194/egusphere-egu23-11747, 2023.

EGU23-12603 | ECS | Posters on site | CL1.1.1

Patterns and cyclicity of Quaternary sedimentation above a subducting seamount at Rock Garden (central Hikurangi Margin, New Zealand) 

Cornelius Schwarze, Peter Frenzel, and Nina Kukowski

Rock Garden (RG), located east off the North Island of New Zealand, is part of an accretionary ridge that is influenced by seamount subduction. Two ∼37m long sediment cores, drilled with the seafloor drill rig (MeBo200) from RG, provide a continuous sedimentary record of the period between 1.95-0.4 Ma. This period, the Early-Middle Pleistocene transition (EMPT), was marked by a progressive increase in the amplitude of climate oscillations and a shift of Milanković cycles from 41 ka towards a quasi-100 ka frequency in the absence of any significant change in orbital forcing. From the recovered core material of cores GeoB20824-4 and GeoB20846-1, we determined sediment physical properties, oxygen isotope (δ18O) values, and element concentrations based on X-ray fluorescence (XRF) measurements. The element ratios were used as proxies for sediment composition and as paleoenvironmental indices. In sediment physical properties, δ18O values, and geochemical properties, evidence for glacial and interglacial cycles and cyclicities of 405 ka, 100 ka, 41 ka were found. A shift of the cyclicity from 41 to 100 ka took place in sediment cores during (1.4-0.4 Ma). Numerical ages obtained from tephra layers included in the sedimentary record enabled to estimate sedimentation rates from both cores. Although both drill sites are only 1800 m away from each other, sedimentation rates of 2.15-2.96 cmka−1 (GeoB20824-4) and 5.49-6.77 cmka−1 (GeoB20846-1), respectively, differ by a factor of two. This may be the reason why two facies-units were identified in core GeoB20824-4, whereas sediments of core GeoB20846-1 all belonged to the same facies. A change of lithofacies in core GeoB20824-4 between Unit I and Unit II in ∼20 mbsf at 1.5-1.4 Ma marks the initiation of the EMPT.

How to cite: Schwarze, C., Frenzel, P., and Kukowski, N.: Patterns and cyclicity of Quaternary sedimentation above a subducting seamount at Rock Garden (central Hikurangi Margin, New Zealand), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12603, https://doi.org/10.5194/egusphere-egu23-12603, 2023.

EGU23-12664 | ECS | Orals | CL1.1.1

A song of ice and friction: the impact of basal friction and proglacial lakes on Pleistocene glacial cycles 

Meike D.W. Scherrenberg, Roderik S.W. van de Wal, and Constantijn J. Berends

During the Mid Pleistocene Transition (MPT; 1.2-0.7 Ma) the periodicity of glacial cycles changed from 40 ka to ~100 ka, without a coinciding change in orbital forcing. The MPT therefore results from feedback and changes in the climate system and ice dynamics triggered by the changes in radiative forcing. However, it remains unclear which physical processes are critical for the transition.

Here we explore the role of basal sliding and glacial isostatic adjustment (GIA) in the MPT. Basal sliding is thought to have changed across the MPT due to the erosive action of the ice sheets gradually removing the regolith cover and exposing the underlying bedrock, therefore increasing the friction at the base. GIA modulates this effect by enabling the formation of large proglacial lakes, changing the ice margin from a land-based to a marine environment. We simulate the evolution of the Northern Hemisphere ice sheets during the past 1.5 million years, using an ice-sheet model forced by a climate matrix method.

We show that changing the basal friction has an effect on glacial terminations and consequentially glacial cycle periodicity. Larger friction leads to thicker ice sheets that are more likely to survive a climatic optimum. However, we show that using an unchanging friction coefficient through the Pleistocene, our model still produces change from 40 ka to 100 ka periodicities signifying the MPT. This suggest that the regolith hypothesis is not necessary to explain the MPT.

In addition, we show that the formation of proglacial lakes is required for achieving a full deglaciation of the large Late Pleistocene ice sheets. Ice that floats on water experiences no friction at the base, resulting in high ice velocities. This results in more ice in lower regions and enhances the melt of ice. Here, we find a strong modulating role of GIA. When neglecting bedrock adjustment, thus preventing the formation of large proglacial lakes, we fail to simulate a full deglaciation.

How to cite: Scherrenberg, M. D. W., van de Wal, R. S. W., and Berends, C. J.: A song of ice and friction: the impact of basal friction and proglacial lakes on Pleistocene glacial cycles, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12664, https://doi.org/10.5194/egusphere-egu23-12664, 2023.

EGU23-12739 | Orals | CL1.1.1

North Atlantic Drift Sediments Constrain Eocene Tidal Dissipation and the Evolution of the Earth-Moon System. 

David De Vleeschouwer, Donald Penman, Simon D'haenens, Fei Wu, Thomas Westerhold, Maximilian Vahlenkamp, Carlotta Cappelli, Claudia Agnini, Wendy Kordesch, Daniel King, Robin van der Ploeg, Heiko Pälike, Sandra Kirtland-Turner, Paul Wilson, Richard D. Norris, James C. Zachos, Steven Bohaty, and Pincelli Hull

Cyclostratigraphy and astrochronology are leading methods for determining geologic time. While this technique is dependent on the accuracy of astronomical calculations, the chaos of the solar system limits the confidence of these calculations when applied to ancient periods. High-resolution paleoclimate records, such as those found in Middle Eocene drift sediments from the Newfoundland Ridge (Integrated Ocean Drilling Program Sites (IODP) Expedition 342), offer a unique opportunity to reverse this approach. These sediments, with their high sedimentation rates and distinct lithological cycles, provide an ideal setting for this type of study. However, the stratigraphies of IODP Sites U1408-U1410 are complex and contain several hiatuses. We have overcome this challenge by creating a composite of the two sites and constructing a conservative age-depth model. This has allowed us to create a reliable chronology for this high-resolution sedimentary archive. We have used two different techniques to extract astronomical components (g-terms and precession constant) from proxy time-series, which have produced consistent results. Our study has found that astronomical frequencies are up to 4% lower than those reported in astronomical solution La04. These results provide new constraints on the variability of g-term on million-year timescales, as well as evidence that the g4-g3 "grand eccentricity cycle" may have had a 1.2-Myr period around 41 Ma, instead of its current 2.4-Myr periodicity. Our estimates of the precession constant also confirms previous indications of a relatively low rate of tidal dissipation in the Paleogene. The Newfoundland Ridge drift sediments thus offer a reliable means of reconstructing astronomical components, providing a new target for future astronomical calculations.

How to cite: De Vleeschouwer, D., Penman, D., D'haenens, S., Wu, F., Westerhold, T., Vahlenkamp, M., Cappelli, C., Agnini, C., Kordesch, W., King, D., van der Ploeg, R., Pälike, H., Kirtland-Turner, S., Wilson, P., Norris, R. D., Zachos, J. C., Bohaty, S., and Hull, P.: North Atlantic Drift Sediments Constrain Eocene Tidal Dissipation and the Evolution of the Earth-Moon System., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12739, https://doi.org/10.5194/egusphere-egu23-12739, 2023.

EGU23-12750 | ECS | Orals | CL1.1.1

Terrestrial West African climate and environmental responses to orbital forcing across Neogene boundary condition changes 

Rachel Lupien, Kevin Uno, Maria Kuzina, and Peter de Menocal

The Sahel is highly sensitive to both floods and droughts, risking food and other resources on which nearly 100 million people depend. Understanding how natural variations of precipitation and vegetation fluctuate in response to orbital forcing across major shifts in boundary conditions, like temperature, ice volume, and land surface, can help constrain the regional sensitivity to a wide range of external forcings. However, these interactions between climate and ecosystem changes remain uncertain for sub-Saharan Africa due to the lack of long, highly resolved, quantitative, terrestrial records that span major global and regional shifts in deep time. Here we present leaf wax precipitation and vegetation records from targeted study windows throughout the last 25 million years, derived from long-chain n-alkane hydrogen (δDwax) and carbon (δ13Cwax) isotopes, respectively, in a sediment core from ODP Site 959 in the Gulf of Guinea, where westerly winds and major river systems transport Western Sahel-sourced leaf waxes. Analyses of trend, amplitude of variability, and periodicity document a range of rainfall and vegetation responses to orbital forcings, depending on the specific boundary conditions of the study window. We find that the Western Sahel got wetter, yet more C4-rich, over the Neogene. Orbital-scale precipitation was highly variable throughout the study periods, but particularly strong during the warm Miocene. While unlike many East African leaf wax isotope records that are precessionally driven, obliquity appears to play a role in the late Pleistocene, suggesting that climate-driving orbital parameters may vary regionally. Further, because of the high resolution and temporal coverage of these new biomarker isotope records, we can examine nonlinear relationships between precipitation and vegetation fluctuations, including prior to C4-expansion when we find strong correlation despite minimal variation in δ13Cwax, advancing our understanding of climate and ecosystem feedbacks millions of years ago.

How to cite: Lupien, R., Uno, K., Kuzina, M., and de Menocal, P.: Terrestrial West African climate and environmental responses to orbital forcing across Neogene boundary condition changes, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12750, https://doi.org/10.5194/egusphere-egu23-12750, 2023.

EGU23-12815 | ECS | Posters on site | CL1.1.1

Orbital chronology of Early Eocene hyperthermals from Site RH-323, Northern Negev (Israel) 

Agnese Mannucci, Chris Fokkema, Liam Kelly, Or Bialik, Gerald Dickens, Appy Sluijs, and Simone Galeotti

The early Eocene (~56-49 Ma) is punctuated by several transient global warming events, known as hyperthermals, superimposed on very high mean global temperatures and elevated atmospheric CO2 levels. Hyperthermal events, such as the well-documented Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma), are characterized by negative carbon isotope excursions. These are interpreted as perturbations in the global exogenic carbon pool and deep ocean carbonate dissolution - signifying massive carbon injection into the ocean-atmosphere system. High resolution analysis of sedimentary archives has evidenced that hyperthermals initiated during maxima in orbital eccentricity, suggesting a climatic trigger for carbon input. Cyclostratigraphy, therefore, provides a unique tool to complement proxy records in the characterization of hyperthermal. Indeed, the identification of an orbital signature in marine and continental sedimentary succession provides an ideal trait-d’union between stratigraphic observation and paleoceanographic/paleoclimatic interpretation.

Here we present a cyclostratigraphic study of early Eocene marls and chalks from core RH-323, collected from the northern Negev Desert in Israel. The PETM in this region is well described but other hyperthermals are essentially unexplored. The unique location of this sedimentary succession, accumulated on a continental slope of the South Tethys at ~ 500–700 m paleo-depth, provides new insights into the relationship between global oceanic perturbation and local variability in a relatively arid region. Eccentricity-dependent variation in magnetic susceptibility and bulk stable oxygen and carbon isotope data from this locality allowed us to develop an astronomically tuned age model, which contributes to the identification of important hyperthermals, including the PETM, ETM2 and ETM3. The patterns also allow for cycle and event-based correlation to and comparison with oceanic records such as Ocean Drilling Program (ODP) Sites 1262 (Atlantic Ocean) and 1209 (Pacific Ocean) and with outcropping sections of the Tethys such as those of Contessa Road and Bottaccione (Gubbio, Italy). Emerging from these comparisons are remarkable patterns in the occurrence of cherts, with potential relevance for the global silicon cycle.

How to cite: Mannucci, A., Fokkema, C., Kelly, L., Bialik, O., Dickens, G., Sluijs, A., and Galeotti, S.: Orbital chronology of Early Eocene hyperthermals from Site RH-323, Northern Negev (Israel), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12815, https://doi.org/10.5194/egusphere-egu23-12815, 2023.

EGU23-13463 | ECS | Orals | CL1.1.1 | Highlight

Phanerozoic Cyclostratigraphy in North Africa: Case studies from Tunisia 

Hamdi Omar, Chokri Yaich, Hela Fakhfakh, Dhouha Boukhalfa, Mariem Ben Ameur, Boutheina Lahmer, Wassim Akermi, Najoua Gharsalli, and Imen Arfaoui

Astronomical insolation forcing is an important driver of past and future climate and environmental change and acts on time scales from seasonality to millions of years. The amount of insolation the Earth’s surface receives affects, e.g., surface temperature, polar- and mountainous ice dynamics and oceanic circulation, which all shape Earth’s surface and climate variability on different time scales. Astrchronology is the field that uses geologic records of climate rhythms to quantify, with unprecedented accuracy, the transit of time through deep Earth history acting as powerful geo-chronometers for major geologic events.

Rhythmic sedimentary successions are very frequent in the geological records of North Africa, namely in Tunisia, which can often be attributed to cyclicities of orbital parameters driving Earth’s climate variability. Unlike Europe, China and USA, where cyclostratigraphic studies have extensively been carried out, examples of significant studies in North Africa are scares (e.g., Ben Ameur et al., 2022; Omar et al., 2021; Omar & Yaich, 2022; Thibault et al., 2016). Other studies were carried out but have almost exclusively been done using very classic and weakly significant paleoclimate proxies. Southern, central and northern Tunisia, where strongly cyclic sedimentary series were developed from the Ordovician to the Holocene, provides a powerful candidate for cyclostratigraphy with many Formations that were deposited during these times, and are amenable for integrated stratigraphy.

In this study, we investigate the feasibility of cyclostartigraphy on Phanerozoic cyclic strata in North Africa from outcropping series and well-logging data, covering a wide variety of paleoenvironments from continental deposits to deep basin sequences through hemi-pelagic sediments. The targeted geologic intervals are thoroughly chosen from Paleozoic, Mesozoic, Cenozoic and Quaternary. The main objectives are to (1) develop floating orbital scales for several Phanerozoic sedimentary rocks constituting potential source rocks feeding most of Tunisian petroleum reservoirs, (2) highlight currently under-investigated geologic intervals for cyclostratigraphy in Tunisia and (3) testify the most advanced techniques for astrochronology to decode the orbital periodicities potentially recorded within the studied sections.

 

Ben Ameur, Mariem et al. 2022. “Middle to Late Holocene Sedimentary Filling History of the Sebkha El Melah in South-Eastern Tunisia.” Sedimentology 69(5): 2348–66.

Messaoud, Jihede Haj, Nicolas Thibault, Chokri Yaich, and Johannes Monkenbusch. 2020. “The Eocene ‐ Oligocene Transition in the South ‐ Western Neo ‐ Tethys ( Tunisia ): Astronomical Calibration and Paleoenvironmental Changes Paleoceanography and Paleoclimatology.” : 1–25. https://doi.org/10.1029/2020PA003887.

Omar, Hamdi, Anne Christine Da Silva, and Chokri Yaich. 2021. “Linking the Variation of Sediment Accumulation Rate to Short Term Sea-Level Change Using Cyclostratigraphy: Case Study of the Lower Berriasian Hemipelagic Sediments in Central Tunisia (Southern Tethys).” Frontiers in Earth Science 9(March): 1–20.

Omar, Hamdi, and Chokri Yaich. 2022. Advances in Science, Technology and Innovation Orbital Tuning of the Berriasella Jacobi Ammonite Zone in Central Tunisia (Southern Paleotethys). Springer International Publishing. http://dx.doi.org/10.1007/978-3-030-72547-1_42.

Thibault, Nicolas et al. 2016. “The End-Cretaceous in the Southwestern Tethys (Elles, Tunisia): Orbital Calibration of Paleoenvironmental Events before the Mass Extinction.” International Journal of Earth Sciences 105(3): 771–95.

How to cite: Omar, H., Yaich, C., Fakhfakh, H., Boukhalfa, D., Ben Ameur, M., Lahmer, B., Akermi, W., Gharsalli, N., and Arfaoui, I.: Phanerozoic Cyclostratigraphy in North Africa: Case studies from Tunisia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13463, https://doi.org/10.5194/egusphere-egu23-13463, 2023.

EGU23-13598 | ECS | Orals | CL1.1.1

Deciphering the role of terrestrial/atmospheric interactions in Late Devonian Kellwasser black shale deposition: A High-Resolution Cyclostratigraphic study of the Winsenberg section (Rhenish Massif, Germany) 

Nina Wichern, Or Bialik, Lawrence Percival, Pim Kaskes, Theresa Nohl, Thomas Becker, and David De Vleeschouwer

The Late Devonian oceans were susceptible to the development of anoxic conditions, as evidenced by repeated widespread organic-rich shale deposition. Understanding how these anoxic facies were deposited will provide insight into Devonian climatic modes. To this end, we constructed a high-resolution cyclostratigraphic model based on portable XRF-generated elemental ratio records from a Frasnian-Famennian (~372 Ma) black shale section. These black shales are associated with the Kellwasser Crisis, one of the largest mass extinctions of the Phanerozoic, which is not fully understood to this day. The studied section at Winsenberg is located in the Rhenish Massif in Germany and represents a basinal setting at southern low paleolatitudes. Spectral analysis was carried out on the Si/Ca ratios generated by XRF, which is interpreted as the detrital (distal) vs carbonaceous (local) input. The resulting astrochronology suggests a duration of ca. 1 Myr from the base of the Lower Kellwasser to the F-F boundary at the top of the Upper Kellwasser level. This corresponds to an average sedimentation rate of 0.9 cm/kyr. Both the Lower and Upper Kellwasser shales occur at the onset of a 405 kyr eccentricity cycle. We further interpret the Ti/Al record as a riverine runoff signal, as Ti is associated with the coarse-grained fraction, and K/Al as a chemical weathering signal, as K is leached easier than Al. Both tuned records exhibit eccentricity-modulated precession cycles. On precession and short eccentricity timescales, Ti/Al and K/Al are positively correlated, suggesting an orbitally forced wet/dry monsoonal climate in the region where the section was deposited. On longer timescales, the weathering signal becomes decoupled from the riverine runoff signal, highlighting that K/Al (chemical weathering) decreased even during wetter periods. This decoupling is linked to soil maturation in the hinterland, as potassium leaching from mature soils became increasingly limited. Soil build-up and maturation forms a potential mechanism for nutrient storage and subsequent release into the ocean, potentially triggering eutrophication and anoxia.

How to cite: Wichern, N., Bialik, O., Percival, L., Kaskes, P., Nohl, T., Becker, T., and De Vleeschouwer, D.: Deciphering the role of terrestrial/atmospheric interactions in Late Devonian Kellwasser black shale deposition: A High-Resolution Cyclostratigraphic study of the Winsenberg section (Rhenish Massif, Germany), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13598, https://doi.org/10.5194/egusphere-egu23-13598, 2023.

EGU23-13774 | ECS | Posters on site | CL1.1.1

Numerical simulations of the effects of astronomical forcing on nutrient supply and oxygen levels during the Devonian 

Loïc Sablon, Yves Goddéris, Anne-Christine Da Silva, and Michel Crucifix

Declining oxygen levels in the ocean since the middle of the 20th century have been linked to increasing temperatures, CO2 concentrations, and nutrient inputs. In the geological past, numerous oceanic anoxic events have occurred under similar conditions. These events, during which dissolved oxygen in the ocean drop to potentially harmful levels, can have serious consequences for marine life and can also alter the geochemistry of the ocean.

Specifically, we focus here on the Devonian (419 and 359 Ma), a warmer-than-present geological period. The sixty million years Devonian stage was the theatre of at least 29 identified anoxic events (Becker et al., 2020), marked most of the time by the deposition of black shales, associated with carbon isotopic excursion. It is understood that concurrent trends in CO2 and silicate weathering during the Devonian period have generated a context prone to ocean anoxia. On the other hand, there is growing evidence that their periodic recurrences in sedimentary records may have been influenced by astronomical forcing, such as changes in Earth's axis rotation and orbit geometry (De Vleeschouwer et al., 2017; Da Silva et al. 2020)

In the umbrella project WarmAnoxia, we combine climate models and geological observations to explore and test proposals linking astronomical forcing to Devonian anoxia. Through this presentation, we focus specifically on the hypothesis that astronomical forcing influenced precipitation and temperature patterns in a way that significantly modified soil weathering dynamics, with enough effects on nutrient fluxes toward the ocean to promote oceanic anoxia.

To test this proposal, we performed 81 experiments with the global atmosphere-slab model HadSM3. Experiments have been designed to span the range of astronomical forcing and CO2 concentrations experienced during the Devonian. The output was used to calibrate an emulator. With the latter, we estimate the transient evolutions of temperature and precipitation over 5 million-year periods, for which we assumed both simplified and realistic astronomical forcing scenarios. In turn, these transient evolutions force the GEOCLIM model (Maffre et al. 2022), which simulates soil dynamics, estimates nutrient fluxes from the continents to the oceans, and the response on the oceanic chemistry and atmospheric oxygen levels.

References:

Da Silva A. et al., (2020), Scientific Reports, 10 (12940) doi:10.1038/s41598-020-69097-6; Maffre P. et al., (2022) American Journal of Science, (322) 461–492, doi:10.2475/03.2022.02; Becker R.T. et al. (2020), The Geological Time scale, 10.1016/B978-0-12-824360-2.00022-X

How to cite: Sablon, L., Goddéris, Y., Da Silva, A.-C., and Crucifix, M.: Numerical simulations of the effects of astronomical forcing on nutrient supply and oxygen levels during the Devonian, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13774, https://doi.org/10.5194/egusphere-egu23-13774, 2023.

EGU23-14200 | Orals | CL1.1.1 | Highlight

Past Evolution of the Earth-Moon System. The AstroGeo tools for geological proxies. 

Jacques Laskar, Mohammad Farhat, Gwenaël Boué, Pierre Auclair-Desrotour, Matthias Sinnesael, Mickaël Gastineau, and Sem Bendjeddou

In recent years, several groups have analyzed or re-analyzed stratigraphic data in order to derive astronomical information on the past evolution of the Earth-Moon system. Depending on the approach and on the type of sediment that is analyzed, the retrieved data are of different nature. For tidal deposits, one may attempt to obtain the number of lunar days in a lunar month, or the number of lunar months per year (e.g. Williams, 2000), or even retrieve the nodal period of the Moon (Walker & Zahnle, 1986). In contrast, for cyclostratigraphic analyses, the derived quantity is the precession frequency of the Earth (e.g. Meyers and Malinverno, 2018). The problem for the geologist is then to derive all the other parameters of the Earth-Moon system from this single initial observation. 
The AstroGeo tools (www.astrogeo.eu) are designed to help the geologists in this task by providing conversions from one geological proxy  to all the remaining parameters of the Earth-Moon system  that can be derived from this single observation.  These tools developed in the AstroGeo project rely on the physical model recently developed in Farhat et al. (2022). The AstroGeo lunar tool is the first of a series that will be available for the geologists and astronomers community. It allows to input any of the possible observables of the Earth-Moon system (age, semi-major axis, length of the day, precession frequency and angle of obliquity), with some uncertainty, and to derive all the other parameters by interpolating the results of Farhat et al. (2022). At the same time, new data can be plotted versus the nominal solution, together with the already known data that will be kept in an evolving data base. These tools will be available on the AstroGeo website (www.astrogeo.eu). I will present these new tools along with the recent progress of the AstroGeo project.

Ref : Farhat, M., Auclair-Desrotour, P., Boué, G., Laskar, J., 2022, The resonant tidal evolution of the Earth-Moon distance
 Astronomy & Astrophysics, 665, L1
https://www.aanda.org/articles/aa/pdf/2022/09/aa43445-22.pdf

How to cite: Laskar, J., Farhat, M., Boué, G., Auclair-Desrotour, P., Sinnesael, M., Gastineau, M., and Bendjeddou, S.: Past Evolution of the Earth-Moon System. The AstroGeo tools for geological proxies., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14200, https://doi.org/10.5194/egusphere-egu23-14200, 2023.

EGU23-16726 | ECS | Orals | CL1.1.1

Observationally Constrained Cloud Phase Unmasks Orbitally Driven Climate Feedbacks 

Lily Hahn, Navjit Sagoo, Trude Storelvmo, Ivy Tan, James Danco, Bryan Raney, and Anthony Broccoli

The mechanisms that amplify orbitally-driven changes in insolation and drive the glacial cycles of the past 2.6 million years, the Pleistocene, are poorly understood. Previous studies indicate that cloud-phase feedbacks oppose ice sheet initiation when orbital configuration supports ice sheet growth. Cloud phase was observationally constrained in a recent study and provides evidence for a weaker negative cloud feedback in response to carbon dioxide doubling. We observationally constrain cloud phase in the Community Earth System Model and explore how changes in orbital configuration impact the climate response. Constraining cloud phase weakens the negative high latitude cloud phase feedback and unmasks positive water vapor and cloud feedbacks (amount and optical depth) that extend cooling to lower latitudes. Snowfall accumulation and ablation metrics also support ice sheet expansion as seen in proxy records. This indicates that well-known cloud and water vapor feedbacks are the mechanisms amplifying orbital climate forcing.

How to cite: Hahn, L., Sagoo, N., Storelvmo, T., Tan, I., Danco, J., Raney, B., and Broccoli, A.: Observationally Constrained Cloud Phase Unmasks Orbitally Driven Climate Feedbacks, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16726, https://doi.org/10.5194/egusphere-egu23-16726, 2023.

EGU23-17045 | ECS | Orals | CL1.1.1

Obliquity-forced aquifer-eustasy during the late-Cretaceous greenhouse world 

Zhifeng Zhang, Yongjian Huang, and Chengshan Wang

The mechanism of short-term and high-magnitude sea-level oscillation has long been debated between glacio- and aquifer-eustasy (Miller et al., 2005; Haq, 2014), largely due to the sparse robust evidence for the aquifer-eustasy, and the little knowledge about hydrological dynamics behind it. Non-marine/ continental greenhouse archives (e.g. lake level) and their temporal correlation to marine successions (e.g. sea level) could give clue to aquifer-eustasy (Wagreich et al., 2014). The Songliao Basin (SLB), in Northeast China, is one of the largest Mesozoic terrestrial inland basins and has deposited the near whole Cretaceous successions (Wang et al., 2013). The greenhouse Late Santonian-Early Campanian Lower Nenjiang Formation (K2n1+2), recovered from three boreholes in SLB provides a unique opportunity for validating and decoding the aquifer-eustasy. Initially the cyclostratigraphy of logging gamma ray (GR) and Thorium (Th) series from three boreholes was implemented, which in junction with the radioactive ages renewed the chronology framework of SLB. Using the astronomically tuned GR and Th series, the lake level of SLB, which is recovered from sedimentary noise modeling (Li et al., 2019) and presents the water table of groundwater reservoir, shows a clear out-of-phase relationship with the coeval sea level, validating the aquifer-eustasy hypothesis. The lake level shows prominent ~1.2Myr cycles and a well-coupled relationship with sea level and obliquity modulation, indicating that the orbital obliquity drove the lake level and modulated the water exchange between ocean and continent during the Cretaceous greenhouse period. The strong precipitation indicated by the negative excursion of Ostracods δ18O (Chamberlain et al., 2013) well correlates to the high lake level, high obliquity, and low sea level, suggesting that during obliquity modulation maxima, more moisture was precipitated into the high-latitude continents, consequently recharging the aquifer and raising the lake level while drawing down the sea level and vice versa. The close correspondence between reported marine incursion layers (Hu et al., 2015) and lowstand of sea level casts a doubt on marine incursion hypothesis in the SLB, more work is needed to reconcile this paradox. Overall, this study gives robust geological evidence for aquifer-eustasy and firstly decodes its role on Cretaceous short-term eustasy.

How to cite: Zhang, Z., Huang, Y., and Wang, C.: Obliquity-forced aquifer-eustasy during the late-Cretaceous greenhouse world, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-17045, https://doi.org/10.5194/egusphere-egu23-17045, 2023.

EGU23-1631 | ECS | Orals | CL1.1.2

Thermal niche determines marine assemblage change during Early Jurassic warming pulses 

Carl Reddin, Jan Landwehrs, Gregor Mathes, Erin Saupe, Clemens Ullmann, Georg Feulner, and Martin Aberhan

Marine assemblages are expected to undergo substantial reorganization under anthropogenic climate change but some species may be better situated to track their preferred conditions. Assemblage vulnerability can thus be indicated by the thermal niches of its component species. However, the link between this vulnerability and extinction risk of its species is unclear and cannot yet be tested with modern species since widespread climate-driven extinctions are not yet manifest. To address this gap, we inferred fossil species’ thermal niches based on observed distributions on paleoclimate maps over the hyperthermal pulses of the Late Pliensbachian to Early Toarcian. We tested whether species extirpated from fossil invertebrate assemblages after warming, alongside those species that went extinct, were most likely from the pool of species that could not maintain upper thermal safety margins, in contrast to assemblage immigrants. The fossil record has the potential to reveal unique information about natural system responses to climate change. We discuss how much can it tell us about marine ectotherm vulnerability to extinction under climate change.

How to cite: Reddin, C., Landwehrs, J., Mathes, G., Saupe, E., Ullmann, C., Feulner, G., and Aberhan, M.: Thermal niche determines marine assemblage change during Early Jurassic warming pulses, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1631, https://doi.org/10.5194/egusphere-egu23-1631, 2023.

Anthropogenic carbon emission rate has exceeded 10 Pg C yr-1 in 2020 (1), which is likely unprecedented in the last 252 million years. Studying ancient hyperthermal events may help us better understand the natural processes of carbon emission and sequestration, informing policy and decision-making to cope with climate change. Two ancient hyperthermals that occurred at the end of the Permian period and the end of the Paleocene Epoch have been studied extensively, but a key question remains: why is the end-Permian hyperthermal related to the largest mass extinction and a much-delayed recovery, yet the PETM is associated with only extinction of benthic foraminifera and a rapid recovery? I hypothesize that the life extinction and recovery patterns across these two hyperthermals are regulated by the carbon emission and sequestration rates, and the cumulative quantities of CO2 released. Emission rate is dependent on COsource (e.g., methane hydrate, thermogenic methane, marine or terrestrial organic matter, or volcanic CO2), and sequestration rate is dependent on the location (marine vs. terrestrial) and processes (silicate weathering vs. organic carbon burial) of carbon sequestration, which are largely uncertain. These uncertainties pose difficulties in unraveling the underlying mechanisms of the different extinction patterns. Here, I quantitatively compare the carbon emission and sequestration rates of the two hyperthermals, which allows for hypothesis regarding carbon sources and sinks to be tested.

How to cite: Cui, Y.: Comparing carbon emission and sequestration during two ancient hyperthermal events: the PETM and the end-Permian mass extinction, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2127, https://doi.org/10.5194/egusphere-egu23-2127, 2023.

Wetlands and lakes represent the largest natural source of methane to Earth’s atmosphere, where this powerful greenhouse gas influences Earth’s radiative budget. The flux of methane from wetlands and lakes to the atmosphere ultimately depends on the balance between methanogens that produce methane and methanotrophs that consume methane. However, the balance of these biological processes and hence the operation of the terrestrial methane cycle in the geological past are poorly constrained. 

To address this problem, I will present novel biomarker data that record the relative contribution of methanotrophs to the bacterial pool in ancient wetlands and lakes. I will use a unique dataset that consist of >400 samples from across the world and which span most of the Cenozoic, including key hyperthermals like the PETM and ETMs, as well as Toarcian OAE hyperthermal. The aim is to explore the operation of the terrestrial methane cycle during different climate state, including hyperthermals that are characterized by rapid environmental change. 

The data show that the contribution of methanotrophs to the terrestrial bacterial pool has been remarkably stable through time, including across major climatic events like the K/Pg boundary, the Eocene – Oligocene transition, and the mid-Miocene climatic optimum. These results indicate that the terrestrial methane cycle is robust to long-term climatic perturbations and does not operate fundamentally different during greenhouse periods. However, during hyperthermals such as the PETM and the T-OAE, etc, the data indicate a significant perturbation of the terrestrial methane cycle. This means that transient warming events have the potential to destabilize this key biogeochemical cycle, which suggests that the terrestrial methane cycle will be impacted by anthropogenic climate change.

How to cite: Naafs, D.: Intensification of the terrestrial methane cycle during hyperthermal intervals of the Meso- and Cenozoic, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2375, https://doi.org/10.5194/egusphere-egu23-2375, 2023.

The latest Permian mass extinction (LPME) was triggered bymagmatism of the Siberian Traps Large Igneous Province (STLIP), which left an extensive record of sedimentary Hg anomalies at Northern Hemisphere and tropical sites. Here, we present Hg records from terrestrial sites in southern Pangea, nearly antipodal to contemporaneous STLIP activity, providing insights into the global distribution of volcanogenic Hg during this event and its environmental processing. These profiles (two from Karoo Basin, South Africa; two from Sydney Basin, Australia) exhibit significant Hg enrichments within the uppermost Permian extinction interval as well as positive Δ199Hg excursions (to ~0.3‰), providing evidence of long-distance atmospheric transfer of volcanogenic Hg. These results demonstrate the far-reaching effects of the Siberian Traps as well as refine stratigraphic placement of the LPME interval in the Karoo Basin at a temporal resolution of ~105 years based on global isochronism of volcanogenic Hg anomalies.

How to cite: Shen, J.: Mercury evidence  global volcanic effects during the Permian-Triassic transition, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2487, https://doi.org/10.5194/egusphere-egu23-2487, 2023.

EGU23-2862 | Orals | CL1.1.2 | Highlight

Early Triassic hothouse conditions limited marine productivity 

Stephen Grasby

The Early Triassic represents a period of prolonged recovery following the most severe extinction of the Phanerozoic. Records show this to be a period of extremely high global temperatures, likely driven by Siberian Traps eruption induced global warming. How this hothouse impacted marine ecosystems and prolonged the recovery process remains uncertain. Across northwestern Pangea, Early Triassic marine sediments are characterized by low organic matter content, despite recurrent anoxia which would create conditions more suitable for preservation, and being located on the western continental margins were the majority of primary productivity in the Panthalassa Ocean would occur. Geochemical proxies suggest the paucity of organic matter reflects a productivity collapse rather than changes in preservation. Nitrogen isotopes show a progressive negative shift starting at the Permian/Triassic extinction and continuing through to the Smithian, indicating progressively growing nutrient limitation. High ocean temperatures likely deepened the thermocline, limiting nutrient recycling and upwelling into the photic zone driving nutrient stress. Finally ocean cooling in the Anisian is marked by widespread deposition of organic rich black shales and return of N isotopes to values consistent with active nutrient upwelling. A hyperthermal driven nutrient-limited Early Triassic ocean was likely a key inhibiter of marine recovery.

How to cite: Grasby, S.: Early Triassic hothouse conditions limited marine productivity, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2862, https://doi.org/10.5194/egusphere-egu23-2862, 2023.

EGU23-3800 | ECS | Orals | CL1.1.2

Astronomical calibration of the Paleocene-Eocene Thermal Maximum on the Atlantic Coastal Plain 

Mingsong Li, Timothy Bralower, Lee Kump, Jean Self-Trail, James Zachos, William Rush, and Marci Robinson

The chronology of the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma) remains disputed, hampering complete understanding of the possible trigger mechanisms of this event. Here we present an astrochronology for the PETM carbon isotope excursion from Howards Tract, Maryland a paleoshelf environment, on the mid-Atlantic Coastal Plain. Statistical evaluation of variations in calcium content and magnetic susceptibility indicates astronomical forcing was involved and the PETM onset lasted about 6 kyr. The astrochronology and Earth system modeling suggest that the PETM onset occurred at an extreme in precession during a maximum in eccentricity, thus favoring high temperatures, indicating that astronomical forcing could have played a role in triggering the event. Ca content data on the paleo-shelf, along with other marine records, support the notion that a carbonate saturation overshoot followed global ocean acidification during the PETM.

How to cite: Li, M., Bralower, T., Kump, L., Self-Trail, J., Zachos, J., Rush, W., and Robinson, M.: Astronomical calibration of the Paleocene-Eocene Thermal Maximum on the Atlantic Coastal Plain, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3800, https://doi.org/10.5194/egusphere-egu23-3800, 2023.

The Toarcian Oceanic Anoxic Event (T-OAE, ~183 Ma) was a profound short-term environmental perturbation associated with the large-scale release of 13C-depleted carbon into the global ocean-atmosphere system, which resulted in a significant negative carbon-isotope excursion (CIE). The general lack of characteristic T-OAE records outside of the northern hemisphere means that the precise environmental effects and significance of this event are uncertain. Many biotic carbonate platforms of northern hemisphere from the western Tethys drowned or shifted to comparatively unfossiliferous oolitic platforms during the early Toarcian. However, southern hemisphere records of Toarcian carbonate platforms are rare, and thus the extent and significance of biotic platform demise during the T-OAE is unclear. Here we present high-resolution biostratigraphical, sedimentological, and geochemical data across two Pliensbachian–Toarcian shallow-water carbonate-platform sections exposed in the Tethys Himalaya. These sections were located paleogeographically on the open southeastern tropical Tethyan margin in the southern hemisphere. The T-OAE in the Tethys Himalaya is marked by a negative CIE in organic matter. Our sedimentological analysis of the two sections reveals an abundance of storm deposits within the T-OAE interval, which emphasizes a close link between warming and tropical storms during the T-OAE, in line with evidence recently provided from western Tethyan sections of the northern hemisphere. In addition, our analysis also reveals extensive biotic carbonate-platform crisis by drowning or changing to unfossiliferous carbonates coincident with the onset of the CIE where the proxies of continental weathering (e.g. Ti, Sc, Th) and redox (e.g. Mn, Ce and Ce) show obviously increase. Taken together, the drastically enhanced terrigenous flux and deoxygenation likely played a pivotal role in the more severe crisis for benthic carbonate producers during the negative phase of the CIE.

How to cite: Han, Z.: Carbonate-platform response to the Toarcian Oceanic Anoxic Event in the Tethys Himalaya, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4571, https://doi.org/10.5194/egusphere-egu23-4571, 2023.

EGU23-4645 | ECS | Posters virtual | CL1.1.2

Assessing volcanism during the PETM based on mercury isotope and abundance data 

Simin Jin, David Kemp, Runsheng Yin, Ruiyang Sun, Jun Shen, David Jolley, Manuel Vieira, and Chunju Huang

The Paleocene-Eocene Thermal Maximum (PETM, ∼56 Ma) was an abrupt hyperthermal event that has been linked to carbon release from volcanism associated with the North Atlantic Igneous Province (NAIP). Anomalously high sedimentary mercury (Hg) concentrations, a proxy for volcanism, have been recorded across the PETM from some locations, supporting this link. Nevertheless, Hg concentration data alone offer little insight into emplacement mechanisms and carbon source(s), and can be influenced by depositional conditions and post-depositional alteration. To help address this issue, and more critically evaluate the efficacy of Hg as a volcanism proxy, Hg-isotope data have been obtained across a thick, deep-marine sedimentary record of the PETM from the North Sea that was deposited in close proximity to active NAIP volcanism. These data are combined with a new global compilation of Hg concertation data across the PETM, which includes new Hg concentration data obtained from five globally distributed sites. Analysis of all the data demonstrates extensive and at least intercontinental Hg enrichments during the onset of the PETM carbon-isotope excursion, and that this was related to a major transient pulse of extrusive volcanism. Hg-isotope data support protracted volcanism through the PETM, but the evidence for sustained Hg enrichment from volcanism through the entirety of the PETM is equivocal. Towards the end of, and after, the PETM, the data suggest an overall waning influence of volcanogenic Hg.

How to cite: Jin, S., Kemp, D., Yin, R., Sun, R., Shen, J., Jolley, D., Vieira, M., and Huang, C.: Assessing volcanism during the PETM based on mercury isotope and abundance data, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4645, https://doi.org/10.5194/egusphere-egu23-4645, 2023.

EGU23-4791 | ECS | Posters on site | CL1.1.2

Hydroclimatic change regulated fluvial sediment supply in southern North China during the early Permian deglacial warming 

Rui Ma, Jianghai Yang, Jia Liu, and Yuan Wang

  The early Permian deglacial warming is the critical period in the last icehouse to greenhouse transition in the Phanerozoic and provides an opportunity to investigate the interactions among terrestrial ecosystem evolution, regional tectonics, and climatic perturbations during climate warming. This climate change has been documented by climate modelling and geological proxies, however, its effect on fluvial sediment dispersal remains unknown. During this period, there were a southwardly diachronous aridification in North China. We here employ detrital provenance data to track the changes in continental-scale drainage system and fluvial sediment supply in southern North China. Combing detrital zircon U-Pb age and sandstone petrographic data from the early Permian sedimentary successions in southern North China defined three major sources in the Qinling orogenic belt (P1) to the south, the uplifted Paleoproterozoic-Archean basement in the northern North China margin (P2) and in the Inner Mongolia Orogen (P3) to the north. In the high-resolution chronostratigraphic framework established for North China, we use DZ mixing modeling method to quantitatively estimate the relative sediment contributions of source regions to the early Permian southern North China basin. Our modeling results suggest that the relative contribution of northly sourced detritus (from P2 and P3) increased from ~4 % in the late Gzhelian to early Asselian (ca 301−297 Ma) to ~95 % in the late Asselian to Sakmarian (ca 297−290 Ma), then declined to ~70 % in the early Artinskian (ca 290−286 Ma), finally returned to ~95% in late Artinskian (ca 286−284 Ma), whereas the estimated relative sediment contribution of the these northerly sources remained in high, stable level (~95 %) for the corresponding successions in northern North China .The increase in northerly derived sediment fraction in southern North China through the Asselian-Sakmarian can be interpreted in terms of the enhanced erosion associated with the tectonic evolution of Central Asian Orogenic Belt which caused uplifting in the northern margin of North China. In contrast, the subsequent reduction in the Artinskian is abnormal considering the persistent tectonic activities in the northern margin of North China. It can be linked instead to the climate aridification in the northern North China and resultant decrease in fluvial sediment supply from the northerly sources to the southern North China. This work highlighted the regulation of hydroclimatic change on low-latitude fluvial sediment supply during the early Permian deglacial warming.

 

 

How to cite: Ma, R., Yang, J., Liu, J., and Wang, Y.: Hydroclimatic change regulated fluvial sediment supply in southern North China during the early Permian deglacial warming, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4791, https://doi.org/10.5194/egusphere-egu23-4791, 2023.

EGU23-4793 | Posters on site | CL1.1.2

Rapid recycling of Gondwana-derived sedimentary rocks in western South China during the Artinskian warming 

Ao Liu, Jianghai Yang, Juntong Ren, and Liang Cheng

Climatic conditions are important factors controlling landscape erosion and weathering. Distinguishing climate forced landscape erosion is critical to understand the interactions between climate change and landscape evolution, but it is usually complicated by other influences. Artinskian warming is an important climate event during the Permian icehouse demise and characterized by a high atmospheric pCO2, a major eustatic sea-level rise, a sudden biotic replacement and hydroclimatic change in low latitude regions. During this climate warming period, South China evolved as a stable continental block and has preserved a unique siliciclastic sedimentary succession of the Liangshan Formation. We conducted a sedimentary provenance analysis on the Liangshan Formation to understand the response of landscape erosion to the Artinskian warming event. Four sections of Liangshan Formation in western South China were selected for comprehensive analysis. Detrital zircon and rutile U-Pb ages were analyzed for provenance in combination with sedimentary facies, sandstone petrography, mudstone mineral and chemical compositions. Detrital zircon U-Pb age spectra show two major age groups of 1100−900 Ma and 700−500 Ma with subordinate ones of 2600−2400 Ma and 850−700 Ma. Detrital rutile U-Pb age spectra only show one dominant age group of 700−500 Ma. These detrital zircon and rutile U-Pb age patterns present a remarkable Gondwana affinity as comparing with the corresponding records in northeast margin of Gondwana. However, during the early Permian South China block was isolated from Gondwana by the wide Tethys Ocean and unlikely to have direct sedimentary influx from the far-away Gondwana continents. In this paleogeography, the Liangshan Formation could only derive from a provenance in South China itself. In western South China, the Liangshan Formation is disconformably overlying the Carboniferous-earliest Permian carbonates, Devonian quartzose sandstones, Silurian quartzose sandstones and mudstones, and Cambrian-Ordovician carbonate and mudstones, of which the sandstones and mudstones have been suggested to have a possible Gondwana derivation when South China located close to the northern Gondwana margin during the early Paleozoic to Devonian. The Liangshan Formation mainly composed of massive mudrocks and quartzose fine sandstones with high maturity showing strong weathering and forming multiple cycles. Detrital zircon U-Pb age data were collected from the Cambrian-Ordovician, Silurian, Devonian and Carboniferous successions in western South China. They were used for quantitatively fitting the provenance of the Liangshan Formation by Dzmix method. The Dzmix fitting analysis shows that the relative contribution of Cambrian-Ordovician, Silurian, Devonian and Carboniferous are 23.6%, 24.6%, 50.3% and 1.5%, respectively. This result indicates that the siliciclastic sediments of Artinskian Liangshan Formation were mainly recycled from the Devonian, Silurian and Cambrian-Ordovician sedimentary rocks. Considering the carbonate dominated successions in the Carboniferous to earliest Permian, the deposition of the Liangshan Formation would indicate a sudden input of terrigenous materials and thus a rapid recycling of Gondwana-derived pre-Carboniferous sediments. Therefore, during the Artinskian warming, the climate became more humid with increased precipitation in South China to drive intense erosion and promote river transportation of sediments into the coastal areas, forming the Liangshan Formation.

How to cite: Liu, A., Yang, J., Ren, J., and Cheng, L.: Rapid recycling of Gondwana-derived sedimentary rocks in western South China during the Artinskian warming, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4793, https://doi.org/10.5194/egusphere-egu23-4793, 2023.

EGU23-4897 | Posters on site | CL1.1.2

Conodont biostratigraphically constrained eruptive duration of Emeishan Large Igneous Province and implication for the end-Capitanian warming 

Yinsheng Zhou, Jianghai Yang, Dongxun Yuan, Ao Liu, and Liang Cheng

The emplacement and subsequent weathering of Emeishan large igneous province (LIP) have been linked to the climate change at the Guadalupian-Lopingian transition. Though lots of magneto-stratigraphic analysis and radio-isotopic dating works were conducted on the Emeishan LIP, the temporal correlation between Emeishan LIP and climate change is still in debate for the climatic records generally being archived in biostratigraphically dated marine successions. We here logged a Guadalupian-Lopingian limestone dominated succession in the Youjiang Basin located to the southeast of Emeishan LIP. A high-resolution conodont biostratigraphy was obtained for succession and constrained the studied succession in the conodont biozones of J. xuanhanensis, J. granti, and C. dukouensis. There developed multiple tuff and tuffaceous layers in this succession with stratigraphically lower ones geochemically akin to the high-Ti basalt and higher ones akin to the rhyolites of the Emeishan LIP. Analyzed zircons give average U-Pb ages at around 260 Ma and have chemical compositions like those recovered from Emeishan LIP. In coming the paleogeographic location, our petrological, geochemical, Nd-Sr isotopic and zircon U-Pb age and trace element data indicate the identified tuff materials were derived from the volcanic eruption of the Emeishan LIP. According to the established conodont biostratigraphy, the high-Ti basalt volcanism can be constrained in the conodont biozones of J. granti. Based on this biostratigraphically constrained eruption duration of Emeishan LIP, high-Ti basalt eruption can be confidently corrected with the conodont oxygen isotope indicated end-Guadalupian climate warming. Comparing with the rhyolitic tuff rocks, basaltic tuff layers contain a large population of older zircons which might indicate the addition of crustal materials into the basaltic magma enroute to the surface. There might be voluminous CO2 degassing from the crustal rocks including the carbonates and organic rich mudstones. This degassing in combination with the magmatic CO2 release and oxidation of buried organic materials in the coastal regions during the regression at that time could increase the atmospheric pCO2 and resulted in the climate warming.

How to cite: Zhou, Y., Yang, J., Yuan, D., Liu, A., and Cheng, L.: Conodont biostratigraphically constrained eruptive duration of Emeishan Large Igneous Province and implication for the end-Capitanian warming, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4897, https://doi.org/10.5194/egusphere-egu23-4897, 2023.

EGU23-5063 | Posters virtual | CL1.1.2 | Highlight

Pangea is a complete supercontinent: paleomagnetic evidence from North China 

Zhiyu Yi, Yushu Liu, and Joseph Meert

Alfred Wegener proposed the idea of a supercontinent, which he called Pangea about one century ago. The idea led directly to the hypothesis of continental drift, which eventually evolved into the theory of plate tectonics. Pangea is traditionally represented by ~75% of continental crust in which the East Asian blocks (EABs) are typically omitted. Climate models developed using an outboard position of the East Asian blocks led to the hypothesis of a mega-monsoon.

Aiming to refine the paleogeography of Pangea, this study reports a new late Triassic paleopole for North China based on dykes and sills sampled from two localities that were ~500 km apart. Laser-ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) U-Pb dating on zircons selected from the sills yields a mean age of 224.4 ± 1.4 Ma. The characteristic remanent magnetizations isolated from the two localities are consistent and pass reversal and baked-contact tests suggesting a primary origin. The high-quality paleomagnetic pole positioned the EABs at 75.6° ± 6.8° N at ~220 Ma using Beijing as a reference site, which is in good agreement with the paleolatitude resolved from the apparent polar wander path of Eurasia. Along with the ages newly-reported from the “stitching pluton” that intruded the Mongol-Okhotsk suture, our study reveals a full amalgamation between the EABs and Pangea by ~220 Ma, indicating that Pangea comprises ~99% of available continental crust and was perhaps the largest of all known supercontinents.

The refined reconstruction of East Asia provides an opportunity to reevaluate the paleogeography and climatic patterns of Pangea. The climate-sensitive lithofacies in East Asia indicate a humid-temperate climate during the Late Triassic and Early Jurassic. The wet conditions were typically explained via a mega-monsoon model. However, according to our new reconstruction, much of the EABs are positioned above ~40° N (within the humid-temperate to subpolar humid zones) during the Late Triassic and early-Middle Jurassic. The humid-temperate conditions are therefore consistent with a zonal climate pattern. To better evaluate climatic patterns of Pangea from a global perspective, we further restore the climate-sensitive lithofacies of the Late Triassic according to our Pangea reconstruction. The distribution of lithofacies is compatible with a zonal climate when Pangea reached its maximum size and optimal equatorial symmetry for developing a monsoon climate, which obviates the need for the Pangean mega-monsoon hypothesis.

How to cite: Yi, Z., Liu, Y., and Meert, J.: Pangea is a complete supercontinent: paleomagnetic evidence from North China, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5063, https://doi.org/10.5194/egusphere-egu23-5063, 2023.

EGU23-5383 * | Posters on site | CL1.1.2 | Highlight

The coming extinction of land mammals - The next great mass extinction 

Alexander Farnsworth, Eunice Lo, Paul Valdes, Jonathan Buzan, Hannah Wakeford, and Chris Scotese

Mammals have dominated the Earth for the last ~55 Myr. Mammals have shown remarkable adaptation and resilience to climate change. However, it is unknown how long the Earth will be able to continue to sustain mammalian life. Estimates suggest the ultimate demise of all life will be in a ‘Venusian’ style runaway greenhouse climate ~1.5 billion years where increasing solar luminosity (L) will raise temperature beyond that able to sustain life. However, conditions may develop sooner that will render the Earth naturally inhospitable to mammals. In ~250 million years all the continents of the world come together to form the Earth's fourth supercontinent, Pangea-Ultima. A natural consequence of the creation and decay of Pangea-Ultima will be extremes in pCO2, both low (silicate weathering) and high (volcanic degassing). Here we show that variations in pCO2, increased solar luminosity (~2% greater than now), and extreme continentality will lead to extreme climate states that are inhospitable to mammalian life. We assess the impact of these climate states on mammalian physiological limits using dry-bulb, wet-bulb, and Humidex stress indicators as well as planetary habitability index. Although low pCO2 states will increase habitability, snowball Earth conditions may occur if the silicate weathering-pCO2 burial feedback becomes too strong (resulting in low pCO2 values <280ppm) under increased L. Likewise, small short-term spikes in pCO2 (≥1120ppm) outgassing will lead to extremes in heat. Under such conditions, thermal tolerances of endotherms will exceed physiological limits leading to mass extinction. The results reported here also show that global landmass configuration, pCO2, and solar luminosity play a critical role in planetary habitability.

How to cite: Farnsworth, A., Lo, E., Valdes, P., Buzan, J., Wakeford, H., and Scotese, C.: The coming extinction of land mammals - The next great mass extinction, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5383, https://doi.org/10.5194/egusphere-egu23-5383, 2023.

EGU23-6037 | Orals | CL1.1.2 | Highlight

Extinction cascades, community collapse, and recovery across a Mesozoic hyperthermal event 

Alexander Dunhill, Jack Shaw, Karolina Zarzyczny, Jed Atkinson, Crispin Little, and Andrew Beckerman

Biotic interactions and community structure are seldom examined in mass extinction studies but must be considered if we are to truly understand extinction and recovery dynamics at the ecosystem scale. Here, we model shallow marine food web structure across a Mesozoic hyperthermal event, the Toarcian extinction, in the Cleveland Basin, UK using a trait-based inferential modelling framework. We subjected our pre-extinction community to extinction cascade simulations in order to identify the nature of extinction selectivity and dynamics. We then tracked the pattern and duration of the recovery of ecosystem structure and function following the extinction event. In agreement with postulated scenarios, we found that primary extinctions targeted towards infaunal and epifaunal benthic guilds reproduced the empirical post-extinction community. These results are consistent with geochemical and lithological evidence of an anoxia/dysoxia kill mechanism for this extinction event. Structural and functional metrics show that the extinction event caused a switch from a diverse, stable community with high levels of functional redundancy to a less diverse, more densely connected, and less stable community of generalists. Ecological recovery appears to have lagged behind the recovery of biodiversity, with most metrics only beginning to return to pre-extinction levels ~7 million years after the extinction event. This protracted pattern supports the theory of delayed benthic ecosystem recovery following mass extinctions even in the face of seemingly recovering taxonomic diversity and gives stark warnings for present day marine ecosystems affected by warming temperatures and dysoxia.

How to cite: Dunhill, A., Shaw, J., Zarzyczny, K., Atkinson, J., Little, C., and Beckerman, A.: Extinction cascades, community collapse, and recovery across a Mesozoic hyperthermal event, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6037, https://doi.org/10.5194/egusphere-egu23-6037, 2023.

EGU23-6337 | Orals | CL1.1.2

Carbonate-platform changes response to the Paleocene-Eocene Thermal maximum 

Xiumian Hu, Juan Li, Jingxin Jiang, Eduardo Garzanti, and Marcelle BouDagher-Fadel

The Paleocene–Eocene Thermal Maximum (PETM, ~56 Ma) is a large negative carbon isotope excursion that testifies to a massive perturbation of the global carbon cycle and has been considered to be the best deep-time analogue for present and future climate change. However, most studies of the response of shallow-water carbonates to climate change during PETM have focused on individual sites and sections. To get a broader perspective we compiled published records of carbonate-platform environments across the Paleocene-Eocene transition in Tethys ocean. The shallow-marine benthic ecosystems during PETM were largely distinct in composition from those in the latest Paleocene or/and early Eocene. No obvious impact on biota and specifically on larger benthic foraminifera is observed at PETM onset, whereas the major biotic change occurs later on at PETM recovery, suggesting that biotic changes lag behind climate warming and carbon cycle perturbations in shallow-water ecosystem. We also inferred sedimentary responses at each site from direct or indirect indicators of sedimentological and relative sea-level change at the PETM. A transgressive trend that began at PETM onset, and continued through the CIE core, followed by a relative sea-level fall around the PETM recovery, implying the response of the relative sea-level to climate warming is characterized by a gradual rise, and a rapid fall. The demise of carbonate platform, increased terrestrial inputs and tropical storms has been widely observed in carbonate-platform environments across the PETM, suggesting enhanced erosion/chemical weathering and hydrological changes during the climate warming.

How to cite: Hu, X., Li, J., Jiang, J., Garzanti, E., and BouDagher-Fadel, M.: Carbonate-platform changes response to the Paleocene-Eocene Thermal maximum, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6337, https://doi.org/10.5194/egusphere-egu23-6337, 2023.

Providing empirical evidence about the response of tropical shallow-water organisms to past warming and hyperthermal events is particularly important considering that they are severely threatened by current global warming. Stratigraphic resolution in shallow-water sections cannot be as precise as in pelagic environments and the empirical evidence is usually limited to a “before-and-after” comparison to assess the biological effects of events.

During the early Paleogene, the Neothetyan circum-Mediterranean region was the global center of reef coral diversity. Our compilation of Paleocene to Eocene reef coral occurrences allows for an analysis of reef coral responses to the major climatic changes of this time interval in unprecedented temporal detail, including the Paleocene-Eocene Thermal Maximum (PETM), when global mean temperatures reached more than 5°C above pre-industrial levels.

Reef corals were negatively affected by the PETM as we document a small decrease in diversity at both species and genus level and an increase of extinction rate across the hyperthermal event. During the onset of the Early Eocene Climate Optimum (EECO), diversity gradually increased as also documented by a peak of origination rate. The EECO diversity high is mainly related to the rich coral fauna recently described from NE Italy where the EECO and post-EECO phases are characterized by an accurate specimen-based systematic revision of museum collections associated to a detailed biostratigraphic calibration.

The Late Eocene cooling was accompanied by an increase in diversity, with the origination of several Oligocene coral taxa and the extinction of Eocene ones. The Late Eocene is also the time when coral reefs started to flourish again after the crisis of Late Paleocene-Early Eocene.

 

This study was funded by the Italian Ministry of Education and Research (MIUR), funds PRIN 2017: project “Biota resilience to global change: biomineralization of planktic and benthic calcifiers in the past, present and future” (prot. 2017RX9XXY).

How to cite: Bosellini, F., Benedetti, A., and Kiessling, W.: The Neothetyan circum-Mediterannean record as a suitable archive to understand the response of reef corals to the warming events of the Early Paleogene, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6441, https://doi.org/10.5194/egusphere-egu23-6441, 2023.

EGU23-7633 | Orals | CL1.1.2 | Highlight

Life in a dark environment – what was the physiological and calcification response of benthic foraminifera to the environmental changes of the Paleogene hyperthermals 

Daniela N. Schmidt, Monsuru Adebowale, Ellen Thomas, Andy Ridgewell, and Laura Cotton

The Paleocene encompasses a series of hyperthamls including the Paleocene–Eocene Thermal Maximum (PETM) and the ETM2 which represent severe disturbances of global carbon cycling and the Earth system. Responses of marine organisms included extinction, migration and evolutionary turnover, but the role of ocean acidification on deep-sea foraminiferal calcification has not yet been quantified. Using computed tomography (CT) we investigate morphological (surface area, test volume, calcite volume, chamber number) and hence calcification response in two benthic foraminiferal species, at central Pacific Site 1210 (PaleoDepth 2100m), and Southern Ocean Maud Rise Site 690 (PD 1900m), Walvis Ridge Site 1264,  and Kerguelen Plateau Site 1135 (PD ~800m) for the PETM and ETM2.

The relative warming during the event was the same at all sites, suggesting that biotic differences are not likely related to differential warming. The environmental change led to reduction of test volume of both species, negatively impacting their potential ability to generate gametes. Epifaunal Nuttallides truempyi increased its surface area relative to volume in the Southern Ocean, potentially increasing its ability to forage and take up oxygen. In contrast, there is no clear pattern of change in shallow infaunal Oridorsalis umbonatus which, given sufficient food, can thrive at lower oxygen conditions. Calcite volume/test volume ratio decreased in both species during the PETM in the Southern Ocean, with the lack of response at upper abyssal depth in the Pacific possibly driven by severe oligotrophy even before the excursion. Therefore, changes in food supply during hyperthermals might have been less pronounced at upper abyssal depths in the Pacific than at the other two sites. These results contrast with published results from Walvis Ridge which showed an increase in calcification in small specimens of O. umbonatus. Food availability at the Southern Ocean sites may have supported growth as indicated by test volumes, but did not supply enough energy for calcification to mitigate against lower carbonate ion saturation during the PETM CIE.

How to cite: Schmidt, D. N., Adebowale, M., Thomas, E., Ridgewell, A., and Cotton, L.: Life in a dark environment – what was the physiological and calcification response of benthic foraminifera to the environmental changes of the Paleogene hyperthermals, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7633, https://doi.org/10.5194/egusphere-egu23-7633, 2023.

Climatic effects on erosion is usually covered up by tectonics and not well understood in active mountains. The Dabie Mountains in central China evolved from a collisional orogen between North China and South China with development of Triassic ultrahigh pressure metamorphic (UHPM) rocks. In the Late Triassic these UHPM rocks experienced a rapid cooling after peak metamorphism and has been linked to compressional uplift during the collisional orogenesis. During this period, the climate changed from arid-semi arid to humid in the northern South China. This climate change is clearly recorded in the Late Triassic successions of upper Puqi and Jigongshan formations in the Huangshi Basin to the south of the Dabie Mountains. Combining tuff zircon U-Pb dating and magneto-stratigraphy, the upper Puqi Formation with arid climate was constrained in the early Norian (~228−221 Ma) with the overlying Jigonghsan Formation with humid climate in the late Rhaetian according to youngest detrital zircon ages. Detrital zircon and rutile U-Pb ages were combined with paleocurrents and sandstone petrography to determine the sedimentary provenance. For the upper Puqi Formation the deposited sediments were likely recycled from the Paleozoic sedimentary rocks in the Dabie Mountains. However, the Jiligang Formation has sediment mainly derived from the middle Neoproterozoic and late Paleoproterozoic basement rocks in the northern South China and Dabie Mountains. This rapid shift in provenance is associated with and plausibly resulted from the Late Triassic climate change, which may force rapid erosion in the southern Dabie Mountains. The deposition of the upper Puqi Formation was temporally overlapping with the rapid cooling and tectonic uplift of the Dabie Mountains, but there were no large changes in sedimentary provenance. This observation suggests low erosion rates in active mountains under a under an arid-semi arid climate.

How to cite: Yang, J., Li, H., Zhou, Y., Liu, A., and Cheng, L.: Climate controlled erosion during the Late Triassic rapid exhumation of the ultrahigh pressure metamorphic rocks in the Dabie Mountains, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7970, https://doi.org/10.5194/egusphere-egu23-7970, 2023.

EGU23-8192 | Orals | CL1.1.2

A biogeographic model of thermal habitat loss during global temperature change 

Adam T. Kocsis, Carl J. Reddin, Erin E. Saupe, and Georg Feulner

Global warming has been implicated as a trigger of mass extinctions in the past. Although species track their thermal niches as isotherms move poleward, systematic changes in the area of habitable space (i.e., their thermal habitat) are expected to influence their extinction risk. Quantifying thermal habitat changes is difficult in the geological past, where information about geography and the distributions of species are highly incomplete. We therefore present a formalized model of thermal habitat change, resulting from the interaction of spherical geometry, thermal niche preference, latitudinal temperature profile, and global temperature change. Our results suggest an overall decrease in available thermal habitat during global warming. Thermal habitat is lost primarily from lower latitude and polar areas, whereas temperate areas are less affected. Although patterns of extinction are ultimately dependent on the geography of available habitat space, the extent to which species occupy their thermal niches, additional abiotic parameters, and biotic interactions, our simple theoretical model provides the basic expectation for spatial patterns of habitat loss, and therefore potentially species loss, during global warming.

How to cite: Kocsis, A. T., Reddin, C. J., Saupe, E. E., and Feulner, G.: A biogeographic model of thermal habitat loss during global temperature change, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8192, https://doi.org/10.5194/egusphere-egu23-8192, 2023.

EGU23-9692 | Orals | CL1.1.2

Intraspecific decline in shell size of the bivalve Harpax spinosus across the Pliensbachian/Toarcian transition 

Adam Tomašových, Luís Vítor Duarte, Tamas Müller, and Ján Schlögl

Abrupt changes in seawater temperature during the late Pliensbachian and early Toarcian significantly influenced not only species and functional diversity of marine benthic ecosystems, but also affected body size at intraspecific and community levels. Although community-level trends in body size driven by selectivity in species extinctions are well-documented, intraspecific trends in size and life-history strategies remain poorly explored. Harpax spinosus is an Early Jurassic plicatulid, bimineralic bivalve that was abundant during the Pliensbachian but went extinct at the onset of the Toarcian oceanic anoxic event. Here, we evaluate temporal changes in size-frequency distributions of this species at high stratigraphic resolution at Peniche and Fonte Coberta sections in the Lusitanian Basin. Analyses of H. spinosus at these sections document that this bivalve typically achieved 10-15 mm in length during the deposition of the margaritatus and spinatum zones, with left-skewed or bimodal size distributions. However, its median size significantly declines to < 10 mm within the spinatum Zone (in the upper part of the apyrenum Subzone), coinciding with the appearance of small koninckinid brachiopods. This size reduction is followed by a return to larger sizes in the upper part of the spinatum Zone. A second decline in size occurs in the lowermost Toarcian where Harpax co-occurs with small-sized Koninckella-Nannirhynchia assemblage (Koninckella fauna), immediately above the mirabile Subzone. Although this abrupt decline in size can be accentuated by condensation, the size distribution at bedding plane is strongly left-skewed (with infrequent small-sized individuals), in contrast to the size distribution in the overlying marl. Harpax assemblages in the lowermost Toarcian semicelatum Subzone are characterized by right-skewed or symmetric size-frequency distributions, with median size < 10 mm. Sclerochronological analyses of growth rings and stable isotopes indicate that the decline in size was not associated with any decline in lifespan and was rather associated with a decline in the von Bertalanffy growth coefficient.

How to cite: Tomašových, A., Duarte, L. V., Müller, T., and Schlögl, J.: Intraspecific decline in shell size of the bivalve Harpax spinosus across the Pliensbachian/Toarcian transition, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9692, https://doi.org/10.5194/egusphere-egu23-9692, 2023.

The Phanerozoic Eon is littered with high temperature perturbations which relate to large igneous province (LIP) volcanism. Each of these events occurred against a different climatic and biogeochemical backdrop, and had biotic effects ranging from negligible to extreme. In this talk I will cover the progress we have made with the climate-biogeochemical model SCION, which aims to reconstruct the long-term Phanerozoic climate state as well as these individual hyperthermal events. I will investigate the differences in the amount of carbon that is required to drive the events in the model, versus what is known from the geology of the LIPs themselves. I will then try to suggest solutions to these problems, which may lie in the biotic or biogeochemical responses to climate warming.

How to cite: Mills, B.: How well do we understand Phanerozoic hyperthermals? Investigations with a climate-biogeochemical model, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9922, https://doi.org/10.5194/egusphere-egu23-9922, 2023.

Several typical Oceanic Anoxic Events (OAEs) occurred in the greenhouse period of the Mesozoic. These OAEs were characterized by low seawater sulfate concentration ([SO42‒]) before and during the events, suggested by sulfur-cycle, which have been considered to play a significant role in their formation and evolution. However, there is still lack of reliable sedimentary evidence for the low [SO42‒] and the details how the low [SO42‒] impact the OAEs. Here, we present integrated sedimentologcal, mineral and geochemical study of black shale and siderites hosted in black shale and concretions during the early Aptian in the Gucuo Ⅱ section (Tibetan Himalaya). The siderites were observed throughout the section and share the similar characteristics in the black shale and concretion, which can be divided into dominant disseminated and rhombus crystals in early diagenesis and minor spherical crystals in the late diagenesis. The multiple evidence of relatively high V/Al and V/ (V+ Ni), MREE bulge pattern, minor occurrence of pyrites and the extremely low carbon-isotope values of carbonate concretion that close to organic matter indicate that siderites were formed in the Fe reduction zones by the process of Dissimilatory Iron Reduction (DIR) which required strict conditions of low [SO42‒], reducing environment, abundant iron and high alkalinity. Additionally, the symbiosis of siderite and pyrite may indicate that the DIR occurred close to the Microbial Sulfate Reduction (MSR) zone, and the extremely low seawater [SO42‒] hovered around the tipping point where pyrites could form once the seawater sulfate increase by pulse input of enhanced continental weathering and/or volcanism. Our observations supported the previous hypothesis that under the background of low [SO42‒], enhanced volcanic-derived sulfate input could have promoted the MSR and organic matter mineralization, which likely further enhanced nutrient recycling, and increased primary productivity and organic carbon burial, leading to more oxygen consumption and subsequently driving an expansion of the oxygen minimum zones.

How to cite: Meng, F.: Early Aptian mineral and geochemical evidence of siderites from the Tibetan Himalaya: implications for the low sulfate concentration of Oceanic Anoxic Event, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10349, https://doi.org/10.5194/egusphere-egu23-10349, 2023.

EGU23-10485 | ECS | Posters virtual | CL1.1.2

Paleocene-Eocene carbon isotope excursion recorded in the western Jianghan Basin, China 

Xingyu Luo, Ping Wang, Cairong Luo, Miao Lv, Shanying Li, and Xiaochun Wei

Paleocene-Eocene Thermal Maximum (PETM), occurring at Paleocene/Eocene boundary, was a rapid global warming event caused by the release of massive carbon into ocean-atmosphere system. The western Jianghan Basin in central China was documented as a sedimentary archive spanning the Paleocene/Eocene boundary, but the PETM event has never been well constrained. Here, we report the carbon isotope results of pedogenic carbonate and lacustrine carbonate from a newly exposed section in the western Jianghan Basin (close to Yidu city). The ~80-m-thick section consists of Gongjiachong and Yangxi Formations, which can be interpreted as being deposited in a marginal lacustrine environment, dominated by interlayered, medium to thick-bedded gray limestone, calcareous sandstone, and red siltstone with minor conglomerate. From bottom upward, the carbon isotope of total carbon (δ^13 C) shows a rapid decrease from -6.5‰ to -13‰, while the carbon isotope of organic matter (δ^13 C_org) decreases from -24.5‰ to -27.4‰, suggesting a carbon isotope excursion in a short period of time. The carbon isotope records, like the ocean record, clearly show a “Three-Phase Model”: it starts with a rapid carbon isotope negative excursion from about 15 to 20 meters, followed by a slow decline trend from 20 to 36 meters, and then a gradual recovery to the pre-PETM level from 36 to 46 meters. This pattern of carbon isotope change corresponds to a positive feedback process of carbon in the Earth's surface system. Our findings indicate a possible records of PETM events and provide a new perspective for studying early Cenozoic climate change in central China.

How to cite: Luo, X., Wang, P., Luo, C., Lv, M., Li, S., and Wei, X.: Paleocene-Eocene carbon isotope excursion recorded in the western Jianghan Basin, China, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10485, https://doi.org/10.5194/egusphere-egu23-10485, 2023.

EGU23-10503 | ECS | Posters virtual | CL1.1.2

The Carnian Pluvial Episode in the Yanyuan Basin (Southwestern China) 

Shixin Li, Tingshan Zhang, Zhiheng Ma, Jianli Zeng, Xi Zhang, and Mihai Emilian Popa

As one of the hyperthermal events in the Mesozoic, the Carnian Pluvial Episode (CPE) was a global perturbation of the C-cycle and a strong enhancement of the hydrological cycle associated with global warming resulting in significant changes in sedimentary environments from Pangaea to deep water Panthalassa. In this paper, we make research on biostratigraphy, petrology, cyclostratigraphy and geochemistry of the Shemulong Formation in the Yanyuan Basin, at the southwestern of the Yangtze Platform. This strata record the complete deposition of the Carnian stage and preserve the signal of the astronomical orbital period. It also provides good paleontological information which was identified clear biostratigraphic framework. New redox proxies and stable isotopes are analyzed and compare the δ13C data with existing data from other sections of the CPE. In this section, there are at least four terrigenous input pulses which are consisted of sandstone and mudstone, causing the abrupt shutdown of carbonate production during the CPE period. Meanwhile, biodiversity data like bivalves, conodonts and ammonoids in the study area show a major change in abundance and variability during the CPE period. These are also coincident with negative carbon isotope excursions (NCIE), proving the close correspondence between the perturbation of the carbon cycle (and related hyperthermal events occur) and the turnover of depositional systems and ecosystems. Furthermore, we found differences in the recovery of carbonate production after each terrigenous input. The degree of recovery decreases and then increases upwards (bioclastic limestones - oolitic limestones - bioclastic limestones - biostrome - reef mound). It may link to the intensity of the terrigenous input pulse. In summary, this research provides more comparative schemes in the eastern Tethys for the collaborative study of environment biological co-evolution relationship within the CPE interval and is of positive significance for the in-depth understanding of climate and biodiversity changes through hyperthermal intervals in Earth history.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 41972120; 42172129), by the State Key Laboratory of Palaeo-biology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS) (No.173131).

How to cite: Li, S., Zhang, T., Ma, Z., Zeng, J., Zhang, X., and Popa, M. E.: The Carnian Pluvial Episode in the Yanyuan Basin (Southwestern China), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10503, https://doi.org/10.5194/egusphere-egu23-10503, 2023.

EGU23-10979 | ECS | Posters on site | CL1.1.2

Hyperthermal events have a greater effect on body size origination selectivity than extinction 

Pedro M. Monarrez, Jood A. Al Aswad, Noel A. Heim, Erik A. Sperling, and Jonathan L. Payne

Ancient hyperthermal events in Earth’s history are ideal to isolate the evolutionary consequences of climate change and other environmental factors from other anthropogenic influences. A key biological trait hypothesized to be sensitive to climate change and straightforward to quantify in fossil data is body size. Most ectotherms modulate their physiological response to temperature and oxygen change in part through their body size. As hyperthermal events include both temperature increases and ocean deoxygenation, these events can have a deleterious effect on ectotherms on the ends of the body size spectrum. Large bodied ectotherms are particularly at risk, as oxygen demand increases with both body size and temperature. Previous work has assessed extinction selectivity of body size across hyperthermal events, but origination selectivity has not been assessed, which may be as important as extinction selectivity. Here, we measure extinction and origination selectivity with respect to body size for genera in six Linnean classes with robust fossil records (Rhynchonellata, Cephalopoda, Echinoidea, “bony fish” [an informal class consisting of Osteichthyes, Actinopteri, and Actinopterygii], Bivalvia, and Gastropoda). We compare selectivity during background intervals with those during hyperthermal events and their associated recovery intervals spanning the Middle Triassic to the Recent. We use capture-mark-recapture statistical models to measure extinction and origination selectivity while addressing the effects of variable sampling completeness with respect to time and body size. We find that genera with smaller body size are preferentially lost to extinction during background intervals, whereas body size is not associated with extinction probability during hyperthermal events. Conversely, originating genera are larger than average during background intervals across all size classes, but vary among classes in their body size pattern immediately following hyperthermal events. Rhynchonellate brachiopods, cephalopods, and echinoids exhibit originators that are smaller, on average, than the survivors after hyperthermal events, whereas originating bivalves and gastropods tend to be larger than the survivors. Bony fish do not exhibit size bias in origination after hyperthermal events. Overall, these results show that hyperthermal events affect both extinction and origination dynamics but have a greater effect on body size origination selectivity than extinction. The exact cause(s) for the greater effect of hyperthermal events on body size in origination versus extinction is not certain, but these results are consistent with previous findings spanning the Phanerozoic that compared body size selectivity patterns during background intervals to those associated with the Big Five mass extinction events. These results show that climate-associated perturbations change extinction and origination dynamics relative to background intervals, suggesting that climate-associated extinction and origination in the modern and future ocean may differ from geological background.

How to cite: Monarrez, P. M., Al Aswad, J. A., Heim, N. A., Sperling, E. A., and Payne, J. L.: Hyperthermal events have a greater effect on body size origination selectivity than extinction, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10979, https://doi.org/10.5194/egusphere-egu23-10979, 2023.

The Toarcian Oceanic Anoxic Event (T-OAE, ~ 183 Ma), also known as Jenkyns Event, was one of the most important hyperthermal events of the Mesozoic, marked by a prominent negative carbon-isotope excursion (CIE) in both terrestrial and marine material. Although the T-OAE has been widely studied in the western Tethyan and Boreal regions, only relatively few investigations about the T-OAE have been conducted in other sites. Here we present new carbon-isotope, element geochemical and sedimentological data from a lower Toarcian open-marine section in the northern margin of eastern Tethys (Qiangtang Basin). This study section shows a negative CIE, which accords with other well-preserved sedimentary successions, and thus our data provide the evidence of the T-OAE from an open-marine setting in the northern margin of eastern Tethys. Elemental, mineralogical and sedimentological data indicate that mainly oxic bottom water conditions prevailed during the T-OAE interval in the section. Therefore, anoxia is not a significant feature of the T-OAE in the study area. Combined with previous studies, redox conditions in the bottom water show a clearly spatially variable and mainly depend on local conditions (e.g., water depth and basin hydrography). Sedimentological and geochemical analyses reveal an intensified chemical weathering and an increased coarse-grained detrital flux during the T-OAE, which is a regional response to global warming occurring in this interval.

How to cite: Nie, Y. and Fu, X.: A Toarcian Oceanic Anoxic Event record from an open-ocean setting in the northern margin of eastern Tethys: Implications for redox and weathering conditions, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11617, https://doi.org/10.5194/egusphere-egu23-11617, 2023.

EGU23-12439 | ECS | Posters virtual | CL1.1.2

Storm deposits prior to the Triassic – Jurassic boundary in terrestrial Sichuan Basin, east Tethyan margin, China 

Jianli Zeng, Tingshan Zhang, Mihai E. Popa, Yongdong Wang, Xi Zhang, Liqin Li, Yuanyuan Xu, Ning Lu, and Xiaoqing Zhang

Abstract:

The coal-bearing Xujiahe Formation is the upmost Triassic lithological units in Sichuan Basin, Southwest China, where located in east Neo-Tethyan margin during the late Triassic. More than 30 years core drill and outcrop investigation of Xujiahe Formation shows the storm deposits were widely distributed in Sichuan Basin, characterized by the irregular muddy gravel associated with hummocky/swaley cross stratification. In particular, the irregular muddy gravel commonly found in upmost Xujiahe Formation, just below the Triassic – Jurassic lithological boundary.

Recent two Xujiahe Formation outcrop were investigated from section Zilanba and section Xindianzi were further provided the new evidence of storm  in both north and south Sichuan Basin during the latest Triassic. In north Sichuan Basin Zilanba section, the in-situ wood trunks from paleosol surface (28.7m below Tr-J lithological boundary) at 5 member of Xujiahe Formation shows 6 of 9 trunk fossils lodging direction (NWW) is opposite to the paleocurrent direction (SSE)(data from gravel in 4th member of Xujiahe Formation). It is suggested that a strong southeasterlies prevail in the northern Sichuan Basin at that time. In south Sichuan Basin Xindianzi section, massive muddy gravels were found under the lithological Triassic – Jurassic boundary. These muddy gravels were poorly rounded or shaped with plastic deformation, shows no evidence of transport, similar with storm retention deposit.

The sedimentary interpretation of Xujiahe Formation is mainly composed of braided delta and lacustrine facies. However, the formation of a storm theoretically requires a water depth more than 60m and the temperature above 26.5℃, therefore, compare with the ocean environment, inland lakes such as Sichuan Basin are less likely to form tempestite due to the limited width and surface temperature during the latest Triassic.

Although terrestrial storm deposition is not well theorized. But on a global scale, the distinctive paleogeographic pattern of Pangea gave rise to a global scale monsoon system, the “megamonsoon”, with seasonal reversal of circulation and large-scale migration of the ITCZ (Inter-Tropical Convergence Zone, ITCZ) over the Tethys Ocean at a maximum latitude of 60º N/S in winter and summer. In fact, tempestites also occurred in year-round migration range of ITCZ during the Triassic – Jurassic transition, such as England, East Greenland, Italy, the United Arab Emirates, and South Tibet. Similar with above locates, storms in terrestrial Sichuan Basin should interpreted in the context of global surface wind background, i.e., ITCZ year-round migrate belt.

Meanwhile, in geological past, tempestites also occurred in T-OAE (Toarcian Oceanic Anoxic Event, T-OAE). Consider that There was no significant change in global paleogeographic pattern during the TJB (Triassic – Jurassic boundary) and T-OAE. In addition, by comparing the storm-deposition records of T-OAE associate with the present climate simulation, we propose that the storm-deposition records at the upmost of the Xujiahe Formation, which just below the Triassic Jurassic boundary in the Sichuan Basin, were probably forced by atmospheric CO2 concentration arising.

Acknowledgements

This study is financially co-supported by the National Nature Science Foundation of China (41972120; 42172129) and the State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS) (No. 173131).

How to cite: Zeng, J., Zhang, T., E. Popa, M., Wang, Y., Zhang, X., Li, L., Xu, Y., Lu, N., and Zhang, X.: Storm deposits prior to the Triassic – Jurassic boundary in terrestrial Sichuan Basin, east Tethyan margin, China, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12439, https://doi.org/10.5194/egusphere-egu23-12439, 2023.

The hothouse climate in the Early Triassic has been recognised for a decade. Yet it remains the most recently discovered hothouse and is poorly understood in many aspects. Initially triggered by the Siberian Traps in the latest Permian, the Early Triassic represents one of the most extreme and long-lasting greenhouses in the Phanerozoic. Although the outgassing of the Siberian Traps probably already decreased in the late Griesbachian, the Equatorial SSTs peaked at ~40 ℃ later in the late Smithian. The late Smithian thermal maximum coincided with resumed volcanic activities of a smaller scale. However, why lesser volcanism triggered Phanerozoic’s warmest hyperthermal is puzzling. The extreme warmth ameliorated in the latest Spathians, marking the termination of a ~5 Myr hothouse.

Many key questions about the Early Triassic climate remain unanswered. These include how warm the poles were, how flat the latitudinal SST gradient was, and how climate interacted with the global ocean circulation. However, the most fundamental question is how to maintain such an extreme hothouse climate for such a long time.

As most shelly fossils died out during the end-Permian mass extinction and the Early Triassic oceans were dominated by aragonite-shelled mollusks, reconstruction of Early Triassic seawater temperatures relies almost solely on oxygen isotope thermometer in conodont bioapatite. One of the key challenges is that Early Triassic conodonts are rare, small, and cannot be found everywhere due to the subduction of old ocean floors. These hinder the acquisition of proxy data in a broader palaeogeographic context. Future work combining proxy data with state-of-the-art Earth system modelling would be an ideal solution to better understand the hottest time in the Phanerozoic.

How to cite: Sun, Y.: The Early Triassic hothouse: what we know and what we don’t, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12795, https://doi.org/10.5194/egusphere-egu23-12795, 2023.

EGU23-12972 | ECS | Posters on site | CL1.1.2

Novel reef coral communities emerging after deep-time hyperthermal events 

Danijela Dimitrijevic, Timothy L. Staples, Nussaȉbah B. Raja, John M. Pandolfi, and Wolfgang Kiessling

Modern coral reefs are among the most vulnerable ecosystems to climate change. Accordingly, we hypothesize that past hyperthermal events had lasting impacts on reef coral communities. Specifically, novel communities are expected to emerge after ancient warming events, where novel communities are those that document a rapid and irreversible shift into a new state that differs in composition and/or function from past systems. To test our hypothesis, we used a global compilation of reef coral occurrences from the middle Triassic to modern times (244.08 Ma) and applied a rigorous novel community detection framework at 0.1 Myr time bins. Novelty is quantified based on two components – cumulative novelty (i.e., the deviation from historical baselines and instantaneous novelty (i.e., the magnitude of change relative to the previous state). A novel community state is identified when both cumulative and instantaneous novelty match in a time series of ecological change. Surprisingly, over the entire evolutionary history of scleractinian corals, there were only two novelty events at global scales, and they both occurred in the aftermath of hyperthermal events: The first in the Hettangian stage and the second in the Toarcian. Our results underscore the hypothesis that profound global warming can have lasting consequences on coral reef ecosystems. 

How to cite: Dimitrijevic, D., Staples, T. L., Raja, N. B., Pandolfi, J. M., and Kiessling, W.: Novel reef coral communities emerging after deep-time hyperthermal events, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12972, https://doi.org/10.5194/egusphere-egu23-12972, 2023.

The largest mass extinction on Earth with an estimated 90% loss of species occurred at the Permian-Triassic Boundary (~252 Ma). The end-Permian mass extinction coincides with extreme temperature increases and changes in ocean circulation and biogeochemistry. These climate perturbations are associated with carbon emissions linked to Siberian Trap volcanism. Fully-coupled Earth System Models can be applied to investigate the feedbacks and sensitivities of the background latest Permian climate to such carbon emissions. Past studies have focussed on constraining the magnitude of these carbon emissions without examining the sensitivity of palaeo-configured Earth System models designed for modern simulations. We modified a version of the Max Planck Earth System Model v1.2, similar to that used in the 6th-phase of the Coupled Model Intercomparison Project, to simulate the latest Permian climate-carbon system and use geochemical and palaeobiological proxy data to constrain the boundary conditions of the modelled climate state.
We first characterise the latest Permian climate state before presenting first results on a sensitivity study of the latest Permian climate-carbon state to CO2 emission pulses. A 100 year global mean 2 m surface air temperature of 17.5°C is simulated, rising up to 34.7°C in the low-latitude continental interior. The continental interior is also largely arid from ~50°N to ~50°S with a total precipitation maximum of 11.1 mm day-1 at the equatorial boundary of the Tethys and Panthalassic Oceans. The prevailing hydrological regime drives woody single-stemmed evergreens and soft-stemmed plant functional groups to dominate in the dynamic vegetation model. The 100 year global mean surface ocean of the latest Permian illustrates a warm-pool across the equatorial boundary between the Tethys and Panthalassic Oceans with a maximum temperature of 30.2°C decreasing to temperatures as low as -1.9°C near the poles. Surface salinities vary broadly across the global oceans with 100 year global mean values ranging from 22.9, in well-flushed regions of strong freshwater flux, to 48.6, in low-latitude regions of restricted exchange. Large-scale seasonal mixing below 60°S in the Panthalassic Ocean dominates the global meridional overturning circulation. These model data fit within the bounds represented by the available proxy data for the Late Permian. The widespread shallow ocean mixed-layer also restricts recirculation of nutrients, driving a high gross primary production with weak seasonality. Furthermore, regions of seasonal deep mixing correlate with seasonal pCO2 patterns at high latitudes. I will also present further analyses of the simulated ocean biogeochemical cycles in the Hamburg Ocean Carbon Cycle model with a focus on the novel extended Nitrogen-cycle processes.

How to cite: Burt, D. and Ilyina, T.: The sensitivity of the latest Permian climate-carbon state to CO2 emissions in an Earth System Model, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13712, https://doi.org/10.5194/egusphere-egu23-13712, 2023.

EGU23-14328 | ECS | Posters on site | CL1.1.2

Stepwise recovery of vegetation from Permian–Triassic mass extinction in North China and implications for changes of palaeoclimates 

Wenchao Shu, Jinnan Tong, Daoliang Chu, Jianxin Yu, Jason Hilton, and José B. Diez

The Permian–Triassic was a major transition in the evolution of life in the earth history, when happened the greatest mass extinction during the Phanerozoic and an unusually prolonged or delayed recovery. Most studies have been carried in the marine facies while very few in the continental facies. On land, plants play a great role in the interaction of climate and terrestrial ecosystems. Here we present a regional case of stepwise recovery of vegetation in North China. Prior to the Permian–Triassic mass extinction, the voltzialean conifer forest community dominated in the Changhsingian. Consequently, the extinction event wiped out of the voltzialean conifer forest community, probably conciding with the extension of the red beds. The first post-crisis flora was an Induan herbaceous lycopsid community, succeeded by the PleuromeiaNeocalamites shrub marsh community. A pteridosperm shrub woodland community dominated for a short time in the late Early Triassic along with the reappearance of insect herbivory. In the early Middle Triassic, gymnosperm forest communities gradually rose to predominate in both uplands and lowlands along with other diverse plant communities, indicating the beginning of the establishment of the Mesophytic Flora. In the late Middle Triassic–Late Triassic, it was occupied by the DanaeopsisSymopteris flora and the opportunism elements gradually were replaced by the advanced taxa, which represents the complete establishment of the Mesophytic Flora.

How to cite: Shu, W., Tong, J., Chu, D., Yu, J., Hilton, J., and Diez, J. B.: Stepwise recovery of vegetation from Permian–Triassic mass extinction in North China and implications for changes of palaeoclimates, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14328, https://doi.org/10.5194/egusphere-egu23-14328, 2023.

EGU23-14942 | Orals | CL1.1.2 | Highlight

Quantifying carbon cycle feedbacks to past hyperthermal events 

Sarah Greene, Stephen Jones, Markus Adloff, Daniel Doherty, and Andy Ridgwell

The magnitude of future climate change depends on how Earth's natural carbon reservoirs respond to the changing climate via carbon cycle feedbacks. Yet many of these feedbacks are poorly constrained and are widely acknowledged as a major source of uncertainty in climate projections, particularly into the long-term future. Whilst we can measure carbon cycle feedbacks over the historical period, the future pacing and strength of carbon cycle feedbacks remains uncertain. We do not yet know whether they will collectively amplify or dampen anthropogenic climate change in future or whether carbon cycle tipping point events will be triggered, releasing geologically sequestered carbon to the ocean-atmosphere. Hyperthermal events can serve as partial analogues to anthropogenic climate change and allow us to better constrain carbon cycle behaviour in response to global warming. However, most sedimentary proxy records of hyperthermals at the Earth’s surface record the net environmental change caused by both an initial ‘forcing’ and all subsequent ‘feedbacks’ to that forcing. Disentangling forcing and feedbacks signals across hyperthermals requires further independent constraints on some aspect of the system. The geological record is peppered with examples of past carbon emissions events from large igneous province (LIP) activity, many of which coincide with mass extinction and/or hyperthermal events. Here we show how carbon emissions from a large igneous province (the North Atlantic Igneous Province or NAIP) can be constrained at high resolution entirely independently from environmental proxy records. We further show how an Earth system modelling approach comparing NAIP carbon emissions predictions with proxy records of the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma) can be employed to constrain net global carbon cycle feedbacks to NAIP carbon emissions. Lastly, we show how the addition of carbon and trace metal isotope systems in this Earth system modelling framework has the potential to allow us to disentangle individual global carbon cycle feedbacks across events like the PETM, ‘fingerprinting’ the carbon reservoirs and quantifying their response to a known exogenic carbon input.

How to cite: Greene, S., Jones, S., Adloff, M., Doherty, D., and Ridgwell, A.: Quantifying carbon cycle feedbacks to past hyperthermal events, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14942, https://doi.org/10.5194/egusphere-egu23-14942, 2023.

EGU23-15404 | Orals | CL1.1.2 | Highlight

Temperature-related stresses as a unifying principle in ancient extinctions (TERSANE) 

Wolfgang Kiessling and the TERSANE consortium

Climate change is increasingly being recognized as a driver of modern ecological changes including local extinctions. However, global species extinctions are still rarely attributed to climate change. In contrast, the fossil record offers a rich suite of examples of climate-driven extinctions including mass extinctions. Temperature, oxygen and pH were the dominant climate-related extinction drivers in the marine realm.

Over the last six years, the Germany-based TERSANE research unit with nine collaborating research teams has explored the role of climate changes over timescales ranging from hours to millions of years and genealogical scales from individual organisms to ecosystems. We focused empirically on physiological responses of bivalves, the abiotic and biotic changes across the end-Permian and Pliensbachian-Toarcian hyperthermals, and Phanerozoic-scale patterns focusing on extinction selectivity, body size changes, the role of climate history, and the vulnerability of reef systems across ancient warming events. This talk will summarize TERSANE’s accomplishments focusing on the relevance of results for current climate warming with special reference to different time scales.

How to cite: Kiessling, W. and the TERSANE consortium: Temperature-related stresses as a unifying principle in ancient extinctions (TERSANE), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15404, https://doi.org/10.5194/egusphere-egu23-15404, 2023.

EGU23-15648 | ECS | Orals | CL1.1.2

Cd isotopes in carbonates deposited during ‘OAE 2’: Assessment of a novel palaeo-productivity tracer 

Sophie Gangl, Claudine Stirling, Matthew Druce, Matthew Clarkson, and Hugh Jenkyns

Cadmium (Cd) displays nutrient-type patterns in the modern ocean and has potential as a tracer of the efficiency of the ‘biological pump’ and its ability to transport CO2 from the atmosphere to the deep ocean during intervals of extreme environmental change. This potential arises because phytoplankton preferentially incorporate lighter Cd isotopes under many oceanic conditions, leaving surface waters relatively enriched in heavier isotopes. As a consequence of this fractionation, Cd-isotope ratios have been shown to reflect nutrient availability and the intensity of primary productivity in the modern ocean. However, the ability of the Cd stable-isotope system to serve as a robust palaeo-productivity tracer is not yet well established.

Oceanic Anoxic Event 2 (OAE 2; ~94 Ma) represents a period of widespread environmental degradation and oceanic de-oxygenation, likely the result of increased volcanic activity, intensified marine and continental silicate weathering, augmented nutrient input to the ocean and elevated primary productivity. However, direct evidence for the availability of bio-limiting nutrients in the oceans and the role of primary productivity as a feedback mechanism to eventually re-stabilise climate is limited. Here we present the first Cd-isotope record for OAE 2, from the well-preserved and biostratigraphically well-constrained organic-lean pelagic carbonate section through the English Chalk at Eastbourne (UK). Contrary to expectations, Cd isotopes at Eastbourne do not seem to be controlled by surface ocean productivity, but likely reflect global sub-surface signatures. The isotopic record suggests an active biological pump during OAE 2 coupled with changes in ocean circulation on a global scale. Our new record proposes that the Cd-isotope proxy is powerful and potentially very important for unravelling environmental changes during deep time events.

How to cite: Gangl, S., Stirling, C., Druce, M., Clarkson, M., and Jenkyns, H.: Cd isotopes in carbonates deposited during ‘OAE 2’: Assessment of a novel palaeo-productivity tracer, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15648, https://doi.org/10.5194/egusphere-egu23-15648, 2023.

EGU23-15831 | Posters on site | CL1.1.2 | Highlight

Ephemeral aeolian activity and harsh paleoenvironments in North China related to the late Guadalupian extinction event on land 

Zhicai Zhu, Yongqing Liu, Hongwei Kuang, Alex Farnworth, Andrew J. Newell, and Michael J. Benton

The patterns and causes for the Guadalupian-Lopingian extinctions on land remain puzzling. Here, we reconstruct palaeoenvironments based mainly on the sedimentary environments from the eastern Ordos Basin, North China. Ephemeral aeolian activity in alluvial plains, as a critical marker of intermittent drought conditions, has been identified from the middle Sunjiagou Formation and can be well correlated between the Baode and Liulin areas in the eastern Ordos Basin. Thick dark red siltstones/mudstones with intercalated fine-grained sandstones rest above the aeolian sandstones, and were deposited on floodplains or oxbows adjacent to meandering channel belts. They can also be correlated by comparable mass burials of key tetrapod fossils including the pareiasaurs Shihtienfenia from Baode and Shansisaurus xuecunensis and Huanghesaurus liulinensis from Liulin, respectively. Notably, the fossil horizon at Baode shows a synchronous sharp carbon isotope negative excursion, decreased CIA, and a mercury peak, suggesting that the harsh paleoenvironment (reduced weathering intensity, arid and cool conditions) and potential influence of volcanism might have been important causes. A sandstone sample from the fossil horizon at Baode yields youngest detrital zircon ages of 266 ± 4 Ma, suggesting the maximum depositional age as late Guadalupian. Here, for the first time, we have identified late Guadalupian aeolian activity in North China based on field observations. We demonstrate that the harsh palaeoenvironment in North China may have caused the late Guadalupian tetrapod extinction events on land, before an event of sharp global warming related to the massive Emeishan large igneous province.

How to cite: Zhu, Z., Liu, Y., Kuang, H., Farnworth, A., Newell, A. J., and Benton, M. J.: Ephemeral aeolian activity and harsh paleoenvironments in North China related to the late Guadalupian extinction event on land, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15831, https://doi.org/10.5194/egusphere-egu23-15831, 2023.

EGU23-16724 | ECS | Posters on site | CL1.1.2

Metabolic rate and the vulnerability of mollusks to hyperthermal-driven extinction events 

Siddharth Gavirneni, Linda Ivany, and Carl Reddin

Climate change can be a major driving mechanism behind mass extinctions. The combined multistressor effects of rapid global warming, ocean acidification, and hypoxia are devastating to marine faunas. Such episodes in Earth’s history, dubbed ‘hyperthermals’, serve as natural experiments that can provide insight into the effects of climate warming on marine ecosystems in the past as well as today. As water temperatures rise and oxygen solubility decreases, metabolic rates, and, consequently, the oxygen demands of organisms increase. This suggests that organisms with higher metabolic rates, already requiring more oxygen overall, should be more vulnerable to deoxygenation associated with rapid climate warming. However, more active organisms generally have physiologies less vulnerable to hypercapnia resulting from CO2 buildup in the oceans during hyperthermal conditions. Previous work on activity levels of fossil taxa disagree whether more active organisms are selected for (i.e., less vulnerable) or selected against during major hyperthermal-driven extinction events.

Here, we explore the effects of resting metabolic rate, body size, and temperature preference on extinction vulnerability in gastropods and bivalves during post-Paleozoic hyperthermals. We estimate metabolic rates with a general model of metabolic rate originally derived by Gillooly et al. (2001), using published biomass estimates and location-specific sea surface temperatures from published climate models. Following Reddin et al. (2020), we then calculate relative hyperthermal vulnerability (RHV), the difference between the risk of extinction at intervals associated with hyperthermal conditions versus baseline conditions, in order to determine how an organism’s metabolism may affect patterns of taxonomic extinction and survival across hyperthermal-driven extinction events. RHV can be preferable to more direct comparisons of extinction selectivity in that it allows for comparisons among groups with very disparate basal turnover rates. Preliminary results for bivalves indicate that a higher metabolic rate is associated with a reduced risk of extinction during hyperthermal conditions. These results also seem to suggest that the driving force behind this pattern of selectivity is the B0 standard metabolic rate coefficient, estimated using experimental data on respiration rates in modern bivalve and gastropod clades. Future work will focus on whether the range of variation in the experimental data underlying the B0 estimates lines up with what is expected of fossil taxa, and ultimately, whether these data can be used to evaluate how metabolic rate can affect species vulnerability to stress or extinction risk.

How to cite: Gavirneni, S., Ivany, L., and Reddin, C.: Metabolic rate and the vulnerability of mollusks to hyperthermal-driven extinction events, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16724, https://doi.org/10.5194/egusphere-egu23-16724, 2023.

EGU23-17096 | ECS | Orals | CL1.1.2

An unexpected fossil lagerstätte under the Early Triassic hyperthermal event showing a modern-type marine ecosystem 

Xu Dai, Joshua H.F.L. Davies, Arnaud Brayard, and Haijun Song and the Guiyang Biota research team

Following the most severe mass extinction event during the Phanerozoic, the Permian-Triassic mass extinction (PTME, ~251.9 Ma), Early Triassic marine fossil communities were thought to be depauperate, poorly diversified, and dominated by abundant and cosmopolitan disaster or opportunistic taxa. Full re-establishment of complex marine ecosystems was thought to have not occurred until, ~8 million years after the PTME, being represented by the Luoping Biota. The highly suppressed Early Triassic marine ecosystem has been thought to be a consequence of recurrent environmental stresses, including high sea surface temperature, episodes of oceanic acidification, and anoxic/euxinic events mainly occurring during the Permian-Triassic transition, the late Dienerian and late Smithian. Alternatively, it can also result from preservation and sampling biases, which are often neglected in many previous works. Here, we report an exceptionally preserved Early Triassic fossil assemblage, the Guiyang Biota, from the Daye Formation near Guiyang, South China. The Guiyang Biota comprises at least 12 classes and 19 orders, including diverse fish fauna and malacostracans, revealing a trophically-complex marine ecosystem. High-precision U-Pb dating shows that the age of the Guiyang Biota is 250.83 +0.07/-0.06 million years ago. This is only 1.08 ± 0.08 million years after the severe Permian-Triassic mass extinction, and this assemblage therefore represents the oldest known Mesozoic lagerstätte so far. The Guiyang Biota indicates the rapid rise of modern-type marine ecosystems after the Permian-Triassic mass extinction.

How to cite: Dai, X., Davies, J. H. F. L., Brayard, A., and Song, H. and the Guiyang Biota research team: An unexpected fossil lagerstätte under the Early Triassic hyperthermal event showing a modern-type marine ecosystem, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-17096, https://doi.org/10.5194/egusphere-egu23-17096, 2023.

EGU23-17503 | Orals | CL1.1.2

Permafrost in the Cretaceous supergreenhouse 

Dr Juan Pedro Rodríguez López, Chihua Wu, Tatiana A. Vishnivetskaya, Julian B. Murton, Wenqiang Tang, and Chao Ma

During the archetypal supergreenhouse Cretaceous Earth, an active cryosphere with permafrost existed in Chinese plateau deserts (astrochonological age ca. 132.49–132.17 Ma). Permafrost wedges have been identified in three different outcrops of the Luohe Fm.  Most of the wedges are concentrated in two discrete horizons bounding three draa successions representing composite-wedge pseudomorphs. A late Pleistocene analogue for the Cretaceous aeolian–permafrost system of the Luohe Fm is provided by the composite wedges and sand wedges within aeolian dune deposits of the Kittigazuit Fm., Hadwen Island, NT, Canada. A modern analogue for these Cretaceous plateau cryospheric conditions is the aeolian–permafrost system we report from the Qiongkuai Lebashi Lake area, Xinjiang Uygur Autonomous Region, China. Significantly, Cretaceous plateau permafrost was coeval with marine cryospheric indicators in the Arctic and Australia, indicating a strong coupling of the ocean–atmosphere system. The Cretaceous permafrost contained a rich microbiome at subtropical palaeolatitude and 3–4 km palaeoaltitude, analogous to recent permafrost in the western Himalayas. Global permafrost thaw during the Cretaceous released significant volumes of greenhouse gases to the atmosphere as well as dissolved organic carbon (DOC) and other nutrients into watersheds, and marine waters affecting aquatic systems through carbon and nutrient additions. The contribution of permafrost thaw to the Cretaceous global C balance, including during oceanic anoxic events (OAE) will have to be determined in future research dealing with ocean–continental cryosphere coupling associated with events of cryosphere degradation in the aftermaths of supergreenhouse cold snaps. A mindset of persistent ice-free greenhouse conditions during the Cretaceous has stifled consideration of permafrost thaw as a contributor of C and nutrients to the palaeo-oceans and palaeo-atmosphere.

How to cite: Rodríguez López, D. J. P., Wu, C., Vishnivetskaya, T. A., Murton, J. B., Tang, W., and Ma, C.: Permafrost in the Cretaceous supergreenhouse, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-17503, https://doi.org/10.5194/egusphere-egu23-17503, 2023.

EGU23-41 | Orals | CL1.1.3 | Highlight

Variability of the Indonesian Throughflow and Australian monsoon dynamism across the Mid Pleistocene Transition (IODP 363, Site U1483) 

Kenji Matsuzaki, Ann Holbourn, Wolfgang Kuhnt, Li Gong, and Masayuki Ikeda

The Mid-Pleistocene Transition (MPT) between ~1200 and ~800 ka was associated with a major shift in global climate and was marked by a change in glacial/interglacial periodicity from ~41 to ~100 kyr that resulted in higher-amplitude sea-level variations and intensified glacial cooling. The Indonesian Throughflow (ITF), which controls the exchange of heat between the Pacific and Indian Oceans, is a major component of the global climate system. On the other hand, Asian-Australian Monsoon dynamics play a key role in regional primary productivity. Therefore, reconstruction of ITF and Asian-Australian Monsoon variability during the MPT could potentially clarify the impact of the glacio-eustatic sea level changes on the climate and ecosystem of Northwest Australia. The International Discovery Program (IODP) Expedition 363 retrieved an extended, continuous hemipelagic sediment succession spanning the past two million years at Site U1483 on the Scott Plateau off Northwestern Australia.

In this study, we analyzed radiolarian assemblages in core top samples retrieved during the RV Sonne Expedition 257 and downcore samples from IODP Site U1483 to estimate the variability in regional sea surface temperatures (SSTs) during the MPT, and to explore ITF dynamics in relation to glacio-eustatic sea-level variations and tropical monsoon strength. We suggest that glacio-eustatic sea-level variations have been a key factor affecting changes in SSTs at Site U1483, primarily because the shallow and hydrogeographically complex nature of the sea means that SSTs are highly sensitive to glacio-eustatic sea-level variation. Based on comparisons with SST data from the mid latitudes off Northwest Australia and the South China Sea, we suggest that the SSTs at Site U1483 are highly dependent on prevailing climate changes in the northern hemisphere rather than changes in the climate of the Southern hemisphere. In addition, comparisons of radiolarian total abundances with X-ray fluorescence-scanning elemental data suggested that, until the onset of the MPT (~1200 ka), radiolarian productivity was higher during strong summer monsoons during interglacial periods, probably because of the high riverine runoff generated by heavy summer monsoonal precipitation. However, since ~900 ka, there appears to have been a shift in the mode of radiolarian productivity that has resulted in increased radiolarian productivity during glacial periods when the delivery of nutrients is increased due to the enhanced mixing of the upper water column in the shallow sea caused by strong trade winds. 

How to cite: Matsuzaki, K., Holbourn, A., Kuhnt, W., Gong, L., and Ikeda, M.: Variability of the Indonesian Throughflow and Australian monsoon dynamism across the Mid Pleistocene Transition (IODP 363, Site U1483), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-41, https://doi.org/10.5194/egusphere-egu23-41, 2023.

EGU23-464 | ECS | Posters on site | CL1.1.3

Effects of the Pacific Antarctic Circumpolar Current on the extant coccolithophore Emiliania huxleyi 

Ellis Morgan, Mariem Saavedra-Pellitero, and Elisa Malinverno

During the last decades, the Southern Ocean (SO) has been experiencing physical and chemical drastic changes which are affecting the distribution and composition of pelagic plankton communities. Coccolithophores (small-sized haptophyte algae) are the most prolific carbonate-producing phytoplankton group, playing a key role in biogeochemical cycles at high latitudes.

In this work we investigated the biogeographical distribution and calcification patterns of the ecologically dominant species Emiliania huxleyi across a latitudinal transect in the Pacific sector of the SO (from ~40°S to ~54°S). We aimed to assess the response of E. huxleyi to steep environmental gradients across the frontal system of the Antarctic Circumpolar Current.

The plankton samples were collected during International Ocean Discovery Program Expedition 383: Dynamics of Pacific Antarctic Circumpolar Current (DYNAPACC, May-July, 2019) onboard the R/V JOIDES Resolution (https://iodp.tamu.edu/scienceops/expeditions/dynamics_of_pacific_ACC.html). In situ environmental data (such as sea surface temperature, total alkalinity and pH) were measured at each sampling location.

The samples were prepared and analysed at the University of Portsmouth using a combination of electron backscatter diffraction (EBSD), Scanning Electron Microscope (SEM) and light microscopy techniques.

How to cite: Morgan, E., Saavedra-Pellitero, M., and Malinverno, E.: Effects of the Pacific Antarctic Circumpolar Current on the extant coccolithophore Emiliania huxleyi, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-464, https://doi.org/10.5194/egusphere-egu23-464, 2023.

EGU23-1105 | Posters on site | CL1.1.3

The start of the Great Barrier Reef is a result of the increased stability of Temperatures in the Mid to Late Pleistocene. 

Benjamin Petrick, Lars Reuning, Alexandra Auderset, Miriam Pfeiffer, and Lorenz Schwark

The Great Barrier Reef is a unique environmental resource threatened by future climate change. However, it has always been unclear how this ecosystem developed in the Mid to Late Pleistocene. Work has shown that the reef developed between ~ 600-500 ka during MIS 15-13, although some records suggest a start at MIS 11 at 400 ka. There is a lack of Sea Surface Temperature (SST) records for this time for the area around the Great Barrier Reef. Furthermore, the few existing SST records do not show temperature changes during these key periods, leading researchers to suggest that factors other than temperature, such as sea-level change or sediment transport, explain the start of the reef. We used the TEX86 proxy to produce a new SST record starting at 900 ka from ODP Site 820. This core is located next to the northern Great Barrier Reef. In this new record, there are SST changes that seem to match both dates for the start of the Great Barrier Reef. First, there is a period of stable SST between 700-500 ka, with no glacial cooling during this time. This could promote the development of a reef system during this time, allowing the reef more time to evolve from isolated smaller reefs to a continuous barrier reef. However, there is some suggestion based on facies analyses that even though the barrier system developed around MIS 15, the modern coral reef system was not yet fully established. Our records show that glacial temperatures during MIS 14 still are similar to SSTs from records further south. However, this trend shifts around MIS 11 when glacials became warmer. In fact, while before MIS 11, SST at ODP 820 was colder than records from the Western Pacific Warm Pool, afterwards SST was either the same or sometimes warmer than at these sites. Also, unlike other nearby records, the difference in SSTs between glacials and interglacials is reduced after MIS 11. This suggests that the northern Coral Sea might have been protected from the extremes of glacial temperature changes after the MPT. This process might have allowed the development of a continuous coral reef system by encouraging the growth of reefs even during glacials. Therefore, our research suggests that major steps in the development of the Great Barrier Reef system are linked to changes in the SSTs. Our SST record suggests that SST changes are the primary driver of reef development and other non-SST factors are less important.

How to cite: Petrick, B., Reuning, L., Auderset, A., Pfeiffer, M., and Schwark, L.: The start of the Great Barrier Reef is a result of the increased stability of Temperatures in the Mid to Late Pleistocene., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1105, https://doi.org/10.5194/egusphere-egu23-1105, 2023.

EGU23-1997 | Orals | CL1.1.3

Chemical Weathering in New Guinea since the Mid Miocene 

Peter Clift and Mahyar Mohtadi

Chemical weathering of silicate rocks is a well recognized method by which carbon dioxide is removed from the atmosphere and fixed as calcium carbonates in the sedimentary record. For many years the long term cooling of the Earth during the Cenozoic has been linked to uplift, erosion and weathering of the Himalayas and Tibetan Plateau, however following scientific ocean drilling of the submarine fans in the Asian marginal seas it now seems that this region could not be responsible for cooling, at least during the Neogene. Although other factors such as burial of organic carbon and the rates of degassing during seafloor spreading may also be important, erosion and weathering of other regions may also be important in controlling global CO2 concentrations. In this study we focus on the role of New Guinea, the large (>2500 km long) orogen formed as Australia collided with Indonesia since the Mid Miocene. New Guinea comprises slices of arc and ophiolite rocks that are susceptible to weathering, and is located in the tropics where warm, wet conditions favor rapid weathering. Rainfall exceeds >4 m annually in the island center. Analyses of sediment from Deep Sea Drilling Project Sites 210 and 287 in the Gulf of Papua now allow the weathering and erosion history of the island to be reconstructed. A trend to more continental erosion since 15 Ma reflects uplift and erosion of tectonics slices of the Australian plate. At the same time chemical weathering shows increasing intensity, especially since 5 Ma, as proxied by major element ratios (K/Rb, K/Al) and clay minerals. Greater proportions of kaolinite point to more tropical weathering since the Mid Miocene. Trends to more weathering contrast with Himalayan records that show the reverse, and suggest that New Guinea may be an important component in controlling global climate in the past 15 Ma.

How to cite: Clift, P. and Mohtadi, M.: Chemical Weathering in New Guinea since the Mid Miocene, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1997, https://doi.org/10.5194/egusphere-egu23-1997, 2023.

EGU23-2105 | Orals | CL1.1.3

Changes in intermediate circulation waters along the tropical eastern Indian Ocean during quaternary climatic oscillations 

Sandrine Le Houedec, Maxime Tremblin, Amaury Champion, and Elias Samankassou

The Indo-Pacific Warm Pool (IPWP) is the warmest and most dynamic ocean-atmosphere-climate system on Earth and has undergone significant climatic changes during the Pleistocene glacial periods (De Deckker et al., 2012; Lea et al., 2000; Russell et al., 2014). During the Last Glacial Maximum, the latitudinal position of the Southern Ocean fronts, both south of Africa and Australia, was shown to be critical in controlling the outflow of warm water of the Agulhas Current from the Indian Ocean and the IPWP area. Yet, there is no direct evidence for such oceanic change on the scale of the Late Pleistocene glacial-interglacial transitions.

Here, we combine sea surface temperature proxies (d18O and Mg/Ca) with the neodymium (Nd) isotopic signature to reconstruct changes in climate and oceanic circulation in the eastern tropical Indian Ocean over the last 500 ka. The most striking feature of our dataset is the oscillating Nd signal that mimics the glacial-interglacial cycles. While interglacial periods are characterized by a more significant contribution from the less radiogenic Antarctic intermediate water mass (AAIW, ~ -7 εNd), glacial periods are marked by more radiogenic water mass of Pacific origin (~ -5 εNd). We argue that under global cooling, the northward penetration of the AAIW has weakened due to the general slowdown of the global thermohaline circulation. Furthermore, the oscillating pattern is also recorded in the sea surface temperature and salinity, indicating the settlement of cooler and more saline surface water masses probably linked to a less expanded IPWP and weaker Leeuwin Current during glacial intervals.

We suggest that under low AAIW a less intense advective mixing occurred, allowing a deepening of both halocline and thermocline in the tropical eastern Indian Ocean. Our new proxy-derived dataset confirms results from models (DiNiezo et al., 2018), suggesting that these ocean conditions could amplify the externally forced climate changes resulting from drier atmospheric conditions and weaken the monsoon during glacial periods in the Indonesian region.

How to cite: Le Houedec, S., Tremblin, M., Champion, A., and Samankassou, E.: Changes in intermediate circulation waters along the tropical eastern Indian Ocean during quaternary climatic oscillations, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2105, https://doi.org/10.5194/egusphere-egu23-2105, 2023.

EGU23-2802 | Orals | CL1.1.3 | Highlight

The Cenozoic sea surface temperature evolution offshore Tasmania 

Peter Bijl, Frida Hoem, Suning Hou, Lena Thöle, Isabel Sauermilch, and Francesca sangiorgi

During the Cenozoic (66–0 Ma) Tasmania has continuously been at a crucial geographic location. It represented the final tectonic connection between Australia and Antarctica before complete separation of both continents in the late Eocene, and therefore a barrier for circumpolar flow. Since the Eocene-Oligocene transition, the northward drifting Tasmania was bathed by the throughflow of the subtropical front, but remained an obstacle of the ideal flow path of strengthening ocean currents. The sedimentary record around Tasmania thus represents a perfect archive to record the oceanographic consequences of this regional tectonic change. We here present a new TEX86 and UK37-based SST compilation from 4 sediment cores: ODP Site 1172 (East Tasman Plateau), Site 1170 and 1171 (South Tasman Rise) and Site 1168 (western Tasman margin). We paired these reconstructions with microplankton (dinoflagellate cyst) assemblage data which reflect qualitatively the surface water conditions: nutrients, temperature, salinity. Together, the >1.300 samples portray the SST evolution around the island, from the time it was still connected to the Antarctic continent in the Paleocene to its near-subtropical location today. Trends in the SST compilation broadly follow those in benthic foraminiferal stable isotope compilations, but with some interesting deviations. Differences in SSTs on either side of the Tasmanian Gateway are small in the early Paleogene (66–34 Ma), even when the Tasmanian Gateway is considered closed. Widening of the Tasmanian Gateway around the Eocene-Oligocene transition (34Ma) immediately allows throughflow of what later becomes the Leeuwin Current, which warms the sw Pacific. Oligocene and Neogene SST trends follow those of the benthic d18O, and with continuous influence of the proto-subtropical front. While the SST evolution of Tasmania is remarkably stable in most of the Oligocene, prominent cooling steps are inferred in the Late Oligocene (26 Ma), at the MMCT (~14 Ma), in the mid-to-late Miocene (9 Ma, 7 Ma and 5.3 Ma) and in the Pliocene (2.8 Ma). The remarkably strong Neogene cooling of the subtropical front implies expansion of subpolar temperate conditions and probably gradual strengthening of the Antarctic circumpolar current. Pliocene-Pleistocene SST variability is strong over glacial-interglacial cycles. Taken together, the sites portray a complete overview of local environmental change of the subtropical front area, and provides crucial context to the history of Southern Ocean heat transport and regional climate.

How to cite: Bijl, P., Hoem, F., Hou, S., Thöle, L., Sauermilch, I., and sangiorgi, F.: The Cenozoic sea surface temperature evolution offshore Tasmania, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2802, https://doi.org/10.5194/egusphere-egu23-2802, 2023.

Late Quaternary clay mineral assemblages, radiogenic isotope, and siliciclastic grain size records collected from high sedimentation Site U1483 of the International Ocean Discovery Program (IODP), beneath the path of the modern-day Indonesian Throughflow (ITF) and Leeuwin Current of northwest Australia are studied to reconstruct sediments provenance, transport processes and ocean current behavior, and to evaluate the Australian summer monsoon over the last 500 kyr. Clay minerals are primarily composed of smectite (41–70 %), followed by kaolinite (10–28 %), illite (13.5–25 %), and minor chlorite (3–14 %). Our reconstructed model based on the clay minerals source comparison and radiogenic isotope (Sr-Nd-Pb) records suggest the Victoria and Ord rivers of the Kimberley region as the source over the past 500 kyr for Site U1483. Smectite is mainly derived from the mafic volcanic and smectite-rich Bonaparte Gulf, whereas kaolinite and illite are primarily derived from felsic igneous and metamorphic rocks, respectively, found in the drainage areas of these rivers. Chlorite is primarily contributed by the Indonesian Throughflow (ITF), with a minor contribution from the northwest Australian rivers. Variations in the clay mineral assemblages and grain size records indicate strong glacial-interglacial cyclicity, with small grain size, high smectite, and low kaolinite and illite during glacial periods, while interglacial intervals are marked by a relative increase in kaolinite and illite, mean grain size, and decrease in smectite content. (Kaolinite+illite+chlorite)/smectite and kaolinite/smectite ratios are adopted as proxies for the ITF strength and Australian summer monsoon, respectively. High values of kaolinite/smectite and (kaolinite+illite+chlorite)/smectite ratios during the interglacial intervals indicate a wet summer monsoon with high river discharge and a strong ITF and Leeuwin Current, which has the capacity to transport a relatively high percentage of large-size kaolinite and illite sediments to Site U1483. In contrast, during glacials, the low values of kaolinite/smectite and (kaolinite+illite+chlorite)/smectite ratios imply a dry summer monsoon with low sediment discharge and weak ITF and Leeuwin Current, which can majorly carry the small smectite size particles in its suspension. The mean grain size and clay/silt ratio also indicate that the strength of ITF and Leeuwin Current was weak during glacials and gained high strength during the interglacials. The proxy records’ spectral analysis indicates a strong eccentricity period of 100-kyr, an obliquity period of 41-kyr, and a precession period of 23-kyr, implying that the clay mineral input along the northwest Australian margin is influenced by both high-latitude ice sheet forcing and low-latitude tropical processes.

How to cite: Sarim, M. and Xu, J.: Late Quaternary glacial-interglacial variability of the Indonesian Throughflow and Australian summer monsoon: Evidences from clay mineral and grain size records at IODP Site U1483 of northwest Australia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3430, https://doi.org/10.5194/egusphere-egu23-3430, 2023.

EGU23-5655 | ECS | Orals | CL1.1.3

Astronomically-paced changes in paleoproductivity, winnowing, and mineral flux over Broken Ridge (Indian Ocean) since the Early Miocene 

Jing Lyu, Sofía Bar­ra­gán-Mon­til­la, Gerald Auer, Or Bialik, Beth Christensen, and David De Vleeschouwer

Earth’s climate during the Neogene period changed in several steps from a planet with unipolar ice sheets to today’s bipolar configuration. Yet, time-continuous and well-preserved sedimentary archives from this time interval are scarce. This is especially true for those records that can be used for tracing the role of astronomical climate forcing. Ocean Drilling Program (ODP) Site 752 was drilled on Broken Ridge (Indian Ocean) and provides a time-continuous sedimentation history since the early Miocene in its upper portion.  To date, no astronomical-scale paleoclimate research has been conducted on this legacy ODP site. Here, we use X-ray fluorescence (XRF) core scanning data and benthic foraminifera (BF) taxonomic and quantitative analyses to reconstruct the paleoceanographic changes in the Indian Ocean since 23 Ma. Productivity-related elements from the XRF dataset, show higher productivity during the early Miocene and late Pliocene/early Pleistocene. Moreover, we found strong 405-kyr and ~110-kyr eccentricity imprints in the spectral analysis result of this XRF-derived paleoproductivity proxy. Although the precession signal is also quite remarkable in the spectral analysis results, the 4-cm resolution may not be adequate to further test the precession contribution. Bottom water oxygenation reconstructed using BF, suggest no oxygen minimum zone conditions for the late Miocene on site 752. Dissolved oxygen concentrations (DOC) indicate low oxic conditions (⁓ 2 ml/L) during this time, and relatively low stress species distribution (< 32%) along with abundant oxic species like H. boueana, C. mundulus, L. pauperata and Gyroidinoides spp. suggest predominantly high oxic conditions during the late Miocene (DOC > 2 ml/L). Meanwhile, the grain size (> 425µm) record shows an increasing trend at ~5 Ma, which indicates more current winnowing. Therefore, we argue that the drop in Mn is the result of the increase in the current winnowing, instead of the OMZ expansion. On the other hand, high-amplitude changes in Fe content from the lower Miocene to the middle Miocene, cannot be explained by eolian input, suggesting the source might be the neighbor-distanced Amsterdam-St. Paul hot spot. The source of Fe might be the neighbor-distanced Amsterdam-St. Paul hot spot. We conclude that the legacy ODP Site 752 constitutes an excellent paleoceanographic archive that allows us to reconstruct Indian Ocean dynamics since the early Miocene. New drillings on Broken Ridge with state-of-the-art scientific ocean drilling techniques will provide more detailed information and be highly beneficial for paleoclimatic and paleoceanographic research.

How to cite: Lyu, J., Bar­ra­gán-Mon­til­la, S., Auer, G., Bialik, O., Christensen, B., and De Vleeschouwer, D.: Astronomically-paced changes in paleoproductivity, winnowing, and mineral flux over Broken Ridge (Indian Ocean) since the Early Miocene, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5655, https://doi.org/10.5194/egusphere-egu23-5655, 2023.

The Early Middle Pleistocene Transition (EMPT) represents a fundamental reorganization in Earth’s climate system as the obliquity-dominated glacial/interglacial rhythmicity characterizing the Quaternary got progressively replaced by a high-amplitude, quasi-periodic 100 kyr cyclicity. This critical change in the climatic response to orbital cycles occurred without proportional modifications in the orbital-forcing parameters before or during the EMPT, implying a substantial change internal to the climate system. The EMPT had a severe impact on marine ecosystems. However, the trigger mechanisms and the components of the climate system involved in this global reorganization are still under debate, and high-resolution studies from the equatorial to mid-latitude shelf regions are at present rarely available.

In this study, we analyze the benthic foraminifera assemblage of an expanded section from Site U1460 (eastern Indian Ocean, 27°22.4949′S, 112°55.4296′E, 214.5 meters water depth), collected during International Ocean Discovery Program (IODP) Expedition 356 on the southwestern Australian shelf covering the EMPT. At this site, we provide a new benthic and planktonic foraminifera dataset to better define the response of the Leeuwin Current System during the EMPT on low to mid latitude shelf regions that are strongly sensitive to glacial/interglacial sea-level oscillations. Specifically, benthic foraminifera assemblage and the plankton/benthos (P/B) ratio are used to understand the bottom water community and its reaction to the Leeuwin Current System variations during the EMPT. Additionally, these data will untangle the local impact of eustatic sea-level changes in a highly dynamic setting.

Preliminary data of the microfossil content revealed a polyspecific benthic foraminifera assemblage with high diversity. The most abundant taxa are trochospiral forms (e.g., Cibicides, Cibicidoides, Heterolepa, Nuttallides, Eponides). Triserial and biserial taxa are abundant (e.g., Textularia, Spirotextularia, Gaudryina, Bolivina, Uvigerina). Planispiral tests such as Melonis and Lenticulina are also commonly present, as well as uniserial ones such as Siphogenerina, Lagena, and Cerebrina. Preservation varies significantly between glacial and interglacial intervals. Particularly, benthic foraminifera are poorly to moderately preserved during glacial stages while exhibiting moderate to good preservation in the interglacials. The variations in the P/B ratio allowed to constrain the sea-level changes along the Australian shelf. Specifically, higher and lower values of this ratio indicate highstand and lowstand phases, respectively. In this regard, foraminifera data will be integrated in a multiproxy dataset available for Site U1460 to obtain new insights on sea-level-driven environmental changes in the area during the EMPT. This, in turn, will allow to resolve the impact of local versus global climatic change across the studied interval.

How to cite: Arrigoni, A., Auer, G., and Piller, W. E.: The Leeuwin Current System during the Early Middle Pleistocene Transition (EMPT): foraminiferal assemblage and sea level reconstruction, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5891, https://doi.org/10.5194/egusphere-egu23-5891, 2023.

EGU23-7477 | Orals | CL1.1.3 | Highlight

Pliocene-Pleistocene evolution of the Agulhas leakage to the Atlantic Ocean 

Erin McClymont, Thibaut Caley, Christopher Charles, Aidan Starr, Maria Luisa Sanchez Montes, Martin West, Linda Rossignol, Ian Hall, and Sidney Hemming

The Agulhas leakage is an important contributor to the global thermohaline conveyor system, adding warm and saline subtropical waters from the Indian Ocean to the South-east Atlantic Ocean. It has been proposed that weaker Agulhas leakage occurred during glacial stages, but that leakage was reinvigorated during deglaciations and was, in turn, potentially important for the development of interglacial warmth.

Little is known about the longer-term evolution of Agulhas leakage during the Pliocene and Pleistocene (the last 5.3 Ma). In the Pliocene, the continental ice sheets were smaller in size, and the position and strength of key ocean and atmosphere circulation systems in the South Atlantic region were different. The Pliocene is also characterised by a series of gateway changes which are argued to have affected North Atlantic climate, but the response of the Agulhas leakage system remains unclear. It is also unclear whether the ‘early deglaciation’ signal is a specific component of the late Pleistocene 100 kyr cycles. Identifying how and when this signal developed could have important implications for understanding the impact of ocean circulation changes on the development of the mid-Pleistocene climate transition (MPT) ~1.2-0.6 Ma, when the period of the glacial-interglacial cycles shifted from ~41 kyr to ~100 kyr.

Here we present initial results from a new Cape Basin site (Site U1479, 35°03.53′S; 17°24.06′E), which was recovered by IODP Expedition 361 in 2016 from the western slope of the Agulhas Bank (Hall et al., 2016). We combine reconstructions of sea surface temperatures (using the alkenone-derived UK37’ index) and sea surface salinity (from alkenone dD analysis) with details of planktonic foraminifera assemblages, to identify and understand variability in Agulhas leakage operating across both orbital and longer timescales. There is an overall cooling of ~4°C since the Pliocene, but it is focussed around ~2 Ma and from 1.2 Ma. Orbital scale and longer-term variability in SST, sea surface salinity and Agulhas leakage fauna are also determined, demonstrating that the Agulhas leakage system has evolved across a range of timescales through the Plio-Pleistocene, especially in association with the MPT.

References

Hall, I.R., Hemming, S.R., LeVay, L.J., and the Expedition 361 Scientists, 2016. Expedition 361 Preliminary Report: South African Climates (Agulhas LGM Density Profile). International Ocean Discovery Program. http://dx.doi.org/10.14379/iodp.pr.361.2016

How to cite: McClymont, E., Caley, T., Charles, C., Starr, A., Sanchez Montes, M. L., West, M., Rossignol, L., Hall, I., and Hemming, S.: Pliocene-Pleistocene evolution of the Agulhas leakage to the Atlantic Ocean, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7477, https://doi.org/10.5194/egusphere-egu23-7477, 2023.

EGU23-7924 | ECS | Orals | CL1.1.3

Mid-Pliocene subtropical front variability in the Southern Ocean 

Suning Hou, Malte Stockhausen, Leonie Toebrock, Francesca Sangiorgi, Aidan Starr, Melissa Berke, Martin Ziegler, and Peter Bijl

The mid-Pliocene (3.3-3.0 Ma) is a time when the Earth's climate fluctuated between cold glacial conditions (marine isotope stage M2; 3.3 Ma) and periods when global temperatures were ~3°C warmer than the pre-industrial (Mid-Pliocene warm period; 3.3-3.025 Ma) when CO2 concentrations reached ~400 ppm. Thus, the paleoclimate reconstruction of this time interval provides an analogue of the present-day and near-future climate change in a moderate pCO2 increase scenario. Although fluctuations in benthic δ18O in the mid-Pliocene were predominantly associated with Northern Hemisphere glacial dynamics, the contribution of Antarctic ice to mid-Pliocene glacial-interglacial cyclicity is unknown. Moreover, the surface oceanographic response of the Southern Ocean to Pliocene glacial-interglacial climate change is poorly documented

We studied 2 sedimentary records from offshore west Tasmania (ODP Site 1168) and the Agulhas Plateau (IODP Site U1475), both located close to the modern position of the subtropical front (STF) in the Southern Ocean and encompassing the mid-Pliocene. The STF is a crucial surface water mass boundary separating cold, fresher subantarctic waters and warm, more saline subtropical waters and plays a key role in global ocean circulation, ocean-atmosphere CO2 exchange and meridional heat transport.

We use lipid biomarkers, dinoflagellate cyst assemblages and benthic foraminiferal clumped isotopes to reconstruct surface and bottom oceanographic conditions over the mid-Pliocene including the M2 glaciation. We identify similar sea surface temperature (SST) changes at the two sites. Site 1168 SST cools from 18°C to 12°C and at Site U1475 from 21°C to 18°C across the M2 glaciation. Dinoflagellate cyst assemblages suggest strong latitudinal shifts of the subtropical front associated to Pliocene glacial-interglacial climate changes. However, the most profound assemblage shift occurs at the M2 deglaciation stage at both sites, suggesting strong and unprecedented surface water freshening. Preliminary clumped isotope results suggest bottom water temperatures at Site 1168 are stable around 9°C between M2 and mid-Piacenzian warm period, indicating that the enrichment in δ18O across the M2 is mainly contributed by large ice volume changes. We interpret the surface water freshening of the subantarctic zone as signaling major iceberg calving following the M2 glaciation, suggesting that the Antarctic contribution to the M2 glaciation was profound.

How to cite: Hou, S., Stockhausen, M., Toebrock, L., Sangiorgi, F., Starr, A., Berke, M., Ziegler, M., and Bijl, P.: Mid-Pliocene subtropical front variability in the Southern Ocean, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7924, https://doi.org/10.5194/egusphere-egu23-7924, 2023.

EGU23-9653 | Posters on site | CL1.1.3

Using Legacy Data to Explore the Onset and Development of the Southern Hemisphere Supergyre 

Beth Christensen, Anna Joy Drury, Gerald Auer, David DeVleeschouwer, and Jing Lyu

The Southern Hemisphere Supergyre refers to the strong connections and intertwining of the southern subtropical gyres. Tasman Leakage is a fundamental part of the supergyre, as well as of the  global thermohaline circulation, as it provides a return flow from the Pacific and Indian Oceans to the North Atlantic at intermediate depths.   However, both are only relatively recently documented, and the timing and conditions of onset are not well understood.

This study characterizes the newly identified onset of Tasman Leakage in sedimentary records in and around the Indian Ocean using core descriptions and data derived from sediments.  Since much of this is legacy core material, core photographs were used to develop complementary and more continuous records to help refine the timing of onset.  These newly constructed time series based on core photographs are compared with X-ray Fluorescence time series based on core scanning provide both insight into onset of Tasman Leakage and a first test of the utility of time series based on core photos.

This effort will focus on the intermediate water pathway associated with Tasman Leakage and identify conditions at critical around the basin from at least 8 Ma at Broken Ridge and Mascarene Plateau to understand the role of Indian Ocean intermediate waters in the Southern Hemisphere Supergyre in major climate events of the late Miocene. 

This proposed work provides the first synoptic view of SHS onset using intermediate depth cores, which in turn will provide an important framework for basin-wide synthesis of Indian Ocean drilling, much of which is outside of the main pathway of the SHS.  It will also serve as a test of the utility of legacy material as primary data.

How to cite: Christensen, B., Drury, A. J., Auer, G., DeVleeschouwer, D., and Lyu, J.: Using Legacy Data to Explore the Onset and Development of the Southern Hemisphere Supergyre, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9653, https://doi.org/10.5194/egusphere-egu23-9653, 2023.

A collapse of the Atlantic Meridional Overturning Circulation (AMOC) could drive widespread changes in tropical rainfall, but the underlying physical mechanisms are poorly understood. Numerical simulations validated against hydroclimate changes during Heinrich Stadial 1(HS1) – the most recent, best-documented AMOC collapse – show a global response driven by cooling over the tropical North Atlantic. This pattern of ocean cooling is key to link changes in rainfall across the tropics with the reductions in AMOC strength. Cooling over the tropical North Atlantic drives changes over the Pacific and Indian oceans that uniquely explain the paleoclimatic evidence. A similar response is active in simulations of future greenhouse warming, but model disagreement regarding the pattern of AMOC-induced tropical cooling produces divergent rainfall predictions across the tropics. Models with responses consistent with the paleodata predict more pronounced rainfall reductions across the tropics, revealing a heightened risk of drought over vulnerable societies and ecosystems worldwide.

How to cite: DiNezio, P.: The tropical response to a collapse of the Atlantic Meridional Overturning Circulation, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10410, https://doi.org/10.5194/egusphere-egu23-10410, 2023.

EGU23-11089 | Posters on site | CL1.1.3

Understanding the Changes in the Post-Glacial Depositional Environments through High-resolution Geochemical Proxies in the Central Yellow Sea 

Jin Hyung Cho, Byung-Cheol Kum, Seok Jang, Cheolku Lee, Seunghun Lee, Young Baek Son, and Seom-Kyu Jung

Sediment cores (A10 and I06) were analyzed using a high-resolution X-ray fluorescence (XRF) core scanner to understand changes in paleo-sedimentary environments of the study area. Age dating reflects environmental changes from interglacial marine isotope stage 3 (MIS 3) through the last glacial maximum (LGM; MIS 2) to the Holocene. Three layers were identified in the seismic profiles as follows: unit 1 (thickness = ca. 5 m) in a homogeneous sedimentary phase; unit 2 formed by erosion; unit 3, which is parallel and continuous. XRF elemental proxy data indicate anomalous distributions of Ca/Fe, Ca/K, and Fe/Ti caused by organic substances that appear at several depths in the A10 core. Results show that the seafloor was exposed to air during the LGM. The I06 core shows characteristic anomalies at depths of 0.8, 1.5, and 2.5 m, which were caused by sediments supplied from surrounding rivers.

How to cite: Cho, J. H., Kum, B.-C., Jang, S., Lee, C., Lee, S., Son, Y. B., and Jung, S.-K.: Understanding the Changes in the Post-Glacial Depositional Environments through High-resolution Geochemical Proxies in the Central Yellow Sea, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11089, https://doi.org/10.5194/egusphere-egu23-11089, 2023.

EGU23-11804 | ECS | Posters on site | CL1.1.3

Late Cenozoic oxygenation of the Pacific Ocean, a perspective from planktic foraminiferal I/Ca 

Katrina Nilsson-Kerr, Babette Hoogakker, Dharma Andrea Reyes Macaya, and Helge Arne Winkelbauer

The Pacific Ocean hosts one of the most extensive areas of oxygen deficient waters at present with well-defined areas of oxygen minima existing both north and south of the equator along the eastern basin. This deficiency in oceanic O2 concentrations is mainly due to a combination of upwelling induced high primary productivity and poorly ventilated intermediate waters. Across the Miocene-Pliocene the Pacific Ocean is thought to have been distinctly different with an elevated water column temperature profile, reduced Walker circulation, active deep-water formation in the north Pacific, high primary productivity, and differences in its fundamental configuration with gateway changes occurring at the eastern and western margins. Collectively, and individually, these different factors will have had implications on Pacific Ocean O2 distribution. To better understand the past oxygenation of Pacific waters amidst this backdrop of climatic and geographical changes we reconstruct iodine/calcium ratios from planktic foraminifera across multiple Pacific Ocean sites. Our I/Ca records extending from the mid-late Miocene through to Pleistocene show the progressive reduction in oceanic O2 content across the Pacific. We place these records in the context of changes in the Central American Seaway and the resultant changes in oceanic circulation.

How to cite: Nilsson-Kerr, K., Hoogakker, B., Reyes Macaya, D. A., and Winkelbauer, H. A.: Late Cenozoic oxygenation of the Pacific Ocean, a perspective from planktic foraminiferal I/Ca, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11804, https://doi.org/10.5194/egusphere-egu23-11804, 2023.

EGU23-12026 | Posters on site | CL1.1.3

Microfossil-based reconstruction of latitudinal thermal gradients in the Southern Ocean during MIS11c 

Iván Hernández-Almeida, Janik Hirt, and Johan Renaudie

The Southern Ocean (SO) is a region particularly sensitive to the anthropogenic global warming because of the raising ocean temperatures, leading to latitudinal shifts of oceanographic fronts which govern the position of the South Westerly Winds (SWW) in the SO. Sediments represent a natural climate archive that allows to observe changes in Earth’s systems only affected by natural forcing. In this sense, Marine Isotope Stage (MIS) 11c (∼426–396 ka) is the most similar climate state to the ongoing climate warming that we are facing today, but quantiative climate reconstructions in the SO for this period are scarce. Radiolarians (zooplankton) live in a wide range of depths in the water column and are very abundant in sediments throughout the Neogene in the SO.  Recent radiolarian databases and transfer functions for the SO (Lawler et al. 2021; Civel-Mazens et al. 2022) enable reconstructing quantitatively past climate. For this, three sediment cores, drilled during IODP Expedition 382 and located along latitudinal gradient in the Atlantic sector of the SO (between 53.2°S and 59.4°S), were studied for their fossil radiolarian assemblage composition for the interval corresponding to MIS 11c. Application of the newly developed radiolarian transfer functions to the fossil radiolarian assemblages in these three cores enabled the reconstruction of ocean temperatures and thermal gradients in the SO during MIS 11c. These reconstructions will be used also to infer the position of the oceanographic frontal zones and the position of the SWW in this sector of the SO in the past, which are important for promoting upwelling nutrient rich bottom waters and degassing of deeply sequestered CO2 during the interglacial maxima.

References:

Civel-Mazens, M., Cortese, G., Crosta, X., Lawler, K. A., Lowe, V., Ikehara, M., & Itaki, T. (2022). New Southern Ocean transfer function for subsurface temperature prediction using radiolarian assemblages. Marine Micropaleontology, 102198.

Lawler, K. A., Cortese, G., Civel-Mazens, M., Bostock, H., Crosta, X., Leventer, A., & Armand, L. K. (2021). The Southern Ocean Radiolarian (SO-RAD) dataset: a new compilation of modern radiolarian census data. Earth System Science Data, 13(11), 5441-5453.

How to cite: Hernández-Almeida, I., Hirt, J., and Renaudie, J.: Microfossil-based reconstruction of latitudinal thermal gradients in the Southern Ocean during MIS11c, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12026, https://doi.org/10.5194/egusphere-egu23-12026, 2023.

EGU23-12214 | Posters on site | CL1.1.3

Middle to Late Miocene responses of primary producers to monsoonal upwelling in the western Arabian Sea 

Gerald Auer, Or M Bialik, Mary-Elizabeth Antoulas, and Werner E Piller

Today, the western Arabian Sea represents one of the most productive marine areas in the world. The high productivity in this region is governed by upwelling related to the intensity of the South Asian Monsoon (SAM). Previous studies show that high productivity has prevailed since the late Early Miocene (~15 Ma) after establishing a favorable tectonic configuration in the region. Existing productivity records have further demonstrated that upwelling intensity varied in the western Arabian Sea over different time scales. This variability has been attributed mainly to changing monsoonal upwelling intensity linked to global climatic changes. However, the abundance and contribution of individual primary producers (calcareous nannoplankton and diatoms) have never been studied in the context of upwelling and SAM changes. To fully disentangle the variability in the context of local upwelling changes and nutrient availability at ODP Site 722B, we link assemblage-based primary productivity records to the established multi-proxy framework in the region. Quantitative nannofossil assemblage records and absolute diatom abundances are examined in conjunction with existing and new planktonic foraminifer data to better constrain the temporal variation in productivity in the western Arabian Sea.

In our record, the first increase in cool and eutrophic nannofossil taxa (i.e., Coccolithus pelagicus and Reticulofenestra pseudoumbilicus) corresponds to the initial phase of sea surface temperatures (SST) cooling ~13.4 Ma. By ~12 Ma, rare occurrences of diatoms frustules correspond to the maximum abundances of Reticulofenestra haqii and Reticulofenestra antarctica, indicating higher upwelling derived nutrient levels. However, these changes ~12 Ma occur in the absence of coeval high latitude cooling, as shown by deep-sea benthic oxygen isotope records. By 11 Ma, diatom abundance increases significantly, leading to alternating blooms of upwelling sensitive diatom species (Thalassionema spp.) and eutrophic nannoplankton species (e.g., R. pseudoumbilicus). These changes in primary producers are also well reflected in geochemical proxies with increasing δ15Norg. values (> 6‰) and high C/N ratios also confirming high productivity and beginning denitrification at the same time.

Our multi-proxy-based evaluation of Site 722B primary producers thus indicates a stepwise evolution of productivity in the western Arabian Sea related to the intensity of upwelling and forcing SAM dynamics throughout the Middle to Late Miocene. The absence of full correspondence with existing deep marine climate records also suggests that local processes, such as lateral nutrient transport, likely played an important role in modulating productivity in the western Arabian Sea. We show that using a multi-proxy record provides novel insights into how fossil primary producers responded to changing nutrient conditions through time in a monsoon-wind-driven upwelling zone.

How to cite: Auer, G., Bialik, O. M., Antoulas, M.-E., and Piller, W. E.: Middle to Late Miocene responses of primary producers to monsoonal upwelling in the western Arabian Sea, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12214, https://doi.org/10.5194/egusphere-egu23-12214, 2023.

EGU23-13273 | Posters on site | CL1.1.3

Late Pleistocene-Holocene coccolithophore variations in the Subantarctic South Pacific 

Elisa Malinverno, Mariem Saavedra-Pellitero, Amy Jones, Sofia Cerri, and Tom Dunkley Jones and the IODP-383 Scientific Party

International Ocean Discovery program (IODP) Expedition 383 Dynamics of the Pacific Antarctic Circumpolar Current (DYNAPACC) (Lamy et al., 2019; 2021) drilled a series of cores from the Pacific sector of the Southern Ocean in order to explore atmosphere-ocean-cryosphere glacial-interglacial dynamics their implications for regional and global climate changes. IODP Expedition 383 sites constitute the first continuous drill cores at key locations of the Subantarctic Pacific Southern Ocean extending through the Pleistocene and back into the Pliocene.

Here we focus on coccolith relative and absolute abundance as well as productivity variations for the last 0.5 Million year, in order to understand the nannofloral response to glacial-interglacial cycles and related changes in carbonate production and export. Our data has been generated at IODP Sites U1539 (56°09.0655′S, 115°08.038′W, ~1600 nmi west of the Strait of Magellan at 4070 m water depth) and U1540 (55°08.467′S, 114°50.515′W, ~1600 nmi west of the Strait of Magellan at 3580 m water depth), drilled at a southern and northern location in the central Pacific within the ACC, respectively. Coccolithophore diversity and coccolith numbers change dramatically in the studied cores, ranging from high values during interglacials (up to ca. 1011 coccoliths per gram of sediment, as in MIS11, Saavedra-Pellitero et al., 2017) to low values during the glacials, where they are outcompeted by siliceous microfossils, mostly diatoms.

References

Lamy, F., Winckler, G., Alvarez Zarikian, C.A., and the Expedition 383 Scientists, 2019. Expedition 383 Preliminary Report: Dynamics of the Pacific Antarctic Circumpolar Current. International Ocean Discovery Program. https://doi.org/10.14379/iodp.pr.383.2019

Lamy, F., Winckler, G., Alvarez Zarikian, C.A., and the Expedition 383 Scientists, 2021. Dynamics of the Pacific Antarctic Circumpolar Current. Proceedings of the International Ocean Discovery Program, 383: College Station, TX (International Ocean Discovery Program). https://doi.org/10.14379/iodp.proc.383.2021

Saavedra-Pellitero M., Baumann K.-H., Lamy F., and Köhler P., 2017. Coccolithophore variability across Marine Isotope Stage 11 in the Pacific sector of the Southern Ocean and its potential impact on the carbon cycle. Paleoceanography, 32, 864–880, doi:10.1002/2017PA003156.

How to cite: Malinverno, E., Saavedra-Pellitero, M., Jones, A., Cerri, S., and Dunkley Jones, T. and the IODP-383 Scientific Party: Late Pleistocene-Holocene coccolithophore variations in the Subantarctic South Pacific, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13273, https://doi.org/10.5194/egusphere-egu23-13273, 2023.

EGU23-17081 | ECS | Posters on site | CL1.1.3

The early to mid-Pliocene latitudinal migration of the Southern Ocean subtropical front (IODP Site U1475, Agulhas Plateau) 

Deborah Tangunan, Ian Hall, Luc Beaufort, Melissa Berke, Leah LeVay, Luz Maria Mejia, Heiko Palike, Aidan Starr, and Jose Abel Flores

The latitudinal migration of the Southern Ocean hydrographic fronts has been suggested to influence oceanographic conditions within the Indian-Atlantic Ocean gateway by restricting the amount of warm, saline water from the Indo-Pacific, transported by Agulhas Current, feeding into the South Atlantic via the Agulhas leakage. The Agulhas Current is an integral part of the global thermohaline circulation system as it acts as potential modulator of the Atlantic Meridional Overturning Circulation, which drives changes in regional and global climate, over at least the last 1.4 million years. However, the dynamics of this frontal system and associated changes in surface ocean biogeochemistry have not been explored beyond this time period due to absence of long continuous records spanning the Pliocene. Using International Ocean Discovery Program Site U1475 located on the southwestern flank of the Agulhas Plateau (41°25.61′S; 25°15.64′E; 2669 m water depth), we present high-resolution palaeoclimate records spanning the early to mid-Pliocene (~2.8 to ~5 Ma), from assemblage composition and morphometry of coccoliths, combined with oxygen and carbon stable isotopes from the bulk coccolith fraction. Our new Pliocene reconstructions offer evidence of the changing position of the subtropical front in the Southern Indian Ocean, driving variations in surface ocean conditions (e.g., nutrients, temperature, stratification), and thus biological productivity. We also explore expressions of coccolith δ13C vital effects from size-separated coccolith fractions together with planktic foraminifer carbon and oxygen stable isotopes from co-registered samples, that have been linked to cell size, growth rate, and calcification degree, providing empirical correlation with aqueous and atmospheric CO2 concentrations.

How to cite: Tangunan, D., Hall, I., Beaufort, L., Berke, M., LeVay, L., Mejia, L. M., Palike, H., Starr, A., and Flores, J. A.: The early to mid-Pliocene latitudinal migration of the Southern Ocean subtropical front (IODP Site U1475, Agulhas Plateau), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-17081, https://doi.org/10.5194/egusphere-egu23-17081, 2023.

EGU23-1862 | ECS | Posters on site | CL1.1.4

Steady subtropical terrestrial aridity since Pangea 

Zhibo Li and Yongyun Hu

Modern terrestrial aridity affects billions of peoples’ lives and is projected to be severe in a warming future. Former works concentrated on aridity changes in the future, while deep-time paleoclimate simulations and proxies provide a new perspective for us to fully understand the evolution of terrestrial aridity. Distributions of arid and humid regions have strong implications for the existence of geological proxies, such as evaporites and coals. A systematic study of the land-sea distribution and aridity evolution has strong benefits to both science and industry. Here, we use Community Earth System Model version 1.2.2 (CESM 1.2.2) to investigate the evolution of terrestrial aridity since the supercontinent Pangea period. Simulation results show that the terrestrial arid regions are always concentrated in the subtropics, and the larger the subtropical land, the larger the arid region. During the Cretaceous when the Pangea breaks up completely, the arid/semi-arid area decreases evidently. The semi-arid area is proven to significantly expand under CO2-induced global warming, which is due to the dominant contribution from enhanced potential evapotranspiration. It is concluded that the geologic evolution of terrestrial aridity is dominated by subtropical land area, then by land fragmentation and CO2 concentrations.

How to cite: Li, Z. and Hu, Y.: Steady subtropical terrestrial aridity since Pangea, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1862, https://doi.org/10.5194/egusphere-egu23-1862, 2023.

EGU23-2017 | ECS | Orals | CL1.1.4

On the climatic influence of CO2 forcing in the Pliocene 

Lauren Burton, Alan Haywood, Julia Tindall, Aisling Dolan, and Daniel Hill and the PlioMIP2 participants

The Pliocene (~3 million years ago) is of great interest to the palaeoclimate community as a potential palaeoclimate analogue for future climate change. It was the most recent period of sustained warmth above pre-industrial levels, was recent enough to have similar-to-modern continental configuration, and had similar-to-modern atmospheric CO2 concentrations around 400 ppm. If we are to use the Pliocene as a palaeoclimate analogue for our warmer future, it is important to consider the drivers of Pliocene climate change as well as its comparable large-scale climate features.  

We implement a novel, simple linear factorisation method to assess the relative influence of CO2 forcing in Pliocene climate change compared to non-CO2 forcings such as changes to ice sheets, orography and vegetation. Outputs of this method are termed “FCO2” and reflect the relative influence of CO2, where 1 represents wholly dominant CO2 forcing and 0 represents wholly dominant non-CO2 forcing.

The accuracy of the FCO2 method is evidenced by comparison to an energy balance analysis using a method previous used in Pliocene climate research, and the energy balance analysis also adds nuance to the FCO2 results and highlights feedbacks that arise from CO2 forcing.

We apply the FCO2 method to seven models from the PlioMIP2 ensemble (CCSM4-UoT, CESM2, COSMOS, HadCM3, IPSLCM5A2, MIROC4m and NorESM1-F) which are found to be representative of the ensemble in terms of the modelled climate sensitivity and global mean surface air temperature anomaly.

CO2 forcing is found to be the most important driver of surface air temperature change in six of the seven models (global mean FCO2 of ensemble = 0.56), and five of the seven models for sea surface temperature (global mean FCO2 of ensemble = 0.56). CO2 forcing is also the most important driver for precipitation change (global mean FCO2 of ensemble = 0.51), but spatial patterns in precipitation change are predominantly driven by non-CO2 forcings and the effects of these must not be overlooked.

CO2 forcing being the most important driver of change in the climate variables considered here suggests that the Pliocene is a relevant analogue for our warmer future, but attention must also be paid to the significant effects of non-CO2 forcing in the Pliocene which may be less analogous to the present and near-term future.

Our results also have implications for the interpretation of Pliocene proxy data and data-model comparison. For example, by assessing FCO2 in regions with large data-model discord it could become possible to highlight where the implementation of boundary conditions is largely responsible for the discord and, hence, where model boundary conditions should be modified. Given the spatial and latitudinal patterns seen in the FCO2 results, it may also be possible to suggest new sites from which additional proxy data would be most useful.

How to cite: Burton, L., Haywood, A., Tindall, J., Dolan, A., and Hill, D. and the PlioMIP2 participants: On the climatic influence of CO2 forcing in the Pliocene, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2017, https://doi.org/10.5194/egusphere-egu23-2017, 2023.

One of the prominent features of the Cretaceous/Paleocene (K-Pg) mass extinction is the highly selective extinction of marine phytoplankton. It is generally thought that the disturbances in the marine biogeochemical processes were caused by the asteroid impact in the Yucatan and/or the Deccan volcanism. However, which one is dominant remains debated. Here, we use Community Earth System Model (CESM1.2.2) to explore their influences on the latest Cretaceous marine biosphere. It is found that the asteroid impact led to a decrease by ~32% in the calcareous algae but an increase of ~95% in the diatom, consistent with the divergent trends of the abundance of calcium carbonate and biogenic silica archived in marine sediments. The rapid decline of the calcareous algae was because of lowered temperature and decreased light due to the asteroid impact, whereas the increase of diatoms was induced by the input of impact-generated debris and enhanced vertical mixing of the surface ocean, both of which increased nutrient supply. The counteraction between calcareous algae and diatom, to some extent, ensured the resilience of the bulk ocean biogeochemical cycle to the asteroid impact in the latest Cretaceous, with the total biomass increasing by ~2.7%. In comparison, the long-term forcing  (CO2-induced warming) due to Deccan volcanism reduced 10-20% of all types of phytoplanktons. The trend and magnitude of this change are significantly different from that triggered by the asteroid impact, suggesting that asteroid impact was more likely the primary driver of the selective phytoplankton extinction at the K-Pg boundary.

How to cite: Chen, Y., Zhang, J., Liu, Y., and Hu, Y.: Distinct Responses of Marine Phytoplanktons to the Asteroid Impact and Volcanism at the Cretaceous-Paleogene Boundary (K-Pg), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2778, https://doi.org/10.5194/egusphere-egu23-2778, 2023.

EGU23-3438 | ECS | Orals | CL1.1.4

High-biased climate sensitivity estimates from mid-Pliocene Warm Period temperatures 

Martin Renoult, Navjit Sagoo, and Thorsten Mauritsen

The warm Pliocene epoch is used to estimate Earth's equilibrium climate sensitivity (ECS), which is the long-term temperature change after a sustained doubling of atmospheric CO2 over pre-industrial levels. Using an emergent constraint on the relationship between mid-Pliocene Warm Period simulated temperatures and ECS, we estimate ECS to be 4.8 K, which is higher than previous studies on the Pliocene. This is partly due to using warmer SST reconstruction than before; a consequence of focusing modelling efforts on the mid-Pliocene warm period. Using the temperatures of a broader period within the Pliocene, we quantify ECS to be 3.1 K. Further uncertainties on proxy data and data-model disagreements are expected to affect ECS estimates. We find that CO2 uncertainties are the main driver of variations in ECS estimates, followed by biases from seasonal temperatures. The bias from polar amplification is apparently small, but could be an overlooked source of error. We conclude that the Pliocene-based emergent constraint is nonetheless robust and is likely to improve further as geological reconstructions improve.

How to cite: Renoult, M., Sagoo, N., and Mauritsen, T.: High-biased climate sensitivity estimates from mid-Pliocene Warm Period temperatures, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3438, https://doi.org/10.5194/egusphere-egu23-3438, 2023.

EGU23-3804 | Orals | CL1.1.4 | Highlight

The hot and dry climate of the supercontinent Pangea 

Yongyun Hu

The Pangea era was an exceptional phase in Earth’s history. It was characterized by its hothouse climate state and the latest supercontinent. And the supercontinent is South-North oriented, nearly extending from South Pole to North Pole. Geological evidence shows that the climate of the supercontinent Pangea was not only hot but also dry. In this talk, I will show simulation results that the dry climate condition of Pangea was largely due to the broad landmass and its South-North orientation. Such a particular continental configuration resulted in much weaker precipitation in the tropics and extratropics, not only over land but also over ocean, compared with other hot periods in the Phanerozoic. Associated mechanisms of the slower hydrological cycle of the supercontinent Pangea will also be discussed. 

How to cite: Hu, Y.: The hot and dry climate of the supercontinent Pangea, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3804, https://doi.org/10.5194/egusphere-egu23-3804, 2023.

EGU23-3808 | Posters on site | CL1.1.4

Abnormal local warming after reducing solar constant under special paleogeography configurations 

Mengyu Wei, Jun Yang, Yongyun Hu, Xiang Li, Jiawenjing Lan, Jiaqi Guo, and Shineng Hu

In the deep past the solar constant was lower than present. In this study, we employ the Community Earth System Model version 1.2.2 (CESM1.2.2) to examine the effect of reduced solar constant on the climate of the past 250 million years. Two groups of slice experiments (fixed pre-industrial solar constant versus decreased solar constant) with 26 different paleogeography configurations and with fixed CO2 concentration (2800 ppmv) were run. In all the experiments, the global-mean surface temperature decreases as reducing the solar constant, consistent with previous studies. However, there is significant local surface warming in the experiments of 70 Ma, 90 Ma, and 150 Ma. The warming has a magnitude of about 2 K and occurs in the sub-polar ocean region. At 70 Ma and 90 Ma, the dominant mechanism is atmospheric teleconnection between tropics and sub-polar regions. Cooling in the tropics induces abnormal atmospheric waves, and the waves propagate to the sub-polar region and subsequently change surface winds there. The abnormal winds cause an increased poleward ocean heat transport, warming the regional surface. The second mechanism is that the reducing solar constant shifts the westly jets equatorward and causes an eastern wind anomaly, which also explains the warming at 150 Ma. Moreover, positive thermohaline feedback related to enhanced surface evaporation enhances the thermohaline circulation and thereby acts to further warm the surface. The phase of the atmospheric waves and their propagation path strongly depend on the land-sea configurations, so the abnormal local warming occurs in special periods only.

How to cite: Wei, M., Yang, J., Hu, Y., Li, X., Lan, J., Guo, J., and Hu, S.: Abnormal local warming after reducing solar constant under special paleogeography configurations, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3808, https://doi.org/10.5194/egusphere-egu23-3808, 2023.

EGU23-3814 | ECS | Orals | CL1.1.4

South Asian summer monsoon enhanced by the uplift of Iranian Plateau in Middle Miocene 

Meng Zuo, Yong Sun, Yan Zhao, Gilles Ramstein, Lin Ding, and Tianjun Zhou

The South Asian summer monsoon (SASM) remarkably strengthened during the Middle Miocene (16-11 Ma), coincident with the rapid uplifts of the Iranian Plateau (IP) and the Himalaya (HM). Although the development of the SASM has long been linked to the topographic changes in the Tibetan Plateau (TP) region, the effects of the HM and IP uplift are still vigorously debated, and the underlying mechanisms remain unclear. Based on Middle Miocene paleogeography, we employ the fully coupled earth system model CESM to perform a set of topographic sensitivity experiments with altered altitudes of the IP and the HM. Our simulations reproduce the strengthening of the SASM in northwestern India and over the Arabian Sea, largely attributing to the thermal effect of the IP uplift. The elevated IP insulates the warm and moist airs from the westerlies in the south of the IP and produces a low-level cyclonic circulation around the IP, which leads to the convergence of the warm and moist air in the northwestern India and triggers positive feedback between the moist convection and the large-scale monsoon circulation, further enhancing the monsoonal precipitation. Whereas the HM uplift produces orographic precipitation without favorable circulation adjustment for the SASM. We thus interpret the intensification of the Middle Miocene SASM in the western part of the South Asia as a response to the IP uplift while the subtle SASM change in eastern India reflects the effects of the HM uplift.

How to cite: Zuo, M., Sun, Y., Zhao, Y., Ramstein, G., Ding, L., and Zhou, T.: South Asian summer monsoon enhanced by the uplift of Iranian Plateau in Middle Miocene, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3814, https://doi.org/10.5194/egusphere-egu23-3814, 2023.

The warmer-than-present (5-10 ℃) climate during the Miocene Climate Optimum (MMCO, approximately 16.9-14.7 Ma) is likely to serve as a reference for the future pessimistic warming scenarios. Forced with MMCO boundary conditions, the warming and ocean circulation changes are simulated by the fully-coupled climate model FGOALS-g3. Under 400 ppmv CO2 concentration, the model generally simulates the MMCO temperature well with the small biases in the mid and low latitudes compared to proxy data. Large biases in the high latitudes show that FGOALS-g3 fails to reproduce the weak meridional gradient indicated by proxy. MMCO surface albedo decreases significantly owing to changes in worldwide forest cover in the boundary condition and the amount of sea ice melt due to the warming climate compared with the PI run. Accompanied by global ocean warming and land-sea distribution changes in MMCO, both oceanic wind-driven and thermohaline circulations strengthen. The intensified MMCO Atlantic Meridional Overturning Cell (AMOC) relative to PI is likely linked to the altered ocean-gateway configuration, particularly at low and middle latitudes. When the MMCO Panama Seaway and Tethys Seaway open, waters from the Pacific and the Indian Ocean converge and mix in the west of the North Atlantic. Joined by this water supplement (~30 Sv) from other ocean basins, the Gulf Stream enhances and flows more poleward, more heat and salinity are carried to the Subpolar North Atlantic. Consequently, the sea ice retreats and the Atlantic Meridional Overturning Cell enhances in the North Atlantic in the MMCO.

How to cite: Wei, J., Liu, H., and Zhao, Y.: Simulation of the climate and ocean circulations in the Middle Miocene Climate Optimum by a coupled model FGOALS-g3, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4102, https://doi.org/10.5194/egusphere-egu23-4102, 2023.

EGU23-4227 | ECS | Orals | CL1.1.4

Variations in the amplitude of El Niño–Southern Oscillation in the past 250 million years 

Xiang Li, Shineng Hu, Yongyun Hu, Jiaqi Guo, Jiawenjing Lan, Qifan Lin, and Shuai Yuan

The El Niño–Southern Oscillation (ENSO), originating in the central and eastern equatorial Pacific, is a defining mode of interannual climate variability with profound impact on global climate and ecosystems. Although ongoing coordinated community efforts have offered insights into how ENSO will change in the future under anthropogenic warming, the geological history of ENSO remains intricate. In particular, there is a clear lack of systematic study on how ENSO has evolved in response to vast variations in land-sea distributions and climate mean states over geological timescales. To unravel this, we analyze a series of time-slice coupled climate simulations forced by changes of paleogeography, atmospheric CO2 concentrations, and solar radiation in the past 250 million years (Myr). Our simulations for the first time demonstrate that ENSO is the leading mode of tropical Pacific sea surface temperature (SST) in the past 250 Myr. Further, the amplitude of ENSO is predominantly captured by the zonal advective feedback and thermocline feedback, both of which are primarily regulated by eastern equatorial Pacific climatological SST. These findings highlight the significance of climate mean states in interpretation of the amplitude of ENSO during the deep past, and provide enlightening implications for constraining future climate change.

How to cite: Li, X., Hu, S., Hu, Y., Guo, J., Lan, J., Lin, Q., and Yuan, S.: Variations in the amplitude of El Niño–Southern Oscillation in the past 250 million years, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4227, https://doi.org/10.5194/egusphere-egu23-4227, 2023.

EGU23-6249 | ECS | Orals | CL1.1.4

Bipolar deep-water formation during the climatic warmth of the early-middle Eocene 

Andrew McIntyre, Philip Sexton, and Pallavi Anand

The Atlantic meridional overturning circulation (AMOC) is a major component of global ocean circulation and through the distribution of heat, salt, and nutrients exerts a fundamental influence on global and regional climates. However, there is limited understanding of AMOC stability or its sensitivity, under acute climatic warmth that is marked for Earth’s future. To tackle this important gap in our understanding, the climatic warmth of the Eocene (~34-56 Ma) offers a unique opportunity and setting to investigate existence, structure, stability, and operation of AMOC. These fundamental gaps in our knowledge and understanding limit the ability to ground-truth ocean model simulations of past warm climates, and thus also diminish our confidence in the capabilities of these models to predict ongoing changes to our oceans.

Here, we present the first reconstruction of the early-middle Eocene AMOC using a meridional transect of Atlantic and Southern Ocean drill sites. Across sites, detailed chemostratigraphic correlations provide a common, high resolution age model spanning a 500 kyr interval (46.7-47.2 Ma). During this interval, high-resolution (~10 ka) carbon (δ13C), oxygen (δ18O), and neodymium (εNd) proxies were used to determine ocean ventilation state, temperature and salinity, and deep-water mass flow pathways. We find an early-middle Eocene AMOC, which consisted of bipolar deep-water formation forming two major cells, a southern and a northern cell. We will discuss characteristics of these water mass cells and their origin and operation using δ13C, δ18O, and εNd isotopic signatures. Evidence of deep-water mass formation in the North Atlantic is supported by sedimentological evidence from Hohbein et al. (2012) and Boyle et al., (2017), suggesting deep Nordic seas overflows at ~49 Ma and deep-water current flow forming contourite drifts on the Newfoundland Ridges at 47.8 Ma respectively.

Ocean circulation modelling of intervals of past extreme warmth, such as DeepMIP, provide understanding into potential ocean structures that could have existed during the early-middle Eocene. The most common feature of model predictions is a global meridional overturning circulation with strong deep convection in the Southern Ocean and no deep convection in the North Atlantic (Zhang et al., 2022). This study provides compelling evidence to bolster the Southern Ocean findings, yet a major data-modelling discrepancy exists within the North Atlantic, where most current model simulations don’t reproduce the proxy derived deep northern cell. This could point to non-CO2 boundary conditions, such as North Atlantic bathymetry and gateways, as a cause of this discrepancy. Further proxy and modelling work is warranted to resolve the temporal extent of deep-water convection in the North Atlantic during the Eocene.

References

Boyle et al., 2017. Marine Geology, 385, 185–203.

Hohbein et al., 2012, Geology, 40, 3, 255–258.

Zhang et al., 2022, Paleoceanography and Paleoclimatology, 37, 3, 1–22.

How to cite: McIntyre, A., Sexton, P., and Anand, P.: Bipolar deep-water formation during the climatic warmth of the early-middle Eocene, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6249, https://doi.org/10.5194/egusphere-egu23-6249, 2023.

EGU23-6599 | ECS | Orals | CL1.1.4

Modelling the early Cenozoic Antarctic ice sheet oxygen isotope ratio and implications for the benthic δ18O change 

Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix

At the Eocene-Oligocene Transition (~34 Ma), ephemeral ice sheets grew into a large continental-scale Antarctic ice sheet. During the late Eocene there is evidence for short-lived, continental-scale glaciations in the benthic oxygen isotope record, as well as geomorphic evidence pointing towards large-scale glaciations on Antarctica. Here, the modelled mean oxygen isotope ratio of these early Cenozoic Antarctic ice sheets is presented. Since benthic oxygen isotopes are a proxy for both the deep sea temperature and the ice volume stored on land, it is possible to estimate the benthic oxygen isotope change once the mean oxygen isotope content of the ice sheet is known.

The modelled ice sheet oxygen isotope ratio of the late Eocene Antarctic ice sheets are strongly dependent on the size of the modelled continental-scale ice sheet, which in turn is determined by the bedrock. The ice sheet volume expansion during the Priabonian Oxygen Isotope Maximum (at around 37.2 Ma during the late Eocene) results in a modelled benthic oxygen isotope change between 0.3‰ and 0.55‰, sufficient to explain the observed excursions in the benthic oxygen isotope records. At the Eocene-Oligocene Transition, the modelled benthic oxygen isotope change due to ice sheet growth is found to be between 0.65‰ and 0.75‰. The remainder 0.45‰ to 0.55‰ of the observed benthic oxygen isotope change should therefore have been caused by oceanic cooling.

How to cite: Van Breedam, J., Huybrechts, P., and Crucifix, M.: Modelling the early Cenozoic Antarctic ice sheet oxygen isotope ratio and implications for the benthic δ18O change, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6599, https://doi.org/10.5194/egusphere-egu23-6599, 2023.

EGU23-6695 | ECS | Orals | CL1.1.4

Steady states and bifurcation diagram for the Permian-Triassic paleogeography  

Charline Ragon, Christian Vérard, Jérôme Kasparian, and Maura Brunetti

The climate relaxes toward a steady state under a permanent inhomogeneous forcing from solar radiation and dissipative mechanisms. As a highly nonlinear system, the Earth’s climate can exhibit multiple steady states at a given forcing. Multistability has been observed in numerical models of different complexities, including fully coupled general circulation models with an aquaplanet configuration (Ragon et al. 2022), and we show here multistability also applies for the Earth in deep time.

We use the MIT general circulation model in a coupled atmosphere-ocean-sea ice-land configuration to perform simulations at a constant forcing i.e., fixed solar constant and atmospheric partial pressure of CO2. We let the system relax for thousands of years, which is the typical timescale of ocean dynamics. Considering the paleogeography of the Permian-Triassic reconstructed after PANALESIS (Vérard 2015), we find multiple competing steady states, representing alternative potential climates for that period.

Then, we construct the corresponding bifurcation diagram by varying the atmospheric CO2 content. This allows us to identify the stability range of each steady state, the position of tipping points and the required conditions for the system to shift from one state to another, which may help to understand the climatic oscillations observed, e.g., during the Early Triassic.

References

Ragon C., Lembo V., Lucarini V., Vérard C., Kasparian J. & Brunetti M., Robustness of competing climatic states. Journal of Climate, 35, 2769-2784. (2022)

Vérard C., PANALESIS: Towards global synthetic palæogeographies using integration and coupling of manifold models. Geological Magazine, 156, 320-330. (2015) 

How to cite: Ragon, C., Vérard, C., Kasparian, J., and Brunetti, M.: Steady states and bifurcation diagram for the Permian-Triassic paleogeography , EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6695, https://doi.org/10.5194/egusphere-egu23-6695, 2023.

EGU23-6749 | ECS | Orals | CL1.1.4

Meridional Heat Transport in the DeepMIP Eocene ensemble: non-CO2 and CO2 effects 

Fanni Dora Kelemen, Sebastian Steinig, Agatha de Boer, Jiang Zhu, Wing-Le Chan, Igor Niezgodzki, David K. Hutchinson, Gregor Knorr, Ayako Abe-Ouchi, and Bodo Ahrens

The total meridional heat transport (MHT) is relatively stable across different climates. Nevertheless, the strength of individual processes contributing to the total transport are not stable. Here we investigate the MHT and its main components especially in the atmosphere, in five coupled climate model simulations from the Deep-Time Model Intercomparison Project (DeepMIP). These simulations target the Early Eocene Climatic Optimum (EECO), a geological time period with high CO2 concentrations, analogous to the upper range of end-of-century CO2 projections. Preindustrial and early Eocene simulations at a range of COlevels (1x, 3x and 6x preindustrial values) are used to quantify the MHT changes in response to both CO2 and non-CO2 related forcings. We found that atmospheric poleward heat transport increases with CO2, while the effect of non-CO2 boundary conditions (e.g., paleogeography, land ice, vegetation) is causing more poleward atmospheric heat transport on the Northern and less on the Southern Hemisphere. The changes in paleogeography increase the heat transport via transient eddies at the mid-latitudes in the Eocene. The Hadley cells have an asymmetric response to both the CO2 and non-CO2 constraints. The poleward latent heat transport of monsoon systems increases with rising CO2 concentrations, but this effect is offset by the Eocene topography. Our results show that the changes in the monsoon systems’ latent heat transport is a robust feature of CO2 warming, which is in line with the currently observed precipitation increase of present day monsoon systems.

How to cite: Kelemen, F. D., Steinig, S., de Boer, A., Zhu, J., Chan, W.-L., Niezgodzki, I., Hutchinson, D. K., Knorr, G., Abe-Ouchi, A., and Ahrens, B.: Meridional Heat Transport in the DeepMIP Eocene ensemble: non-CO2 and CO2 effects, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6749, https://doi.org/10.5194/egusphere-egu23-6749, 2023.

EGU23-7084 | ECS | Orals | CL1.1.4

Sensitivity of Neoproterozoic Snowball-Earth inceptions to continental configuration, orbital geometry, and volcanism 

Julius Eberhard, Oliver E. Bevan, Georg Feulner, Stefan Petri, Jeroen van Hunen, and James U.L. Baldini

The Cryogenian period (720–635 million years ago) in the Neoproterozoic era featured two phases of global or near-global ice cover, termed ‘Snowball Earth’. Climate models of all kinds indicate that the inception of these phases must have occurred in the course of a self-amplifying ice–albedo feedback that forced the climate from a partially ice-covered to a Snowball state within a few years or decades. The maximum concentration of atmospheric carbon dioxide (CO2) allowing such a drastic shift is difficult to determine because it depends on the choice of model and the boundary conditions prescribed in the model. Many previous studies report values or ranges for this CO2 threshold but typically test only very few different boundary conditions. Furthermore, most studies include some kind of variability internal to the climate system but exclude variability due to volcanism. Here we present a comprehensive sensitivity study considering different scenarios for the Cryogenian continental configuration, orbital geometry, and short-term volcanic cooling effects in a consistent model framework, using the climate model of intermediate complexity CLIMBER-3α. The continental configurations comprise palaeogeography reconstructions for both Snowball-Earth periods from two different sources, as well as two idealised configurations with either uniformly dispersed continents or a single polar supercontinent. Orbital geometries are sampled as multiple different combinations of the parameters obliquity, eccentricity, and argument of perihelion. For volcanic eruptions, we differentiate between single and globally homogeneous perturbations, single and zonally resolved perturbations, and random sequences of globally homogeneous perturbations with realistic statistics. The CO2 threshold lies between 10 and 250 ppm for all simulations. While the idealized continental configurations span a difference of around 200 ppm for the threshold, the continental reconstructions differ by only 20–40 ppm. Changes in orbital geometry account for variations in the CO2 threshold by up to 32 ppm. The effects of volcanic perturbations largely depend on the orbital geometry. A very large peak reduction of net solar radiation by around –20 W/m2 can shift the CO2 threshold by the same order of magnitude as the orbital geometry. Even larger eruptions of up to –40 W/m2 may shift the threshold by up to 50 ppm. However, the smaller, more frequent eruptions mostly have much lower impacts than the changes in continental configuration and orbital geometry. Eruptions near the equator tend to, but do not always, cause larger shifts than eruptions at high latitudes. Realistic sequences of eruptions lower the long-term temperature and have a bigger effect on the CO2 threshold than single large eruptions of comparable magnitude.

How to cite: Eberhard, J., Bevan, O. E., Feulner, G., Petri, S., van Hunen, J., and Baldini, J. U. L.: Sensitivity of Neoproterozoic Snowball-Earth inceptions to continental configuration, orbital geometry, and volcanism, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7084, https://doi.org/10.5194/egusphere-egu23-7084, 2023.

EGU23-7320 | Orals | CL1.1.4

Effect of tectonic closure of the American Seaway on oxygen minimum zone in the tropical Pacific from model simulations 

Viacheslav Khon, Babette Hoogakker, Birgit Schneider, Joachim Segschneider, and Wonsun Park

The world’s largest oxygen minimum zone (OMZ) resides in the eastern tropical Pacific where poorly ventilated “shadow zone”, created by stagnant tropical cyclonic gyre is complemented by intensive biological consumption of dissolved oxygen, thereby promoting oxygen deficiency in this region. The present-day continental configuration with the presence of the Isthmus of Panama prevents water mass exchange between the tropical Pacific and the Caribbean Sea, shaping the climate and marine biogeochemistry features in the eastern tropical Pacific. The tectonic closure of the American Seaway during the mid-Miocene to mid-Pliocene epoch (~16-3 Ma BP) is thought to be a key factor for the development of stagnating conditions in the eastern equatorial Pacific leading to emergence of tropical Pacific OMZs . 

This study aims at investigating the impact of the CAS opening on the large-scale ocean circulation and oxygen minimum zone in the tropical Pacific. To this end, we performed a series of sensitivity experiments with the global climate model KCM where a sill of the open CAS was set at different depths, ranging from shallow to deep levels. Our results confirm previous studies that Panamanian gateway closure during the Pliocene may have led to an intensification of the Atlantic Meridional Overturning Circulation (AMOC) due to a termination of fresh-water supply from the tropical Pacific to the North Atlantic. It was found that the CAS opening drives eastward subsurface flow in the northern tropical Pacific. This, in turn, facilitates stronger west-to-east oxygen supply and subsequent overall oxygen enrichment in the subsurface Pacific waters with strongest anomalies observed in the eastern tropical Pacific. In addition, the marine net primary production is slightly weakened in this region due to an export of nutrients to the Caribbean Sea through the open Panamanian gateway. This, in turn, leads to a weaker export of particulate organic carbon towards the ocean interior, and, therefore, to lower biological consumption of oxygen in this region.

How to cite: Khon, V., Hoogakker, B., Schneider, B., Segschneider, J., and Park, W.: Effect of tectonic closure of the American Seaway on oxygen minimum zone in the tropical Pacific from model simulations, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7320, https://doi.org/10.5194/egusphere-egu23-7320, 2023.

EGU23-8237 | ECS | Orals | CL1.1.4

Investigating the role of temperatures in proxy-based pCO2 estimates: An integrated model-proxy approach 

Caitlyn Witkowski, Alex Farnsworth, and Paul Valdes

Atmospheric concentrations of carbon dioxide (pCO2) play a critical role in a number of earth system components, including the biosphere, geosphere, and atmosphere. Understanding how pCO2 has changed over geologic time may provide critical context for predicting future climate scenarios. However, constraining past pCO2 values remain a challenge in paleoclimate studies due to difficulties in constraining proxy calculation parameters. Marine-based pCO2 proxies rely on at least one temperature parameter (i.e., via Henry’s Law to convert dissolved CO2 concentrations from the ocean into atmospheric pCO2), which is difficult to constrain in deep-time. Here, we highlight the importance of temperature and propose a new method of model-derived temperatures based on the paleo-location of the sample site. This methodology can be applied to any pCO2 proxy with temperature input; here we use the example of the pCO2 proxy based on the stable carbon isotopic composition of phytane, the diagenetic product of chlorophyll-a, due to its spatial and temporal ubiquity over the past ca. 465 million years.

How to cite: Witkowski, C., Farnsworth, A., and Valdes, P.: Investigating the role of temperatures in proxy-based pCO2 estimates: An integrated model-proxy approach, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8237, https://doi.org/10.5194/egusphere-egu23-8237, 2023.

EGU23-8420 | ECS | Posters on site | CL1.1.4

Simulation of Arctic sea ice within the Eocene Deep-Time Model Intercomparison Project: thresholds, seasonality and factors controlling sea ice development 

Igor Niezgodzki, Gregor Knorr, Gerrit Lohmann, Daniel Lunt, Christopher Poulsen, Sebastian Steinig, Jiang Zhu, Agatha de Boer, Wing-Le Chan, Yannick Donnadieu, David Hutchinson, Jean-Baptiste Ladant, and Polina Morozova

The early Eocene greenhouse climate driven by high atmospheric CO2 concentrations serves as a testbed for future climate changes dominated by increasing CO2 forcing. Especially, the early Eocene Arctic region is important in light of future CO2-driven climate warming in the northern polar region. Here, we present early Eocene Arctic sea ice simulations carried out by coupled climate models within the framework of the Deep-Time Model Intercomparison Project. We find differences in sea ice responses to CO2 changes across the ensemble and compare the results with existing proxy-based sea ice reconstructions from the Arctic Ocean. Most of the models simulate winter sea ice presence at high CO2 levels (≥ 840 ppmv = 3x pre-industrial (PI) level of 280 ppmv). However, the threshold when sea ice permanently disappears from the ocean varies significantly between the models (from < 840 ppmv to > 1680 ppmv). Based on a one-dimensional energy balance model analysis we find that the greenhouse effect plays an important role in the inter-model spread in Arctic winter surface temperature changes in response to a CO2 rise from 1x to 3x the PI level. We link this greenhouse effect to increased atmospheric water vapour concentration. Furthermore, differences in simulated surface salinity in the Arctic Ocean play an important role in controlling local sea ice formation. These inter-model differences result from differences in the exchange of waters between a brackish Arctic and a more saline North Atlantic Ocean that are controlled by the width of the gateway between both basins. As there is no geological evidence for Arctic sea ice in the early Eocene, its presence in most of the simulations with 3x PI CO2 level indicates either a higher CO2 level and/or models miss important mechanism/feedback.

How to cite: Niezgodzki, I., Knorr, G., Lohmann, G., Lunt, D., Poulsen, C., Steinig, S., Zhu, J., de Boer, A., Chan, W.-L., Donnadieu, Y., Hutchinson, D., Ladant, J.-B., and Morozova, P.: Simulation of Arctic sea ice within the Eocene Deep-Time Model Intercomparison Project: thresholds, seasonality and factors controlling sea ice development, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8420, https://doi.org/10.5194/egusphere-egu23-8420, 2023.

EGU23-8997 | ECS | Orals | CL1.1.4

Simulating the terrestrial biosphere in the high CO2 world of the early Eocene 

Julia Brugger, Nick Thompson, Torsten Utescher, Ulrich Salzmann, and Thomas Hickler

The early Eocene is a warm period suitable for studying the influence of high atmospheric CO2 concentrations on climate, the terrestrial biosphere, and their interaction. Here, we simulated the terrestrial biosphere of the early Eocene with a dynamic global vegetation model (LPJ-GUESS), driven by climate input from the Deep-Time Model Intercomparison Project (DeepMIP). We find a strong expansion of tropical and temperate forests to higher latitudes, which is more pronounced when assuming CO2 concentrations at the high end of plausible values. The modeled vegetation distribution is compared to a recently compiled extensive early Eocene paleobotanical global dataset. Simulated and reconstructed vegetation show good agreement, which improves with higher CO2 concentrations. In contrast to earlier vegetation modeling studies our simulations are able to accurately simulate the expansion of tropical forests under CO2 concentrations larger than 4-times pre-industrial CO2. Given the good agreement between modeled vegetation and paleobotanical data our simulations allow us to gain a more comprehensive understanding of the early Eocene terrestrial biosphere, including the global carbon cycle and the role of wildfires. In addition, our comparison of modeled vegetation and paleobotanical data is an important test of the performance of the climate and vegetation models used, which are also used to simulate future impacts of climate change.

How to cite: Brugger, J., Thompson, N., Utescher, T., Salzmann, U., and Hickler, T.: Simulating the terrestrial biosphere in the high CO2 world of the early Eocene, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8997, https://doi.org/10.5194/egusphere-egu23-8997, 2023.

EGU23-9574 | Orals | CL1.1.4

Changes in climate sensitivity and polar amplification over the last 500 million years 

Dan Lunt, Paul Valdes, and Chris Scotese

During the Phanerozoic (the last ~0.5 billion years), the Earth has experienced massive changes in climate, spanning the extensive glaciations of the Permo-Carboniferous (~300 million years ago), to the mid-Cretaceous super-greenhouse (~100 million years ago). Recently, several studies have used geological data to reconstruct global mean temperatures through this period, as a way of characterising the zeroth-order response of the Earth system to its primary forcings.

Here we use two new ensembles of model simulations covering the entire Phanerozoic, consisting of 2× >100 simulations at a 5 million year resolution, to explore the key metrics of climate sensitivity and polar amplification using the HadCM3 climate model.  The model version we use has undergone a substantial development process and can simulate the climate of the Eocene, where extensive observations exist, at least as well as much more recent (CMIP5) models, but at a fraction of the computational cost.

The two ensembles explore uncertainty in the CO2 forcing during the Phanerozoic, being forced by (a) a published CO2 curve based on proxy reconstructions, and (b) a derived CO2 curve that results in global mean temperatures in agreement with temperature reconstructions.  Comparison of the ensembles indicates that the climate sensitivity is both temperature and paleogeography dependent, increasing with increasing temperatures, and varying as a function of the supercontinent configuration.  We also explore polar amplification, and again find that this is dependent on background climate and paleogeography.  We apply energy balance methods to explore the reasons for the varying polar amplification, and also find a key role for the ocean circulation state.

How to cite: Lunt, D., Valdes, P., and Scotese, C.: Changes in climate sensitivity and polar amplification over the last 500 million years, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9574, https://doi.org/10.5194/egusphere-egu23-9574, 2023.

EGU23-10201 | ECS | Orals | CL1.1.4

How does Eocene warming affected elevation-dependent warming? 

Manuel Tobias Blau, Pratik Kad, Kyung-Ja Ha, and Jiang Zhu

Elevation-dependent temperature change is a phenomenon found in mountain regions with complex terrain, mostly in the Himalayas and the high terrain of the Tibetan Plateau, where regions in high elevation feature high rates of warming than the region in lower elevation. This pattern referred to as elevation-dependent warming. However, does elevation-dependent warming exist in Eocene hothouse without Tibetan Plateau as well and lower altitude mountain ranges?

The Eocene era is considered a replication of the future climate with high atmospheric carbon dioxide. We utilized CESM1.2 as part of the DeepMIP simulations to analyze elevation-dependent temperature change in different mountain ranges in the Eocene and explained the findings using a linear surface energy balance decomposition. The results feature a land-sea contrast with amplification over land and elevation-dependent temperature changes in all mountain ranges with distinct seasonality and pattern. The results suggest that radiative feedback processes have a strong contribution to elevation-dependent warming in the warming climate. Our modeling results provide relevant information for mountain climate change in a past hot climate. Further, the analysis opens new mystery and perspectives related to elevation-dependent warming.

 

Keywords: Eocene, paleoclimate modeling, elevation-dependent warming, CO2

 

Related Publication:

Kad P, Blau M T, Ha K-J, and Zhu J (2022) Elevation-dependent temperature response in early Eocene using paleoclimate model experiment. Environmental Research Letters, 17(11), 114038. (https://doi.org/10.1088/1748-9326/ac9c74)

How to cite: Blau, M. T., Kad, P., Ha, K.-J., and Zhu, J.: How does Eocene warming affected elevation-dependent warming?, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10201, https://doi.org/10.5194/egusphere-egu23-10201, 2023.

EGU23-10673 | ECS | Orals | CL1.1.4

Exploring the role of Mantle and Paleomagnetic Reference Frames with Intermediate Complexity Climate Models 

Jonathon Leonard, Sabin Zahirovic, Tristan Salles, and Claire Mallard

The distribution of continents and oceans through deep-time has shaped the Earth’s changing climate and geography in a way that is vital for understanding processes ranging from the evolution and migration of living organisms to the distribution of economic mineral deposits, and the precise contribution of anthropogenic CO2 to the present climate. Despite this, producing climate models of an evolving Earth across long periods of geological time have been challenging due to the immense computational resources required, and as a result, deep-time paleo-climate models have tended to focus on single ages. Here we demonstrate the use of an intermediate-complexity atmosphere-ocean Plasim-Genie tool to produce a suite of models that illustrate the evolving climate with evolving continents over hundreds of millions of years.

Using this approach, we explore the impact of modelling paleoclimate with a pure paleomagnetic plate reference frame versus a plate motion model that uses a mantle reference frame. These two plate reference frames may have latitudinal differences of up to 15 degrees even in the well-constrained timeframe of the last 100 Myr. We demonstrate with Plasim-Genie that these latitudinal differences result in significant discrepancies in climate in a range of key regions. Users of paleoclimate model data, particularly those studying biology and geography of the past should be aware of the plate reference frame used in generating the climate data. As the Earth’s magnetic field averages to align with the Earth’s spin axis, we suggest that a paleomagnetic reference frame is the preferred reference frame to use for paleoclimate modelling.

How to cite: Leonard, J., Zahirovic, S., Salles, T., and Mallard, C.: Exploring the role of Mantle and Paleomagnetic Reference Frames with Intermediate Complexity Climate Models, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10673, https://doi.org/10.5194/egusphere-egu23-10673, 2023.

EGU23-10724 | ECS | Orals | CL1.1.4

The Global Meridional Overturning Circulation of the Paleozoic Ocean 

Shuai Yuan, Yongyun Hu, Yonggang Liu, and Dan Lunt

  The global meridional overturning circulation (GMOC) plays an important role in transporting oceanic heat from one hemisphere to the other. At present, the AMOC descends in the North Atlantic and is responsible for transporting large amount of heat from the Southern Hemisphere (SH) to the Northern Hemisphere (NH). In the early Paleozoic, the continental configuration was nearly opposite to that of the present, with most of the landmass located in the SH and an ocean world of the NH. Here, we present simulation results to demonstrate that the GMOC in the Paleozoic was anticlockwise, with upwelling in the NH and descending in the SH, which is opposite to that of the present. The anticlockwise GMOC in the Paleozoic is mainly due to hemispheric asymmetry of wind stresses and freshwater input into the ocean. Stronger wind stress in the NH drives upwelling in the NH extratropics. Less freshwater input into the SH ocean causes saltier and heavier seawater, which is conducive to deep water formation in the SH ocean. These hemispheric asymmetries of wind stresses and freshwater are because of land-sea distribution in the Paleozoic. Two datasets are used, which show consistent results in general.

How to cite: Yuan, S., Hu, Y., Liu, Y., and Lunt, D.: The Global Meridional Overturning Circulation of the Paleozoic Ocean, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10724, https://doi.org/10.5194/egusphere-egu23-10724, 2023.

EGU23-10963 | ECS | Orals | CL1.1.4

Recognizing the Role of Tropical Seaways in Modulating the Pacific Circulation 

Ning Tan, Zhongshi Zhang, Zhengtang Guo, Chuncheng Guo, Zijian Zhang, Zhilin He, and Gilles Ramstein

During the late Miocene and the Pliocene, changes in the Central American and Indonesian seaway geometry are very important for ocean circulation and global climate. Various modelling studies have examined the separate effects of these two tropical seaways, especially their link to the onset of the Northern Hemisphere ice sheets through changes in the Atlantic meridional overturning circulation and associated heat and moisture transport. Although the existence of dual tropical seaways is closer to reality, there are very scarce modelling studies exploring the co-effects of dual tropical seaway changes, especially on the Pacific ocean circulation. Here we provide the results of a modelling study on this issue. Our results show that the combined shallow opening of tropical seaways can generate an active Pacific meridional overturning circulation (that is absent in modern conditions) by which the meridional and zonal sea surface temperature gradient in the Pacific largely reduce. In contrast, a deeper opening of tropical seaways cannot produce these changes in the Pacific ocean circulation. This study provides insights into and a better understanding of the role of tropical seaways in shaping the Pacific climate and highlights the importance of the sill depth of each seaway.

How to cite: Tan, N., Zhang, Z., Guo, Z., Guo, C., Zhang, Z., He, Z., and Ramstein, G.: Recognizing the Role of Tropical Seaways in Modulating the Pacific Circulation, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10963, https://doi.org/10.5194/egusphere-egu23-10963, 2023.

Polar amplification is the phenomenon that external radiative forcing produces a larger change in surface temperature at high latitudes than the global average, which is one of the most robust in climate changes with historical and future increases in atmospheric CO2. Also, it is known that, polar amplifications occurred during past warm periods due to atmospheric CO2 concentrations and orbital parameters different from those in the present day. The Cretaceous is known as one of the warmest periods in the Phanerozoic (Foster et al., 2017). The Cretaceous proxy data indicate remarkable temperature amplifications in the high-latitude and polar region (e.g., Jenkyns et al. 2004), resulting in small equator-to-polar temperature difference. Many previous studies using global climate models have invested the relationship between the polar temperatures and the greenhouse gasses, geography, vegetation, and cloud property in order to elucidate the mechanism (e.g., Otto-Bliesner and Upchurch 1997; Upchurch et al., 2015; Niezgodzki et al., 2017). On the other hand, it is not well understood that differences in polar amplifications between present day and Cretaceous with changes in atmospheric CO2 concentration and orbital parameters. In this study, we systematically investigated the responses of the polar temperatures in the present-day Cretaceous to changes in atmospheric CO2 concentration and the orbital parameters using an atmospheric-ocean-vegetation fully coupled model MIROC4m-LPJ. Our Cretaceous simulations succeeded in reproducing the polar temperature amplification at that time by considering variations in atmospheric CO2 concentration and orbital parameters. Furthermore, it was clarified that, due to the differences in geographical conditions between the modern and the Cretaceous, the temperature of the polar regions responded more sensitively to external radiative forcing such as changes in atmospheric CO2 concentration and orbital parameters in the Cretaceous than in the present-day.

How to cite: Higuchi, T., Abe-Ouchi, A., Chan, W.-L., and O'ishi, R.: Differences in polar amplifications between present day and Cretaceous with changes in atmospheric CO2 concentration and orbital parameters, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11277, https://doi.org/10.5194/egusphere-egu23-11277, 2023.

EGU23-12176 | ECS | Orals | CL1.1.4

Eastern Equatorial Atlantic paleoceanographic conditions of the Oligocene and early Miocene 

Dominique Jenny, Evalien Baas, Wouter Stouthamer, Jakub Witkowski, Isabella Raffi, Peter Bijl, Francien Peterse, and Appy Sluijs

The Oligocene (33.9 – 23.03 Ma ago) and early Miocene (23.03 – 19 Ma) experienced large climate and ice sheet fluctuations in a most likely unipolar icehouse, with glaciation limited to the Southern Hemisphere. This time interval provides a useful test case for studying polar amplification patterns under atmospheric greenhouse gas concentrations similar to those projected for the future. Large-amplitude climate variability has been recorded close to Antarctica during this time interval, but climatic and environmental conditions and variability in the tropical band are poorly knownpaleoceanographic conditions and sea (sub)surface temperatures (SSTs) will deliver an insight into the climate variability and sensitivity of the lower latitudes under unipolar conditions.

Reconstructed surface oceanographic conditions and variations in the depositional environment are based on bulk carbonate stable isotope ratios (δ18O, δ13C), weight% carbonate, magnetic susceptibility and dinoflagellate cyst assemblages at Ocean Drilling Program Site 959, offshore Ghana.. In addition, long term SSTs reconstructions for the Oligocene and early Miocene equatorial Atlantic are derived from lipid biomarker-based paleothermometry (TEX86). Lastly, long term (~31 Ma – 19Ma) atmospheric CO2 concentrations based on stable carbon isotopic fractionation of marine organic carbon and alkenones were generated.

The organic carbon isotopic fractionation showshat pCO2 ranged from 280 – 570ppm between ~19 – 33 Ma and shows no signs of large variability, which is consistent with previous findings. The TEX86 indicates that the average SSTs during the Oligocene was ~27℃ which is ~1 – 4℃ colder than in the west Equatorial Atlantic (e.g., ODP Site 929, Ceara Rise), using the same transfer function. Dinoflagellate cyst assemblages indicate upwelling alternated with strong stratification events on ~50 to 100 kyr timescale. Monsoonal upwelling could explain the lower SSTs at Site 959 which is consistent with modern east-west gradients. Subsequent comparison of our equatorial SST record with general circulation modelling studies and SST records from high latitudes should reveal the polar amplification of warming and climate sensitivity on long and short (orbital) timescales during the Oligocene.

How to cite: Jenny, D., Baas, E., Stouthamer, W., Witkowski, J., Raffi, I., Bijl, P., Peterse, F., and Sluijs, A.: Eastern Equatorial Atlantic paleoceanographic conditions of the Oligocene and early Miocene, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12176, https://doi.org/10.5194/egusphere-egu23-12176, 2023.

EGU23-12549 * | Orals | CL1.1.4 | Highlight

Hominoid dispersal during Neogene, from tectonics to Milankovich forcings as major driving factors to explain the spread of population 

Gilles Ramstein, Corentin Gibert, Diane Segalla, Frédéric Fluteau, William Banks, Doris Barboni, Anaïs Vignoles, Camille Contoux, Jean-Renaud Boisserie, Olivier Chavasseau, Franck Guy, Olga Otero, Pierre Sepulchre, Antoine Souron, and Florence Colleoni

During the Neogene, major tectonics events occurred: uplift of mountain ranges (including the Tibetan Plateau and surrounding regions), opening and closing of seaways, and large variations of atmospheric CO2 and sea level. What were the consequences of such changes on the dispersal of hominoid populations? We focus on the Miocene to Pliocene time interval (23 Ma-2.6 Ma). First, we analyze the spread of hominoids from their original geographic range, the tropical forests of Africa during the Early Miocene to the first expansion to Eurasia during the mid-Miocene Climate Optimum. Niche modelling combined with paleoclimatic simulations, provides means to circumvent the fragmentary nature of this record. We identify how the large climatic changes during Miocene Transition impact the potential habitats of hominoids and compare our findings to both the related fossil records and paleoenvironmental proxies.

Second, we analyze human distribution during the Mid to Late Pliocene (4-3 Ma), i.e. before the triggering of the large perennial Greenland ice sheet, and of huge amplitude northern hemisphere glacial interglacial cycles, while CO2 evolved between 400 and 300 ppm. In Africa, tropical areas experienced drastic hydrological changes, mainly driven by precession cycles, which deeply modulated monsoon intensity and precipitation patterns, as illustrated by the paleoshore level record of Mega Lake Chad. To explore how orbital parameters strongly modify hydrological cycles over tropical Africa and, the associated dispersion of the genus Australopithecus, we simulated the response of climate, vegetation, and hydrological cycles of the mid to Late Pliocene conditions.

For both geological contexts, we provide and analyze a series of Earth System models (IPSL-CM5A2 LR-low resolution-) coupled simulations. Moreover, we associate these fully-coupled simulations with high resolution atmosphere-only model simulations, and a dynamic vegetation model (ORCHIDEE). Both models were used to estimate ecological niches with a spatial resolution of 50 km.

We describe the imprint of slow climate changes during the Miocene Climate Transition (MCT) as well as more rapid climate evolution during mid to Late Pliocene, associated with higher frequency oscillation of orbital parameters.

This study demonstrates how, for these periods, climate and especially hydrological variations were pivotal to the understanding of hominoid migrations. We compare our findings to fossil records and paleoenvironmental proxy reconstructions.

To conclude, we discuss the strengths and limitations of such approaches, which were made possible through a large trans-disciplinary effort between paleontologists, paleoanthropologists, paleoenvironmentalists, paleoclimatologists, and niche modelers.

How to cite: Ramstein, G., Gibert, C., Segalla, D., Fluteau, F., Banks, W., Barboni, D., Vignoles, A., Contoux, C., Boisserie, J.-R., Chavasseau, O., Guy, F., Otero, O., Sepulchre, P., Souron, A., and Colleoni, F.: Hominoid dispersal during Neogene, from tectonics to Milankovich forcings as major driving factors to explain the spread of population, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12549, https://doi.org/10.5194/egusphere-egu23-12549, 2023.

EGU23-13112 | ECS | Posters on site | CL1.1.4

A new high resolution stable isotope record from the North Atlantic Ocean: a detailed insight into the mid-Maastrichtian event 

Alexa Fischer, Oliver Friedrich, André Bahr, and Silke Voigt

The long-term global cooling trend during the latest Cretaceous was interrupted by an intense global warming episode at ~69 Ma known as the mid-Maastrichtian event (MME). The MME is characterized by two positive 13C excursions with an overall magnitude of 0.6‰ to 1.5‰ separated by a negative inflection. The 13C excursions are accompanied by the extinction of inoceramid bivalves, an abrupt increase in deep-sea and sea-surface temperatures as well as terrestrial mean annual temperatures between 21 and 23 °C at a paleolatitude of ~35° N. Changes in oceanic circulation, particularly a change in thermohaline circulation patterns, have been identified to be one of the main drivers of the MME. Nevertheless, the driving mechanisms, timing, character, and consequences of the circulation change are still up for debate. In this study, a 2 Myr-long time interval of the Mid to Late Maastrichtian has been analyzed at a ~2.5 to 5 kyr-resolution with the aim to improve the understanding of the climatic patterns leading to the MME. For IODP Core U1403 in the North Atlantic (J-Anomaly Ridge), XRF core scanning, wt% CaCO3 analyses, and stable oxygen and carbon isotope records of benthic foraminifera were generated. Bottom-water temperatures were reconstructed through Mg/Ca measurements of the same foraminiferal tests. Preliminary data reveal a warming of North Atlantic deep-sea temperatures by ~2–3°C between ~68.5 and 69 Ma, accompanied by several CaCO3 dissolution events as well as 13C excursions of up to 0.8 ‰. These findings point towards a major perturbation in the global carbon cycle accompanying the overall change in ocean circulation whose causes appear to be more complex than previously thought.

How to cite: Fischer, A., Friedrich, O., Bahr, A., and Voigt, S.: A new high resolution stable isotope record from the North Atlantic Ocean: a detailed insight into the mid-Maastrichtian event, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13112, https://doi.org/10.5194/egusphere-egu23-13112, 2023.

EGU23-14151 | ECS | Posters on site | CL1.1.4 | Highlight

Archean Earth Climate Drivers 

Anya Taylor, Sophie-Berenice Wilmes, Nathan Mayne, Michael Way, and Mattias Green

The Archean Eon (4.0 - 2.5 Ga) is a very important time period: it spans roughly one third of Earth’s history, likely hosted the earliest lifeforms, and was critical for the development and long-term maintenance of a habitable climate and surface conditions on Earth. There are very few physical proxy records stretching all the way back to the Archean, meaning that early Earth climate research is centered on computer modeling with proxy data as validation. This kind of research has built a solid understanding of what atmospheric and surface conditions were like on Archean Earth, and now we can shift focus and investigate why the climate changed so drastically during this period. This project aims to identify the primary drivers of Archean climate change by completing a large parameter sweep with Isca - a highly configurable framework designed for idealized terrestrial planetary atmospheres. Working back from present day Earth, boundary conditions will be changed one at a time in order to isolate their specific role in the climate change over the Archean period. Simulations with interesting results will then be passed to ROCKE-3D, to further evaluate with a fully-coupled earth system model. The first suite of simulations will investigate the roles of three parameters that are intrinsic to Archean conditions: reduced solar luminosity, enhanced rotation rate, and a vastly different atmospheric composition. In later work more complexities will be added, and the role of land type, continental configuration, and orbital parameters (plus many more) will be investigated. The preliminary results of the initial suite of simulations will be presented here. By isolating the role of an extensive set of atmosphere, ocean, geologic, and orbital parameters using a simple model framework, we hope to identify the primary drivers of Archean climate change. This will help to quantify the relative importance of each variable in terms of planetary habitability, and can potentially be extrapolated to benefit the search for habitable planets outside of our solar system. 

How to cite: Taylor, A., Wilmes, S.-B., Mayne, N., Way, M., and Green, M.: Archean Earth Climate Drivers, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14151, https://doi.org/10.5194/egusphere-egu23-14151, 2023.

EGU23-15740 | ECS | Orals | CL1.1.4

Exploring Cenozoic vegetation cover and paleobiodiversity evolution induced by paleogeography and climate change 

Delphine Tardif, Pierre Sepulchre, Fabien Condamine, and Couvreur Thomas

Paleogeographic evolution is a major forcing of climate on long (multi-million years) time scales, which in turn can drive important vegetation cover variations. While recent studies have shown the important role played by abiotic factors on species diversification and on the establishment of modern biodiversity gradients, and although climate models are designed to simulate increasingly realistic vegetation cover, it remains difficult to estimate the accuracy of the results obtained. Indeed, the fossil record available to estimate the evolution of the paleovegetation cover remains heterogenous and fragmentary in some regions.  

Here, we present climate and vegetation cover response to paleogeography evolution throughout the Cenozoic as simulated with IPSL-CM5A2 Earth System Model. In a second time, we wish to explore means of using temperature and precipitation values extracted from such models simulations, in order to constrain birth-death diversification models. While the use of regionally-averaged abiotic parameters seems a potentially considerable improvement, as opposed to current methods based on global climate curve temperature, this methodology presents some technical challenges that remain to be tackled.

How to cite: Tardif, D., Sepulchre, P., Condamine, F., and Thomas, C.: Exploring Cenozoic vegetation cover and paleobiodiversity evolution induced by paleogeography and climate change, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15740, https://doi.org/10.5194/egusphere-egu23-15740, 2023.

EGU23-15801 | ECS | Orals | CL1.1.4

Tropical Atlantic Ocean climate variability during the Miocene Climatic Optimum 

Evi Wubben, Bianca Spiering, Tjerk Veenstra, Remco Bos, Joost van Dijk, Joyce den Hollander, Zongyi Wang, Isabella Raffi, Jakub Witkowski, Frits Hilgen, Francesca Sangiorgi, Francien Peterse, and Appy Sluijs

The Miocene Climatic Optimum (MCO, ~17-15 Ma) was a relatively warm interval that interrupted the Cenozoic cooling trend and bears analogies with projected end-of-the-century climate. Proxy data and model simulations indicate temperatures were on average ~7 – 8°C higher than present day and atmospheric pCO2 values were 500-600 ppmV. At high latitudes, upper ocean temperatures were ~10 – 15°C warmer than present day, but available tropical temperature records are limited. Importantly, to be able to use Miocene paleoclimate records to quantify key climate parameters like the polar amplification of climate change, accurate reconstructions of tropical surface oceans are required.

We present high resolution Early to Middle Miocene (~15 – 18 Ma) records of tropical sea surface temperature (SST) variability based on the lipid biomarker paleothermometer TEX86 at Ocean Drilling Program (ODP) Site 959 in the eastern equatorial Atlantic Ocean and at ODP Site 1007 at Bahama Bank in the western tropical Atlantic Ocean. The age model for both sites is based on chemo- and biostratigraphy. Moreover, analyses of bulk carbonate oxygen- (δ18O) and stable carbon (δ13C) isotope ratios at ~2 – 4 kyr resolution at Site 959 facilitated orbital tuning to eccentricity, obliquity and precession. Bulk elemental composition records, total organic carbon concentrations and dinoflagellate cyst assemblages were also generated to assess paleoenvironmental change.

At both sites, warming associated with the onset of the MCO (~17 Ma) was identified as an average SST increase of ~2°C (using the TEX86-H calibration). At ~16.8 Ma, bulk carbonate δ13C gradually increased by ~1‰ at both sites, indicating the onset of the Monterey carbon isotope excursion. Combined with available temperature information from the high latitudes and deep ocean, we assess meridional temperature gradients across the MCO.

At ODP Site 959, sediments are characterized by alternations of biogenic silica, carbonates, and terrigenous material (i.e., clays). Following the onset of the MCO (~17 – 16.5 Ma), high variability in the oceanographical setting is reflected in striking Babio peaks, indicating productivity changes. These peaks coincide with lowest SSTs (~28°C) and increased dust supply (increased Fe and Ti) on precession and obliquity timescales. In the same interval, (inner-) neritic dinoflagellate species indicate increased water column stratification. Heterotrophic dinocyst groups vary on timescales coherent with the other geochemical records, relative to comparably stable background abundances of oceanic genera throughout the MCO. Combined, this suggests that a highly dynamic monsoon-driven upwelling regime was present at Site 959 during the MCO. Combined, these patterns imply a highly dynamic African monsoon-driven upwelling regime that intensified at the onset of the MCO.

How to cite: Wubben, E., Spiering, B., Veenstra, T., Bos, R., van Dijk, J., den Hollander, J., Wang, Z., Raffi, I., Witkowski, J., Hilgen, F., Sangiorgi, F., Peterse, F., and Sluijs, A.: Tropical Atlantic Ocean climate variability during the Miocene Climatic Optimum, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15801, https://doi.org/10.5194/egusphere-egu23-15801, 2023.

EGU23-15934 | Posters on site | CL1.1.4

Impacts of tidally-driven mixing on the Early Eocene Ocean 

Jean-Baptiste Ladant, Jeanne Millot-Weil, Yannick Donnadieu, Casimir de Lavergne, and Mattias Green

Mixing in the ocean interior is largely fueled by internal tides that bring energy available for the irreversible mixing of the deep ocean. However, the inclusion of mixing schemes to represent the breaking of internal waves is not always included in ocean and earth system models, a fortiori in models applied to the deep-time for which estimates of the energy dissipated by the tides are not always available. Here, we present and analyze two IPSLCM5A2 earth system model simulations of the Early Eocene made under the framework of DeepMIP, which differ by the inclusion of the tidally-driven dissipation estimates of Green and Huber (2013) in one of the simulations. We particularly focus on possible changes in the intensity of the ocean circulation and water mass characteristics and pathways as well as on the implications of the absence of tidally-driven mixing for the marine biogeochemistry.

How to cite: Ladant, J.-B., Millot-Weil, J., Donnadieu, Y., de Lavergne, C., and Green, M.: Impacts of tidally-driven mixing on the Early Eocene Ocean, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15934, https://doi.org/10.5194/egusphere-egu23-15934, 2023.

EGU23-16108 | ECS | Orals | CL1.1.4

Resilience and implications of an Antarctic monsoon during the Eocene 

Michiel Baatsen, Anna von der Heydt, Peter Bijl, Appy Sluijs, and Henk Dijkstra

High latitude warmth during the Eocene greenhouse climate has posed many challenges for climate modelling studies. Recent improvements in both the proxy records and model simulations are bringing these closer together, particularly regarding the meridional temperature gradient. Yet, it remains difficult to understand the climatic conditions around the greenhouse-icehouse transition which involved the glaciation of Antarctica. How can we explain indications of ice near the Antarctic coast well before the transition, especially since Antarctic glaciation is thought to express strong hysteresis? How did Antarctica remain mostly ice-free and vegetated through large climatic swings during the Eocene? If Antarctic warmth was so resilient, which process was responsible for its eventual demise?

We consider a set of existing climate simulations for the middle-to-late Eocene (42-34Ma) using the CESM model (Baatsen et al. 2020)1. The original set of simulations was expanded to include possible scenarios of orbital forcing, atmospheric composition, and the continental geometry. In addition, we look at the output from DeepMIP simulations for the early Eocene. Using these results, we make a detailed study of the Antarctic climate and find that most of the continent saw monsoonal conditions during the Eocene. Only a small corridor near the coast experienced perennially mild and wet conditions, explaining the presence of temperate to paratropical vegetation. Further inland, we see a rapid increase in temperature seasonality along with the appearance of a summer monsoon. Summertime warmth made most of the Antarctic continent a hostile place for any significant ice growth. Meanwhile, mountainous regions near the coast were suitable candidates for the formation of ice caps that may have grown substantially during cooler intervals.

Our simulations can explain seemingly contradictory indications from proxy records, as well as strong regional variations in the Antarctic climate. The monsoonal nature of this climate during the Eocene proves to be particularly resilient to the changes in external forcing considered here. Identifying the potential mechanism to break up the monsoonal regime and eventually lead to Antarctic glaciation remains the subject of ongoing work.

1. Baatsen, M., von der Heydt, A. S., Huber, M., Kliphuis, M. A., Bijl, P. K., Sluijs, A., & Dijkstra, H. A. (2020). The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5. Climate of the Past, 16(6), 2573–2597. doi: 10.5194/cp-16-2573-2020.

How to cite: Baatsen, M., von der Heydt, A., Bijl, P., Sluijs, A., and Dijkstra, H.: Resilience and implications of an Antarctic monsoon during the Eocene, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16108, https://doi.org/10.5194/egusphere-egu23-16108, 2023.

We discuss the construction of a global climatological reconstruction of the mid-Pliocene Warm Period, which is the focus of the current PlioMIP (around 3.2 Ma BP). Our method uses an ensemble Kalman smoother to blend fields of model output, generated here by two generations of the PlioMIP project, with sparse proxy-based estimates of temperature. The methodology was previously presented by Annan et al 2022 in application to the Last Glacial Maximum. In this presentation we contrast results obtained from two different data compilations. Firstly we use the PRISM proxy estimates for sea surface temperature from an interval 15ka either side of MIS KM5c (Foley and Dowsett 2019, Haywood et al 2020), that is 3.205+-0.015Ma. This contains 34 data points on the 5x5 degree grid that we use for our analysis. We contrast this with analyses performed in the PlioVAR project (McClymont et al 2019) covering a slightly narrower interval of 3.205+-0.01Ma. These analyses are based on a different age model and multiple calibrations of UK37 and Mg/Ca. The full data set contains 31 gridded data points.

Using the PRISM data, our estimate of the global temperature anomaly is considerably warmer than most previous estimates, suggesting a significant discrepancy between the models and the data. Further calculations suggest that the PlioVAR data show more consistency with the models, but uncertainty remains high. We discuss the implications of this for the creation of reliable climate reconstructions.

How to cite: Hargreaves, J., Annan, J., Mauritsen, T., and McClymont, E.: Reconstructing the surface temperature fields of the mid-Pliocene Warm Period using climate models and a variety of climate proxy data sets., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16121, https://doi.org/10.5194/egusphere-egu23-16121, 2023.

EGU23-16165 | ECS | Orals | CL1.1.4

Hydrological upheaval across multiple early Eocene hyperthermal events in the north African arid zone 

Chris Fokkema, Tobias Agterhuis, Liam Kelly, Agnese Mannucci, Basse Theijse, Or Bialik, Peter Bijl, Henk Brinkhuis, Gerald Dickens, Simone Galeotti, Francien Peterse, and Appy Sluijs

Rapid climatic and carbon cycle upheavals in the early Eocene have been of strong interest for the past decades. Multiple of these events represent global warming events (i.e. hyperthermals), including the Paleocene Eocene Thermal Maximum (PETM; 56 Ma), but global data coverage is still too limited to fully resolve the spatial patterns of climate, ecosystems and hydrology for the other hyperthermals. This is particularly due to the lack of continuous continental margin sequences suitable for high-resolution paleoclimate reconstructions.

We present high-resolution, multi-proxy records of climatic and environmental changes across multiple hyperthermals from Core RH-323, Northern Negev Desert, Israel. Lower Eocene sediments, dominantly orbitally paced alternations of marls and chalk, were deposited in the Tethys Ocean at a latitude of ~15º N, on the northward dipping slope of the presumably dry northern bound of the African continent. They provide a unique opportunity to capture tropical climate variability and continental-hydrological response to hyperthermals. We reconstruct regional variability of (sub)surface temperature, plankton ecology and continental hydrology by TEX86 paleothermometry, bulk carbonate isotope ratios, magnetic susceptibility, bulk-XRF and dinoflagellate cyst (dinocyst) assemblages.

We identify various hyperthermal events, including the PETM, ETM2 and ETM3, based on combined chemo- and biostratigraphy. During the PETM, TEX86-based temperatures indicate a warming of 3­–4 ºC, coinciding with a high abundance of representatives of the classic warm water dinocyst genus Apectodinium. The PETM is marked by a thin marl-rich interval at the onset, followed by a carbonate-rich interval during the body, suggesting very different hydrological forcing of siliciclastic input than recorded at mid-latitude sites. We interpret this to reflect strong seasonality (possibly monsoon like) with periods of intense precipitation followed by prolonged drought. Interestingly, subsequent smaller hyperthermals seem to predominantly coincide with increased siliciclastic content, thus representing episodes of increased (seasonal) precipitation.

How to cite: Fokkema, C., Agterhuis, T., Kelly, L., Mannucci, A., Theijse, B., Bialik, O., Bijl, P., Brinkhuis, H., Dickens, G., Galeotti, S., Peterse, F., and Sluijs, A.: Hydrological upheaval across multiple early Eocene hyperthermal events in the north African arid zone, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16165, https://doi.org/10.5194/egusphere-egu23-16165, 2023.

EGU23-16774 | ECS | Orals | CL1.1.4

Long term Paleogene increase in precipitation intermittency and intensity at mid-latitudes 

Jacob Slawson and Piret Plink-Bjorklund

As the world warms due to rising greenhouse gas concentrations, the Earth system moves toward a climate state without societal precedent. Unmitigated scenarios of emissions produce climates like those of the Early Eocene by 2150 CE. Terrestrial records of rivers and floodplains from numerous Paleogene sedimentary basins in the US Western interior and Europe indicate an increase in flash floods and droughts at paleo mid latitudes, indicating increased precipitation intensity and intermittency. A global synthesis of Paleogene precipitation proxies allows us to reconstruct the timing of changes in hydroclimate from Paleocene to the Paleocene-Eocene Thermal Maximum (PETM) and through the Early Eocene Climatic Optimum (EECO). We observe that the largest shifts in hydroclimate are not linked to the PETM but rather occur during the warm late Paleocene and then at the end of the EECO. This is indicated by sedimentological proxies from paleo rivers and floodplains, paleosol geochemical proxies, and biological proxies. The sedimentological proxies indicate a shift from normal rivers, such as are characteristic at mid-latitudes today, to flood-prone rivers in late Paleocene, such as are characteristic in subtropics today. In the flood-prone Paleogene rivers sediment transport occurred during flashy floods. The rivers shifted back to normal at the end of the EECO. Paleocene and early Eocene paleosols indicate sustained droughts and intermittent seasonal rains. Biological proxies indicate large water table fluctuations and shifts in vegetation types. At PETM there is no change in the state of hydroclimate, but rather a further intensification of floods and droughts. These results show that current global warming is likely to cause intensification of precipitation intermittency and intensity at mid-latitudes with significant effects on water availability and agriculture. The most dramatic shifts in hydroclimate were not linked to the largest amplitude of atmospheric drivers at the PETM, but rather suggest a threshold-driven relationship between the atmospheric drivers and hydroclimate. This may suggest that significant changes in hydroclimate are to be expected already before 2150 CE. 

How to cite: Slawson, J. and Plink-Bjorklund, P.: Long term Paleogene increase in precipitation intermittency and intensity at mid-latitudes, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16774, https://doi.org/10.5194/egusphere-egu23-16774, 2023.

The erosion of mountain landscapes is the greatest source of terrestrial sediment to global ocean basins and a critical part of the global carbon cycle regulating Earth’s climate over geologically relevant timescales. In particular, the expansion of mountain glaciers may accelerate bedrock erosion and rapidly increase the flux of terrestrial sediment from source areas. However, the mechanisms by which glaciation augments sediment flux are complex, and understanding them requires further research. Our research adopts a novel approach to determine the source of sediment in rivers exiting a glaciated landscape, combining detrital zircon fission-track “tracer” thermochronology and Raman spectroscopy of carbonaceous material (RSCM). Our research focuses on the Southern Alps of New Zealand as a model landscape with well-constrained lithology and a predictable exhumation gradient. In 5 west-draining transverse river catchments, we test the hypothesis that modern sediment is preferentially derived from glaciated, high-elevation areas of the catchment. Our 5 rivers span a range of glacial coverage, allowing us to further test the hypothesis that glacially-sourced sediment increases with the degree of glaciation in the catchment. Our preliminary results suggest that sediment is not exclusively derived from glaciated areas of the catchment, but may instead reflect additional deglaciated source areas affected by landsliding, possibly induced by seismicity along the Alpine Fault. Our research demonstrates a powerful and novel approach to tracing sediment sources within an individual catchment area and highlights complex interrelationships between mountain glaciation and changes in the magnitude and sources of sediment fluxes.

How to cite: Harris, D.-A., Lang, K., Roda Boluda, D., and Kurth, M.: Tracing sediment source within a glaciated landscape: new observations from detrital thermochronology and Raman spectroscopy in the Southern Alps of New Zealand, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-581, https://doi.org/10.5194/egusphere-egu23-581, 2023.

EGU23-1082 | ECS | Orals | GMPV1.2

Shocker: xenotime can date impacts 

Cilva Joseph, Denis Fougerouse, Aaron J. Cavosie, Hugo K. H. Olierook, Steven M. Reddy, Raiza R. Quintero, Allen Kennedy, David W. Saxey, and William D.A. Rickard

Constraining precise ages for impact events is crucial in establishing Earth’s history, and several geochronometers have been developed to date impacts. We present electron backscatter diffraction (EBSD), sensitive high-resolution ion microprobe (SHRIMP) and atom probe tomography (APT) data from shocked xenotime [(Y,HREE)PO4] collected from two impact sites to investigate the potential of xenotime as an impact geochronometer. A detrital xenotime grain from the Vredefort dome (South Africa) contains planar fractures, planar deformation bands and {112} twinning, the latter of which are diagnostic shock microstructures. However, APT analysis from the twin domains and also from the host yielded no evidence of Pb mobility at the nanometer scale during the impact. SHRIMP analysis (n=24) on the grain yielded a discordia with an upper intercept of 3136 ± 110 Ma and an imprecise lower intercept of 1793 ± 280 Ma. These correspond, respectively, to the bedrock age and a post-impact, cryptic terrane-wide fluid infiltration event. Three neoblastic grains from the Araguainha dome (Brazil) experienced partial to complete recrystallisation. The least recrystallised grain yields the oldest 238U/206Pb age of 479 ± 26 Ma, whereas a completely recrystallised neoblastic grain gave an age of 257 ± 11 Ma.  APT analysis on the latter grain showed different nanoscale features that shed light on Pb mobility during shock deformation and recrystallisation.  Based on observations of nanoscale Pb mobility and the correlation between recrystallisation and isotopic resetting, and prior published ages, we interpret 257 ± 11 Ma to date the impact event. These data confirm that recrystallised neoblastic xenotime is a useful impact geochronometer. 

How to cite: Joseph, C., Fougerouse, D., J. Cavosie, A., K. H. Olierook, H., M. Reddy, S., R. Quintero, R., Kennedy, A., W. Saxey, D., and D.A. Rickard, W.: Shocker: xenotime can date impacts, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1082, https://doi.org/10.5194/egusphere-egu23-1082, 2023.

EGU23-1147 | ECS | Orals | GMPV1.2

A detective duo; an apatite–zircon case study of the Johnston Complex, Wales 

Anthony Clarke, Chris Kirkland, and Stijn Glorie

Determining the crystallization of S-type granitic material can be challenging due to a lack of neoblastic zircon growth (e.g. thin overgrowths) and the potential of large inherited zircon cargos. Coupled apatite–zircon geochronology can help address such complexities and also clarify post-magmatic thermal history, given the disparate Pb closure temperatures in these minerals. Here we present a case study on the Johnston Complex, a rare outcrop of the Precambrian basement in southern Britain, representing a window into the tectonic regime of Avalonia. Zircon and apatite yield identical U-Pb ages, within uncertainty, of 569 ± 2 Ma and 576 ± 11 Ma, respectively. A minor antecrystic zircon core component is identified at 615 ± 11 Ma. Given the previously reported zircon U-Pb age of 643 Ma, these results demonstrate that the Complex represents a composite suite of plutons along its ca. 20 km length. Zircon Lu-Hf data imply a broadly chondritic source, with model ages consistent with crustal extraction during Rodinia formation. Zircon trace elements are consistent with a calc-alkaline continental magmatic arc setting. Whilst, apatite trace elements demonstrate a sedimentary component within the melt. Combined, these results support arc granite production within the peri-Gondwanan realm during amalgamation of Eastern Avalonia and associates the Johnston Complex to the Cymru subterrane. Importantly, congruent zircon–apatite ages imply rapid cooling after crystallisation, and that subsequent thermal heating did not exceed the apatite Pb closure temperature.

How to cite: Clarke, A., Kirkland, C., and Glorie, S.: A detective duo; an apatite–zircon case study of the Johnston Complex, Wales, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1147, https://doi.org/10.5194/egusphere-egu23-1147, 2023.

EGU23-1262 | ECS | Orals | GMPV1.2

Revealing the hidden Mesozoic exhumation history of the Qinling orogenic belt, Central China: insights from multiple geochronological and geochemical data of the molasse granitic gravels 

Heng Peng, Jianqiang Wang, Chiyang Liu, Jiaoli Li, Xiaoqin Jiao, Liying Zhang, and Massimiliano Zattin

Qinling Orogenic Belt with its Meso-Cenozoic intracontinental orogeny and uplift, is a key physiographic element that characterized the differential evolution of the geology, geography and climate in continental China (Dong et al., 2022). However, numerous thermochronological dates of the Qinling bedrocks (Dong et al., 2011; Yang et al., 2017) show that there is a wide cooling gap between Triassic and Early Cretaceous. In this study, we studied this gap by multiple geochronology and geochemistry on Lower Cretaceous molasse granitic gravel samples, with the aim to recover the hidden Mesozoic exhumation history. We report the first detailed zircon U-Pb ages, whole-rock major and trace elements and Sr-Nd-Pb isotopic data, which suggest that these clasts derive from Late Triassic I-type granites which were emplaced in a syn-collisional setting during a subduction phase. Their provenances were also determined by comparison with the geochemical fingerprint of Qinling granitic bedrocks. New zircon and apatite U-Pb, (U-Th)/He and fission-track data, as well as biotite 40Ar-39Ar, were performed on the granitic gravels dated between ca. 222 Ma to 110 Ma. Thermal history modeling, based on the multiple geochronological data, shows rapid cooling from ca. 700 °C to 200 °C during Late Triassic-Early Jurassic, then followed by a period of slow cooling from Middle Jurassic to Early Cretaceous.

As a whole, our new multiple geochronological and geochemical data and the related thermal history modeling results provide new insights on the prolonged pre-Cenozoic cooling history as well as the intracontinental deformation of the Qinling, which were mostly related to Paleo-Tethyan subduction and Late Triassic North China-South China Block collision.

Reference:

Dong, Y., Genser, J., Neubauer, F., Zhang, G., Liu, X., Yang, Z. and Heberer, B., 2011. U-Pb and 40Ar/39Ar geochronological constraints on the exhumation history of the North Qinling terrane, China. Gondwana Research, 19(4): 881-893.

Dong, Y., Sun, S., Santosh, M., Hui, B., Sun, J., Zhang, F., Cheng, B., Yang, Z., Shi, X., He, D., Yang, L., Cheng, C., Liu, X., Zhou, X., Wang, W. and Qi, N., 2022. Cross Orogenic Belts in Central China: Implications for the tectonic and paleogeographic evolution of the East Asian continental collage. Gondwana Research, 109: 18-88.

Yang, Z., Shen, C., Ratschbacher, L., Enkelmann, E., Jonckheere, R., Wauschkuhn, B. and Dong, Y., 2017. Sichuan Basin and beyond: Eastward foreland growth of the Tibetan Plateau from an integration of Late Cretaceous-Cenozoic fission track and (U-Th)/He ages of the eastern Tibetan Plateau, Qinling, and Daba Shan. Journal of Geophysical Research: Solid Earth, 122(6): 4712-4740.

How to cite: Peng, H., Wang, J., Liu, C., Li, J., Jiao, X., Zhang, L., and Zattin, M.: Revealing the hidden Mesozoic exhumation history of the Qinling orogenic belt, Central China: insights from multiple geochronological and geochemical data of the molasse granitic gravels, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1262, https://doi.org/10.5194/egusphere-egu23-1262, 2023.

EGU23-1407 | Posters on site | GMPV1.2

Rift propagation in south Tibet controlled by under-thrusting of India: A case study at the Tangra Yumco graben (south Tibet) 

Ralf Hetzel, Reinhard Wolff, Kyra Hölzer, István Dunkl, Qiang Xu, Aneta Anczkiewicz, and Zhenyu Li

Active graben systems in south Tibet and the Himalaya are the expression of ongoing E-W extension, however, the cause and spatio-temporal evolution of normal faulting remain debated. We reconstruct the history of normal faulting at the southern Tangra Yumco graben by using new thermochronological data and thermo-kinematic modelling (Wolff et al., 2022). The Miocene cooling history of the footwall of the main graben-bounding fault is constrained by zircon (U-Th)/He ages between 16.7±1.0 and 13.3±0.6 Ma, apatite fission track ages (15.9±2.1 to 13.0±2.1 Ma), and apatite (U-Th)/He ages (7.9±0.4 to 5.3±0.3 Ma). Thermo-kinematic modelling of the data indicates that normal faulting began 19.0±1.1 Ma ago at a rate of ~0.2 km/Myr and accelerated to ~0.4 km/Myr at ~5 Ma. In the northern Tangra Yumco rift, re-modelling of published thermochronological data (Wolff et al., 2019) shows that faulting started ~5 Ma later at 13.9±0.8 Ma. The age difference and the distance of 130 km between the two sites indicates that rifting and normal faulting propagated northward at an average rate of ~25 km/Myr. As this rate is similar to the Miocene convergence rate between India and south Tibet, we argue that the under-thrusting of India beneath Tibet has exerted an important control on the propagation of rifts in south Tibet.

References

Wolff, R., Hetzel, R., Hölzer, K., Dunkl, I., Xu, Q., Anczkiewicz, A.A., Li, Z. (2022). Rift propagation in south Tibet controlled by underthrusting of India: A case study at the Tangra Yumco graben (south Tibet). J. Geol. Soc. Lond., https://doi.org/10.1144/jgs2022-090.

Wolff, R., Hetzel, R., Dunkl, I., Xu, Q., Bröcker, M. & Anczkiewicz, A.A. (2019). High-angle normal faulting at the Tangra Yumco graben (southern Tibet) since ~15 Ma. J. Geology, 127, 15–36, http://doi.org/10.1086/700406.

 

How to cite: Hetzel, R., Wolff, R., Hölzer, K., Dunkl, I., Xu, Q., Anczkiewicz, A., and Li, Z.: Rift propagation in south Tibet controlled by under-thrusting of India: A case study at the Tangra Yumco graben (south Tibet), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1407, https://doi.org/10.5194/egusphere-egu23-1407, 2023.

Silicic magma flare-up episodes are characterized by the addition of large volumes of evolved magma (>65 wt% SiO2) to the continental crust in geologically short time intervals (106-107 years). Flare-up events are often associated with (trans-)extensional tectonics and contribute to crustal differentiation and critical metal mineralization. Related volcanic aerosol dispersion in the atmosphere can also trigger global environmental changes. During flare-up episodes, long-lived caldera complexes are thought to be primary eruptive sources at the Earth’s surface. However, a substantial proportion of the overall mobile magma can be trapped in extra-caldera dikes, fissures and monogenetic edifices controlled by the extensional stress regime.

In the Southern Alps of Northern Italy, a post-Variscan magmatic flare-up is recorded in a ca. 400 km long array of largely undeformed magmatic bodies of Early Permian age (285-275 Ma; [1]), then located along the northern margin of Gondwana. In the Southern Alps this flare-up produced more than 5*104 km3 of rhyolitic volcanic and cogenetic intrusive rocks. Two major caldera complexes (Sesia Caldera; Ora Caldera) were capable of ejecting volumes >103 km3 of magma during individual catastrophic eruptive events. However, magmatic activity also resulted in numerous scattered volcanic centers with relatively small eruptions (0.1 – 1 km3 each) and punctuated by quiescent intervals.

In this study we focus on two Early Permian fault-bounded basins, ca. 40 km apart, in the central Southern Alps: the Orobic Basin (Bergamo) and the Collio Basin (Brescia). The stratigraphic records of both basins preserve proximal and distal volcanic products and both successions terminate with erosional unconformities of Middle- to Late Permian age. New zircon LA-ICP-MS U-Pb ages indicate that the onset of explosive, rhyolitic magmatism was essentially coeval at ~284 Ma. The Collio Basin contains just a few ignimbrite sheets dispersed in an essentially (fluvio)-lacustrine sedimentary fill and recording a pulsated volcanic activity of nearly 5 Myr (youngest ignimbrite ~280 Ma). After an initial phase (1-2 Myr) of a similar pulsed nature, the Orobic Basin became the locus of extrusion of much larger volumes of rhyolitic magma (probably in excess of 100 km3) in less than 1 Myr (283-282 Ma). This was followed by a depositional style similar to the Collio but with a scarcer pyroclastic contribution.

The contrasting volcanic record in these two basins, which share size and tectonic environment but not magmatic evolution, provides a striking example of magmatic architecture diversity in the midst of a silicic flare-up event. Further investigation into the timing (CA-ID-TIMS U-Pb geochronology) and compositional evolution (e.g., zircon d18O, eHf) of volcanic products in the Collio and Orobic basins is expected to provide a much better resolved comparison and open a window into the combined tectono-magmatic processes that ultimately regulate the size and frequency of catastrophic, caldera-forming eruptions in silicic flare-up provinces.

[1] Schaltegger, U., & Brack, P. (2007). International Journal of Earth Sciences, 96(6), 1131-1151.

How to cite: Tavazzani, L., Szymanowski, D., Forni, F., Cadel, G., and Brack, P.: Magmatic architecture and basin evolution in the midst of a silicic flare-up: U-Pb zircon geochronology of volcanic deposits from two Early Permian, Collio-type basins of Southern Alps (Italy), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1426, https://doi.org/10.5194/egusphere-egu23-1426, 2023.

EGU23-1931 | Orals | GMPV1.2

Ultra-slow cooling of ultra-hot orogens 

Chris Clark, Michael Brown, Tim Johnson, Ruairidh Mitchell, and Saibal Gupta

The rate of cooling of metamorphic rocks provides a first-order constraint on the tectonic processes controlling heat flow and exhumation. For example, for small crustal terranes that were subducted to ultrahigh pressure conditions during the early stages of collisional orogenesis, exhumation is generally fast with rates similar to plate velocities, such that cooling is also rapid. Similarly, rates of cooling are commonly fast (generally ~20–30°C/Myr) during exhumation of metamorphic core complexes or due to transpression. By contrast, cooling in some granulite terranes can be slow and close-to-isobaric, leading to time-integrated cooling rates of <5°C/Myr. The implication of such slow rates of cooling is that these granulite terranes were close to isostatic equilibrium as a result of sustained high mantle heat flow that limited exhumation by erosion. However, constraining initial cooling rates in granulite terranes can be difficult, particularly where the rocks reached ultrahigh temperatures (>900 °C) that exceed the closure temperature of many geochronometers. In order to overcome this difficulty, we combine U–Pb zircon geochronology with Ti-in-zircon thermometry to investigate the thermal history of metapelitic rocks from the Eastern Ghats Province of eastern India. For the combined dataset of metamorphic zircon from the samples, concordant dates decrease continuously within 2σ uncertainty from around 950 Ma to 800 Ma, consistent with c. 150 Ma of zircon crystallization. Ti-in-zircon temperatures for each dated spot during this period decrease with age, corresponding to linear cooling rates ranging from 0.26 to 0.90°C/Myr. We propose that retention of heat producing elements in the lower crust of the Eastern Ghats Province and a low net erosion rate were responsible for c. 150 Myr of ultra-slow cooling. The location of the Eastern Ghats Province on the margin of the supercontinent Rodinia may have been a contributing factor enabling the region to remain relatively undisturbed until it was exhumed during the formation of Gondwana.

How to cite: Clark, C., Brown, M., Johnson, T., Mitchell, R., and Gupta, S.: Ultra-slow cooling of ultra-hot orogens, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1931, https://doi.org/10.5194/egusphere-egu23-1931, 2023.

EGU23-1954 | Orals | GMPV1.2

Statistical analysis of Europium anomalies in detrital zircons record major transitions in Earth geodynamics at 2.5 Ga and 0.9 Ga 

Antoine Triantafyllou, Mihai Ducea, Gilby Jepson, Alex Bisch, and Jerome Ganne

Trace elements in zircon are a promising proxy to quantitatively study long-term Earth’s lithospheric processes and its geodynamic regimes. The zircon Eu anomaly reflects the crystallization environment of its felsic or intermediate parental magma. It specifically provides insight into the water content, magmatic redox conditions, and the extent of pla­gioclase fractionation in the source rock or its occurrence as a cogenetic crystallizing phase from the magma. We performed a statistical analysis of Eu anomaly from a global compilation of detrital zircons and display it as a timeseries and found a major decrease in Eu anomaly ca. 2.5 Ga and an important increase ca. 0.9 Ga. Combining these trends with thermodynamic modelling, we suggest that these variations could be due to long-term change in the chemical system of the mafic source from which the intermediate to felsic melt and derived zircons are produced. The 2.5 Ga drop was likely associated with an enrichment in incompatible elements in the mafic source, which extended the pressure-temperature field of plagioclase stability as a cogenetic melt phase. We interpret the 0.9 Ga rise to record increasing hydration of magmagenetic sites due to the general development of cold subduction systems, which would delay and/or suppress the saturation of plagioclase in hydrous magmagenetic sites.

How to cite: Triantafyllou, A., Ducea, M., Jepson, G., Bisch, A., and Ganne, J.: Statistical analysis of Europium anomalies in detrital zircons record major transitions in Earth geodynamics at 2.5 Ga and 0.9 Ga, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1954, https://doi.org/10.5194/egusphere-egu23-1954, 2023.

EGU23-2154 | ECS | Orals | GMPV1.2

Multiple dates in millimetres; diffusion as an explanation for Rb-Sr age discrepancies in biotite 

Riley Rohrer, Chris Clark, Chris Kirkland, and Tim Johnson

In situ analysis of the Rb–Sr isotopic composition of biotite via triple quadropole LA–ICPMS is an increasingly popular method for constraining the time through the Sr closure temperature in rocks. Although interpreting the radiogenic product can be complicated by various factors that can affect diffusion of Rb and Sr, the role of the different minerals that may be in contact with biotite in regard to local diffusion gradients is poorly understood. In this study, we show the importance of analysing Rb–Sr isotopic data in the context of detailed petrographic observations, which reveals that the ratios obtained are affected by various diffusion pathways between like material and minerals that preferentially incorporate Sr. The studied samples are metapelites from the Fraser Zone (Western Australia) that have peak metamorphic conditions of about 850 °C and 9 kbar and a history of cryptic biotite Ar-Ar ages of ~1205 Ma, which on face value could imply exhumation rates that are some of the fastest recorded in Earth’s history. However, new biotite data from in-situ Rb-Sr analysis highlights differences in Sr retentivity. While calculated isochrons may at first yield large errors, sorting based on the location of the grains in terms of surrounding minerals yields a possible solution for varying Sr values skewing the ages in the sample. This results in an average age of 1205 Ma for biotite and sillimanite surrounded grains and 1107 Ma, from biotite and sillimanite surrounded grains and quartz and K-feldspar surrounded grains. This shows that the diffusive properties of Sr between biotite and the surrounding minerals creating variable re-equilibration between the different domains surrounding biotite. The complexities of Sr diffusion within between the various phases are still unknown, but the apparent effect between the surrounding material on the biotite and the measured initial Sr values does play a key factor in the final calculated ages and the interpretations they represent.

How to cite: Rohrer, R., Clark, C., Kirkland, C., and Johnson, T.: Multiple dates in millimetres; diffusion as an explanation for Rb-Sr age discrepancies in biotite, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2154, https://doi.org/10.5194/egusphere-egu23-2154, 2023.

The Austroalpine nappes in the Eastern European Alps have preserved the record of two orogenic phases in the Cretaceous and Tertiary but their cooling and exhumation history remains poorly constrained. Here we use new low-temperature thermochronological data and thermokinematic modeling to unravel the exhumation history of the Austroalpine nappes in the Nock Mountains east of the Tauern Window (Wölfler et al., submitted). Our data show that the central Nock Mountains (Ötztal-Bundschuh and Drauzug-Gurktal nappes) cooled through the zircon fission track closure temperature (~240 °C) already in the Late Cretaceous. Apatite fission track ages cluster around 35-30 Ma, indicating that the rocks have been at depths of ≤5-6 km since the Eocene-Oligocene boundary. In contrast, the Radenthein and Millstatt Complexes, which are located south of the Hochstuhl Fault, cooled below 240 °C during the Eocene and show apatite fission track ages of ~15 Ma. Thermokinematic modeling of an age-elevation profile in the central Nock Mountains (near Innerkrems) revealed a phase of enhanced exhumation (~0.62 km/Ma) between ~100 and ~85 Ma, which we relate to syn- to late-orogenic Late Cretaceous extension. After a period of slow exhumation (~0.03 km/Ma), the exhumation rate increased to ~0.16 km/Ma at ~32 Ma. In contrast, thermokinematic modeling of an age-elevation profile near Millstatt shows that rocks of the Radenthein and Millstatt Complexes were rapidly exhumed (~0.78 km/Ma) from ~44 Ma to ~38 Ma during the initial Europe-Adria collision. After a phase of slow exhumation (~0.07 km/Ma) between ~38 and ~19 Ma, the exhumation rate increased to ~0.3 km/Ma with the onset of Miocene lateral extrusion in the Eastern Alps. Altogether, ~16 km of rock have been removed since ~100 Ma in the Innerkrems region, whereas ~11 km of rock have been removed in the last ~44 Ma in the Millstatt area. These findings are consistent with pressure-temperature estimates for the Ötztal-Bundschuh nappe and the Radenthein/Millstatt Complexes, respectively (Koroknai et al., 1999; Schuster, 2003; Krenn et al., 2003, 2011). The distinct differences in the cooling histories north and south of the Hochstuhl Fault further suggest that this fault, which has hitherto been considered as a dextral strike-slip fault during Miocene lateral extrusion (Polinski & Eisbacher, 1992; Linzer et al., 2002), also accommodated a considerable amount of thrust movement. The difference between the amount of exhumation north and south of the Hochstuhl Fault indicates ca. 5 km of vertical offset between ~44 and ~38 Ma.

How to cite: Wölfler, A., Hampel, A., Wolff, R., Hetzel, R., and Dunkl, I.: Phases of enhanced exhumation during the Cretaceous and Tertiary orogenies in the Eastern European Alps: new insights from thermochronological data and thermokinematic modeling, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2925, https://doi.org/10.5194/egusphere-egu23-2925, 2023.

EGU23-3132 | ECS | Orals | GMPV1.2

A new calibration of radiation damage control on He diffusivity in apatite: implications for (U-Th)/He thermochronology 

Alexis Derycke, Kerry Gallagher, and Cécile Gautheron

In low temperature thermochronology, reliable interpretation of (U-Th)/He data is controlled by our understanding of helium diffusion in a crystal. The diffusion kinetics can be simulated through the classic Arrhenius-type equation, with parameters frequency factor Do and activation energy Ea (Farley, 2000). For apatite, it has been demonstrated that accumulated radiation damage perturbed the Arrhenius-type equation and exerts a strong control on He diffusion. Two models have been developed to parameterise the evolution of diffusion kinetics in apatite in terms of accumulated radiation damage: one based on the physical phenomenon (Gautheron et al., 2009) and the other calibrated on empirical observations (Flowers et al., 2009). As the amount of radiation damage depends on both time (U and Th decay producing damage) and temperature (annealing of radiation damage), both of these models are routinely used to interpret apatite (U-Th)/He data in terms of thermal histories. However, results obtained from inverse thermal history modelling with these two models can differ and be inconsistent with other low thermochronological data (e.g., apatite fission tracks). In this contribution we present a new radiation damage-based diffusion model that combines the approaches of both the Gautheron et al. and Flowers et al. models.

Our new model is based on the theoretical diffusion model proposed by Gerin et al. (2017) but incorporates a new calibration from the available He diffusion experiment results. The Gerin et al. model is built on a theoretical understanding of the fundamental physical processes and predicts diffusion parameters for different levels of crystal lattice damage, using quantum calculus. We recalibrated this model through an empirical law based on real crystal mesh damage calculated from available experimental data. To test the reliability of the revised model and to compare it to the existing models, it was implemented in the modelling software, QTQt (Gallagher, 2012). Here we present results of both forward and inverse modelling to highlight the benefits of the new model. The results are assessed in terms of the impact for “deep time” (>500 Ma) thermochronology, in which accumulated radiation damage can have a significant control on the inferred thermal history models.

 

Farley, K.A., 2000. Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite. J. Geophys. Res. 105, 2903–2914. https://doi.org/10.1029/1999JB900348

Flowers, R.M., Ketcham, R.A., Shuster, D.L., Farley, K.A., 2009. Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica et Cosmochimica Acta 73, 2347–2365. https://doi.org/10.1016/j.gca.2009.01.015

Gallagher, K., 2012. Transdimensional inverse thermal history modeling for quantitative thermochronology. Journal of Geophysical Research: Solid Earth 117, n/a-n/a. https://doi.org/10.1029/2011JB008825

Gautheron, C., Tassan-Got, L., Barbarand, J., Pagel, M., 2009. Effect of alpha-damage annealing on apatite (U–Th)/He thermochronology. Chemical Geology 266, 157–170. https://doi.org/10.1016/j.chemgeo.2009.06.001

Gerin, C., Gautheron, C., Oliviero, E., Bachelet, C., Mbongo Djimbi, D., Seydoux-Guillaume, A.-M., Tassan-Got, L., Sarda, P., Roques, J., Garrido, F., 2017. Influence of vacancy damage on He diffusion in apatite, investigated at atomic to mineralogical scales. Geochimica et Cosmochimica Acta 197, 87–103. https://doi.org/10.1016/j.gca.2016.10.018

How to cite: Derycke, A., Gallagher, K., and Gautheron, C.: A new calibration of radiation damage control on He diffusivity in apatite: implications for (U-Th)/He thermochronology, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3132, https://doi.org/10.5194/egusphere-egu23-3132, 2023.

EGU23-3705 | ECS | Orals | GMPV1.2

Finding Quaternary Seismogenic Activity Along the Eastern Periadriatic Fault System: Dating of Fault Gouges via Trapped Charge Methods 

Erick Prince, Tsukamoto Sumiko, Grützner Christoph, Vrabec Marko, and Ustaszewski Kamil

The Periadriatic Fault System (PAF) is among the largest and most important post-collisional structures of the Alps; it accommodated between 150-300 km of right-lateral strike-slip motion between the European and Adriatic plates from about 35 until 15 Ma. Recent GPS data suggest that Adria-Europe convergence is still being accommodated in the Eastern Alps. However, according to instrumental and historical seismicity records, seismotectonic deformation is mostly concentrated in the adjacent Southern Alps. In this contribution, we present our first results for dating earthquakes along the PAF during the Quaternary by applying two trapped charge dating methods. Both Electron Spin Resonance (ESR) and Optically Stimulated Luminescence (OSL) are especially useful as ultra-low temperature thermochronometers due to their dating range (a few decades to ~1 Ma) and low closing temperature (below 100°C). We aim to show which segments of the PAF system accommodated seismotectonic deformation by directly dating quartz and feldspar from fault gouges. For ESR, we measure the signals from the Al center in quartz following the single aliquot additive (SAAD) and single aliquot regenerative (SAR) protocols, focusing on the 100-150 µm grain size fraction. For OSL, we measure the IRSL signal at 50°C (IR50) and the post-IR IRSL signal at 225°C (pIRIR225) on potassium feldspar aliquots of the 100-150 µm grain size fraction. Our ESR results indicate the PAF system accommodated seismotectonic deformation during the last 1 Ma, while the OSL signals for all samples were in saturation. The minimum ages obtained from OSL suggest that the events are likely not younger than 0.4 Ma. We also studied a segment of the nearby Lavanttal Fault, for which our ESR results suggest that the last earthquakes strong enough to produce sufficient shear heating to produce a partial reset on the geochronometer probably happened before 4 Ma.

How to cite: Prince, E., Sumiko, T., Christoph, G., Marko, V., and Kamil, U.: Finding Quaternary Seismogenic Activity Along the Eastern Periadriatic Fault System: Dating of Fault Gouges via Trapped Charge Methods, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3705, https://doi.org/10.5194/egusphere-egu23-3705, 2023.

The Paricutin-Tancítaro region (PTR), located in the SW sector of the Michoacán-Guanajuato monogenetic field, in central Mexico, is characterized by a high spatial density of monogenetic scoria cones around Tancítaro, a stratovolcano active in the middle Pleistocene. The PTR area has been active for around one million years, and the latest eruption, beginning in 1943, formed the Paricutin volcano. We use the Average Erosion Index (AEI) to estimate the relative ages of 170 PTR scoria cones located within latitudes 19°N and 20°N and longitudes -102.0° E and -102.7° E. The AEI quantifies the erosional state of scoria cones from a morphological analysis of their level contours extracted from a high-resolution DEM (the 12-m TanDEM-X in this case). The analysis provides a metric for the undulations along the level contour curves at different altitudes, reflecting the width and amplitude of erosional rills and gullies on the cone’s surface. We compute a functional relationship between AEI and age by correlating 10 published radiometric ages with the measured AEIs of those cones. Then, using that function, we assign an age to each of the 170 cones, assuming that all the monogenetic volcanoes in the analysis have been exposed to similar erosive conditions. Finally, we tessellate the study area with a 0.1° x 0.1° grid and identify the number of events per grid module to compute the probability of at least one eruption occurring in the module in a specific time, using a Poisson process distribution obtained from the count of the number of events per 20 ky time intervals. Our results suggest that the dispersed volcanic activity in the PTR started to increase after the last eruption of Tancitaro (~237 ka), with a further activity increase during the Holocene, mainly concentrated on the NE sector of Tancítaro, where Paricutin is located. Holocene vents align to the NE, parallel to the Tepalcatepec-Tangancícuaro normal fault system. Furthermore, our results suggest a spatial coincidence between the regions with a higher probability of an eruption, based on the obtained eruption history, and the location of the recent seismic swarms in the PTR, the last two in 2020-2021, suggesting an increase in volcanic and seismic hazards in that area. To what extent? It is the subject of our forthcoming research.

How to cite: De la Cruz-Reyna, S.: Temporal and Spatial distribution of scoria cones in the Paricutin-Tancítaro volcanic region, Mexico: A morpho-chronometric approach to monogenetic hazard evaluation, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4567, https://doi.org/10.5194/egusphere-egu23-4567, 2023.

40Ar/39Ar dating has been a valuable and widely used method for dating orogenic processes such as prograde and retrograde metamorphism and brittle and ductile deformation, through the analysis of K-bearing rock-forming minerals such as white mica. The in situ 40Ar/39Ar method, in which a short wavelength laser is used to ablate an analyte and deliver the liberated Ar to a noble gas spectrometer, is particularly valuable as an approach to dating deformation or metamorphism because it allows for targeting of specific chemical and structural domains, and the mapping of intragrain age distributions. Rb-Sr dating can also be applied to K-bearing minerals because of Rb’s propensity to substitute for K. The Rb-Sr method has been under-used in recent decades because the isobaric interference between parent 87Rb and daughter 87Sr has necessitated the chemical separation of Rb from Sr via ion exchange chromatography prior to mass spectrometric analysis, and hence bulk sampling of the target analyte. New tandem mass spectrometers, in which two quadrupoles are separated by an intervening reaction chamber into which a reactive gas can be introduced, have opened up the opportunity of applying laser-based in situ sampling approaches to beta decay geochronometers, including Rb-Sr (Zack and Hogmalm, 2016).

We have collected new in situ Rb/Sr data for white mica from three different tectono-metamorphic settings previously dated using the in situ 40Ar/39Ar method: recrystallization of white mica in a Paleozoic low-temperature ductile shear zone; development of multiple cleavage domains in low-temperature metamorphic rocks deformed in the Paleozoic, and; slow cooling of rocks following regional amphibolite-facies metamorphism in a Paleoproterozoic orogeny. , This allows a direct comparison between these two approaches, with the goal of exploring the functionality and utility of in situ Rb-Sr data, and testing geological interpretations based upon the in situ 40Ar/39Ar method. Our results show that the in situ Rb-Sr method is a highly complementary approach to the 40Ar/39Ar method for white mica, particularly in cases for which the target mica population has a large internal spread in Rb/Sr. allowing for the rigorous testing of assumptions and hypotheses about timing and conditions of rock cooling, deformation, and fluid events developed using 40Ar/39Ar datasets.

 

Zack, T. and Hogmalm, K.J., 2016. Laser ablation Rb/Sr dating by online chemical separation of Rb and Sr in an oxygen-filled reaction cell. Chemical Geology, 437, pp.120-133.

How to cite: Kellett, D., Larson, K., and Skipton, D.: Integration of in situ Rb-Sr and in situ 40Ar/39Ar dates under diverse tectono-metamorphic scenarios, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5290, https://doi.org/10.5194/egusphere-egu23-5290, 2023.

EGU23-6766 | ECS | Posters on site | GMPV1.2

New high-resolution step heating experiments using a coupled Diode laser and thermocouple for thermochronology applications 

Julien Amalberti, Peter van der Beek, Cody Colleps, Maxime Bernard, and Isabel Wapenhans

Step-heating experiments constitute a key technique to study the release of volatile elements from geological materials as a function of temperature. In the case of noble gases (He, Ne, Ar, Kr, and Xe), step-heating is particularly useful to determine diffusion kinetics, structural defects, or spatial homogeneity within the material. These parameters are critical in the application of diffusion-based thermochronology such as the apatite (U-Th)/He system, where mapping out the spatial distribution of natural 4He provides crucial information on the thermal history of apatite crystals. Characterizing the diffusion and distribution of 4He via step-heating additionally has the potential to detect anomalously behaved grains and to directly constrain grain-to-grain variability in diffusivities within samples with significant radiation damage-induced age dispersion.

Within the ERC-funded COOLER project, we aim to further the development of high-resolution, ultra-low temperature 4He/3He thermochronology. To this end, we developed a new technique for precise step-heating experiments coupled with a diode laser including an inline single-wavelength pyrometer. The new protocol uses an all-alumina ceramic crucible fitted with a K-thermocouple ~0.1 mm below the center of the crucible pit. The head of the thermocouple is located directly below the sample within the ceramic matrix, allowing precise temperature measurements of the sample. The crucible is mounted on an alumina rod connected to a noble-gas preparation line. Gas released from the sample is purified and analyzed by a Thermo Scientific Helix SFT™ multi-collector mass spectrometer. The sample is wrapped in Pt foil and indirectly illuminated with a diode laser. Laser and PID temperature controls are carried out by a custom LabVIEW program. Temperature calibration is performed by comparing measured and theoretical melting points of well-known materials loaded in the alumina crucible pit.

Our initial results show very short response times for the thermocouple (a few seconds) and excellent agreement with the melting point of Indium (Tmelt = 157°C). Although the current design is limited to hold only a single sample, it enables precise calibration of the emissivity value for a specific capsule assembly, which is a key parameter for pyrometer control of the temperature. Consequently, by calibrating the Pt capsule emissivity prior to the step-heating experiment, they can then be mounted in a multiple laser sample holder (up to 36 samples per chamber). The single-wavelength pyrometer of our system enables temperature measurements for large sample batches. Temperature is also cross-calibrated between the pyrometer and the thermocouple to ensure its correct reading.  This new approach, coupled with analytical automation, will lead to significant improvement in the accessibility and efficiency of routine 4He/3He analyses for geologic applications.

How to cite: Amalberti, J., van der Beek, P., Colleps, C., Bernard, M., and Wapenhans, I.: New high-resolution step heating experiments using a coupled Diode laser and thermocouple for thermochronology applications, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6766, https://doi.org/10.5194/egusphere-egu23-6766, 2023.

EGU23-6959 | Orals | GMPV1.2

Timescale of pervasive melt migration in the continental crust 

Pavlina Hasalová, Karel Schulmann, Urs Schaltegger, Pavla Štípská, Andrew Kylander-Clark, Robert Holder, Roberto Weinberg, and Petra Maierová

Movement of a large volume of granitic melt is an important factor in the compositional differentiation of the continental crust and the presence of melt in rocks profoundly influences their rheology. Different mechanisms controlling melt migration through crust were proposed. We suggest that pervasive melt flow, analogous to reactive porous melt flow in mantle, could be possibly one of them. It is generally accepted that migration of felsic melts in continental crust starts with short distance pervasive microscopic flow into segregation veins which extract melt. However, we show that pervasive melt flow may be a regional mode of melt migration in continental crust. In such scenario, melt driven by deformation passes pervasively along grain boundaries through the whole rock volume. And the term pervasive melt flow is used for grain-scale, diffuse, porous and reactive flow of felsic silicate melt through rocks. This is effectively an open-system process that thoroughly reworks the resident rock mass. Through-flow of melt destroys pre-existing fabrics and the original chemical and isotopic nature of the protolith. Melt segregation is inefficient and protolith become isotropic granite-like, with partly preserved relics of the original, without ever containing more than a few melt percent at any time. The fabric and geochemical nature of these granites encapsulates the complex history of hybridization.

In order to decipher duration of pervasive melt migration we used precise U-Pb monazite ID-TIMS (isotope dilution thermal ionization mass spectrometry) and U-Pb monazite Laser Ablation Split Stream (LASS) geochronology in combination with monazite chemistry as well as U-Pb zircon SHRIMP geochronology. Monazite reveal continuous chemical equilibration with passing melt. They are getting progressively enriched in HREE and depleted in Eu. Monazites in the least affected rock preserve original magmatic zoning in Th and U, in contrast to more with melt equilibrated rock types, where this zoning is lost. Data for each migmatite type reveal  similar date spread for both cores and the Y-rich well defined rims of single monazite grains, indicating a disconnect between U-Pb dates and chemical zoning. There is also no correlation between U-Pb ages and Yb/Gd ratio. This suggest perturbance of the isotopic system. We interpret these random distribution within-grain date variations as a result of dissolution-reprecipitation reactions between monazite grains and melt. During the coupled dissolution-reprecipitation radiogenic Pb was redistributed within the grain. This is supported by dissolution of apatite into silicate melts that stabilizes monazite during migmatitization, preventing their dissolution but not reaction with passing melt. Redistribution of radiogenic Pb resulted in meaningless individual ages from different migmatite types, but gave overall duration of the thermal event – pervasive melt flow. Duration of pervasive melt flow was dated 8-10myr. This suggest that porous flow of silicate melts in continental crust is a process which can operate over a long time and impacts on the rheology of the crust during orogeny.

How to cite: Hasalová, P., Schulmann, K., Schaltegger, U., Štípská, P., Kylander-Clark, A., Holder, R., Weinberg, R., and Maierová, P.: Timescale of pervasive melt migration in the continental crust, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6959, https://doi.org/10.5194/egusphere-egu23-6959, 2023.

EGU23-7367 | ECS | Orals | GMPV1.2

40Ar/39Ar dating of pseudotachylytes: a case study on post-metamorphic brittle fault in the NW Alps 

Zeno G. Lugoboni, Gloria Arienti, Valentina Barberini, Andrea Bistacchi, Christian Cannella, Simona Caprarulo, and Igor M. Villa

Pseudotachylytes are solidified frictional melts produced by seismic fault slip. Being melts that solidified in seconds or minutes after the seismic slip event, they have always been considered a very favourable tool to date brittle deformation. However, since all pseudotachylytes are composed of inherited clasts, melt-derived matrix and (quite often) also alteration products, it is necessary to discriminate the Ar contribution of these three reservoirs to obtain meaningful ages. This can be done by analyzing Ca/K and Cl/K signatures provided by Ar systematics. Furthermore, microstructural analysis and microCT allow quantifying the clast-to-pseudotachylyte matrix ratios for each sample, and XRPD allows detecting potential alteration phases. Here we present the results of step-heating 40Ar/39Ar analyses performed on pseudotachylytes of the Trois Villes Fault and the Quart Fault, which crop out in a region of the Western Alps (Aosta Valley) affected by three different post-metamorphic brittle deformation phases: D1 characterized by NW-SW extension, D2 with NE-SW extension, and D3 showing N-S extension. The relative chronology of these deformation phases is based on consistent cross-cutting relationships. D1 ages of 29–32 Ma have been inferred from syn-kinematic magmatic dikes and hydrothermal veins. However, no absolute ages were so far available for D2 and D3, as direct radiometric dating of fault rocks has never been performed before in the area. Our results are consistent with the relative chronology and greatly improve our understanding of the tectonics of this area.

How to cite: Lugoboni, Z. G., Arienti, G., Barberini, V., Bistacchi, A., Cannella, C., Caprarulo, S., and Villa, I. M.: 40Ar/39Ar dating of pseudotachylytes: a case study on post-metamorphic brittle fault in the NW Alps, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7367, https://doi.org/10.5194/egusphere-egu23-7367, 2023.

EGU23-7959 | ECS | Posters on site | GMPV1.2

Developing techniques and reference materials for LA-ICP-MS U-Pb geochronology of Sn-W minerals 

Dawid Szymanowski, Lorenzo Tavazzani, Yannick Buret, Marcel Guillong, Alejandro Cortes Calderon, and Cyril Chelle-Michou

Tin-tungsten magmatic-hydrothermal deposits are sources of critical raw materials (Sn, W, Nb, Ta, Li), key to the development of technologies involved in the green transition. However, the current and projected supply of many of these mineral commodities is often dominated by entities whose practices or geopolitical setting may raise issues from a social, political, or environmental standpoint. To meet a steadily increasing demand, new responsible mineral extraction projects must therefore be developed. Successful exploration and economic appraisal of newly identified mineral deposits require (1) an understanding of the ore-forming processes to build an exploration model, and (2) an early estimate of the deposit size to facilitate well-targeted investments. One key parameter that helps to achieve both goals is the knowledge of absolute timing and duration of the mineralisation process.

We present new analytical developments in U-Pb dating of strategic Sn-W ore minerals (cassiterite, wolframite, scheelite) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We used a suite of Sn-W mineral specimens to characterise U/Pb downhole fractionation behaviour and polyatomic interference patterns for these three matrices, allowing the optimisation of ablation and ICP-MS settings. In parallel with technical developments, we compiled a large library of potential primary and secondary cassiterite, wolframite, and scheelite reference materials (RMs) which we characterised for major and trace elements. To further our understanding of geochemistry of Sn-W phases, we also performed high-resolution compositional mapping of key trace elements (e.g. U, Pb, REE) with an ultra-fast washout laser ablation system.

Promising RM candidates will be developed into primary RMs with a careful characterisation of compositional homogeneity and precise age determination by isotope dilution-thermal ionisation mass spectrometry (ID-TIMS). Thus characterised RMs and a set of analytical best practices will be made available to laboratories wishing to test and further develop such methods. The ultimate goal of this effort is to build a set of community shared materials and techniques that will allow precise and accurate temporal characterisation of Sn-W mineralisation.

How to cite: Szymanowski, D., Tavazzani, L., Buret, Y., Guillong, M., Cortes Calderon, A., and Chelle-Michou, C.: Developing techniques and reference materials for LA-ICP-MS U-Pb geochronology of Sn-W minerals, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7959, https://doi.org/10.5194/egusphere-egu23-7959, 2023.

EGU23-8495 | Posters on site | GMPV1.2

From sedimentation to multiple tectono-thermal events: U/Pb zircon and allanite dating in the Eastern Alps 

Sebastian Stumpf, Etienne Skrzypek, Kurt Stüwe, and Christoph Iglseder

The affiliation of the Ennstal Phyllite Zone (EPZ) to either the micaschist units of the Koralpe-Wölz nappe system (KW-NS) to its south or to nappes of the “Greywacke Zone” to its north and east is still debated. Due to similarities with phyllites of the “Greywacke Zone” in the north and phyllonitic micaschists in the south, no clear lithological boundary between these units is observable. Petrographic observations suggest a continuous eoalpine metamorphic gradient with no metamorphic gap between the KW-NS and the EPZ. In order to clear this debate and further constrain the tectonic and temporal evolution of these units, we present new LA-MC-ICP-MS U/Pb age dating results for metapelite samples from the EPZ as well as for the adjacent units of the KW-NS.

Two samples (EA09 and SP02) from the central EPZ and one sample (SP62) from the northernmost part of the Wölz-Complex of the KW-NS were selected for detrital zircon age dating. The distribution of approximately 150 dates per sample reveals major peaks at the Ediacaran-Cryogenian boundary (624 – 646 Ma), a smaller peak at the Neoproterozoic-Mesoproterozoic boundary (~1000 Ma) followed by a hiatus and a smaller peak in the mid-Paleoproterozoic (~2000 Ma). All samples show similar mid-Paleoproterozoic and Neoproterozoic-Mesoproterozoic peaks. Sample SP62 contains one grain of Cambrian age (523 Ma) and one grain of mid-Ordovician age (460 Ma) whereas the youngest zircons from the EPZ samples yield Ediacaran ages of 629 Ma and 625 Ma. The lack of zircons of Ordovician age in samples EA09 and SP02 indicate an affiliation of the EPZ with the basal units of the “Greywacke Zone”.

We also dated metamorphic allanite and REE-bearing epidote rims which are interpreted to form at low pressure and temperature conditions in metapelites. Allanites from the EPZ yield metamorphic ages of 105 ± 3.5 Ma in the northern part of the unit and 279 ± 6 Ma in the southern part. Allanite cores from two micaschist samples from the northern and central Wölz-Complex yield ages of 316 ± 21 Ma and 286 ± 11 Ma. Their respective epidote rims yield eoalpine ages of 98 ± 2 Ma and 96 ± 2 Ma. One micaschist sample from the Rappold-Complex yields ages of 326 ± 9 Ma for the allanite cores and 101 ± 1 Ma for the epidote rims. These ages are interpreted as prograde crystallization of allanite and epidote and give us petrochronological information about three distinct metamorphic events: Variscan, Permian and Eoalpine. By gathering three distinct eoalpine ages within the EPZ and the KW-NS, we can further constrain the metamorphic evolution of the eoalpine lower plate.

How to cite: Stumpf, S., Skrzypek, E., Stüwe, K., and Iglseder, C.: From sedimentation to multiple tectono-thermal events: U/Pb zircon and allanite dating in the Eastern Alps, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8495, https://doi.org/10.5194/egusphere-egu23-8495, 2023.

Interpreting cooling ages from multiple thermochronometric systems and/or from steep elevation transects with the help of a thermal model can provide unique insights into the spatial and temporal patterns of rock exhumation. Several well-established thermal models allow for a detailed exploration of how cooling or exhumation rates evolved in a limited area or along a transect. However, integrating large, regional datasets in such models remains challenging due to the difficulty of extracting exhumation rates from ages that are affected by variable effective cooling temperatures, sampling elevations, and surface temperatures. Here we present a thermal model that can be used to rapidly provide a synoptic overview of exhumation rates from thermochronologic data spread over wide regions. The model incorporates surface temperature based on a defined lapse rate and sample elevation relative to a mean relief value that is dependent on the thermochronometric system of interest. Other inputs include sample age, thermochronometric system, and an initial (unperturbed) geothermal gradient. The model is simplified in that it assumes steady, vertical rock-uplift when calculating exhumation rates. For this reason, it does not replace more powerful and versatile thermal-kinematic models like PECUBE, but it has the advantage of simple implementation and rapidly calculated results. In our example dataset, we show the results of exhumation rates calculated from 1785 thermochronologic ages from the Himalaya associated with five different thermochronometric systems; results were calculated in under a second on a standard laptop. Despite the synoptic nature of the results, we show how they illustrate several fundamental features of the mountain belt, including strong regional differences that reflect known segmentation patterns and changing exhumation rates in areas of newly developed ramp structures. The results can also be correlated with geomorphic metrics to probe potential controls on surface morphology.

How to cite: van der Beek, P. and Schildgen, T.: Age2exhume: A Matlab/Python script to calculate steady-state vertical exhumation rates from thermochronologic ages in regional datasets, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8741, https://doi.org/10.5194/egusphere-egu23-8741, 2023.

EGU23-8976 | Orals | GMPV1.2

How useful is the initial Pb composition of magmatic allanite ? 

Etienne Skrzypek, Daniela Gallhofer, Christoph Hauzenberger, and Isabella Haas

Allanite-group minerals are known to incorporate not only U and Th but also initial, non-radiogenic Pb. Allanite can therefore be analyzed in order to assess its crystallization age as well as the ambient Pb composition at the time of crystallization. Whereas allanite age dating has been the focus of many studies, constraining its initial Pb composition has received much less attention. We collected a series of Phanerozoic, allanite-bearing magmatic rock samples (volcanic, plutonic, pegmatite) and measured both the age and initial Pb composition of allanite by laser ablation-multi collector-inductively coupled plasma-mass spectrometry. We show that allanite data can be corrected for mass bias and fractionation using zircon (for U/Pb and Th/Pb ratios) and glass (for Pb/Pb ratios) as reference material as long as allanite is not metamict. A lower intercept age and y-axis intercept Pb composition can be determined by linearly regressing U-Pb data in a Tera-Wasserburg diagram, and a 230Th disequilibrium correction is highly recommended. We find a good agreement between our allanite U-Pb dates and published U-Pb zircon ages for the same localities. Our initial Pb compositions are validated by a fair agreement with Pb isotopic data measured on co-genetic feldspars from the same samples. The initial Pb composition of samples ranging from ca. 530 to 18 Ma reveals fluctuations in initial 207Pb/206Pb ratio, which points to different degrees of crustal (elevated μ=238U/204Pb) contribution. These variations could be due to post-magmatic deformation, weathering or metamorphism, but we believe that they rather reflect differences in initial magma composition. We thus emphasize the usefulness of allanite initial Pb compositions to discuss the source of igneous rocks.

How to cite: Skrzypek, E., Gallhofer, D., Hauzenberger, C., and Haas, I.: How useful is the initial Pb composition of magmatic allanite ?, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8976, https://doi.org/10.5194/egusphere-egu23-8976, 2023.

EGU23-9864 | Orals | GMPV1.2

Luminescence chronology and thermometry studies of plant opal phytoliths 

Joel Spencer and David Sanderson

In this work we have been investigating the luminescence properties of plant opal phytoliths to assess their suitability for determination of age and/or thermometric information from soil and sediment sequences. Opal phytoliths, or bio-opal, form when monosilicic acid from soil-waters is taken up by plants and chemically altered to silica, producing intra- or extra- cellular structures that give grasses and stems their strength. Opal phytoliths are usually considered to be non-crystalline and referred to as silica mineraloid structures, with ~4-9% water, <5% other elements, and specific gravity ranging from ~1.5-2.3. They are known to be resistant to degradation and hence preserved in soil or sediment even after decomposition of organic matter. Our earlier work examined a <2.37 g/cm3 density fraction in parallel with quartz grains from samples collected from fluvial terraces and soil pits on Konza Prairie Biological Station native tall grass prairie a few km from Kansas State University. We observed generally similar luminescence characteristics from the phytolith fractions to quartz, with bright blue optically stimulated luminescence (OSL) signals and good single-aliquot regenerative-dose characteristics. In two hours the OSL signal is ~90% bleached by white light, whereas red fluorescence lab lighting has a negligible effect over the same exposure time. Thermoluminescence (TL) data suggested the presence of feldspatic-like minerals or perhaps thermal degradation of the phytoliths during TL measurement; the phytolith fractions were also stimulated by low-temperature infrared stimulated luminescence (IRSL50) perhaps also indicating presence of contaminant minerals. Initial SEM analyses identify what appear to be weathered silica grains, but also highly weathered, pitted concretions with silicate-like structures according to element mapping but actual mineral identification is presently unclear.

Most recently we have begun analyzing samples collected from a suite of stratified paleosols from the mid-continent stream type-site of Claussen, Mill Creek, Wabaunsee County, Kansas. This site has documented phytolith examples and a radiocarbon framework. We are continuing luminescence characterization studies, incorporating screening of prepared fractions with SEM and IRSL50 evaluation, and pulsed time domain analysis measurements are being explored.

We think luminescence from opal phytoliths shows great promise as an alternative target to quartz or feldspar, but moreover as a sensitive recorder of climatic change or fire exposure on plant communities. This presentation will review our earlier work on phytoliths and discuss most recent findings from the Claussen site.

How to cite: Spencer, J. and Sanderson, D.: Luminescence chronology and thermometry studies of plant opal phytoliths, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9864, https://doi.org/10.5194/egusphere-egu23-9864, 2023.

EGU23-11638 | Posters on site | GMPV1.2

Using detrital thermochronology on moraine deposits to infer glacial erosion patterns and rock thermal history : insights from the Arve and Maurienne valleys (Western European Alps) 

Benjamin Guillaume, Nathan Cogné, Kerry Gallagher, Pierre G. Valla, and Christian Crouzet

This study tests the application of combined detrital apatite fission track (AFT) and U-Pb dating to infer both glacial erosion spatial patterns and long-term rock cooling histories in Alpine mountainous settings. We have dated 716 detrital apatite grains from glacial sediments collected in the Maurienne and Arve valleys (Western European Alps, France) from moraine deposits corresponding to different stages of glacial retreat since the Last Glacial Maximum (LGM, ca. 24-21 ka).
The Maurienne valley crosses the internal and external Alps, which exhibit contrasting in-situ AFT and U-Pb ages. Here, we present the measured distribution of both detrital AFT and U-Pb ages at 6 locations along the valley, with catchment elevations ranging from 390 to 1740 m. We show that during glacial retreat, erosion is mainly concentrated in the downstream part of the glacier, near the sampled moraine deposits. This inference suggests that during glacial retreat, glacial erosion is more effective below the ELA (Equilibrium Line Altitude) and specifically close to the glacier front, in areas where ice flow velocity is high and subglacial water is abundant, as predicted by ice-dynamics reconstructions in the European Alps over the last 20 ka.
In the Arve valley, previous studies showed that in situ AFT ages are systematically younger than 7 Ma for the Mont-Blanc massif. We compare the thermal history obtained from these literature bedrock-derived data to that derived from the new detrital AFT data collected in the Little Ice Age (LIA) moraine, just at the front of the Bossons glacier (~1300 m elevation). We also compare our results with 5 other samples down the valley at catchment elevations between 460 and 1050 m to evaluate potential changes in the detrital AFT signal as well as the consistency in the retrieved long-term cooling history.
Based on these first results, we plan to extend our study to other areas (e.g., Patagonia) to investigate both (1) spatial patterns of glacial erosion for older glacial periods (pre-LGM), and (2) long-term rock cooling histories from moraine deposits where modern bedrock is inaccessible (e.g. under modern glaciers or ice fields).

How to cite: Guillaume, B., Cogné, N., Gallagher, K., Valla, P. G., and Crouzet, C.: Using detrital thermochronology on moraine deposits to infer glacial erosion patterns and rock thermal history : insights from the Arve and Maurienne valleys (Western European Alps), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11638, https://doi.org/10.5194/egusphere-egu23-11638, 2023.

Low temperature thermochronology is a field of research in which the thermally controlled retention of radioactive decay products in geological materials is measured to reconstruct mineral and rock temperature-time histories, especially in regard to their passage through the upper crust (i.e., <350 °C). Such temperature-time histories are most often constructed by inverting low temperature thermochronological data using geological constraints in order to identify envelopes of plausible rock thermal histories. While such inversions are highly informative models of the thermal history of rocks, the ultimate goal of most low temperature thermochronological studies is to relate thermal histories to geological processes in order to reconstruct upper crustal tectonic activity and/or landscape evolution. To do this, the (evolving) depths of thermochronometer effective closure temperatures must be estimated, as both heat transfer processes and crustal rock composition/thermal properties will affect the crustal thermal field. 

Here we present an exploration of the relationships between low temperature thermochronometers, temperature-time histories, and geological processes produced using the software Tc1D (https://doi.org/10.5281/zenodo.7124271). Tc1D is a new, open-source thermal and thermochronometer age prediction model for simulating the competing effects of tectonic and surface processes on thermochronometer ages. The Tc1D software is written in Python and uses the finite difference method to solve the heat transfer equation in 1D including the effects of heat conduction, advection (e.g., erosion, sedimentation), and radiogenic heat production on the thermal profile of the lithosphere. The flexibility of the software means that it can be used to explore the effects of a variety of geological processes, including magmatic intrusion and lithospheric delamination, for example. Thermochronometer ages (U-Th/He and fission track ages for apatite and zircon) are predicted by tracking the thermal history of rock particles in the model as they travel from depth to the surface during their exhumation history, both for samples at the modern-day surface and those reaching the surface at past times. The thermal histories are input to age prediction algorithms, including those that account for the effects of radiation damage in minerals (e.g., Flowers et al., 2009; Guenthner et al., 2013), making the software applicable to thermochronometer age interpretation in a wide variety of geological scenarios.  

In this contribution, we present a selection of results using Tc1D, demonstrating potential applications and providing some examples of unintuitive temperature and age relationships. These examples include cases where sample depth does not correlate with temperature, where variations in predicted effective closure temperatures produce unexpected age relationships, and where the thickness of the layer of exhumed rocks can significantly affect predicted ages. We hope that these illustrative examples demonstrate the role for Tc1D in the thermochronologist’s interpretational toolbox. 

How to cite: Whipp, D. M. and Kellett, D. A.: Exploring the relationships between low-temperature thermochronometers, temperature-time histories, and geological processes using Tc1D, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12472, https://doi.org/10.5194/egusphere-egu23-12472, 2023.

EGU23-12637 | Posters on site | GMPV1.2

Erosion patterns in the European Alps from zircon fission-track tracer thermochronology 

Christoph Glotzbach and Sarah Falkowski

Applications of tracer thermochronology exploit a known or assumed surface thermochronometric age map (based on either interpolated observed or modelled bedrock ages) to determine the provenance of detrital grains within fluvial or glacial catchments. The goal is to interpret the erosion pattern and processes within the sampled catchment. So far, most studies focused on modern sediments and glacial deposits.

We extend this approach to several time slices (between 28 and 12 Ma) of well-dated stratigraphic sections of pro- and retro-foreland basins of the European Alps. Foreland basin deposits represent a rich archive of erosional processes that were controlled by tectonics, climate, and lithology. However, importantly, before we reconstruct and interpret past erosion patterns and exhumation from detrital zircon fission-track (ZFT) age distributions and modelled bedrock ZFT ages back in time, we produce a frame of reference of today's situation. We do this by investigating signals from modern river samples and the present-day erosion pattern and mineral fertility in the Alps.

Here, we focus on 26 modern river samples (21 previous samples from the Western and Central Alps, and 5 new samples from the Eastern Alps) and discuss observed and predicted (based on possible erosion scenarios) ZFT age distributions, as well as potential pitfalls of the method (such as poor bedrock control in some areas of the Alps). We also show preliminary results from stratigraphic sections.

How to cite: Glotzbach, C. and Falkowski, S.: Erosion patterns in the European Alps from zircon fission-track tracer thermochronology, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12637, https://doi.org/10.5194/egusphere-egu23-12637, 2023.

EGU23-12969 | Posters on site | GMPV1.2

Characterization of zircon megacrysts from an atypical occurrence of carbonatite at Kawisigamuwa, Sri Lanka 

Daniela Gallhofer, Etienne Skrzypek, Christoph Hauzenberger, Andreas Möller, Joseph Andrew, Luis A. Parra-Avila, Laure Martin, Anthony Kemp, Rohan Fernando, and He Dengfeng

Zircon megacrysts are unusually large crystals (> 5 mm) that are commonly associated with mantle-derived kimberlites, carbonatites, alkali basalts and syenitic pegmatites (e.g., Hoskin and Schaltegger 2003). Such zircons form during relatively short timespans and therefore, are often used as reference material for U-Pb geochronology. Here, we determine the geochemical and isotopic (U-Pb, Hf, O) characteristics of a little-known occurrence of zircon megacrysts at Kawisigamuwa, Sri Lanka.

The dark brown megacrysts are euhedral, commonly elongate crystals with double pyramidal terminations and have faintly corroded crystal surfaces. The zircons consist of oscillatory zoned and nearly featureless cathodoluminescence-bright patches, some of which appear to follow sealed cracks. All zircon domains show a low to moderate FWHM of the ν3 (SiO4) Raman band (2.5 to 7.3 cm-1), have a low to moderate radiation damage (total α-dose mainly <0.5 x 1018 events/g) and therefore are intermediate to well crystalline. Contents of most trace element (U, Th, REE, P) are elevated in the oscillatory zoned domains, while Hf content is elevated in the CL-bright domains and seems to be grain-dependant. The oscillatory zoned domains yielded a TIMS weighted mean 206Pb/238U age of 532.39 ± 0.66 Ma (2sd). The206Pb/238U dates within the CL-bright domains are partially reset by a single event of recrystallisation at ~518 Ma. The mean Hafnium isotopic compositions of the tested grains show a narrow range of 176Hf/177Hf from 0.281969 to 0.282003. Oxygen isotopes determined on two oscillatory zoned zircon megacrysts are homogeneous (mean δ18O of 12.1 and 12.2).    

While some of the trace and major element characteristics (Th/U, Zr/Hf, Hf content) of the Kawisigamuwa megacrysts resemble those of carbonatite zircons, their hafnium and oxygen isotope ratios are clearly different from mantle values. The isotopic values indicate that a significant amount of a crustal component must be involved in the formation of the zircons. Recently, several studies have found evidence for melting of carbonate rocks under high grade metamorphic conditions in Sri Lanka (e.g., Wang et al. 2021). It might be feasible that zircons grow from interaction of crustal derived carbonate melts and silicate melts or wall rocks under high grade metamorphic conditions.

Hoskin P.W.O. and Schaltegger U. (2003). The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53 (1), 27–62.

Wang J., Su B.-X., Chen C., Ferrero S., Malaviarachchi S.P.K., Sakyi P.A., Yang Y.-H. and Dharmapriya P.L. (2021). Crustal derivation of the ca. 475-Ma Eppawala carbonatites in Sri Lanka. Journal of Petrology, 62 (11), 1-18.

How to cite: Gallhofer, D., Skrzypek, E., Hauzenberger, C., Möller, A., Andrew, J., Parra-Avila, L. A., Martin, L., Kemp, A., Fernando, R., and Dengfeng, H.: Characterization of zircon megacrysts from an atypical occurrence of carbonatite at Kawisigamuwa, Sri Lanka, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12969, https://doi.org/10.5194/egusphere-egu23-12969, 2023.

EGU23-13440 | ECS | Orals | GMPV1.2

Partially decoupled magmatic and hydrothermal events in porphyry copper systems? 

Adrianna Virmond, David Selby, Jörn-Frederik Wotzlaw, and Cyril Chelle-Michou

Porphyry Copper Systems (PCS) represent a significant source of metals, and will continue to play a key role in future with the development of green technology. Despite being one the most studied mineral systems, the primary controls on the ore tonnage of deposits (that varies up to 5 orders of magnitude in nature) remain poorly constrained. The Eocene Chuquicamata Intrusive Complex (CIC) in northern Chile hosts one of the world’s largest porphyry copper deposits and represent a perfect natural laboratory to explore the influence of timescales in controlling the formation and size of PCS.

Here we investigate the tempo of multiple magmatic-hydrothermal events in the CIC applying molybdenite geochronology (Re-Os ID-NTIMS) and high precision zircon petrochronology (U-Pb CA-ID-TIMS geochronology in tandem with LA-ICPMS trace element composition). Preliminary geochronological results may suggest a partial decoupling of the magmatic and hydrothermal events. Zircon U-Pb geochronology results point to a multi-million-year protracted magmatic history with at least two discrete pulses separated by 500 kyrs. The hydrothermal event appears slightly younger than the youngest magmatic pulse and lasted for ca. 1 Myrs.

The extensive duration of the mineralization scales with the behemothian size of the Chuquicamata deposit (more than 110 Mt of contained copper) and corresponds to predictions from numerical modelling of magma degassing. Interestingly, the apparent temporal decoupling between magmatism and hydrothermal activity at Chuquicamata suggests that syn-mineralization ore-forming magmas might not always intrude as dyke or stock at mineralization depth and can remain hidden at upper to mid-crustal depth. In the absence of high-precision geochronological data, this may bear consequences when assuming a direct genetic link between spatially associated porphyritic rocks and the mineralization.

How to cite: Virmond, A., Selby, D., Wotzlaw, J.-F., and Chelle-Michou, C.: Partially decoupled magmatic and hydrothermal events in porphyry copper systems?, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13440, https://doi.org/10.5194/egusphere-egu23-13440, 2023.

EGU23-14643 | ECS | Orals | GMPV1.2

Out-of-sequence fault activity in the High Himalaya revealed by luminescence thermochronometry 

Chloé Bouscary, Georgina King, Jérôme Lavé, Djordje Grujic, György Hetényi, Rafael Almeida, Ananta Gajurel, and Frédéric Herman

Two end-member competing models have been proposed to describe the kinematics of the central Nepal Himalayas in the last few Myr. They differ in their interpretations of which surface breaking faults accommodate current shortening and the kinematics responsible for driving rapid exhumation in the topographic transition zone around the Main Central Thrust (MCT). These locally higher uplift and erosion rates in the High Himalaya could reflect (1) thrusting over a midcrustal ramp with the growth of a Lesser Himalaya duplex at midcrustal depth causing underplating along the Main Himalayan Thrust ramp, or (2) out‐of-sequence thrusting along the front of the High Himalaya, possibly driven by climatically controlled localized exhumation.

To decipher between the two tectonic models, we compare existing low and medium-temperature thermochronometric data (40Ar/39Ar on muscovite, apatite (U-Th)/He - AHe, zircon (U-Th)/He - ZHe, apatite fission track - AFT, and zircon fission track - ZFT), extracted from the world thermochronometric data file of Herman et al. (2013), to luminescence thermochronometry data from 61 newly collected rock samples along transhimalayan rivers between the Kali Gandaki and the Trisuli. The luminescence thermochronometry data provide a new perspective on Late Pleistocene exhumation rates (timescales of 104 to 105 years) of the Nepalese Himalayas, by offering quantitative high-resolution constraints of rock cooling histories within the upper kilometres of the Earth’s crust.

All of the thermochronometric data show younger ages and higher exhumation rates around the topographic transition and the MCT zone through central Nepal. For the higher temperature thermochronometers, there is a continuous trend towards younger ages from the Lesser Himalaya through the topographic transition and the MCT zone. These data suggest that the in-sequence model, with exhumation rates linked to increased erosion and the formation of a duplex below the Higher Himalayas, coincident with the MCT location in some areas, is the model that best describes the thermochronometric ages of this study area on Myr timescales. However, the luminescence thermochronometry data reveal a spatial and temporal variability of the higher exhumation rates at different timescales, suggesting an intermittency of exhumation signal due to geomorphological processes. The luminescence thermochronometry data also highlight a systematic sharp transition at the MCT, pointing to out-of-sequence activity at this tectonic boundary on 100-kyr timescales. Whether this difference in tectonic model between the two timescales is due to low resolution of the higher temperature thermochronometers, shallow isotherms deflected by fluid circulation and hot spring activity near the MCT, or to a change in tectonic regime during the last 200 kyr, out-of-sequence activity of the MCT needs to be considered in seismic hazard models as it could put the local population at risk.

How to cite: Bouscary, C., King, G., Lavé, J., Grujic, D., Hetényi, G., Almeida, R., Gajurel, A., and Herman, F.: Out-of-sequence fault activity in the High Himalaya revealed by luminescence thermochronometry, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14643, https://doi.org/10.5194/egusphere-egu23-14643, 2023.

EGU23-16555 | Orals | GMPV1.2

In-situ, U-Pb dating of titanite in phonolitic dykes from the Dolomites area (Southern Alps, Italy): new insights on the timing of the Middle Triassic magmatism 

Massimo Coltorti, Nicolò Nardini, Federico Casetta, Lorenzo Tavazzani, Stefano Peres, Theodoros Ntaflos, and Elio Dellantonio

Due to the complex geodynamic framework and the excellent state of preservation of the stratigraphic relationships towards the host metamorphic and sedimentary rocks, the Permo-Triassic magmatic sequences of the Southern Alps (Italy) are intensely studied. Throughout the Southalpine domain, the main peaks of the volcano-plutonic activity are both pre- and post-dated by the emplacement of small volume of magmas with variable chemical affinity. These magmas, preserved as dykes and veins intruded into the plutonic bodies and/or the overlying volcanites, are powerful tools for tracing the evolution of the magma source and reconstructing the temporal evolution of the magmatic episode. Here, we present a detailed geochemical and geochronological study of phonolitic dykes (SiO2 from 56.8 to 57.8 wt.%; Na2O + K2O from 11.1 to 15.3 wt.%) cropping out near Predazzo (Southern Alps; Italy) and intruded into the basaltic to trachyandesitic Middle Triassic lavas. The phonolites are mostly aphyric with a porphyricity index <10%. The main mineral phases are concentric-zoned clinopyroxene, ranging in composition from diopside-hedenbergite, to aegirine (Wo13-51; En2-29; Fs20-85), K-feldspar and rare sodalite. Accessory phases are titanite, apatite and magnetite embedded in a aphyric matrix. Titanite has a highly variable U-Th concentration (U from 24 to 478 ppm and Th from 170 to 4328 ppm) and is characterized by a chondrite-normalized REE pattern with a convex-upward shape (La/YbN from 18.9 to 41.5) with enrichment in LREE and depletion in HREE. Thermometry through Zr-in-Titanite calculations (Hayden et al., 2008) indicate crystallisation temperatures between 860.3 and 942.8 ± 57 °C. In-situ, U-Pb dating on titanite phenocrysts performed by laser ablation-inductively coupled-mass spectrometry (LA-ICP-MS) shows that the age of phonolite dykes is comprised between 240.4 ± 3.2 Ma and 242.0 ± 3.6 Ma, partially overlapping with the emplacement of the Middle-Triassic plutonic bodies of the Dolomites (238.190 ± 0.050 - 238.075 ± 0.087; Storck et al. 2019).

These results provide new insights into the timing of the Middle Triassic magmatic event in the Southern Alps, fostering the debates about the temporal and chemical evolution of the magmatism in between the Variscan orogeny and the opening of the Alpine Tethys.

References:

Hayden, L. A., Watson, E. B., & Wark, D. A. (2008). A thermobarometer for sphene (titanite). Contributions to Mineralogy and Petrology, 155(4), 529-540.

Storck, J. C., Brack, P., Wotzlaw, J. F., & Ulmer, P. (2019). Timing and evolution of Middle Triassic magmatism in the Southern Alps (northern Italy). Journal of the Geological Society, 176(2), 253-268.

How to cite: Coltorti, M., Nardini, N., Casetta, F., Tavazzani, L., Peres, S., Ntaflos, T., and Dellantonio, E.: In-situ, U-Pb dating of titanite in phonolitic dykes from the Dolomites area (Southern Alps, Italy): new insights on the timing of the Middle Triassic magmatism, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16555, https://doi.org/10.5194/egusphere-egu23-16555, 2023.

CL1.2 – Last ~2.6 Ma

EGU23-871 | ECS | Orals | CL1.2.1

Isotopomers as tools to unravel forest carbon balance over decades 

Lenny Haddad, Pieter Zuidema, Benjamin Smith, John Marshall, and Jürgen Schleucher

Carbon dioxide [CO2] has reached almost 420 ppm in 2022 (Friedlingstein et al. 2022) and may increase to 600 ppm by the year 2100. Understanding plant responses to increasing CO2 is essential for predictions of plant productivity and of future climate (Ehlers et al. 2015). The hydrogen isotopes protium (1H) and deuterium (2H or D) exhibit the largest isotope effects, and D is fractionated by both physical and biochemical processes. Thus, hydrogen isotope compositions of plant compounds have a remarkable potential to further our knowledge about plant physiological and environmental processes. However, whole-molecule δD depends on the δD of the plant’s water source, fractionation by transpiration, and enzyme isotope effects. To disentangle these influences, isotopomer analysis is required since enzyme isotope effects influence stable isotope abundance in specific intramolecular positions (Ehlers et al. 2015), called isotopomers. As CO2 increases over decades, plant responses to T and CO2 over decades are important. For forests, opposing effects of CO2 and T determine if forests will in the future be a sink or source of CO2 (Van der Sleen et al. 2015; Sperry et al. 2019). Furthermore, a mechanistic understanding of physiological responses is essential to be able to estimate future C assimilation using ecosystem models. Photorespiration is a side reaction of photosynthesis that reduces C assimilation in most vegetation, and photorespiration is reduced by increasing CO2 yet exacerbated by rising T (Van der Sleen et al. 2015; Sperry et al. 2019). Therefore, we aim to unravel how photorespiration will develop under scenarios of rising CO2 and climate change.

Tree rings help us understand interactions of plants and environmental drivers over decades-millennia. Variables that can be measured on tree rings fall into two groups. Variables like ring width are valuable for integrating effects of several environmental drivers on tree growth. In contrast, isotopomers depend on individual biochemical events and are therefore better for mechanistic studies.

We use an NMR (nuclear magnetic resonance) method to analyze isotopomers of the glucose units of tree-ring cellulose, to elucidate physiological changes in trees during past decades of increasing CO2. In this contribution, we will report results of two kinds of experiments to investigate long-term tree responses.

First, in manipulation experiments we calibrate isotopomer responses to environmental drivers, in particular CO2 and T. Second, we analyse tree-ring series over previous decades of rising CO2, and use the calibrations from the manipulation experiments to deduce shifts in photosynthetic metabolism over decades. For selected tree species, we will present combined results from both kind of experiments, conclusions on physiological changes of these trees over past decades, and implications for future C assimilation by broadleaved trees.   

 

References

Ehlers et al., 2015. https://doi.org/10.1073/pnas.1504493112.

Friedlingstein et al., 2022. https://doi.org/10.5194/essd-14-1917-2022.

Sleen et al., 2015.  https://doi.org/10.1038/ngeo2313.

Sperry et al., 2019. https://doi.org/10.1073/pnas.1913072116.


 

 

 

 

How to cite: Haddad, L., Zuidema, P., Smith, B., Marshall, J., and Schleucher, J.: Isotopomers as tools to unravel forest carbon balance over decades, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-871, https://doi.org/10.5194/egusphere-egu23-871, 2023.

The development of urban areas, industrialization and increasing traffic intensity is a problem of air, soil and water contamination worldwide with various pollutants, some of which are heavy metals. The most significant sources of heavy metal pollution are industrial factories, processing of non-ferrous materials, mining activity and traffic intensity, with negative effects on both forest ecosystems and wildlife. This study was carried out in forest ecosystems affected by industrial pollution in the Baia Mare region (Maramureș). The study provides an analysis of the chemical elements accumulated in tree rings over 60 years, making it possible to analyze the dynamics of these elements over time. The sampling design was carried out systematically in order to make a comparison between trees in the intensively polluted area and those located at a fairly large distance, where local pollution had no effect. Thirteen chemical elements were analyzed, including heavy metals such as Cu, Pb, Zn, Fe and Mn. Higher concentrations of the elements Pb, Zn, Fe, Mn, Al, K, Si and Sr were found in tree rings from the intensively polluted area compared to those from the area unaffected by local pollution. Significant differences were found at 95% confidence interval for Zn, K and Ca concentrations.

How to cite: Cuciurean, C. and Sidor, C. G.: Chemical composition of Fagus Silvatica annual rings affected by local industrial pollution in northern Romania (Baia Mare region), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1512, https://doi.org/10.5194/egusphere-egu23-1512, 2023.

EGU23-1516 | ECS | Posters on site | CL1.2.1

Early warning signals of Norway spruce decline in Eastern Europe 

Andrei Popa, Ernst van der Maaten, Ionel Popa, and Marieke van der Maaten-Theunissen

Climate change is affecting forest ecosystems all around the globe, in particular through warming as well as increases in drought frequency and intensity. Possible impacts range from effects on the provisioning of ecosystem services such as carbon sequestration to tree mortality.

Norway spruce (Picea abies (L.) H. Karst.) is one of the most important coniferous species at the European level. In the actual context of climate change, especially with the increase in drought severity and frequency Norway spruce is likely to be at risk. Severe droughts during the vegetation period may, for example, negatively affect the resilience of Norway spruce and its’ ability to resist bark-beetle attacks. In recent extremely dry years in Central Europe, this has been observed through the large dieback of Norway spruce forests. In Eastern Europe, however, no extensive Norway spruce decline has been reported so far, posing the question how these forests will develop in the future?

To address this question, we present and analyze a tree-ring network consisting of 155 Norway spruce chronologies from Eastern Europe (Romania). As sites were selected along elevational transects in the Carpathians, our network allows to assess future impacts of climate change using a space for time substitution. The focus of our analysis is on the early warning signals of climate-change induced stress: negative trends in basal area increment and increased sensitivity of tree growth, assessed over the statistics first-order autocorrelation and standard deviation. A clear decrease in basal area increment was observed over the last two decades in the northern part of the Eastern Carpathians, which was more pronounced for younger stands and at lower elevations. At the same time, the first-order autocorrelation showed a sharp decrease at lower elevations. Our results highlighted increasing stress conditions of Norway spruce-based forests in Eastern Europe. In the current climatic scenarios, we may expect high mortality and forest diebacks also in the eastern part of Europe. Mitigation solutions are required as soon as possible.

How to cite: Popa, A., van der Maaten, E., Popa, I., and van der Maaten-Theunissen, M.: Early warning signals of Norway spruce decline in Eastern Europe, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1516, https://doi.org/10.5194/egusphere-egu23-1516, 2023.

EGU23-3377 | Orals | CL1.2.1

The mixed severity disturbance regime of primary beech-dominated forests and its trends of 200 years development 

Pavel Janda, Marek Svitok, Ondřej Vostárek, Martin Mikoláš, Radek Bače, Vojtěch Čada, Jakob Pavlin, Thomas Nagel, Krešimir Begović, Ecaterina Fodor, Karol Ujházy, Michal Frankovič, Michal Synek, Martin Dušátko, Tomáš Kníř, Daniel Kozák, Ondřej Kameniar, Arne Buechling, and Miroslav Svoboda

Primary beech-dominated forests are rare in Central Europe, while the knowledge of natural processes of these ecosystems is crucial for understanding the forest dynamics providing complex of ecosystem services. In order to understand these ecosystems better, which were one of the most widespread in this region, we decided to study their disturbance regimes and their long-term and recent trends driven mostly by natural disturbances.

The study was conducted within the region of Carpathian Mountains including 14 stands and 210 permanent study plots. All living and dead trees were inventoried on these plots, while selected trees were cored. Disturbances were reconstructed by examining individual tree growth patterns: (1) rapid juvenile growth rate (open canopy recruitment), and (2) abrupt, sustained increases in radial growth (release). From these disturbance patterns we reconstructed other disturbance parameters as disturbance severities, patch sizes and plot proportions of disturbed plots on the stand scale characterizing disturbance regime. Further, generalized linear mixed effect models were used to asses long-term and recent trends in these disturbance parameters.

Studied ecosystems were driven by mixed severity disturbance regime. The disturbance events revealed continuous gradient from low-severity, small-scale events to higher-severity, larger-scale events, and this gradient was progressively increasing with the rotation period. The low severity class was the most frequent, but it had similar canopy area disturbed (23.9 %) as moderate and high severity class (34.4 %, 27.1 %), respectively. The very high severity class had the longest rotation period and it affected only 14.7 % of overall canopy area disturbed. Long-term and recent trends in disturbance severities and patch areas were not detected. Plot proportions of disturbed plots on the stand scale had slightly declining trend in time over last two centuries, but the recent trend was not detected.

Analysis of the recent trends in disturbance characteristics have not shown increasing trend, as it was reversely observed in Europe proving the value and stability of these ecosystems under pressure of climate changes. Based on our findings we highly recommend to localize and protect primary and old-growth forests for their high conservation values, high and stable carbon stock, and provision of other ecosystem services. For enhancement of the managed forests´ stability we could recommend to support natural species composition and nature-based forest management mimicking natural disturbance regimes as retention silvicultural system combining irregular shelterwood and selection systems with occasional clear cuts.

The study and its authors were supported by the Czech Science Foundation (project No. 21‐27454S). We thank all staff involved in the data collection and their processing.

 

How to cite: Janda, P., Svitok, M., Vostárek, O., Mikoláš, M., Bače, R., Čada, V., Pavlin, J., Nagel, T., Begović, K., Fodor, E., Ujházy, K., Frankovič, M., Synek, M., Dušátko, M., Kníř, T., Kozák, D., Kameniar, O., Buechling, A., and Svoboda, M.: The mixed severity disturbance regime of primary beech-dominated forests and its trends of 200 years development, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3377, https://doi.org/10.5194/egusphere-egu23-3377, 2023.

Our understanding of wood formation is poor. Key anatomical properties in conifer and ring-porous tree species that have not been explained include the overall anatomy of growth rings (with consistent transitions from low-density earlywood to high density latewood), strong relationships between latewood density and temperature (used for historical temperature reconstructions), the regulation of cell size, and overall growth-temperature relationships. We have developed a theoretical framework based on observations on Pinus sylvestris L. in northern Sweden. These observed anatomical properties emerge from our framework as a consequence of interactions in time and space between the production of new cells, the dynamics of developmental zones, and the distribution of carbohydrates across the developing wood. Here we find that the diffusion of carbohydrates is critical in determining the final ring anatomy, potentially overturning current understanding of how tree growth responds to environmental variability and transforming our interpretation of tree rings as proxies of past climates.

How to cite: Friend, A., Eckes-Shephard, A., and Tupker, Q.: Latewood density and overall ring anatomy responses to temperature in Scots pine explained by carbohydrate diffusion and cellular kinetics, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3515, https://doi.org/10.5194/egusphere-egu23-3515, 2023.

EGU23-3790 | ECS | Posters on site | CL1.2.1

Modelling secondary tree growth of European forests based on high resolution satellite observations and climate data 

Jernej Jevšenak, Marcin Klisz, Jiří Mašek, Vojtěch Čada, Pavel Janda, Miroslav Svoboda, Ondřej Vostarek, Vaclav Treml, Ernst van der Maaten, Andrei Popa, Ionel Popa, Marieke van der Maaten-Theunissen, Tzvetan Zlatanov, Tobias Scharnweber, Svenja Ahlgrimm, Juliane Stolz, Irena Sochová, Catalin Roibu, Hans Pretzsch, and Allan Buras and the TREOS

Under climate change, modelling forest productivity is gaining increasing attention since forests on the one hand contribute to climate change mitigation by carbon sequestration and provide wood as an important renewable resource, and on the other hand increasingly suffer from extreme events such as droughts, late-frosts, and other disturbances. Despite major advancements in tree-growth modelling over the past decade, we still lack observation-based (in contrast to simulated) high-resolution, gridded forest growth products that could help to provide a better mechanistic understanding of forest responses to climate change, potentially improving mechanistic model parameterization.

Within this context, tree-ring measurements render an invaluable source of information since they approximate annual above-ground tree growth – and thus net primary production (NPP) – fairly well. Yet, tree-ring records represent local tree growth, which implies the necessity to upscale these NPP-proxies to stand and landscape levels to achieve gridded products. A well-known means to model tree growth is based on climate data, since tree growth to a large degree is governed by environmental conditions. However, local site-conditions modulate how climate translates into growth, therefore site-specific information is required to improve models based on gridded climate data. Here, earth observation from satellites (EOS) may render a valuable and relatively easy-to-obtain source of additional, site-specific information. This is because canopy reflectance in different bands (e.g. near infrared, red-edge, red) is closely related to the photosynthetic activity and thus NPP. Consequently, deploying gridded, open-access EOS data for improving growth predictions into space appears to be a promising research avenue. To date, the existing studies combining tree-ring data with EOS are mostly constrained to high latitudes (due to a very distinct growing season) and typically deployed EOS featuring coarse to moderate resolution. Consequently, assessing the potential of high-resolution (10 m – 20 m) remote-sensing missions such as Sentinel-1 and Sentinel-2 in mid-latitude forests will provide novel insights.

Within this framework, we recently assembled the TREOS-network. TREOS represents a sub-continental tree-ring network for eight common tree species in Central and Eastern Europe comprising 697 sites and spanning the region between 41.0 and 59.6° latitude and 5.6 and 27.9° longitude. For all sites, we extracted Sentinel-1 and Sentinel-2 time series of various bands along with gridded climate products and used various combinations of these explanatory variables to model tree growth as approximated by stand-level tree-ring chronologies. Species-specific models explained up to 70% of tree-growth variance, whereas clade-specific (i.e. gymnosperms vs. angiosperms) models performed worse (up to 30%), indicating the necessity to account for species-specific relationships. When implementing EOS data within multiple regressions model performance improved by up to 45%. In conclusion, these results indicate EOS- and climate-based gridded growth simulations to be generally feasible. Yet, problems related to species-specificity have to be solved, e.g. by deploying EOS-based tree-species classifications as a required source of information when projecting our models into space.

How to cite: Jevšenak, J., Klisz, M., Mašek, J., Čada, V., Janda, P., Svoboda, M., Vostarek, O., Treml, V., van der Maaten, E., Popa, A., Popa, I., van der Maaten-Theunissen, M., Zlatanov, T., Scharnweber, T., Ahlgrimm, S., Stolz, J., Sochová, I., Roibu, C., Pretzsch, H., and Buras, A. and the TREOS: Modelling secondary tree growth of European forests based on high resolution satellite observations and climate data, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3790, https://doi.org/10.5194/egusphere-egu23-3790, 2023.

Tropical forests have been least studied for dendrochronology following the general perception that tropical trees do not form growth rings, exacerbated by the limited number of scientists focusing on tropical trees. This has created a gap in global dendrochronological studies. Through the two successful Africa Dendrochronological Fieldschools that were conducted in 2021 and 2022 in Zambia, we identified 32 tree species in 3,200m2 area of plots from the wet Miombo woodlands. 72% of these species demonstrated good potential for annual ring formation. Julbernardia and Brachystegia species where the oldest and dominant tree species. We developed chronologies from Julbernardia paniculata (140 years), Brachystegia longifolia (series Intercorrelation = 0.42, oldest tree = 160 years), and Brachystegia boehmii (series Intercorrelation = 0.49, oldest tree = 140 years). We also developed a strong multi-species chronology with thirteen wet Miombo woodland species (series Intercorrelation = 0.41, chronology length = 143 years). We found the average monthly precipitation of September to May and the maximum temperature of March to be the main climate variables driving tree growth. Through the two field schools, we trained 48 people from 10 countries (Belgium, Brazil, Cameroon, Colombia, DRC, Ghana, Namibia, South Africa, USA, and Zambia) of four continents (Africa, Europe, North America, and South America).

How to cite: Ngoma, J. and the Justine Ngoma: Tree-Ring Formation of Zambia’s Wet Tropical Miombo Woodlands- Exploratory Research Through African Dendrochronology Fieldschools, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3917, https://doi.org/10.5194/egusphere-egu23-3917, 2023.

EGU23-4254 | ECS | Orals | CL1.2.1

Exploring the climatic and non-climatic fingerprints of the hydrogen isotope signals in tree rings. 

Valentina Vitali, Richard Peters, Marco Lehmann, Markus Leuenberger, Kerstin Treydte, Ulf Büntgen, Philipp Schuler, and Matthias Saurer

The analysis of a Europe-wide network of tree-ring stable isotopes has shown that the climatic signal of δ2H in tree-ring cellulose (C6H10O5), is far weaker compared to those recorded in carbon (δ13C) and oxygen (δ18O)isotopes. Furthermore, the δ2H and δ18O relationships were shown to be site dependent and significantly deviated from the Global Meteoric Water Line. These results suggest that non-climatic effects are modifying the hydrological signature of δ2H. Recent experiments have underlined the potential of δ2H in tree-ring cellulose as a physiological indicator of shifts in autotrophic versus heterotrophic processes. However, the impact of these processes has not yet been quantified under natural conditions.

Defoliating insect outbreaks can disrupt photosynthetic production and carbon allocation, stimulating the remobilization of stored carbohydrates. Such disturbance events, therefore, provide unique opportunities to evaluate the impact of changes in the use of fresh versus stored non-structural carbohydrates, i.e., of non-climatic signals stored in δ2H. By exploring a 700-year tree-ring record from Switzerland, we assess the impact of 79 larch budmoth (LBM, Zeiraphera griseana) outbreaks on the growth of its Larix decidua host trees.

LBM outbreaks significantly altered the tree-ring isotopic signature, creating a 2H-enrichment and a depletion in 18O 13C. Changes in tree physiology during outbreak years are shown by the decoupling of δ2H and δ18O (O–H relationship), in contrast to the positive correlation in non-outbreak years. The O–H relationship in outbreak years was not significantly affected by temperature, indicating that non-climatic physiological processes dominate over climate in determining δ2H variations. We conclude that the combination of these isotopic parameters may serve as a metric for assessing changes in physiological mechanisms over time and that hydrogen isotopes can be considered as a proxy for non-climatic disturbance signals in dendrochronological research.

How to cite: Vitali, V., Peters, R., Lehmann, M., Leuenberger, M., Treydte, K., Büntgen, U., Schuler, P., and Saurer, M.: Exploring the climatic and non-climatic fingerprints of the hydrogen isotope signals in tree rings., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4254, https://doi.org/10.5194/egusphere-egu23-4254, 2023.

EGU23-4392 | ECS | Orals | CL1.2.1

Large volcanic eruptions elucidate source vs sink limitations to tree growth 

Antoine Cabon and William R L Anderegg

Forest productivity projections remain highly uncertain, notably because underpinning physiological controls are delicate to disentangle. Whereas photosynthesis (carbon source) has been commonly assumed to drive tree growth, growing evidence show that direct limitations to cambial activity (sink limitation) represent a substantial control of tree growth. It nevertheless remains unclear to which extent source and sink limitations interact to determine tree growth because these processes mostly respond to the same environmental cues. Radiation is a notable exception, but its annual variations are typically small and covary with multiples cofactors in natural settings. Large volcanic eruptions, which have been suggested to enhance forest photosynthesis globally through diffuse light fertilization, provide a unique opportunity to retrospectively isolate source and sink activities. Here, we use a multi-proxy dataset of tree-ring records distributed over the extra-tropical Northern Hemisphere to investigate the effect of eruptions on tree photosynthesis and growth. Dual tree-ring isotope records (13C and 18O) denoted a widespread 2–4 years increase of photosynthesis following eruptions, likely as a result of diffuse light fertilization. We found evidence that enhanced photosynthesis transiently drove ring width, but the latter further exhibited an independent decadal anomaly. Our results provide empirical evidence of essentially decoupled photosynthesis and tree growth response to large volcanic eruptions, hence suggesting widespread sink limitation to tree growth over the Northern Hemisphere.

How to cite: Cabon, A. and Anderegg, W. R. L.: Large volcanic eruptions elucidate source vs sink limitations to tree growth, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4392, https://doi.org/10.5194/egusphere-egu23-4392, 2023.

EGU23-4413 | Orals | CL1.2.1

From wood anatomy to satellites: new frontiers for the upscaling of climate change in the Alpine tundra 

Marco Vuerich, Giacomo Trotta, Enrico Braidot, Petrussa Elisa, Valentino Casolo, Giorgio Alberti, and Francesco Boscutti

Tree ring growth is strictly bound to annual environmental conditions. Therefore, dendrochronology represents a solid tool for investigating the relationship between the whole plant growth and climate at high temporal resolution, especially in the context of ongoing climate change.

The temperature increase in the Alpine and Arctic ecosystems has been proven to enhance shrub growth contributing to the Arctic/Alpine greening, while the effects of the interaction between temperature and other climatic variables (e.g. precipitation/snowfall regime) on the shrub growth have often been neglected.

With the aim of parsing the relationships between the annual growth of Vaccinium myrtillus L., a key species in the Alpine tundra, temperature, precipitation, snowfall regime (i.e., in terms of temperature-based snowfall, known as snow water equivalent) and their interaction, we analyzed the xylem rings of 100 cross sections of underground bilberry stem, collected along a 500 meters altitude gradient above the tree line and corresponding over a period of 20 years (1995-2015). Furthermore, aiming at linking different ecological scales, we have adopted an ecological upscaling approach. With reference to the area and the period considered, we calculated NDVI using satellite images, and we studied the relationships between this vegetation index, climate, and the anatomical parameters.

Our results showed that both number (i.e. ramet age) and mean width of the rings were negatively affected by altitude. The mean annual temperature and snowfall showed significant interaction effects on mean ring width and xylem mean lumen area. Cold years (i.e. low mean annual temperature) and abundant snowfall led to a reduction in the mean ring width, while the snowfall regime did not affect annual ring width in warm years. Xylem mean lumen area was affected by precipitation only in cold years. The mean growth season NDVI increased significantly in the time span considered and showed a positive relationship with the average age of the bilberry community. The interaction between rainfall and average temperature of the vegetative season influenced the NDVI: a negative relationship between vegetation index and rainfall was observed in cooler vegetative seasons, while the relationship was specular in the case of higher temperatures.

These results suggest that future scenarios should not overlook the precipitation regime effect by virtue of its possible role in snowpack permanence and drought during the growth season. In this light the shrub expansion could also be curbed by the change of precipitation regime and the increased frequency of extreme climate events (e.g., shift of snowfall regime and intensification of heat waves). Moreover, our findings confirmed the potential use of the remote sensing tool for the understanding of the response of dwarf shrub communities to climate change also for long-term monitoring of these plant communities.

How to cite: Vuerich, M., Trotta, G., Braidot, E., Elisa, P., Casolo, V., Alberti, G., and Boscutti, F.: From wood anatomy to satellites: new frontiers for the upscaling of climate change in the Alpine tundra, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4413, https://doi.org/10.5194/egusphere-egu23-4413, 2023.

EGU23-7234 | Posters on site | CL1.2.1

Atmospheric drying across Europe is unprecedented in a pre-industrial context 

Kerstin Treydte and the 67 co-authors

Vapour pressure deficit (VPD) represents the desiccation strength of the atmosphere, fundamentally impacting evapotranspiration, ecosystem functioning and vegetation productivity. Its spatial patterns and long-term changes under natural versus human-induced climate change are poorly understood but are essential for predicting its future ecological and socio-economic effects, e.g., on crop yield, bioclimatic comfort or wildfires. We combine regional reconstructions of pre-industrial summer VPD variability from a European tree-ring oxygen-isotope network with excellent climate sensitivity with observations and Earth System Model simulations. We demonstrate a recent human-induced intensification of atmospheric drying across Europe that exceeds natural variability specifically in the Alps and Pyrenees, but also in western, central and southern Europe. A less distinct increase occurs in Fennoscandia. This VPD increase may cause an enhanced risk of tree mortality, forest decline and yield reductionsevenin the temperate lowland regions of Europe, particularly when considering the extreme drought events in the recent years.

How to cite: Treydte, K. and the 67 co-authors: Atmospheric drying across Europe is unprecedented in a pre-industrial context, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7234, https://doi.org/10.5194/egusphere-egu23-7234, 2023.

EGU23-7502 | ECS | Orals | CL1.2.1

Modelling the change in tree ring 13C discrimination as a response to selection harvest in a drained peatland forest 

Olli-Pekka Tikkasalo, Kersti Leppä, Samuli Launiainen, Mikko Peltoniemi, Raisa Mäkipää, Katja Rinne-Garmston, Elina Sahlstedt, Giles Young, Aleksandra Bokareva, Annalea Lohila, Mika Korkiakoski, Pauliina Schiestl-Aalto, and Aleksi Lehtonen

Studies on physiological response of suppressed trees to selection harvest are scarce. Understanding how trees respond to changes in environmental factors following harvest is needed for continuous cover forestry that aims to optimize both environmental impacts and economical gain. The physiological response of the trees can be understood by measuring stable carbon isotope composition (δ13C) which records the changes in photosynthesis and water use of the tree. The processes that determine the response can be further elaborated by comparing the measured isotopic signal to process-level model simulations.

We studied the response of Norway spruce (Picea abies) trees to selection harvesting on a fertile drained peatland forest located in southern Finland. The studied area consisted of a control plot which was left intact and of harvested plot which was thinned in March 2016. We measured intra-annual δ13C from tree-rings covering the period from 2010 to 2020 at the Stable Isotope Laboratory of Luke (SILL) (Lehtonen et al., accepted). The measured δ13C was compared to modelled 13C discrimination (Δ13C) simulated with a vertically resolved ecosystem model describing tree photosynthesis (Launiainen et al., 2015).

The δ13C measurements showed that after the harvest Δ13C decreased already on the following growing season. The overall decrease was ca. 3.3 ‰ on average between pre- and post-harvest periods. The decrease was caused by both changes in CO2 assimilation of the spruce trees and differences in meteorological conditions between pre- and post-harvest years. We simulated Δ13C with three different models with increasing number of fractionation processes considered. All three models predicted that as a response to harvest the Δ13C would decrease, however, none of the models could replicate the observed 3.3‰ drop in Δ13C. The most complex Δ13C model that included 13C fractionation in mitochondrial and photorespiration as well as transport of CO2 from stomata to mesophyll was the closest to the measurements.

The vertically resolved model allowed us to estimate that the changes in photosynthetically active radiation, relative humidity and needle temperature following the harvest contributed the most to the observed decrease in Δ13C. Further, model sensitivity analysis showed that the modelled Δ13C is the most sensitive to g1 parameter and mesophyll conductance. The g1 parameter is related to calculation of stomatal conductance (Launiainen et al., 2015; Medlyn et al., 2011). By tuning the g1 parameter and mesophyll conductance we were able to bring the modelled Δ13C closer to the observations.

References

Launiainen et al., Ecological Modelling, 312, 385-405, 2015.
Lehtonen et al., Forest Ecology and Management, accepted.
Medlyn et. al., Global Change Biology 17, 2134–2144, 2011

How to cite: Tikkasalo, O.-P., Leppä, K., Launiainen, S., Peltoniemi, M., Mäkipää, R., Rinne-Garmston, K., Sahlstedt, E., Young, G., Bokareva, A., Lohila, A., Korkiakoski, M., Schiestl-Aalto, P., and Lehtonen, A.: Modelling the change in tree ring 13C discrimination as a response to selection harvest in a drained peatland forest, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7502, https://doi.org/10.5194/egusphere-egu23-7502, 2023.

EGU23-8180 | ECS | Orals | CL1.2.1

Holocene-long climate signals in tree-ring stable isotopes from the European Alps 

Tito Arosio, Kurt Nicolussi, Markus Leuenberger, Paul J. Krusic, Jan Esper, and Ulf Büntgen

It has recently been argued that tree-ring stable isotopes (TRSI) can reveal persistent long-term hydroclimate trends that are usually not captured by more traditional dendroclimatic studies using tree-ring width or density (Büntgen 2022). Since the putative long-term discrepancy between ‘growth-dependent’ ring width and density versus ‘growth-independent’ TRSI proxies is likely unrelated to biases from age-trend removal (Büntgen et al. 2021; Yang et al. 2021), we propose a re-evaluation of the predictive power of various tree-ring parameters for reconstructing climate variability at interannual to multimillennial timescales. We analyse 7800 high-resolution δ18O, δ13C, δD measurements from about 200 high-elevation conifers of the Alpine Holocene Triple Tree Ring Isotope Record (AHTTRIR; Arosio et al. 2022) to assess ultra-long climate trends well beyond the segment length of individual tree-ring samples. Despite the spatiotemporal data heterogeneity, and associated signal complexity of AHTTRIR, we show that δ18O values contain a reasonable level of coherency with summer hydroclimate variability. In line with two independent TRSI studies from central Europe and monsoon Asia (Büntgen et al. 2021; Yang et al. 2021), our new δ18O Alpine chronology reveals a significant long-term drying trend over the past 6000 years. We interpret this multimillennial hydroclimate trajectory as a response to long-term negative orbital forcing (i.e., insolation changes due to the Earth’s axial precession). Our findings advise caution when applying corrections to TRSI data in order to preserve Holocene long trends. Considering the unique paleoclimatic values of TRSI, more such records are needed from a wide range of species and regions in both hemispheres.

 

Arosio Tito, Malin Ziehmer, Kurt Nicolussi, Christian Schluechter, Andrea Thurner, Andreas Österreicher, Peter Nyfeler, and Markus Christian Leuenberger,. 2022. “Alpine Holocene Triple Tree Ring Isotope Record.” PANGAEA, 2022. https://doi.pangaea.de/10.1594/PANGAEA.941604.

Büntgen Ulf. 2022. “Scrutinizing Tree-Ring Parameters for Holocene Climate Reconstructions.” Wiley Interdisciplinary Reviews: Climate Change, e778.

Yang Bao, Chun Qin, Achim Bräuning, Timothy J. Osborn, Valerie Trouet, Fredrik Charpentier Ljungqvist, Jan Esper, Lea Schneider, Jussi Grießinger, and Ulf Büntgen. 2021. “Long-Term Decrease in Asian Monsoon Rainfall and Abrupt Climate Change Events over the Past 6,700 Years.” Proceedings of the National Academy of Sciences 118 (30): e2102007118.

How to cite: Arosio, T., Nicolussi, K., Leuenberger, M., Krusic, P. J., Esper, J., and Büntgen, U.: Holocene-long climate signals in tree-ring stable isotopes from the European Alps, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8180, https://doi.org/10.5194/egusphere-egu23-8180, 2023.

In recent decades, visual identification of flood rings (event years) has been successfully used to document historic high-magnitude spring floods. In Fraxinus spp., flood rings usually have more numerous earlywood vessels and/or earlywood vessels with smaller cross-sectional area than observed in "normal" years. Visual identification of flood rings has also shown to be reproductible.  In more recent times, quantitative wood anatomy of earlywood features (continuous time series) has, among other, been successfully used to reconstruct spring flow and associated flood conditions. In Interior North America, most paleoflood studies have focused on visually identifying flood rings in bur oak (Quercus macrocarpa Michx.) trees growing along river terraces; the idea being that in these “high” elevation sites only high-magnitude floods may be recorded. In this study, we reexamined tree-ring samples collected in 2004-2005 from 87 green ash (Fraxinus pennsylvanica Marsh.) trees growing in four floodplain sites (~20 trees per site) located in the central Assiniboine river watershed i.e., in Spruce Wood Provincial Park, Manitoba. Flood rings were visually searched in all samples and compiled during the crossdating procedure. Earlywood vessels (area ≥ 1000 µ2) were measured in five trees selected from each of the four floodplain sites. In addition, we determined from a subset of these trees the blue intensity from high-resolution scans of tree-rings and compared them, among others, to the earlywood vessel characteristics. Developed chronologies were compared to both regional climate and hydrological records. They were also compared to former flood-ring studies using bur oak trees growing on terraces in the upper Assiniboine river and/or the lower and upper Red river. Results indicated that visual identification of flood rings in F. pennsylvanica was reproductible. Both the relative frequency of flood rings and earlywood mean vessel area were significantly associated with winter precipitations, spring snow cover, spring temperatures and spring runoff records. Some of the years recording the most flood rings were 1948, 1955, 1956, 1976 and 1995. These years corresponded to documented major floods for the central Assiniboine river. They, however, poorly coincided to those observed in bur oak trees growing on terraces along the upper Assiniboine river and the Red river (e.g., 1950, 1979, 1997). These results highlight, among others, the differences between tree species, habitat selection as well as between the rivers’ flood dynamics. We argue that floodplain trees compared to terrace trees, and especially when old individuals are available, may provide a clearer overall picture of flood dynamics and of long-term hydroclimatic changes as they capture conditions leading to both small and large floods. At this time, blue intensity analyses of the floodplain trees remain to be completed. Given than flood rings have been associated with low density earlywood, it is hypothesized that blue intensity (a proxy for tree-ring density) may yield potential in paleoflood studies.

How to cite: Tardif, J. C., Conciatori, F., and Smith, D. L.: Fraxinus pennsylvanica trees growing along the central Assiniboine river floodplain, Central Canada: Flood rings, quantitative wood anatomy and blue intensity., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8464, https://doi.org/10.5194/egusphere-egu23-8464, 2023.

Tree-rings are a valuable proxy for reconstructing past environmental conditions such as climate at annual or intra-annual resolutions. Tree-ring dating has an enormous potential for better understanding climate dynamics under a changing climate. In Alpine regions, changes in climate may well lead to switches between temperature-limitation and precipitation-limitation. However, such changes cannot be separated from local environmental influences such as altitude and aspect. In this study, we applied the standard statistical approaches of dendrochronology to understand climate-growth relationships as a function of elevational gradients to understand how altitude conditions the impacts of climate change impacts on tree growth. For the growth of European Larch (Larix decidua) trees in the Turtmann river basin (2000 m a.m.s.l.), a glacier-fed river basin in the Swiss Alps, located in south-western Switzerland, we find that climate warming is leading to some switching from temperature limitation to precipitation limitation and vice-versa according to altitude. The climate-growth relationship further reveals that the growth of Larix decidua in this river basin is positively correlated with the October and November temperature of the previous year (r= 0.46, α=0.01). Comparing these changes with other tree-ring chronologies from the international tree-ring data bank (ITRDB) for the same species at much lower elevation transects  (e.g. 1500 m and 900 m a.m.s.l) show that the tree growth switches from temperature limitation to precipitation limitation. The growth of Larix decidua for these lower elevation trees correlates positively with the current year June-July precipitation (r= 0.40, α=0.01). A number of factors including differences in micro-climate and the effects of aspect (i.e. north versus south facing) across the elevational gradient are most likely to be responsible for these differences. Therefore, in the context of Swiss Alps where the temperature is rising at more than twice the global average, there is likely a breakpoint where the signal changes from temperature-limitation to precipitation-limitation across the elevational gradient and that climate change is causing this breakpoint to rise with altitude through time.

Keywords: Tree-rings, Larix decidua, Climate change, Turtmann river, Swiss Alps 

How to cite: Islam, N., Lane, S., Vennemann, T., and Meko, D.: Identification of an elevational breakpoint where climatic signal changes for the growth of Larix decidua tree rings in a glacier-fed river basin in the Swiss Alps, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8493, https://doi.org/10.5194/egusphere-egu23-8493, 2023.

EGU23-8963 | ECS | Posters on site | CL1.2.1

A ~700 years perspective on the 21st century drying in the eastern part of Europe based on δ18O in tree ring cellulose 

Viorica Nagavciuc, Monica Ionita, Zoltán Kern, Danny McCarrol, and Ionel Popa

Numerical simulations indicate that extreme climate events (e.g. droughts, floods, heat waves) will increase in a warming world, putting enormous pressure on society and political decision-makers. To provide a long-term perspective on the variability of these extreme events, here we use a ~700 years tree-ring oxygen isotope chronology from Eastern Europe, in combination with paleo-reanalysis data, to show that the summer drying over Eastern Europe observed over the last ~150 years is to the best of our knowledge unprecedented over the last 700 years. This drying is driven by a change in the pressure patterns over Europe, characterized by a shift from zonal to a wavier flow around 1850CE, leading to extreme summer droughts and aridification. This is the first and longest reconstruction of drought variability, based on stable oxygen isotopes in the tree-ring cellulose, for Eastern Europe, helping to fill a gap in the spatial coverage of paleoclimate reconstructions (Nagavciuc et al., 2022). Nagavciuc, V., Ionita, M., Kern, Z., McCarroll, D. and Popa, I.: A ~700 years perspective on the 21st century drying in the eastern part of Europe based on δ18O in tree ring cellulose, Commun. Earth Environ., 3, 277, doi:10.1038/s43247-022-00605-4, 2022.

How to cite: Nagavciuc, V., Ionita, M., Kern, Z., McCarrol, D., and Popa, I.: A ~700 years perspective on the 21st century drying in the eastern part of Europe based on δ18O in tree ring cellulose, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8963, https://doi.org/10.5194/egusphere-egu23-8963, 2023.

EGU23-9286 | Orals | CL1.2.1

Impact of gas emissions from oil and gas reservoirs on stable carbon isotope variability in tree rings 

Olga Churakova (Sidorova), Georgy Batalin, Bulat Gareev, Gazinur Mingazov, Andrey Terekhin, Denis Tishin, Dilyara Kuzina, and Danis Nurgaliev

Accelerated development of energy resources around the world has significantly increased forest change associated with oil and gas activities, leading to both carbon dioxide and methane emissions. The impacts of these anthropogenic indirect greenhouse gases play a significant role on forest ecosystems at the regional and global scales.

In this study we aim to reveal site-specific differences in stable carbon isotope (δ13С) variability of pine trees (Pinus sylvestris) growing on the territory of (i) oil and gas reservoirs located in Almetyevsk and Leninogorsk regions (Tatarstan Republic, Russian Federation) classified as “disturbed”; and (ii) in a remote “undisturbed” site in Raifa, which is located ca. 250 km away from the oil and gas deposits.

Tree cores were sampled from the south- and north-facing sides of each of the nine trees for both study sites using a Pressler increment borer. The state-of-the-art classical dendrochronological method was applied for the tree-ring width measurements and cross-dating. Each annual ring was split using a sharp BA-170P NT blade under the Leica M50 microscope. Stable carbon isotope measurements were performed for each year separately using a Delta V Plus isotope mass spectrometer (Thermo Fisher Scientific, Germany) via a Flash HT Plus in constant flow mode. Based on the nine individual trees stable carbon isotope chronologies were developed from 1930 to 2022. Tree-ring δ13C in wood chronologies were corrected according to δ13C atmospheric CO2 for both study sites.

Results of our study indicate significant differences between carbon isotope variability in tree rings from “disturbed” the oil and gas deposits site, which is rapidly developed over the recent decades compared to the “undisturbed” natural forest site.

This work was funded by the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030).

 

How to cite: Churakova (Sidorova), O., Batalin, G., Gareev, B., Mingazov, G., Terekhin, A., Tishin, D., Kuzina, D., and Nurgaliev, D.: Impact of gas emissions from oil and gas reservoirs on stable carbon isotope variability in tree rings, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9286, https://doi.org/10.5194/egusphere-egu23-9286, 2023.

EGU23-10257 | Orals | CL1.2.1

The potential of tree-ring chronologies to global-change studies in the tropics: a quantitative review 

Peter Groenendijk, Flurin Babst, Daniela Granato Souza, Giuliano Locosselli, Mulugeta Mokria, Natshuda Pumijumnong, Valerie Trouet, Shankar Panthi, Fan Zexin, and Pieter Zuidema and the Tropical Tree-ring Network

Tropical forests and woodlands are key components of global carbon and water cycles and due to their importance we need to better understand present and future tropical tree growth responses to climatic variation. Tree-ring analyses provide long-term datasets from which such responses can be derived. A substantial number of tropical tree-ring chronologies exist with hundreds of topical tree species showing potential for tree-ring analyses. Despite this large potential, a quantitative analysis of the distribution and characteristics of tropical tree-ring chronologies is missing. We compiled a network of >490 tropical ring-width chronologies to assess their geographic and climatic distribution, and the gaps therein. To evaluate the potential for climate reconstructions we assessed the timespan covered by these chronologies, the strength of their common growth signal (rbar), where the strongest climate-growth correlations are found, and how these chronology attributes correlate with mean climatic conditions per site. Finally, we used species-distribution modelling to identify regions with high potential for building long chronologies. We answer these questions at pantropical level and address important differences between continents and between angiosperms and gymnosperms. Tropical chronologies have been built in all continents and tropical climate types but chronology building is biased towards high-elevation locations and gymnosperms, with clear gaps in warmer and wetter climates, on the African continent and for angiosperm species. Chronology length correlated negatively with mean annual temperature (MAT), while the common growth signal decreases with increasing mean annual precipitation (MAP) and MAT. Drier sites have the most responsive chronologies: the strength of the precipitation-growth correlations decreases with increasing MAP, but showed no correlation with MAT. Tropical dendrochronological studies already cover a substantial part of the tropics and most areas are expected to have 5 to 15 species with potential to generate centennial chronologies. This study wil provide an important basis to select species and areas to expand dendrochronological studies to underrepresented areas and improve our understanding of the climatic drivers of tropical forest tree growth. 

How to cite: Groenendijk, P., Babst, F., Granato Souza, D., Locosselli, G., Mokria, M., Pumijumnong, N., Trouet, V., Panthi, S., Zexin, F., and Zuidema, P. and the Tropical Tree-ring Network: The potential of tree-ring chronologies to global-change studies in the tropics: a quantitative review, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10257, https://doi.org/10.5194/egusphere-egu23-10257, 2023.

EGU23-10684 | Orals | CL1.2.1

Environmental drivers of observed photosynthetic carbon isotope discrimination in trees 

Soumaya Belmecheri, Paul Szejner, David Frank, Steve Voelker, Alienor Lavergne, and Rossella Guerrieri

Under elevated CO2, photosynthetic carbon isotope discrimination is expected to increase in response to photosynthesis stimulation driven by the growth of atmospheric CO2. While this response is widely documented in laboratory, field experiments and short-term observations, long-term proxies indicate that such response is not universally observed in forested ecosystems. We investigated historical trends of  photosynthetic carbon isotope discrimination derived from carbon isotope measurements of tree rings (Δ13C) from a large set of chronologies across a variety of climate regions and biomes. We first predicted Δ13C response to CO2 as reconstructed from a recent meta-analysis of paleo and elevated CO2 data to detect and quantify the magnitude of Δ13C change-if any driven solely by increases in atmospheric CO2. In a second step we assessed the deviation of observed tree-ring Δ13C from the that predicted in response to CO2 only. We found that the majority of tree-ring chronologies (~80%) exhibited a negative deviations from the expected Δ13C if driven by a CO2 stimulation of photosynthesis (A). Chronologies with negative deviations were negatively correlated with vapor pressure deficit (VPD), and correspond to sites with a  maximum of 30% increase in VPD over the period of record. The widespread negative Δ13C deviations are consistent with a reduction of stomatal conductance (gs) or A having not increased as much as expected for a given CO2-driven stimulation of A.

How to cite: Belmecheri, S., Szejner, P., Frank, D., Voelker, S., Lavergne, A., and Guerrieri, R.: Environmental drivers of observed photosynthetic carbon isotope discrimination in trees, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10684, https://doi.org/10.5194/egusphere-egu23-10684, 2023.

EGU23-11557 | Posters on site | CL1.2.1

Progress in high-resolution isotope-ratio analysis of tree rings using laser ablation 

Matthias Saurer, Elina Sahlstedt, Katja Rinne-Garmston, Marco Lehmann, Manuela Oettli, Arthur Gessler, and Kerstin Treydte

Stable isotope ratio analysis of tree rings has been widely and successfully applied in recent decades for climatic and environmental reconstructions. These studies were mostly conducted at an annual resolution, considering one measurement per tree ring, often focusing on latewood. However, much more information could be retrieved with high-resolution intra-annual isotope studies, based on the fact that the wood cells and the corresponding organic matter are continuously laid down during the growing season. Such studies are still relatively rare, but have a unique potential for reconstructing seasonal climate variations or short-term changes in physiological plant properties, like water-use efficiency. The reason for this research gap is mostly technical, as on the one hand sub-annual, manual splitting of rings is very tedious, while on the other hand automated laser ablation for high-resolution analyses is not yet well established and available. Here, we give an update on the current status of laser ablation research for analysis of the carbon isotope ratio (δ13C) of wood, describe an easy-to-use laser ablation system, its operation and discuss practical issues related to tree core preparation, including cellulose extraction. The results show that routine analysis with up to 100 laser shot-derived δ13C-values daily and good precision and accuracy (ca. 0.1‰) comparable to conventional combustion in an elemental analyser are possible. Measurements on resin-extracted wood is recommended as most efficient, but laser ablation is also possible on cellulose extracted wood pieces. Considering the straightforward sample preparation, the technique is therefore ripe for wide-spread application. With this work, we hope to stimulate future progress in the promising field of high-resolution environmental reconstruction using laser ablation.

How to cite: Saurer, M., Sahlstedt, E., Rinne-Garmston, K., Lehmann, M., Oettli, M., Gessler, A., and Treydte, K.: Progress in high-resolution isotope-ratio analysis of tree rings using laser ablation, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11557, https://doi.org/10.5194/egusphere-egu23-11557, 2023.

EGU23-11606 | Orals | CL1.2.1

On the role of soil water storage capacity and soil nutrients on tree growth of selected tree species in Central Europe. 

Josef Gadermaier, Elisabeth Wächter, Michael Grabner, Sonja Vospernik, and Klaus Katzensteiner

While numerous correlational studies on the impact of climatic variation on tree ring formation consider plant functional traits, masting cycles and stochastic disturbances, the role of soil properties is frequently neglected due to insufficient data availability. Using a homogenous dataset of increment cores collected in mature stands at 1562 different forest sites with detailed plot specific climate, stand and soil information in the province of Styria in Austria we are focusing on the role of soil water storage (plant available water capacity – AWC) and soil nutrient status on tree ring formation. The study area covers a wide altitudinal and climate gradient with mean annual temperatures ranging from 2.1°C to 10.2°C and mean annual precipitation ranging from 695 mm to 2024 mm. Generalized Additive Mixed Models (GAMM) for annual tree ring width over 38 years (1980 to 2018) were fitted for six tree species (Abies alba, Fagus Sylvatica, Larix decidua, Picea abies, Pinus sylvestris, Quercus robur/petrea). Individual tree characteristics, stand attributes, general site characteristics (terrain information calculated from high resolution ALS), downscaled climate information in high temporal resolution, and soil information were used as independent variables. Soil data was derived from a morphological description of 80 cm soil pits dug on each corresponding forest site. Via pedo-transfer-functions (using functions available from the literature as well as derived from laboratory analyses of approximately 25% of the pits), soil characteristics such as AWC and soil nutrient status were calculated.

In a two-step procedure, we first developed a general tree growth model, including solely tree and stand attributes (e.g. age, competition) and general site specific information available in high spatial resolution (e.g. slope, aspect, irradiance, mean annual temperature, precipitation). Subsequently, we added soil attributes to the model and checked for their effect on model parameters. AWC and soil nutrient status do have significant influence on tree ring formation when added to the tree ring model. However, this effect varies amongst tree species. The results are consistent with tree species specific traits as available from literature: E.g. deep rooting species like Quercus benefit more from high water storage capacity than shallow rooting Picea abies; the effect of soil nutrient status is most pronounced for Fagus sylvatica, which has high nutritional requirements and more negligible for Pinus sylvestris, with low nutritional requirements. As soil formation itself depends upon geological substrate, landform and climate, the improvement of model quality when adding additional soil information is moderate.

How to cite: Gadermaier, J., Wächter, E., Grabner, M., Vospernik, S., and Katzensteiner, K.: On the role of soil water storage capacity and soil nutrients on tree growth of selected tree species in Central Europe., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11606, https://doi.org/10.5194/egusphere-egu23-11606, 2023.

Variation in life-history and ecophysiological traits has key ecological significance in plants, in which environmental changes play a central role throughout their life cycles. Stone pine (Pinus pinea L.) is one of the most characteristic species of the Mediterranean basin that is able to grow under harsh, limiting conditions and is typically defined as a masting species. Considering the high economical value associated with edible nut production, the masting habit of stone pine has been a main concern for forest management of the species. Here, we investigate the masting mechanism through characterization of temporal changes in tree ring-width (TRW), ecophysiological (cellulose Δ13C and δ18O) and cone yield patterns for five monospecific stands in north-central Spain. The regional positive (r = 0.41, SE = 0.25) and negative (r = –0.89, SE = 0.49) relationships involving tree growth vs. Δ13C and δ18O, respectively, suggest drought impairing carbon uptake via stomatal regulation for water saving occurring in the area during the period of 1960–2016. Increasingly positive relationships between TRW and Δ13C indicate intensifying impacts of drought on tree performance over time. By analyzing Δ13C–yield interannual dynamics, we found variable coupling of cone production with leaf-level gas exchange during the 4-year reproductive cycle of the stone pine. Particularly, the strongly positive relationships between Δ13C and yield with a 3-year lag, corresponding to strobili development and pollination, vanished and became non-significant in the recent decades. Thus, weather conditions during conelet emergence are not driving anymore cone production, which initially was sink-limited. In contrast, the relationships between Δ13C and a 1-year lagged yield, i.e. when cone enlargement and seed maturation occur, largely increased over the study period running from nearly zero (1960–1989 period) to above 0.50 (1987–2016 period) indicating a recent source limitation of reproduction driven by a harsher climate. Our results provide evidence that, although cone yield does not impose a penalty on aboveground biomass increments, it is becoming progressively limited by warming-induced effects of drought on tree ecophysiological performance.

How to cite: Shestakova, T. A., Sin, E., and Voltas, J.: Long-term physiological insights of cone production as related to carbon isotope fractionation in stone pine forests of northern Spain, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11894, https://doi.org/10.5194/egusphere-egu23-11894, 2023.

EGU23-13858 | Posters on site | CL1.2.1

International education and research during the pandemic: 31st European Dendroecological Fieldweek 2021 in Val Mustair, Switzerland 

Ryszard Kaczka, Kerstin Treydte, Elisabet Martínez-Sancho, Isabel Dorado-Liñán, Anne Verstege, Alma Piermattei, and Alan Crivellaro and the Participants of the 31st European Dendroecological Fieldweek

The European Dendroecological Fieldweek (EDF) provides an intensive learning experience in tree-ring research for anyone approaching or working in dendrochronology. Here we present an overview of scientific activities of the 31st EDF, held in Val Müstair, Switzerland, in summer 2021. Despite the COVID-19 pandemic, the EDF gathered 20 participants and 10 instructors (7 dendrochronologists and 3 local experts) from 10 European countries and provided valuable outcomes for the local stakeholders such as Biosfera, the forest service and the private-public of Val Müstair.

During the eight days of the EDF, six groups developed different tree-ring projects, carefully designed with respect to the loal environmental setting. The dendroarchaeology group dated two buildings, an abandonned stable and a house in Val Müstair, providing private owners with accurate construction dates. The dendroclimatology group explored the potential of a relict Scots pine forest growing at ~2000 m asl for climate reconstruction, and created a chronology from 1648 to 2020 CE. The wood anatomy group found that the larger vessel sizes and and higher radial growth rates of two alpine shrub species at moist compared to dry sites, while tree ages were similar at both sites. The Blue Intensity group identified a robust climate signal in the BI chronology of high-elevation Norway spruce trees, which was significantly stronger than in the tree-ring width chronology. One dendroecology group found that growth of local larch trees recorded outbreaks of the grey larch budmoth between 1880 and 1980, a stop of outbreaks after and its return in 2018. A second dendroecology group investigated larch trees along an abandoned irrigation channel and could not detect a significant effect of the irrigation stop on growth.

The EDFs continuously provide an essential service to the dendrochronological community, and this even during challenging times. The 31st EDF was again an educational, scientific and multi-cultural experience in a unique environmental setting. It resulted in highly interesting and valuable scientific outreach and opened up new avenues for future tree-ring research in Val Mustair. 

How to cite: Kaczka, R., Treydte, K., Martínez-Sancho, E., Dorado-Liñán, I., Verstege, A., Piermattei, A., and Crivellaro, A. and the Participants of the 31st European Dendroecological Fieldweek: International education and research during the pandemic: 31st European Dendroecological Fieldweek 2021 in Val Mustair, Switzerland, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13858, https://doi.org/10.5194/egusphere-egu23-13858, 2023.

EGU23-13879 | ECS | Orals | CL1.2.1

The History of Fire, Human Influence and Climate in Black Pine Forests, Western Anatolia 

Evrim A. Şahan, Bedirhan Gürçay, and H. Tuncay Güner

Wildfire is a dynamic natural phenomenon the causes and consequences have changed for millions of years. We previously found out and discussed the fire history of Western Anatolia to understand the drivers of fires over 600 years. In that study, we find out that simultaneous fires occurred in multiple sites and this period overlapped with the longest and most severe drought period of the past 550 years and the fire frequency decline after 1934 coincided with the period of the first forest protection law in 1937. Dry, as well as prior wet conditions were the main drivers of fires in the black pine forests in western Anatolia. On the other hand, to highlight the direct human influence in a high-risk fire region, we sampled one additional site from Antalya (Türkiye) and collected fire-scarred wood samples from both living trees and remnant woods. In this study, we developed a 519-year-long site-level composite chronology using dendrochronological methods with low frequency and no significant relationship was found between dry and major fire years. The recorded fire years for each individual showed that a fire in one tree did not spread and grow to other neighbouring trees. Despite the high risk of fire, fires occurred less frequently can be interpreted as an intense human influence in the area, also observed axe marks in the catface formations and the nomadic tents right next to the site highlight the human influence. These forests were used extensively by the Turkish tribes also called “Yörüks”, who led a nomadic life in the Taurus Mountains for centuries. Although this area is under a high fire risk, the low fire frequency may be due to the reduced amount of combustible materials by goat grazing. Since goats feed not only on grass but also on fresh sprouts, helps to reduce the frequency of fires by consuming both the combustible material under the forest and the branches of the trees closer to the forest ground. Due to the grazing, shoots close to the ground decrease that also decreases the probability of the shift in fire regime from surface to crown fire. We believe that protecting and promoting the culture of Yörüks in the Taurus Mountains will be an important way to protect not only the culture but also the forests.

This research was funded by the Scientific and Technological Research Council of Turkey (TÜBİTAK) (Project number: 118O306). 

How to cite: Şahan, E. A., Gürçay, B., and Güner, H. T.: The History of Fire, Human Influence and Climate in Black Pine Forests, Western Anatolia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13879, https://doi.org/10.5194/egusphere-egu23-13879, 2023.

EGU23-14680 | ECS | Orals | CL1.2.1

European hydroclimate variability of the past 400 years based on tree-ring isotopes 

Mandy Freund, Gerhard Helle, Daniel Balting, Natasha Ballis, Gerhard Schleser, and Ulrich Cubasch

In recent decades, Europe has experienced more frequent flood and drought events. However, little is known about the long-term, spatiotemporal hydroloclimatic changes across Europe. We show the first climate field reconstruction spanning the entire European continent based on tree-ring stable isotopes. A pronounced seasonal consistency in climate response across Europe leads to a unique, well-verified spatial field reconstruction of European summer hydroclimate back to 1600. We find distinct phases of European hydroclimate variability as possible fingerprints of solar activity (coinciding with the Maunder Minimum and the end of the Little Ice Age), pronounced decadal variability and a long-term drying trend from the mid 20th century. The recent European summer conditions are highly unusual in a multi-century context and unprecedented for large parts of central and western Europe.

How to cite: Freund, M., Helle, G., Balting, D., Ballis, N., Schleser, G., and Cubasch, U.: European hydroclimate variability of the past 400 years based on tree-ring isotopes, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14680, https://doi.org/10.5194/egusphere-egu23-14680, 2023.

EGU23-14702 | Orals | CL1.2.1

Late spring frost impacts on radial growth of European beech near its upper elevational limit 

Yann Vitasse, Frederik Baumgarten, Joann Reim, Arthur Gessler, and Elisabet Martinez-Sancho

Global warming has considerably advanced the start of the growing season of temperate trees. However, the rate of this phenological change does not necessarily track the changes in the date of the last spring frost, also induced by climate change, which may result in a higher risk of false spring. When a late spring frost (LSF) occurs during tree leaf emergence, it can lead to complete tree defoliation. Although the impacts of LSFs are rarely fatal for a tree, they may play a decisive role in combination with extreme droughts in determining species distribution limits in the near future.

Here we aimed at assessing the impact of LSFs on tree growth of a frost-sensitive species, European beech (Fagus sylvatica L.), and retrospectively quantify the LSF regime in two sites of the Swiss Jura mountains. We collected increment cores of beech and a more freezing tolerant species, Norway spruce (Picea abies (L.) Karst) from a site where LSF damage was observed in May 2020 located at 1,365 m asl and in a second site where no frost damage was observed in 2020 at 1,065 m asl. Climate-growth relationships were established at both sites and for two different periods (1953–1986 and 1987–2020) to identify species-specific climatic drivers and potential temporal shifts. To further distinguish years with LSF impacts on beech radial growth, climatic signals not related to LSF recorded in the spruce series were removed from the beech chronologies.

Our preliminary analyses indicated that tree growth was dominated by different climatic factors in the two study sites: tree growth was limited by cold temperatures during both study periods in the higher elevation site whereas drought signals were apparent in tree growth during the second study period in the lower elevation site. Interestingly, beech growth was initially negatively and then positively related to spring minimum temperature at the higher elevation site. At the lower elevation site, warm temperatures in spring promoted tree growth of both species only during the second period (1987–2020). By subtracting the climatic signals of spruce on beech chronologies, we identified five and two years potentially affected by LSF during the last 30 years at the upper and lower sites, respectively. We are currently calibrating phenological models to climatically identify the years with potential frost damage and verify if these years are consistent with the ones identified with the previous dendrochronological analyses.

We further hypothesized that a damaging spring frost followed by a severe drought during summer may have a much larger impact than drought alone. Further investigations should be conducted on this aspect as the frequency and severity of extreme droughts are expected to increase while spring onset will continue to advance under a warmer climate, potentially increasing the risk of frost damage. 

How to cite: Vitasse, Y., Baumgarten, F., Reim, J., Gessler, A., and Martinez-Sancho, E.: Late spring frost impacts on radial growth of European beech near its upper elevational limit, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14702, https://doi.org/10.5194/egusphere-egu23-14702, 2023.

EGU23-152 | ECS | Posters on site | CL1.2.2

Quantifying Holocene relative sea-level changes and paleoclimate using the Scottish speleothem record 

Kang Xie, Martin Lee, Cristina Persano, and John Faithfull

Speleothems, secondary cave carbonates, are valuable archives for reconstructing paleoclimate and relative sea-level changes where the caves are in coastal locations. Unlike the typical speleothems found in carbonate caves, speleothems were recently discovered in a meta-silicate sea cave in Iona, on the west coast of Scotland. Although speleothems have previously been reported from caves in volcanic rocks, speleothems in metamorphic caves have rarely been reported. The Iona speleothems are potentially crucial because paleoclimate reconstructions spanning the Holocene are scarce in Scotland due to a lack of material, particularly speleothems, which can be dated precisely using geochemical dating methods. In this research, the U-Th and 14C dating techniques will be used to constrain the precise age and growth history of the Iona speleothem. Results from pilot U-Th dating of the first speleothem sampled show it is about 1760 ~ 4780 years old (the data, however, have uncertainties up to 69.9%, due to the presence of non-authigenic Th). As for paleoclimate, oxygen isotopes indicate that the amount of precipitation was at a relatively low level between 3000 and 2000 years ago, then increased dramatically from ~2000 to 1760 years ago. These preliminary data indicate that the Iona speleothem has the potential to provide important insights into the Late Holocene relative sea-level changes and climate.

How to cite: Xie, K., Lee, M., Persano, C., and Faithfull, J.: Quantifying Holocene relative sea-level changes and paleoclimate using the Scottish speleothem record, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-152, https://doi.org/10.5194/egusphere-egu23-152, 2023.

EGU23-584 * | Posters on site | CL1.2.2 | Highlight

Extreme rain event during November 1617: from the eastern Iberian Peninsula to Balearic Islands. Speleothem records and historical documents. 

Mercè Cisneros, Mariano Barriendos, Javier Sigro, Josep Barriendos, and Enric Aguilar

Under the current climate change situation, the Mediterranean region has been identified as one of the primary hot-spots, expecting not only to become warmer, but also drier during the twenty-first century. Changing conditions also include an increase in the frequency of intense torrential rainfall events, whose occurrence has already caused increasing flash flood events with catastrophic impacts and human casualties. The understanding of the past extreme events is challenging and useful to deal with the current situation.

During November 1617 an extreme rain event has been documented by previous studies in a large latitudinal region from southern France to eastern river basins of the Iberian Peninsula (Thorndycraft et al., 2006). Here we present new evidences of the large-scale impact of this extreme event based on a multi-proxy approach. On the one hand, the occurrence of this event is interpreted by means of a flood cave horizon detected in a speleothem from Mallorca (Balearic Islands). On the other hand, historical documents depict this event also in some localities of Pyrenees, enhancing its longitudinal occurrence.

Through the integration with previous climate, paleohydrological and qualitative hydrometeorological reconstructions, we try to understand the complex atmospheric mechanisms that caused this event during the Little Ice Age.

How to cite: Cisneros, M., Barriendos, M., Sigro, J., Barriendos, J., and Aguilar, E.: Extreme rain event during November 1617: from the eastern Iberian Peninsula to Balearic Islands. Speleothem records and historical documents., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-584, https://doi.org/10.5194/egusphere-egu23-584, 2023.

EGU23-688 | ECS | Posters on site | CL1.2.2

Update to the SISAL speleothem database -- links to monitoring data, additional palaeoenvironmental proxies and enhanced accessibility 

Nikita Kaushal, Micah Wilhelm, Franziska Lechleitner, Kerstin Braun, Kira Rehfeld, Istvan Gabor Hatvani, Peter Tanos, Magdalena Ritzau, Vanessa Skiba, Khalil Azennoud, Jozsef Gabor Szucs, Zoltan Kern, Yuval Burstyn, and Yassine Ait Brahim

Speleothems (cave carbonates) are widely distributed in terrestrial regions, and provide highly resolved records of past changes in climate and ecosystem conditions, encoded in the oxygen and carbon isotope proxies. The SISALv2 database, created by the PAGES-SISAL  Phase 1 Working Group, provided 700 speleothem records from 293 cave sites, 500 of which have standardized chronologies. The database provided access to records that were hitherto unavailable in the original publications and/or repositories, and enabled regional-to-global scale analysis of climatic patterns using a variety of approaches such as data-model comparisons. 

During the three  year run of SISAL Phase 2,  the working group members have: 

(i) explored ways to synthesize modern cave monitoring data to provide robust modern baselines and improve proxy interpretations

(ii) added trace element proxies of Mg, Sr, Ba, and U concentrations, and Sr isotopes to a new SISAL database version to increase our understanding of regional climatic variability.

(iii) updated the SISAL database to incorporate an additional ~100 speleothem stable isotope datasets 

(iv) and created an online interface web app (The SISAL App) with a user-friendly GUI to increase SISAL data accessibility.

Here, we present ongoing work synthesizing cave monitoring data, a summary of speleothem proxy records available in the SISALv3 database update and of ongoing Working Group research projects and a simple use case of The SISAL App. We briefly present a synopsis of the SISAL-community level discussions on best practices for reporting trace element data, and reducing data measured with high resolution laser ablation methods. 

We conclude with a short discussion on research projects based on the latest SISAL database update and discuss ideas for potential future SISAL phases and projects. For this, we encourage participation and collaboration from researchers in different stages of their academic career and working in different geographical regions and allied disciplines interested in exploiting the new SISAL database version. 



How to cite: Kaushal, N., Wilhelm, M., Lechleitner, F., Braun, K., Rehfeld, K., Gabor Hatvani, I., Tanos, P., Ritzau, M., Skiba, V., Azennoud, K., Gabor Szucs, J., Kern, Z., Burstyn, Y., and Ait Brahim, Y.: Update to the SISAL speleothem database -- links to monitoring data, additional palaeoenvironmental proxies and enhanced accessibility, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-688, https://doi.org/10.5194/egusphere-egu23-688, 2023.

EGU23-853 | ECS | Orals | CL1.2.2 | Highlight

A stalagmite-based multiproxy reconstruction of local environmental changes in the 20th century from Normandy, France 

Ingrid Bejarano Arias, Carole Nehme, Sebastian F.M. Breitenbach, Hanno Meyer, Sevasti Modestou, Edwige Pons-Branchu, and Damase Mouralis

Speleothems are increasingly widely studied globally, but some regions remain poorly covered, including NW France. The cave-quarry of Caumont, located in Normandy develops in chalk limestone and contains speleothem formations from different time intervals. Chalk was extracted from this quarry for building stone since Roman times well into the 20th century. We collected several stalagmites from one of the excavated chambers with the aim to investigate their sensitivity to environmental signals. Of particular interest is stalagmite CCB-1 which was deposited over the last century and likely holds highly detailed climatic signals. We have tested whether stalagmite CCB-1 records hydrological or thermal seasonality, and if atmospheric circulation patterns can be reconstructed from this sample. To establish modern baselines we monitored temperature, drip rate, drip water isotopes, and collected modern carbonate precipitates between November 2019 and July 2021. The monitoring revealed that in-cave conditions are very stable all year round (Tcave air= 10.4 ±0.3°C; δ18Odrip and δDdrip change is ~0.1‰ and <0.8‰ respectively). Modern calcite samples fall mostly on the Coplen (2007) equilibrium regression line, suggesting that modern precipitation occurs near isotope equilibrium.

 

From sample CCB-1 we obtained three U/Th dates, counted 114 growth laminae and analysed 750 samples for stable isotope composition. The age model was constrained with laminae counting, historical inscriptions, and grey value based annual growth counting measurements and provides an annually resolved record for the last 114 years (1905 to 2019). The δ18O and δ13C signals from CCB-1 were compared with surface climatic parameters including precipitation, temperature, and the standardised precipitation evapotranspiration index (SPEI) for the last century. While δ18O of carbonate is influenced by surface temperature and the original isotopic composition in precipitation, the δ13C signal is governed by effective moisture supply and prior carbonate precipitation. Our reconstruction analysis reveals a significant change in the isotope record after ca. 1960. This change is best seen when comparing the δ13C time series with the SPEI and might be related to increasingly drier local conditions. A trend to stronger local evapotranspiration in recent decades is most likely linked to an increasing lack of effective rainfall. 

How to cite: Bejarano Arias, I., Nehme, C., Breitenbach, S. F. M., Meyer, H., Modestou, S., Pons-Branchu, E., and Mouralis, D.: A stalagmite-based multiproxy reconstruction of local environmental changes in the 20th century from Normandy, France, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-853, https://doi.org/10.5194/egusphere-egu23-853, 2023.

The glaciokarst of the Yorkshire Dales National Park, situated in the English Pennine hills, provides an under realised opportunity for paleo climate studies in mid latitudes. It was marginal to the Last Glacial Maximum British and Irish Ice Sheet which has been reappraised over recent decades as being a dynamic and unstable body. The caves were extensively excavated by Victorian (1837-1901) and Edwardian (1901-1910) antiquarians/archaeologists but was then largely ignored until the development of radiometric dating in the late 1970 and early 1980s. Since then scientific and archaeological attention has been sporadic and piecemeal with studies often being driven by the findings of the very active cave exploration community which have been responsible for the discovery of the approximately 90 km long Three Counties System in the west of the area.

The hills and valleys to the east of the area are less visited by both cavers and cave scientists though there is great potential for discovering new caves. A detailed study was undertaken on the complex Stump Cross cave system beneath one of the wide interfluves in the 1980s which has been subject to a recent reappraisal but otherwise scientific attention has been limited and sporadic. In this study a dendritic cave system dissected by the glaciated trough valley of Littondale has been subjected to study by an ad-hoc group of scientists, both citizen and academic, along with a team of cavers and cave divers. The now perched valley side caves reveal a complex record of drainage and flooding presumably related to the reoccupation of the valley by successive ice sheets and the resulting episodic down cutting. Speleothem damage provides the first evidence for the existence of ice bodies within the regions caves. Archaeological findings have shown Roman use of caves in the region is geographically more extensive than previously thought and have provided constraining evidence for the ongoing investigation of an early medieval murder mystery. This study highlights the potential of the area for future detailed paleo climate studies.

 

The work was supported by funding from the British Cave Research Association Cave Science and Technology Research Initiative.

How to cite: Murphy, P.: Ice, Incision and Execution in the eastern Yorkshire Dales – citizen cave science and climate studies in the karst of northern England., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1461, https://doi.org/10.5194/egusphere-egu23-1461, 2023.

EGU23-1792 | Orals | CL1.2.2

Climate and environmental changes during the past 19,000 years reflected d18O, d13C and scanning XRF elements of a 14C dated stalagmite from south Altai, Russia 

Hong-Chun Li, You-Syuan Chen, Tatiana Blyakharchuk, Jian-Jun Yin, Horng-Sheng Mii, and Chuan-Chou Shen

A 22-cm long stalagmite (L2) from Lunnaya Cave (52º41’ N, 88º44’ E, 481 m a.s.l.) located in south Altai mountains of Russia was dated by AMS 14C because 230Th/U dating was not successful due to low U but high Th contents. The stalagmite grew since 19 kyr BP with very slow rate before 12 kyr BP and a growth hiatus during 5.5~7 kyr BP. A total of 1150 samples have been measured for δ18O and δ13C, revealing climatic and vegetation changes under the influence of Westerly, Polar Front and Siberian High. Although the δ18O trends show a depletion trend from early Holocene to middle Holocene, reached the lightest values between 7 and 8.5 kyr BP, and then an enrichment trend from 7 kyr BP toward the late Holocene, the δ18O trends are complicated for interpretation of climatic conditions. High-resolution (0.2-mm interval) scanning XRF Sr/Ca, Fe and Ti profiles illustrate that the weathering condition of overlying soil and limestone bedrock had significant change from pre-Holocene to late Holocene. The long-term trends of δ18O and δ13C records were related to moisture source and seasonal precipitation. Thus, both δ18O and δ13C records are needed to be de-trended in order to reflect precipitation amount effect and vegetation development, being negative values representing wet condition with more abundant vegetation, and vice versa. The growth hiatus of the stalagmite during 5.5~7 kyr BP was probably due to arid condition. Based on the δ18O, δ13C and scanning XRF elemental records, the climatic condition was very cold with only summer-month stalagmite growth during 19-13 kyr BP; cold and dry between 13-12 kyr BP (Younger Dryas); wet during 12-11.5 kry BP; mainly dry between 11.5 and 9.5 kyr BP; mainly warm and wet between 9.5 and 7 kyr BP. During 2.8~5.5 kyr BP, the climate was strongly fluctuated on centennial scales around an average condition. Dry climates were prevailed during 2.8~1.8 and 1~0.2 kyr BP, whereas wet climates were dominated during 1.8~1 and 0.2~0 kyr BP. The climatic conditions shown by the stalagmite agree well with the lake records in western and central Siberia.

How to cite: Li, H.-C., Chen, Y.-S., Blyakharchuk, T., Yin, J.-J., Mii, H.-S., and Shen, C.-C.: Climate and environmental changes during the past 19,000 years reflected d18O, d13C and scanning XRF elements of a 14C dated stalagmite from south Altai, Russia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1792, https://doi.org/10.5194/egusphere-egu23-1792, 2023.

EGU23-1891 | ECS | Posters on site | CL1.2.2 | Highlight

A 13,500 year speleothem record from southeastern Alaska 

Paul Wilcox, Christoph Spötl, Lawrence Edwards, and Jessica Honkonen

Under Anthropocene warming, Alaska is one of the fastest warming regions on Earth. To place this warming in better context, it is important to extend a high-resolution paleoclimate record throughout the Holocene. However, few such records exist in Alaska, with the majority limited to low-resolution lake sediment studies. Here, we provide a continuous, precisely dated, and high-resolution speleothem record that extends from modern-day to 13,500 yr BP. This represents the first Holocene speleothem record from Alaska, and sheds light on important paleoclimate changes at this high-latitude location. We find that the speleothem oxygen isotope record is largely controlled by changes in the tropical Pacific Ocean, with a significant mean state shift change occurring after ~1970 CE. The mean state shift at ~1970 CE has no similar anolog during the 13,500 year speleothem record, and we attribute the shift to anthropogenic forcing.

How to cite: Wilcox, P., Spötl, C., Edwards, L., and Honkonen, J.: A 13,500 year speleothem record from southeastern Alaska, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1891, https://doi.org/10.5194/egusphere-egu23-1891, 2023.

EGU23-2494 | Orals | CL1.2.2

Abrupt cooling event over Asia due to North Atlantic climate instability ~16 ka 

Axel Timmermann, Nitesh Sinha, Kyoung-nam Jo, Jasper Wassenburg, Jiaoyang Ruan, and Hyuna Kim

The last glacial termination was marked by a series of millennial-scale hemispheric climate change events. One of the most prominent examples is Heinrich event  1, which was caused by ice-sheet instabilities of the Laurentide ice-sheet between 18,000-15,000 years ago (ka) and corresponding shifts in global climate. Recent speleothem oxygen isotope data suggest the presence of yet another much more abrupt and shorter event around 16 ka.  The global extent and the origin of this elusive 16-ka event have remained a mystery. Here we present new resolution clumped isotope data from a South Korean speleothem that shed new light on this phenomenon. Combined with LA-ICPMS trace element analysis, we demonstrate that the 16-ka event likely caused abrupt cooling over Eastern Asia of ~5-7oC and massive shifts of both the winter and summer monsoon systems.  Using an isotope-enable earth system model, we show the observed oxygen isotope evolution is consistent with an abrupt meltwater lake surge into the North Atlantic, of unknown origin, with impacts on ocean stratification, sea-ice and northern hemispheric climate.

How to cite: Timmermann, A., Sinha, N., Jo, K., Wassenburg, J., Ruan, J., and Kim, H.: Abrupt cooling event over Asia due to North Atlantic climate instability ~16 ka, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2494, https://doi.org/10.5194/egusphere-egu23-2494, 2023.

EGU23-2667 | ECS | Orals | CL1.2.2

Numerical Modeling of Heat Transfer and Thermal Attenuation Lengths in Ventilated Caves 

Amir Sedaghatkish, Claudio Pastore, Pierre-Yves Jeannin, Marc Luetscher, and Frédéric Doumenc

Atmospheric temperature variations are characterized by different frequency-modes including yearly and daily fluctuations as well as yearly average temperatures. In a ventilated cave, the thermal amplitude is attenuated with increasing distance from the upper and/or lower cave entrance. Convective heat flux for dry air is exchanged with cave wall and the heat transferred by conduction to the surrounding rock is attenuated within a certain distance. Here, we aim at determining the thermal attenuation length for the different modes along a cave and the surrounding rock. Distribution of amplitude of fluctuations along the cave is specified by using Fourier series expansion for dominant modes. In next steps, the effect of latent heat exchange at the cave wall due to evaporation or condensation will be studied. The main variables controlling thermal perturbations in ventilated caves are recognized and compared with field data by developing a numerical model based on the heat and mass transfer between the rock and the air. Moreover, our model aims to quantify the air and wall temperature profile along the conduit for a one-year. The model calculates water-vapor exchange rate along the cave showing the amount of consumed or produced water by evaporation or condensation along the cave and provides the rock temperature distribution in the surrounding hostrock. Our preliminary results contribute to a better understanding of the long-term cave dynamics and may support a quantitative interpretation of speleothem records.

How to cite: Sedaghatkish, A., Pastore, C., Jeannin, P.-Y., Luetscher, M., and Doumenc, F.: Numerical Modeling of Heat Transfer and Thermal Attenuation Lengths in Ventilated Caves, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2667, https://doi.org/10.5194/egusphere-egu23-2667, 2023.

EGU23-2915 | ECS | Posters virtual | CL1.2.2

Stable isotope and fluid-inclusion evidence of hydrothermal speleogenesis (Kryštálová cave, Western Carpathians) 

Petronela Ševčíková, Yuri Dublyansky, Pavel Herich, Mário Olšavský, Stanislava Milovská, Emma Kluge, Gabriella Koltai, and Christoph Spötl

The stable isotopic composition of wall rock and cave minerals is a sensitive tool to recognize the hypogene component of speleogenesis (Spötl et al., 2021; Temovski et al., 2022), to elucidate the cave evolution (Dublyansky, 1995, 2013), and to characterize the paleo-fluids (Dublyansky & Spötl, 2009). Here, we report evidence of water-rock interaction associated with hydrothermal speleogenesis at a site that shows the prevalence of brittle deformation in cave formation.

Kryštálová cave located in the Krivánska Malá Fatra (Western Carpathians) is a 57 m-long cave hosted in Triassic limestones, with walls covered by phreatic calcite spar. We conducted laser scanning of the cave and the immediate surroundings, as well as small-scale geological mapping. High-resolution stable isotope profiling was applied to the calcite spar and two wall rock cores overgrown by calcite. Calcite crystals were also studied by fluid inclusion microthermometry.

Field evidence, cave mapping, and laser scanning showed that the cave follows an extension fracture which begins and terminates in larger rooms. Several small-diameter, short, blind branches are present in the far end of the cave. In the cave and the surrounding area, we observed jointing, conjugate fracture sets, as well as some fracture planes displaying linear features, which we interpret as slickensides. Solutional forms suggest hypogene dissolution; there are no signs of epigene karst overprint. Part of the cave is filled with brown detrital sediment, presumably an insoluble bedrock residue, largely removed during exploration of the cave. The sediment (in places) and the cave walls (entirely) are lined by a layer of sparry calcite. The wall rock immediately underneath the crystals and along the fractures is stained brown.

Temperatures of calcite-depositing waters (based on fluid inclusion homogenization temperatures) were 53 ± 5°C (n=129). Assuming equilibrium precipitation and combined with the calcite δ18O values of -14.2 to -16.5 ‰ (VPDB) suggests paleo-water δ18O values of -8.4 to -10.9 ‰ (VSMOW), similar to modern meteoric water in the area (Holko, 2012). Unaltered limestone bedrock shows δ18O values of -3.4 to -6.5 ‰ (VPDB) and δ13C values of 2.7 to 2.1 ‰ (VPDB). Isotope wall rock alteration was detected in both cores (C1, C2), showing a strong depletion in δ18O near the cave wall (-7.6 to -14 ‰, and -7.3 to -13.2 ‰ for C1 and C2, respectively). Depletion in δ13C was minor: 1.8 to -0.8 ‰ (C1), and 0.1 to 2.1 ‰ (C2). Covariation between δ18O and δ13C in the cores is significant (R² = 0.68). 

Kryštálová cave formed as an extensional fissure, subsequently enlarged by hypogene dissolution. Heated meteoric groundwater interacted with the wall rock in the cave and along fractures, producing an isotopic alteration “halo” and eventually precipitated calcite crystals.

“Crystal caves” such as Kryštálová cave are widespread in the central Western Carpathians, sharing the same host rock lithology and similarities in their cave deposits (detrital sediments and calcite crystal linings). Calcite spar can – in principle – be radiometrically dated and represents a largely untapped archive of the local and regional paleohydrogelogy and related processes of cave formation.

How to cite: Ševčíková, P., Dublyansky, Y., Herich, P., Olšavský, M., Milovská, S., Kluge, E., Koltai, G., and Spötl, C.: Stable isotope and fluid-inclusion evidence of hydrothermal speleogenesis (Kryštálová cave, Western Carpathians), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2915, https://doi.org/10.5194/egusphere-egu23-2915, 2023.

EGU23-2947 | Orals | CL1.2.2

Embracing the karst hydrological control on speleothem oxygen isotope variability 

Pauline Treble, Andy Baker, Stacey Priestley, and Alan Griffiths

The influence of karst hydrology or ‘flowpaths’ on speleothem oxygen isotopic (δ18O) values has been simulated using karst forward models.  Cave monitoring studies have also shown that variability in dripwater δ18O can be directly related to whether flowpaths are dominated by preferential/quick flow or diffuse/slow flow which challenges the paradigm of speleothems as archives of past variability in mean rainfall δ18O.  Yet it is not known how common this flowpath effect is and whether it should be considered in the interpretation of speleothem δ18O records.  Recently, Treble et al. (2022) analysed two global databases: SISAL v2 (Comas-Bru et al., 2020) and an extended compilation of dripwater from Baker et al. (2019).  It was demonstrated that within-cave variability in mean δ18O values were common worldwide in both datasets.  An analysis of cave meta-data demonstrated that the flowpath effect is unrelated to climate, cave depth or lithology; further supporting the ubiquitous nature of flowpaths, i.e., there is (1) a mixture of preferential and diffuse flow for all karstified carbonate rocks due to its triple-porosity nature (primary=matrix, secondary=fracture, tertiary=pipes and conduit); and (2) differences in soil/epikarst water storage and drainage characteristics.

We demonstrate how a mechanistic understanding of flowpaths can lead to a more robust interpretation using a case study that is also relevant for managing water resources in the Mediterranean-type climate of south-west Australia.  Using seven modern stalagmite records from four caves, plus dripwater data, we demonstrate that the cave δ18O record shows a common response to a sustained decrease in rainfall that impacted the region in the 1970s, characterised by a rise or ‘uptick’ in δ18O (Priestley et al., 2022).  Mean annual rainfall δ18O values over the same period were quantified using observed and modelled data to have varied by −0.4 to +0.1 ‰ whereas the speleothem uptick is +1.5 ‰.  The much larger magnitude of the uptick is consistent with a reduction in the preferential-flow component to these caves driven by reduced rainfall recharge.  Preferential flow is an important contribution to groundwater.  The ‘uptick’ or reduction in preferential flow implies that rainfall recharge to groundwater across the study region may no longer be reliably occurring.  The longer paleo-record for south-west Australia confirms that no replicated upticks are seen in the last 800 years in stalagmites from the region and highlights the impact of climate change to water security in a region heavily dependent on groundwater.

 

Comas-Bru, L. et al. SISALv2 (2020). A comprehensive speleothem isotope database with multiple age-depth models. Earth Syst. Sci. Data 12, 2579–2606 (2020).

Priestley, S., et al. (2022). Caves provide early warning of unprecedented decrease in rainfall recharge of groundwater. Research Square. doi:https://doi.org/10.21203/rs.3.rs-1556439/v1

Treble, P. C., et al. (2022). Ubiquitous karst hydrological control on speleothem oxygen isotope variability in a global study. Communications Earth & Environment, 3(1), 29. doi:10.1038/s43247-022-00347-3.

How to cite: Treble, P., Baker, A., Priestley, S., and Griffiths, A.: Embracing the karst hydrological control on speleothem oxygen isotope variability, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2947, https://doi.org/10.5194/egusphere-egu23-2947, 2023.

EGU23-3191 | ECS | Orals | CL1.2.2 | Highlight

Paleoclimatic and paleoenvironmental changes in the Pantanal region during the Holocene based on speleothem records 

Valdir Novello, Magdalena Ritzau, Francisco Cruz, Janica Buehler, and Kira Rehfeld

The Pantanal is a large region located in the central parts of South America (140,000 km2) with a unique climate and vegetation setting. This region is subjected to seasonal floods, which makes the Pantanal one of the most important wetlands on the planet. In this region occur transitions between different biomes, such as the Amazon Forest, Cerrado (Brazilian Savanna), and Atlantic Forest, located to the North, East, and South of this region, respectively. The area also serves as a moisture pathway for the South American Summer Monsoon (SASM), which connects the Amazon Basin with the La Plata Basin. The two major drainage basins of South America. Due to the complex hydrology of the rivers and lakes of this region, it is necessary to combine multiple proxy archives from different parts of the Pantanal basin to understand its climate and vegetation evolution during the Holocene.

Here we present isotope records from stalagmites collected at sites located at the northern and southern borders of the Pantanal. Hiatuses in speleothem deposition during the mid-Holocene identified in several stalagmites indicate overall dry conditions in the region at this period. However, the drier conditions recorded in the northern portion of the basin precede similar conditions in the South by approximately two thousand years. Furthermore, summer insolation seems to drive the intensity of the SASM at the North Pantanal, while its influence is weaker in the southern part. During the late Holocene, this establishes a moisture gradient between a wetter North and drier South. Our record also shows a strong multidecadal to centennial variability, which was probably responsible for the high hydrology complexity of the rivers of the Pantanal, which are subject to seasonal floods and migration of its channels and tributaries.

How to cite: Novello, V., Ritzau, M., Cruz, F., Buehler, J., and Rehfeld, K.: Paleoclimatic and paleoenvironmental changes in the Pantanal region during the Holocene based on speleothem records, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3191, https://doi.org/10.5194/egusphere-egu23-3191, 2023.

EGU23-4389 | Posters on site | CL1.2.2

The suddenly occurring Mesoamerican megadrought during the Little Ice Age (1400 to 1600 AD) 

Amos Winter, Davide Zanchettin, Matthew Lachniet, Allison Burnett, Sophie Warken, Hai Cheng, Angelo Rubino, and Thomas Miller

The Little Ice Age (LIA), a multicentennial period of predominant anomalously cold conditions on Earth, is among the most important periods that characterized climate evolution during the pre-industrial part of the last millennium. However, LIA remains enigmatic in many aspects, including its magnitude, timing, duration, and spatial extent, especially concerning the response of tropical hydroclimates.  Here we focus on Mesoamerica, where many proxy-based reconstructions show one or more Major Drying Events (MDEs) during the LIA.   We present new results from speleothem GU-Xi-1, which was recovered in 2007 from Xibalba cave (approx. 16.5˚N, 89˚W, near the Belize - Guatemala border) and was active and dripping at the time of collection. 

The most salient feature of GU-Xi-1 is a prolonged period of persistently heavy oxygen isotope values between around 1400 and 1600 CE. This positive isotope incursion was most likely a major drying event based on the well-known amount effect common in the tropics. In this contribution, we will illustrate the extensive drought described by our record during the LIA and propose a mechanism explaining its rapid initiation (within perhaps 20 years), possibly connected with natural forcing.

How to cite: Winter, A., Zanchettin, D., Lachniet, M., Burnett, A., Warken, S., Cheng, H., Rubino, A., and Miller, T.: The suddenly occurring Mesoamerican megadrought during the Little Ice Age (1400 to 1600 AD), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4389, https://doi.org/10.5194/egusphere-egu23-4389, 2023.

EGU23-4539 | ECS | Posters on site | CL1.2.2

Coeval stalagmite records from the Rocky Mountains record Holocene climate change   

Bryce Belanger, Cameron de Wet, Warren Sharp, Christopher Kinsley, Yanjun Cai, and Jessica Oster

Tree ring records show cool-season droughts in the western US have been characterized by three spatial patterns over the past 500 years: “western-wide drought”, “wet north/dry south”, and “dry north/wet south”. Previous work shows that these drought patterns can persist on timescales of decades to centuries and are driven by internal climate variability, with secondary influence by sea surface temperatures. However very few high-resolution records of western US precipitation extend beyond the tree ring record (~1400 CE), limiting our understanding of the occurrence and persistence of these patterns of natural climate variability on longer timescales and further in the past. Here we use trace element (Mg/Ca, Sr/Ca, Ba/Ca, P/Ca) and stable isotope (δ18O, δ13C) data from two coeval stalagmites to construct a Holocene paleoclimate record for Titan Cave (TC), northern Wyoming, extending the hydroclimate record of the northern Rockies and providing the opportunity to assess longer-term natural climate variability in the northern Rockies. The TC-2 and TC-7 speleothems grew over the past ~5.7 ka and ~3.1 ka, respectively. Proxies from both stalagmites exhibit strong correlations with several coeval climate records, including regional snowpack as recorded by tree rings during the past ~600 years, suggesting the speleothems record winter precipitation patterns in the northern Rockies. Decreased snowpack and dry conditions at TC correlate to warmer sea surface temperatures in the Gulf of Alaska and the positive phase of the Pacific Decadal Oscillation. Comparison of speleothem δ18O with the δ18O of Bison Lake sediments from central Colorado suggests all three patterns of western US drought occurred during intervals of the late Holocene. Specifically, the wet north/dry south and dry north/wet south winter precipitation dipoles in the Rocky Mountains with a boundary near 40° N latitude, were established by approximately 3 ka. Multiple, centuries-long “western-wide” droughts occurred throughout the record, most notably from 2.2 – 2 ka during the Roman Warm Period. Other dated TC stalagmites grew during the mid-Holocene and Last Interglacial, providing records of winter precipitation in the northern Rockies during past warm intervals, which may serve as analogs for future anthropogenically-warmed climate states.

How to cite: Belanger, B., de Wet, C., Sharp, W., Kinsley, C., Cai, Y., and Oster, J.: Coeval stalagmite records from the Rocky Mountains record Holocene climate change  , EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4539, https://doi.org/10.5194/egusphere-egu23-4539, 2023.

Temperature changes in the middle reaches of the Yangtze River (MRYR) have affected more than one billion people. In contrast to the warming trend in the Northern Hemisphere (NH), there was a sustained cooling trend of mean annual temperatures in the MRYR from 1930s to 1980s. Due to long-term mean annual temperature record has so far been lacking in the MRYR, it remains unclear to what extent regional peculiarities reflect region-specific internal climate variability or differences in driving mechanisms. Here, we present a reconstruction of temperature variability over the MRYR for the period CE 800-1998 using a laminated stalagmite (HS4) from Heshang cave, Yichang region, China. Observations of Heshang cave suggest that the growth of HS4 stalagmite is mainly affected by the temperature because of the stability of dripping water composition. Based on a significant positive correlation between the growth rate and the observed temperature, we reconstructed the mean annual temperature (MAT) for Yichang region with an explained variance of 39.8%, the correlation in interdecadal scale (10-yr low pass) was significantly improved (r=0.86). The new MAT reconstruction shows an almost similar trend with existing low resolution mean annual temperature records from historical document, which confirms the credibility of the reconstruction. Four warm (800s-880s, 1260-1450s, 1650s-1800s, 1900s-1950s) and three cold (890s-1250s, 1460s-1640s, 1810s-1890s) period were identified in MAT record. Our reconstruction shows a significant cooling in the MRYR during the MCA period, which may differ from previous NH temperature records. We suggested that the unique temperature variation in the MRYR may be driven by El Niño-Southern Oscillation (ENSO), as there was a significant positive correlation between MAT record and ENSO over the past 1200 years on the multidecadal scale. When sea surface temperatures in the eastern Pacific rise, so do temperatures in the MRYR, and vice versa. Our study provided the longest mean annual temperature record in the MRYR, and we also highlight that ENSO may be related to the temperature variation of the East Asian monsoon region, which has generally been ignored in past studies.

How to cite: Hu, Z. and Hu, C.: Laminated stalagmite - based mean annual temperature reconstruction for middle reaches of the Yangtze River during the past 1200 years, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4546, https://doi.org/10.5194/egusphere-egu23-4546, 2023.

EGU23-4748 | ECS | Posters on site | CL1.2.2

Stalagmite-inferred hydroclimate changes in northern Italy during Allerød/Younger Dryas transition 

Chieh-Ju Hsieh, Hsun-Ming Hu, Chuan-Chou Shen, Véronique Michel, Patricia Valensi, Elisabetta Starnini, and Marta Zunino

The Younger Dryas (YD), a 1200-year-long cooling event interrupting the warm Bølling-Allerød period, started from 12,870 ± 30 yr BP (2σ, before 1950 C.E.). Here we present decadal-resolved stalagmite BA18-2 multi-proxy records from Bàsura cave, northern Italy. The StalAge age-depth model with 8 U-Th dates with 2-sigma errors of ± 26-193 yrs shows that BA18-2 encompasses Allerød/YD transition, from 14,038 ± 92 to 12,090 ± 54 yr BP. Oxygen isotope data fluctuate between -7.16‰ and -3.68‰, with a clear 2.4‰ increase during the YD onset at 12,870 ± 30 yr BP. Stalagmite BA18-2 Sr/Ca and Ba/Ca linger from 0.060-0.085 mmol/mol and 6.4-9.1 µmol/mol, respectively, from 14,038 ± 92 to 12,681 ± 55 yr BP, ~ 2 centuries after the beginning of YD. A clear 160-year-long two-step increase in both Sr/Ca and Ba/Ca records started from 12,681 ± 55 yr BP, which is a 200-yr lag relative to the timing of BA18-2 oxygen isotope increasing trend. We argue that the oxygen isotope could be governed by temperature, moisture source, and/or rainfall amount; while, the Sr/Ca and Ba/Ca ratios predominantly reflect precipitation change. Our results might suggest asynchronous thermal and hydrological changes in northern Italy during the Allerøod/YD transition.

How to cite: Hsieh, C.-J., Hu, H.-M., Shen, C.-C., Michel, V., Valensi, P., Starnini, E., and Zunino, M.: Stalagmite-inferred hydroclimate changes in northern Italy during Allerød/Younger Dryas transition, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4748, https://doi.org/10.5194/egusphere-egu23-4748, 2023.

EGU23-6205 | ECS | Posters on site | CL1.2.2

Determining SISALv2-speleothem growth rates during the Holocene 

Janica C. Buehler, Valdir F. Novello, Nils Weitzel, Denis Scholz, and Kira Rehfeld

Speleothems are terrestrial paleoclimate archives that occur abundantly in the low and mid latitudes. They archive changes in the past hydroclimate in many ways, including the rate of calcium carbonate accumulation – their growth rate. However, determining speleothem growth rates, and in particular growth rate changes, is challenging due to speleothem inherent features such as growth hiatuses, and large and abrupt growth rate changes. Low dating resolution poses an additional problem, as the U/Th measurements that allow for precise dating are time-consuming and expensive.

Here, we analyze speleothem growth rates during the Holocene – an ideal period for method testing due to the high abundance of speleothem records in the SISALv2 database. In particular, we compare speleothem growth rates in the early (12-8 kyr BP), mid (8-4 kyr BP) and the late Holocene (4-0 kyr BP). Using synthetically-modelled stalagmites, we test the strengths and weaknesses of state-of-the-art age-depth modelling methods to determine a set of necessary requirements to quantify speleothem growth rates and growth rate changes. Using these, we find slightly higher growth rates in the early Holocene within speleothems that cover at all periods. Comparing growth rates of speleothems that cover only one of the respective periods in the Holocene did not distinguish any period of highest or lowest growth rate. Detailed regional studies and comparison to model data are used to further interpret these results. Reliably determining growth rate changes in the Holocene may help in further understanding and characterizing hydroclimate changes as archived in speleothems also beyond the Holocene.

How to cite: Buehler, J. C., Novello, V. F., Weitzel, N., Scholz, D., and Rehfeld, K.: Determining SISALv2-speleothem growth rates during the Holocene, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6205, https://doi.org/10.5194/egusphere-egu23-6205, 2023.

EGU23-8194 | ECS | Posters on site | CL1.2.2 | Highlight

Speleothem growth and stable carbon isotopes as proxies of last glacial glacier coverage and thermo-dynamical states in the Alps 

Vanessa Skiba, Guillaume Jouvet, Christoph Spötl, and Jens Fohlmeister

For more than a century, a major focus of Quaternary research has been the investigation of glacier advances and retreats during ice age cycles. The cradle for these studies are the European Alps. In recent years, glacier modelling permitted to produce long-term transient simulations of the European Alps glacier evolution. However, only sparse empirical data, e.g. geological reconstructions of glacier margins in the foreland of the Alps of the Last Glacial Maximum, are available to validate these simulations.

Speleothems from the Alps are a widespread palaeoclimate archive. They provide stable carbon isotope records, which can potentially inform about soil and vegetation conditions above a cave site but also about the lack of soil during times of glacier coverage. In addition, speleothem growth in cold, high-elevation cave sites during glacials are a strong indicator of temperatures in the soil-karst-cave system above the freezing point, which is only likely to occur if the cave is covered by a temperate glacier. We here utilise existing speleothem data (growth histories and stable carbon isotopes) from Alpine caves to infer glacier coverage and thermo-dynamical state during the last glacial cycle and to assess the compatibility with modelled reconstructions. We compare data from the last glacial cycle from multiple cave sites located at different elevations (785 to 2319 m a.s.l.) in the Alps with simulations obtained with the Parallel Ice Sheet Model (PISM). We find a general agreement between speleothem-derived soil presence or absence and modelled glacier coverage. However, the speleothem data provide evidence of temperate glacier coverage which is not shown by all of the PISM simulations. Our work demonstrates the value of speleothem-based reconstructions from the Alps as proxies for assessing performance of palaeo-ice flow models.

How to cite: Skiba, V., Jouvet, G., Spötl, C., and Fohlmeister, J.: Speleothem growth and stable carbon isotopes as proxies of last glacial glacier coverage and thermo-dynamical states in the Alps, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8194, https://doi.org/10.5194/egusphere-egu23-8194, 2023.

EGU23-9601 | Orals | CL1.2.2

Climate variability from Hot cave (Cyprus) for the last 700 years: implications for speleothem proxies in determining long-term paleoclimate signals 

Carole Nehme, Tobias Kluge, Gabriella Koltai, R. Lawrence Edwards, Salih Gucel, Ozge Ozden, Jocelyne Adjizian-Gérard, and Christoph Spoetl

The HIGH-PASM project studies the climate variability on the Island of Cyprus for the last millennium. We combine highly resolved speleothem records with archived weather data for the last 140 years in order to corroborate and understand climate signals recorded in speleothems over the last millennium. An active stalagmite of 8 cm length was collected from Hot cave in 2021 along with other secondary carbonate deposits from Lapithos Qanat, and Amiandos and Argaka Dam tunnels. U-Th dating and lamina counting were combined to produce an age model for Hot cave and Lapithos Qanat. 800 stable isotope measurements were conducted on the Hot cave stalagmite, 250 on the Lapithos sample and 45 on each of the Amiandos and Argaka deposits. Meteorological data collected since 1885 from four stations were consolidated and compared to the yearly resolved Hot cave and Lapithos records.

The Hot cave stalagmite grew continuously from 1330 to 2021 AD, the Lapithos sample covers the last 150 years and both Amiandos and Argaka deposits provide a continuous record for the last ca. 50 years. There is a general correspondence between the ẟ18O signal and precipitation peaks over the last 140 years, showing more negative ẟ18O values corresponding to times of high precipitation. The ẟ13C signal co-varies in general with ẟ18O, except during ~1970-1980, ~1930, ~1680, ~1650, ~1490, ~1400-1410 and ~1360-1370 AD. During these periods an anti-correlation is observed. During the 20th century, periods of instrumental temperature rise are reflected by rising ẟ18O and ẟ13C values. A trend towards less negative ẟ18O values since 2000 AD is attributed to reduced rainfall amount and increased evapotranspiration as a consequence of steeply rising temperatures. During the instrumental period, the ẟ18O is a proxy of precipitation amount, and we assume that this relationship was valid for the last millennium. Strong temperature rises during certain intervals might also have affected the ẟ18O signal, reducing the sensitivity of this precipitation proxy.

Comparing the Hot cave record with global and regional records, periods with less negative ẟ18O values correspond generally to intervals of a negative NAO index and high total solar irradiance. Wet periods with more negative ẟ18O values correspond to intervals of a positive NAO index and low solar irradiation. The Hot cave record shows that the Little Ice Age (1300-1870 AD) begun with long dry intervals lasting until 1520 AD, followed by wetter intervals from 1520 to 1800 AD, and later followed by again long dry intervals until the present-day. The climate variability trend recorded in Hot cave during the last 700 years agrees generally well with the dry index reconstructed from tree-ring records in Troodos (Cyprus) and stalagmite data from Kocain cave in Southern Turkey

How to cite: Nehme, C., Kluge, T., Koltai, G., Edwards, R. L., Gucel, S., Ozden, O., Adjizian-Gérard, J., and Spoetl, C.: Climate variability from Hot cave (Cyprus) for the last 700 years: implications for speleothem proxies in determining long-term paleoclimate signals, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9601, https://doi.org/10.5194/egusphere-egu23-9601, 2023.

EGU23-12002 | Orals | CL1.2.2

A Gibraltar speleothem record of environment and regional climate for the last glacial period 

Dirk L. Hoffmann, David P. Mattey, Tim C. Atkinson, Meighan Boyd, and Wolfgang Müller

Gibraltar climate is influenced by the Mediterranean Sea and the Atlantic Ocean in a boundary area between polar and subtropical air masses. Speleothem proxy records from Gibraltar caves provide opportunities to improve understanding of the long-term interplay of climatic features of this key location at the southern limit of tracks presently taken by the North Atlantic depressions delivering rainfall to Europe.

Deployment of logging instruments from 2004 to 2012 plus water and air sampling in two Gibraltar caves - St. Michaels and Ragged Staff - revealed that seasonality in speleothem growth rates is most strongly influenced by seasonally reversing convective ventilation that permeates the entire Rock. Average rates over longer timescales depend on drip rates (reflecting hydroclimate at the surface), combined with conversion into dissolved inorganic carbon of organic matter washed down by deep percolation into the epikarst and bedrock. The geochemistry of calcite precipitation is thus regulated by environmental conditions including net organic production by vegetation, temperatures and water balance. The monitoring results provide a robust foundation for palaeoclimate research. Data from twenty-four dated speleothems provide a palaeoclimatic framework with insights into regional climate as recorded by chemical proxies over seasonal to multimillennial timescales, over the last half-million years.

Here, we concentrate on the last glacial period and present a composite record based on four speleothems: two from near present sea level in Ragged Staff (Gib 10d and Gib 10e) and two (Gib 06a and Gib 06b) from an altitude of 255 masl in St. Michaels Cave. The composite chronology is constrained by over 170 U-Th dates and provides a continuous δ13Ocalcite, δ18Ocalcite and trace element proxy record of palaeoclimate from 100 ka to 10 ka, at a resolution that varies between ~5 and ~100 years. The Gibraltar δ18O record is strikingly similar to NGRIP but with a range of variation notably more subdued than other long speleothem records such as Soreq and Hulu that appear to have insolation forcing of monsoon strength as their dominant control. Our δ18Ocalcite data show clear imprints of Alboran Sea SST associated with D-O cycles during MIS 2-5, superimposed on a general trend of higher δ18O during stadials and lower values in interstadials and interglacials. The latter trend may have multiple causes including changes in cave temperatures, ocean δ18O and isotopic disequilibrium during calcite deposition. Changes in atmospheric circulation are another possibility but currently difficult to evaluate as neither δ18O of individual rainfall events nor the GNIP monthly record show any relationship to modern synoptic circulation patterns. The δ13C record is interpreted as signaling changes in vegetation and water balance. Higher δ13C values are caused by greater degassing due to lower drip rates and/or weakened net organic matter production and downwash during cooler periods with less recharge. The trace element records across DO events provide supporting observations.

How to cite: Hoffmann, D. L., Mattey, D. P., Atkinson, T. C., Boyd, M., and Müller, W.: A Gibraltar speleothem record of environment and regional climate for the last glacial period, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12002, https://doi.org/10.5194/egusphere-egu23-12002, 2023.

EGU23-12527 | ECS | Posters on site | CL1.2.2

Tropical cyclone frequency and infiltration changes recorded by speleothem trace metal signatures 

Sophie F Warken, Aaron Mielke, Nils Schorndorf, Judith Gafriller, Frank Keppler, Amos Winter, Sebastian N. Höpker, Adam Hartland, Rolf Vieten, Andrea Schröder-Ritzrau, and Norbert Frank

Trace element abundances such as Mg/Ca ratios are frequently used in speleothems to support climate reconstructions or karst processes. However, signals of short-lived extreme events (e.g., droughts or strong rainfall events and tropical cyclones) are often concealed within the record of the classical stable isotope and elemental records due to dissolution and mixing processes within the soil and karst zone. On the contrary, drip water transition metal ratios and their binding affinities to particles and organic ligands, suggested faster transport in response to strong infiltration events and thus possibly reflect seasonal and/or even event-based rainfall variations (Warken et al., 2022). Here we assess replicated LA-ICPMS records of elemental abundances in two modern speleothems from Larga Cave, Puerto Rico, to explore their potential as indicators of extreme precipitation events. Speleothem Mg/Ca ratios show a broad co-variability with δ18O and δ13C values, and are interpreted as sensitive indicators of regional hydrology (δ18O) and local water balance (Mg/Ca, δ13C). Analogous to the drip water signature, we identify a common pattern of element ratios typically associated with particle and/or organic ligand fluxes (e.g., Cu/Ca, Ni/Ca, Zn/Ca, Al/Ca, Cu/Ni, Cu/Co, …), which differs from the δ18O and Mg/Ca records. In particular, we observe a similarity of the infiltration-sensitive proxies to historic Hurricane and tropical cyclone occurrence since 1850 AD. This suggests that the trace metal pattern observed in the drip water is recorded by the stalagmites, and that these elements are most promising candidates as indicators for fast infiltration changes, and possibly even tropical cyclone frequency. Furthermore, we explore a long speleothem record covering the last glacial period between 40.8 and 12.2 ka BP. In line with the modern interpretation, trace elements such as Cu/Ca or Zn/Ca indicate higher cyclone activity during the Holocene as compared to the glacial cold phase. In addition, the record reveals strong variations on the millennial scale which coincide with the onsets of warm and wet interstadial phases associated with abrupt warming events in the northern hemisphere and northward shifts of the Intertropical Convergence Zone. These observations support that mobilization and transport of organic ligands and associated elements is effectively coupled to infiltration.

Reference:

Warken, S. F., Kuchalski, L., Schröder-Ritzrau, A., Vieten, R., Schmidt, M., Hoepker, S., Hartland, A., Spötl, C., & Frank, N. (2022). The impact of seasonal and event-based infiltration on transition metals (Cu, Ni, Co) in tropical cave drip waters. Rapid Communications in Mass Spectrometry e9278. https://doi.org/10.1002/rcm.9278

How to cite: Warken, S. F., Mielke, A., Schorndorf, N., Gafriller, J., Keppler, F., Winter, A., Höpker, S. N., Hartland, A., Vieten, R., Schröder-Ritzrau, A., and Frank, N.: Tropical cyclone frequency and infiltration changes recorded by speleothem trace metal signatures, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12527, https://doi.org/10.5194/egusphere-egu23-12527, 2023.

EGU23-13007 | Posters on site | CL1.2.2 | Highlight

Towards a high-resolution speleothem fluid inclusion water isotope record for the Holocene from Milandre Cave, Switzerland 

Stéphane Affolter, Elisa Hofmeister, Timon Kipfer, Hai Cheng, and Dominik Fleitmann

Speleothem fluid inclusions contain relics of past precipitation water, which constitute a powerful tool for studying the past hydrological cycle. Analyses of hydrogen and oxygen isotopes of the water stored in fluid inclusions allow the reconstruction of paleoclimate information such as temperature. A previous study has shown the potential of speleothems from Milandre Cave to address temperature-related issues such as the so-called “Holocene temperature conundrum”. It additionally shows the main Holocene climate feature such as the cooling occurring at the Younger Dryas or the 8.2 ka event. The mean temporal resolution achieved for the samples is relatively high, with sampling intervals ranging between 10 years for the most recent times and 50-70 years for the early Holocene. Using our new analytical line at the Department of Environmental Sciences at the University of Basel, we aim to increase the temporal resolution of the record by a factor two to four in order to provide highly-resolved water isotope and inferred temperature records for the entire Holocene. The revised Milandre Cave Fluid Inclusion temperature (MC-FIT) allows us to gain more detailed information on shorter scale events such as the 8.2 ka cooling and other prominent Holocene climatic events. The new MC-FIT record, supported by additional speleothems from neighboring caves, allows a better understanding of the central European annual temperature variability during the Holocene.

How to cite: Affolter, S., Hofmeister, E., Kipfer, T., Cheng, H., and Fleitmann, D.: Towards a high-resolution speleothem fluid inclusion water isotope record for the Holocene from Milandre Cave, Switzerland, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13007, https://doi.org/10.5194/egusphere-egu23-13007, 2023.

EGU23-13027 | ECS | Posters on site | CL1.2.2

Drivers of speleothem carbon isotope and radiocarbon variability explored using Earth System Model output as input of a dripwater and speleothem chemistry model  

Pauline Seubert, Norbert Frank, Alexander Hubig, Thomas Kleinen, and Sophie Warken

Interpreting carbon isotopes in speleothems is challenging due to the multiple interacting in-soil and in-cave chemical processes. The degree of free soil CO2, the relative abundance of aged soil organic matter (SOM) and bedrock dead carbon modifies the carbon isotopic composition in speleothems in addition to fractionation during speleothem formation or prior calcite precipitation. Knowledge of the relevant drivers of DCF and stable C isotope variability may help deciphering the climate impact imprinted on speleothem carbon isotopes. 

Here, we combine Earth System Model output (Max Planck Institute Earth System Model version 1.2, Kleinen et al. 2020), a simplistic soil model, IntCal20, and the speleothem chemistry and isotope equilibrium model CaveCalc (Owen et al., 2018) to produce 25'000 yearlong DCF and d13C time series for numerous speleothems and several cave environments.

The modelling results are tuned to reasonable agreement with the respective DCF and d13C mean measurement values at each cave location for intermediate openness values of 5-120 L/kg. However, all model tuning attempts fail to reproduce fast (centennial) isotope and DCF variability. To overcome this limitation, we explore possibilities to include climate driven changes in vegetation, aged SOM, and how water availability drives the openness of the dissolution system. Extending the modelling framework to include vegetation changes produces d13C time series with more small-scale variability. Interestingly, accounting for aged SOM not only results in higher modelled DCF values, but also adds small-scale variability, assuming 20% higher fractions of aged SOM with mean soil ages for each cave location from Shi et al. (2020). Thus, our modelling efforts permit exploring the role of climate and Karst chemical processes to investigate DCF and d13C variability in speleothems over millennial time scales.

References:

Kleinen, T., Mikolajewicz, U., and Brovkin, V.: Terrestrial methane emissions from the Last Glacial Maximum to the preindustrial period, Clim. Past, 16, 575–595, doi:10.5194/cp-16-575-2020, 2020.

Owen, R., Day, C. C., and Henderson, G. M.: CaveCalc: A new model for speleothem chemistry & isotopes, Computers & Geosciences, 119, 115–122, doi:10.1016/j.cageo.2018.06.011, 2018.

Shi, Z., Allison, S.D., He, Y. et al.: The age distribution of global soil carbon inferred from radiocarbon measurements, Nature Geoscience, 13, 555–559, doi:10.1038/s41561-020-0596-z, 2020.

How to cite: Seubert, P., Frank, N., Hubig, A., Kleinen, T., and Warken, S.: Drivers of speleothem carbon isotope and radiocarbon variability explored using Earth System Model output as input of a dripwater and speleothem chemistry model , EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13027, https://doi.org/10.5194/egusphere-egu23-13027, 2023.

EGU23-15313 | Posters on site | CL1.2.2 | Highlight

Timing and duration of Termination IV using stable isotope records of four stalagmites from Dechencave (western Germany) 

Dana Felicitas Christine Riechelmann, Bernd Reinhard Schöne, and Denis Scholz

Four stalagmites were sampled from different excavations in Dechencave (western Germany) and dated to Marine Isotope Stage (MIS) 9. MIS 9 is a very interesting interglacial due to its comparatively high concentration of greenhouse gasses (Lang & Wolff, 2011) and high temperatures (Petit et al., 1999), which are on the same level as during early industrial times (Robertson et al., 2001). Speleothem records from this time period are rare, in particular from central Europe. The stalagmites were precisely dated by the 230Th/U-method using MC-ICP-MS (Mainz University) and stable carbon and oxygen isotope composition were measured using CF-IRMS (Mainz University).

The stalagmites grew from 343 to 326 ka BP including Termination IV and MIS 9e. The stable oxygen isotope records of the four stalagmites show rapidly increasing values reflecting the temperature increase during the termination. The timing of this increase agrees well with the timing of Termination IV in the LR04 benthic foraminifera stack (Lisiecki & Raymo, 2005). However, the duration of the termination is shorter in the stalagmites than in the LR04 benthic foraminifera stack (Lisiecki & Raymo, 2005). The stable carbon isotope data decrease, but later and more gradually than the stable oxygen isotope data. This indicates a delayed and more gradual response of the evolving vegetation in response to the warming during Termination IV.

 

 

Lang, N., Wolff, E.W., 2011. Interglacial and glacial variability from the last 800 ka in marine, ice and terrestrial archives. Climate of the Past 7, 361-380.

Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20.

Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., Stievenard, M., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429.

Robertson, A., Overpeck, J., Rind, D., Mosley-Thompson, E., Zielinski, G., Lean, J., Koch, D., Penner, J., Tegen, I., Healy, R., 2001. Hypothesized climate forcing time series for the last 500 years. Journal of Geophysical Research: Atmospheres 106, 14783-14803.

How to cite: Riechelmann, D. F. C., Schöne, B. R., and Scholz, D.: Timing and duration of Termination IV using stable isotope records of four stalagmites from Dechencave (western Germany), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15313, https://doi.org/10.5194/egusphere-egu23-15313, 2023.

EGU23-15550 | ECS | Posters on site | CL1.2.2

Exploring a new Central European site of paleoclimate reconstruction: First results from Erdmannshöhle (Southern Germany) 

Aaron Mielke, Sophie Warken, Andrea Schröder-Ritzrau, Nils Schorndorf, Frank Keppler, Arnfried Becker, Karsten Piepjohn, and Norbert Frank

Here we show preliminary cave monitoring and speleothem results from Erdmannshöhle in Hasel, one of the oldest show caves in Germany. The comprehensive monitoring programme of drip water and cave air started in late summer 2022 and is still ongoing. In addition, we present precise 230Th/U, petrography, and proxy data from several speleothems. 

Cave temperature and relative humidity loggers show constant values of 10.7 +- 0.5 °C and 100.0% humidity. First results of the cave air CO2 mapping show a strong seasonal ventilation pattern with summer values reaching >6000 ppmV. During winter time, CO2 drops to values < 1700 ppmV, favoring carbonate precipitation during the cold season. Drip water is collected bi-monthly from 10 drip sites located in three chambers of the second horizontal cave level where speleothem growth is still active. First data of drip water stable isotope values agree with the local meteoric water line. In addition, abundances of dissolved minor and trace elements such as Mg, Ba, Sr, K, and Na, as well as anions (e.g., Cl, NO3, PO4, SO4) are analyzed. The data will be compared to the recently precipitated carbonate collected on watch glasses which are mounted on top of drip rate loggers.

230Th/U dating of speleothems from Erdmannshöhle is promising due to relatively high U contents in the range of 0.05 - 1 µg/g, and low detrital Th contamination. Analysis of drill cores from 25 stalagmites and flowstones from different cave chambers and cave levels extend the preliminary survey of Becker et al. (2020). The data shows that speleothem growth was active in Erdmannshöhle at least for the last 162 ka (Becker et al. 2020), in particular during past warm interglacial periods and the Holocene. Preliminary exploration of proxy data from two speleothems covering several parts of the Holocene demonstrate the high potential of Central European paleoclimate reconstruction. Stable oxygen records suggest a strong link to North Atlantic climate variability. In addition, carbon isotope and high resolution laser ablation ICPMS trace element records are explored for their paleoclimatic significance.

In summary, Erdmannshöhle has excellent preconditions for the continuous reconstruction of past Central European climate, and this comprehensive monitoring effort will provide an important step towards interpreting speleothem proxy data.

 

Reference

Becker, A., Piepjohn, K., & Schröder-Ritzrau, A. (2020). The Erdmannshöhle near Hasel, SW Germany: karst environment and cave evolution. Swiss Journal of Geosciences, 113(1), 1-25.

How to cite: Mielke, A., Warken, S., Schröder-Ritzrau, A., Schorndorf, N., Keppler, F., Becker, A., Piepjohn, K., and Frank, N.: Exploring a new Central European site of paleoclimate reconstruction: First results from Erdmannshöhle (Southern Germany), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15550, https://doi.org/10.5194/egusphere-egu23-15550, 2023.

EGU23-322 | ECS | Posters on site | CL1.2.4

Assessing North Atlantic climate variability since the early 1800s through historical New England whaling ship logbooks and reanalyses 

Neele Sander, Caroline C. Ummenhofer, Bastian Münch, and Timothy D. Walker

Historical wind patterns in the North Atlantic are assessed using U.S. whaling logbooks of voyages from the 19th century, a time when instrumental wind observations were not widely available. The recordings from whaling ship logbooks provide systematic daily to sub-daily information about wind force, wind direction, and other weather observations (e.g., precipitation, sea state) over a period from ca. 1785-1915 and are housed in the New England archives by the New Bedford Whaling Museum, Nantucket Historical Association, and Providence Public Library. The extracted data from the whaling logbooks is quality checked, and the qualitative wind descriptions transferred to the Beaufort wind force scale to better compare it to the 20th-Century-Reanalysis.  Specifically, the whaling ship logbook-sourced wind recordings are used in conjunction with several indices of North Atlantic climate variability, such as North Atlantic Oscillation, East Atlantic Pattern, and Atlantic Multidecadal Oscillation, to explore variations and change in predominant North Atlantic wind patterns in the past. Here we demonstrate that the wind data from the whaling ship logbooks agrees with mean wind patterns and climate variability reconstructed for the North Atlantic and therefore provides valuable insights into the past wind patterns in this area complementing existing reanalysis products. We further demonstrate how qualitative descriptive wind information can be turned into quantitative information that can be directly compared with numerical data from reanalysis models. Since the comparison of the historical logbook data with the 20th-Century-Reanalysis data shows overall good agreement, it can be used to gain a further understanding of the dominant climate patterns in the North Atlantic and might aid development of improved indices of North Atlantic climate variability, such as the North Atlantic Oscillation or Azores High index.

How to cite: Sander, N., Ummenhofer, C. C., Münch, B., and Walker, T. D.: Assessing North Atlantic climate variability since the early 1800s through historical New England whaling ship logbooks and reanalyses, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-322, https://doi.org/10.5194/egusphere-egu23-322, 2023.

EGU23-386 | Orals | CL1.2.4

ModE-RA - the Modern Era Reanalysis 

Jörg Franke, Valler Veronika, Ralf Hand, Eric Samakinwa, Angela-Maria Burgdorf, Elin Lundstad, Yuri Brugnara, Laura Hövel, and Stefan Brönnimann

The Modern Era Reanalysis (ModE-RA) extends current re-analysis back until the year 1420 CE at monthly resolution. It combines our understanding of physics coming from an ensemble of atmospheric model simulations with all available direct and indirect climate observations of monthly to annual resolution. A 20-member ensemble of atmospheric model simulations (ModE-Sim) driven by an ensemble of external forcings and an ensemble of new sea surface temperature reconstructions serves as a prior estimate of the possible climate states at each assimilation time step. After the entire simulations were completed, we assimilated multiple data sources using an offline Kalman filtering technique. We include up to ~100000 monthly to annual observations per year. These consist of thousands of existing and newly digitised instrumental measurements of temperature, precipitation, wet days per months, and pressure, including measurements made on ships over the ocean and in harbours. Earliest instrumental station data go back to the year 1658. Additionally, we collected and digitised climate information from historical documents, including phenological data. These are especially valuable for the autumn, winter and spring season and go back to the year 1420. Finally, we assimilate annually resolved climate proxies. The vast majority are tree-ring observations, which represent growing season conditions on the continents. In otherwise data sparse regions, we supplemented ice and coral data at high latitudes and the tropical oceans, respectively. ModE-RA offers especially  insides into interannual to multidecadal variability such as phases of accelerated warming, monsoon strength or subtropical droughts as well as rare events such as volcanic eruptions. 

How to cite: Franke, J., Veronika, V., Hand, R., Samakinwa, E., Burgdorf, A.-M., Lundstad, E., Brugnara, Y., Hövel, L., and Brönnimann, S.: ModE-RA - the Modern Era Reanalysis, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-386, https://doi.org/10.5194/egusphere-egu23-386, 2023.

EGU23-574 | Posters on site | CL1.2.4

Hadley Cell Variability during the Last Millenium and response to volcanism in the PMIP4/CMIP6 models 

Paulo Silva, Ilana Wainer, and Myriam Khodri

In the Tropics, the Hadley Cell plays a key role in controlling precipitation patterns, since it is related to the position of the ITCZ, which is also a main component of the South America Monsoon System (SAMS). Several studies have documented a poleward expansion of the Hadley Cell over the historical period and a shift in the position of its subsiding branches and the expansion of the subtropical dry zones. This widening has largely been attributed to anthropogenic forcing, such as greenhouse gases (GHG) and stratospheric ozone depletion. However, prior to the industrial period, the extent of the Hadley Cell is dominated by internal variability and the radiative effects of volcanic eruptions. Understanding this natural variability is key to better predict the possible combined effects with anthropogenic external forcing. Thus, in this study we to investigate the variability of the Hadley Cell during the Last Millennium and its response to volcanic eruptions. We rely on the simulations of the Last Millennium provided by the Paleoclimate Modeling Intercomparison Project (PMIP4) contribution to the Climate Model Intercomparison Project phase 6 (CMIP6).

How to cite: Silva, P., Wainer, I., and Khodri, M.: Hadley Cell Variability during the Last Millenium and response to volcanism in the PMIP4/CMIP6 models, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-574, https://doi.org/10.5194/egusphere-egu23-574, 2023.

Proxy records (corals, marine sediments, etc.) documenting the last 2000 years (2K) provide evidences for the wide range of natural variability not captured by recent direct observations. Assessing climate models ability to reproduce such natural variations is crucial to understand climate sensitivity and impacts of future climate change. The length of record is relatively short for investigating slow climate features, especially when considering coupled ocean-atmosphere variability. In order to extend the information contained in proxies from the locations and times to which they pertain, additional information is needed to create a climate field reconstruction. Paleoclimate data assimilation offers a powerful way to extend the instrumental period and better characterize the decadal to secular natural ocean variability by optimally combining the physics described by climate models with information from available observations while taking into account their uncertainties. Here we present a new Proxy Data Assimilation product based on a sequential importance resampling particle filter (PF-SIR) that uses Linear Inverse Modeling as an emulator of GCMs, providing dynamical ocean memory and improving the reconstruction of low-frequency climate variability. The climate reconstructions include robust uncertainty quantification and a set of physically consistent spatial fields useful for dynamical inquiry beyond what is feasible from proxies or climate models alone. We use these new results to explore low-frequency aspects of main coupled variability modes and provide some constrains on climate model simulations for the last millennium.

How to cite: Jebri, B. and Khodri, M.: Large ensemble particle filter for proxy-based spatial reconstructions of the last 2000-years climate variability, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-654, https://doi.org/10.5194/egusphere-egu23-654, 2023.

EGU23-2148 | Orals | CL1.2.4

Strong volcanic and climatic shocks on early modern wine production 

Fredrik Charpentier Ljungqvist, Bo Christiansen, Lea Schneider, and Peter Thejll

Wine is a particularly climate-sensitive crop for which long documentary series are available in much of Europe. Most studies of climate–wine growth relationships have hitherto utilised grape harvest date series. We instead investigate the climatic signature, and impact from volcanic forcing, on two long annual wine harvest quantity records from the Moselle Valley, in present-day Luxembourg, close to the latitudinal limit of commercial wine agriculture in Europe. A strong positive relationship between reconstructed temperature, especially summer temperature, and wine production quantities is found in our data that extend from the mid-fifteenth century until the end of the eighteenth century. Extremely cold or wet years show clear imprints on the wine harvest quantities. Large declines in the wine harvest – sometimes even total harvest failures – occurred after volcanic forcing events. The most significant decline in wine production quantities occurred during the first year after a volcanic forcing event. However, persistent wine production decline is evident over several consecutive years following larger volcanic forcing events. We compare the signature of Moselle Valley wine production declines following volcanic forcing events with corresponding tree-ring growth declines in different regions of Europe. It is evident that wine production shows a stronger and more distinct downturn following volcanic forcing events, even more minor ones, than tree-ring growth does in central Europe. Possible mechanisms for this behaviour are explored and discussed.

How to cite: Charpentier Ljungqvist, F., Christiansen, B., Schneider, L., and Thejll, P.: Strong volcanic and climatic shocks on early modern wine production, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2148, https://doi.org/10.5194/egusphere-egu23-2148, 2023.

EGU23-2170 | ECS | Posters on site | CL1.2.4

Northwestward migration of the East Asian monsoonal limit during the Medieval Warm Period 

Jiawei Jiang, Lin Chen, Aifeng Zhou, and Zhonghui Liu

The East Asia summer monsoon variability and changes in monsoonal rainfall are critical for hydrology and ecology conditions in water-stressed regions of northern China. Due to complex interactions of monsoonal and westerlies circulation, hydroclimatic conditions at the boundary between two circulation systems, commonly defined as the 300 mm annual rainfall line, remain poorly understood. Here we report alkenone records (UK'37, %C37:4, and RIK37) from Lake Eastern Juyanze in northern China to assess temperature and hydrological changes in marginal monsoon region over the last millennium. Our records show wet conditions during the Medieval Warm Period, with the presence of alkenone C37:3 isomer at the interval of ~ 700-1,050 AD and thus evident freshening of lake water, and dry conditions during the Little Ice Age. The paired records follow the warm-wet and cold-dry association in monsoonal regions over the last millennium, opposite to the warm-dry and cold-wet association in westerlies region, although Lake Eastern Juyanze is located to the northwest of current monsoonal limit. Our results, together with other hydrological records from marginal monsoon regions, collectively indicate northwestward migration of East Asia monsoonal limit during the Medieval Warm Period associated with relatively high solar irradiance and enhanced summer monsoon circulation. Findings in this study highlight the complexity of hydroclimatic changes in marginal monsoonal regions, and further investigations focusing on the Holocene epoch are highly recommended.

 

How to cite: Jiang, J., Chen, L., Zhou, A., and Liu, Z.: Northwestward migration of the East Asian monsoonal limit during the Medieval Warm Period, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2170, https://doi.org/10.5194/egusphere-egu23-2170, 2023.

EGU23-2600 | ECS | Posters on site | CL1.2.4

Reconstructing climate fields with terrestrial climate archives, isotope-enabled GCMs and Data Assimilation 

Mathurin A. Choblet, Janica C. Bühler, Nathan J. Steiger, Valdir F. Novello, and Kira Rehfeld

Data Assimilation in paleoclimatology (PaleoDA) is a method that has been used in several climate reconstructions for the last millennium. By fusing information from both climate proxies and general circulation models (GCMs), PaleoDA provides statistical estimates of climate fields that are dynamically consistent. However, existing reconstructions mostly rely on calibrated tree ring data and assimilate proxy records on a single, annual time scale. Ice cores and speleothems, which record past variations in the oxygen isotope ratio of precipitation, often have a lower and irregular time resolution, but reliably record climate variations on decadal to centennial time scales. 

Here, we implemented a computationally efficient DA algorithm that enables the assimilation of proxy records on multiple timescales. The algorithm has been applied to speleothem and ice core records from the SISALv2 and Iso2k database and five isotope-enabled GCMs. Reconstructions of global mean temperature changes during the last millennium compare well in both amplitude and uncertainty to recent studies. The potential of incorporating speleothems is shown with a reconstruction of hydroclimatic changes in tropical South America, where speleothems represent the most abundant type of hydroclimate archive. The experiments performed suggest an increased reconstructed decadal to centennial variability by using proxy records on multiple timescales. Making use of different climate models shows the influence of model biases on the reconstructions. Future PaleoDA reconstructions could be improved from more proxy records and the multiple time scale approach to provide a globally complete picture of past climate changes. 

How to cite: Choblet, M. A., Bühler, J. C., Steiger, N. J., Novello, V. F., and Rehfeld, K.: Reconstructing climate fields with terrestrial climate archives, isotope-enabled GCMs and Data Assimilation, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2600, https://doi.org/10.5194/egusphere-egu23-2600, 2023.

The project ROPEWALK, funded by the AP Møller Mærsk Fund, is a joint initiative of the Danish National Archive and the Danish Meteorological Institute over the period 2023-2026. The aim of the project is to digitize and transcribe all weather observations in ship journals and logbooks stored in the Danish National Archive.

The collection in the archive is remarkable for several reasons. A huge amount of data (more than 750 shelf metres) is stored, beginning as early as the 1680s. With the exception of the Napoleonic wars and the Danish state bankruptcy in 1814, the data is complete. In particular, there were no losses during the Second World War.

In the archive, logbooks from Danish ships over large parts of Northern Hemisphere are found. Of particular interest are observations from two regions, the Øresund and Greenland.

In connection with the Sound duties which every ship passing the sound or belts had to pay between 1426 and 1857, weather observations were made on board of war ships placed at strategic locations near Copenhagen, Helsingør and Nyborg. These ships had to ensure that no one passed without paying the duties. Probably for practical reasons, weather observations were tabulated as early as the first half of the 18th century. In several cases, observations were conducted every time the ship bell was struck, resulting in 48 observations in the course of one day. The early part of the logbook collection is from the Little Ice Age, and numerous ice observations in the Danish waters have been preserved.

The other group of logbooks which are of particular interest are from voyages to the colonies, in particular to (western) Greenland. The Greenlandic Trade Company had a monopoly for commerce with Greenland for nearly 200 years, and foreign ships would not be allowed to call a port. These "Greenland Voyages" were conducted several times per year. In many cases, detailed sea ice observations have been made.

The original logbooks are being scanned by the National Archive in highest possible resolution. The scans will then be transcribed by means of machine learning. This is possible, since the political system in Denmark was absolutistic between 1660 and 1848, and logbooks from different periods resemble each other much more than is the case for the nautical heritage in other seafaring nations. Where this is not possible, the data will be transcribed with the help of volunteers. For the oldest logbooks, which are in free text rather than in tabular form, we could locate older transcriptions which are much easier to read tahn the original data, either by machine or manually.

All transcribed data will be made publicly available. They can be used for future research or as input for reanalysis projects. We will present first results of our analysis.

How to cite: Stendel, M. and Kronegh, A. J.: ROPEWALK (Rescuing Old data with People's Efforts: Weather and climate Archives from LogbooK records) - a digitization project for three centuries of weather observations on board of Danish ships, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3407, https://doi.org/10.5194/egusphere-egu23-3407, 2023.

EGU23-3587 | ECS | Orals | CL1.2.4 | Highlight

Global changes in the hydroclimate of the Last Millennium: Evidences from reconstructions and simulations 

Pedro Roldán, Jesús Fidel González-Rouco, Jason Smerdon, and Félix García-Pereira

Global changes have been found in simulated and reconstructed temperatures during the Last Millennium (LM), mainly associated to changes in the Earth’s energy balance like those during the periods of the Medieval Climate Anomaly (MCA; ca. 950-1250 CE) and the Little Ice Age (LIA; ca. 1450-1850 CE), respectively characterized by warmer and cooler conditions over many regions. Even if the impact of these changes in the hydroclimate is not fully understood, evidences of coordinated changes in the hydroclimate of distant regions can be also found in reconstructions from areas of North America, Europe and the Mediterranean basin, South America, Eastern Africa and Monsoon Asia. The timing of such changes suggests a link to the MCA and the LIA, while other areas like Southeast Asia and the Indo-Pacific also show coordinated changes in the hydroclimate of the LM, but without a patent link to the periods of MCA and LIA.

To better assess these coordinated changes in the hydroclimate of distant regions, and whether they also extend to other periods of the LM different from the MCA and the LIA, evidences from reconstructions and simulations have been compiled, including: a compilation of 92 reconstructions reporting changes from wetter to drier or from drier to wetter conditions in the transition from MCA to LIA; reconstruction-based products like the Drought Atlases for Europe (OWDA), North America (NADA), Asia (MADA), Mexico (MXDA) and Eastern Australia and New Zealand (ANZDA); hybrid products like the Paleo Hydrodynamics Data Assimilation product (PHYDA) and the Last Millennium Reanalysis (LMR); and model simulations from the Community Earth System Model - Last Millennium Ensemble (CESM-LME) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) and 6 (CMIP6).

The comparison between proxy-based datasets and model simulations has allowed to obtain robust conclusions regarding the behavior of the hydroclimate of different regions and to deeply analyze the impact of external forcing and internal variability on hydroclimate changes. In tropical areas, changes have been mainly associated to alterations in the position and intensity of the Intertropical Convergence Zone (ITCZ), while in extratropical areas the alteration of variability modes like the Northern (NAM) and Southern Annular Modes (SAM) may have had a major role in the response of hydroclimate to changes in external forcing.

 

How to cite: Roldán, P., González-Rouco, J. F., Smerdon, J., and García-Pereira, F.: Global changes in the hydroclimate of the Last Millennium: Evidences from reconstructions and simulations, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3587, https://doi.org/10.5194/egusphere-egu23-3587, 2023.

EGU23-3969 | ECS | Orals | CL1.2.4 | Highlight

Agroclimatic relationships in Central Scandinavia, c. 1560–1920 

Martin Skoglund

For the region of central Scandinavia, there exists high-quality tree-ring based temperature reconstructions that cover the last 1200 years. This paper utilizes climate reconstructions in tandem with historical sources to estimate the relationships between climatic variability and agriculture in central Scandinavia between the 16th and 20th centuries, with a specific focus on temperatures, harvests and agricultural dates. Using historical sources on agriculture importantly allows for evaluation of different climate reconstructions before the era of instrumental measurements. Thus, this paper not only sheds light on the societal relevance of past and present climatic change and variability, but also provides insights into the climate of the past.

While historical harvest dates in many parts of Europe have been employed to reconstruct growing season temperatures, this paper also includes virtually unique long time-series of sowing and hay-cutting dates going back to the late 17th and 18th century, respectively, and shows how these type of agricultural dates also had significant relationships with temperature variability in central Scandinavia. Furthermore, agriculture in this region, located in the northern boreal zone, was heavily constrained by growing season temperatures, and harvests exhibits much clearer relationships with climatic variability compared with less marginal regions of Europe. Climate-harvest relationships are studied at a local level, allowing for spatial anlaysis of micro-climatological differences within the larger regional context.

How to cite: Skoglund, M.: Agroclimatic relationships in Central Scandinavia, c. 1560–1920, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3969, https://doi.org/10.5194/egusphere-egu23-3969, 2023.

EGU23-3976 | Posters on site | CL1.2.4

Drought variability in the Spanish Mediterranean Basin during the Dalton Solar Minimum period (1790-1830) 

Mariano Barriendos, Josep Barriendos, María Hernández, Salvador Gil-Guirado, and Jorge Olcina-Cantos

The current climate change scenario is increasing concerns about the frequency of droughts in the Mediterranean region and the management of water resources. For this reason, it is interesting to study the most severe droughts of the recent past in order to better characterise the current phenomenon and future adaptive strategies.

One of these episodes of great magnitude and significant impact on economic and social activity were the droughts that occurred in the first third of the 19th century in the Mediterranean basins of the Iberian Peninsula. This relatively brief period, placed at the end of the Little Ice Age, contains up to four episodes of drought that affected the Spanish Mediterranean Basins. Their occurrence can be linked to known climatic forcing factors. On the one hand, the effects of the Dalton Solar Minimum (1790-1830). On the other hand, the effects of three different volcanic eruptions produced in the intertropical latitudes with a VEI equal or greater than 5: the Unknown eruption of 1809, the Tambora eruption of 1815 and the Galunggung eruption of 1822.

The climatic characterisation of the drought in this period is proposed with the use of historical proxy-data based on rogation ceremonies to monitor situations of rainfall deficit at high temporal resolution (daily/monthly). For drought assessment, a drought information classification system is proposed based on an index that takes into account the basic characteristics of each episode (duration, extent and severity). This classification will be tested to determine the behaviour of the droughts that affected the Spanish Mediterranean Basin during the period of the Dalton Solar Minimum.

The results obtained from the application of these methodologies and materials allow the identification of severe droughts that affected the Spanish Mediterranean Basin during this period. Some of these years with severe droughts are 1807, 1812, 1817-1818, the most severe drought in the overall of the series, and 1822-1825. The description and cartographic representation of the historical data about these droughts allows us to assess their severity due to the extraordinary persistence of the rainfall deficits and their capacity to affect simultaneously distant regions.

Finally, in order to compare the results obtained from the historical data recorded in Barcelona about rainfall deficits, we use the instrumental meteorological series of Barcelona. This data series begun in 1780 recording data on temperature and pressure and begun recording precipitation in 1786. The information from those records allows the comparison with the historical data.

How to cite: Barriendos, M., Barriendos, J., Hernández, M., Gil-Guirado, S., and Olcina-Cantos, J.: Drought variability in the Spanish Mediterranean Basin during the Dalton Solar Minimum period (1790-1830), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3976, https://doi.org/10.5194/egusphere-egu23-3976, 2023.

EGU23-4841 | Posters on site | CL1.2.4

DOCU-CLIM: A global documentary climate dataset for climate reconstructions 

Stefan Bronnimann and Angela-Maria Burgdorf

Documentary climate data describe evidence of past climate arising from predominantly written historical documents such as diaries, chronicles, newspapers, or logbooks. Over the past decades, historians and climatologists have generated numerous document-based time series of local and regional climate. However, a global dataset of documentary climate time series has never been compiled, and documentary data are rarely used in large-scale climate reconstructions. Here, we present the first global multi-variable collection of documentary climate records. The dataset DOCU-CLIM comprises 621 time series (both published and hitherto unpublished) providing information on historical variations in temperature, precipitation, and wind regime. The series are evaluated by formulating proxy forward models (i.e., predicting the documentary observations from climate fields) in an overlapping period. Results show strong correlations particularly for the temperature sensitive series. Correlations are somewhat lower for precipitation sensitive series. Overall, we ascribe considerable potential to documentary records as climate data, especially in regions and seasons not well represented by early instrumental data and palaeoclimate proxies.

How to cite: Bronnimann, S. and Burgdorf, A.-M.: DOCU-CLIM: A global documentary climate dataset for climate reconstructions, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4841, https://doi.org/10.5194/egusphere-egu23-4841, 2023.

EGU23-5734 | ECS | Posters on site | CL1.2.4

Analysis of wind direction measurements made by the Rospini family in Graz (Austria), 1822-1850 CE 

Thomas Pliemon and Ulrich Foelsche

The Austrian National Library has digitized several volumes of the newspaper "Grätzer Zeitung", which contains daily measurements (morning, noon and evening) of temperature, pressure, short simple weather descriptions, wind direction, and wind strength, recorded in the historic center of Graz by Mr. Rospini (and later by his son and grandsons). Other volumes of the newspaper are available on microfilm or have been found in archives. The measurement series of the Rospini family started as early as 1781, and have been continuously published in the "Grätzer Zeitung" from 1795 onwards. However, in the first years only temperature and pressure data were published and the first publications of wind directions began in March 1822. Thus, we analyze an almost uninterrupted record of wind directions from 1822 to 1850. The measurement times for this period are given as 7 a.m., 3 p.m. and 10 p.m. To assert the validity of the data, we compare it with modern data as well as with the other measurements of the Rospinis. Initial analysis reveal an improvement in measurement accuracy during the measurement period. I.e. the year-round seasonal distributions of the main wind directions differ significantly in the 1820s with respect to modern data, whereas those of the 1840s are comparable.

How to cite: Pliemon, T. and Foelsche, U.: Analysis of wind direction measurements made by the Rospini family in Graz (Austria), 1822-1850 CE, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5734, https://doi.org/10.5194/egusphere-egu23-5734, 2023.

The decade 1531-1540 was characterized by a high number of dry summer episodes making it the driest summer decade of the past 500 years in some areas of Central Europe. In addition to established climate reconstructions, we use the ModE-RA (Modern Era Reanalysis) and ModE-Sim (Modern Era Simulations) data sets which provide gridded climate information of the past 600 years to analyse the summers of 1531-1540 and compare it with other decadal dry spells over Europe.

While most previous studies focus on the variability of individual drought events or multi-decadal mega droughts, our aim is to identify decadal scale dry spells similar to the 1531-1540 decade. With our three-dimensional reanalysis and the model simulations forced with observed volcanic forcings and prescribed SST we can then investigate the atmospheric and oceanic drivers of such events as well as the influence of the volcanic forcings.

Our first results show that the magnitude and distribution of observed decadal dry spells in ModE-RA is realistic and comparable to other climate reconstructions. In the ModE-Sim ensemble mean the drying signal for the 1531-1540 event is less strong but still visible. Overall, with our ongoing analysis we contribute to the evaluation of past and future decadal dry spells over Europe that are driven by both natural and anthropogenic forcings.

How to cite: Hövel, L., Hand, R., Franke, J., and Brönnimann, S.: The 1531-1540 dry summers in Europe - Identifying potential drivers of decadal dry spells using climate reconstructions and ensemble simulations of the past 600 years, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6604, https://doi.org/10.5194/egusphere-egu23-6604, 2023.

EGU23-6648 | ECS | Posters on site | CL1.2.4

Polar climate variability during the Holocene as archived in ice core water isotopes 

Nora Hirsch, Maria Hörhold, and Thomas Laepple

Understanding natural climate variability, its fluctuations throughout the Holocene, and its dependency on the mean climate state can provide valuable insights into driving mechanisms and potentially allow for a better prediction of a plausible range of future climates. However, polar climate variability and its changes remain uncertain due to a lack of thorough analysis across the Holocene. Ice core water isotope records are a temperature proxy which covers both high resolutions as well as long timescales and thus enable us to resolve variability changes across a large range of frequencies. By consolidating a multitude of such records from Greenland and Antarctica and using our knowledge how the ice-core signal is recorded, we distinguish signal from noise in the spectral domain. Based on this, we examine spatial and temporal changes of the polar climate signal variability, its relationships to earth system processes and its representation in climate models.

How to cite: Hirsch, N., Hörhold, M., and Laepple, T.: Polar climate variability during the Holocene as archived in ice core water isotopes, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6648, https://doi.org/10.5194/egusphere-egu23-6648, 2023.

EGU23-8040 | Posters on site | CL1.2.4

A new 1523-year-long varve sequence reveals the influence of the Atlantic Multidecal Variability on Eastern Canada hydroclimate 

Pierre Francus, Antoine Gagnon-Poiré, and François Lapointe

Grand Lake, Labrador, is a 245-m deep and 55 km long fjord lake deglaciated c.a. 8000 years ago, located at the eastern margin of North America in the high boreal forest ecozone. The lake is fed by two large rivers that transport a substantial amount of sediments, mainly during the snowmelt season. As a result, up to 13 mm thick varves are preserved in the proximal zone of the two main tributaries, while distal varves are 1.26 mm thick on average. Proximal and distal varves can be correlated thanks to cross-correlation of distinctive varves. Varve counts were made from high-resolution images of thin sections at the scanning electron microscope, and from 100 µm-resolution µXRF profiles. The age model was validated by 210Pb, 137Cs and 14C dating. The proximal varves are composed of 3 distinct laminae, while the distal varves contain 2 layers. This paper outlines how the proximal and distal sequences were combined to produce a 1523-year-long record allowing a very long reconstruction of past river mean discharge (Q-mean). The river discharge was higher during the Medieval Climate Anomaly (1050–1225 CE) and lower during the Little Ice Age (15th–19th centuries). The reconstructed Q-mean shows a significant co-variability with Atlantic Multidecadal Variability reconstructions and with reconstructed summer Northern Hemisphere temperature based on tree rings. This suggests that river discharge in Labrador was influenced by ocean-atmosphere interactions across the North Atlantic, and that a longer varved record from Grand Lake has the potential to reconstruct the supra-regional modes of climatic variability for most of the Holocene.

How to cite: Francus, P., Gagnon-Poiré, A., and Lapointe, F.: A new 1523-year-long varve sequence reveals the influence of the Atlantic Multidecal Variability on Eastern Canada hydroclimate, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8040, https://doi.org/10.5194/egusphere-egu23-8040, 2023.

EGU23-8871 | ECS | Posters on site | CL1.2.4

Phase 4 of PAGES 2k: Hydroclimate of the Common Era 

Georgina Falster, Hussein Sayani, Anais Orsi, Helen McGregor, Nikita Kaushal, Lukas Jonkers, Matthew Jones, Benjamin Henley, Sarah Eggleston, and Alyssa Atwood

The climate of the past two thousand years (2k) provides context for current and future changes, and as such is vital for developing our understanding of the modern climate system. Building on previous phases of the PAGES 2k network, Phase 4 of the PAGES 2k Network paves the way for a new level of understanding of the global water cycle, including enhanced science-policy integration. 

Previous PAGES 2k network phases emphasised temperature reconstructions, fundamentally improving our understanding of global climate changes over the Common Era. These reconstructions received widespread recognition and were featured in the Summary for Policymakers of the IPCC’s Sixth Assessment Report. Integration of this data with state-of-the-art Earth systems models, proxy system models and data assimilation yielded a more comprehensive understanding of the associated physical drivers and climate dynamics.  

Phase 4 challenges our community to turn its focus towards hydroclimate. Our aim is to reconstruct hydroclimatic variability over the Common Era, from local to global spatial scales, at sub-annual to multi-centennial time scales, developing a process-level understanding of past hydroclimate events and variability. Our multi-faceted approach includes (1) developing new hydroclimate syntheses that are well-suited for data-model comparisons, (2) improving the interoperability and scope of existing data and model products, and (3) facilitating the translation of our science into evidence-based policy outcomes. In this presentation, we report on our activities and progress to date, particularly highlighting the early stages of our data synthesis efforts.

How to cite: Falster, G., Sayani, H., Orsi, A., McGregor, H., Kaushal, N., Jonkers, L., Jones, M., Henley, B., Eggleston, S., and Atwood, A.: Phase 4 of PAGES 2k: Hydroclimate of the Common Era, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8871, https://doi.org/10.5194/egusphere-egu23-8871, 2023.

EGU23-9075 | ECS | Posters on site | CL1.2.4

Climate of the 6th Century based on the Fully Forced Regional Climate Model COSMO-CLM over the Eastern Mediterranean and the Nile Basin 

Mingyue Zhang, Eva Hartmann, Sebastian Wagner, Muralidhar Adakudlu, and Elena Xoplaki

The interactions and feedbacks between climate stress and social systems are currently the focus of interest for the scientific community and the general public. Understanding how paleo societies responded to extreme climate conditions is important for gaining insight into current and future climate concerns. The East Mediterranean (EM) and the Nile River basin (NR) are ideal areas for scientific and historical studies and modelling experiments due to the abundance of proxy and historical data. The 6th century AD is of particular interest from both a historical and scientific perspective, as it coincides with a period of prosperity for the Eastern Byzantine Empire and political stability, but which also experienced a plague pandemic and significant climate variability in parallel or as a result of a major cluster of volcanic eruptions. To investigate these events and the climate variability in the 6th century in more detail, a transient paleo-simulation is carried out with the appropriately adjusted regional climate model COSMO-CLM (COSMO 5.0 clm16). The regional climate model is driven by the global MPI-ESM-LR at 0.44° for the last 2500 years. The state-of-the-art external forcings of the CMIP6 compliant Earth System Model comprise of volcanic (stratospheric aerosol optical depth), orbital (eccentricity, obliquity, longitude), solar (irradiance), land-use (leaf area index and plant coverage) and greenhouse-gas (CO2 equivalent) changes, implemented in the regional climate model. The simulated temperature and precipitation will be compared with those of other CMIP6 models, and proxy records. This research will provide a comprehensive interpretation of the regional climate and its impacts during the 6th century AD in the Mediterranean.

 

Reference

Jungclaus, J. H., Bard, E., Baroni, M., Braconnot, P., Cao, J., Chini, L. P., Egorova, T., Evans, M., González-Rouco, J. F., Goosse, H., Hurtt, G. C., Joos, F., Kaplan, J. O., Khodri, M., Klein Goldewijk, K., Krivova, N., LeGrande, A. N., Lorenz, S. J., Luterbacher, J., Man, W., Maycock, A. C., Meinshausen, M., Moberg, A., Muscheler, R., Nehrbass-Ahles, C., Otto-Bliesner, B. I., Phipps, S. J., Pongratz, J., Rozanov, E., Schmidt, G. A., Schmidt, H., Schmutz, W., Schurer, A., Shapiro, A. I., Sigl, M., Smerdon, J. E., Solanki, S. K., Timmreck, C., Toohey, M., Usoskin, I. G., Wagner, S., Wu, C.-J., Yeo, K. L., Zanchettin, D., Zhang, Q., and Zorita, E.: The PMIP4 contribution to CMIP6 – Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations, Geoscientific Model Development, 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, 2017.

How to cite: Zhang, M., Hartmann, E., Wagner, S., Adakudlu, M., and Xoplaki, E.: Climate of the 6th Century based on the Fully Forced Regional Climate Model COSMO-CLM over the Eastern Mediterranean and the Nile Basin, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9075, https://doi.org/10.5194/egusphere-egu23-9075, 2023.

EGU23-10323 | Posters on site | CL1.2.4

Reconstruction of solar radiation in Tokyo since 1720 based on historical weather records 

Mika Ichino, Kooiti Masuda, and Takehiko Mikami

The impact of climate change on human society has been a significant issue in historical studies and is also vital for future adaptation to climate change. To understand climate change and its devastating impacts on societies in the past, before the start of meteorological observations, the spatial patterns of climate variation must be reconstructed with a higher temporal resolution than those provided by the annual data. Japan has a large volume of records, including those related to daily weather conditions (e.g., "fine", "cloudy", and "rainy"), from the 17th to 19th century.

This study has developed a method for estimating solar radiation using daily weather descriptions recorded. Using this method and the daily weather records in historical diaries of Tokyo, Japan, we reconstructed solar radiation fluctuations for the period 1720–1912, pertaining to the Little Ice Age. We compared our estimations with the observed sunshine duration records of the Japan Meteorological Agency to validate our findings. This method is effective in reconstructing solar radiation for all seasons and allows for the reconstruction of historical climate fluctuations with higher temporal resolution compared with that reconstructed using other methods or proxy data often used previously. In addition, solar radiation is a fundamental factor for not only the energy balance of the Earth but also the hydrological cycle and agricultural productivity.

Here, we created a long-time series of solar radiation for the period 1720–2022 in Tokyo, thereby providing insights into low and high solar radiation for this practical 300-year period. Furthermore, the reconstruction of historical solar radiation fluctuations could enable the exploration of the correlation between climate variations and social changes.

How to cite: Ichino, M., Masuda, K., and Mikami, T.: Reconstruction of solar radiation in Tokyo since 1720 based on historical weather records, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10323, https://doi.org/10.5194/egusphere-egu23-10323, 2023.

EGU23-12593 | ECS | Orals | CL1.2.4

Atmospheric Analysis in the 1810s by Assimilating Diary-based Weather Category 

Xiaoxing Wang, Kinya Toride, Mika Ichino, and Kei Yoshimura

Daily atmospheric conditions before 1900 have been rarely investigated due to the limited availability of instrumental meteorological records. The documentary evidence is an alternative source that archives the atmospheric state. In Japan, the Historical Weather Database (HWDB, accessible by: http://tk2-202-10627.vs.sakura.ne.jp) provides descriptive daily weather information recorded in diaries at many stations since the 1660s. We utilize data assimilation to achieve high-temporal reconstructions by optimally combining observations with climate model forecasts. This study reconstructs daily weather conditions in the 1810s by assimilating diary weather information for the first time. We first categorize the descriptive records into “sunny”, “cloudy”, and “rainy”, and then assimilate these diary-based weather categories into the Global Spectral Model (GSM) through a local ensemble transform Kalman filter (LETKF) scheme. The reconstructed precipitation corresponds well with the daily synoptic pattern illustrated by documentary evidence in Japan. In a single-day case in August, 80% of non-assimilated diary categories are consistent with precipitation results. The atmospheric characteristics are also well reproduced in the Meiyu-Baiu season. Our results show better accuracy than the Twentieth Century Reanalysis (20CR) dataset due to their weak constraint in the Japan region. In addition, the Tambora eruption in April 1815 was among the largest in recent history, leading to the temperature decrease in Europe in the following year, commonly known as the “Year Without a Summer”. In our results, the surface air temperature anomaly indicates significant cooling also occurred in Japan in the summer of 1816, demonstrating the climate response to the Tambora eruption. This study shows the capability of diary data assimilation to reproduce daily atmospheric conditions, providing the basis to understand the cause of short-term variability in the past climate.

How to cite: Wang, X., Toride, K., Ichino, M., and Yoshimura, K.: Atmospheric Analysis in the 1810s by Assimilating Diary-based Weather Category, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12593, https://doi.org/10.5194/egusphere-egu23-12593, 2023.

Stable water isotopes are widely used to reconstruct past temperature and precipitation variations in many regions of the Earth. While the general physical processes of how isotope variations are controlled by temperature and water amounts is well understood, quantifying past isotope changes as a proxy for temperature and precipitation is much more difficult. An explicit simulation of water isotopes in current Earth system models is one possibility to approach this problem.
In this study we present new results of a transient fully-coupled simulation of the climate of the last two millennia, using the isotope-enabled model MPI-ESM-wiso. We analyze long-term trends, variability and extremes of the simulated isotope changes in precipitation, compare model results to available data compilations (e.g. PAGES Iso2k) and quantify the relations with associated temperature and hydrological changes. Our analyses show that for many regions of the Earth, the surface warming starting with the beginning of the industrialization period is clearly imprinted in the oxygen-18 isotope signal of precipitation, e.g., over Greenland, North America, and the Atlantic Ocean. However, in some regions recent temperature, precipitation and isotope changes seem to be decoupled, e.g., over West Antarctica, Oceania, and the Indian Ocean. In our presentation, we will discuss this regional varying imprint of the Anthropocene on the water isotope signal in detail. Further analyses focus on changes in isotope variability in different regions over the last two millennia, as well as the possible detection of past climate extremes in different isotope records.

How to cite: Werner, M. and Cauquoin, A.: Climate trends, variability and extremes recorded by water isotopes during the last two millennia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13169, https://doi.org/10.5194/egusphere-egu23-13169, 2023.

EGU23-13374 | Orals | CL1.2.4

Central European temperature variations over the past two millennia recorded in a stalagmite from western Switzerland 

Dominik Fleitmann, Anamaria D. Häuselmann, Hai Cheng, Markus Leuenberger, and Stèphane Affolter

Almost all of the Central European temperature reconstructions covering the last two millennia reflect summer rather than mean annual air or cold season temperatures. To address the seasonal bias, we developed highly resolved 2000 year-long calcite isotope (δ18O) and fluid inclusion water isotope (δ2O and δ18O) records from a stalagmite from Milandre Cave in the Swiss Jura Mountains. Present-day climate in this region is strongly influenced by westerly air masses, making it an ideal site to record climate variability in the North Atlantic and European realm. Calibration of the Milandre Cave isotope records with historical and observational temperature and isotope data enables us to reconstruct mean annual air temperatures.  Our new temperature reconstruction shows temperature variations of approximately 2°C during the past two millennia, the temperature difference between the warmest decade of the Medieval Climate Anomaly (950–1250 CE) and the coldest decade of the Little Ice Age (1400–1700 CE) is around ~1.7°C. In general, higher central European temperatures were reconstructed in the periods 450–600 CE and 1000–1150 CE, and relatively low temperatures were recorded in the intervals 650–900 CE and 1350–1700 CE. Modelled cold season temperatures for the past millennium compare remarkably well with our reconstruction, and confirm the importance of both solar and internal forcing on Central European temperature.

How to cite: Fleitmann, D., Häuselmann, A. D., Cheng, H., Leuenberger, M., and Affolter, S.: Central European temperature variations over the past two millennia recorded in a stalagmite from western Switzerland, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13374, https://doi.org/10.5194/egusphere-egu23-13374, 2023.

EGU23-14248 | Posters on site | CL1.2.4

The first tree-ring reconstruction of streamflow variability over the last ~250 years in the Lower Danube 

Monica Ionita-Scholz, Viorica Nagavciuc, Catalin Roibu, Andrei Mursa, Marian-Ionut Stirbu, and Ionel Popa

Paleoclimate reconstructions are increasingly used to characterize climate variability and change prior to the instrumental record, in order to improve our estimates of climate extremes and to provide a baseline for climate change projections. Most of these reconstructions are focused on temperature, precipitation, and/or drought indices and, to a lesser extent, reconstruct streamflow variability. In this study, the first regional tree-ring width chronology (i.e. Quercus sp.), from the Caraorman forest (Danube Delta, Romania), was used to reconstruct the last ~250 years of annual (from November previous year to July of the current year) streamflow of the Lower Danube River. The obtained results indicate a stable and significant correlation between the tree-ring width index from the Caraorman forest and the Danube streamflow at the Ceatal Izmail hydrologic station situated in the southeastern part of Europe. Interannual streamflow variation for the analyzed period indicates 14 extremely high flow years, with streamflow greater than 8780 m3/s (1770, 1771, 1799, 1836, 1838, 1839, 1871, 1876, 1877, 1879, 1940, 1941, 1997 and 2010) and 14 extremely low flow years, with streamflow lower than 5300 m3/s (1741, 1745, 1750, 1753, 1773, 1794, 1812, 1832, 1843, 1882, 1899, 1921, 1964 and 1994). Periods characterized by pluvials in the lower Danube Delta are associated with a low-pressure system centered over Europe, positive sea surface temperature (SST) anomalies over the Atlantic Ocean, and negative SST anomalies over the Baltic, North, and Mediterranean Seas. These large-scale conditions favor the advection of moist air from the Mediterranean and the Black Sea towards the southeastern part of Romania, which in turn leads to high precipitation rates over this region. Opposite to this, low streamflow years are associated with a high-pressure system centered over Europe, characterized by a northward shift of the storm tracks and negative SST anomalies over the Atlantic Ocean, and positive SST anomalies over the Baltic, North, and Mediterranean Seas. Based on our results, we argue that the reconstruction of river streamflow data based on the tree-ring width has important scientific and practical implications for a better understanding of the streamflow variation of the past, necessary for water resource management and environmental-hydrological protection.

How to cite: Ionita-Scholz, M., Nagavciuc, V., Roibu, C., Mursa, A., Stirbu, M.-I., and Popa, I.: The first tree-ring reconstruction of streamflow variability over the last ~250 years in the Lower Danube, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14248, https://doi.org/10.5194/egusphere-egu23-14248, 2023.

EGU23-16901 | Orals | CL1.2.4

Reconstructing Earth Energy Imbalance over the Common Era 

Gregory Hakim, Anna Black, and Kyle Armour

Many aspects of climate change are related to the net energy imbalance at top of Earth's atmosphere. This measures the difference between incoming solar radiation and outgoing radiation from emission and reflected solar radiation; the net imbalance must be reflected in changes to global energy storage. While the net imbalance has been measured by satellites in recent decades and constrained by ocean heat-content estimates from Argo floats, long-term changes are poorly constrained, even in the 20th century. Here we test the hypothesis that the planetary energy imbalance can be estimated from observations, and proxies, of surface temperature using data assimilation over the Common Era.

We present and evaluate a method for reconstructing outgoing radiation at the top of the atmosphere from assimilation of surface temperature observations. The method is first tested during the satellite era by assimilating HadCRUT surface temperature observations using prior estimates drawn from historical climate-model simulations outside the validation period. Results show higher skill in the reconstructions compared to AMIP simulations for interannual variability in both the outgoing infrared, and reflected solar radiation fields, when compared to CERES measurements. Over longer periods of time, the effective radiative forcing (ERF) from changing greenhouse gases and aerosols must be considered since ERF is, by definition, the radiative response independent of surface temperature changes. Adding estimates of ERF from climate simulations to the reconstructed radiation fields shows good agreement with AMIP simulations over the historical period. We extend the method to the Common Era using PAGES2K temperature-sensitive proxies and the Last Millennium Reanalysis assimilation framework.

How to cite: Hakim, G., Black, A., and Armour, K.: Reconstructing Earth Energy Imbalance over the Common Era, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16901, https://doi.org/10.5194/egusphere-egu23-16901, 2023.

EGU23-828 | ECS | Posters virtual | SSS3.1

"Paleopedology of Siwalik Paleosols of Kangra Sub-Basin, NW Himalaya: Implication for Weathering and Climate change 11 Ma to 6 Ma" 

Pooja Yadav, Abdul Hameed, Rohit Kumar, and Pankaj Srivastava

The Himalayan Mountain range is the most prominent and active intracontinental range in the world. The outer part of this range is marked by the Himalayan foreland basin (HFB) in south that resulted due to the thrust loading and subsidence with synorogenic sedimentation from the hinterland. The lowermost part of the HFB is marked by the molassic sediments of “Siwalik” which thins out to the south. The time frame between 11Ma to 6 Ma (mid to late Miocene) is critical to understand the changes related to monsoon and vegetation as there is no detailed record or systematic study of late Cenozoic weathering and paleopedogenesis in fluvial sediments of the HFB. In the present study, we present a high-resolution paleopedological record of the paleosols along a traverse of ~ 1.8 km in the Kotla-Brail section of the Kangra sub-basin of the HFB. In the field, the paleosols are characterized by 1-2 m thick Bw, Bt, Bk, Bss, Bk horizons, rhizocretions, pedogenic carbonates (PC), and Fe/Mn mottles and concretions. The paleosols in the Lower Siwaliks show a dominance of 2.5 Y and 5 YR hue, whereas in the Middle Siwaliks they are defined by 5 YR and 7.5 YR hue. Micromorphology of these paleosols confirmed varying degrees of weathering, and paleopedogenesis showing a blocky structure, clay coatings, biogenic activity, and diffused impure micritic nodules as PC in the Bw and Bt, Btk horizons. These pedofeatures are more strongly developed in paleosols of the Lower Siwaliks than in comparison to weakly-moderately paleosols of the Middle Siwaliks.

Clay mineralogy determined based on XRD study of the total (<2 µm) fine clay (<0.2 µm) fractions of these paleosols is characterized by the dominance of smectite, vermiculite, and mixed-layer minerals in paleosols of the Lower Siwalik. The clay mineral assemblage shows a  decrease in the abundance of smectite and increase of kaolinite towards the transitions to Middle Siwalik at ~10 Ma. This also shows transformation of the smectite and vermiculite to interstratified clays at about ~8 Ma. After ~8.5 – 8.0 Ma, the paleosols are again marked an increase of the amount of smectite, vermiculite, and mixed-layer minerals in paleosols of the Middle Siwalik towards their transitions to Upper Siwalik. The varying intensity of weathering, paleopedogenesis, and clay mineral assemblage of the paleosols in the Lower and Middle Siwalik suggest fluctuating climatic conditions that evolved from initial semi-arid to sub-humid at ~11 Ma that to higher precipitation at ~8.5 to 8 Ma then again to semi-arid to arid conditions at ~6.5 Ma.

 

Keywords: Himalayan Foreland Basin (HFB), Siwalik, Paleosols, Micromorphology, Clay Minerals

How to cite: Yadav, P., Hameed, A., Kumar, R., and Srivastava, P.: "Paleopedology of Siwalik Paleosols of Kangra Sub-Basin, NW Himalaya: Implication for Weathering and Climate change 11 Ma to 6 Ma", EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-828, https://doi.org/10.5194/egusphere-egu23-828, 2023.

In the present study we report paleopedology of the fluvial sequences of the Siwalik Group in the Himalayan Foreland Basin, NW Himalaya that formed during ~12 Ma -5.5 Ma. The paleosols formed during this time period are critical to understand weathering and paleopedogenic processes during the evolution of foreland basin over the entire Himalayan range. This work highlights field-characteristics, micromorphology, clay mineralogy, and geochemistry of the ~0.5 km thick Lower Siwalik and ~1.7 km thick Middle Siwalik successions along the Katilu Khad, Kangra sub-basin. In the field, the paleosols are characterized by 1-2 m thick Bw, Bt, Bk, Bss, and BC horizons, blocky and wedge-shaped pedogenic structures, root traces, color mottling, Fe-Mn oxide concretions, slickensides, pedogenic CaCO3 (PC), and bioturbation features. 

Micromorphological observations show the dominance of moderate to well-developed paleopedofeatures in paleosols of the Lower Siwalik in contrast to the moderately to weakly-developed paleopedofeatures in paleosols of the Middle Siwalik. The comparative analysis of various pedogenic features i.e., PC, illuvial clay, mottles, Fe-Mn concretions, microstructures, and bioturbation features confirmed varying degree of the paleopedogenic maturity in the paleosols at different intervals of the Siwalik successions.

Clay mineralogy of the total clay (<2 μm) and fine clay fraction (< 0.2 μm) of the Lower and Middle Siwalik paleosols suggests varying chemical weathering of silicates and change of paleoclimatic conditions during paleopedogenic processes during this time period. The clay mineral assemblage of the total clay and fine clay fraction show the varying distribution of illite, chlorite, kaolinite, smectite, vermiculite and interstratified clay minerals in these paleosols. Large amounts of smectite together with pedogenic carbonates in part of the Lower Siwalik at 12.0 Ma, and at 10.9 Ma and in Middle Siwalik at 9.2 Ma, and at 5.5 Ma suggest arid to semiarid dry climatic conditions Whereas, dominance of kaolin, illuvial features, and dissolution of pedogenic carbonates suggests sub-humid to humid climatic condition at 11.6 Ma, 8.5 Ma, 7.1 Ma, and at 6.5 Ma.

The bulk geochemistry of the paleosols also confirmed varying degree of pedogenic weathering showing high CIA and CIA-K (CIW) values and ~ 800 mm to 1400 mm MAP for paleosols of the Lower and Middle Siwalik. The high MAP (~ 1200 mm to 1400 mm) at ~11.6 Ma, ~8.5 to 8.0 Ma, and 7.1 to 6.5 Ma in paleosols of the Lower Siwalik and Middle Siwalik correspond to increased chemical weathering and paleopedogenesis. While the intervening periods correspond to less MAP (~800 mm to 1100 mm) with large amount PC and less chemical weathering. Based on micromorphology, clay mineralogy, and geochemical characteristics of the paleosols it is interpreted that climate change during ~12 Ma to 5.5 Ma is characterized by humid (11.6 Ma) to semiarid (11.0 Ma to 8.5 Ma), and humid-subhumid (8.5 Ma to 6.5 Ma) in response to Himalayan orogeny and its linkage to regional and global atmospheric conditions.

Keywords: Himalayan Foreland Basin, Paleosols, Siwalik, Micromorphology, Clay mineralogy, Geochemistry

How to cite: Hameed, A., Yadav, P., Kumar, R., and Srivastava, P.: Paleopedological evolution of Siwalik succession from Kangra sub-Basin, NW Himalayan: Implications for climate change and weathering conditions, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-838, https://doi.org/10.5194/egusphere-egu23-838, 2023.

EGU23-2241 | Posters on site | SSS3.1

Post-sedimentary pedogenesis in colluvial soils in the context of the landscape sedimentary history (Czechia) 

Tereza Zádorová, Vít Penížek, Magdalena Koubová, Lenka Lisá, Daniel Žížala, Lenka Pavlů, Václav Tejnecký, and Ondřej Drábek

Colluvisols, representing a significant part of the erosional catena in undulating landscapes, often changed by long-term agricultural management, undergo a complex development with alternating phases of material deposition and slope stability, with subsequent initiation of soil formation processes. The presented study focuses on the detailed description of the post-depositional evolution of four up to 4m-deep colluvial profiles, formed in different colluvial positions in two environmentally and historically distinct areas of Czechia, situated in the loess region of South Moravia and Central Bohemian Upland, built on plutonic rocks. A multi-proxy approach consisting of analyses of clay mineralogy, micromorphology, humic acids and geochemical parameters was applied to distinguish the inherited and in-situ developed pedogenetic features and link them with the sedimentary history of the studied soils, assessed using optically stimulated luminescence dating and 137Cs activity. Marked differences in the type and maturity of pedogenetic features were identified not only in individual plots but also in different colluvial positions within the same plot. While signs of bioturbation, mainly related to root activity and soil fauna, were observed even in recent colluvial layers after a short period of stabilization, more advanced processes of weathering, organic matter stabilisation and clay illuviation are typical only for early-sedimented layers with long post-depositional development. Redoximorphic features were more pronounced in the side valleys compared to the toe-slope colluvial positions; similarly marked differences between colluvial positions were observed for humus quality, with significantly more stable organic matter concentrated within side valleys. In both sites, distinct and largely contradictory trends in the transformation of clay minerals, reflected in the proportions of different phyllosilicate layers, were observed, corresponding to the specific conditions of soil development. 

Study was supported by grant nr. 21-11879S of the Czech Science Foundation.

How to cite: Zádorová, T., Penížek, V., Koubová, M., Lisá, L., Žížala, D., Pavlů, L., Tejnecký, V., and Drábek, O.: Post-sedimentary pedogenesis in colluvial soils in the context of the landscape sedimentary history (Czechia), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2241, https://doi.org/10.5194/egusphere-egu23-2241, 2023.

As one of the soil types, peat is an important soil carbon storage and archive of past environmental changes. Here we used multi-core and multi-proxy records from a peatland near Da’erbin Lake in the Arxan region of Northeast China to reconstruct peatland development and carbon accumulation history and to understand their responses to past climate changes during the last 2500 years. Our macrofossil results show that the peatland was characterized by a sedge-dominated fen from 490 BCE to 1450 CE, changed to a Sphagnum-dominated poor fen or bog with abundant shrubs (mostly Ericaceae) during the period of 1450–1960 CE, and finally became predominated by Sphagnum after 1960 CE. The time-weighted mean apparent carbon accumulation rate (aCAR) from three cores range from 19.5 to 53.0 g C m-2 yr-1 with a mean value of 32.4 g C m-2 yr-1, but increase rapidly to 139.2 g C m-2 yr-1 during last several decades. During the early stage of the past 2500 years, three coring sites that are only 50 m apart were all in the fen phase but they had highly variable peat properties. The fen-bog transition occurred at different times at these sites due to local influences of autogenic process, permafrost dynamics, or fire disturbance. These observations suggest that fens are highly heterogeneous, not only in peat properties but also in ecosystem dynamics. The dramatic increase in aCAR during the late stage of bog phase after 1960 CE cannot be explained entirely by limited decomposition of recently-accumulated peat. Instead, this was likely due to increasing Sphagnum dominance and resultant low decomposition of Sphagnum-derived organic matter, suggesting the important role of vegetation change in controlling carbon accumulation rates. Around the 1990s CE, an increase in allogenic CAR—after removing the age-related long-term autogenic effect—seems to correspond with a period of increase in regional summer precipitation, revealing a sensitive response of ombrotrophic bog ecosystem to climate change at decadal timescale.

How to cite: Xia, Y., Yang, Z., and Yu, Z.: Responses of peatland development and carbon accumulation to climate change over the past 2500 years in the Arxan region, Northeast China, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2515, https://doi.org/10.5194/egusphere-egu23-2515, 2023.

EGU23-2822 | Posters on site | SSS3.1 | Highlight

Neolithic Agronomists shaped Chernozem in South-Eastern Bavaria 

Jörg Völkel, Prof. Dr., Anna Sophia Holmer, Ildikó Bösze, and Günther Moosbauer, Prof. Dr.

Up to today, the reason for the genesis of chernic horizons in Germany is a matter of discussion. Recent literature is strongly suggesting a purposeful anthropogenic soil management from neolithic times as an origin of these soils. Here we provide another example of neolithic activities meliorating the soil from a calcic Luvisol to a Chernozem with a dimension of several hectares. This is striking, since it is the first finding of a chernic horizon of this extensiveness in Bavaria, Germany.

The Chernozem has been discovered close to the city of Straubing (48°53′N, 12°34′O, MAP 757 mm, MAT 8,6°C), which is situated in the highly arable Danubian Gäuboden and part of the so called Altsiedelland. It has been home to human settlers ever since the first settlers belonging to the Linearbandkeramik (LBK) culture immigrated, among other things like the optimal climatic conditions due to its very favorable soil characteristics (luvisols) developed on Loess. The neolithic Chernozem is located directly next to a graveyard with graves dating in early neolithic times and later as well as neolithic settlements 500 m away. Collected 14C and OSL-data strongly suggest that part of the Chernozem was covered by a roman colluvium probably eroded from the former graveyard hill by roman ploughing activities. Our obtained 14C data places the chernic horizon itself into the early LBK and onwards. Nowadays the chernic horizon is mostly overprinted by the ongoing soil genesis as an argic horizon. Small charcoal flakes (< 0.5 mm) make the chernic horizon appear greyish-black up to today, with carbon-contents of around 1%. The colour intensifies in the center of the Chernozem area closely by the settlements and graveyard and fades out to a distinct grey shadow in the argic horizon of the calcic luvisol above around 2 km away.

These findings leave no room for doubt: The Chernozem has an anthropogenic origin and was created by the neolithic settlers, following a purpose in managing and meliorating the soil.

How to cite: Völkel, Prof. Dr., J., Holmer, A. S., Bösze, I., and Moosbauer, Prof. Dr., G.: Neolithic Agronomists shaped Chernozem in South-Eastern Bavaria, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2822, https://doi.org/10.5194/egusphere-egu23-2822, 2023.

The Volyn’ Upland is a “loess island” in the middle of the European loess belt. In the previously studied sections of this region, the Pleistocene palaeosols are mainly polygenetic; therefore, the pedocomplexes comprise no more than two soils. The study of the sections located both on the slopes of the river valleys and in the buried gullies, contributed to detailed stratigraphy of the pedocomplexes.  

Three pedocomplexes have been distinguished in the sections, which, according to palaeopedological and palynological data, were tentatively correlated with MIS 5, 7 and 9, respectively. The lower pedocomplex (S3, MIS 9) comprises two soils. The lower soil (S3-II) is a Luvisol with multi-phased clay coatings in the Bt horizon. However, micromorphology detects a clear primary A horizon with abundant coprolites. The upper soil (S3-I) has a well-developed A horizon and Ag horizon in the depression. However, clay coatings in the Bt horizon testify to the clay translocation.

The middle pedocomplex (S2, MIS 7) comprises two welded soils separated by a thin loess bed. The lower soil (S2-II) is a Luvisol, in places marked by a pronounced A horizon, in which clay coatings occur, whereas in the E horizon secondary carbonate nodules appear.  In places, the upper soil (S2-I) turns into two separate soils: the lower Haplic Chernozem and the upper Cambisol, both densely dissected by soil veins. These soils are dark, leached of carbonates, with crumby and granular microstructure. Many krotovinas occur in the subsoil.

The upper pedocomplex (S1, MIS 5) is subdivided into three sub-pedocomplexes, interbedded with sandy facies in depressions and thin loess-like deposits at the topographically higher positions. The lower sub-pedocomplex (S1-III, MIS 5e) is represented, depending on the parent material, by Luvisol, Retisol or Podzol with abundant clay coatings in the Bt horizon. In places, the forest soil is overlain by Entic Podzol with a more pronounced A horizon and is underlain by a Gleysol in depression. The middle sub-pedocomplex (S1-II, MIS 5c) comprises three soils: the lower Entic or Albic Podzol, the middle Chernozem and the upper Cambisol. A distinguished feature of these soils is the rapid increase in sand content in almost all studied sections. The upper sub-pedocomplex (S1-I, MIS 5a) is interpreted as a Cambisol, in places with a well-developed A horizon. In the upper soils of S1, pale brown spots occur.

Three Gleysols have been distinguished in the upper thick loess unit (L1, MIS 2-4). The lower Gleysol (MIS 3) is better developed and mostly polygenetic; in places the soil turns into a pedocomplex consisting of two or three soils: the lower Gleysol, the middle Gleyic Cambisol and the upper Calcaric Cambisol. The middle Gleysol appears to be polygenetic, as evidenced by palynology and micromorphology. Large ice-wedge pseudomorphs are associated with the upper Gleysol, which makes it possible to interpret soil as tundra-gley.

The study was supported by the National Research Foundation of Ukraine, grant number 2020.02/0406.

How to cite: Bonchkovskyi, O.: A detailed palaeosol record of Middle and Upper Pleistocene from the central part of the Volyn’ Upland (the NW Ukraine), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3857, https://doi.org/10.5194/egusphere-egu23-3857, 2023.

EGU23-5502 | ECS | Posters on site | SSS3.1

Using advanced geophysical data processing to improve low detection data in archaeological sites 

Rui Jorge Oliveira, Bento Caldeira, José Fernando Borges, and Mourad Bezzeghoud

Geophysical data with noise issues are quite common, resulting in low detection conditions. This prevents the ground content from being evaluated to determine the existence of structures buried in the ground in an archaeological site. Standard processing on ground-penetrating radar and magnetic data does not effectively eliminate or mitigate this effect. The use of advanced and customized data processing is a viable solution to the problem. This processing can be applied using mathematical transforms in conjunction with data decomposition techniques, allowing for easier and less computationally intensive data manipulation. The circular symmetry of the data is enabled by the 2D Fourier transform, making operations like filtering easier to implement. In the transformed domain, factoring techniques such as singular value decomposition can be used (SVD). After analyzing the decomposed signal, the components can be matched to the signal and noise. The 2D wavelet transform allows for data decomposition, with operations such as multiresolution SVD and multidirectional gradient calculation applied to each channel to select the most informative content from a dataset. The chain application of these operations allows for the improvement of geophysical data despite an apparent lack of information. Testing on field data obtained at Villa Romana de Pisões (Beja, Portugal) is an example of successful application. Advanced geophysical data processing operations can improve the data and should be used in conjunction with standard operations.

Acknowledgment: The work was supported by the Portuguese Foundation for Science and Technology (FCT) project UIDB/04683/2020 - ICT (Institute of Earth Sciences).

How to cite: Oliveira, R. J., Caldeira, B., Borges, J. F., and Bezzeghoud, M.: Using advanced geophysical data processing to improve low detection data in archaeological sites, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5502, https://doi.org/10.5194/egusphere-egu23-5502, 2023.

As sea levels rose since the end of Last Glacial Maximum (LGM) ancient coastal communities were often forced to abandon their settlements and move inland. Today, many of these abandoned sites are covered by sand or lay in shallow water. Examining these can shed light on past coastal communities as well as settlement patterns in ancient times. Archaeological excavation along the coast is particularly tricky and often sporadic in nature. Thus, high‐resolution shallow geophysical methods, which have become a standard in archaeological studies since they provide a noninvasive way of imaging the subsurface before an excavation, would seem like a perfect solution. However, most methods are limited in their ability to work near the shoreline – the transitional zone between classical land-based methods and standard marine ones. Ground penetrating radar (GPR), for example, is greatly affected by moisture and salinity and is therefore limited in its ability to work in areas saturated with seawater. Seismic reflection is time consuming to overcome issues of poor vertical and spatial resolution and sensitive to urban noise, while magnetics would provide poor results for sand covered sandstone. Other techniques, such as electrical resistivity tomography (ERT) have been shown to work in coastal areas and in shallow water. However, this method can be slow, as it involves setting up complex arrays for each cross section measured. This study will present the frequency domain electromagnetic (FDEM) method, which has the potential to overcome these problems and can bridge the gap in knowledge by measuring in the nearshore environment. The ease of use and quick scanning capability means that large areas can be covered in a relatively short time. There are no electrodes or loops to set up. Since it measures swaths, results are obtained in map-view and not cross-section, with little interpolation. Different frequencies penetrate to different depths (lower frequencies corresponding to deeper penetration). Therefore, the result is a series of frequency maps corresponding to the integration of all subsurface data in a specific sampled volume (i.e. down to the frequency-related depths), providing important information on shallow subsurface properties. The use of multiple frequencies allows for the resolving of internal structures within the depth range. Overall, the FDEM method has proven to be a valuable tool for studying coastal archaeology, and it is likely to continue to play an important role in the field in the coming years. Its ability to detect buried objects and structures and to study the geomorphology of submerged landscapes makes it an essential tool for researchers working in this field.

How to cite: Lazar, M. and Basson, U.: Frequency domain electromagnetic methods for coastal archaeology – a new(ish) approach for the detection of ancient settlements, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5919, https://doi.org/10.5194/egusphere-egu23-5919, 2023.

EGU23-8737 | ECS | Orals | SSS3.1 | Highlight

Geophysical characterization of the shallow subsoil at a heavily urbanized archaeological site: the Roman Amphitheater and the Scrovegni Chapel in Padua. 

Giorgio Cassiani, Ilaria Barone, Mirko Pavoni, Jacopo Boaga, and Rita Deiana

The characterization of the shallow subsoil at complex archaeological sites requires sufficient spatial coverage and resolution as to provide the necessary information. This is all but trivial, particularly where historical superposition of layers requires also sufficient depth investigation and resolution. The Scrovegni Chapel in Padua, with its Giotto's fourteen century frescoes, and recently added to the list of UNESCO World Heritage Sites, stands on the remains of the local Roman amphitheater. The hypogeum located under the chapel shares its western wall with a part of the wall of the amphitheater. To date, no information is available about the soil below the apse of the chapel. Over the past decade, several ERT and GPR measurements have been conducted outside the chapel, straddling the amphitheater structure for archaeological and geomorphological characterization of the area. In 2021, a first 3D active and passive seismic survey was conducted using about 1500 wireless sensors, aiming at using surface waves to provide a 3D image of the subsurface in terms of shear wave velocity. In 2022 three 20 m deep boreholes were drilled around the chapel and equipped with fiber optics, ground deformation sensors, and electrodes for cross-hole ERT, and about 200 1-C and 3-C wireless seismic sensors were placed around the drilling area. During the drilling, additional 3D seismic data were acquired from the surface, which completed the datasets acquired in 2021. The geophysical data thus acquired and the time-lapse monitoring that will be possible around the area of the Scrovegni Chapel in Padua will allow reconstructing the geomorphology of the subsurface on which the chapel rests, but also to better study and analyze the possible interactions between the structure of the chapel and the buried structure of the Roman amphitheater from the mechanical point of view as well as from the perspective of the seismic response of this specific site.

How to cite: Cassiani, G., Barone, I., Pavoni, M., Boaga, J., and Deiana, R.: Geophysical characterization of the shallow subsoil at a heavily urbanized archaeological site: the Roman Amphitheater and the Scrovegni Chapel in Padua., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8737, https://doi.org/10.5194/egusphere-egu23-8737, 2023.

EGU23-9663 | Posters on site | SSS3.1

Khalat al-Saharij - An Iron Age Small Site and Long Anthropogenic Effect on the Soil 

Oren Ackermann, Jenny Marcus, Jan Fišer, Gilad Itach, Martin Janovský, and Nimrod Wieler

Ancient anthropogenic long-term effects on soil chemical composition is a well-known phenomenon in large archaeological sites. In the current presentation, this effect will be shown in Khalat al-Saharij, a small site located in central Israel, in the footslope of the main highlands of the country. The site served as a farmhouse during the Neo Assyrian rule and was dated to the second half of the 8th century BCE.

Archaeological excavations of the site revealed a building that included two strips of rooms built around a square courtyard, a rock-hewn water reservoir, and agricultural facilities scattered in the area east and west of the building, including agricultural terraces.

The main aim of the current research was to find an anthropogenic signature in the sediments of the site, and in the sediments of the surrounding fields. 

POSL, PXRF and XRF methods were applied in order to achieve this aim.

The results showed that a significant anthropogenic signature was recorded on the sediments of the building and its square courtyard. This is reflected in the chemical composition that was enriched by phosphorus (P) and calcium (Ca), and by the mixed pOSL signal values. In the anthropogenic fields, the chemical signature is typical of natural soil with a high amount of Iron (Fe) and Manganese(Mn) which reflect high water availability.  

It is interesting that although the site is small in size and was inhabited for a short period of time, the human imprint has remained hundreds of years after its abandonment.

How to cite: Ackermann, O., Marcus, J., Fišer, J., Itach, G., Janovský, M., and Wieler, N.: Khalat al-Saharij - An Iron Age Small Site and Long Anthropogenic Effect on the Soil, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9663, https://doi.org/10.5194/egusphere-egu23-9663, 2023.

EGU23-10838 | ECS | Orals | SSS3.1

Geophysical investigation of kurgans in Uzun Rama steppe, Goranboy region, Azerbaijan 

Kamal Bayramov, Clara Jodry, Gunel Alizada, Sarvar Mammadov, Vusal Azimov, and Malik Abdullayev

Kurgans are funeral chambers, evidence of burial tradition dating back to the first thousand years BCE, of nomadic populations that covered a vast area in-between Europe and Asia. In Azerbaijan, past archaeological explorations revealed numerous large kurgans from the Early Bronze, which correspond to Kura-Arexed period (ca. 3500-3000 BCE), and relatively smaller burials of Late Bronze/Early Iron Ages. To improve the efficiency of the excavation process, geophysical methods have been widely and effectively applied for many years to provide clear and useful images of archeological targets hidden underground such as kurgans.

In this work, we introduce a multi-method archaeo-geophysical survey done in May 2022 to investigate Early Bronze Age kurgans located in Uzun Rama Steppe of Goranboy region in Azerbaijan. Applied method cover different depth of investigation and resolution to provide a wealth of information on the structure of three kurgans aligned in a North-South direction. It comprises coincidental DC-resistivity and seismic refraction tomographies of 70.5 m with a 1.5 m spacing going over all kurgans, a Ground Penetrating Radar (GPR) 40 m long profile using a 500 MHz antenna on the northern kurgans going from East to West and a magnetic map 24 x 25 m on the southern one.

The DC-resistivity profile shows two layers, a medium resistivity layer (500 to 600 W.m) from the surface to 6 m depth and a very conductive layer (> 10 W.m) under it. The first layer contains three areas of lower resistivity (~ 60 W.m) that are limited in thickness and length. As these three spots are marked by higher height on-site, we interpret them as the three kurgans. The coincidental seismic profile is a lot less detailed (due to physical properties and higher spacing between receiver) and define only three homogeneous layers, a first layer from the surface to 1 m depth with a P-wave velocity of 300 m/s, a second layer of higher velocity (1000 m/s) from 1 m depth to approximately 6 m depth and a final third layer of 2000 m/s velocity. Even though, the resolution is lower, we interpret the first layer as an attempt of the model to represent the kurgans. The GPR profile give a high attenuate image due to low resistive layer. However multiple diffractions can be seen in the first meter of the subsurface that can indicate the presence of ancient artefact related to the kurgans. Finally, the magnetic map defines the limit of the kurgan as a positive-negative anomaly probably due to the burning ritual that ended the implementation of a kurgan.

This geophysical campaign allowed us to accurately locate the kurgans as well as provide information on the environment. DC-resistivity and magnetic mapping seem to get the best results in our case. A future archaeological investigation will be put in place based on these results.

How to cite: Bayramov, K., Jodry, C., Alizada, G., Mammadov, S., Azimov, V., and Abdullayev, M.: Geophysical investigation of kurgans in Uzun Rama steppe, Goranboy region, Azerbaijan, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10838, https://doi.org/10.5194/egusphere-egu23-10838, 2023.

EGU23-10982 | Orals | SSS3.1 | Highlight

Construction and Agriculture in Sand at the Early Islamic Plot-and-Berm Groundwater Harvesting Agroecosystem South of Ancient Caesarea 

Lotem Robins, Joel Roskin, Elle Grono, Revital Bookman, and Itamar Taxel

Based on surveys and three excavation seasons, we report details on one of the first major utilizations of loose aeolian sand for construction and (hypothesized) vegetable agriculture at the Early Islamic Plot-and-Berm (P&B) agroecosystem south of Caesarea Maritima, along the Mediterranean coast of Israel. P&B agroecosystems are an innovative initiative to reconstruct sand bodies and dunefields into agricultural plots sunken between sand berms. These agroecosystems are sporadically found between Iran and Iberia and some are still in use. The plots, usually ~1 m above the groundwater table allowed easy access to the water via shallow wells for irrigation.

Research methods included pedological and sedimentological analyses, micromorphology and compositional analyses such as Fourier Transform Infrared Spectroscopy to detect heating of cultural additives (e.g., fired clays, pyrogenic lime); plant ashes (e.g., deliberate enrichment of fuel and/or recycling of former crop cycles as part of plot maintenance); and pollen and phytolith analysis to detect micro-botanical proxies of crops. Relative chronologies were obtained from portable luminescence profiling (pOSL). OSL ages along with artifacts analysis indicate that the agroecosystem was established during the late 9th or 10th century and functioning until the early decades of the 12th.

Refuse, including ash, carbonate, trace elements and artifacts, extracted from the dumps of Caesarea was combined with local sand to stabilize the berm surface but also partly altered the physical and chemical properties of the sand and increased its fertility, mainly in the plots, to form grey sandy to sandy loam anthrosols. This refuse was combined in different mixtures along the ~5 m thick berm fill and upon its slope and crest surface to stabilize the earthwork and comprise an anti-erosive agent. Similar mixtures were used to support berms and foundations of structures that served for lime production, agroecosystem management and local farming utilities. A 5 m high mound constructed out of interchanging anthrosediments was also piled up within a plot to support a presumable guarding structure. 

Plot anthrosols appear to include a basal, dark grey 20-40 m thick unit, ~ 1 m above the groundwater table that was enrichened with carbonate overlaid by a ~1 m thick grey sand anthrosol. The lower unit probably served for preserving infiltrating irrigation water that was applied to the crops grown atop the light grey anthrosol.

The agroecosystem remained well-preserved and untouched until the mid-20th century. Its pristine preservation is evidence of the ingenious and widespread utilization of refuse for construction and agriculture in sand. The untouched shape of this agrotechnological earthwork in the last millennia is intriguing and may be due to either lack of knowledge, or resources per revenue for similar endeavors.

How to cite: Robins, L., Roskin, J., Grono, E., Bookman, R., and Taxel, I.: Construction and Agriculture in Sand at the Early Islamic Plot-and-Berm Groundwater Harvesting Agroecosystem South of Ancient Caesarea, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10982, https://doi.org/10.5194/egusphere-egu23-10982, 2023.

Soil marks are detectable by airborne images due to the difference in soil colour between the archaeological feature and the surrounding background soil. Colour of the soil only represents the visible part of the soil spectrum which contains physical and chemical information of the soil. This study will present a spectral analysis method to prospect soil mark features and buried archaeological remains using airborne image data. This method statistically calculates the difference between the targeted spectrum and the background (non-archaeological) soil spectrum. The difference is quantified by an R-value. If the R value is larger than 1, then the spectral behaviour of the targeted spectrum is different from the spectrum of the background soil and, thus, likely to be an archaeological soil spectrum (soil mark). In this study, the spectral analysis method will be applied to APEX imaging spectroscopy data collected from an archaeological site in Sárvíz Valley, Hungary. Previously, the method was successfully applied to the same archaeological site using soil spectra gathered by a portable hand-held VIS-NIR spectrometer. Here, the results showed clear spectral difference between soil mark features and background soil. This study will 1) compare the results of the method from hyperspectral image and ground-based spectral data, and 2) investigate the most effective waveband for identifying archaeological spectral signatures to verify the effectiveness of the method.

How to cite: Choi, Y. J.: Detection of archaeological soil marks using airborne hyperspectral images, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11168, https://doi.org/10.5194/egusphere-egu23-11168, 2023.

EGU23-12360 | Posters on site | SSS3.1

Intense pedogenic development and large carbon contents in soils above the Pleistocene trimline (NW Italian Alps) 

Michele D'Amico, Emanuele Pintaldi, Dario Melacarne, Andrea Benech, Nicola Colombo, and Michele Freppaz

Most of the Alpine range was influenced by glacier movement or by intense erosive processes during Pleistocene glacial periods, which erased previously existing soils and landforms. Thus, most of the soils in the Alps began developing since at least the end of the Last Glacial Maximum (LGM). However, some surfaces located above the trimline (the upper limit reached by valley and cirque glaciers) still retain “old” morphologies and can be considered paleosurfaces, often covered by fossil or active periglacial features.

After having found very well developed Umbrisols hidden inside blockfields at 3030 m a.s.l. on the Stolenberg Plateau, Monte Rosa Massif – NW Italian Alps (Pintaldi et al. 2021a, 2021b, 2022), we explored other relict cryogenic landforms located above the Pleistocene trimline, such as blockfields and blockstreams, observing the soils hidden below the surface stone layers.

In most cases, we found extremely well-developed soils, such as Podzols with extremely thick E horizons or Umbrisols with A-Bh horizons up to more than 1-m thick. One of the most important properties was the large organic carbon content, up to 10-13% in soils located inside barren blockstreams and blockfields presently devoid of vegetation, at elevations between 1000 and 2950 m a.s.l..

The age of this organic matter is likely very old. For instance, inside the blockfield on the Stolenberg Plateau (3030 m a.s.l.), the organic matter was up to 22 ka old, corresponding to the early retreat glacial phase after the LGM. The age and nature of the organic matter in the other soils is still being analyzed, and it will be able to give important information on past environmental condition in understudied high-elevation areas in the Alps.

 

References

Pintaldi E., D’Amico M.E., Colombo N., Colombero C., Sambuelli L., De Regibus C., Franco D., Perotti L., Paro L., Freppaz M. (2021a). Catena. https://doi.org/10.1016/j.catena.2020.105044

Pintaldi E., D’Amico M.E., Colombo N., Martinetto E., Said-Pullicino D., Giardino M., Freppaz M. (2021b). https://doi.org/10.1016/j.gloplacha.2021.103676

Pintaldi E., Santoro V., D’Amico M.E., Colombo N., Celi L., Freppaz M. (2022). European Journal of Soil Science. https://doi.org/10.1111/ejss.13328

How to cite: D'Amico, M., Pintaldi, E., Melacarne, D., Benech, A., Colombo, N., and Freppaz, M.: Intense pedogenic development and large carbon contents in soils above the Pleistocene trimline (NW Italian Alps), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12360, https://doi.org/10.5194/egusphere-egu23-12360, 2023.

EGU23-14081 | ECS | Orals | SSS3.1

Morphology, distribution and origin of soil biogenic carbonates “queras” presents in Loess-palaeosols of Ebro Valley 

Daniela Alvarez, Carlos A. Torres-Guerrero, Rosa M. Poch, and Frank Preusser

Several types of secondary carbonate accumulations have been reported, but some of them are not completely well defined in the field due to unclear nomenclature. This is the case of the “queras”, reported in several Loess-palaeosol sequences of the Ebro Valley, which have often been described as pseudomycelia. Micromorphologically, they are complex pedofeatures (including calcified root cells, infillings and hypocoatings of carbonates and a decarbonated zone), resulting from calcification/decalcification processess at a microscale. They are composed of a central channel (1-2 mm wide and 2-3 cm long) filled with biosparite crystals (Herrero et al., 1992). The study of these secondary carbonate bioaccumulations are important archives for climatic reconstructions in terrestrial environments and can be used for paleoenvironmental reconstructions. The aims of this research are the characterization (morphological, optical and isotopically) of the biocalcifications present in Loess-palaeosols sequences, OSL-dated, to determine the main factors that originate them and their possible use as a palaeoenvironmental proxy. We collected soil samples from seven profile of Loess-palaeosols where the presence of these biocalcifications was recorded. We isolated and manually cleaned complete fragments of queras to describe them and to determine their isotopic composition. For that purpose, we used the queras fraction (sieved fraction of bulk soil between 100-250 µm) removing the residues of micrite with a buffer solution and manually separating the quera fragments with the help of a stereoscope. Thin sections were made to analyse the micromorphology in a petrographic microscope and cathodoluminescence techniques to determine the origin of the calcite. The micromorphology of these biocalcifications is similar in most cases: they present the same number of rows around the central channel (4 to 5), and a decarbonated hypocoating around it, supporting the hypothesis that their origin is derived from the calcification of cells of the root tips as a strategy to acidify the soil surrounding to absorb nutrients. Under cathodoluminescence biosparite has a different behaviour than non-biological calcite crystals. The age of the queras was similar in most horizons and their formation is independent of the age of the loess deposit. The isotopic composition of δ13C correspond mainly to CAM plants and the temperatures of precipitation calculated correspond to a Mediterranean template climate (Cerling and Quade, 1993), implying that the biocalcifications developed in warm environments. Finally, we hope to gain some more certainty of their origin and formation processes from the ongoing analyses of DNA sequencing and pollen recording.

How to cite: Alvarez, D., Torres-Guerrero, C. A., Poch, R. M., and Preusser, F.: Morphology, distribution and origin of soil biogenic carbonates “queras” presents in Loess-palaeosols of Ebro Valley, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14081, https://doi.org/10.5194/egusphere-egu23-14081, 2023.

EGU23-14576 | ECS | Orals | SSS3.1

Geochemical analysis in the area of a medieval Cistercian manorial farm 

Martin Janovský, Jan Horák, Tomáš Klír, and Laszlo Ferenczi

A multi-element and multivariate geochemical analysis has been carried out at a medieval farm site and village settlement, which belonged to the Cistercian monastery of Plasy (in W Bohemia). The results of our geochemical survey have been evaluated in context of the LiDAR survey covering the same area and the available historic maps (Habsburg Military surveys), which helped to locate relict landscape features and land-use changes. Approximately 300 samples were taken in a grid point pattern within the courtyard of the farm, as well as randomly, in the surrounding areas, in order to identify geochemical signals related to the observable surface phenomena. We have applied different analytical techniques, including PCA, log-transformation and isometrical log-transformation, and through spatial interpolation (IDW) it was possible to link  signals of both anthropogenic and geogenic character to archaeological, cultural and land-use phenomena. The results illuminated more intensive anthropogenic impact in connection to the courtyard area, and the intravillain area of the village, and additionally helped to locate different land-use activities in the  surrounding area (agricultural and possibly industrial). In that regard, this methodology was successfully applied to trace anthropogenic impact beyond narrowly defined archaeological sites. This abstract has been reformulated on the basis of our recently published paper (Horák et al 2023).

Horák, J., Janovský, M.P., Klír, T., Malina, O., Ferenczi, L., 2023. Multivariate analysis reveals spatial variability of soil geochemical signals in the area of a medieval manorial farm. Catena 220. https://doi.org/10.1016/j.catena.2022.106726

This abstract is part of the research project: “Monastic manors and the landscape impact of Cistercian estate management: A landscape archaeological and historical ecological study on Plasy Abbey“ financed by the GAČR - Czech Science Foundation, grant No. 21-25061S.

How to cite: Janovský, M., Horák, J., Klír, T., and Ferenczi, L.: Geochemical analysis in the area of a medieval Cistercian manorial farm, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14576, https://doi.org/10.5194/egusphere-egu23-14576, 2023.

EGU23-15478 | Posters on site | SSS3.1

Elemental and isotopic composition of silver in selected peat profiles of the Czech Republic 

Martin Mihaljevič, Aleš Vaněk, Mária Vaňková, and Vojtěch Ettler

Silver content and isotopic composition were studied in 3 selected 210Pb-dated profiles of ombrotrophic peat bogs in the Jizera Mountains, Ore Mountains and Sumava. The individual peat bogs differ in the rate of peat accumulation and intensity of immission load.

All peat bogs show a peak in the 1970s, which is related to the peak of industrial production in Europe and the associated coal burning. This peak is found at a depth of 7-12 cm in the peatlands studied.

In peat bogs in the Jizera and Ore Mountains, a smaller peak at a depth of 22-25 cm is followed by a peak in Pb concentration, probably related to Ag metallurgy in the 17th century.  This peak is not evident in the Šumava profile, where it is suppressed by elevated Ag concentrations in the underlying rocks.

The individual sources of silver are documented by isotopic composition that appears in the studied geochemical archives.

How to cite: Mihaljevič, M., Vaněk, A., Vaňková, M., and Ettler, V.: Elemental and isotopic composition of silver in selected peat profiles of the Czech Republic, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15478, https://doi.org/10.5194/egusphere-egu23-15478, 2023.

Paleosol horizons preserved in loess-palaeosol sections (LPS) provide valuable archives of Quaternary palaeoenvironmental changes over time and spatial palaeoenvironmental gradients during the same period. Here, we present the characteristics of paleosol horizons in two LPS near the western edge of the Rhône Rift Valley in southeastern France: (1) the LPS “Baix” (total thickness: 14 m), located about 17 km north of Montélimar (44°42’36”N, 4°43’21”E), thus, in the transition zone between the presently temperate and the Mediterranean region of Europe; (2) the LPS “Collias” (total thickness: 9 m), located in the Uzès Basin, about 15 km northeast of Nîmes (43°57’11.94”N, 4°27’56.71”E), thus, in presently fully Mediterranean climate. Investigation of the paleosol horizons in the main profile at Collias was complemented by those of three smaller nearby LPS, “Collias-North_D112” (43°57’12.55”N, 4°27’55.83”E), “Collias-South_D112” (43°57’12.44”N, 4°27’53.36”E), and “Collias-North” (43°57’21.67”N, 4°28’6.99”E), in order to capture the spatial variability of the characteristics of some key horizons.

To our knowledge, no LPS have been analysed yet in such a transitional position between the presently temperate and Mediterranean climate. Primarily the LPS Baix may provide a crucial link between the rigorously analysed LPS in the presently temperate regions further north (e.g., in northern France, the Alsace region and Germany) and the LPS in the Mediterranean region (e.g., in southern France, Catalonia, Italy and Croatia), including the LPS Collias. Therefore, we aimed to decipher the paleoenvironmental record of the LPS Baix and Collias, and to identify similarities and differences between them. Optically stimulated luminescence (OSL) dating provided a chronological frame for both LPS.

The basal part of the LPS Baix starts with reddish Bt(g) horizons of a Stagnic Luvisol, representing the remains of an Eemian to Early Würmian (MIS 5) pedocomplex formed under warm and - at least temporarily - relatively moist conditions. The corresponding pedocomplex in the profile Collias-North_D112 displays an intensive red (chromic) Bt horizon overlain by several Bw horizons formed in reworked soil sediment and underlain by a massive calcrete. In the main profile at Collias, this red horizon has been entirely reworked by slope processes and has regained an angular blocky structure afterwards. Thus, it appears as a dark orange-red Bw horizon. Both, the LPS Baix and Collias include a prominent brown Bw horizon of a truncated Cambisol that developed in middle Pleniglacial (MIS 3) deposits. It is associated with large, elongated, vertically oriented calcium carbonate nodules, indicating that considerable amounts of calcium carbonate must have been leached from the former middle Pleniglacial Cambisol and accumulated in the underlying loess unit. No distinct palaeosols were observed in the Late-Pleniglacial deposits of the LPS Baix and Collias; a slightly brownish colour indicates very weak weathering (several BCk horizons) in the Late-Pleniglacial sediments of both LPS.

How to cite: Sauer, D., Pfaffner, N., Kadereit, A., Kreutzer, S., Karius, V., Kolb, T., Bertran, P., and Bosq, M.: Palaeosols in the loess section of Baix (Rhône Rift Valley, SE-France), compared to those of Collias: a unique Late-Pleistocene record of the transition zone between the presently temperate and the Mediterranean region of Europe, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15899, https://doi.org/10.5194/egusphere-egu23-15899, 2023.

EGU23-16684 | Posters on site | SSS3.1

Using biomarker lipids to reconstruct soil fertility through time 

Cindy De Jonge, Jingjing Guo, Petter Hallberg, Marco Griepentrog, Rienk Smittenberg, Francien Peterse, Pascal Boeckx, and Gerd Dercon

Glycerol dialkyl glycerol tetraethers (GDGTs) are ubiquitous membrane-spanning lipids with a wide environmental distribution. In soils, branched GDGTs are produced by a possibly large diversity of bacteria. The relative abundance of methyl groups attached to the central alkyl chains is at the basis of the paleotemperature proxy MBT’5ME. However, MBT’5ME values in soils can also be directly influenced by pH (De Jonge et al., 2021). A second group of compounds, the isoprenoid GDGTs, are produced by archaea. They have been used only sparsely as environmental proxies in soils, although they are at the base of the marine paleotemperature proxy TEX86. In soils, a recent compilation by Yang et al. (2016) illustrates that the temperature dependency of TEX86 is sometimes present, but potentially influenced by other soil (chemistry) parameters.

In addition to temperature, other soil parameters are expected to vary with time, even on a Holocene timescale. For instance, soil mineral fertility (specifically, the concentration of exchangeable cations) will vary following climate or land use changes. As soil mineral fertility will impact the soil nutrient status for vegetation, and impact the soil capacity to store organic carbon (von Fromm et al., 2021), it is a relevant parameter to reconstruct over time. However, as soil fertility of surface soils will decrease during eroision or burial, this parameter can currently not be reconstructed quantitatively.

To investigate the potential of GDGTs as soil fertility proxies, branched and isoprenoid GDGTs were measured in soils from 5 elevation transects (Austria, Bolivia, China, Indonesia and Tanzania, n=74) that cover a large gradient in mean annual temperature (0-28 ℃), seasonality, and soil chemical parameters. Supplemented with climate (temperature and precipitation) data, we evaluate both changes in absolute concentration and relative distribution of the GDGTs. Of the chemical parameters, exchangeable calcium and exchangeable iron are shown to correlate with the absolute abundance of several branched (6 methyl brGDGTs) and isoprenoid (crenarchaeol isomer) GDGT compounds. Based on these relations we have developed ratios to quantify calcium (and summed bases) and iron (and summed metals) [r2=0.61-0.68, p<0.001] using GDGTs in soils. As GDGTs are stable on geological timescales, their presence in paleosoil sequences will thus allow us to reconstruct changes in surface soil fertility (specifically, calcium and iron) through time, even after the mineralogy of the original topsoil has changed.

Based our promising preliminary data we propose that GDGT ratios to reconstruct soil mineral fertility should be developed further using well-characterized modern soils. In addition, we look forward to testing our proxies on paleosoils by starting new collaborations.

 

De Jonge, C. et al. The influence of soil chemistry on branched tetraether lipids in mid- and high latitude soils: implications for brGDGT- based paleothermometry. Geochimica et Cosmochimica Acta (2021).

von Fromm, S.F., et al. Continental-scale controls on soil organic carbon across sub-Saharan Africa. SOIL 7, 305–332 (2021).

Yang, H., et al. The Response of Archaeal Tetraether Membrane Lipids in Surface Soils to Temperature: A Potential Paleothermometer in Paleosols. Geomicrobiology Journal 33, 98–109 (2016).

How to cite: De Jonge, C., Guo, J., Hallberg, P., Griepentrog, M., Smittenberg, R., Peterse, F., Boeckx, P., and Dercon, G.: Using biomarker lipids to reconstruct soil fertility through time, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16684, https://doi.org/10.5194/egusphere-egu23-16684, 2023.

EGU23-17056 | ECS | Posters on site | SSS3.1

Studying the water supply system of the Roman villa of Pisões (Beja, Portugal) using ground-penetrating radar and geospatial methods 

Pedro Trapero, Rui Oliveira, Bento Caldeira, Jose Fernando Borges, and André Carneiro

The Roman villa of Pisões (Beja, Portugal), was part of the Lusitanian colony of Pax Iulia. This place stands out for the predominance of the water element in several structures of the villa, highlighting the balneum and the large natatio, one of the largest known in Roman Hispania. The records of the initial excavations that took place since 1967 do not allow the establishment of clear functionalities of the villa. The University of Évora, owner of the site, conceived an action plan for the requalification and enhancement of the archaeological site. One of the tasks aims to investigate using Applied Geophysics. This work analyses the landscape directly related to the villa, given that it is in the flooded area of a river, with a Roman containment dam. It is uncertain whether the water supply comes from this structure or other nearby springs. The use of ground-penetrating radar, combined with unnamed aerial vehicles, all integrated in a geographic information system, allows us to know the location of underground water connections and create a topographic model with high resolution. Considering all the information, we propose a model for the water transport inside the villa and estimate the location of the water supply.

Acknowledgment: The work was supported by the Portuguese Foundation for Science and Technology (FCT) project UIDB/04683/2020 - ICT (Institute of Earth Sciences).

How to cite: Trapero, P., Oliveira, R., Caldeira, B., Borges, J. F., and Carneiro, A.: Studying the water supply system of the Roman villa of Pisões (Beja, Portugal) using ground-penetrating radar and geospatial methods, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-17056, https://doi.org/10.5194/egusphere-egu23-17056, 2023.

EGU23-412 | ECS | Orals | BG1.2

Assessing changes in post-fire vegetation resilience in Mediterranean basin over the past 22 years 

Tiago Ermitão, Célia Gouveia, Ana Bastos, and Ana Russo

Fire is an integral component of ecological dynamics, playing an important role in biome distribution and biomass variability. Nonetheless, fires can also pose a  threat to both ecosystems and humans, by imposing severe economic and social consequences, and potentially contributing to biodiversity loss, carbon loss and soil erosion, whose effects can last from months to years.

The Mediterranean basin is a fire-prone region where vegetation is in general well adapted to fire, with several species showing resistance to fire itself or being able to recover quickly following fire events. However, as a consequence of climate change, more intense and frequent summer hot and dry conditions are expected to occur, which can promote more frequent and severe wildfires, with return periods potentially outpacing recovery times. Understanding recovery dynamics is therefore crucial to assess the impact of changing fire regimes in ecological dynamics and stability of ecosystems. 

In our study, we use the “Enhanced Vegetation Index” (EVI), remotely-sensed by MODIS sensor with a temporal span of 22 years, to evaluate vegetation dynamics before, during and following large fire seasons. We use a mono-parametric recovery model to assess recovery times in different burn scars across the Mediterranean basin, covering different fire regimes and land cover types. We find a tendency for slower recovery in areas that burned more often, which may indicate a decrease in ecosystems’ resilience in the past 22 years.

This study was performed under the frameworks of the 2021 FirEUrisk project (funded by European Union’s Horizon 2020 research and innovation programme under the Grant Agreement no. 101003890) and of the PhD MIT Portugal MPP2030-FCT programme (Grant no.22405886350).

How to cite: Ermitão, T., Gouveia, C., Bastos, A., and Russo, A.: Assessing changes in post-fire vegetation resilience in Mediterranean basin over the past 22 years, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-412, https://doi.org/10.5194/egusphere-egu23-412, 2023.

EGU23-1406 | ECS | Orals | BG1.2 | Highlight

Large-scale fire events substantially impact plant-soil water relations across ecosystem types 

Martin J. Baur, Andrew D. Friend, and Adam F. A. Pellegrini

Wildfire is a global scale ecosystem phenomenon with substantial impact on the carbon cycle, climate warming, and ecosystem resilience. Fire and the hydrological cycle are strongly interlinked, with water availability determining the amount and combustibility of fuel, and fire influencing infiltration, runoff rates and evapotranspiration. Consequently, understanding soil moisture (SM) and vegetation water content (VWC) dynamics pre- and post-fire is fundamental for predicting fire occurrence, fire severity, and ecosystem recovery. Fire can modulate SM and VWC dynamics by influencing interception of rainfall, soil porosity, plant water uptake, and runoff; however, much evidence for fire effects on the hydrological cycle is obtained at the field- to watershed-scale. Therefore, we ask the following research question: What are the effects of large-scale fire events on SM and VWC dynamics across biomes globally?

Here we use over six years of global SM, VWC and vapor pressure deficit (VPD) derived from different remote sensing datasets to investigate the effects of large-scale fires on SM and VWC dynamics. We apply a dry down framework, only analyzing consecutive observations of decreasing soil moisture, to describe post-fire response rates for SM, VWC and VPD relative to a pre-fire reference state.

We find large scale evidence that the post-fire rate of change of SM over time is more negative, indicating faster water loss. Vegetation recovery, indicated by a positive change in VWC over time, exceeds the pre-fire reference state, which suggests that post-fire recovery is predominantly faster than undisturbed seasonal vegetation growth, likely due to succession of fast-growing plant species. Furthermore, fire affects ecosystem hydrology on shorter timescales as well, reducing diurnal VWC variation over a wide range of SM and VWC conditions. Our findings confirm several trends previously only observed at smaller scales and suggest global remote sensing of SM and VWC can substantially contribute to understanding the dynamics of post-fire plant and soil water status.

How to cite: Baur, M. J., Friend, A. D., and Pellegrini, A. F. A.: Large-scale fire events substantially impact plant-soil water relations across ecosystem types, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1406, https://doi.org/10.5194/egusphere-egu23-1406, 2023.

EGU23-1412 | Posters on site | BG1.2

PyroCbs from Australia Fires and its Impact Study Using Satellite Observations from CrIS and TROPOMI and Reanalysis Data 

Xiaozhen Xiong, Xu Liu, Wan Wu, Liqiao Lei, Qiguang Yang, Daniel Zhou, and Allen Laura

Australia’s unprecedented fire disasters at the end of 2019 to early 2020 emitted huge amounts of carbon monoxide (CO) and fire aerosol particles to the atmosphere, particularly during the Pyrocumulonimbus (pyroCb) outbreak that occurred in southeast Australia between 29 December 2019 and 4 January 2020. It was estimated that at least 18 pyroCbs were generated during this episode, and some of them injected ice, smoke, and biomass burning gases above the local tropopause.  An unprecedented abundance of H2O and CO in the stratosphere, and the displacement of background ozone (O3) and N2O from rapid ascent of air from the troposphere and lower stratosphere were found from satellite observations. Some other studies also found that the fire emissions and their long-range transport resulted in stratospheric aerosol, temperature, and O3 anomalies after the 2020 Australian bushfires and altered the Antarctic ozone and vortex, posing great impact to local air qality and climate change.

            This study will focus on the thermodynamic state of atmosphere associated with these pyroCbs, and its impact on the change of the cloud properties and trace gases during this unprecedented Australia fires, mainly based on a new single Field of View (SFOV) Sounder Atmospheric Products (SiFSAP) and TROPOMI. SiFSAP was developed by NASA using the Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) onboard SNPP and JPSS-1, and will soon be available to the public at NASA DAAC. Since this product has a spatial resolution of 15 km at nadir, which is better than most global weather and climate models and other current operational sounding products, a process-oriented analysis of the dynamic transport of CO and fire plumes during this unprecedented fire disasters will be made in this study.  Based on a Principal Component Radiative Transfer Model (PCRTM) and an optimized estimation retrieval algorithm, a simultaneously retrieval is made using the whole spectral information measured by CrIS,  and the derived SiFSAP include temperature, water vapor, trace gases (such as O3, CO2, CO, CH4 and N2O), cloud properties and surface properties. Use of ATMS together with CrIS allows SiFSAP to get accurate retrieval products under thick pyroCb conditions. An algorithm to detect pyroCb based on the hyperspectral infrared sounder spectrum from CrIS will be developed and verified. In addition to SiFSAP sounding products,  CO, O3, NO2 from TROPOMI and O3 from OMPS will be used. The wind fields from the NASA’s Modern-Era Retrospective Analysis for Research and Applications Version-2 (MERRA-2) and ERA5 will be used to characterize the transport, and the SiFSAP temperature and water vapor profiles within and around pyroCbs will be compared with MERRA-2 and ERA5 products.     

How to cite: Xiong, X., Liu, X., Wu, W., Lei, L., Yang, Q., Zhou, D., and Laura, A.: PyroCbs from Australia Fires and its Impact Study Using Satellite Observations from CrIS and TROPOMI and Reanalysis Data, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1412, https://doi.org/10.5194/egusphere-egu23-1412, 2023.

EGU23-1975 | ECS | Orals | BG1.2

Drivers of spatial and temporal variability in savanna fire emission factors 

Roland Vernooij, Tom Eames, Jeremy Russel-Smith, Cameron Yates, Robin Beatty, Jay Evans, Andrew Edwards, Natasha Ribeiro, Martin wooster, Tercia Strydom, Marcos Giongo, Marco Borges, Carol Barradas, Maximo Menezes, Dave van Wees, and Guido van der Werf

Roughly half of global fire emissions originate from savannas, and emission factors (EF) are used to quantify the amount of trace gases and aerosols emitted per unit dry matter burned. It is well known that these EFs vary substantially even within a single biome but so far quantifying their dynamics has been hampered by a lack of EF measurements. Therefore, global emission inventories currently use a static averaged EF for the entire savanna biome. To increase the spatiotemporal coverage of EF measurements, we collected over 4500 EF bag measurements of CO2, CO, CH4 and N2O using an unmanned aerial system (UAS) and measured fuel parameters and fire severity proxies during 129 individual landscape fires. These measurements spanned various widespread savanna ecosystems in Africa, South America and Australia, with early and late dry season campaigns. We trained random forest (RF) regressors to estimate daily dynamic EFs for CO2, CO, CH4 and N2O at 500×500-meter resolution based on satellite and reanalysis data. The RF models reduced the difference between measured and modelled EFs by 60-85% compared to static biome averages. The introduction of EF dynamics resulted in a spatial redistribution of CO, CH4 and N2O emissions compared to the Global Fire Emissions Database version 4 (GFED4s) with higher emissions in higher rainfall savanna regions. While the impact from using dynamic EFs on the global annual emission estimates from savannas was relatively modest (+2% CO, -5% CH4 and -18% N2O), the impact on local EFs may exceed 60% under dry seasonal conditions.

How to cite: Vernooij, R., Eames, T., Russel-Smith, J., Yates, C., Beatty, R., Evans, J., Edwards, A., Ribeiro, N., wooster, M., Strydom, T., Giongo, M., Borges, M., Barradas, C., Menezes, M., van Wees, D., and van der Werf, G.: Drivers of spatial and temporal variability in savanna fire emission factors, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1975, https://doi.org/10.5194/egusphere-egu23-1975, 2023.

EGU23-2097 | Orals | BG1.2

Linked fire activity and climate whiplash in California during the early Holocene 

Jessica Oster, Julia Homann, Cameron de Wet, Sebastian Breitenbach, and Thorsten Hoffmann

Recent wildfire activity in semi-arid regions like western North America exceeds the range of historical records. High-resolution paleoclimate archives such as stalagmites could illuminate the link between hydroclimate, vegetation change, and fire activity in pre-anthropogenic climate states beyond the timescale of existing tree-ring records. Here we present an analysis of levoglucosan, a combustion-sensitive anhydrosugar, and lignin oxidation products (LOPs) in a stalagmite from White Moon Cave in the California Coast Range in order to reconstruct fire activity and vegetation composition across the 8.2 kyr event. Elevated levoglucosan concentrations suggest increased fire activity while altered LOP compositions indicate a shift toward more woody vegetation during the event, with the shift in vegetation preceding the increase in fire activity. These changes are concurrent with increased hydroclimate volatility as shown by carbon and calcium isotope proxies. Together, these records suggest that climate whiplash (oscillations between extreme wetness and aridity) and fire activity in California, both projected to increase with anthropogenic climate change, were tightly coupled during the early Holocene.

How to cite: Oster, J., Homann, J., de Wet, C., Breitenbach, S., and Hoffmann, T.: Linked fire activity and climate whiplash in California during the early Holocene, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2097, https://doi.org/10.5194/egusphere-egu23-2097, 2023.

EGU23-2233 | ECS | Orals | BG1.2

Fire impacts on soil carbon in a non-fire adapted alpine forest 

Melissa Torres, Caroline Poyntner, Sampriti Chaudhuri, Marc Pignitter, Hannes Schmidt, Thilo Hofmann, and Gabriel Sigmund

An increase in fire-prone conditions in non-fire adapted regions is rooted in climatic and anthropogenic changes. Such pyrogeographical shifts are observable, for example, in alpine regions. In 2021, Austria, experienced a fire larger than 100 ha for the first time in a century in the Schneeberg-Rax mountain region. In depth understanding of post-fire effects on carbon cycling at such non-fire adapted sites is still scarce. To help close this knowledge gap, post-fire changes were investigated at the abovementioned site, including soil organic matter composition and soil chemical conditions. 

Samples were taken immediately after the fire, 3 months, 6 months and 12 months thereafter from four sampling sites. Selected sites consisted of 1. a pine forest affected by a crown fire, 2. a pine and beech mixed forest affected by a surface fire, and two non-fire affected controls with similar site conditions (vegetation, slope, altitude, and exposition). Samples were analyzed for pH, carbon content, elemental composition, leachable dissolved organic carbon and trace elements, organic matter composition, and environmentally persistent free radical concentrations. 

pH increased after the fire at both sites investigated. This increase was the strongest (up to 1.5 units) immediately after the fire but was still substantial 1 year after the fire. Carbon contents decreased approximately 2fold in the crown fire affected soil compared to the control soil, but remained similar between surface fire affected soil and the respective control. However, aromaticity of bulk carbon and the leachable fraction increased in both fire-affected soils, which can be related to the formation of pyrogenic carbon during the fire. Pyrogenic carbon is a highly aromatic and recalcitrant carbon pool produced during incomplete combustion of biomass. Pyrogenic carbon can also contain substantial amounts of environmentally persistent free radicals (EPFR), which can form reactive oxygen species, which can induce oxidative stress on microbiota. Our EPFR measurements showed an increase by at least 1.5 orders of magnitude of EPFR in fire affected soils. This study suggests that changes in soil carbon cycling can be expected following fires in non-adapted alpine forests. 

How to cite: Torres, M., Poyntner, C., Chaudhuri, S., Pignitter, M., Schmidt, H., Hofmann, T., and Sigmund, G.: Fire impacts on soil carbon in a non-fire adapted alpine forest, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2233, https://doi.org/10.5194/egusphere-egu23-2233, 2023.

EGU23-2932 | Posters on site | BG1.2

Hydrological conceptual model for reconstructing fire history from cave stalagmites 

Pauline Treble, Campbell Micheline, Andy Baker, McDonough Liza, and Kosarac Nevena

Cave stalagmites (speleothems) are highly-valued archives of environmental information owing to their preservation of climate sensitive proxies and well-defined chronologies.  Yet the reconstruction of fire history from stalagmites is a relatively unexplored approach, with some advantages over traditional fire proxy archives.  For example, stalagmites may contain annual laminae (visible or chemical) which can be exploited for seasonal to annual proxy information with precise chronologies.  Thus stalagmites have the potential to yield annually-resolved records of fire and climate that could be used to (1) better understand the fire-climate relationship, (2) fire recurrence interval information, (3) understand ecosystem resilience and (4) inform land management policy.

The development of fire proxies from stalagmites is still in its infancy. Robust interpretations of any proxy information relies on an understanding of the environmental processes that lead to the preservation of proxies in the archive.  Cave stalagmites may record fire history via dripwater, or via the cave entrance as aerosols.  The focus here is on the transportable constituents in dripwater such as solutes, colloids and suspended matter.  A fire event produces ash (a source of leachates) and can alter soil properties (hydrophobicity, pH, organic matter etc) producing temporary enrichments (or depletions) in transported constituents via dripwater.  The resulting signal may be detected in stalagmites using high-resolution methods such as laser ablation mass spectrometry, fluorescence and infrared microscopy techniques.  Cave depth is an important factor in the preservation process with the detection of a fire signal more likely to be observed in dripwater from shallow caves (e.g. 5-10 m) owing to the potential for attenuation and mixing that may occur in deeper caves (Campbell et al., 2022).  However, owing to the karstification of carbonate rocks which host caves, there commonly exists different flow types: diffuse/slow flow through the matrix, preferential/fast flow through fractures and conduits.  Fracture (or conduit) influenced flowpaths have higher permeability and enhance rapid and deep percolation of water from the surface towards the cave.  Several studies have shown that stalagmites fed by dripwater with a fracture-flow component contain higher concentrations of soil-derived trace metals and organics indicating a stronger hydrological connection with the surface.  It logically follows that fracture-influenced flowpaths are more likely to transmit proxies for fire.  Furthermore, flowpaths may be a more important factor than cave depth in some settings, e.g., Campbell et al. (2022) presented a case study of a historical fire event recorded in a stalagmite that was located ~40 m below the surface.  

Understanding the hydrological setting of a cave system including rainfall recharge and flowpaths is valuable in the interpretation of speleothem records in general.  This contribution presents a conceptual model illustrating how these factors influence the preservation of fire proxies in stalagmites and makes recommendations for ideal sample selection for fire proxy records based on cave characteristics as well as stalagmite attributes such as morphology and colour.

Campbell. M. et al., Speleothems as Archives for Palaeofire Proxies. ESS Open Archive. July 24, 2022. DOI:10.1002/essoar.10511989.1

How to cite: Treble, P., Micheline, C., Baker, A., Liza, M., and Nevena, K.: Hydrological conceptual model for reconstructing fire history from cave stalagmites, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2932, https://doi.org/10.5194/egusphere-egu23-2932, 2023.

EGU23-3238 | ECS | Orals | BG1.2

Feeding the flames: how colonialism led to unprecedented wildfires across SE Australia 

Michela Mariani, Simon Connor, Michael-Shawn Fletcher, Simon Haberle, Janelle Stevenson, Peter Kershaw, Annika Herbert, Martin Theuerkauf, and David Bowman

The Black Summer bushfires (2019-2020) cost the Australian economy over 100 billion dollars and burnt a total of 18 million hectares. In just one season, around 20% of Australia's Eucalyptus forests burnt down and billions of animals perished. Recent catastrophic fires in Australia and North America have made scientists and policymakers question how the disruption of First Nations' burning practices has impacted fuel loads. For instance, we have learnt from modern Australian Indigenous communities, historical literature, and art works that Indigenous peoples have used cultural burning to rejuvenate patches of land and preserve open vegetation for hunting and cultural purposes. The advent of British invasion brought a change in the type of fire regimes and landscape management across much of the continent, which may have led to an increase in flammable fuels in forest settings. However, the actual degree of land-cover modification by early settlers has only been often debated in the academic literature and within management stakeholders.

The quantification of past land cover is needed to address such debates. Pollen is the key proxy to track past vegetation changes, but pollen spectra suffer from some important biases e.g. taphonomy, pollen productivity, dispersal capability. Estimating past vegetation cover from sedimentary pollen composition requires to correct for productivity and dispersal biases using empirical-based models of the pollen-vegetation relationship. Such models for quantitative vegetation reconstruction (e.g. REVEALS) have yet been mostly applied in the Northern Hemisphere in the last 15 years - here we present recent applications of this methodology from Australia. We show the quantification of land cover changes through pre- and post- British invasion on multiple records (n=51) across the southeastern Australian region. This represents the first regional application of REVEALS within the Australian continent.

We provide the first empirical evidence that the regional landscape before British invasion was a cultural landscape with limited tree cover as it was maintained by Indigenous Australians through cultural burning. Our findings suggest that the removal of Indigenous vegetation management has altered woodland fuel structure and that much of the region was predominantly open before colonial invasion. The post-colonial land modification has resonance in wildfire occurrence and management under the pressing challenges posed by climate change.

How to cite: Mariani, M., Connor, S., Fletcher, M.-S., Haberle, S., Stevenson, J., Kershaw, P., Herbert, A., Theuerkauf, M., and Bowman, D.: Feeding the flames: how colonialism led to unprecedented wildfires across SE Australia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3238, https://doi.org/10.5194/egusphere-egu23-3238, 2023.

EGU23-3310 | ECS | Orals | BG1.2

PEAT-FWI: Improving the Fire Weather Index for peatlands with Hydrological Modeling and L-band Microwave Observations 

Jonas Mortelmans, Anne Felsberg, Gabriëlle De Lannoy, Sander Veraverbeke, Robert Field, Niels Andela, and Michel Bechtold

The Fire Weather Index (FWI) is used worldwide to estimate the danger of wildfires. The FWI system integrates meteorological parameters and empirically combines them into several moisture codes, each representing a different fuel type. These moisture codes are then used in combination with wind speed to estimate a fire danger. Originally, the FWI system was developed for a standard jack pine forest, however, it is widely used by fire managers to assess the fire danger in different environments as well. Furthermore, it is often also used to assess the vulnerability of organic soils, such as peatlands, to ignition and depth of burn. The utility of which is often questioned.

 

This research aims at improving the original FWI for northern peatlands by replacing parts of the original, purely weather-based FWI system with satellite-informed model estimates of peat moisture and water level. These come from a data assimilation output combining the NASA catchment model, including the peat modules PEATCLSM, and Soil Moisture and Ocean Salinity (SMOS) L-band brightness temperature observations. The predictive power of the new, peat-specific FWI (PEAT-FWI) is evaluated against the original FWI against fire data of the global fire atlas from 2010 through 2018 over the major northern peatlands areas. For the evaluation, the fires are split up in early and late season fires, as it is hypothesized that late fires are more hydrological driven, and the predictive power of the PEAT-FWI will thus differ between the two types of fires. Our results indeed indicate that the PEAT-FWI improves the predictive capability of estimating fire risk over northern peatlands in particular for late fires. By using a receiver operating characteristics (ROC) curve to evaluate the predictive power of the FWI against a random estimate, the area under the curve increases by up to 10% for the PEAT-FWI compared to the original FWI. The recent version 7 release of the operational Soil Moisture Active Passive (SMAP) Level-4 Soil Moisture Data Assimilation Product now includes PEATCLSM, thus, the proposed PEAT-FWI is straightforward to include in operational FWI products.

How to cite: Mortelmans, J., Felsberg, A., De Lannoy, G., Veraverbeke, S., Field, R., Andela, N., and Bechtold, M.: PEAT-FWI: Improving the Fire Weather Index for peatlands with Hydrological Modeling and L-band Microwave Observations, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3310, https://doi.org/10.5194/egusphere-egu23-3310, 2023.

EGU23-3332 | ECS | Orals | BG1.2

How changes in ignition sources influence fire probability in the Amazon and Cerrado biomes: a perspective based on frontier age 

Andreia F. S. Ribeiro, Lucas Santos, Maria R. Uribe, Rafaella A. Silvestrini, Ludmila Rattis, Marcia N. Macedo, Douglas C. Morton, James T. Randerson, Sonia I. Seneviratne, Jakob Zscheischler, and Paulo M. Brando

Agricultural expansion and ongoing climate change are rapidly altering the fire regime of natural ecosystems along the Cerrado-Amazon biome boundary. While agricultural intensification has driven a decrease in fire ignitions in some regions, agricultural expansion has increased fire usage in other landscapes for deforestation and managing pasturelands. These contrasting patterns of fire activity across different land-use frontiers limits our ability to accurately predict where and when fires may occur, particularly under the context of climate change.

To predict fire activity with land-use transitions, we modelled fire probability as a function of the age of different land-use transitions across the Amazon and Cerrado. We investigated annual land-use and associated burned areas based on the MapBiomas Collection 6.0 and MapBiomas Fire Collection 1.0 data, respectively, from 1986 to 2020. This allowed us to quantify how the time-since conversion of native vegetation (forest, savanna, and grassland) to pasture and farming influence fire occurrence. Additionally, we explored the joint impact of land-use change and climate extremes in fire activity in terms of estimated vapor pressure deficit (VPD) and maximum cumulative water deficit (MCWD), two common measures of flammability and drought impact. 

Our results confirm that transition age is a strong predictor of fire probability. They also suggest that fire probability increases (decreases) at different rates before (after) clearing in Amazon and Cerrado. The role of climate extremes in modulating burning activity associated with land-use transitions varied by biome, post-fire land use, and the size of the burned area associated with the conversion. These findings provide insight into incorporating the effect of land-use transition age on ignition probability for fire modelling in combination with climate drivers. From an operational point of view, our results aim to contribute to environmental policies capable of sustaining ecosystem integrity at the ecotone between the Amazon and Cerrado biomes.

How to cite: Ribeiro, A. F. S., Santos, L., Uribe, M. R., Silvestrini, R. A., Rattis, L., Macedo, M. N., Morton, D. C., Randerson, J. T., Seneviratne, S. I., Zscheischler, J., and Brando, P. M.: How changes in ignition sources influence fire probability in the Amazon and Cerrado biomes: a perspective based on frontier age, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3332, https://doi.org/10.5194/egusphere-egu23-3332, 2023.

EGU23-3632 | ECS | Posters virtual | BG1.2

BPCA-derived PyC may reflect fire signals over regional scales from the western Amazon Basin fire record 

Jing Lyu, Andrew Zimmerman, Mark Bush, and Crystal McMichael

Fire alters the biogeochemical cycling of important elements, plays a role in climate change, and shapes the composition of global biological communities. Detection of past fires has long been used to reconstruct human settlement and climate records. Charcoal and phytolith abundance has been the most commonly used paleofire proxies but may only represent evidence of local fires. Chemical analyses of pyrogenic carbon (PyC) have been more recently used, but are also not without controversy. Thus far, very few intercomparisons of these proxies have been conducted. Here, the fire records contained in soil and lake sediments of Western Amazon (at lakes Ayauchi, Parker, Gentry, and surrounding regions) were determined by charcoal microscopy, chemical thermal oxidation (CTO), and benzene polycarboxylic acids (BPCA) molecular biomarkers. Charcoal represented a smaller portion of PyC and, with its patchy distribution, likely indicated local or larger regional fire events. With a median value of about 15% of organic carbon, PyC via CTO oxidation was of the highest concentrations, which suggests a larger PyC detection window and lower sensitivity of reflecting regional fire. With a median value of about 3% of organic carbon, the BPCA-derived PyC distributions bore the closest resemblance to both spatial and temporal regional fire variations, established via archeological, pollen and phytolith records, thus may be a more sensitive indicator of fire over larger regional scales. Molecular ratios of BPCA molecules in Lake Ayauchi soils indicated higher temperature fires (> 600°C) and suggested a history of more human occupation and human-caused fire in the Lake Ayauchi region compared with the Lake Gentry & Parker region. However, our findings suggest that the use of a combination of fire proxy methods provides a fuller picture of the fire history of a region than any single approach. Establishing a better understanding the differences in the information provided by various paleofire proxies will allow a more complete understanding of the drivers, history and ecological and biogeochemical effects of fire, both regionally and globally.

How to cite: Lyu, J., Zimmerman, A., Bush, M., and McMichael, C.: BPCA-derived PyC may reflect fire signals over regional scales from the western Amazon Basin fire record, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3632, https://doi.org/10.5194/egusphere-egu23-3632, 2023.

EGU23-3695 | ECS | Orals | BG1.2

Wildfires alter nitrifier communities and increase soil emissions of NOx but not N2O in California chaparral 

Elizah Stephens, Aral Greene, Alexander Krichels, and Peter Homyak

Background:

Fires burn roughly 3% of Earth’s land surface each year and are predicted to become more frequent and severe as human-caused climate change progresses. Fires can drive ecosystem N loss by volatilizing N bound in plant biomass to the atmosphere and by leaving behind ash rich in ammonium (NH4+) and organic N that can run off when it rains. While N volatilization and runoff account for a large fraction of N loss after fires, budget imbalances suggest soil emissions of nitric oxide (NO) and nitrous oxide (N2O) may also be significant N loss pathways after fire. Identifying sources of NO and N2O is important because NO is a precursor for tropospheric O3 which causes high rates of asthma hospitalizations,and N2O is a powerful greenhouse gas with 300× the warming potential of CO2. Soil emissions of NO and N2O are largely governed by the microbial processes of nitrification and denitrification. Under aerobic conditions typical of dry soils, nitrifying organisms such as ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) oxidize NH4+ to nitrate (NO3-) and release NO and N2O as byproducts. AOA and AOB process N with different efficiencies, suggesting shifts in AOA:AOB ratios may change N emissions. Specifically, AOB are dominant in soils with high NH4+and pH and produce higher NO and N2O emissions. Since such soil conditions are frequently observed after fires, we hypothesize NO and N2O emissions will increase as AOB communities become dominant. To test this, we collected soil cores from 5 plots in the Sequoia National Park, CA over a time series starting two weeks after a high severity chaparral fire. We selectively inhibited AOA and AOB communities to measure their contributions to NO and N2O emissions. We also measured the isotopic composition of N2O emissions from these soils using an LGR isotopic N2O analyzer to better understand the processes responsible for post-fire N2O production.

Results/Conclusions

One month after the fire, soil bulk emissions of NO over 72hrs were 1.5 times higher in the burned plots (101.4 ± 22.4 µg N-NO/g soil burned; 67.1 ± 19.3 µg N-NO/g soil unburned; ±SE). Bulk soil emissions of N2O over 72hrs were 7.5 times lower in burned plots compared to before the fire (0.0616 ± 0.04 ng N-N2O/g soil burned; 0.463 ± 0.19 ng N-N2O/g soil unburned; ±SE). Although the effects of fire on nitrifier communities were not significant at one month post-fire (Control: p=0.14, AOA: p=0.09, AOB: p=0.162), both AOA and AOB contributions to NO emissions increased in response to fire. Results for nitrifier contributions to N2O emissions were highly variable and non-significant with no clear trends as all N2O emissions were near zero. Further analysis over the time series may yield clearer results as microbial communities have more time to recover. Pairing these data with isotopic information (in progress) may yield one of the most in-depth understandings of post-fire NO and N2O emissions to date.

How to cite: Stephens, E., Greene, A., Krichels, A., and Homyak, P.: Wildfires alter nitrifier communities and increase soil emissions of NOx but not N2O in California chaparral, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3695, https://doi.org/10.5194/egusphere-egu23-3695, 2023.

EGU23-4520 | ECS | Orals | BG1.2

Examining the response of different wildfire properties to changes in climate and CO2 levels at the Last Glacial Maximum 

Olivia Haas, Iain Colin Prentice, and Sandy P. Harrison

Climate change and atmospheric CO2 levels can influence wildfire properties through separate and potentially contrasting impacts on vegetation and climate. One way to examine the sensitivity of global wildfire properties to changes in climate and CO2 levels is using an out-of-sample experiment, such as the Last Glacial Maximum (LGM; 21 ka BP). Charcoal records show reduced burning at the LGM, when CO2 levels were ~ 185 ppm and the climate was cooler and drier. In this analysis, we isolated out the potential effects of LGM CO2 levels and LGM climate on the spatial patterns of global wildfire properties.

Using three statistical models, we conducted simulations of the spatial distribution of global burnt area, fire size and fire intensity under four scenarios: modern climate/modern CO2 levels, LGM climate/LGM CO2 levels, modern climate/LGM CO2 levels and LGM/ modern CO2 levels. We used outputs from three coupled ocean–atmosphere models representative of the range of simulated LGM climates. The ecophysiological effect of CO2 levels was explicitly accounted for through vegetation inputs. Gross primary productivity (GPP) and land cover were derived for the LGM and modern climate keeping either CO2 levels at 395 ppm (modern), or setting them to 185 ppm, using the P Model, a first-principles model of GPP which allows continuous acclimation of photosynthetic parameters to environmental variations, and the BIOME4 equilibrium global vegetation model.

Our results show a reduction in burnt area under LGM CO2 levels, both with modern and LGM climate inputs. In the case of the warmest of the LGM climate scenarios, this reduction was of the same magnitude as the combined LGM climate/LGM CO2 levels scenario. However, the driest and coldest LGM climate scenario produced a reduction in burnt area even with modern CO2 levels, and the largest reduction in burnt area with LGM CO2.  The reduction was primarily driven by changes in vapour pressure deficit (VPD). Fire size increased under LGM climates, due to changes in wind and VPD. The lower CO2 values at the LGM had no impact on fire size. Fire intensity increased under LGM climates and LGM CO2 levels, with both effects of similar amplitude and changes driven primarily by VPD, GPP and diurnal temperature range. 

We compared our outputs with sedimentary charcoal records from the Reading Palaeofire Database (RPD). Overall, the burnt area LGM CO2 levels/LGM climate scenario showed the greatest agreement, though depending on how cold and dry the LGM climate was, this agreement was either equal to LGM CO2 levels or LGM climate alone. These results suggest that whilst there was reduced global burning at the LGM, there may have been larger and more intense fires. They also highlight the importance of the ecophysiological effect of CO2 levels on fuels, a major control of burnt area and fire intensity regardless of climate. They point to the importance of including this effect in process-based fire models, as well as the importance of accurately estimating the amplitude of projected change for different climate variables in order to increase the reliability of future projections.

How to cite: Haas, O., Prentice, I. C., and Harrison, S. P.: Examining the response of different wildfire properties to changes in climate and CO2 levels at the Last Glacial Maximum, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4520, https://doi.org/10.5194/egusphere-egu23-4520, 2023.

EGU23-5113 | ECS | Orals | BG1.2

Speleothem organic biomarkers trace last millennium fire history at near-annual resolution in northwestern Australia 

Elena Argiriadis, Rhawn F. Denniston, Stefania Ondei, and David Bowman

Recent developments in speleothem science are showing their potential for paleofire reconstruction through a variety of inorganic and organic proxies including trace metals (1) and the pyrogenic organic compound levoglucosan (2). Previous work by Argiriadis et al. (2019) presented a method for the analysis of trace polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in stalagmites (3). These compounds reflect biogeochemical processes occurring at the land surface, in the soil, and in the cave. PAHs are primarily related to combustion of biomass while n-alkanes, with their potential for vegetation reconstruction (4), provide information on fuel availability and composition, as well as fire activity. These organic molecules are carried downward by infiltrating water and incorporated into speleothems (5), thereby creating the potential to serve as novel paleofire archives.

Using this approach, we developed a high-resolution stalagmite record of paleofire activity from cave KNI-51 in tropical northwestern Australia. This site is well suited for high resolution paleofire reconstruction as bushfire activity in this tropical savanna is some of the highest on the continent, the cave is shallow and overlain by extremely thin soils, and the stalagmites are fast-growing (1-2 mm yr-1) and precisely dated. We analyzed three stalagmites which grew continuously in different time intervals through the last millennium - KNI-51-F (CE ~1100-1620), KNI-51-G (CE ~1320-1640), and KNI-51-11 (CE ~1750-2009). Samples were drilled continuously at 1-3 mm resolution from stalagmite slabs, processed in a stainless-steel cleanroom to prevent contamination.

Despite a difference in resolution between stalagmites KNI-51-F and -G, peaks in the target compounds show good replication in the overlapping time interval of the two stalagmites, and PAH abundances in a portion of stalagmite KNI-51-11 that grew from CE 2000-2009 are well correlated with satellite-mapped fires occurring proximally to the cave.

Our results suggest an increase in the frequency of low intensity fire in the 20th century relative to much of the previous millennium. The timing of this shift is broadly coincident with the arrival of European pastoralists in the late 19th century and the subsequent displacement of Aboriginal peoples from the land. Aboriginal peoples had previously utilized “fire stick farming”, a method of prescribed, low intensity burning, that was an important influence of ecology, biomass, and fire.  Prior to the late 1800s, the period with the most frequent low intensity fire activity was the 13th century, the wettest interval of the entire record. Peak high intensity fire activity occurred during the 12th century.

Controlled burn and irrigation experiments capable of examining the transmission of pyrogenic compounds from the land surface to cave dripwater represent the next step in this analysis. Given that karst is present in many fire-prone environments, and that stalagmites can be precisely dated and grow continuously for millennia, the potential utility of a stalagmite-based paleofire proxy is high.

 

 

(1) L.K. McDonough et al., Geochim. Cosmochim. Acta. 325, 258–277 (2022).

(2) J. Homann et al., Nat. Commun., 13:7175 (2022).

(3) E. Argiriadis et al., Anal. Chem. 91, 7007–7011 (2019).

(4) R.T. Bush, F. A. McInerney, Geochim. Cosmochim. Acta. 117, 161–179 (2013).

(5) Y. Sun et al., Chemosphere. 230, 616–627 (2019).

How to cite: Argiriadis, E., Denniston, R. F., Ondei, S., and Bowman, D.: Speleothem organic biomarkers trace last millennium fire history at near-annual resolution in northwestern Australia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5113, https://doi.org/10.5194/egusphere-egu23-5113, 2023.

EGU23-5429 | ECS | Posters on site | BG1.2

Smoke self-lofting towards the lower stratosphere: an alternative process to pyroCb-lofting 

Kevin Ohneiser, Albert Ansmann, Jonas Witthuhn, Hartwig Deneke, Alexandra Chudnovsky, Gregor Walter, and Fabian Senf

Wildfire smoke is known as a highly absorptive aerosol type in the shortwave wavelength range. The absorption of Sun light by optically thick smoke layers results in heating of the ambient air. This heating is translated into self-lofting of the smoke up to more than 1 km in altitude per day. The main goal is to demonstrate that radiative heating of intense smoke plumes is capable of lofting them from the lower and middle free troposphere (injection heights) up to the tropopause without the need of pyrocumulonimbus (pyroCb) convection. The further subsequent ascent within the lower stratosphere (caused by self-lofting) is already well documented in the literature. Simulations of heating rates which are then converted into lofting rates are conducted by using the ECRAD (European Centre for Medium-Range Weather Forecasts Radiation) scheme. As input parameters thermodynamic profiles from CAMS (Copernicus Atmosphere Monitoring Service) reanalysis data, aerosol profiles from ground-based lidar observations, radiosonde potential temperature profiles, CALIOP (Cloud Aerosol Lidar with Orthogonal Polarization) aerosol measurements, and MODIS (Moderate Resolution Imaging Spectroradiometer) aerosol optical depth retrievals were used. 


The sensitivity analysis revealed that the lofting rate strongly depends on aerosol optical thickness (AOT), layer thickness, layer height, and black carbon (BC) fraction. We also looked at the influence of different meteorological parameters such as cloudiness, relative humidity, and potential temperature gradient. Lofting processes in the stratosphere observed with CALIOP after major pyroCb events (Canadian fires, 2017, Australian fires 2019-2020) are compared with simulations to demonstrate the applicability of our self-lofting model. We analyzed long-term CALIOP observations of Siberian smoke layers and plumes evolving in the troposphere and UTLS (upper troposphere and lower stratosphere) region over Siberia and the adjacent Arctic during the summer season of 2019 and found several indications (fingerprints) that self-lofting contributed to the vertical transport of smoke. We hypothesize that the formation of a near-tropopause aerosol layer, observed with CALIOP over several months, was the result of self-lofting processes because this is in line with the self-lofting simulations. 


We will show a detailed analysis of tropospheric and stratospheric smoke lofting rates based on simulations and observations.

How to cite: Ohneiser, K., Ansmann, A., Witthuhn, J., Deneke, H., Chudnovsky, A., Walter, G., and Senf, F.: Smoke self-lofting towards the lower stratosphere: an alternative process to pyroCb-lofting, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5429, https://doi.org/10.5194/egusphere-egu23-5429, 2023.

EGU23-5803 | ECS | Orals | BG1.2 | Highlight

Which is the role of post-fire SOC erosion in the C cycle? 

Antonio Girona-García, Cristina Santín, Diana Vieira, and Stefan Doerr

Wildfires burn on average 448 million hectares globally every year, releasing around 2.2 Pg of carbon (C) into the atmosphere [1, 2]. The net effect of wildfires in the C cycle goes, however, beyond emissions and involves many other interacting processes. Among those, there is a significant knowledge gap on the role of post-fire soil organic carbon (SOC) erosion as a carbon sink mechanism.

Post-fire erosive response is greatly enhanced by the direct and indirect effects of wildfires on soil and vegetation, such as the loss of protective cover and soil structure or the development of a water-repellent layer [3]. In addition, biomass and soil organic matter undergo quantitative and qualitative changes during wildfires, such as the formation of pyrogenic carbon, highly resistant to degradation. The resulting PyC and non-PyC carbon fractions, with contrasting physical properties and chemical stability, will be differently redistributed and mineralized during the erosion process [4]. Ultimately, post-fire SOC erosion will act as a carbon sink when the post-fire burial and stabilization of eroded carbon, together with the recovery of net primary production and soil organic carbon content, exceed the SOC losses during its post-fire transport [5]. All these processes have been scarcely investigated and poorly quantified to the date. In this presentation, we will provide new insights into this potential C sink mechanism, critically reviewing the state of the art and highlighting key research gaps.

References

[1] Boschetti et al., 2021. Global Wildfire Information System (GWIS). https://gwis.jrc.ec.europa.eu/apps/country.profile/downloads

[2] Randerson et al., 2012. J Geophys Res. https://doi.org/10.1029/2012JG002128

[3] Shakesby & Doerr, 2006. Earth-Sci Revs. https://doi.org/10.1016/j.earscirev.2005.10.006

[4] Doetterl et al., 2016. Earth-Sci Revs. https://doi.org/10.1016/j.earscirev.2015.12.005

[5] Santín et al., 2015. Glob Change Biol. https://doi.org/10.1111/gcb.12800

How to cite: Girona-García, A., Santín, C., Vieira, D., and Doerr, S.: Which is the role of post-fire SOC erosion in the C cycle?, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5803, https://doi.org/10.5194/egusphere-egu23-5803, 2023.

EGU23-6083 | ECS | Posters on site | BG1.2

Representing Northern High Latitude Peat Fires in the JULES-INFERNO Fire Model 

Katie Blackford, Apostolos Voulgarakis, Colin Prentice, Chantelle Burton, and Matthew Kasoar

Anthropogenic activities and climate change are increasing the vulnerability of carbon rich peatlands to wildfires. Peat fires, which are dominated by smouldering combustion, are some of the largest and most persistent wildfires on Earth. Across the northern high latitudes, peat fires have the potential to release vast amounts of long term stored carbon and other greenhouse gases and aerosols. Consequently, peat fires can have huge implications on the carbon cycle and result in a positive feedback effect on the climate system. Peat fires also impact air quality and can lead to haze events, with major impacts on human health. Despite the importance of peat fires they are currently not represented in most fire models, leading to large underestimations of burnt area and carbon emissions in the high latitudes. Here, I present a representation of peat fires in the JULES-INFERNO fire model (INFERNO-peat). INFERNO-peat improves the representation of burnt area across the high latitudes, with notable areas of improvement in Canada and Siberia. INFERNO-peat also highlights a large amount of interannual variability in carbon emissions from peat fires. The inclusion of peat fires into JULES-INFERNO demonstrates the importance of representing peat fires in models, and not doing so may heavily restrict our ability to model present and future fires and their impacts across the northern high latitudes.

How to cite: Blackford, K., Voulgarakis, A., Prentice, C., Burton, C., and Kasoar, M.: Representing Northern High Latitude Peat Fires in the JULES-INFERNO Fire Model, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6083, https://doi.org/10.5194/egusphere-egu23-6083, 2023.

EGU23-6184 | ECS | Orals | BG1.2 | Highlight

A global model for estimating fuel consumption and fire carbon emissions at 500-m spatial resolution 

Dave van Wees, Guido R. van der Werf, James T. Randerson, Brendan M. Rogers, Yang Chen, Sander Veraverbeke, Louis Giglio, and Douglas C. Morton

Fires constitute a key source of emissions of greenhouse gasses and aerosols. Fire emissions can be quantified using models, and these estimates are influenced by the spatial resolution of the model and its input data. Here we present a novel global model based on the Global Fire Emissions Database (GFED) modelling framework for the estimation of fuel consumption and fire carbon emissions at a spatial resolution of 500 m. The model was primarily based on observation-derived data products from MODIS, reanalysis data for meteorology, and an updated field measurement synthesis database for constraining fuel load and fuel consumption. Compared to coarser models, typically with a resolution of 0.25°, the 500-m spatial resolution allowed for increased spatially resolved emissions and a better representation of local-scale variability in fire types. The model includes a separate module for the calculation of emissions from fire-related forest loss, using 30-m Landsat-based forest loss data. We estimated annual carbon emissions of 2.1 Pg C yr-1, of which around 24% was from fire-related forest loss. Fuel consumption was on average a factor 10 higher in case of fire-related forest loss compared to fires without forest loss. Up to now, emission estimates from our new model are based on MODIS burned area with a 500-m resolution, leading to global emissions similar to GFED4s. However, novel high-resolution burned area datasets based on the Landsat and Sentinel-2 missions reveal substantially more global burned area. Our 500-m global fire model provides a suitable framework for converting these burned area products to emissions, with the prospect of substantially higher global emissions.

How to cite: van Wees, D., van der Werf, G. R., Randerson, J. T., Rogers, B. M., Chen, Y., Veraverbeke, S., Giglio, L., and Morton, D. C.: A global model for estimating fuel consumption and fire carbon emissions at 500-m spatial resolution, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6184, https://doi.org/10.5194/egusphere-egu23-6184, 2023.

EGU23-6286 | ECS | Posters on site | BG1.2

Hysteresis of fire-prone weather to CO2 forcing 

Jin-Soo Kim, Hyo-Jeong Kim, and Soon-Il An

CO2 emission from biomass burning (BB) is one of the essential elements of the global carbon budget, with its annual mean of about 2.0 PgC/year equivalent to 15 % of 2020 fossil fuel emissions. However, while a global increase in fire-prone weather is projected alongside climate change, a quantitative understanding of how much carbon will further be released due to increased fires is highly limited, which could result in large uncertainty in meeting the net zero target. Thus, in this study, we evaluate future changes in fire-prone weather based on the fire weather index (FWI) and estimate the potential fire-induced emissions on a global scale that could be induced by climate change. To this end, 28 ensembles of idealized CO2 reduction simulations with the CESM climate model were analyzed. The results show that when CO2 in the atmosphere is doubled (2xCO2) from 367 ppm by 1 % per year, the additional emission due to increased fire weather could reach about 1.7 PgC/year, which corresponds to 82% of the current BB emission. Moreover, even if the atmospheric CO2 concentration further peaks and is reduced back to 2xCO2, the lagged response of the climate system can cause fire-prone weather and its resulting C emissions to remain higher than its previous state in many countries. These results highlight that more focus is required on the climate-fire-carbon feedback not only for more accurate future predictions but also for achieving net zero emissions in each country through a proper wildfire management strategy.

How to cite: Kim, J.-S., Kim, H.-J., and An, S.-I.: Hysteresis of fire-prone weather to CO2 forcing, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6286, https://doi.org/10.5194/egusphere-egu23-6286, 2023.

EGU23-6777 | ECS | Posters on site | BG1.2

Characterisation of large-scale urban fire emissions by inverse modelling 

Emilie Launay, Virginie Hergault, Marc Bocquet, Joffrey Dumont Le Brazidec, and Yelva Roustan

Large-scale fires such as warehouse fires that have occurred in recent years or dramatic accidents like the Paris Notre-Dame Cathedral fire in 2019 have stressed the need to develop means of assessing the toxicity risks to the population and the environment of smoke plumes. A key challenge is to quickly provide the authorities with information on the areas impacted by the plume and the pollutant concentration levels to which the population is likely to be or to have been exposed. The Laboratoire Central de la Préfecture de Police (LCPP) aims to deploy a number of devices for measuring pollutants and tracers of smoke combustion during a fire. Subsequently, the application of an atmospheric dispersion model within the framework of a data assimilation approach should provide a source characterisation and a finer estimate of the concentration levels at points of interest.

To characterise the source, noticeably the released mass of pollutants and the emission height linked to a plume rise, an inverse problem method has been implemented. It is based on a Bayesian Markov Chain Monte Carlo (MCMC) technique meant to quantify the uncertainties associated with the emission estimation. Since the emission height strongly influences the atmospheric dispersion in the vicinity of the source, two approaches are used to estimate it. The first one consists in finding the emission time rate for each considered height and the second one consists in focussing on a single emission height and its associated emission time rate using a discrete distribution to describe the vertical profile. We use the Lagrangian Parallel Micro Swift Spray (PMSS) model developed by AriaTechnologies fed with meteorological fields provided by Météo-France to represent the atmospheric dispersion of smoke.

Our inverse method is applied to a large warehouse fire that occurred in Aubervilliers near Paris in 2021 using real observations. Abnormal concentrations of particulate matter were recorded, with a peak at 160 µg.m-3, located in the centre of Paris about 6 km from the source. They were collected by the LCPP and AirParif, the local air quality agency, and are used to retrieve the emission with a quantification of uncertainties and a sensitivity analysis of model error. The resulting emission height of the source, mainly between 200 and 300 m, coincides with the terrain observation for an emission rate of less than 1000 kg/h throughout the duration of the fire. A sensitivity analysis to the initial approximation of the source (the prior) shows its importance. It suggests to improve our method by incorporating the statistical parameters of the observation error into the MCMC method.

How to cite: Launay, E., Hergault, V., Bocquet, M., Dumont Le Brazidec, J., and Roustan, Y.: Characterisation of large-scale urban fire emissions by inverse modelling, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6777, https://doi.org/10.5194/egusphere-egu23-6777, 2023.

EGU23-6797 | ECS | Posters on site | BG1.2

Variability of CO and aerosols plumes from wildfires in the Northern Hemisphere in 2008-2022 using satellite observations. 

Antoine Ehret, Solène Turquety, Maya George, and Cathy Clerbaux

Wildfires are responsible for significant emissions of greenhouse gases, pollutants and aerosols. In addition to being a large source of carbon monoxide (CO) and carbon dioxide (CO2), they alone account for more than half of black carbon emissions and the majority of primary organic aerosol emissions.

Despite proactive fire suppression policies in the Northern Hemisphere (NH), allowing a decrease in fires, especially in Europe, an increase in the number of extreme fires can be noted in recent years. In the NH, this increase is mainly in Western America and boreal regions. The pollution plumes produced during extreme fires can be transported over thousands of kilometers, impacting background pollutant levels on a hemispheric scale. Thus, variability in fire intensity may explain a large part of the spatial and temporal variability of many atmospheric pollutants. For longer lived pollutants, wildfires may significantly increase background levels.

In this study, the link between extreme fire weather (high temperature), large fires and background pollution in the Northern Hemisphere is analyzed based on satellite observations. The impact of large wildfires on background levels of CO and aerosols above Europe is studied more specifically. We present the variability of fire frequency in the NH, their intensity and the related emissions using 20 years (2003-2022) of MODIS fire observations analyzed with the APIFLAME model. The link between large events and fire weather is studied using the ERA5 reanalyses and the Canadian Fire Weather Index (FWI). The related impact on the variability of total CO and AOD in the NH is analyzed using 15 years (2008-2022) of satellite observations from IASI/Metop and MODIS/Terra and Aqua, respectively. Finally, plume retro trajectories are computed in order to assess the contribution of the different geographical areas of the NH on the CO and AOD variability.

How to cite: Ehret, A., Turquety, S., George, M., and Clerbaux, C.: Variability of CO and aerosols plumes from wildfires in the Northern Hemisphere in 2008-2022 using satellite observations., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6797, https://doi.org/10.5194/egusphere-egu23-6797, 2023.

EGU23-7379 | Orals | BG1.2 | Highlight

Changes in global fire regimes under idealized overshoot scenarios 

Lars Nieradzik, Hanna Lee, Paul Miller, Jörg Schwinger, and David Wårlind

Within the framework of the project IMPOSE (Emit now, mitigate later? IMPlications of temperature OverShoots for the Earth system) six idealized emission-overshoot simulations have been performed with the Earth System Model NorESM2-LM2 and used as forcing for the 2nd generation dynamic global vegetation model LPJ-GUESS with its fire-model SIMFIRE-BLAZE to investigate the impact of different CO2 overshoots on global wildfire regimes.

The simulations describe a set of scenarios with high, medium, and low accumulative CO2 emissions and each of which has a short (immediate) and a long (100 years) peak of accumulative CO2 emissions before declining towards a baseline simulation of 1500 PgC accumulatively emitted within the first 100 years.

The results show that the height of the overshoot has an impact on global fire regimes while its duration does not seem to play a significant role 200 years after peak CO2. Overall, we can see that changes in vegetation composition following the temperature anomaly are the main driver for changes in global wildfire frequency. While in the low overshoot scenarios burnt area has almost converged towards the baseline simulation, the extremest scenarios show the lowest burnt area at the end of the simulation period, indicating that vegetation changes, especially in low latitudes, have been most significant and/or are still ongoing.

How to cite: Nieradzik, L., Lee, H., Miller, P., Schwinger, J., and Wårlind, D.: Changes in global fire regimes under idealized overshoot scenarios, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7379, https://doi.org/10.5194/egusphere-egu23-7379, 2023.

EGU23-7449 | ECS | Orals | BG1.2

The role of vegetation in UK upland wildfires: Risk, Resilience, and Remote Sensing 

Kirsten Lees and Tim Lenton

Wildfires are becoming a growing concern in the UK, as climate change increases the occurrence and persistence of periods of hot, dry weather. Vegetation type and management play an important but contested role in UK fire risk and resilience, and questions remain over the best ways to prevent large fires developing. Remote sensing can provide vital data on fire size, severity, and recovery times, but method effectiveness is dependent on understanding specific ecosystems. This research uses ground validation of four wildfires in the UK Peak District National Park to deliver insights which improve interpretation of satellite data in wildfire monitoring. These insights are then applied to a three-year remote sensing database of large wildfires in England and Wales, to give novel results on the links between vegetation type and management, and fire size and severity. Ecosystem resilience and recovery is further explored through analysing the vegetation growth post-fire at three of the four Peak District study sites. This project therefore develops and validates remote sensing methodology in wildfire research by combining field data with satellite imagery to yield new understandings of the relationships between vegetation and fire. 

How to cite: Lees, K. and Lenton, T.: The role of vegetation in UK upland wildfires: Risk, Resilience, and Remote Sensing, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7449, https://doi.org/10.5194/egusphere-egu23-7449, 2023.

EGU23-7853 | Posters on site | BG1.2

Current Operational Implementation of the Canadian Forest Fire Weather Index System in the Republic of Ireland 

Klara Finkele, Padraig Flattery, Ciaran Nugent, and Paul Downes

Since 2006 the Canadian Forest Fire Weather Index System (FWI) has been employed operationally at Met Éireann to predict the risk of forest fires in Ireland (Walsh, S, 2006). Around 11% or 770,000 ha of the total land area of Ireland is afforested, but there are also large areas of open mountain and peatlands covered in grasses, dwarf-shrub and larger woody shrub type vegetation which can provide fuel for spring wildfires under suitable conditions. Following winter, vegetation can be dead or have a very low live moisture content, and the flammability of this vegetation can be readily influenced by prevailing weather, especially following prolonged dry periods.

The Department of Agriculture, Food and Marine is the Forest Protection authority in Ireland responsible for issuing Fire Danger Notices. These notices improve preparedness for fire responses and are based on information provided by Met Éireann who calculate the FWI and FWI components using observation data at synoptic stations, and the predicted FWI for the next five days ahead based on numerical weather prediction data.

The FWI is determined based on the types of forest fuel and how quickly they dry out/get rewetted, and components of fire behaviour. The FWI represents the fire intensity as the rate of energy per unit length of fire front (kW/m). The components which provide the most accurate indication of risk under Irish conditions are the Fine Fuel Moisture Code and Initial Spread Index, based on the fuels involved and ignition patterns observed to date. Since 2022 Met Eireann provide the FWI as well as the individual components Fine Fuel Moisture Content and Initial Spread Index via the public website for synoptic stations. These indices are based on observations and a seven-day forecast into the future using ECMWF predictions. This allows all county councils responsible for wildfire preparedness to access this information swiftly and directly.

Met Éireann also use the ANYWHERE multi-hazard warning tool which allows for visualisation of multiple fire-related risk factors and warning indices to be viewed simultaneously. The ANYWHERE system, in combination with our station-based forecast and antecedent conditions, provide fire managers and response teams with excellent information with which to make decisions. 

How to cite: Finkele, K., Flattery, P., Nugent, C., and Downes, P.: Current Operational Implementation of the Canadian Forest Fire Weather Index System in the Republic of Ireland, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7853, https://doi.org/10.5194/egusphere-egu23-7853, 2023.

EGU23-7913 | ECS | Posters on site | BG1.2

Fate of Fire altered Organic Carbon in the arctic river-to-ocean continuum: Resolving Mackenzie River Black Carbon in the Beaufort Sea 

Linn G. Speidel, Lisa Bröder, Julie Lattaud, Negar Haghipour, Timothy I. Eglinton, and Alysha I. Coppola

Keywords: Black carbon, Dissolved organic carbon, BPCAs, Mackenzie River, Beaufort Sea, Climate change

Climate change is amplified in the arctic and boreal regions. This causes higher average temperatures and less precipitation in the summer months and is resulting in longer wildfire seasons, severity, frequency and extent. This increases the relies of carbon into the atmosphere as greenhouse gases and aerosols, amplifying climate change even further. Black carbon (BC) is a fraction of organic carbon, resulting from the incomplete combustion of biomass and fossil fuels. BC may be inaccessible for biodegradation, because of its highly condensed aromatic molecular structure and therefore stores carbon on long timescales on land and in the ocean. BC is produced on land, but is transported as dissolved BC (DBC) by the rivers to the oceans, where it cycles on millennial timescales, sequestering BC. Thus, it is important to understand the significance of BC in the context of increased fires in this vulnerable region in the face of climate change.

The Mackenzie River is a major source of terrestrial dissolved organic carbon (DOC) and the largest source of sediments to the Arctic Ocean. Here, we resolve the cycling of riverine DBC from the Mackenzie River to its fate in the Beaufort Sea, and the influence of mixing with Pacific water masses entering from the Chukchi Sea. We present DBC concentration data in ocean water, which was collected on two cruises in the Beaufort Sea in 2021 and 2022 covering the outflow of the Mackenzie River.

For DBC concentrations, we digested solid phase extracts of DOC with nitric acid to oxidize BC molecules into benzenepolycarboxylic acids (BPCAs), which were then quantified on High Performance Liquid Chromatography (HPLC). We compare the concentrations of the DBC and DOC to trace the mixing of DBC river outflow with the ocean water. Since DBC originates on land and is relatively stable to biodegradation we can resolve the pathways of DBC from the Mackenzie River to the Arctic Ocean.

 

 

How to cite: Speidel, L. G., Bröder, L., Lattaud, J., Haghipour, N., Eglinton, T. I., and Coppola, A. I.: Fate of Fire altered Organic Carbon in the arctic river-to-ocean continuum: Resolving Mackenzie River Black Carbon in the Beaufort Sea, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7913, https://doi.org/10.5194/egusphere-egu23-7913, 2023.

EGU23-7937 | ECS | Orals | BG1.2

A New Method for Nowcasting Wildfire Risk 

Theodore Keeping, Sandy Harrison, and Iain Prentice

Wildfire risk prediction relies on the often-heuristic assessment of diverse fire potential indices, fuel maps, fire weather indices and prior fire activity data. Here we present a model nowcasting daily wildfire genesis probability and expected wildfire sizes in the contiguous US.

Predictors were selected and developed to account for climate, vegetation, topographic and human effects on wildfire genesis. Climate factors are represented by multiple fuel wetting and drying processes at daily to seasonal-scale antecedences, snowpack, and wind. We use GPP to predict fuel mass and recent growth, and dominant vegetation type. Human factors include population, landscape accessibility and ignition sources such as powerlines.

The first stage of the model predicts wildfire genesis probability as a zero-inflated process with an explicit probability of fire preclusion, whilst the second stage models fire sizes according to a generalised extreme value distribution. Nonlinear effects are accounted for via global optimisation for the domain for which each variable drives changes in fire genesis behaviour and the appropriate variable transform.

The model has good predictive and explanatory power, as shown by various performance metrics and the meaningful nonlinear relationships identified in the optimisation process. We show that this method can resolve seasonal wildfire risk dynamics well over smaller ecoregions than the observational record permits, allowing us to quantify the extent to which fire risk is determined by seasonal-scale versus daily-scale effects.

How to cite: Keeping, T., Harrison, S., and Prentice, I.: A New Method for Nowcasting Wildfire Risk, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7937, https://doi.org/10.5194/egusphere-egu23-7937, 2023.

EGU23-8075 | Posters on site | BG1.2

Impact of socio-economic factors in burnt area for future climate scenarios 

João Teixeira, Chantelle Burton, Douglas I. Kelley, Gerd Folberth, Fiona M. O'Connor, Richard Betts, and Apostolos Voulgarakis

Fire processes are a complex component of the Earth System processes and their full representation has proven to be difficult to represent Earth System Models (ESM). Because of this, these processes are often simplified in fire enabled ESMs, for instance ignitions are usually modelled to increase at low population densities up to a threshold, and reduce thereafter, as suppression effects become dominant with the increase of population density. However, socio-economic, and cultural factors can play a significant role in shaping the behaviour of fire ignitions. This study aims to address this by implementing a socio-economic factor in the fire ignition and suppression parametrisation in the INteractive Fire and Emission algoRithm for Natural envirOnments (INFERNO) based on the Human Development Index (HDI). The inclusion of this factor reduced a large long-standing positive bias found in regions of Temperate North America, Central America, Europe, and Southern Hemisphere South America. This change also leads to improvements in the model representation of fire weather and anthropogenic drivers in tropical regions, by reducing the influence of population density changes. Therefore, this framework can be used to improve understanding of the anthropogenic impacts of fire in future scenarios based on different Shared Socioeconomic Pathways.

How to cite: Teixeira, J., Burton, C., Kelley, D. I., Folberth, G., O'Connor, F. M., Betts, R., and Voulgarakis, A.: Impact of socio-economic factors in burnt area for future climate scenarios, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8075, https://doi.org/10.5194/egusphere-egu23-8075, 2023.

EGU23-9361 | ECS | Posters on site | BG1.2

Investigating Emergency Room Visits for Cardiorespiratory Diseases in Alberta and Ontario, Canada in Relation to Wildfires 

Victoria Flood, Kimberly Strong, Rebecca Buchholz, Sheryl Magzamen, and Grace Kuiper

Carbon monoxide (CO) is released during biomass burning events, resulting in decreased air quality and leading to the formation of climate forcing pollutants. An increase in wildfires has resulted in a change to the CO seasonal cycle of the North American Pacific Northwest, when comparing 2012-2018 to 2002-2011. This trend was reported using data from the Measurements of Pollution in the Troposphere (MOPITT) instrument on NASA’s Terra satellite. Similarly, an increase in summertime CO values was identified with the Fourier Transform Infrared (FTIR) spectrometer at the University of Toronto Atmospheric Observatory (TAO), over the same time period. Studies have shown correlations between wildfire smoke exposure and healthcare utilization for cardiovascular and respiratory conditions. Monthly counts of Emergency Department admissions for cardiovascular and respiratory diseases for Alberta and Ontario are investigated in relation to wildfire events in Canada and the USA. MOPITT and TAO FTIR CO columns, the Moderate Resolution Imaging Spectroradiometer (MODIS) burned area product, and provincial burned areas from Natural Resources Canada are assessed to estimate wildfire smoke exposure in the study region. This work aims to evaluate if CO can be used as a complementary tracer for health impacts from wildfire smoke exposure. 

 

How to cite: Flood, V., Strong, K., Buchholz, R., Magzamen, S., and Kuiper, G.: Investigating Emergency Room Visits for Cardiorespiratory Diseases in Alberta and Ontario, Canada in Relation to Wildfires, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9361, https://doi.org/10.5194/egusphere-egu23-9361, 2023.

EGU23-9575 | Orals | BG1.2

FRYv2.0 : a global fire patch morphology database from FireCCI51 and MCD64A1 

Florent Mouillot, Wentao Chen, Manuel Campagnolo, and Philippe Ciais

The assessment of global burned area from remote sensing is an essential climate variable driving land surface GHG emissions and energy/water budget. Gridded 0.25° or 0.5° monthly burned area have been largely used for biosphere/atmosphere interactions modelling, while recent fire/weather analysis or model developments increasingly request fire events, defined as a fire patch with intrinsic fire spread properties. Pixel level information, the finest resolution from global burned area, defined by their burn date, can be aggregated within a spatio-temporal threshold and delineate these fire events. Uncertainties in burn date, the coarse resolution of pixel resolution, multiple ignition points, or the specified values in spatio-temporal thresholds can however lead to various final fire event delineation. Currently, three major global fire event database exist (FRY, Fire Atlas, GlobFire), mostly derived from MCD64A1 pixel level 500m-resolution burned area. We propose here a new version of FRY, based on MCD64A1 and FireCCI51 at 250m, with an updated pixel aggregation method allowing for single ignition fire patches. Fire patch morphology indicators as elongation, direction, complexity have been conserved from v1.0, with additional information as ignition points from minimum burn date from burned area and more timely-accurate hotspots (VIIRS and MCD14ML), rate of spread, fire Radiative power and burn severity, as well as fraction of land cover affected, based on user requirements. The dataset is delivered as a yearly shapefile, with an attribute table referencing all information on ignition, spread and final shape. Global comparison of major information from FRYv2.0 (fire size distribution, fire number, ROS) will illustrate the effects of increasing spatial resolution and better timing from hotspots provided in this new version, freely available for the scientific community for the period 2001-2020.

How to cite: Mouillot, F., Chen, W., Campagnolo, M., and Ciais, P.: FRYv2.0 : a global fire patch morphology database from FireCCI51 and MCD64A1, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9575, https://doi.org/10.5194/egusphere-egu23-9575, 2023.

EGU23-9791 | Orals | BG1.2 | Highlight

Lightning in a changing climate and its impacts on fire area burned 

Cynthia Whaley, Courtney Schumacher, Montana Etten-Bohm, Vivek Arora, David Plummer, Jason Cole, Michael Lazare, and Ayodeji Akingunola

Lightning is an important atmospheric process for igniting forest fires – often in remote locations where they are not easily suppressed – which results in potentially large emissions of many pollutants and short-lived climate forcers. Lightning also generates reactive nitrogen, resulting in the production of tropospheric ozone, the third most important greenhouse gas. Furthermore, the changing climate is expected to change the frequency and location of lightning. As such, lightning is an important component of climate models. The Canadian Atmospheric Model, CanAM, is one such climate model that did not contain an 'online' lightning parameterization. Fire ignition in CanAM was done via an unchanging climatological lightning input. In this study, we have added a new logistical regression lightning model (Etten-Bohm et al, 2021) into CanAM, creating the capacity for future lightning predictions with CanAM under different climate scenarios. The modelled lightning and fire area burned were evaluated against measurements in a historical period with good results. Then we simulate lightning and fire area burned in a future climate scenario in order to provide an estimate on how lightning and its impacts will change in the future. This study also presents the first time that CanAM’s land fire model was used online with its atmosphere to fully simulate fires in the global earth system.

Reference:

Etten-Bohm, M., J. Yang, C. Schumacher, and M. Jun : Evaluating the relationship between lightning and the large-scale environment and its use for lightning prediction in global climate models, JGR-atmospheres, 126, e2020JD033990, 2021.

How to cite: Whaley, C., Schumacher, C., Etten-Bohm, M., Arora, V., Plummer, D., Cole, J., Lazare, M., and Akingunola, A.: Lightning in a changing climate and its impacts on fire area burned, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9791, https://doi.org/10.5194/egusphere-egu23-9791, 2023.

EGU23-10336 | Posters on site | BG1.2

A hybrid deep learning framework for predicting point-level Alaskan fires 

Hocheol Seo and Yeonjoo Kim

Fires in high latitudes are becoming more critical in terrestrial ecosystem modeling. With climate warming and dry weather condition, the fires have spread more, and widespread burning has severely damaged the ecosystem. As the fire dynamics cannot be described with the mass or energy balance equations, the fire models have been developed with different input variables, linked with different vegetation models, and widely coupled with the earth system models (ESMs) or land surface models (LSMs) with different complexities of parameterization. Here, we designed a new approach using hybrid deep learning [Long Short-Term Memory (LSTM) - Artificial Neural Network (ANN)] for predicting Alaskan natural fires and aimed to understand the impacts of fires with from the NCAR community land model 5 – biogeochemistry (CLM5-BGC). This study was conducted based on fire information provided by Alaska Interagency Coordination Center (AICC), which provides the data for each fire point, start date, end date, and total burned area from 2016-2020. As the fire duration was identified as the most important in predicting the burned area, we first trained the LSTM for predicting fire duration (i.e., fire ignition and fire persistence period) with ERA5 atmospheric forcings. Also, we trained ANN to predict the burned area with both ERA5 atmospheric forcings and fire duration. Then, we combined two models (LSTM and ANN) to simultaneously predict the fire days and burned area with climate and vegetation datasets. This hybrid model has the strength to capture large fires (>10000ha), comparing the burned area from CLM5-BGC (Correlation: 0.79). When this hybrid model is coupled with CLM5-BGC, we found that the carbon fluxes changed over Alaska. In particular, total net ecosystem exchange (NEE) increased by more than two times that of only CLM5-BGC, which could primarily affect terrestrial carbon exchanges.

Acknowledgement

This work was supported by the Korea Polar Research Institute (KOPRI, PE22900) funded by the Ministry of Oceans and Fisheries and the Basic Science Research Program through the National Research Foundation of Korea, which was funded by the Ministry of Science, ICT & Future Planning (grant no. 2020R1A2C2007670) and by the Ministry of Education (2022R1A6A3A13073233).

How to cite: Seo, H. and Kim, Y.: A hybrid deep learning framework for predicting point-level Alaskan fires, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10336, https://doi.org/10.5194/egusphere-egu23-10336, 2023.

EGU23-10389 | Orals | BG1.2

Towards mechanistic representation of wildfire effects on soil – downscaling to quantify subsurface heat fluxes 

Dani Or, Hamid Vahdat-Aboueshagh, Eden Furtak-Cole, and Sean A. McKenna

Advances in wildfire modeling have focused on refining atmospheric interactions for obvious links between local airflows, combustion dynamics, fire line advance and smoke plume transport. Yet, lasting impacts of wildfires on landscapes are linked primarily with changes in soil characteristics and alteration of ecological and hydrologic processes. Quantitative assessment of wildfire impacts requires metrics for fire-surface thermal interactions beyond qualitative surrogates such as burn severity used for ecological assessment. The highly transient and localized nature of wildfire intensity and its coarse spatial and temporal representation hinder quantitative translation of wildfire dynamics to soil heat fluxes even with the most advanced wildfire models (e.g., QuicFire, WRF-Fire, WFDS). Inspired by the pioneering works of Byram, Rothermel and Albini, we seek to derive high resolution information on fire line intensities from highly resolved fuel maps informed by fire line dynamics derived from numerical wildfire model representation. This hybrid downscaling approach (limited by the quality and resolution of fuel maps) offers a means for constraining soil surface heat fluxes at resolutions relevant to quantifying critical temperatures and duration at depth to estimate pyrolysis of soil organic carbon and the degree of soil structure alteration. Examples will be presented and discussed. 

How to cite: Or, D., Vahdat-Aboueshagh, H., Furtak-Cole, E., and A. McKenna, S.: Towards mechanistic representation of wildfire effects on soil – downscaling to quantify subsurface heat fluxes, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10389, https://doi.org/10.5194/egusphere-egu23-10389, 2023.

EGU23-10651 | ECS | Posters on site | BG1.2

An annually resolved stalagmite record of fire frequency for the last 250 years in south west Australia 

Liza McDonough, Pauline Treble, Andy Baker, Andrea Borsato, Silvia Frisia, Micheline Campbell, Gurinder Nagra, Katie Coleborn, Michael Gagan, Jian-xin Zhao, and David Paterson

Stalagmites provide records of past changes in climate, vegetation, and surface events, which can be identified through variability in their chemical composition over time. This variability is the result of changes in surface environmental properties, which are reflected in the physical and chemical properties of the water that percolates into the cave, ultimately affecting the composition of the speleothem calcite. Wildfires have the potential to alter soil properties and soluble element concentrations. Consequently, stalagmite compositions have been shown to respond to increases in soil nutrients, trace metal concentrations, and changes in soil/karst bedrock hydraulic conductivity. It is, therefore, likely that stalagmites, and particularly those grown in shallow caves for which transmission of the surface signal is rapid, capture the environmental effects of wildfires in their chemical and physical properties.

We analysed a stalagmite from a shallow cave in a region known to be affected by wildfires in south-west Western Australia. Fire proxies were assessed using a multi-proxy approach. This includes water isotopes via stable-isotope ratio mass spectrometry and trace element analyses via synchrotron X-ray fluorescence microscopy and laser ablation inductively coupled plasma mass spectrometry. This approach shows that the timing of known fire events coincided with a multi-proxy response in stalagmite chemistry, including increased concentrations of phosphorus, copper, aluminium, lead, and zinc, which are interpreted to be derived from leaching of ash from burned vegetation above the cave. We also identified lower and less variable peaks in phosphorus concentrations during the pre-colonisation period, suggesting that Indigenous land management resulted in more frequent but low intensity burning. This contrasted with less frequent but more intense fires associated with post-colonisation land-management. A particularly large paleo-fire identified in 1897 appears to coincide with a peak in 𝛿18O, interpreted to have resulted from evaporation of sub-surface water during the heat of the fire. This large fire was preceded by a multi-decadal dry period identified by trace element proxies. The intensity of the 1897 fire was then exacerbated by the combination of a multi-decadal drought and a transition away from cultural burning practices by Indigenous Australians, which resulted in build-up of vegetation and dry combustible material on the forest floor.

This research is a world-first demonstration of fire events recorded in stalagmites and shows their potential to provide accurate records of both fire frequency intervals and changes in climate. Further records of past fire events from stalagmites will help to understand how past fire regimes have varied with climate, land-use change and colonisation, and will help to better guide land management practices in the future.

How to cite: McDonough, L., Treble, P., Baker, A., Borsato, A., Frisia, S., Campbell, M., Nagra, G., Coleborn, K., Gagan, M., Zhao, J., and Paterson, D.: An annually resolved stalagmite record of fire frequency for the last 250 years in south west Australia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10651, https://doi.org/10.5194/egusphere-egu23-10651, 2023.

EGU23-11016 | ECS | Posters on site | BG1.2

Speleothems as archives for palaeofire proxies 

Micheline Campbell, Liza McDonough, Pauline Treble, Andy Baker, Nevena Kosarac, Katie Coleborn, Peter Wynn, and Axel Schmitt

Environmental proxy archives such as tree rings, sediment cores, and ice cores are commonly used to investigate past fire regimes. Speleothems, naturally forming cave decorations mainly comprising of stalagmites, stalactites, and flowstones, have been extensively used as palaeoenvironmental archives as their physical attributes and chemical composition change with changed environment. Research has shown that cave drip water chemistry responds to fire events, and more recently, that speleothems can record past fire events due to physical and chemical processes which alter speleothem composition. These processes include changes to water stores due to evaporation, fracturing of the host rock, changed soil hydrophobicity, production of highly soluble lime, changes in soil CO2 production, destruction of vegetation and deposition of ash above the cave. These changes can result in shifts in δ18O and δ13C, altered concentrations of vegetation, soil and bedrock-derived elements, and incorporation of soluble ash derived elements (including phosphorus, aluminium, copper, zinc, and lead) in speleothems (McDonough et al., 2022; Campbell et al., 2022).

Changes in speleothem chemistry are typically determined using micro-analytical techniques (such as Synchrotron X-ray Fluorescence Microscopy and laser ablation inductively coupled plasma mass spectrometry) and isotope ratio mass spectrometry. These changes can be precisely and absolutely dated via uranium-series and carbon dating, and can often be resolved at high resolution via manual counting of seasonal fluctuations in organic matter and trace element concentration. This makes speleothems, particularly those grown in shallow caves in highly seasonal climates, ideal for identifying both short-lived events such as wildfires, and longer-term changes such as shifts in climate. This novel application of speleothems as archives for coupled climate and palaeofire proxies is still in its infancy but holds great potential.

Here, we present a review of this new sub-discipline. We cover its origins in cave dripwater monitoring, discuss site and sample selection, and describe the current analytical and statistical approaches used to extract fire information from speleothems. Such records will enable land managers to develop improved methods for managing fire regimes.

McDonough, L.K., Treble, P.C., Baker, A., Borsato, A., Frisia, S., Nagra, G., Coleborn, K., Gagan, M.K., Zhao, J., Paterson, D., 2022. Past fires and post-fire impacts reconstructed from a southwest Australian stalagmite. Geochimica et Cosmochimica Acta. https://doi.org/10.1016/j.gca.2022.03.020
 
Campbell, M., McDonough, L., Treble, P., Baker, A., Kosarac, N., Coleborn, K., Wynn, P.M., Schmitt, A., 2022. Speleothems as Archives for Palaeofire Proxies [preprint], https://www.authorea.com/doi/full/10.1002/essoar.10511989.1
 

How to cite: Campbell, M., McDonough, L., Treble, P., Baker, A., Kosarac, N., Coleborn, K., Wynn, P., and Schmitt, A.: Speleothems as archives for palaeofire proxies, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11016, https://doi.org/10.5194/egusphere-egu23-11016, 2023.

EGU23-11297 | Orals | BG1.2

Effects of land use, fuel loads and fuel moisture on fire intensity and fire emissions in South America derived by reconciling bottom-up and top-down satellite observations 

Matthias Forkel, Niels Andela, Vincent Huijnen, Christine Wessollek, Alfred Awotwi, Daniel Kinalczyk, Christopher Marrs, and Jos de Laat

Emissions from vegetation fires in tropical forests have the potential to turn the global land carbon sink into a source, affect atmospheric chemistry, and hence air quality. While natural forest fires are a rare phenomenon in tropical forests of South America and are usually of rather low intensity, deforestation fires and small land clearings in systems with high fuel loads can cause intense fires and high emissions. However, the high moisture content in tropical forests causes incomplete combustion and higher emissions of carbon monoxide (CO) than of carbon dioxide. The interacting effects of land use change, fuel load and moisture on fire intensity and emissions is, however, difficult to quantify at large scales because not all of those components are readily available from Earth observations in a consistent way. 

Here, we make use of several satellite products on vegetation, fire activity and atmospheric composition to quantify the effects of land use, fuel loads, fuel moisture on fuel consumption, emission factors and hence on emissions and atmospheric trace gas concentration. First, we use observations of active fires and fire radiative power from the VIIRS and Sentinel-3 SLSTR sensors to map different fire types (forest fires, deforestation fires, small land clearing and agricultural fires, savannah fires). Second, we integrate satellite products of canopy height, above-ground biomass, leaf area index, land cover and soil moisture in a novel data-model fusion framework to estimate fuel loads and moisture in vegetation, surface litter and woody debris. We then combine in a bottom-up approach the fire types with fuel loads and moisture to estimate fuel consumption and fire emissions using default emission factors. Third, we use observations from Sentinel-5p TROPOMI and the Integrated Forecast Systems (IFS) of the Copernicus Atmosphere Monitoring Service to compare the bottom-up estimates with distributions of CO and NOx in the atmosphere, which allows optimising emissions and associated emission factors.

Our reconciled estimates of fire emissions outperform previous CO estimates e.g. from the Global Fire Assimilation System, which demonstrates an improved estimation of fire carbon emissions. The results show that the high fire intensity and emissions in tropical deforestation fires originate from the burning of high loads of woody biomass and coarse woody debris. The high fuel moisture content causes higher emission factors of CO in tropical forests than in savannah fires and hence higher absolute emissions of CO. Our new model approaches and satellite products allow to provide an integrated assessments on the effects of fuel and fire behaviour on fire emissions.

How to cite: Forkel, M., Andela, N., Huijnen, V., Wessollek, C., Awotwi, A., Kinalczyk, D., Marrs, C., and de Laat, J.: Effects of land use, fuel loads and fuel moisture on fire intensity and fire emissions in South America derived by reconciling bottom-up and top-down satellite observations, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11297, https://doi.org/10.5194/egusphere-egu23-11297, 2023.

EGU23-11559 | ECS | Orals | BG1.2

Identifying the limits to fire growth in Eastern Siberia 

Thomas Janssen and Sander Veraverbeke

Boreal forests store about one third of the world’s forest carbon and may store even more carbon in the future because of the positive effects of rising atmospheric CO2 concentrations on photosynthesis and plant growth. However, fire frequency and severity have also been increasing in boreal forests in the last decades, which might offset their carbon sink potential. In Eastern Siberia, the dry and hot summers of 2020 and 2021 showed exceptionally high fire activity. However, even large fires that can spread for several months, eventually come to an end. This can be because of a change in the weather or because fires run out of fuels. Here, we aim to quantify the controls of fire growth in Eastern Siberia using high resolution landscape variables and hourly ERA-5 meteorological variables. We harmonized the burned area product from the Fire Climate Change Initiative and active fire product from the Visible Infrared Imaging Radiometer Suite, and derived fire perimeters from them for the period between 2012 and 2021. Along these fire perimeters, we then identified spatial changes in landscape variables (i.e. a decline in tree cover or increase in surface water) and temporal changes in hourly vapor pressure deficit and wind. By doing so, we could attribute causes of why fires stopped spreading.

How to cite: Janssen, T. and Veraverbeke, S.: Identifying the limits to fire growth in Eastern Siberia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11559, https://doi.org/10.5194/egusphere-egu23-11559, 2023.

EGU23-11992 | Orals | BG1.2

Assessing the feasibility of prescribed burning as a fire risk reduction tool for The Netherlands 

Niels van Manen, Albert Buxó, Linde Egberts, Laura Houwaard, Lennard Jacobsen, Jip Keesom, Martijn Reijners, David van Slooten, Anneloes Teunisse, and Anoek van Tilburg

Climate change is expected to cause prolonged and more severe droughts in Europe, increasing landscape fire occurrence. Since The Netherlands has a high population density in areas typified as ‘Wildland-Urban Interface’, a genuine risk for Dutch society arises. Landscape management, such as prescribed burning, can reduce fire risk. Prescribed burning is executed by intentionally burning the low and understory vegetation, limiting fuel for a landscape fire, under controlled conditions. In this interdisciplinary research, conducted by a team of (early career) researchers from climate science, cultural studies, hydrology, mathematics and spatial economics, we aim to assess whether prescribed burning can be used in The Netherlands as a fire risk reduction tool in natural areas with a high fire risk.

 

The Netherlands has a well-developed flood management system. However, it lacks such holistic approaches to landscape fire management. Landscape managers and researchers can learn from Dutch flood management by applying the secondary objective, improvement of spatial quality, to prescribed burning. In this research we assess the potential for improving spatial quality through prescribed burning, by adapting the spatial quality framework of the Dutch Room for the River project. Our framework looks at the three pillars burning effectiveness, ecological robustness, and cultural meaning at the potential prescribed burning sites. Burning effectiveness is highest in natural areas (Natura 2000 sites), with high fire risk and the presence of low vegetation. Ecological robustness measures the disturbance prescribed burning could cause in a landscape. Disturbance depends on the burning frequency and intensity, as well as on the type of vegetation that is burned and the usage of the area. In groundwater protection areas, seepage of harmful elements could cause more disturbance. These areas are therefore excluded from the analysis. From the perspective of cultural meaning, social perceptions influence the measure’s performance. Cultural significance and landscape identification provide various perspectives on fires and prescribed burning. Categorizing the different levels of engagement, based on an engagement pyramid, can deliver a basis for implementing prescribed burning.

 

Preliminary analyses result in a selection of 15 Natura 2000 sites in The Netherlands where prescribed burning could be feasible, varying from the Voornes Duin (14 km2) to the Veluwe (885 km2). These areas are mostly vegetated with coniferous and mixed forests. Prescribed burning potentially causes more disturbance in grasslands. However, since none of the 15 areas contain more than 24% grassland, prescribed burning could still be feasible at all locations. In the area of the Veluwe, qualitative interviews with the local population indicate support for fire management, such as prescribed burning, as they are aware of the risks imposed by landscape fires.

 

The final research results can contribute to the improvement of fire management in both The Netherlands and other North-Western European countries with similar vegetation and climate change effects.

How to cite: van Manen, N., Buxó, A., Egberts, L., Houwaard, L., Jacobsen, L., Keesom, J., Reijners, M., van Slooten, D., Teunisse, A., and van Tilburg, A.: Assessing the feasibility of prescribed burning as a fire risk reduction tool for The Netherlands, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11992, https://doi.org/10.5194/egusphere-egu23-11992, 2023.

EGU23-12559 | ECS | Posters on site | BG1.2

High-latitude wildfires, atmospheric composition, and climate 

Eirini Boleti, Katie Blackford, Stelios Myriokefalitakis, and Apostolos Voulgarakis

In high-latitude regions, larger and more frequent fires have been occurring over recent years, a tendency that is expected to continue in the coming decades due to warmer temperatures and regionally decreased precipitation imposed by climate change (IPCC,2019). Boreal wildfires in general are a significant source of CO2 emissions, as well as other greenhouse gases and aerosols (Akagi et al. 2011; Van Der Werf et al. 2010), e.g. emissions from boreal forests between 1997 and 2016 accounted for 7.4% of the global emissions (van der Werf et al. 2017). The effects of boreal fires on future climate have not been investigated and are potentially of great importance since climate change is occurring more rapidly in those high-latitude areas. More flammable forests in addition to the large carbon-rich peatlands, will potentially lead to devastating consequences.

The overall goal of our project is to quantify the effects of high-latitude wildfire emissions on atmospheric composition as well as climate. For this purpose, simulations with the EC Earth Earth System Model (ESM) are being employed to characterize the past, present and future variability and changes of wildfires especially in high latitudes. In the results presented here, we demonstrate how the EC Earth model performs when forced with prescribed fire emissions (GFED4) and with a more detailed peat fire module developed by our team. The mean state, seasonality, and interannual variability of fire emissions and key atmospheric constituent abundances (black carbon, organic carbon, NOx, CO, ozone, amongst others) are validated in the model, using a range of observational datasets. This validation exercise is a key step before employing the EC-Earth model for quantifying future impacts of high-latitude fires on atmospheric composition and climate.

 

IPCC,2019: Jia, G., E. Shevliakova, P. Artaxo, N. De Noblet-Ducoudré, R. Houghton, J. House, K. Kitajima, C. Lennard, A. Popp, A. Sirin, R. Sukumar, L. Verchot, 2019: Land–climate interactions. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D.C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M, Belkacemi, J. Malley, (eds.)]. In press.

Akagi, S.K. et al., 2011: Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys., 11, 4039–4072, doi:10.5194/acp-11-4039-2011.

Van Der Werf, G.R. et al., 2010: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys., 10, 11707–11735, doi:10.5194/acp-10-11707-2010.

Van Der Werf, G.R. et al., 2010: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys., 10, 11707–11735, doi:10.5194/acp-10-11707-2010.

How to cite: Boleti, E., Blackford, K., Myriokefalitakis, S., and Voulgarakis, A.: High-latitude wildfires, atmospheric composition, and climate, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12559, https://doi.org/10.5194/egusphere-egu23-12559, 2023.

EGU23-12604 | Orals | BG1.2

Causes of uncertainty in simulated burnt area by fire-enabled DGVMs 

Matthew Forrest, Chantelle Burton, Markus Drüke, Stijn Hantson, Fang Li, Joe Melton, Lars Nieradzik, Sam Rabin, Stephen Sitch, Chao Yue, and Thomas Hickler

Fire-enabled dynamic global vegetation models (DGVMs) can be used to study how fire activity responds to its main drivers, including climate/weather, vegetation and human activities, at coarse spatial scales. Such models can also be used to examine the effects of fire on vegetation, and, when embedded in Earth system models, investigate the feedback of fire on the climate system. Thus they are valuable tools for studying wildfires. Accordingly, the Fire Model Intercomparison Project (FireMIP) was established to evaluate and utilise these models using consistent protocols.

Here we present the second round of FireMIP simulations to focus historic wildfire drivers (1901 to present). A six-member ensemble of simulations from fire-enabled DGVMs was compared to remotely-sensed burnt area observations and to the previous round of historical FireMIP simulations. We found that the model skill when simulating spatial patterns of burnt area shows modest improvements compared to the previous FireMIP round, and that the simulations mostly reproduce the decreasing trend in global burnt area found over the last two decades. However, whilst the broad global patterns are reasonable, there are considerable discrepancies with regards to regional agreement and timing of burnt area. Furthermore, the models show diverging trends in the pre-satellite era.

To investigate further and inform future model development, we explored the residuals between simulated burnt area from the FireMIP models and remotely-sensed burnt area as a function of climate, vegetation, anthropogenic and topographic variables using generalised additive models (GAMs). We found some common responses across the models, with many over-predicting fire activity in arid/low productivity areas and all models under-predicting at low road density. However, with respect to other variables, such as wind speed and cropland fraction, the models residuals showed divergent responses. It is anticipated that these results should aid further development of global fire models in terms of driving variables, process representations and model structure.

How to cite: Forrest, M., Burton, C., Drüke, M., Hantson, S., Li, F., Melton, J., Nieradzik, L., Rabin, S., Sitch, S., Yue, C., and Hickler, T.: Causes of uncertainty in simulated burnt area by fire-enabled DGVMs, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12604, https://doi.org/10.5194/egusphere-egu23-12604, 2023.

EGU23-12731 | ECS | Posters on site | BG1.2

Quantifying the direct influence of climate change on the rate of spread of wildfires in the Iberian Peninsula 

Martín Senande-Rivera, Damián Insua-Costa, and Gonzalo Míguez-Macho

Due to its strong connection with meteorological conditions and vegetation structure, fire activity is affected by anthropogenic climate change. As a direct effect, climate regulates fuel moisture, so warmer and drier conditions are linked to higher fuel flammability, increasing fire risk. We use data from ERA5 and different CMIP6 models to build a database of fuel moisture (for both live and dead fuels) under real conditions (factual) and modified conditions without the influence of global warming (counterfactual). We then calculate the rate of spread of some observed wildfires in the Iberian Peninsula from 2001 to 2021, from both factual and counterfactual data. We find that climate change influence is already noticeable and significant. We also identify the areas most vulnerable to the impacts of climate change and the time of the year when these impacts are strongest. 

How to cite: Senande-Rivera, M., Insua-Costa, D., and Míguez-Macho, G.: Quantifying the direct influence of climate change on the rate of spread of wildfires in the Iberian Peninsula, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12731, https://doi.org/10.5194/egusphere-egu23-12731, 2023.

Tropospheric ozone (O3) is a key greenhouse gas and pollutant that is receiving increasing attention globally.  While there are many sources of tropospheric O3, precursors from human activity (Anthro) and open biomass burning (BB) are the only ones that can be controlled. As such, it is crucial for policymakers to understand the relative contributions of the two. However, determining the contribution of O3 can be challenging as it cannot be directly observed. It must be calculated by chemical transportation model (CTM) simulation which could be biased for unreal emission inventory, or estimated by real observations that assumes too simple chemical and transportation processes.

In this paper, we propose a solution by developing a deep learning (DL) model that combines both CTM simulations and observations. The DL model is able to learn a generalized relationship between unobservable O3 contribution from Anthro or BB sectors and observable mixing ratio of tracers simulated by CTM with full chemistry and transportation processes. The DL model then, when applied to observed tracers, could avoid the bias from model to provide an accurate estimation of the contributions in reality.

Our results indicate the contribution from BB to tropospheric remote ozone mixing ratio is no larger than that from Anthro emission from a global perspective, even when uncertainties are deliberately tuned to bias BB. Therefore, the reduction of anthropogenic emissions should be the top priority for controlling global background O3 levels, at least for the time period of 2016-2018 studied.

How to cite: Ma, C., Cheng, Y., and Su, H.: Biomass Burning Contributes Less to Remote Tropospheric Ozone than Human Activity, Indicated by a Deep Learning Approach, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13307, https://doi.org/10.5194/egusphere-egu23-13307, 2023.

EGU23-13544 | ECS | Posters on site | BG1.2

Seasonal skew of tropical savanna fires 

Tom Eames, Jeremy Russell-smith, Cameron Yates, Roland Vernooij, and Guido van der Werf

Tropical savannas and grasslands are the most frequently burned biome in the world, and fire constitutes an important part of the ecosystem. In this ecosystem it can have both rejuvenating and destructive effects, depending on several factors including fuel conditions, weather conditions, and time of year. For centuries humanity has used fire in these landscapes for hunting, land clearance, agriculture, and most recently carbon offsetting. Land managers in locations with a monsoonal climate and frequent fire regimes such as tropical savannas use prescribed burning as a management tool in the ‘early dry season’ (EDS) shortly after the last rains of the year. Fires at this time tend to be cooler, restricted to surface level and less severe, meaning they can be controlled more easily and tend to go out at night without external input. Commonly a specific, fixed date is used to indicate when this window of safe burning has expired, set based on experience of the local or regional authority. In this work, we have defined a method of determining when this window expires on the basis of active fire hotspot data from the twin MODIS instruments from 2001 through to 2021. By using the relationship between day and night-time active fire detections, we set a flexible date for the transition between the early and late dry seasons in fire-prone savannas globally in the five major tropical savanna regions - Northern & Southern hemisphere South America (NHSA & SHSA), Northern & Southern hemisphere Africa (NHAF & SHAF), and Australia (AUST). The variability across each region was high (lowest mean standard deviation annually was 24 days in NHAF and highest was 56 in AUST). The fraction of area burned in the late dry season ranged from 15% (SHSA) to as high as 85% (AUST) on average, with many parts of Africa and Australia especially showing a significant skew towards the late dry season. This suggests potential for implementation of prescribed burning programmes to increase the amount of desirable fire in the global savanna ecosystems.

How to cite: Eames, T., Russell-smith, J., Yates, C., Vernooij, R., and van der Werf, G.: Seasonal skew of tropical savanna fires, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13544, https://doi.org/10.5194/egusphere-egu23-13544, 2023.

EGU23-13603 | ECS | Orals | BG1.2

Simulating wildfire impacts on boreal forest structure over the past 20,000 years since the Last Glacial Maximum in Central Yakutia, Siberia 

Ramesh Glückler, Josias Gloy, Elisabeth Dietze, Ulrike Herzschuh, and Stefan Kruse

Even though wildfires are an important ecological component of larch-dominated boreal forests in eastern Siberia, intensifying fire regimes may induce large-scale shifts in forest structure and composition. Recent paleoecological research suggests that such a state change, apart from threatening human livelihoods, may result in a positive feedback on intensifying wildfires and increased permafrost degradation [1]. Common fire-vegetation models mostly do not explicitly include detailed individual-based tree population dynamics. However, setting a focus on patterns of forest structure emerging from interactions among individual trees in the unique forest system of eastern Siberia may provide beneficial perspectives on the impacts of changing fire regimes. LAVESI (Larix Vegetation Simulator) has been previously introduced as an individual-based, spatially explicit vegetation model for simulating fine-scale tree population dynamics [2]. It has since been expanded with wind-driven pollen dispersal, landscape topography, and the inclusion of multiple tree species. However, until now, it could not be used to simulate effects of changing fire regimes on those detailed tree population dynamics.

We present simulations of annually computed tree populations during the past c. 20,000 years in LAVESI, while applying a newly implemented fire module. Wildfire ignitions can stochastically occur depending on the monthly fire weather. Within the affected area, fire intensity is mediated by surface moisture. Fire severity depends on the intensity, with scaled impacts on trees, seeds and the litter layer. Each tree has a chance to survive wildfires based on a resistivity estimated from its height and species-specific traits of bark thickness, crown height, and their ability to resprout. The modelled annual fire probability compares well with a local reconstruction of charcoal influx in lake sediments. Simulation results at a study site in Central Yakutia, Siberia, indicate that the inclusion of wildfires leads to a higher number of tree individuals and increased population size variability compared to simulations without fires. In the Late Pleistocene forests establish earlier when wildfires can occur. The new fire component enables LAVESI to serve as a tool to analyze effects of varying fire return intervals and fire intensities on long-term tree population dynamics, improving our understanding of potential state transitions in the Siberian boreal forest.

References:

[1] Glückler R. et al.: Holocene wildfire and vegetation dynamics in Central Yakutia, Siberia, reconstructed from lake-sediment proxies, Frontiers in Ecology and Evolution 10, 2022.

[2] Kruse S. et al.: Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix, Ecological Modelling 338, 101–121, 2016.

How to cite: Glückler, R., Gloy, J., Dietze, E., Herzschuh, U., and Kruse, S.: Simulating wildfire impacts on boreal forest structure over the past 20,000 years since the Last Glacial Maximum in Central Yakutia, Siberia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13603, https://doi.org/10.5194/egusphere-egu23-13603, 2023.

EGU23-13941 | Orals | BG1.2 | Highlight

Wildfires, chromium and freshwater quality at tropical ultramafic catchments : A prospective study on laboratory-heated soils from New Caledonia 

Farid Juillot, Gael Thery, Cecile Quantin, Quentin Bollaert, Michael Meyer, Thomas Quiniou, Philippe Jourand, Marc Ducousso, Emmanuel Fritsch, and Guillaume Morin

During the last decade, the world faced record-breaking giant fires as observed in Australia and California, a trend that is expected to increase in the forthcoming years due to climate change (Palinkas, 2020; Sharples et al., 2016; van Oldenborgh et al., 2021). In addition to their large ecological impacts, wildfires are more and more regarded for their potential threat to human health through air pollution (Xu et al., 2020). However, water pollution resulting from wildfires represents an underestimated pathway for wildfires-induced health risk (Abraham et al., 2017). This latter impact is related to the heat generated by wildfires that can propagate towards several centimeters in the soil and transform/destroy soil components. In addition to weakening soil physical stability, such transformation/destruction can change the speciation of potentially toxic elements (PTEs) that are associated with these soil components, leading to enhanced mobility towards waterways (Abraham et al., 2017; Terzano et al., 2021). One notable PTE is chromium, which is naturally present in soils mostly as trivalent Cr(III), but can represent an environmental and health issue when occurring as hexavalent Cr(VI). Recent studies reported Cr(III) oxidation to Cr(VI) upon laboratory-heating of Cr(III)-doped Fe-oxyhydroxides (Burton et al., 2019a; 2019b). Besides, Cr(III) oxidation to Cr(VI) upon controlled heating was also demonstrated for different types of soils (Burton et al., 2019b; Rascio et al., 2022; Thery et al., 2023). All these considerations suggest a significant effect of wildfires on Cr(III) oxidation to Cr(VI) in soils, with a possible influence on Cr mobility that could further impact freshwater quality. This risk of freshwater Cr(VI) pollution is expected to particularly concern ultramafic catchments because of the related occurrence of Cr-rich soils.

We have tried to address this question by performing laboratory-heating of several soils types (Ferralsols, Cambisols and Vertisols) developed on various geological settings (ultramafic, mafic and volcano-sedimentary) in New Caledonia, a French overseas territory which is a good representative of wildfires-threatened tropical ultramafic catchments (Toussaint, 2020). The results obtained revealed a significant influence of soil heating on Cr(III) oxidation to Cr(VI), followed by an enhanced Cr(VI) mobility, in all soil types. However, the magnitude of Cr(III) to Cr(VI) oxidation and Cr mobility depended on the actual nature of the soil, Ferralsols showing the highest Cr(VI) release compared to Cambisols and Vertisols. These differences were further interpreted on the basis of the changes in Cr speciation (including redox) induced by laboratory-heating of the investigated soils, as revealed by synchrotron-based X-ray absorption spectroscopy analyses. Finally, a simple risk assessment relying on the hypothesized concentration of suspended particulate matter (SPM) issued from burned soils in the related waterways allowed to emphasize a risk of wildfires-induced freshwater Cr(VI) pollution for ultramafic catchments composed of Ferralsols (Thery et al., 2023). Beyond the single case of New Caledonia, the results of this study point to the need to foster collaborative studies in order to further evaluate this risk of wildfires-induced freshwater Cr(VI) pollution at tropical ultramafic catchments on a global scale.

How to cite: Juillot, F., Thery, G., Quantin, C., Bollaert, Q., Meyer, M., Quiniou, T., Jourand, P., Ducousso, M., Fritsch, E., and Morin, G.: Wildfires, chromium and freshwater quality at tropical ultramafic catchments : A prospective study on laboratory-heated soils from New Caledonia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13941, https://doi.org/10.5194/egusphere-egu23-13941, 2023.

EGU23-14211 | ECS | Posters on site | BG1.2

Impact of biomass burning on the chemical composition of Arctic aerosols using mass spectrometry 

Yvette Gramlich, Karolina Siegel, Sophie L. Haslett, Radovan Krejci, Paul Zieger, and Claudia Mohr

Biomass burning releases numerous aerosol particles into the air, influencing the radiative budget by scattering or absorbing solar radiation and by influencing cloud properties through acting as cloud condensation nuclei. These aerosol particles contain black and organic carbon and can be transported over large distances, reaching also pristine environments such as the Arctic. Due to the rising global temperature the fire activity has increased, and record-breaking black carbon concentrations have been observed in the Arctic (Stohl et al., 2007). Biomass burning events reaching the Arctic have been observed to increase the aerosol number concentration by about one to two orders of magnitude (Lathem et al., 2013). Although a lot of attention has been drawn to the physical characteristics of fire plumes, changes in chemical composition, specifically in the Arctic, are studied to a lesser extent. In this study we report molecular-level information on the chemical characteristics of biomass burning aerosol particles measured during different plumes reaching the island of Svalbard during 2020. These measurements were part of the year-long NASCENT (Ny-Ålesund aerosol cloud experiment; Pasquier et al., 2022) campaign, and were conducted using a filter inlet for gases and aerosols coupled to a high-resolution time-of-flight mass spectrometer (FIGAERO-CIMS) using iodide as reagent ion. We use the particle-phase levoglucosan, a well-known tracer for biomass burning released from cellulose combustion, obtained from the FIGAERO-CIMS to identify biomass burning events, and will discuss the chemical characteristics of the properties of the events compared to non-events and implications for aerosol radiative and hygroscopic properties. In addition to a better understanding of the chemical composition of aged fire plumes reaching the Arctic, our study will also give insights on the time scales on which the background Arctic air can be disturbed by fire activity. 

References:
Stohl et al., Atmospheric Chem. Phys., 7, 511–534, 2007
Lathem et al., Atmospheric Chem. Phys., 13, 2735–2756, 2013
Pasquier et al., Bull. Am. Meteorol. Soc., 103, E2533–E2558, 2022

How to cite: Gramlich, Y., Siegel, K., Haslett, S. L., Krejci, R., Zieger, P., and Mohr, C.: Impact of biomass burning on the chemical composition of Arctic aerosols using mass spectrometry, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14211, https://doi.org/10.5194/egusphere-egu23-14211, 2023.

EGU23-15549 | ECS | Posters on site | BG1.2

Regional precipitation variability modulates Holocene fire history of Iceland 

Nicolò Ardenghi, Gifford H Miller, Áslaug Geirsdóttir, David J Harning, Jonathan H Raberg, Thor Thordarson, and Julio Sepúlveda

We present the first continuous Holocene fire record of Iceland from a lacustrine archive in the northeast region. We use pyrogenic PAHs (polycyclic aromatic hydrocarbons) to trace shifts in fire regimes, paired to a continuous record of n-alkanes, faecal sterols, perylene, biogenic silica, and 13C, as proxies for soil erosion, lake productivity, and human presence.

Paleoclimate research across Iceland provides a template for changes in climate across the northern North Atlantic. The role of orbitally driven cooling, volcanism, and human impact as triggers of local environmental changes, such as fire and soil erosion, is debated. While there are indications that human impact could have reduced environmental resilience in a context of deteriorating climatic conditions, it is still difficult to resolve to what extent human and natural factors affected Iceland landscape instability, due also to a lack of data on natural fire regime prior and during human colonisation.

Pyrogenic PAHs can be formed during the incomplete combustion of biomass initiated by humans or natural wildfires. Factors such as fire temperature, biomass typology, and source distance can strongly affect pyrogenic PAH molecular weight and spatial distribution.
Faecal sterols/stanols and their ratios have been used in archaeological and paleoclimate studies to detect human and/or livestock/herbivore waste. The absence of large herbivorous mammals and humans in Iceland prior to settlement means that increases in the occurrence of faecal sterols and bile acids over natural background values should mark the arrival of humans and associated livestock in the catchment, which could be traced regionally.

Our results indicate that the Icelandic fire regime during the Holocene followed four main phases. Among these, a very long period centred around the Holocene climatic optimum (ca 9.5 – 4.5 ka BP) was characterised by a generally low frequency fire regime, both in the lake catchment as in the whole north-eastern Iceland. This same period was also marked by relatively low background levels of faecal sterols/stanols. At 4.5 ka BP a new phase started, with a general increase of all PAHs values. According to both our PAH and sterol data, there is no apparent human signal around the 9th century C.E., where an increase in man-made fires would likely be expected in connection to the historical data of Viking colonisation of Iceland (870s C.E.), suggesting that fire regimes have primarily been controlled by natural factors.
In addition, the pyrogenic PAHs record also differs from the trend of a general stepwise climatic “deterioration” previously highlighted by other lake proxies throughout Iceland, linked to decreasing summer insolation and related cooling, as highlighted also by our other proxies.

A comparison to recent palynological data from a nearby site and to δD data from the NW region suggest shifts in NAO regimes as the main forcing behind shifting fire regimes in Iceland. Changes in precipitation regimes would have determined shifts in the composition of the regional vegetational community, increasing fuel availability and flammability with decreasing precipitation, leading to widespread low temperature fires, easily trigged by frequent volcanic episodes.

How to cite: Ardenghi, N., Miller, G. H., Geirsdóttir, Á., Harning, D. J., Raberg, J. H., Thordarson, T., and Sepúlveda, J.: Regional precipitation variability modulates Holocene fire history of Iceland, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15549, https://doi.org/10.5194/egusphere-egu23-15549, 2023.

EGU23-15670 | ECS | Orals | BG1.2 | Highlight

Identifying tipping points and threshold values for ecosystem functioning in northern peatlands during the climate crisis (PEATFLAMES) 

Luke Andrews, Michał Słowiński, Harry Roberts, Katarzyna Marcisz, Piotr Kołaczek, Agnieszka Halaś, Dominika Łuców, and Mariusz Lamentowicz

Peatlands are globally important carbon sinks and stores. Climate change threatens to alter carbon cycling in some regions of the Northern Hemisphere, causing them to become net sources of atmospheric carbon, exerting a positive feedback upon global climate. Furthermore, enhanced drying, increased human activity and vegetation succession in response to a warming climate have increased the frequency of wildfires in some peat-bearing regions, including areas underlain by permafrost. Such events can cause thousands of years’ worth of formerly stable carbon to be rapidly released into the atmosphere, imparting further climate warming.

 

The future response of peatlands to climate warming and wildfire remains uncertain, and as a result peatlands are rarely included in Earth System Models, despite their importance in the global carbon system. Understanding how changes in climate and anthropogenic activity in the past affected peatland ecosystem functioning will improve our understanding of how these sensitive ecosystems may respond to future projected changes and thus reduce this uncertainty.

 

Our project aims to assess how warming, drought and wildfire have impacted the resilience of peatlands and permafrost in the Northern Hemisphere over the past c. 2000 years. Several peat cores spanning a latitudinal gradient covering several regions including Russia, Poland, the Baltic states and Scandinavia will be analysed using multiple palaeoecological proxies at high resolution to reconstruct past changes in wildfire frequency, hydrology and vegetation. This will allow us to define baselines and threshold values for ecosystem shifts relevant to future projected changes in climate.

 

How to cite: Andrews, L., Słowiński, M., Roberts, H., Marcisz, K., Kołaczek, P., Halaś, A., Łuców, D., and Lamentowicz, M.: Identifying tipping points and threshold values for ecosystem functioning in northern peatlands during the climate crisis (PEATFLAMES), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15670, https://doi.org/10.5194/egusphere-egu23-15670, 2023.

EGU23-16152 | Posters on site | BG1.2

Temporal analysis of wildfire emissions in the Northwest of Spain using ESA CCI data 

Patricia Oliva and César Quishpe

The Northwest of the Iberian Peninsula is one of the European regions with the highest frequency of forest fires. However, in the last decade fires in this region have burned larger areas and later in the fire season. Assessing the damage caused by fire and the pollutants released in the burning process is important to understand the effects on ecosystems and the carbon cycle, the recurrence of fires, and the effect on human health. In this work, we performed the estimation of emissions released in Galicia (Northwest Spain) in the last six years combining existing ESA CCI products. To quantify the area burned, we used the products from the Burned Area Algorithm developed within the Fire Climate Change Initiative (FireCCI) project. Then, the characterization and quantification of the total biomass were obtained from the Biomass CCI project at 100 m resolution by extracting the mean biomass by vegetation type from CORINE Land cover 2018. The burning efficiency factor was fitted using burn severity estimates from the dNBR calculation on the Sentinel-2 data. The emissions factors were selected from the literature. Our results show that during the last few years, there is a positive trend of annual emissions in Galicia. The sporadic maximums were registered in the years 2017 and 2022 when the climatic conditions aggravated the fire behaviour. In addition, Galicia is the region of Spain that registers the highest average estimates of emissions from fires since a high percentage of the affected area is occupied by pine and eucalyptus forests. These emissions contribute to a drastic decrease in air quality influencing the climate and affecting public health. Finally, we verified that adapting the burning efficiency factors to the specific conditions of the affected ecosystem generates more precise emission estimates.

How to cite: Oliva, P. and Quishpe, C.: Temporal analysis of wildfire emissions in the Northwest of Spain using ESA CCI data, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16152, https://doi.org/10.5194/egusphere-egu23-16152, 2023.

EGU23-16241 | ECS | Posters virtual | BG1.2

Characterizing the fire regime evolution and land-use change in the Dry and Wet Chaco between 2001 and 2019 

Rodrigo San Martin, Catherine Ottle, and Anna Sörensson

Wildfires play an essential role in the biogeophysical cycles of different world ecosystems, from dry savannas to humid wetlands. During the last decades, fire regimes of several global regions began to present significant alterations due to climate change and human land-use pressure. The South American Gran Chaco ecoregion contains one of the most important reservoirs of native forests and biodiversity in the world, including the largest continuous dry tropical forest and some of the most extensive wetlands. The area presents a marked precipitation gradient from the East (wet) to the West (dry), which is manifested in vegetation (from wetlands to dry forests and shrublands). In this work, we mapped natural vegetation with the European Space Agency (ESA) Climate Change Initiative (CCI) medium-resolution land cover maps (MRLC v2.0.7; annual - 300m) and fires with the ESA CCI Fire product (FireCCI51; monthly - 250m) in the Gran Chaco between 2001 and 2019 to establish the past and current effects and dynamics of fires in the area (which are primarily human ignited). To assess the region’s climatology, we used the ERA5 bias-corrected reanalysis dataset (WFDE5; daily - 0.5º). Our results highlight the distinct dynamics of fires in the wet and dry areas of the Gran Chaco, showing two fire seasons - summer and winter - in the wet areas (where grasses predominate) and one fire season - winter - in the dry areas (where shrubs and trees are more abundant). Examining the correlations between annual rain anomalies and burnt area, we find that precipitation anomalies have different effects in dry and wet areas throughout the region’s precipitation gradient. Correlations change from positive in the drier areas to negative in the wetter areas. These results may reflect that summer and winter fires do not have the same drivers and the key role of the available biomass limiting the fire expansion. Since biomass is more dependent on precipitation in dry areas compared to wetter ones, the correlation of winter fires with precipitation is positive in the drier regions. The negative correlations obtained in the summer season could be explained by the fact that summer fires essentially occurred in the wetter part of the Chaco and are intended (through human ignition) to increase the grasslands’ productivity; this practice could be more frequent during negative precipitation anomalies compared to positive ones. Further analysis will try to confirm these findings with biomass satellite data.   

How to cite: San Martin, R., Ottle, C., and Sörensson, A.: Characterizing the fire regime evolution and land-use change in the Dry and Wet Chaco between 2001 and 2019, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16241, https://doi.org/10.5194/egusphere-egu23-16241, 2023.

EGU23-16504 | Posters on site | BG1.2

History of fire regime shifts during the last 1000 years in Northeastern Mongolia 

Michał Słowiński, Milena Obremska, Dashtseren Avirmed, Michał Woszczyk, Saruulzaya Adiya, Dominika Łuców, Agnieszka Mroczkowska, Agnieszka Halaś, Witold Szczuciński, Andrzej Kruk, Mariusz Lamentowicz, Joanna Stańczak, and Natalia Rudaya

Recent years have seen rapid climatic changes in Central Asia, particularly Mongolia. An increase in the thickness of the active layer above permafrost and considerable changes to the vegetation structure are likely outcomes of the long-term temperature rise and precipitation changes. The management of future habitats or the biodiversity of northern Mongolia faces significant difficulties from rising temperatures, prolonged and frequent droughts, and gradual permafrost degradation. Our knowledge of the historical processes involved in permafrost degradation and the ensuing ecological effects is still mostly incomplete. These connections may be used to explain changes in the fire regime, permafrost melting, and plant distribution in the Khentii mountains region. Therefore, based on a multiproxy study of peat archive data, we provide the first high-resolution fire history from northeastern Mongolia over the last 1000 years (micro- and macroscopic charcoals, charcoal size classes and morphotypes, peat geochemistry). We examined microscopic and macroscopic charcoal particles as a proxy for fire activity. We also tracked changes in regional and local plant composition using pollen data. To investigate how changes in fire regimes and the climate affect the functioning of the peatland ecosystem, we also conducted a geochemical analysis.

Additionally, to better comprehend the changes in earlier fire regimes and fire-vegetation connections, we employed the morphotypes of macrocharcoal to pinpoint vegetation burning. This study's primary objective is to evaluate the impact of human behavior, vegetation, and prolonged droughts on the incidence of fire regime transitions during the past 1000 years in Central Asia permafrost marginal zone (Mongolia). The findings showed that most of the fires in the area were probably started by natural causes, presumably connected to heatwaves that resulted in prolonged droughts. We have established a connection between increased fires and the local weather phenomena known as "dzud", a catastrophic confluence of winter snowfall and droughts that impacts fire intensity.

The study is the result of research project No. 2017/01/X/ST10/01216 and 2018/31/B/ST10/02498 funded by the Polish National Science Centre.

How to cite: Słowiński, M., Obremska, M., Avirmed, D., Woszczyk, M., Adiya, S., Łuców, D., Mroczkowska, A., Halaś, A., Szczuciński, W., Kruk, A., Lamentowicz, M., Stańczak, J., and Rudaya, N.: History of fire regime shifts during the last 1000 years in Northeastern Mongolia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16504, https://doi.org/10.5194/egusphere-egu23-16504, 2023.

EGU23-16912 | ECS | Posters on site | BG1.2

Fire, Work with Me: A PAH record from a Southwestern US speleothem 

Jonathan Smolen, Isabel Montañez, and Michael Hren

Polycyclic aromatic hydrocarbons (PAHs) are molecules produced during incomplete combustion of organic matter and have been increasingly utilized as paleo-proxies for wildfires. More recently, their incorporation from drip water into speleothems has been utilized in conjunction with the stable isotopic and trace elemental measurements of host carbonate and fluid inclusions in order to assess a coupled record of fire and hydroclimate. Numerous studies have focused on cave systems in the Southwestern U.S., which has experienced highly variable hydroclimate and massive wildfires with past climate changes. Here, we present a PAH record covering ~19-11.5 ka obtained from a precisely dated and well-studied ML-1 stalagmite obtained from McLean’s Cave in the central Sierran foothills, CA. Total concentrations of four-ring PAHs reach maximum values from ~16.8-15 ka, associated with the first stage (1a) of Heinrich Stadial 1 (HS1) interval – this is interpreted as increased levels of soil PAHs produced from regional wildfires. Covariance of isomeric diagnostic ratios with total concentration indicates a shift in the nature of the associated fires, separating effects of PAH mobility in altered soils as well as shifts in soil water transport, stalagmite growth rates, and precipitation amounts. Paired climate signals from independent regional proxies are discussed, as well as factors affecting the interpretation of PAH signals in speleothems. Considerations and methods using small (~1g) speleothem samples are presented, with a focus on simultaneous extraction of useful paleoenvironmental information from other molecular biomarkers entombed within speleothems.

How to cite: Smolen, J., Montañez, I., and Hren, M.: Fire, Work with Me: A PAH record from a Southwestern US speleothem, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16912, https://doi.org/10.5194/egusphere-egu23-16912, 2023.

EGU23-17450 | ECS | Orals | BG1.2 | Highlight

First results of a field campaign focused on overwintering zombie fires 

Thomas D. Hessilt, Sander Veraverbeke, Emily Ogden, Jason Paul, Merritt Turetsky, Max van Gerrevink, Raquel Alfaro-Sanchez, Oleg Melnik, Rebecca C. Scholten, and Jennifer Baltzer

Fire is a major disturbance in the boreal forests of the high northern latitude. Fire extent and severity have been increasing in recent decades, and the occurrence of overwintering ‘zombie’ fires has been linked to recent fire extremes. Overwintering fires are fires which were seemingly extinguished at the end of the boreal fire season yet smolder during winter to re-emerge as a flaming fire in the subsequent spring. So far, overwintering fires have only been investigated using satellite imagery. Here, for the first time, we show preliminary results from a field campaign that measured in situ impacts of fires that overwintered from 2014 to 2015 in the Canadian Northwest Territories. We measured among other the burn depth in organic soils, and characterized micro-topography. We also qualitatively assessed how fires may have overwintered. We compared nine overwintering fire sites, which burned during both 2014 and 2015, with six sites that only burned in 2014 and five nearby unburned sites. The average burn depth (±SD) of the overwintering fires was 6.8 ± 1.6 cm and significantly deeper compared to 6.1 ± 1.2 cm in the single fire sites (P < 0.01). Somewhat surprisingly, the majority of overwintering fires occurred in mesic sites with large productive trees. Only two overwintering sites were sampled in mesic-subhygric to subhygric sites dominated by black spruce (Picea mariana). The unburned control sites often featured a micro-topography of hummocks and hollows. This micro-topography was leveled in overwintering fires sites because of severe burning in organic soils. In overwintering sites, most of the organic layer was consumed. This may have led to prolonged smoldering in the root systems of trees. Our results are the first to quantify the burn depth of overwintering fires, and also show that overwintering does not only happen through deep smoldering in organic soils, yet can also occur from smoldering in tree boles and root systems of burned and fallen trees.

How to cite: Hessilt, T. D., Veraverbeke, S., Ogden, E., Paul, J., Turetsky, M., van Gerrevink, M., Alfaro-Sanchez, R., Melnik, O., Scholten, R. C., and Baltzer, J.: First results of a field campaign focused on overwintering zombie fires, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-17450, https://doi.org/10.5194/egusphere-egu23-17450, 2023.

The Arabian Sea, a productive oceanic region in the North Indian Ocean, is under the direct influence of monsoon winds that impact the surface ocean processes. High biological productivity occurs due to natural nutrient enrichment events via coastal and open ocean upwelling (summer monsoon) and convective mixing (winter monsoon). Ample studies from this basin addressed the diatom community from the surface ocean, yet the key contributing diatom frustules to sedimentary phytodetritus has been overlooked. These microscopic biosilcifiers play an important role in the biological carbon pump by exporting significant organic carbon from the surface waters to the deep sea due to their ballasted silica shell (frustule). Hence, this is imperative to document the diatom genera that are transported efficiently to the sediment. The present study analyzed diatom frustule abundance (valves g-1) and identified the major diatom genera in core top sediments (0.5cm) of 10 locations from the Central (21, 19, 15, 13, and 11 °N along 64 °E) and Eastern Arabian Sea (21, 17, 15, 13, and 11 °N at 200 m isobath).  This is the first of this kind and found a comparable frustule distribution from the surface sediments of both Central (av. 5.16±1.23×104 valves g-1) and Eastern Arabian Sea (av. 5.80±7.14×104 valves g-1). Size-based classification revealed that the contributions of medium-sized (30-60 µm) frustules from both the central (49 %) and eastern (51%) Arabian Sea were quite high. And the contribution of large-sized frustules (>60 µm) was higher in the central Arabian Sea (39%) compared to the eastern part (19%). A total of 40 diatom genera with 18 in common from both locations were detected from the sedimentary phytodetritus with Coscinodiscus and Thalassiosira being the dominating ones. In the north-central (21, 19, 15 °N) Arabian Sea, the prevalence of large-sized diatoms (Coscinodiscus) was attributed to open ocean upwelling as well as convective mixing during summer and winter monsoons, respectively. Such large species can easily escape grazing and sink rapidly due to higher ballasting. Further, the presence of the oxygen minimum zone at the intermediate depth in this region might reduce the remineralization and grazing pressure within the mesopelagic during their transport to the abyss. Whereas relatively smaller diatoms (Thalassiosira, Pseudo-nitzschia, Fragilaria, Nitzschia) were in high abundance towards the south-central (13, 11 °N) that area remains nutrient-poor. In the Eastern Arabian Sea, Thalassiosira was noticed in high abundance towards the southeast (15, 13, 11 °N), whereas the northeast (17, 21 °N) was dominated by Coscinodiscus and mostly due to the prevalence of coastal upwelling and convective mixing, respectively. Likely, these diatoms (Coscinodiscus, Thalassiosira, Pseudo-nitzschia, Fragilaria, Nitzschia) play a key role in transferring the organic matter from the surface to sediments and thus actively contribute to carbon capture, elemental cycling, and supplying food source for the benthic biota. This study highlights for the first time the biogeochemical significance of these diatoms from this highly productive oceanic province.

How to cite: Pandey, M. and Biswas, H.: An account of the key diatom frustules from the surface sediments of the Central and Eastern Arabian Sea and their biogeochemical significance., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-131, https://doi.org/10.5194/egusphere-egu23-131, 2023.

EGU23-264 | ECS | Orals | OS1.7

Seasonality and distribution of Persian Gulf Water and its impact on ventilation: a high resolution view from gliders 

Estel Font, Bastien Y. Queste, Sebastiaan Swart, and Gerd Bruss

The decline in ocean oxygen content is one of the most alarming consequences of anthropogenic-driven climate change. A key challenge is that global climate models do not currently reproduce observed changes in deoxygenation, showing high inter-model variability and uncertainty. This uncertainty is partially due to the models’ inability to resolve features smaller than their computational grid cells resulting in large biases in ventilation. The Persian Gulf Water outflow has been pointed out by several studies as one of the sources of ventilation in the Arabian Sea Oxygen Minimum Zone (OMZ). This oxygenated water mass flows eastward along the shelf edge of the northern Omani coast at 200m depth and is fragmented by the mesoscale eddy field and rough topography, generating small “peddies”. These peddies and their relatively high oxygen concentrations have potential to ventilate the OMZ, yet this has been poorly investigated due to a lack of adequate observations. We use multi-month glider campaigns off the coast of Oman with a SeaExplorer glider equipped with an ADCP to resolve the contribution of the Persian Gulf Water outflow to oxygen supply within the Arabian Sea OMZ. We characterize its properties, seasonality, and spatial distribution and estimate mixing rates from double diffusion, salt-fingering, and shear-driven mixing to understand water mass transformations and oxygen fluxes into the OMZ.

How to cite: Font, E., Y. Queste, B., Swart, S., and Bruss, G.: Seasonality and distribution of Persian Gulf Water and its impact on ventilation: a high resolution view from gliders, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-264, https://doi.org/10.5194/egusphere-egu23-264, 2023.

The biogeochemistry of the Arabian Sea, the northwestern part of the Indian Ocean, is directly impacted by monsoonal wind reversal and is an area of strong ocean-atmospheric interaction. During the summer monsoon, coastal as well as open ocean upwelling occurs in the western, southeastern, and central parts of the Arabian Sea. The highest primary productivity rates are documented in these areas compared to the global oceans. Phytoplankton-derived particulate organic matter (POM) [Particulate organic carbon (POC) and nitrogen (PN)] play a central role in supporting the food chain as well as carbon export flux to the deep sea. Hence understanding the dynamics of POM concentrations and its stable carbon (δ13CPOC) and nitrogen (δ15NPN) isotopic ratios are important in delineating its sources and recycling. However, such studies are scarce from the Indian Ocean region. Here we present the first study describing the POM dynamics during the summer monsoon from the central Arabian Sea, addressing the interannual variability. We studied the monsoonal changes in POM and its isotopic signatures in the central Arabian Sea (21–11°N; 64°E) during August 2017 and 2018. A strong, low-lying atmospheric jet (Findlater Jet) blows across the basin during the southwest (SW) monsoon. Positive wind stress curl resulted in “open ocean upwelling” to the north of the jet’s axis, characterized by substantially shallower Mixed Layers Depths (MLDs) and higher POM contents relative to the jet’s axis and its south. The highest wind speeds were observed in the center of the transect due to the presence of the jet’s axis. And the negative curl to the south of the jet’s axis resulted in downwelling and, consequently, the deepest MLDs. The molar ratio between POC and PN (6.2 ± 1.9 in 2017; 6.4 ± 0.9 in 2018) was close to the canonical Redfield ratio (6.63). The δ13CPOC values (−26.3 ± 1.4‰ in 2017; 25.5 ± 1.4‰ in 2018) exhibited typical marine signature and a noticeable inter-annual difference. Relatively higher δ15NPN values in the north (7.68 ± 2.6‰ in 2017; 9.24 ± 3‰ in 2018) indicated the uptake of regenerated dissolved inorganic nitrogen from the oxygen minimum zone (OMZ). The lower δ15NPN values along the jet’s axis and to its south were attributed to the eastward advection of upwelled waters from the western Arabian Sea. Higher wind speeds and jet-induced wind stress curl in 2018 resulted in lower sea surface temperatures (SST) and higher nutrient concentrations. Despite the higher nutrient availability in 2018, POC contents did not exceed the values in 2017. However, considering the total nitrogen consumption (according to C:N: P = 106:16:1), the potential POC development in 2018 could be double the value in 2017. The interannual differences in SW monsoon onset and wind speeds seemed to directly control the nutrient supply, affecting plankton community structure and POM variability. Thus, any future changes in the physical forcing may directly influence the POC pool and consequent export flux to the mesopelagic.

How to cite: Silori, S., Biswas, H., and Cardinal, D.: Interannual variability in particulate organic matter associated with physical forcing in the central Arabian Sea assessed from (stable) carbon and nitrogen isotopes., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-358, https://doi.org/10.5194/egusphere-egu23-358, 2023.

EGU23-1671 | Orals | OS1.7 | Highlight

New perspective on the overturning dynamics in the Indian Ocean 

Lei Han

The Indian Ocean Meridional Overturning Circulation (IMOC) is well known for its remarkable seasonal variation, which was attributed to Ekman flow plus its barotropic compensation (Lee and Marotzke, 1998). However, by tracking the isopycnal displacement, I defined a  sloshing MOC streamfunction, which was found highly resembling the Eulerian MOC streamfunction (see the attached figure). It was thus concluded that the IMOC is predominantly a sloshing mode, associated with the isopycnal displacement. Recognizing that these isopycnal signals were dominated by the first-baroclinic long Rossby waves, I found the IMOC strength was determined by the zonally-integrated Ekman pumping anomaly. As a result, the deep inflow into the Indian Ocean also had seasonal variation that could be attributed to this sloshing mode of overturning circulation. This could be partly verified by the cross-basin transect survey across 32oS that were fully occupied three times in history. The diffusivity dichotomy problem can be also explained by this new perspective. The importance of the Indian Ocean overturning in the global conveyor-belt was therefore challenged. This result has been published in Han (2021, JPO).

How to cite: Han, L.: New perspective on the overturning dynamics in the Indian Ocean, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1671, https://doi.org/10.5194/egusphere-egu23-1671, 2023.

EGU23-2164 * | Posters virtual | OS1.7 | Highlight

Mid-Holocene Monsoon Weakening: A major cause for societal change in the Indian subcontinent 

Hema Achyuthan and Nagasundaram Mohan

A sediment core retrieved from a water depth of 250 m near the Andamans Forearc Basin (AFB), the Landfall Island, North Andaman, reflects a record of sediment provenance and monsoonal shift since the mid to late Holocene. The core represents radiocarbon ages ranging from 6,078 to 1,658 yrs BP (from~ 6,500 yrs BP to the present). The core is dominantly clayey silt with incursions of coarser components that occur around 6,000, 5,400, and 3,400 yrs BP. Grain size variation indicates a cyclic variation of wetter and drier conditions matching changes in the intensity of the Indian Summer Monsoon (ISM), which was at its greatest intensity around 6,400, 5,300, and 3,300-3,000 yrs BP. Geochemical parameters including higher CaCO3 content, εNd, and 18O in Globigerinoides ruber are consistent with the long-term trend from cooler, wetter conditions to warmer, drier conditions at present. Chemical weathering intensity, which lags behind climate changes on land, shows a pulse of highly weathered sediment deposited at about 4,000 BP. Clay minerals represented by smectite, illite, kaolinite, and chlorite in varying amounts indicate high kaolinite content and K/C ratio specify intense Southwest Monsoon (SWM) and stronger bedrock weathering in the hinterland (~6,500–5,400 years BP). Incidence of smectite (48.82 to 25.09 %) and chlorite/illite (C/I) ratio (0.56 to 0.28) indicate an overall weakened southwest monsoon since 6,000 to 2,000 years BP with a brief incursion of extremely reduced SWM around 4,400 to 4,200 years BP. This is corroborated by the oxygen isotope on G. ruber that indicates a significant shift in the isotopic values ~4,300 years BP (−3.39‰), indicating a weak SWM. Fluctuations in the intensity of SWM are also observed for 2,000 years to the present. Sandy sediment was supplied from the Andaman Islands, Irrawaddy, and the Salween sea. Since the Mid Holocene period, longer periods of aridification and shorter periods of wetter conditions increased in the region after approximately 4,300 yrs BP. A correlation of monsoonal events using the Godhavari marine sediment core (Ponton et al.,2012)  and our data is noted that Bronze Age Harappan urbanism flourished since 4,500 yrs BP along the river banks in the western region of the present semi-arid Desert and the Deccan owing to intensified rain-fed agriculture. Since approximately 3,900 yrs ago, the total settled area and many settlement sizes declined, abandoned, and a significant shift in site numbers and density towards the southeast and west is recorded. During the Iron Age, after ca. 3,200 yrs BP, adaptation to semi-arid conditions in western Rajasthan, central and south India appears to have been well established with a significant number of sites in areas receiving <500 mm of rainfall. Weak monsoon precipitation led to conditions adverse to both inundation and rain-based farming and encouraged pastoralism. Monsoonal-fed rivers were active during the short-wet periods and gradually dried or became seasonal, affecting habitability along their courses. 

How to cite: Achyuthan, H. and Mohan, N.: Mid-Holocene Monsoon Weakening: A major cause for societal change in the Indian subcontinent, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2164, https://doi.org/10.5194/egusphere-egu23-2164, 2023.

EGU23-2165 | ECS | Posters on site | OS1.7

Main drivers of Indian Ocean dipole asymmetry revealed by a simple IOD model 

Hyo-Jin Park, Soon-Il An, Soong-Ki Kim, Wenju Cai, Agus Santoso, Daehyun Kim, and Jong-Seong Kug

Indian Ocean Dipole phenomenon (IOD) refers to a dominant zonal contrast pattern of sea surface temperature anomaly (SSTA) over tropical Indian Ocean (TIO) on interannual time scales. Its positive phase, characterized by anomalously warm western TIO and anomalously cold southeastern TIO, is usually stronger than its negative phase, namely a positively skewed IOD. Here, we investigate causes for the IOD asymmetry using a prototype IOD model, of which physical processes include both linear and nonlinear feedback processes, El Nino’s asymmetric impact, and a state-dependent noise. Parameters for the model were empirically obtained using various reanalysis SST data sets. The results reveal that the leading cause of IOD asymmetry without accounting seasonality is a local nonlinear process, and secondly the state-dependent noise, the direct effect by the positively skewed ENSO and its nonlinear teleconnection; the latter two have almost equal contribution. However, the contributions by each process are season dependent. For boreal summer, both local nonlinear feedback process and the state-dependent noise are major drivers of IOD asymmetry with negligible contribution from ENSO. The ENSO impacts become important in boreal fall, along with the other two processes.

 

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2018R1A5A1024958)

How to cite: Park, H.-J., An, S.-I., Kim, S.-K., Cai, W., Santoso, A., Kim, D., and Kug, J.-S.: Main drivers of Indian Ocean dipole asymmetry revealed by a simple IOD model, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2165, https://doi.org/10.5194/egusphere-egu23-2165, 2023.

The middepth zonal velocity resembles a system of eastward/westward jets with a considerably smaller width than the larger-scale ocean surface circulation. Such a phenomenon always occurs in a turbulent ocean that presents eddy or eddy–mean flow interactions. In this study, the upper-ocean absolute geostrophic currents in the southern Indian Ocean are constructed using Argo temperature and salinity data from the middepth (1000 m) zonal velocity derived from the Argo float trajectory. The results reveal alternating quasi-zonal striation-like structures of middepth zonal velocity in the equatorial and southern tropical Indian Ocean, with a meridional scale of 300 km. The triad of baroclinic Rossby wave instability plays a significant role in near-equatorial striations. In the south, the  unstable vertical structure leads to strong baroclinic instability, which increases the eddy kinetic energy in the middepth layer, thus contributing to a turbulent PV gradient. The convergence/divergence of the eddy PV flux generates the quasi-zonal striations. The meridional scale of the striations is controlled by the most unstable wavelength of baroclinic instability, which explains the observations.

How to cite: Xia, Y. and Du, Y.: Middepth Zonal Velocity in the Southern Tropical Indian Ocean: Striation-Like Structures and Their Dynamics, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2472, https://doi.org/10.5194/egusphere-egu23-2472, 2023.

This study analyzed the downwelling Rossby waves in the south Indian Ocean induced spring asymmetric mode and the relationship with the Indian Ocean Dipole (IOD) event based on observations and reanalysis data sets. The westward downwelling Rossby waves favor significant sea surface temperature (SST) warming in the Seychelles thermocline dome that triggers atmosphere response and the asymmetric mode in spring. The zonal sea level pressure gradient causes anomalous easterly winds in the central and eastern equatorial IO, cooling the SST off Sumatra-Java. Meanwhile, the remainder of the downwelling Rossby waves reach the west coast, transform to northward coastal-trapped waves, and then reflect as eastward downwelling Kelvin waves along the equator. The downwelling Kelvin waves reach the Sumatra-Java coast during late spring to early summer, favoring SST warming in the southeastern tropical Indian Ocean. Thus, there are two types of ocean-atmosphere response almost at the same time along the equator. The final SST status depends on which process is stronger, and as a consequence, triggers a negative or a positive phase of the IOD event in the fall season. The results show four positive and three negative IOD events related to the above processes from 1960 to 2019. The strong downwelling Rossby waves are easier to induce intense asymmetric mode and negative IOD event, usually associated with preceding strong El Niño in the Pacific. In contrast, the weak downwelling Rossby waves tend to induce weak asymmetric mode and positive IOD event, usually associated with preceding weak El Niño or anomalous anti-cyclonic atmospheric circulation in the southeastern IO.

How to cite: Zhang, Y. and Du, Y.: Oceanic Rossby waves induced two types of ocean-atmosphere response and opposite Indian Ocean Dipole phases, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2528, https://doi.org/10.5194/egusphere-egu23-2528, 2023.

EGU23-2532 | Posters on site | OS1.7

Effect of mesoscale eddies on the transport of low-salinity water from the Bay of Bengal into the Arabian Sea during winter 

Jiechao Zhu, Yuhong Zhang, Xuhua Cheng, Xiangpeng Wang, Qiwei Sun, and Yan Du

Abstract: The distribution of sea surface salinity (SSS) in the Arabian Sea (AS) and Bay of Bengal (BoB) is in contrast due to differences in air-sea freshwater fluxes and river runoff inputs.The monsoon-induced inter-basin water exchange plays an important role in regional salinity balance and atmosphere-ocean feedback in the North Indian Ocean. The satellite SSS dataset reveals that significant intraseasonal variability of SSS occurs in the region south of the Indian Peninsula with the strongest amplitude in winter. A case study in autumn-winter of 2016 showed that the Northeast Monsoon Current (NMC) and mesoscale eddies play a dominant role in the intraseasonal variability of the SSS in the region south of the Indian peninsula. In November, the East India Coastal Current (EICC) transports the low-salinity water southward to the region east of Sri Lanka. Meanwhile, a cyclonic eddy develops and propagates westward south of the NMC. Both NMC and the cyclonic eddy advects the low-salinity water westward to the region south of the Indian Peninsula. Then, an anticyclonic eddy generates in the north of the NMC. Thus, an eddy pair forms for more than one and a half months, which develops and propagates westward, transporting low-salinity water westward. The perturbation of mesoscale eddies and SSS gradient leads to the significant intraseasonal variability of SSS there.

Key words: Sea Surface Salinity; intraseasonal variability; mesoscale eddies; North Indian Ocean;

How to cite: Zhu, J., Zhang, Y., Cheng, X., Wang, X., Sun, Q., and Du, Y.: Effect of mesoscale eddies on the transport of low-salinity water from the Bay of Bengal into the Arabian Sea during winter, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2532, https://doi.org/10.5194/egusphere-egu23-2532, 2023.

EGU23-3426 | ECS | Posters on site | OS1.7

Eddy activity and its role in barrier layer thickness variability in the southeast Indian Ocean 

Marina Azaneu, Adrian Matthews, Karen Heywood, and Rob Hall

Ocean stratification can modulate the upper ocean response and its feedback to atmospheric forcing. Surface freshwater input by advection and precipitation, for example, can change the upper ocean stratification and produce barrier layers. The existence of a barrier layers can affect SST in several ways, for example by reducing entrainment of cooler water at the base of the mixed layer, and consequently may impact air--sea interactions. In the southeastern Indian Ocean, eddies are abundant and can act on transporting warm and fresh waters westward, thus possibly contributing to the formation of barrier layers. Here we initially evaluate the importance of eddy activity in contributing to barrier layer formation and intraseasonal variability in the southern Indian Ocean. Using 15 years (2005-2019) of ocean reanalysis daily data, we estimate how much of the spatial and time variability of barrier layer thickness is related to eddy activity, which is determined by calculating eddy kinectic energy. With the establishment of a relationship between eddy activity and barrier layer thickness, we then proceed to estimate the relationship between barrier layer thickness and local SST anomalies. This way, we seek to infer the significance of eddy activity in affecting SST through barrier layer formation, and thus its potential impact in air--sea interactions and coupled weather systems such as the MJO.

How to cite: Azaneu, M., Matthews, A., Heywood, K., and Hall, R.: Eddy activity and its role in barrier layer thickness variability in the southeast Indian Ocean, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3426, https://doi.org/10.5194/egusphere-egu23-3426, 2023.

EGU23-3967 | ECS | Orals | OS1.7 | Highlight

Ecosystem impacts due to thermocline depression by the 2019 extreme Indian Ocean Dipole event 

Edward Robinson, Philip Hosegood, Vasiliy Vlasenko, Nataliya Stashchuk, Clara Diaz, Nicola Foster, Joanna Harris, Clare Embling, and Kerry Howell

Tropical atoll habitats are often key conservation targets due to being inhabited by several vulnerable species such as reef manta rays and tropical coral species. These atolls are subject to both basin scale forcing through the Indian Ocean Dipole (IOD), monsoonal variation, and local processes. The steep slopes surrounding these atolls support highly dynamic, energetic nearshore ecosystems which vary over sub-kilometre spatial scales that are poorly resolved in general circulation models. Improving our understanding of how physical oceanographic processes control these local ecosystems, through both in-situ observations, and fine scale models, is critical for enabling informed policy decisions and efficient use of conservation resources. Here we summarise the impact of the local fine scale processes, which are heavily modulated by the monsoon and Indian Ocean Dipole (IOD), on a tropical atoll ecosystem in the central Indian Ocean (IO).

The IOD is experiencing increasingly extreme fluctuations with direct impacts on the depth of the thermocline throughout the western IO. In our observations from 2019, the IOD deepened the thermocline to an unprecedented depth of 100 m, subjecting mesophotic corals to temperatures typical of surface waters and causing significant bleaching. High resolution numerical modelling shows that internal waves, rather than alleviating bleaching, further exacerbate the heating effects preferentially advecting high temperature surface water to increased depths. The wave influence is, however, highly localised, necessitating designated studies at individual sites to understand the spatial heterogeneity in internal wave impacts.

At smaller sub-atoll scales, the IOD also influences the feeding behaviour of reef manta rays, which are more frequently detected in the presence of tidally forced surface-to-bottom temperature gradients. The site of most manta ray detections in the study area is a lipped gully, situated at 60-70 m depth, and colloquially named 'Manta Alley'. During deeper thermoclines, the cooling events within Manta Alley, with which increased reef manta presence is associated, are precluded from occurring due to the deep thermocline, impacting feeding behaviour.

Our results highlight the inherent dynamical complexity in these environments, with the impacts of basin scale processes cascading down to local scales. Improving our understanding of how these dynamics cross-interact with each other, as well as the local ecosystem, enhances the value of biological observations, presenting the opportunity for better informed and more effective conservation strategy.

How to cite: Robinson, E., Hosegood, P., Vlasenko, V., Stashchuk, N., Diaz, C., Foster, N., Harris, J., Embling, C., and Howell, K.: Ecosystem impacts due to thermocline depression by the 2019 extreme Indian Ocean Dipole event, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3967, https://doi.org/10.5194/egusphere-egu23-3967, 2023.

Using mooring observations and reanalysis, we show that anomalously strong westward Equatorial Undercurrent (wEUC) developed in June–July in 2016 and 1998 in the Indian Ocean, which coincided with extreme Indian Ocean Dipole (IOD) and El Niño events. Simulations show that equatorial Kelvin and Rossby waves were excited by winds associated with El Niño and positive IOD events during 2015 and 1997, and their negative phases during 2016 and 1998. The constructive relationship between the delayed-time contributions of eastern-boundary-reflected-waves that excited by the easterlies in 2015 and 1997 and the direct contributions of wind-forced-waves that excited by the westerlies in 2016 and 1998 resulted in the intensified wEUC. Slow intermediate-order baroclinic-modes, rather than fast low-order baroclinic-modes, dominated the strong wEUC. The eastern-boundary-reflected-waves dominated in 1997–1998 and directly wind-forced-waves dominated in 2015–2016. Our results emphasize the importance of constructive interactions of the directly-wind-forced and boundary-reflected waves in driving the interannual variability of Indian Ocean wEUC.

How to cite: Huang, K.: Successive Co-occurring IOD and ENSO Unprecedentedly Intensify Indian Ocean Westward Equatorial Undercurrent During the Summers of 1998 and 2016, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5143, https://doi.org/10.5194/egusphere-egu23-5143, 2023.

EGU23-6736 | ECS | Posters on site | OS1.7

How well do CMIP6 models simulate salinity barrier layers in the North Indian Ocean? 

Shanshan Pang, Xidong Wang, and Jérôme Vialard

Previous studies have hypothesized that climatologically thick salinity-stratified Barrier Layers (BL) in the North Indian Ocean (NIO) could influence the upper ocean heat budget, sea surface temperature (SST) and monsoon. Here, we investigate the performance of state-of-the-art climate models from the Coupled Model Intercomparison Project phase 6 (CMIP6) in simulating the barrier layer thickness (BLT) in the NIO. CMIP6 models generally reproduce the main features of the BLT seasonal cycle and spatial distribution, but with a shallow November-February (NDJF) BLT bias in regions with thick observed BLT (eastern equatorial Indian Ocean [EEIO], Bay of Bengal [BoB] and southeastern Arabian Sea [SEAS]). CMIP6 models display an easterly equatorial zonal surface wind bias linked to dry rainfall and cold SST biases in the southern BoB, through the Bjerknes feedback loop. The easterly equatorial bias is also responsible for the shallow isothermal layer depth (ILD) and BLT bias in the EEIO. The underestimated rainfall over the BoB leads to higher sea surface salinity (SSS) and too deep mixed layer depth (MLD), resulting in the BoB BLT bias. The intensity of the easterly equatorial bias also contributes to the inter-model spread in BoB BLT bias, through the propagation of EEIO ILD signals into the coastal waveguide. Finally, the SEAS BLT bias is due to a too deep MLD, which is predominantly controlled by the high SSS related to attenuated monsoonal currents around India and a reduced inflow of BoB low-salinity water. The BL effect on the mixed layer entrainment cooling does not seem to operate in CMIP6 simulations. Rather, deep salinity-related MLD biases in the BoB result in a diminished cooling rate in response to winter negative surface heat fluxes, and hence alleviate cold BoB SST biases. This suggests that salinity effects alleviate the biases that develop through the positive Bejrknes feedback loop between BoB SST, BoB rainfall and equatorial wind stresses in CMIP6.

How to cite: Pang, S., Wang, X., and Vialard, J.: How well do CMIP6 models simulate salinity barrier layers in the North Indian Ocean?, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6736, https://doi.org/10.5194/egusphere-egu23-6736, 2023.

EGU23-6781 | ECS | Posters on site | OS1.7

On the influence of the Bay of Bengal’s sea surface temperature gradients on rainfall of the South Asian monsoon 

Peter Sheehan, Adrian Matthews, Benjamin Webber, Alejandra Sanchez-Franks, Nicholas Klingaman, and Pn Vinayachandran

The southwest monsoon delivers over 70% of India’s annual rainfall and is crucial to the success of agriculture across much of South Asia. Monsoon precipitation is known to be sensitive to sea surface temperature (SST) in the Bay of Bengal (BoB). Here, we use a configuration of the Unified Model of the UK Met Office coupled to an ocean mixed layer model to investigate the role of upper-ocean features in the BoB on southwest monsoon precipitation. We focus on the pronounced zonal and meridional SST gradients characteristic of the BoB; the zonal gradient in particular has an as-yet unknown effect on monsoon rainfall. We find that the zonal SST gradient is responsible for a local decrease in rainfall over the southern BoB of approximately 5 mm day−1, and an increase in rainfall over Bangladesh and northern India of approximately 1 mm day−1. This increase is remotely forced by a strengthening of the monsoon Hadley circulation. The meridional SST gradient acts to decrease precipitation over the BoB itself, similarly to the zonal SST gradient, but does not have comparable effects over land. The impacts of barrier layers and high-salinity sub-surface water are also investigated, but neither has significant effects on monsoon precipitation in this model; the influence of barrier layers on precipitation is felt in the months after the southwest monsoon. Models should accurately represent oceanic processes that directly influence BoB SST, such as the BoB cold pool, in order to faithfully represent monsoon rainfall.

How to cite: Sheehan, P., Matthews, A., Webber, B., Sanchez-Franks, A., Klingaman, N., and Vinayachandran, P.: On the influence of the Bay of Bengal’s sea surface temperature gradients on rainfall of the South Asian monsoon, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6781, https://doi.org/10.5194/egusphere-egu23-6781, 2023.

EGU23-6879 | ECS | Orals | OS1.7

Suitability of ocean reanalyses for monitoring of oceanic exchanges through the Indonesian Throughflow 

Magdalena Fritz, Leopold Haimberger, and Michael Mayer

The Indonesian Seas are characterized by numerous narrow channels connecting basins and seas of varying sizes and depths that serve as a transition between the Pacific and the Indian Ocean, known as the Indonesian Throughflow (ITF). The interaction between the ITF and important climate anomalies such as the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), or the Australian-Indonesian monsoon indicates the high relevance for monitoring the ITF region. In situ observations of ITF transports are highly valuable but are temporally and spatially limited. Hence, near real-time monitoring is only possible with reanalyses, yet their quality needs to be evaluated. Here we present an assessment of oceanic transports in the ITF diagnosed from the Copernicus Marine Service (CMEMS) Global Reanalysis Ensemble Product (GREP) and the higher-resolution product GLORYS12V1. Validation data comes from several moorings in Makassar strait, Lombok strait, Ombai strait, and Timor passage, obtained as part of the well-known INSTANT (2004-2006) and MITF (2006-2011 and 2013-2017 in Makassar) campaigns. The campaigns provide a total of 11.5 years of in situ observations in Makassar, therefore allowing the assessment of the mean seasonal cycle of ITF transport and a thorough investigation of the shorter sampled outflow passages. The results showcase that reanalysis-based volume transports agree reasonably well with in situ observations, however, some aspects, such as asymmetries in the flow through each strait, are more accurately represented by GLORYS12V1. Also, in terms of mean integrated transports, the increased horizontal resolution of GLORYS12V1 leads to a better performance in the narrower straits of Lombok and Ombai. Furthermore, we draw attention to an apparent one-month lag between reanalyses and observations in Makassar strait transports, which we assess by studying the influence of the monsoon-driven (vertically varying) pressure gradient on the ITF.

How to cite: Fritz, M., Haimberger, L., and Mayer, M.: Suitability of ocean reanalyses for monitoring of oceanic exchanges through the Indonesian Throughflow, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6879, https://doi.org/10.5194/egusphere-egu23-6879, 2023.

EGU23-7577 | ECS | Orals | OS1.7

Nutrient fluxes in the greater Agulhas Current region: signals of local and remote Indian Ocean nitrogen cycling 

Tanya Marshall, Daniel Sigman, Lisa Beal, Alan Foreman, Alfredo Martínez-García, Stéphane Blain, Ethan Campbell, François Fripiat, Robyn Granger, Eesaa Harris, Gerald Haug, Dario Marconi, Sergey Oleynik, Patrick Rafter, Raymond Roman, Kolisa Sinyanya, Sandi Smart, and Sarah Fawcett

The Agulhas Current in the southwest Indian Ocean is the strongest western boundary current on Earth. The major role of the Agulhas Current in driving significant heat and salt fluxes is well known, yet its biogeochemical fluxes remain largely uncharacterised. Here, we use nitrate isotopes (δ15N, δ18O, and Δ(15-18) = δ15N-δ18O) to evaluate nutrient supply mechanisms that ultimately support new production in the southwest Indian Ocean. Across the greater Agulhas region, thermocline nitrate-δ15N is lower (4.9-5.8‰) than the underlying Subantarctic Mode Water source (δ15N of 6.9‰) and the upstream source regions (where nitrate-δ15N ranges from 6.4-7.0‰), which we attribute to local N2 fixation. Using a one-box model to simulate the newly-fixed nitrate flux, we estimate a local N2 fixation rate of 7-25 Tg N.a-1, amounting to ~30-95% of the whole Indian Ocean nitrogen gain estimated by models. Thermocline and mixed-layer nitrate Δ(15-18) is also low, due to both N2 fixation and coupled partial nitrate assimilation and nitrification. This local nitrogen cycling imprints an isotopic signal on Indian Ocean nitrate that persists in Agulhas rings that “leak” into the South Atlantic and are subsequently transported northwards. If this signal is retained in calcifying organisms (e.g., foraminifera) deposited on the seafloor, it could be used to trace past Agulhas leakage, yielding quantitative insights into the strength of the Atlantic Meridional Overturning Circulation over time. In addition to local N2 fixation, the nitrate isotopes reveal three physical mechanisms of subsurface nitrate supply: i) inshore upwelling driven by the current and winds, ii) entrainment at the edges of a mesoscale eddy, and iii) density-driven overturning at the current edge induced by strong horizontal velocity and density shears. All these nitrate supply mechanisms are evident as incidences of relatively high-Δ(15-18) nitrate in the thermocline and surface yet the intensity and subsurface expression of some of them is not apparent in the physical data, highlighting the utility of the nitrate isotopes for exploring physical ocean processes. The high mesoscale variability that likely drives subsurface nitrate supply to Agulhas Current surface waters is common to all western boundary currents, implying that vertical nitrate entrainment is quantitatively significant in all such systems. We posit that along with N2 fixation, physical mechanisms of upward nitrate supply enhance ocean fertility and possibly carbon export in the South Indian Ocean. Higher rates of warming, and thus thermal stratification, are expected to decrease Indian Ocean productivity more rapidly in the future than that of other ocean basins. However, a coincident increase in eddy kinetic energy across boundary currents may enhance the upward nutrient supply, partially offsetting the stratification-driven decline in productivity.

How to cite: Marshall, T., Sigman, D., Beal, L., Foreman, A., Martínez-García, A., Blain, S., Campbell, E., Fripiat, F., Granger, R., Harris, E., Haug, G., Marconi, D., Oleynik, S., Rafter, P., Roman, R., Sinyanya, K., Smart, S., and Fawcett, S.: Nutrient fluxes in the greater Agulhas Current region: signals of local and remote Indian Ocean nitrogen cycling, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7577, https://doi.org/10.5194/egusphere-egu23-7577, 2023.

EGU23-8672 | Posters on site | OS1.7

Exploring the Climate-change induced dissolved inorganic carbon trends in the Indonesian Seas and their link to a changing Indonesian Throughflow using a regional downscaling of future climates 

Anna Katavouta, Jeff Polton, Jennifer Jardine, Dale Partridge, Svetlana Jevrejeva, and Jason Holt

The Indonesian Seas act as a main pathway of water transport from the Pacific to the Indian Ocean, known as the Indonesian Throughflow (ITF). Climate-induced changes in the regional water properties within the Indonesian Seas could have extensive impacts on the large-scale ocean budgets, as the ITF will carry these signals from the Indonesian Seas across the Indian Ocean’s upper thermocline. Here, we investigate the impacts of climate change on the Indonesian Seas’ dissolved inorganic carbon (DIC) budget using a regional ocean physics/biogeochemistry model for South East Asia that downscales climate projections from an Earth System Model under the RCP 8.5 scenario. The regional model has a horizontal resolution of about 9 km, uses a hybrid depth-terrain following vertical coordinate system and explicitly includes tides so as to better resolve the shelf-seas processes. A transport-based framework is used to explore the role of climate-induced changes of the ITF on the carbon storage within the Indonesian Seas. Specifically, the DIC trends are separated into: (i) an “added contribution” associated with the uptake of additional carbon from the atmosphere due to carbon emissions, and (ii) a “dynamic redistribution” of the pre-existing ocean DIC associated with changes in the circulation due to climate change. Our analysis reveals that in the next decades, although carbon emissions will lead to an ocean carbon uptake and an increase in the DIC within the Indonesian Seas, a plausible climate-induced weakening in the ITF can lead to either an increase or a decrease in the DIC at different depths associated with different water masses. Hence, the effects of global carbon emissions on the carbon budget within the Indonesian Seas, and particularly whether local waters will experience a lower or higher increase in DIC than the rest of the ocean, are controlled by the dynamical redistribution associated with the response of the ITF to climate change.   

How to cite: Katavouta, A., Polton, J., Jardine, J., Partridge, D., Jevrejeva, S., and Holt, J.: Exploring the Climate-change induced dissolved inorganic carbon trends in the Indonesian Seas and their link to a changing Indonesian Throughflow using a regional downscaling of future climates, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8672, https://doi.org/10.5194/egusphere-egu23-8672, 2023.

EGU23-9682 | ECS | Posters on site | OS1.7

Relative contribution of eddies ant atmospheric forcing to the Bay of Bengal non-seasonal Sea Surface Salinity Variability 

Marie Montero, Clément de Boyer Montégut, Jérôme Vialard, William Llovel, Thierry Penduff, Jean-Marc Molines, Stephanie Leroux, Nicolas Reul, and Jean Tournadre

The Bay of Bengal (BoB) Sea Surface Salinity (SSS) is highly contrasted and variable, in response to the large monsoonal wind and freshwater forcing. In addition to this strong seasonal cycle, previous studies have underlined strong SSS non-seasonal variations associated with the Indian Ocean Dipole (IOD) and mesoscale eddies. In this study, we quantify the relative contributions of externally forced (wind, freshwater) and internally generated (mesoscale eddies) SSS non-seasonal variability in the BoB. To that end, we use Ocean General Circulation Model 10-member ensemble experiments from the IMHOTEP (IMpacts of freshwater discHarge interannual variability on Ocean heaT-salt contents and rEgional sea-level change over the altimetry Period) project.
The model reproduces the large forced interannual SSS signals in the Northernmost part of the BoB and along the east coast of India, associated with the East Indian Coastal Current (EICC) modulation by the IOD. The internal SSS variability is largest in boreal fall in the North-Western BoB and more tightly controlled by the climatological SSS gradient distribution than by that of eddy kinetic energy. The external atmospheric forcing dominates the total variability in the regions of strongest variability, near the Ganges mouth and along the east coast of India in boreal fall and winter. Internal variability, however, contributes to 50-70% of the variability further offshore in boreal fall and winter. This confirms the strong role of eddies in controlling the freshwater extension up to ~700 km away from the coast, through stirring of the intense gradient between the coastal fresh and offshore saltier water. We finally discuss the consequences of these findings for comparing model and observations, in view of the chaotic nature of internal eddy variability.

How to cite: Montero, M., de Boyer Montégut, C., Vialard, J., Llovel, W., Penduff, T., Molines, J.-M., Leroux, S., Reul, N., and Tournadre, J.: Relative contribution of eddies ant atmospheric forcing to the Bay of Bengal non-seasonal Sea Surface Salinity Variability, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9682, https://doi.org/10.5194/egusphere-egu23-9682, 2023.

EGU23-11289 | ECS | Posters on site | OS1.7 | Highlight

Characteristics and Drivers of Marine Heatwaves in the Western Equatorial Indian Ocean 

Ruisi Qi, Ying Zhang, Yan Du, and Ming Feng

The spatio-temporal characteristics of the interannual variability and long-term trend of the marine heatwaves (MHWs) and related dynamic mechanisms in the western equatorial Indian Ocean (WEIO) are investigated using satellite observations. A prominent MHW hot spot is found in a region of the WEIO (48°E-54°E, 2°S-2°N), with a mean MHWs' intensity, duration, and frequency of 1.54°C, 13.33 days, and 1.97 times, respectively. MHWs in the hot spot region have significant interannual variability after removing the long-term trend, associated with Indo-Pacific major climate modes. In 1982/1983, 1983/1984, 1987/1988, 1997/1998, 2006/2007, 2009/2010, 2011/2012, 2012/2013, 2014/2015, 2015/2016, and 2019/2020, the MHWs occurred with longer duration, higher frequency, and more total days. These years correspond to a positive Indian Ocean Dipole, or an El Niño event, or both. The occurrence of MHWs accompanied by anomalous positive sea surface height suggests that oceanic planetary wave processes modulate MHWs in the WEIO. Westward-propagating downwelling equatorial Rossby waves triggered by anomalous equatorial easterly winds drive the convergence of warm upper-ocean water and weaken the upwelling of cool subsurface water, which favor anomalously warm sea surface temperature (SST) and the occurrence of MHWs. In addition, the westward-propagating off-equatorial downwelling Rossby waves in the southern tropical Indian Ocean also affect MHWs in the WEIO through the propagation and reflection of waves. The annual MHW frequency, duration, and total days in the hot spot region increase up to 1.56 times, 4.95 days, and 31.72 days per decade, respectively, related to the significant increase in mean SST under global warming.

How to cite: Qi, R., Zhang, Y., Du, Y., and Feng, M.: Characteristics and Drivers of Marine Heatwaves in the Western Equatorial Indian Ocean, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11289, https://doi.org/10.5194/egusphere-egu23-11289, 2023.

EGU23-11965 | ECS | Posters on site | OS1.7

118-year hydroclimate reconstruction from Christmas Island (Indian Ocean); an extended record of variability in the Indonesian Throughflow 

Jessica A. Hargreaves, Nerilie Abram, and Jennie Mallela

Future climate trends indicate that changes in temperature and precipitation are likely to influence global supply chains, agricultural productivity, water security, health and well-being; particularly in densely populated nations across the southeast Indian Ocean region. The Indonesian Throughflow is an ocean current that transports low-latitude, warm and relatively fresh water from the western Pacific into the eastern Indian Ocean. It is thought that variability and changes in the Indonesian Throughflow have significant impacts on the climate and oceanography of the Indo-Pacific region. The short coverage of observational records makes assessments of hydrological changes across the region challenging on longer timescales, with changes before the 1970s being particularly unreliable. An extended record of Indonesian Throughflow variability needs to be established to contextualise changes and improve model projections of future variability.

Christmas Island, located in the southeast Indian Ocean (not to be confused with the Pacific Ocean Kiritimati Island), is located along an outflow of the Indonesian Throughflow. This Island is an ideal location to develop new palaeo-reconstructions of sea surface temperature and hydroclimate, extending our understanding of Indonesian Throughflow variability. Here we present a newly developed coral palaeoclimate reconstruction for Christmas Island, covering the last 118 years at approximately monthly-fortnightly resolution. Corals are sensitive recorders of critical environmental variables, including sea surface temperature and hydroclimate through the analysis of paired stable oxygen isotopes (δ18O) and trace element (Sr/Ca) ratios. This reconstruction consists of a composite of four newly developed coral records and one previously published record and provides a newly developed δ18Osw variability record for the region. The newly developed δ18Osw coral reconstruction correlates strongly with salinity variability, however, presents a weak relationship to in-situ precipitation, indicating that coral hydroclimate reconstructions from Christmas Island likely isolate salinity variability associated with changes in the strength of the Indonesian Throughflow. This relationship highlights the importance that ocean advection plays on δ18Osw variability at this site. Comparisons to both observational records of the Indonesian throughflow, and previously published coral δ18Osw records from the Ombai Strait (Timor), a major outflow passage, reveal strong relationships to variability at Christmas Island. The Christmas Island reconstruction provides a unique opportunity to extend current knowledge of the Indonesian Throughflow beyond the observational record. This Christmas Island record also provides an opportunity to evaluate the impact that interannual to multidecadal variability has on the climate across the southeast tropical Indian Ocean.

How to cite: Hargreaves, J. A., Abram, N., and Mallela, J.: 118-year hydroclimate reconstruction from Christmas Island (Indian Ocean); an extended record of variability in the Indonesian Throughflow, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11965, https://doi.org/10.5194/egusphere-egu23-11965, 2023.

EGU23-12048 | ECS | Orals | OS1.7

An asymmetric change in circulation and nitrate transports around the Bay of Bengal 

Jenny Jardine, Sarah Wakelin, Jason Holt, Anna Katavouta, and Dale Partridge

The Bay of Bengal is a dynamic region that experiences intense freshwater runoff, extreme meteorological events, and seasonal reversing surface currents. The region is particularly susceptible to anthropogenic climate change, driven in part by large air-sea fluxes, persistent freshwater stratification, and low overturning rates. Predicting how this ecosystem is likely to change in the future is paramount for planning effective mitigation strategies. Using a relocatable, coupled physics-ecosystem model (NEMO-ERSEM), we investigate the future changes in surface circulation and coastal nitrate pathways in the Bay of Bengal from 1980 to 2060, using a “business-as-usual" (RCP 8.5) climate change scenario. We find that future surface currents during the Summer and Fall Inter-monsoon seasons are reduced in the north/north-eastern Bay and strengthened in the south-western Bay. Coastal nitrate transports around the Bay mirror this asymmetric change, with coastal nitrate transports at 17.5oN decreasing by 185.7 mol N s-1, despite increased riverine runoff from the Ganges and Irrawaddy River systems. This results in a positive feedback loop whereby the northern Bay becomes progressively fresher and more nutrient-rich, strengthening the barrier layer and increasing the risk of toxic algal blooms and eutrophication events. Conversely, in the south-western Bay (12oN), coastal nitrate transports increase by 1317.8 mol N s-1, driven primarily by an intensified Sri Lanka Dome, that promotes localised diatom blooms despite negligible changes in regional river runoff. This work highlights the need for more rigorous ecosystem modelling and future scenario testing. 

How to cite: Jardine, J., Wakelin, S., Holt, J., Katavouta, A., and Partridge, D.: An asymmetric change in circulation and nitrate transports around the Bay of Bengal, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12048, https://doi.org/10.5194/egusphere-egu23-12048, 2023.

EGU23-12052 | Posters on site | OS1.7

The occurrence and distribution of microplastics in epipelagic zone of the western Indian Ocean 

Eun-Ran Baek, Minju Kim, Dong-Jin Kang, and Jung-Hoon Kang

This study investigated the occurrence and distribution of microplastics utilizing zooplankton samples collected in the Western Indian Ocean because there is no information concerning epipelagic zone in the open ocean. We collected microplastics from three water layers [surface mixed layer(SML), middle layer(ML), lower layer(LL)] within 200 m using a Multiple Opening/Closing Net and Environmental Sensing (opening: 1 ㎡) at 22 stations of 1 degree interval between 5°N and 16°S along the 67°E of Western Indian Ocean in 2017. The microplastics were consistently found in almost all samples and the microplastic abundance ranged between 0.00-2.01 particles/㎥ from the 3 layers. And the average microplastic abundance was highest in the lower layer (0.30±0.09 particles/㎥) and lowest in middle layer (0.26±0.08 particles/㎥). The percentage of fiber was highest in the SML (55.7%) and the LL (45.9%), and the percentage of film was highest in ML (46.8%). The microplastic abundance in the size of 1.0-5.0 ㎜ was highest in SML (42.0%), while the abundance in the size of 0.2-0.5 ㎜ was highest in ML(56.8%) and LL(54.5%). The stations can be divided into four sections including upwelling characterized by Seychelles-Chagos Thermal Ridge (SCTR) based on the 20℃-isotherm depth (D20). The average microplastic abundance was the highest in SML (0.23±0.06 particles/㎥) in 1°S~5°S, and in LL (0.50±0.25 particles/㎥) at latitudes of 10°S~16°S and in LL (0.32±0.16 particles/㎥) at latitudes between 5°N~EQ. However, the average microplastic abundance at latitudes of 6°S ~9°S corresponding to the upwelling zone was highest in the ML (0.65±0.38 particles/㎥) with the high percentage of film (68.7%). Cluster analysis by microplastics occurred in each water layers showed that the stations were divided into 3 groups in each layer. Groups in SML and LL were mainly clustered by fiber, whereas groups in ML was mainly clustered by film, which was associated with the upwelled region of Seychelles-Chagos Thermal Ridge (SCTR). Fourier transform infrared spectroscopy analysis showed that the main types of microplastics were dominated by fiber (40.6%) and film (73.2%) characterized by polycarbonate. Present results showed that meridional and vertical distribution of microplastics in the epipelagic zone varied with the physical characteristics of upwelling zone characterized by Seychelles-Chagos Thermal Ridge (SCTR) in the Western Indian Ocean.

How to cite: Baek, E.-R., Kim, M., Kang, D.-J., and Kang, J.-H.: The occurrence and distribution of microplastics in epipelagic zone of the western Indian Ocean, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12052, https://doi.org/10.5194/egusphere-egu23-12052, 2023.

EGU23-15102 | ECS | Orals | OS1.7

Indian Ocean mean state biases and IOD behaviour in CMIP6 multimodel ensemble 

Marimel Gler, Andy Turner, Linda Hirons, Caroline Wainwright, and Charline Marzin

The Indian Ocean Dipole (IOD) is the main coupled mode of interannual variability in the equatorial Indian Ocean. The largest IOD event in 2019 is thought to have influenced the strong Indian monsoon precipitation, widespread Australian bushfires, and extreme rainfall and flooding in East Africa during that year. Despite its socio-economic importance, the region suffers large biases in weather and climate models used for seasonal forecasts and climate projections.

In this study, the performance of 42 models from the sixth phase of the Coupled Model Intercomparison Project (CMIP6) in reproducing the observed climate over the Indian Ocean is examined. Model simulations of precipitation and 850 hPa winds in the Atmospheric Model Intercomparison Project (AMIP) experiments for the period 1979-2014 are compared to observational and reanalysis data. Biases in the mean state during boreal summer (JJA) in the AMIP models are analysed to determine whether biases in the seasonal cycle established in JJA impact the IOD behaviour. Skill metrics are calculated to quantify the model performance in reproducing the observed JJA mean state and cluster analysis on the mean state biases is performed to characterise bias patterns in summer that may affect the Indian Ocean seasonal cycle and IOD. Results show that AMIP models simulate varying bias patterns in JJA and that the AMIP multi-model mean outperforms all individual models in reproducing the observed JJA mean state. For comparison, the Indian Ocean mean state biases are investigated in coupled models from the 20th-century all-forcings (CMIP) experiments to determine the impact of ocean-atmosphere coupling and coupled sea surface temperature biases on model performance. The IOD behaviour in the AMIP and CMIP models is assessed and the response of the atmospheric circulation to IOD forcing is examined by performing regression analysis. We investigate whether the ability of a model to capture characteristics of the IOD and simulate IOD teleconnection patterns is related to its representation of the mean state. We expand this work to investigate the variability in the Indian Ocean in the Met Office Global Seasonal Forecasting System version 6, GloSea6, with a focus on examining the systematic errors that develop in the region. The work will contribute to our understanding of Indian Ocean biases in weather and climate models, and their likely sources, and thus the wider implications for predictability of the IOD.  

How to cite: Gler, M., Turner, A., Hirons, L., Wainwright, C., and Marzin, C.: Indian Ocean mean state biases and IOD behaviour in CMIP6 multimodel ensemble, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15102, https://doi.org/10.5194/egusphere-egu23-15102, 2023.

EGU23-15432 | ECS | Orals | OS1.7 | Highlight

Multi-decadal changes in the Indian Ocean heat content from a grand ensemble perspective 

Lukas Fiedler, Vimal Koul, Eduardo Alastrué de Asenjo, Sebastian Brune, and Johanna Baehr

Ocean heat content observations in the Indian Ocean have revealed distinctive periods of significant multi-decadal trends — for example a cooling between 1990 and 1999 followed by an unprecedented warming between 2000 and 2009. However, a systematic assessment of the relative importance of anthropogenic forcings versus natural variability in driving such trends is still missing. Here, we utilise four state-of-the-art Single Model Initial- Condition Large Ensembles with MPI-ESM1.2-LR containing different factual and counterfactual forcing scenarios to address the problem. We are able to robustly attribute the unprecedented warming of the Indian Ocean between 2000 and 2009 to the increasing anthropogenic greenhouse gas emissions. Our results also reveal that the preceding cooling is likely to be intrinsic to Indian Ocean heat content variability, since none of the applied counterfactual scenarios exhibits such an observed decrease in Indian Ocean heat content. Furthermore, we trace the underlying reasons for the observed inherent cooling between 1990 and 1999 to a significant reduction in heat transported into the Indian Ocean from the Pacific Ocean by the Indonesian Throughflow. These results have implications for decadal predictions of Indian Ocean heat content.

How to cite: Fiedler, L., Koul, V., Alastrué de Asenjo, E., Brune, S., and Baehr, J.: Multi-decadal changes in the Indian Ocean heat content from a grand ensemble perspective, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15432, https://doi.org/10.5194/egusphere-egu23-15432, 2023.

EGU23-37 | Orals | AS1.24

Nonlinear intensification of monsoon low pressure systems by the BSISO 

Kieran Hunt and Andrew Turner

More than half of the rainfall brought to the Indian subcontinent by the summer monsoon is associated with low-pressure systems (LPSs). Yet their relationship with the Boreal Summer Intraseasonal Oscillation (BSISO) – the dominant intraseasonal forcing on the monsoon – is only superficially understood. Using reanalysis data, we explore the relationship between the BSISO and LPS intensity, propagation, and precipitation, and associated underlying mechanisms.

The BSISO has a large impact on mean monsoon vorticity and rainfall as it moves northward – maximising both in phases 2-3 over southern India and phases 5-6 over northern India – but a much weaker relationship with total column water vapour. 
We present evidence that LPS genesis also preferentially follows these phases of the BSISO.
We identify significant relationships between BSISO phase and LPS precipitation and propagation: for example, during BSISO phase 5, LPSs over north India produce 51% heavier rainfall and propagate northwestward 20% more quickly.
Using a combination of moisture flux linearisation and quasigeostrophic theory, we show that these relationships are driven by changes to the underlying dynamics, rather than the moisture content or thermodynamic structure, of the monsoon.

Using the example of LPSs over northern India during BSISO phase 5, we show that the vertical structure of anomalous vorticity can be split into contributions from the BSISO background circulation and the nonlinear response of the LPS to anomalous BSISO circulation. Complementary hypotheses emerge about the source of this nonlinear vorticity response: nonlinear frictional convergence and secondary barotropic growth. We show that both are important. The BSISO imparts greater meridional shear on the background state, supporting LPS intensification. The BSISO background and nonlinear LPS response both contribute significantly to anomalous boundary layer convergence, and we show through vortex budget arguments that the former supports additional LPS intensification in boundary layer while the latter supports faster westward propagation.

This work therefore yields important insights into the scale interactions controlling one of the dominant synoptic systems contributing to rainfall during the monsoon.

How to cite: Hunt, K. and Turner, A.: Nonlinear intensification of monsoon low pressure systems by the BSISO, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-37, https://doi.org/10.5194/egusphere-egu23-37, 2023.

EGU23-49 | ECS | Posters on site | AS1.24

Subseasonal strength reversal of the East Asian winter monsoon 

Wogu Zhong and Zhiwei Wu

As one of the most significant circulation systems over the Northern Hemisphere in the cold season, the East Asian winter monsoon (EAWM) has been broadly investigated from the seasonal-mean perspective, while subseasonal variations in the EAWM still remain ambiguous. Based on Season-reliant Empirical Orthogonal Function (S-EOF) analysis, this study shows that the subseasonal strength reversal of the EAWM (SR-EAWM), featuring a weaker (or stronger) EAWM in early winter (December) and a stronger (or weaker) EAWM in late winter (January-February), is a distinct leading mode of the month-to-month variation of the EAWM. The weak-to-strong SR-EAWM is characterized by an anomalous low over Eurasia and a weakened East Asian major trough (EAT) in early winter, with an intensified Siberian High and a deepened EAT in late winter. The SR-EAWM is preceded by surface air temperature anomalies over Davis Strait (DST) and those over central-eastern North America (CENAT) in September-October. The DST mainly influences the SR-EAWM in early winter through a “sea ice bridge” of the November Baffin Bay sea ice concentration anomaly (BBSIC). The BBSIC could intensify the DST in December by altering surface heat flux, thus exciting a downstream atmospheric response and modulating the strength of the EAT in early winter. The preceding CENAT affects the SR-EAWM in late winter by inducing an “ocean bridge” of the western North Atlantic sea surface temperature anomaly (WNASST). The WNASST can persist into late winter and then significantly affects the SR-EAWM by regulating Eurasian circulation anomalies and the downstream EAT. The bridge roles of the BBSIC and WNASST can be further verified by a linear baroclinic model. Finally, two physical-empirical models are established using the DST/BBSIC and the CENAT indices, respectively. Both exhibit promising prediction skills. The results highlight that the DST, BBSIC, and CENAT are crucial predictability sources for the SR-EAWM.

How to cite: Zhong, W. and Wu, Z.: Subseasonal strength reversal of the East Asian winter monsoon, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-49, https://doi.org/10.5194/egusphere-egu23-49, 2023.

Understanding the natural variability of Indian summer monsoon (ISM) is a crucial aspect relevant for decadal climate predictions and climate change studies. The multidecadal variability of ISM is known to have a close association with the Atlantic multidecadal oscillations (AMO). Several teleconnection pathways have been suggested to explain the co-variability of the AMO and ISM in multidecadal timescales. One hypothesis is that the AMO modulates the interannual North Atlantic Oscillation (NAO) mode and there by influences the monsoon via Eurasian temperature modulations. Direct atmospheric teleconnection, across Eurasia, through upper-level circulation anomalies has also been attributed to the observed AMO-ISM relationship. Another possibility is the AMO modulating the monsoon via the Pacific pathway through the atmospheric bridge mechanism and associated modulations of the Hadley-Walker circulations. The Last millennium (LM) (851-1848) climate simulations part of the PMIP3/CMIP5 gives an opportunity to better understand the fidelity of climate models in capturing the AMO-ISM teleconnection mechanisms. In this study we explore how well the proposed mechanisms are represented in eight global climate models (GCM) LM simulations. Such a study, assessing the validity of different AMO-monsoon teleconnection mechanisms in different model climates provides crucial information about how reliable the respective GCMs may be in making decadal climate predictions.

How to cite: Dutta, A., Sivankutty, R., and Joseph Mani, N.: Investigating the Atlantic-Indian summer monsoon multidecadal teleconnections in the PMIP3/CMIP5 Last Millennium simulations, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-191, https://doi.org/10.5194/egusphere-egu23-191, 2023.

EGU23-426 | ECS | Orals | AS1.24

Role of background moisture in dictating the Intraseasonal Rainfall over Bay of Bengal 

Aditya Kottapalli and Vinayachandran Pn

The northward propagating intraseasonal Oscillation (ISO) is one of the dominant modes of tropical variability during Boreal summers. Several mechanisms have been proposed to explain northward propagation. Yet the factors that decide the ISO rainfall over a particular region remains elusive. in this  study we show that the ISO rainfall anomalies weaken across the south Bay of Bengal (SBoB) before they re-strengthen over the north Bay of Bengal (NBoB). We use the moisture budget to understand the reason for the same. We find that the horizontal moisture flux convergence predominantly controls the ISO rainfall anomalies over the two regions. Further analyses reveal that the convergence of background moisture by the ISO wind perturbations decides the ISO rainfall structure. We hypothesize that the weaker rainfall anomalies in the SBoB result from the weaker background column relative humidity and moisture, which do not allow the initial dynamic perturbations to grow as fast as they do in an environment with stronger background relative humidity and moisture (NBoB). 

How to cite: Kottapalli, A. and Pn, V.: Role of background moisture in dictating the Intraseasonal Rainfall over Bay of Bengal, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-426, https://doi.org/10.5194/egusphere-egu23-426, 2023.

EGU23-436 | ECS | Orals | AS1.24

Role of thermodynamic processes in driving Monsoon Intraseasonal Oscillations (MISO) away from the Equator 

Rajat Masiwal, Vishal Dixit, and Ashwin K Seshadri

Monsoon intraseasonal oscillation (MISO) is an important aspect of the monsoon variability on various timescales, accounting for short-term variability as well as about 40% of total seasonal rainfall variance. MISO plays an important role in modulating the active (wet) and break (dry) spells of monsoon, and its low-frequency component has a time period of 30-60 days and exhibits northward propagation from the equatorial Indian Ocean to the Himalayan foothills. This northward propagation is generally attributed to generation of positive barotropic vorticity to the north of the previous convection centre. However, using ERA5 reanalysis composites we show that the relation between convection centre and positive barotropic vorticity undergoes significant change as MISO propagates away from the equator. Close to the equator (0-15°N), barotropic voriticty is either in-phase or leads rainfall, whereas further poleward (15°N-25°N), this relationship reverses and rainfall leads vorticity by 1-2 days. This contrast is closely tied to changes in the vertical structure of vorticity: near the equator, the vorticity maximum lies in the middle troposphere, while poleward of 15°N it is in the lower troposphere. The vorticity budget at each pressure level reveals the importance of vertical advection of vorticity for its near-barotropic structure, together with the importance of thermodynamic influences on vorticity, especially poleward where the vortex stretching term grows. Such findings point to the central role of feedback on the dynamics from the thermodynamic processes away from the equator. Furthermore, it closely ties the ability of models to reproduce MISO to their ability to represent convective processes.

 

How to cite: Masiwal, R., Dixit, V., and Seshadri, A. K.: Role of thermodynamic processes in driving Monsoon Intraseasonal Oscillations (MISO) away from the Equator, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-436, https://doi.org/10.5194/egusphere-egu23-436, 2023.

EGU23-546 | ECS | Posters on site | AS1.24

Precipitation and temperature variability in Vietnam during Marine Isotope Stage 3 from terrestrial biomarkers 

Trang Tran, Lora Stevens-Landon, Jessica Tierney, Patrick Murphy, and Tich Vu-Van

Southeast (SE) Asia is located in a transitional zone where hydroclimate is controlled by both the Indian and East Asian summer monsoon branches. Recent proxy-based studies and climate models suggest that the hydroclimate of SE Asia may be out of phase with neighboring regions, such as India and China. However, we lack sufficient proxy records to verify this postulation or to identify spatial and temporal variations. This study reconstructs both past temperatures and effective moisture in Central Vietnam during Marine Isotope Stage 3 (approximately 50,00 to 30,000 years BP) to determine how these two climate variables relate in the past. Terrestrial temperatures and precipitation are reconstructed using biomarkers (branched glycerol dialkyl glycerol tetraethers, brGDGT) and compound-specific isotope analyses (carbon and hydrogen-isotopic values of leaf wax n-acids, δ13Cwax, and δDwax) from a buried peat deposit in the Central Highlands of Vietnam. The brGDGTs-derived annual temperatures range from 22.9 to 26.2°C and show a warming trend coincident with a weakening of summer insolation. A coincident and gradual enrichment of δ13Cwax from 47 to 33 kyr BP suggests a transition from C3 to C4 vegetation dominance. Such a response could signal an overall decrease in precipitation or a shift in the seasonality of precipitation. The δDwax data, however, do not indicate an overall drying trend, which supports the idea that a shift in the seasonality of rainfall, along with higher annual temperatures, is driving the vegetation change. In addition, the δDwax records may exhibit a trend opposite to a site in Thailand. We argue that the isotopic variability in the precipitation of Central Vietnam reflects the shift in moisture sources along with the shift in seasonality. In this case, an increase in amount of precipitation derived from the South China Sea in winter months is marked by rain enriched in δ2H-which could also be interpreted as a decrease in precipitation. The increase in rainfall during winter monsoon months (e.g. winter) in the Central Highlands of Vietnam does not appear to reach Thailand. We recommend that the precipitation proxies should be applied with knowledge of regional climate context and argue that better geographic representation of monsoonal climates is necessary to fully understand and model this critical climate system.

How to cite: Tran, T., Stevens-Landon, L., Tierney, J., Murphy, P., and Vu-Van, T.: Precipitation and temperature variability in Vietnam during Marine Isotope Stage 3 from terrestrial biomarkers, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-546, https://doi.org/10.5194/egusphere-egu23-546, 2023.

EGU23-658 | ECS | Posters on site | AS1.24

The complexity of South China Sea summer monsoon onset 

Tian Ma and Weidong Yu

The complexity of the South China Sea (SCS) summer monsoon (SCSSM) onset is mainly reflected in the interaction of multiscale processes that include the seasonal cycle, 10-25-day ISO (HISO), 30-60-day ISO (LISO). In this study, the characteristics and mechanism of the HISO and LISO and their interaction with the background field are investigated when they trigger the SCSSM onset base on newly released reanalysis and remote sensing data for the period of 1979–2020.

The SCSSM onsets always are triggered by the second westward HISO or first northward LISO when the control of subtropical high pressure weakens on the SCS. The first HISO can be seen as a signal that the control is weak enough, and the SCSSM is about to onset. The SCSSM can also be established without the effects of the HISO or LISO, but the date would be put off. Based on the budget analysis of column-integrated moist static energy (MSE), the interaction between the easterly trade winds and the zonal gradient of MSE anomalies is considered the dominant reason for the HISO that can successively propagate westward from the western North Pacific. The SSTa-induced turbulent heat flux and the interaction between the mean southerly and the meridional gradient of the MSE anomaly are both important for the northward LISO from the equatorial Indian Ocean when it triggers the SCSSM onset. For the simulation and forecasting of the SCSSM onset, we put more emphasis on the role of the HISO because it is a more active process.

How to cite: Ma, T. and Yu, W.: The complexity of South China Sea summer monsoon onset, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-658, https://doi.org/10.5194/egusphere-egu23-658, 2023.

The study addresses the role of climate change on the interaction between the Indian Summer monsoon rainfall (ISMR) and western north Pacific (WNP) convective activities. We have examined two high-resolution climate model simulations, with and without anthropogenic forcing (i.e., HIST and HISTNAT), using a variable resolution model. The study is supplemented by detailed diagnostics and innovative techniques like causal network analysis which bring out the interaction of convective activities between the two regions which is altered by the influence of anthropogenically forced climate change. Our results shows that the weakening of ISMR re-orient the cross-equatorial winds along with large-scale moisture transport towards the western tropical Pacific which significantly increase the genesis potential index (GPI) over the region by 9.6%. Further we noted the probability of the occurrence of extremely low sea-level pressure (SLP) i.e., SLP < 995.5 hPa around areas near Taiwan and part of Chinese mainland is significantly higher by 10.3 % in the HIST simulation as compared to that of HISTNAT. The use of causal effect network analysis showed a significant causative link between the Indian monsoon circulation index (IMI), WNP tropical cyclone activity (GPI) and winds over the tropical Indo-Pacific (IPWND). The results show a weakening of the IMI can lead to possible enhancement of GPI and IPWND, with a certain time-lag. It is noteworthy to mention that the time lag of interaction between the IMI, GPI and IPWND are different in the two simulations with a significantly shorter time scales in HIST (~ 5 days) compared to that of HISTNAT where it is significantly larger (>20 days).

How to cite: Sagar, A., Krishnan, R., and Sabin, T. P.: Weakening of South Asian monsoon circulation and its interaction with western north Pacific tropical convective activities in a changing climate, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-696, https://doi.org/10.5194/egusphere-egu23-696, 2023.

EGU23-715 | Orals | AS1.24

CMIP6 projections of the South American Monsoon Lifecycle: comparison with pre and post statistical downscaling 

Michelle Reboita, Glauber Ferreira, and João Gabriel Ribeiro

The climate of a great part of South America presents two well-defined seasons: one dry, in general, from April to September, and another wet, from October to March, which characterizes a monsoon regime. As most of the energy generation in this monsoon region is hydroelectric, precipitation is a target of several studies. In this context, the South America Monsoon (SAM) lifecycle (onset, demise, and duration) in projections of eight global climate models (GCMs) of the Coupled Model Intercomparison Project Phase 6 (CMIP6) is analyzed in this study using two approaches: (a) the original GCM outputs downloaded from the Earth System Grid Federation (ESGF) and (b) after application of the statistical downscaling (SD) technique. Daily precipitation data from the Climate Prediction Center (CPC), with a horizontal resolution of 0.5o, are used as a reference. So, the final resolution of the GCMs after applying the Quantile Delta Mapping (QDM) is the same as CPC. SAM lifecycle is identified with a similar methodology from Liebman and Marengo published in 2001, which is based on the accumulated daily precipitation anomalies. The rainy season is considered to be the period during which precipitation exceeds its climatological annual average, then a positive slope indicates the rainy season. Note that this methodology is proper to be applied in projections because it does not assume any threshold. Initial results indicate a shorter lifetime of SAM at the end of the century.  The authors thank the Programa de P&D regulado pela ANEEL: empresa Engie Brasil Energia e Companhia Energética Estreito, MC&E, FAPEMIG, CAPES and CNPq for the financial support.

How to cite: Reboita, M., Ferreira, G., and Ribeiro, J. G.: CMIP6 projections of the South American Monsoon Lifecycle: comparison with pre and post statistical downscaling, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-715, https://doi.org/10.5194/egusphere-egu23-715, 2023.

In this study, we present the results of a regional model (regional spectral model-regional ocean model [(RSM-ROMS]) simulation of the South Asian Summer Monsoon (SASM). The RSM-ROMS integration is carried out at 20 km grid spacing over a period of 25 years (1986–2010). The simulation is forced by global atmospheric and oceanic reanalysis. The RSM-ROMS simulation shows a realistic alignment of the simulated rainfall along the orographic features of the domain. Furthermore, the RSM-ROMS simulates the observed feature of convection over continental SASM region being more vigorous with dominance of mixed warm and cold phase hydrometeors in contrast to the dominance of the warm rain process in the neighboring tropical oceans. Similarly, the upper ocean features of contrasting mixed layer and thermocline depths between the northern and equatorial Indian Ocean are also simulated in the RSM-ROMS. Intra-Seasonal Oscillation (ISO) of the SASM at 10–20 and 20–70 days are also simulated in the RSM-ROMS with many of its features verifying with observations. For example, the 20–70 days ISO are of higher amplitude and its meridional propagation is slower in Bay of Bengal compared to that over Arabian Sea. Additionally, RSM-ROMS shows 12.3 Monsoon Low Pressure Systems (LPSs) per season that is comparable to 14.6 per season from observations. Furthermore, the observed intraseasonal contrasts of LPS between the wet and dry spells of ISO is also reproduced in the RSM-ROMS.

How to cite: Misra, V. and Jayasankar, C. B.: Dynamic Downscaling the South Asian Summer Monsoon From a Global Reanalysis Using a Regional Coupled Ocean-Atmosphere Model, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1014, https://doi.org/10.5194/egusphere-egu23-1014, 2023.

Tibet plateau plays very crucial roles in globle climate system, and the precipitation is  one of the main factors in Tibet plateau climate system, Based on GPCC monthly precipitation data and ERA5 monthly precipitation reanalysis data from 1961 to 2016, this study analyzes the spatio-temporal distribution and evolution of plateau precipitation during the May-September monsoon period under the background of global warming. Try to analyze the mechanism reason affecting precipitation variation in different regions. The precipitation in the South part of Tibet plateau began to increase in May, and advance to the northwest part of Tibet plateau during the July and August, and began to back to the south in September. According to The decomposition of the empirical orthogonal function (EOF), we divided the Tibet plateau into north and south two parts by the mount tunggula, on the interannual variability, percentage of precipitation in the monsoon plateau exists reverse change relation, precipitation showed a trend of slight decrease in the south part of plateau, plateau in northern precipitation shows ascendant trend on decadal scale, rate of precipitation in the plateau there are shocks between 3 to 5 years in 7-9 or 11 years. There is a north-south inverse change rate in the precipitation in the plateau during the monsoon period. The analysis of the relationship between the monthly precipitation data and the atmospheric circulation in the south and north of the Plateau shows that the precipitation in the south of the Plateau is affected by the South Asian monsoon, while the precipitation in the north of the plateau is related to the Rossby wave of the subtropical westerly jet. In other words, the precipitation in the southern part of the plateau is mainly controlled by summer risk, while the precipitation in the northern part of the plateau is affected by subtropical westerly winds.

 

Keyword: Tibetan Plateau,Precipitation,Circulation,South asia monsoon,Jet stream

How to cite: Wang, H. and Hu, Z.: The North-South variation and mechanism of the precipitation over the Tibetan Plateau during the monsoon in the past 60 years, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1193, https://doi.org/10.5194/egusphere-egu23-1193, 2023.

EGU23-2011 | Posters on site | AS1.24

Increased intra-seasonal variability in Indian summer monsoon precipitation in a warming climate 

Sukumaran Sandeep and Neelesh Kumari

The characteristics of Indian summer monsoon (ISM) precipitation have been changing in a warming climate. We examined the intra-seasonal variability of daily mean ISM rainfall over central India in 20 CMIP6 models. The daily precipitation variance is found to have increased in the last 20 years of SSP585 runs compared to the 1981 – 2000 period of historical all forcing simulations. The mean ISM precipitation also shows an increase in the same period. The future changes in seasonal mean precipitation and the intra-seasonal variance in daily precipitation with respect to the historical period are scaled with the corresponding change in the surface temperature over the ISM domain. The changes in the seasonal mean precipitation do not show any significant relationship with the surface temperature change. However, the changes in the daily variance of ISM precipitation scale linearly with the changes in temperature. These results suggest that the ISM precipitation will become more erratic in a warming environment.

How to cite: Sandeep, S. and Kumari, N.: Increased intra-seasonal variability in Indian summer monsoon precipitation in a warming climate, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2011, https://doi.org/10.5194/egusphere-egu23-2011, 2023.

EGU23-2025 | Orals | AS1.24

Processes controlling the South American Monsoon response to Climate Change 

Robin Chadwick, Jorge Garcia-Franco, and Lincoln Alves

CMIP6 future climate projections consistently show a drying trend during the onset of the South American monsoon, which has the potential for large ecological and societal impacts in this region. This trend is also present in a high-resolution regional convection-permitting simulation over the South American domain. Here, the processes responsible for this drying trend are examined using a number of idealised experiments and analysis techniques. The main driver is shown to be remote sea surface temperature (SST) warming - rather than local radiative or plant physiological responses to increased CO2 - with both large-scale uniform SST warming and patterned regional warming playing important roles. The role of uniform SST warming on the South American monsoon onset is examined in more detail using a moist static energy budget approach, building on hypotheses from a previous single model study. The atmospheric circulation response to patterned SST warming is examined using a local overturning circulation partioning technique, allowing a link between the South American monsoon region and specific regions of ocean warming to be identified.

How to cite: Chadwick, R., Garcia-Franco, J., and Alves, L.: Processes controlling the South American Monsoon response to Climate Change, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2025, https://doi.org/10.5194/egusphere-egu23-2025, 2023.

Monsoon influences the well-being of billions of people in tropical and subtropical regions. The accelerated climate change and monsoon coupling with other large-scale climatic phenomena make their prediction challenging. Therefore, improvement in understanding and prediction of monsoons has become essential. Recent studies have emphasized the role of arctic region in influencing the tropical climate and its potential to cause more persistent extreme events. Therefore, it is imperative to explore the arctic region for its strategic advantage and combat climate change. In this direction, our work aims to unravel the association between the Arctic region and the Indian summer monsoon (ISM). We quantify the influence of the Arctic region on Indian summer monsoon rainfall (ISMR) using statistical parameters. The sea ice extent and Arctic Oscillation Index were correlated with the precipitation in India at seasonal and monthly scale. The Arctic Oscillation index was able to explain around 7-10% of variability in precipitation. The increased magnitude and frequency of precipitation in India are significantly related to decreased sea ice extent indicated by negative correlation coefficient ranging from 0.3-0.6.

How to cite: kulkarni, S. and Agarwal, A.: Unraveling the association between artic region and Indian summer monsoon – an empirical study, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2111, https://doi.org/10.5194/egusphere-egu23-2111, 2023.

EGU23-2159 | ECS | Posters virtual | AS1.24

Climatic effects of the Indian Ocean tripole on the western United States in boreal summer 

Yazhou Zhang and Jianping Li

The Indian Ocean tripole (IOT) is an independent mode of ocean–atmosphere circulation centered on the tropical Indian Ocean. This study explores the physical mechanisms of the IOT affecting the western United States climate variation during the boreal summer. We find that the IOT is significantly correlated with both western United States summer surface temperature and precipitation anomalies. During positive IOT events, the westerly wind anomalies over the northern Indian Ocean are intensified by two cross-equator airflows over the tropical eastern Indian Ocean and the east coast of Africa. The resulting convergence of air over the northern Bay of Bengal–Indochina Peninsula–northern South China Sea (NBB–IP–NSCS) region (80°–125°E, 15°–25°N) exacerbates the surplus precipitation there. Serving as a heat source, these NBB–IP–NSCS precipitation anomalies can excite a circum-global teleconnection-like (CGT–like) pattern that propagates eastward from west-central Asia towards North America along the Asia subtropical westerly jet, further influencing local circulation anomalies. Development of strong anticyclonic circulation over the western United States enhances descending motion and divergence there, resulting in negative precipitation anomalies. This circulation anomaly also induces the diabatic heating anomalies through allowing more solar radiation to reach the ground surface, further increasing the surface temperature anomalies. Meanwhile, the increased tropospheric temperature also raises local surface temperatures by modulating the adiabatic air expansion and compression. Ultimately, the CGT-like pattern associated with NBB–IP–NSCS precipitation anomalies sets up an atmospheric bridge by which the IOT can impact summer climate in the western United States.

How to cite: Zhang, Y. and Li, J.: Climatic effects of the Indian Ocean tripole on the western United States in boreal summer, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2159, https://doi.org/10.5194/egusphere-egu23-2159, 2023.

EGU23-2322 | ECS | Orals | AS1.24

Extratropical Stratospheric Air Intrusions Over the Western North Pacific and the Genesis of Downstream Monsoon Low-Pressure Systems 

Vishnupriya Selvakumar, Suhas Ettamal, and Sandeep Sukumaran

Low-pressure systems (LPS) are convectively coupled vortices that contribute nearly half of the summer monsoon rainfall over the Indian subcontinent. About one-third of the boreal summer monsoon LPS are caused by downstream amplification of westward propagating disturbances from the western North Pacific (WNP). Analysis of downstream LPS events from 1979 to 2017 reveals that 43% of them are caused by extratropical stratospheric air intrusions over the WNP. Stratospheric air intrusions lead to high tropospheric potential vorticity (PV), and the downstream vortex seeds are observed to initiate and intensify to the southwest of the PV anomalies. The PV anomalies can deform the temperature in its neighborhood and cause adiabatic lifting, which in turn can induce and intensify low-level cyclonic vortices. The subsequent intensification of the low-level vortex is aided by deep convection, observed to the southwest of the PV anomaly, through vortex stretching and low-level PV generation by diabatic heating.

How to cite: Selvakumar, V., Ettamal, S., and Sukumaran, S.: Extratropical Stratospheric Air Intrusions Over the Western North Pacific and the Genesis of Downstream Monsoon Low-Pressure Systems, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2322, https://doi.org/10.5194/egusphere-egu23-2322, 2023.

EGU23-2469 | ECS | Orals | AS1.24

Australian Summer Monsoon Bursts: A Moist Static Energy Budget Perspective 

Sarthak Mohanty, Christian Jakob, and Martin Singh

The Australian monsoon's wet season is associated with sequences of wet and dry conditions known as bursts and breaks, which usually have timescales of a week or two. There are several hypotheses for the physical processes involved in monsoon bursts, ranging from the effects of the Madden-Julian Oscillation to extratropical influences.

We analyse rainfall bursts in Northern Australia using a moist static energy (MSE) budget framework. First, we separate the bursts into pre-monsoon, monsoon, and post-monsoon based on simple monsoon onset and retreat criteria. We then apply ERA5 data to calculate the MSE budget for each burst and construct composite bursts for each of the three types.

We find that the horizontal advection of MSE over the tropical northern Australian convergence zone is the most critical term in the budget for the day-to-day precipitation variation. An analysis of the MSE-related gross moist stability (GMS) reveals that the GMS framework is able to predict periods of convective growth and decay before and after monsoon bursts, with the exception of the pre-monsoon bursts which do not follow the characteristic evolution of tropical convective systems. We hypothesise that this is because pre-monsoon bursts have a stronger extratropical influence. We find that the growth phase of convection in monsoon and post-monsoon bursts is associated with a notable reduction of the advection of dry air into the monsoon region. We show that this is likely the result of a rearrangement of the circulation ahead of the burst.  

How to cite: Mohanty, S., Jakob, C., and Singh, M.: Australian Summer Monsoon Bursts: A Moist Static Energy Budget Perspective, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2469, https://doi.org/10.5194/egusphere-egu23-2469, 2023.

EGU23-2580 | ECS | Orals | AS1.24

Land evaporation biases link to East Asian rainfall shifts across AMIP simulations 

Ruth Geen, Marianne Pietschnig, Shubhi Agrawal, Dipanjan Dey, F. Hugo Lambert, and Geoffrey Vallis

State-of-the-art models show significant climatological biases in their simulation of East Asian Summer Monsoon (EASM) rainfall, with biases even more pronounced in atmosphere-only simulations versus simulations with a coupled-ocean. It has further been noted that systematic evapotranspiration biases occur locally over East Asia, and globally over land, in simulations both with and without a coupled ocean. Here, we explore a possible role for evapotranspiration in EASM precipitation biases.

Idealized model simulations are presented in which the parameterization of land evaporation is modified. The results suggest a feedback whereby excessive evapotranspiration over East Asia can result in cooling of land, a weakened monsoon low, and a shift of rainfall from the Philippine Sea to China, moistening land and further fueling evapotranspiration. Cross-model regressions against evapotranspiration over China indicate that a similar pattern of behavior is seen in Atmosphere Model Intercomparison Project (AMIP) simulations.

In AMIP, the feedback is not explained by a too-intense global hydrological cycle or by differences in radiative processes. Analysis of land-only simulations indicates that evapotranspiration biases are present even when models are forced with prescribed meteorological conditions. These biases are strengthened when the land model is coupled to the atmosphere, suggesting a role for land-model errors in driving atmospheric biases. Coupled atmosphere-ocean models are shown to have similar evapotranspiration biases to those in AMIP over China, but different precipitation biases, including a northward shift in the Intertropical Convergence Zone over the Pacific and Atlantic oceans.

How to cite: Geen, R., Pietschnig, M., Agrawal, S., Dey, D., Lambert, F. H., and Vallis, G.: Land evaporation biases link to East Asian rainfall shifts across AMIP simulations, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2580, https://doi.org/10.5194/egusphere-egu23-2580, 2023.

EGU23-3466 | Posters on site | AS1.24

Understanding changes in West African monsoon precipitation in response to increased CO2 

Harry Mutton, Robin Chadwick, Matthew Collins, and Hugo Lambert

Projections of future West African monsoon (WAM) precipitation change in response to increased greenhouse gases are uncertain, and an improved understanding of the drivers of WAM precipitation change is needed to help aid model development and better inform adaptation policies in the region. Here, we address two of these drivers: the direct radiative effect of increased CO2 (referring to the impact of increased CO2 in the absence of SST changes), and the impact of a uniform SST warming. Atmosphere only models are used to investigate the response, finding that these two drivers have opposing impacts on WAM precipitation. In response to the direct radiative effect, an increase in precipitation is caused by a northward shift and a weakening of the shallow meridional circulation over West Africa, advecting less dry air into the monsoon rainband. In contrast, the uniform SST warming causes a decrease in precipitation due to a strengthening of the shallow meridional circulation and enhanced moisture gradients between the moist monsoon airmass and the dry desert airmass. These changes in the shallow meridional circulation are shown to be caused by large scale temperature changes as well as the more localised impact of a soil moisture feedback mechanism over the Sahel. It is then shown that the processes discussed are relevant to the intermodel uncertainty in WAM projections across a range of CMIP6 models.

How to cite: Mutton, H., Chadwick, R., Collins, M., and Lambert, H.: Understanding changes in West African monsoon precipitation in response to increased CO2, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3466, https://doi.org/10.5194/egusphere-egu23-3466, 2023.

EGU23-3747 | ECS | Orals | AS1.24

Impact of vegetation on the boreal summer monsoon precipitation over India: an energetics viewpoint. 

Jerry B Samuel, Arindam Chakraborty, and Anagha Paleri

The heterogeneities arising out of surface variabilities, land-sea contrasts, aerosol concentrations, and the influence of orography define the intricate characteristics of regional monsoon systems. The amount of precipitation India receives during the boreal summer monsoon season can be modulated by land surface processes due to its influence on moisture availability and atmospheric stability. This study investigates the impact of vegetation changes on the seasonal mean precipitation over Indian land using fully coupled global climate model (GCM) simulations with idealized land cover. In addition, an  energetics framework is employed to unravel the physical mechanisms/pathways connecting vegetation and rainfall. In general, evaporation enhances with an increase in forest cover. However, this does not translate to a similar increase in all-India averaged precipitation. Using the energetics approach, we find that precipitation changes primarily happens via three different thermodynamic pathways. We also find the regions where each pathway is dominant. The relative dominance of these pathways in various areas leads to spatial inhomogeneities in the precipitation response due to vegetation changes. Human intervention, including agricultural expansion, has reshaped the landscape of India in the last century, altering the nature of land-atmosphere interactions. The results from this study, that land cover plays a significant role in modulating the regional characteristics of seasonal monsoon precipitation, are particularly important in this context. The findings in this study also have broader ramifications since the dominant region-specific mechanisms identified are expected to be valid for other forcings and are not just limited to the scenarios considered here. A unified framework connecting these various forcings with monsoon variability would be of great practical importance, and the present study is an advancement in this regard.

How to cite: Samuel, J. B., Chakraborty, A., and Paleri, A.: Impact of vegetation on the boreal summer monsoon precipitation over India: an energetics viewpoint., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3747, https://doi.org/10.5194/egusphere-egu23-3747, 2023.

The Indo-Pacific warm pool (IPWP) is enclosed by a 28 ◦C isotherm and plays a vital role in controlling tropical circulations. However, the effects of changes in regional warm pool sea surface temperatures (SSTs) on the circulations remain unexplored. To do this, we divided the IPWP into the Indian and Pacific sectors and distinguished their responses to natural variability and global warming. And then, we examined the impacts of the interannual variability (IAV) in warm pool SST on the tropical Hadley, Walker, and monsoon circulations. The Hadley circulation was affected by warm pool SST warming, i.e., warmer SSTs over the warm pool strengthened the upward branch of Hadley circulation, whereas the downward branch was weakened and strengthened in the Northern and Southern Hemispheres. Walker circulation was strengthened (weakened) in the warming (natural) mode. Consequently, the Walker circulation is weakened since the natural variability of warm pool SST plays a more dominant role than the warming trend of SSTs over the warm pool. It is notable that warm pool warming has little impact on monsoon circulation. Our findings highlight the different roles of the IAV of warm pool regions in each tropical circulation as part of the warming trend and natural variability. Furthermore, an increase in precipitation is limited up to a specific SST, although SST becomes warmer. We defined this specific SST as Saturation Threshold SST (STT). Under a warming climate, future changes in STT over the IPWP and its mechanism will be shortly shown in this presentation.

How to cite: Kim, H.-R. and Ha, K.-J.: Impact of the Indo-Pacific Warm Pool on the Tropical Circulations and Changes in Saturation Threshold SST, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4743, https://doi.org/10.5194/egusphere-egu23-4743, 2023.

The Himalayas are an essential driver of the monsoon and climate system. However, river flooding during the monsoon impacts the most densely populated region of Himalayan downstream regions annually. Previous studies also reported elevation-dependent warming, rainfall changes, ice-sheet melting, and extremes in the Himalayas. Nevertheless, due to complicated orography, Himalayan precipitation dynamics remain quantitatively limited on a spatial scale compared to other monsoon regions. In the context of climate change, recent studies show how melting glaciers and snow, along with monsoonal rains causing recurrent floods, play a role. This study examined the last 43 years (1979-2021) to emphasize the interannual variability. We found a robust signal over in the Eastern Himalayas, where the orographic features and process plays a dominant role. Further analysis indicates Monsoonal rainfall is the main factor, rather than melting snow for these unusually extreme years. Regional monsoonal circulation connected to Walker circulation controls the variability of Himalayan monsoonal rainfall via circulation linkages. Our findings illustrate the wet and dry response mechanisms in the eastern Himalayas. The conclusions are drawn from this work highlight the role of natural variability, which might help understand Himalayan floods and their predictability.

 

Keywords Himalayas, Interannual variability, Monsoon dynamics, Orographic features, River floods

How to cite: Kad, P. and Ha, K.-J.: Dynamics and characteristics of monsoonal orographic rainfall variability over Eastern Himalaya, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4950, https://doi.org/10.5194/egusphere-egu23-4950, 2023.

The changes in the Indian summer monsoon rainfall under anthropogenic climate change would have a large socio-economic impact. The thermodynamic effect of the climate change on future monsoon rainfall is well understood with an overall increase in precipitation as the atmosphere moistens. Understanding the dynamical effect of climate change especially from the changes in the drivers of the monsoon remains challenging. Here we show that the observed western Indian monsoon rainfall has an increasing trend over the last 120 years. We find this observed trend is connected with the trend in the tropical Pacific zonal sea surface temperature (SST) gradient, where the western tropical Pacific or the warm pool region of the Pacific Ocean is warming faster than the eastern side. Applying a storyline approach to the future evolution of the zonal tropical Pacific SST gradient in 38 global climate models from the latest Coupled Model Intercomparison Project phase 6, we find a consistent connection in the models between the western Indian monsoon rainfall change and the strength of the change in the zonal tropical Pacific SST gradient under global warming. The models which warm more in the western compared to the eastern side of the tropical Pacific have higher rainfall increases over western India during the monsoon season. This link is associated with an anomalous easterly wind coming from the western tropical Pacific and converging over western India, leading to higher rainfall in both observations and models. This result suggests that future changes in the western Indian monsoon rainfall would depend on the changes in the strength of the zonal gradient of the tropical Pacific Ocean SST.

How to cite: Ghosh, R. and Shepherd, T. G.: Strengthening tropical Pacific zonal temperature gradient linked with increasing West Indian Monsoon rainfall, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5985, https://doi.org/10.5194/egusphere-egu23-5985, 2023.

EGU23-6151 | Posters on site | AS1.24

Response of the Indian monsoon to a warming Indian ocean 

Bidyut Bikash Goswami

The Indian summer monsoon rainfall (ISMR) has been declining since the middle of the last century. However, recently (since about 2002) it is reported to have revived. For these observed changes in the ISMR, several explanations have been reported. Among these explanations, the warming of the Indian Ocean is considered a major one. However, we still do not fully understand the response of the atmosphere to this warming. Here we report that warming in the Indian Ocean (focusing on the eastern side of it where the sea surface temperatures are climatologically very warm) drives atmospheric responses that oppose Indian summer monsoon circulation and reduces ISMR. 

How to cite: Goswami, B. B.: Response of the Indian monsoon to a warming Indian ocean, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6151, https://doi.org/10.5194/egusphere-egu23-6151, 2023.

EGU23-6573 | Orals | AS1.24

Why is there a systematic bias in the Asian Monsoon in the Met Office Unified Model? 

Kalli Furtado, Gill Martin, David Sexton, John Rostron, and Paul Field

Many global-climate models have substantial biases in their predictions of the Asian monsoon. For example, the Met Office Unified Model predicts a  monsoon trough that is too zonal and therefore underestimates summer rainfall over south and east Asia. These errors have persisted over many cycles of research-to-operations, and appear robust to significant developments in all major parametrizations in the model. Here, we address a simple question: why are these biases systematic? That is, why have they not been removed by optimization of parameters in the model's physics? Using a Perturbed Parameter Ensemble of AMIP simulations, we show that a strong constraint exists which prevents the Unified Model from simultaneously producing an unbiased monsoon and unbiased global top-of-atmosphere radiation fluxes. We use this constraint to define a scalar parameter, the "structural bias"  of the ensemble, the magnitude of which measures the conflict between the constraints and therefore how "untunable" the model is. We identify the drivers of this parameter, show that it is related to an inability to independently affect the properties of tropical and extra-tropical clouds, and suggest ways in which it could be reduced in future model versions.

How to cite: Furtado, K., Martin, G., Sexton, D., Rostron, J., and Field, P.: Why is there a systematic bias in the Asian Monsoon in the Met Office Unified Model?, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6573, https://doi.org/10.5194/egusphere-egu23-6573, 2023.

EGU23-6671 | ECS | Orals | AS1.24

Boreal Summer Intraseasonal Oscillation extreme rainfall propagation modulated by Pacific sea surface temperatures 

Felix Strnad, Jakob Schlör, Ruth Geen, Niklas Boers, and Bedartha Goswami

Intraseasonal variability of extreme rainfall events (EREs) during the South Asian Summer Monsoon season is dominated by the Boreal Summer Intraseasonal Oscillation (BSISO). However, deviations from its canonical north-eastward propagation are poorly understood, posing challenges to the prediction of EREs and climate modeling. Here, we combine a climate network-based approach determining regions of synchronously occurring EREs with
a clustering analysis of zonal and meridional BSISO propagation patterns which reveals three distinct modes: canonical north-eastward, eastward-blocked, and stationary propagation. We show that Pacific sea surface temperature background states determine the propagation mode. In particular, El Niño (La Niña)-like conditions favor the stationary (eastward-blocked) mode by modifying the zonal and meridional overturning circulation structures and the strength of the BSISO Kelvin wave component. The uncovered mechanism for BSISO diversity has implications for the predictability of large, spatially extensive EREs in South Asia and the development of early warning signals on a time horizon of 3-5 weeks.

How to cite: Strnad, F., Schlör, J., Geen, R., Boers, N., and Goswami, B.: Boreal Summer Intraseasonal Oscillation extreme rainfall propagation modulated by Pacific sea surface temperatures, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6671, https://doi.org/10.5194/egusphere-egu23-6671, 2023.

EGU23-7258 | Orals | AS1.24

Uncertainty in Sahel precipitation change: a storyline approach 

Paul-Arthur Monerie, Michela Biasutti, Juliette Mignot, Elsa Mohino, Benjamin Pohl, and Guiseppe Zappa

Future changes in Sahel precipitation are uncertain because of large differences between projections of various climate models. We assess the effect of climate change on Sahel precipitation in summer and for the end of the 21st century. We show that uncertainty in Sahel precipitation is associated with uncertainty at simulating future changes in surface air temperature over the northern Hemisphere. We point out the Atlantic Ocean and Euro-Mediterranean surface air temperature as drivers of the Sahel precipitation change uncertainty. We use a storyline approach, a statistical method, to construct scenarios of changes in Sahel precipitation, whose differences only depend on future changes in Atlantic Ocean and Euro-Mediterranean surface air temperature. We show that uncertainty in changes in Atlantic Ocean and Euro-Mediterranean surface air temperature explains up to 50% of Sahel precipitation change uncertainty. The approach also allows selecting models to better understand uncertainty in Sahel precipitation change, focusing on the mechanisms at play. We suggest that reducing uncertainty in the future warming of the North Atlantic and the Euro-Mediterranean areas would then allow reducing uncertainty in future changes in Sahel precipitation.

How to cite: Monerie, P.-A., Biasutti, M., Mignot, J., Mohino, E., Pohl, B., and Zappa, G.: Uncertainty in Sahel precipitation change: a storyline approach, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7258, https://doi.org/10.5194/egusphere-egu23-7258, 2023.

It has been argued in recent studies that the source of dry air originating over the desert regions of the West Asia i.e. Middle East intrudes over the continental India during the boreal summer resulting in more prolonged dry spells over India. Singh and Sandeep (2021, Clim Dyn) showed the existence of a huge reservoir of moist deficit air over the northern Arabian Sea at 850-hPa. In addition to this, it has been argued that low level jet undergo weakening and broadening prior to monsoon break phase in feedback to an increased barotropic instability. Furthermore, the monsoon low-level jet which transports the moisture to the continental landmass in the active phase acts as a main carrier in transporting this dry air towards the continental India during the break phase of the summer monsoon. In order to investigate the thermodynamic effects of dry air intrusion activity during dry phases of the Indian Summer Monsoon (ISM), isentropic analysis is performed on climate models simulations of Coupled Model Intercomparison Project Phase 6 (CMIP6). Here, we analyze the specific humidity and wind fields at 316 K isentropic level. The negative specific humidity anomalies of multi models average (MMA) signifies the pattern of dry air advection which shows that a large fraction of the moisture deficit is being transported to the continental India from the northern Arabian Sea, and only a small contribution comes from West Asia. The lead-lag composites of anomalous wind vectors and relative vorticity of MMA at 316 K isentrope clearly show a weakening of the monsoon circulation associated with the break conditions. The anomalous anti-cyclonic circulation pattern propagates westwards from the Bay of Bengal which is a well known feature of the monsoon break spells.  

KEYWORDS: Low level jet; Dry air intrusion; Indian Summer Monsoon 

How to cite: Singh, R. and Sandeep, S.: A thermodynamical study of dry air intrusion activity over India during dry phases of summer monsoon in CMIP6 models, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7948, https://doi.org/10.5194/egusphere-egu23-7948, 2023.

EGU23-8550 | ECS | Posters on site | AS1.24

Indian Ocean heat transport and its role in developing SST pattern in the post-monsoon season in CMIP6 models 

Rajendran Saran and Sukumaran Sandeep

The cross-equatorial oceanic heat transport (OHT) in the Indian Ocean during boreal summer is an integral component of the Indian summer monsoon (ISM). This OHT is believed to be a crucial factor in the interannual variability of ISM. Thus, a deeper understanding of OHT in climate model simulations is needed for the understanding of the simulated interannual variability of monsoon. Here we examine the Indian Ocean meridional OHT and how the OHT in the summer monsoon season impacts the development of SST patterns in the post-monsoon season. Our results show that the post-monsoon SST positively correlates with OHT during the summer monsoon in western IO and negatively correlates in the southeastern Indian Ocean. Further, it reveals that the OHT during summer monsoon explains the dipole pattern of SST in the post-monsoon over the equatorial Indian Ocean. This study also investigates how anomalous OHT during monsoon months contributes to the persistence of marine heat waves (MHW) in the post-monsoon season. Both CMIP6 models and observations suggest enhanced and persistent MHWs in the post-monsoon season are linked to stronger OHT during the summer season.

How to cite: Saran, R. and Sandeep, S.: Indian Ocean heat transport and its role in developing SST pattern in the post-monsoon season in CMIP6 models, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8550, https://doi.org/10.5194/egusphere-egu23-8550, 2023.

EGU23-9295 | Posters on site | AS1.24

Mid-Latitude Controls on Monsoon Onset and Progression (the MiLCMOP project) 

Andrew Turner, Ambrogio Volonte, and Marlene Kretschmer

The Indian monsoon is critical since it supplies most of the water for drinking, sanitation, industry and agriculture for a billion people.  The onset of monsoon typically starts in southern India by 1 June, taking up to 6 weeks to cover the country.  Meanwhile, during the monsoon, variations on time scales of a week or more give rise to periods of excess and reduced rainfall, known as active and break events.

Being able to better predict the onset of the rains, their progression, and of active and break events in the monsoon would be of great.  The timing of monsoon onset is already known to be influenced by tropical variability such as the Madden-Julian Oscillation.  New research has shown that the mid-latitudes also exert a powerful control, but the full extent of this extratropical role in monsoon onset progression and in the timing of active and break periods is poorly quantified and understood.

The team behind the new MiLCMOP project earlier led the INCOMPASS field campaign to India, taking new measurements and generating new hypotheses on how the monsoon is controlled, including the concept that monsoon progression can be described as a “tug-of-war” between tropical and extratropical airmasses.  This "tug-of-war" is an unsteady process, with a back and forth of the two airmasses before the moist tropical flow takes over for the rest of the season.

This poster describes some of the preliminary results on which the project is designed and explains the approach that MiLCMOP will use, including established techniques and development of new metrics to quantify the interactions between monsoon progression and extratropical forcing.  These methods will include use of vorticity budgets and Lagrangian feature tracking, applied to reanalysis and model data in case study years of fast and slow onset behaviour, to determine the dominant mechanisms controlling monsoon progression.  New model experiments will be designed and performed to isolate the mechanisms by which extratropical drivers affect monsoon onset and its progression.  Finally, novel causal inference techniques will be used to disentangle the effects of extratropical drivers from those in the tropics.

The MiLCMOP project will eventually answer the following key questions:  (1) How are the pace and steadiness of Indian monsoon progression affected by interactions with the extratropics?  (2) What are the mechanisms of extratropical control on monsoon progression and variability?  (3) In what way do the causal extratropical and tropical drivers of ISM progression offset or reinforce each other and can the competing roles of tropical and extratropical processes be generalised to other monsoons?

How to cite: Turner, A., Volonte, A., and Kretschmer, M.: Mid-Latitude Controls on Monsoon Onset and Progression (the MiLCMOP project), EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9295, https://doi.org/10.5194/egusphere-egu23-9295, 2023.

EGU23-9398 | ECS | Orals | AS1.24

Monsoon Planet: Bimodal rainfall distribution due to barrier-structure in pressure field 

Anja Katzenberger, Anders Levermann, Georg Feulner, and Stefan Petri

Monsoon systems are transporting water vapour and energy across the globe, making them a central component of the global circulation system. Changes in different forcing parameters have the potential to fundamentally change the monsoon characteristics as indicated in various paleoclimatic records. Here, we use the Atmosphere Model version 2 developed at the Geophysical Fluid Dynamics Laboratory (GFDL-AM2) and couple it with a slab ocean to analyse the monsoon's sensitivity to changes in different forcing parameters on a planet with idealized topography. This Monsoon Planet concept of an Aquaplanet with a broad zonal land stripe allows to reduce the influence of topography and to access the relevant meridional monsoon dynamics. In the simulations that enable monsoon dynamics, a bimodal rainfall distribution develops during the monsoon months with one maximum over the tropical ocean and the other one over land. The intensity and expansion of the land monsoon depends on the relative height of a local maximum in the surface pressure field that is acting as a barrier and determines the landward moisture transport. This dynamic is emerging during the course of one year, but also occurs when varying different parameters in a sensitivity analysis (slab ocean depth, sulfate aerosols, carbon dioxide, solar constant, land albedo). This structure of a bimodal rainfall distribution and a pressure-barrier located between the two maxima is also present in the Westafrican monsoon.

How to cite: Katzenberger, A., Levermann, A., Feulner, G., and Petri, S.: Monsoon Planet: Bimodal rainfall distribution due to barrier-structure in pressure field, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9398, https://doi.org/10.5194/egusphere-egu23-9398, 2023.

EGU23-9428 | ECS | Posters on site | AS1.24

East Asian summer precipitation in AWI-CM3: Comparison with observations and CMIP6 models 

Jian Shi, Christian Stepanek, Dmitry Sein, Jan Streffing, and Gerrit Lohamnn

Owing to the complicated spatial-temporal characteristics of East Asian precipitation (EAP), climate models have limited skills in simulating the modern Asian climate. This consequently leads to large uncertainties in simulations of the past EAP variation and future projections. Here, we explore the performance of the newly developed Alfred Wegener Institute Climate Model, version 3 (AWI-CM3) in simulating the climatological summer EAP. To test whether the model’s skill depends on its atmosphere resolution, we design two AWI-CM3 simulations with different horizontal resolutions. The result shows that both simulations have acceptable performance in simulating the summer mean EAP, generally better than the majority of individual models participating in the Climate Modelling Intercomparison Project (CMIP6). However, for the monthly EAP from June to August, AWI-CM3 exhibits a decayed skill, which is due to the sub-seasonal movement of the western Pacific subtropical high bias. The higher resolution AWI-CM3 simulation shows an overall improvement relative to the one performed at a relatively lower resolution in all aspects taken into account regarding the EAP. We conclude that AWI-CM3 is a suitable tool for exploring the EAP for the observational period. Having verified the model’s skill for modern climate, we suggest employing the AWI-CM3, especially with high atmosphere resolution, also for applications in paleoclimate studies and future projections.

How to cite: Shi, J., Stepanek, C., Sein, D., Streffing, J., and Lohamnn, G.: East Asian summer precipitation in AWI-CM3: Comparison with observations and CMIP6 models, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9428, https://doi.org/10.5194/egusphere-egu23-9428, 2023.

EGU23-9482 | Orals | AS1.24

Where the north wind meets the sea: rainfall variability and change and its implications for food security in the Sahel 

Timmo Gaasbeek, Ruud van der Ent, Dim Coumou, Rein Haarsma, and Sander Keulers

Many factors have been suggested to explain variability and change in Sahel rainfall. Of those, sea surface temperature (SST) in the Eastern Mediterranean Sea (EMS) and zonal moisture flux south of the Sahel show strong correlations. Based on observational and reanalysis data on temperature, pressure, wind and moisture flux, this paper identifies a mechanism that explains both correlations. The mechanism hinges on the Jebel Marra massif and the Ethiopian highlands, where the mesoscale convective systems (MCSs) develop that bring most of the rain to the Sahel. We find that cold SST anomalies in the EMS between June and September cause a greater trans-Sahara temperature contrast and coincide with high pressure over Libya, resulting in stronger northerlies towards Sudan. This prevents Tropical Atlantic moisture from reaching the MCS genesis region, which reduces the seasonal northward spread of Sahel rainfall and of the Atlantic intertropical convergence zone, which in turn suppresses the development of the west-African westerly jet and the African westerly jet and inhibits Atlantic moisture from reaching the MCS genesis region, thus further reducing Sahel rainfall. Anomalous moisture transport from the Mediterranean does not play a role. Mediterranean SST variability raises questions about the future development of Sahel rainfall. If a new dry period materialises, this will have substantial implications on food production in the region. There are however opportunities for mitigating against the effects of such a dry period.

How to cite: Gaasbeek, T., van der Ent, R., Coumou, D., Haarsma, R., and Keulers, S.: Where the north wind meets the sea: rainfall variability and change and its implications for food security in the Sahel, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9482, https://doi.org/10.5194/egusphere-egu23-9482, 2023.

The phase shift of climatic systems in decadal or interdecadal scale, also called as regime shift has occurred in East Asian Summer Monsoon (EASM) in the past. For example, the shifts of the late 1970s, mid 1990s, and early 2000s are the typical examples. Before and after these shifts, dominant teleconnection mode affecting the EASM had changed. On the other hand, the shift of early 2000s has not extensively investigated. Here, it is examined the characteristics of this particular shift in relation to variability of East Asian jet during summer. First, regime shifts earlier and in the early 2000s are detected based on the variance of summer East Asian jet. Second, the teleconnection pattern that influence summer East Asian jet was changed from the Atlantic-Eurasian (AEA) pattern to distinctly different zonal pattern around extratropical region of Eurasian. Finally, it was found that after this regime shift the land-atmosphere coupling induced by variability of soil moisture also strengthened. It is hypothesized that enhanced linkage between jet in the upper atmosphere and surface heat flux over Inner East Asia is a key mechanism of enhancing variability of the East Asian summer jet, i.e., the regime shift in 2000s. These results imply that over drier region, the regional climatic system might response more sensitively to regional-scale change on surface level than large-scale influence, such as wave-train.

How to cite: Nam, J. and Yoon, J.-H.: Regime shift of Jet over East Asian summer Monsoon in the early 2000s: its detection and dynamical driver, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11107, https://doi.org/10.5194/egusphere-egu23-11107, 2023.

The present study is aimed to investigate the rainfall characteristics of Monsoon Deep Depressions (MDD) originating over the Bay of Bengal (BoB) basin using a coupled ocean-atmospheric model (COAWST) and a stand-alone atmospheric (WRF) model with a lead time of up to 72h. It is found that though the tracks of the four MDDs considered in the study have been reasonably simulated, the intensity was overestimated in both sets of simulations compared to India Meteorological Department (IMD) best estimates. Upon decomposition of the contributors to the rainrate for the composite of the storms in the deep depression (DD) phase, it was found that the moisture sources/sinks play a more important role than the cloud sources/sinks in modulating the rainfall processes. Further analysis of the moisture sources/sinks showed that the horizontal and vertical advection are the major drivers in modulating the contribution of the moisture sources/sinks. The validation of rainfall using CMORPH datasets suggested that the coupled simulations had a higher skill in rainfall prediction. Furthermore, the composite of different components of moisture sources/sinks (especially vertical advection) was found to be more realistically simulated in COAWST compared to WRF upon validation with MERRA datasets. Analysis of the composite energetics showed that scarcity of bulk kinetic energy in the later hours of the DD phase in COAWST led to the dissipation of the storm core, which led to better prediction of rainfall. On the other hand, a re-intensification of the storm core by means of condensational heating led to an overestimation of rainfall in WRF, which finally resulted in lower skill in rainfall prediction. In spite of the stand-alone atmospheric model capturing the horizontal moisture incursion in the lower levels significantly, the better representation of the vertical structure enabled the coupled model to capture the precipitation features more realistically, increasing skill in rainfall prediction.

How to cite: Chakraborty, T., Pattnaik, S., and Baisya, H.: A Numerical Study to Investigate Precipitation Features of Monsoon Deep Depressions over Bay of Bengal: Comparison of Coupled and Control Simulations, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11257, https://doi.org/10.5194/egusphere-egu23-11257, 2023.

EGU23-12313 | ECS | Posters on site | AS1.24

Zonal Momentum Balance in South Asian Summer Monsoon: Forces and Changing Winds 

Pankaj Upadhyaya and Saroj K. Mishra

The balance of forces for the South Asian Summer Monsoon (SASM) gives valuable insights for the understanding of the mean circulation and the changes it has undergone in the past. In this study, we have analyzed the zonal momentum balance for SASM for the last few decades (1950-2010) using reanalysis data to understand the changes in different forces and relate them with the changes in the associated circulation. In the lower level (925 hPa), the Pressure Gradient Force (PGF), Coriolis Force (CF), and Residual Force (RF, which includes the unresolved sub-grid scale process and frictional terms) are found to be the dominant terms of the zonal momentum balance for SASM with a magnitude of order 10-4m sec-2 whereas, horizontal advection and eddy force terms are negligible with one or more order lesser in magnitude. The residual force can be estimated by Rayleigh friction induced by turbulence, particularly over ocean points, which, however, is not a good measure of the same over the land points because of high irregularity. The momentum balance at the upper level (200 hPa) is between the PGF, CF, and the advection term, unlike the lower level, where the residual force does not seem to be dominant. In the free troposphere, the Convective Momentum Transfer or in other words convective friction is a good estimator of the RF, which represents the vertical transport of momentum. The changes in SASM circulation in the past can be apprehended by looking into the changes in these vital forces that drive the motion.

How to cite: Upadhyaya, P. and Mishra, S. K.: Zonal Momentum Balance in South Asian Summer Monsoon: Forces and Changing Winds, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12313, https://doi.org/10.5194/egusphere-egu23-12313, 2023.

EGU23-12760 | ECS | Posters on site | AS1.24

Developed a climate modeling framework for India                  

Debi Prasad Bhuyan and Saroj Kanta Mishra

A better representation of the poorly understood sub-grid scale processes in the Global Circulation Model is imperative for the skilful simulation of the Indian Summer Monsoon (ISM). We customized the parametrizations for deep convection, gravity wave, and surface layer; incorporated them into the NCAR Community Atmosphere Model 5.0 (NCAR CAM5, base model). The modified deep convective parametrization includes dynamic tau (dynamic convective adjustment timescale), which allows a spatiotemporally varying tau instead of constant tau and the stochastic entrainment rate in place of a fixed entrainment rate. Similarly, the modified gravity wave parametrization facilitates estimating the response of upper-level gravity wave drag induced from secondary sources. Likewise, the modified surface layer parametrization enables a better representation of near-surface variables as well as surface fluxes. The simulations of default and customized NCAR CAM5 have been carried out for eleven years (one year for spin-up and the rest ten years considered for analysis). The analysis has been performed for two major climate change indicators, i.e., temperature and precipitation for the ISM season (June to September). The model simulated near-surface temperature and precipitation during ISM were evaluated against observation (Indian Meteorological Department). A significant improvement has been noted in simulating the total precipitation pattern and magnitude over India, as well as for surface air temperature, particularly over northern India. In addition, based on performance, the customized model alleviates some of the long-standing biases evident in the default NCAR CAM5 simulation over India. Furthermore, compared to the base model, the customized model realistically simulates the annual cycle of precipitation, medium and extreme precipitation rates, meridional tropospheric temperature gradient, upper (200 hPa) and lower (850 hPa) tropospheric winds, Madden Julian Oscillation, and equatorial waves. The study’s findings illustrate the significance of model parametrizations towards improving the ISM simulation. Meanwhile, the modeling framework would be essential for credible future climate projections of India and would become a vital tool for policymakers and diverse stakeholders.

Keywords: Indian Summer Monsoon, NCAR CAM5, Deep convection, Gravity wave, Surface layer

How to cite: Bhuyan, D. P. and Mishra, S. K.: Developed a climate modeling framework for India                 , EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12760, https://doi.org/10.5194/egusphere-egu23-12760, 2023.

EGU23-12805 | Orals | AS1.24

Indian summer monsoon versus mid-latitude drivers of boreal summer tropospheric circulation and heat extremes in the eastern Mediterranean 

Giorgia Di Capua, Dominik Diedrich, Evangelos Tyrlis, Daniela Matei, and Reik V. Donner

The lower tropospheric circulation over the eastern Mediterranean during boreal summer is markedly characterized by northerly winds known as the Etesians (Tyrlis et al., 2013). These winds are accompanied by large scale subsidence and clear skies, and can mitigate the emergence of heat waves by bringing colder air from the Eurasian landmass. Here, we employ Causal Effect Networks, obtained by applying the Peter and Clark Momentary Conditional Independence (PCMCI) causal discovery algorithm (Runge, 2018), to identify causal precursors of the Etesians both in mid-latitude circulation fields and tropical convective activity at two different intraseasonal time scales (3 and 7-day average). We identify wave train activity over the North Atlantic and North American region and convective activity over the Arabian Sea and western coast of the Indian peninsula to be causal precursors of Etesians winds defined as 850 hPa meridional wind variations over the eastern Mediterranean at a lag of 3-to-6 days. In general, the influence of tropical drivers, i.e. the Indian summer monsoon (ISM) system,  is found to be stronger than that of the mid-latitude wave train, thus corroborating the hypothesis that the ISM affects the circulation over the Mediterranean and Northeast Africa, as suggested by the monsoon-desert mechanisms (Rodwell and Hoskins, 1996). Moreover, at longer time scales (7 to 14-day lag), the main causal influence comes from tropical convective activity over the Indian peninsula, while the effect of the mid-latitude circulation weakens and becomes not significant. We finally employ event coincidence analysis to explore the relationship between Etesians and heat extremes in the eastern Mediterranean and assess the presence of trends in the strength of Etesians outbreaks at intraseasonal variability in the historical period.

References

Rodwell, M. J. and Hoskins, B.: Monsoons and the dynamics of deserts, Q. J. R. Meteorol. Soc., 122, 1385–1404, 1996.

Runge, J.: Causal network reconstruction from time series: From theoretical assumptions to practical estimation, 28, 075310, https://doi.org/10.1063/1.5025050, 2018.

Tyrlis, E., Lelieveld, J., and Steil, B.: The summer circulation over the eastern Mediterranean and the Middle East: Influence of the South Asian monsoon, Clim. Dyn., 40, 1103–1123, https://doi.org/10.1007/s00382-012-1528-4, 2013.

How to cite: Di Capua, G., Diedrich, D., Tyrlis, E., Matei, D., and Donner, R. V.: Indian summer monsoon versus mid-latitude drivers of boreal summer tropospheric circulation and heat extremes in the eastern Mediterranean, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12805, https://doi.org/10.5194/egusphere-egu23-12805, 2023.

EGU23-13539 | ECS | Posters on site | AS1.24

Characteristics of spectral energetics during excess and deficient rainfall years in India 

Ravi Dhishana and Sarvesh Kumar Dubey

Significant spatial and temporal deviations from the seasonal mean precipitation, such as severe droughts (deficient rainfall) and floods (excess rainfall), have a major influence on India. The non-linear energy interactions between the various scale atmospheric systems are important as they play a crucial role in the Indian summer monsoon variability. Since studies have yet to look at the whole energy budget of the southwest monsoon, it is necessary to accurately capture these energy exchanges to represent the monsoon circulation better. In this study, we found the exact nature of complex non-linear energy interactions of synoptic-scale mainly low-pressure systems (LPSs) and Intraseasonal Oscillation (lSO) 30-60 day scale with other scales, including the seasonal mean, Indian Ocean Dipole (IOD), and El Niño–Southern Oscillation (ENSO) using the in-scale and out of scale energetics. These energy interactions are calculated in the frequency domain for the Indian monsoon region using the ECMWF ERA-5 data for 72 years (1950-2021) during the monsoon season (JJAS). Since the seasonal mean kinetic energy is highly correlated with the seasonal mean rainfall, we explored how these energy exchanges vary during excess and deficient rainfall years. We also found that the ISO and synoptic scale systems influence the interannual variability of the Indian Summer Monsoon mainly through the interactions with the mean flow. In addition, the monsoon mean flow and most energy exchanges show a significant relationship at the upper level (200 hPa) and lower level (850 hPa) atmosphere.

How to cite: Dhishana, R. and Dubey, S. K.: Characteristics of spectral energetics during excess and deficient rainfall years in India, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13539, https://doi.org/10.5194/egusphere-egu23-13539, 2023.

EGU23-13727 | ECS | Orals | AS1.24

Characteristics of African Sahel Precipitation in global storm-resolving Climate Models 

Dorian Spät, David Schuhbauer, and Aiko Voigt

The simulation of precipitation in the African Sahel region is challenging for current global climate models. These models conventionally work with grids with horizontal resolution larger than 100 km and therefore must use parametrization schemes to simulate deep convection. The nextGEMS project, on the other hand, performs global simulations with two new climate models (adapted versions of ICON and IFS) with fine resolutions of a few kilometers. At such high resolution, deep convection is resolved, which allows for a much more realistic representation of precipitation. This is particularly promising for simulating convection in the African Sahel, where most precipitation originates from mesoscale convective systems resolved at these simulation scales. 

We present a preliminary analysis of the cycle two nextGEMS simulations focusing on Sahel precipitation and the West African monsoon. We show that some characteristics of precipitation, such as low autocorrelation with one day lag, are much closer to measurements compared to conventional climate models. We also discuss some of the problems that still persist in the simulations and compare the two models depending on different features of Sahel precipitation.

How to cite: Spät, D., Schuhbauer, D., and Voigt, A.: Characteristics of African Sahel Precipitation in global storm-resolving Climate Models, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13727, https://doi.org/10.5194/egusphere-egu23-13727, 2023.

EGU23-13868 | ECS | Orals | AS1.24

Causal Drivers Behind Enhanced Rainfall Activity OverNorthern Indian 

Luisa E. Aviles Podgurski, Giorgia Di Capua, and Reik V. Donner

The Western (WHF) and Eastern Himalayan foothills (EHF) are two densely populated regions that experience extreme precipitation events during the Indian summer monsoon (ISM) season lasting typically from June to September [1, 2]. Therefore, a better understanding of the processes controlling ISM intraseasonal variability is of great relevance.

In our present work we identify and quantify causal relationships at short lead-times (three to nine days) between characteristic remote and local climate patterns and the precipitation over the WHF and EHF. More specifically we apply the so-called response-guided causal precursor detection (RGCPD) scheme that builds on the Peter and Clark momentary conditional dependence (PCMCI) algorithm [3]. The employed method is based on concepts of information theory and statistical mechanics, and allows to identify strongly interdependent climate patterns associated with the ISM and to distinguish between spurious and truly causal links. Finally, causal effect networks (CENs) visually summarise the identified causal links between different variables, indicating the directionality, time lag and magnitude of the causal effect.

Our analysis reveals that WHF rainfall variability is influenced by mid-latitude teleconnections such as the circumglobal teleconnection index and seems to be driven by similar precursors and time scales as the precipitation over central India [4]. In contrast, CENs indicate that the EHF rainfall is characterised by faster dynamics compared to the WHF and whilst it is also driven by mid-latitude teleconnections, a different set of atmospheric processes appears to play a major role in its variability. Specifically, a unique and strong causal connection to the tropical western Pacific is revealed, manifesting itself in the geopotential height at 500 hPa and the mean sea-level pressure. A thorough analysis of this signal indicates a Gill-type response to a heat sink over the equatorial Pacific, that may be associated with the Madden-Julian oscillation (MJO) and suggests a link between suppressed MJO phases and enhanced rainfall activity over the EHF region. Thus, our analysis hints to a connection between break spells of the ISM, where large parts of the Indian landmass experience reduced precipitation activity, and enhanced rainfall activity over the EHF region.

References
[1] Vellore, R., et al., On the anomalous precipitation enhancement over the Himalayan foothills during monsoon breaks, Clim. Dynam. 43, 2009-2031 (2014).
[2] Vellore, R., et al., Monsoon - extratropical circulation interactions in Himalayan extreme rainfall, Clim. Dynam. 46, 3517-3564 (2016).
[3] Runge, J., Causal network reconstruction from time series: From theoretical assumptions to practical estimation, Chaos 28, 075310 (2018).
[4] Di Capua, G., et al., Tropical and mid-latitude teleconnections interacting with the Indian summer monsoon rainfall: a theory-guided causal effect network approach, Earth Syst. Dyn., 11, 17-34 (2020).

How to cite: Aviles Podgurski, L. E., Di Capua, G., and Donner, R. V.: Causal Drivers Behind Enhanced Rainfall Activity OverNorthern Indian, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13868, https://doi.org/10.5194/egusphere-egu23-13868, 2023.

EGU23-14204 | ECS | Orals | AS1.24

Modeling the impact of the urban land-use on the Indian Summer Monsoon precipitation 

Renaud Falga and Chien Wang

The urban areas can modify the local and regional climate through various processes. They can indeed modify the water cycle and precipitations, either through the modification of land-use, or through effects induced by the emissions of anthropogenic aerosols. The thermodynamical perturbations induced by the presence of urban land-use, including the urban heat island effect, are known to induce rainfall modification due to perturbation of the flow and enhancement of the convective activity. However, this impact has yet to be clarified in a large scale, highly energetic system like the Asian Monsoon system. Using the high resolution meso-scale atmospheric model Meso-NH, we investigated the impact of urban land-use on the precipitation during the Indian Summer Monsoon, including the influence on extreme events. The results of this study will be presented and discussed.

How to cite: Falga, R. and Wang, C.: Modeling the impact of the urban land-use on the Indian Summer Monsoon precipitation, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14204, https://doi.org/10.5194/egusphere-egu23-14204, 2023.

EGU23-14372 | ECS | Posters on site | AS1.24

Investigating the Causes of Poleward Shift in Monsoon Low-level Jet 

Sukumaran Sreepriya, Krishna Mirle AchutaRao, and Sukumaran Sandeep

Recent studies using coupled model simulations and observation datasets suggest a poleward shift and overall weakening of Indian Summer Monsoon (ISM) circulation (Sandeep and Ajayamohan, 2015). Their investigation using experiments from the fifth phase of coupled model Inter-comparison project (CMIP5) indicate a poleward migration of the monsoon low-level jet (LLJ), with the magnitude of shift  linked to the degree of warming. 

Here we investigate the changes in monsoon LLJ in multiple reanalysis datasets as well as historical and future scenario simulations of the sixth phase of coupled model Inter-comparison project (CMIP6). The latitudinal location of LLJ is defined as the latitude of zero absolute vorticity over the Arabian Sea, following Tomas and Webster (1997). Although all reanalysis datasets show a poleward shift in LLJ since late 1970s, the magnitude of shift varies among them. The multi model ensemble of CMIP6 historical simulations show a northward shift of 0.4 degrees in LLJ. The ensemble mean of SSP585 simulations show a northward shift in LLJ by 0.8 degrees in the 2081 - 2100 period. The changes in the latitudinal position of LLJ and the land-sea temperature difference are significantly correlated, with a Pearson correlation coefficient of 0.81 and 0.67 for the ensemble means of historical and SSP585 runs, respectively. This suggests that the underlying dynamics of the monsoon circulation is changing in a warming climate.

References

Sandeep, S., & Ajayamohan, R. S. (2015). Poleward shift in Indian summer monsoon low level jetstream under global warming. Climate Dynamics, 45(1), 337-351.

Tomas, R. A., & Webster, P. J. (1997). The role of inertial instability in determining the location and strength of near‐equatorial convection. Quarterly Journal of the Royal Meteorological Society, 123(542), 1445-1482.

How to cite: Sreepriya, S., Mirle AchutaRao, K., and Sandeep, S.: Investigating the Causes of Poleward Shift in Monsoon Low-level Jet, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14372, https://doi.org/10.5194/egusphere-egu23-14372, 2023.

EGU23-16193 | ECS | Orals | AS1.24

Rise in Rainfall of South Asian Monsoon Low-Pressure Systems 

Vishnu Sasidharan Nair, William R. Boos, Mark D. Risser, Travis A. O’Brien, Paul A. Ullrich, and William D. Collins

Cyclonic low‐pressure systems (LPS) are the dominant synoptic‐scale rain-bearing system of the South Asian summer monsoon. Traditionally categorized by intensity as monsoon lows, monsoon depressions, and more intense cyclonic storms, LPS produce intense rainfall and floods in some of the world’s most densely populated regions. Yet the contribution of the relatively weak lows vs. the stronger depressions to extreme rainfall and its trends remains unknown; this knowledge gap is particularly troubling because historical trends in LPS have been difficult to assess due to changes in the observing network. Future projections have also remained highly uncertain due to the inability of many coarse-resolution climate models to accurately simulate LPS.

Here we use satellite and gauge-based precipitation estimates with atmospheric reanalyses to show that precipitation in monsoon depressions has become more intense in recent decades. This intensification has occurred as humidity over parts of India increased more rapidly than nearly anywhere else on Earth. Precipitation in depressions has risen at a relative rate larger than that of specific humidity, suggesting that upward motion in depressions has become more intense; vertical motion trends in a state-of-the-art reanalysis, which incorporates nearly all long-term climate forcings, are consistent with this hypothesis. We also examine changes in South Asian LPS precipitation simulated by an ensemble of high-resolution global models, which we find skillfully represent these storms. Future trends in total LPS precipitation, including in monsoon depressions, lie near an approximate Clausius–Clapeyron rate (7%/K) in the multi-model mean. This change in LPS rain rates contributes to a projected future increase in seasonal mean and extreme precipitation over South Asian land. Adaptation to future changes in human exposure to hydrological extremes thus requires careful monitoring, accurate multi-decadal projections, and skilful short-term forecasts of the interaction of the humidity field with the dynamics of monsoon LPS.

How to cite: Sasidharan Nair, V., R. Boos, W., D. Risser, M., A. O’Brien, T., A. Ullrich, P., and D. Collins, W.: Rise in Rainfall of South Asian Monsoon Low-Pressure Systems, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16193, https://doi.org/10.5194/egusphere-egu23-16193, 2023.

CL2 – Present Climate – historical and direct observations period

EGU23-2 | Posters on site | CL2.1

State of a challenge – Third annual review 

Miklos Zagoni

We announced a public challenge at the EGU 2020 General Assembly against CMIP6 models predicting an increase of downward longwave radiation (DLR) in the range of 10 – 40 Wm-2 during the 21st century as a result of human greenhouse gas emissions. We based our challenge on observed facts, supported by long-known but rarely referred theoretical constraints. 22 years of CERES data show +0.11 Wm-2/decade increase in DLR, equivalent to +0.36 Wm-2 increase (+0.06 °K) until 2050 (in contrast to IPCC AR6, predicting +2 Wm-2/decade).

Supporting our prediction, we repeat here the deduction of the constraint equations, and control them on the recently available data sets. — Our best tool the compute the transfer of radiation in the atmosphere is Schwarzschild’s (1914) equation; its early, two-stream form is given in Schwarzschild (1906, Eq. 11), appropriate for global-mean energy flow computations. The equation consists of three terms; the difference of the second and first terms gives the net radiation at the surface as constrained to half of the outgoing longwave radiation (OLR), independently of the optical depth.  In the literature it was observed early (Emden 1913) that there is a discontinuity at the surface in radiative equilibrium, balanced by the turbulent fluxes in radiative-convective equilibrium. The formula for this net radiation is given for example in the textbook of Goody (1964, Atmospheric radiation: theoretical basis); repeated by Houghton (1977, Eq. 2.13), graphically represented in Chamberlain (1979, Fig. 1.4); and verified by the data (without explicitly describing the equation) of Hartmann (1994, pp. 61-63) within 0.3 Wm-2. The equation is verified by the CERES EBAF Ed2.8 (16 years of clear-sky global mean data) within 0.6 Wm-2. We use the second term of Schwarzschild (1906, Eq.11) with a particular optical depth of τ = 2 to compute the total energy absorption (and emission) at the surface, verified by the same satellite data product within the same difference (0.6 Wm-2) in the clear-sky annual global mean. — We created the all-sky versions of these two equations by introducing longwave cloud radiative effect (LWCRE), and justified the four individual equations on the most recent 22 years of CERES EBAF Edition 4.1 global mean data within ±3 Wm-2; while the mean bias of the four equations together is 0.0007 Wm-2. These equations form the boundary conditions of every valid climate prediction.

Reference:
Zagoni, M.: Challenging CMIP6 model predictions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1, https://doi.org/10.5194/egusphere-egu2020-1

 

How to cite: Zagoni, M.: State of a challenge – Third annual review, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2, https://doi.org/10.5194/egusphere-egu23-2, 2023.

EGU23-6 | Posters on site | CL2.1

Nitrous Oxide and Climate 

William van Wijngaarden, Cornelis de Lange, James Ferguson, and Will Happer

Higher concentrations of atmospheric nitrous oxide are expected to slightly warm Earth's surface because of an increase in radiative forcing.  For current concentrations of greenhouse gases, the radiative forcing per added N2O molecule, is about 230 times larger than the forcing per added carbon dioxide molecule.  This is due to the heavy saturation of the absorption band of the relatively abundant greenhouse gas, CO2, compared to the much smaller saturation of the absorption bands of the trace greenhosue gas N2O.  But the rate of increase of CO2 molecules, about 2.5 ppm/year is about 3000 times larger than the rate of increase of N2O molecules, which has held steady at around 0.85 ppb/year since 1985.  So the contribution of nitrous oxide to the annual increase in forcing is 230/3000 or about 1/13 that of CO2.  If the main greenhouse gases, CO2, CH4 and N2O have contributed about 0.1 K/decade of the warming observed over the past few decades, this would correspond to about 0.00064 K per year or 0.064 K per century of warming from N2O.  This rather small warming does not support placing harsh restrictions on nitrous oxide emissions, which could seriously jeopardize world food supplies.

How to cite: van Wijngaarden, W., de Lange, C., Ferguson, J., and Happer, W.: Nitrous Oxide and Climate, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6, https://doi.org/10.5194/egusphere-egu23-6, 2023.

EGU23-12 | Orals | CL2.1

Evidence for Hemispheric Spectral Albedo Inequality 

William Collins and Daniel Feldman

In this study, we examine whether the interhemispheric symmetry observed
in broadband shortwave albedos also applies to the
hemispheric-mean visible and near-infrared albedos.  While
several recent exploratory studies have examined this question
using climate models, we explore this
question using direct observations of the visible and
near-infrared albedos collected by the Nimbus-7 satellite. This
study builds upon earlier intercomparisons of cloud spectral
albedos from Nimbus-7 and from climate models using the same
combinations of Nimbus-7 measurements used here (Collins, 1998).

We find that the hemispheric-mean spectral partitioning of albedo is
consistently and statistically significantly different between the two
hemispheres.  Consistent with prior studies, the origin of these
differences is due to interhemispheric differences in cloud cover.
Over oceans, the regional daily-mean differences between visible and
near-IR albedos are closely correlated with cloud amount.  The
relative differences are maximized for clear-sky conditions and
minimized for overcast conditions.

Background: The shortwave broadband albedo is a weighted sum of the albedos
in the visible and near-infrared bands.  Under condensate-free
conditions, the interactions of solar insolation in these bands
with the atmosphere and surface are quite different.  To an
excellent approximation, the condensate-free atmosphere is a
conservative Rayleigh-scattering medium in the visible.  Solar
radiation that is not reflected back to space is, to leading
order, transmitted to the surface.  In the near-infrared, the
interactions of sunlight with the atmosphere are dominated by
absorption, primarily with water vapor.  Additional absorption is
contributed by well-mixed greenhouse gases, oxygen, and other
gaseous constituents. The solar radiation
reaching the surface has therefore been reduced both by
reflection to space (from atmospheric condensates and the surface
albedo) and by absorption in the atmosphere. Hence, the relative
partitioning of net TOA insolation between the visible and
near-infrared bands will affect the relative partitioning between
atmospheric absorption and transmission to the surface.

 

How to cite: Collins, W. and Feldman, D.: Evidence for Hemispheric Spectral Albedo Inequality, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12, https://doi.org/10.5194/egusphere-egu23-12, 2023.

EGU23-1015 | Orals | CL2.1

State Dependence of CO2 Forcing and Its Implications for Climate Sensitivity 

Brian Soden, Haohe He, Ryan Kramer, and Nadir Jeevanjee

Instantaneous radiative forcing (IRF) is a fundamental metric for measuring the extent to which anthropogenic activities and natural events perturb the Earth's energy balance. This perturbation initiates all other forced climate responses. Among all the anthropogenic forcing agents, CO2 is the dominant driver of warming over the past century and the defining forcing variable for quantifying climate sensitivity. When evaluating the effect of CO2 changes on the earth’s climate, it is universally assumed that the IRF from a doubling of a given CO2 concentration (IRF2×CO2) is constant and that variances in climate sensitivity arise from differences in radiative feedbacks, or a dependence of these feedbacks on the climatological base-state. In this paper, we show that the IRF2×CO2 is not constant, but also depends on the climatological base-state, increasing by ~25% for every doubling of CO2, and has increased by ~10% since the pre-industrial era, implying a proportionate increase in climate sensitivity. This base-state dependence also explains about half of the intermodel spread in IRF2×CO2, a problem that has persisted among climate models for nearly three decades. It may also have important implications for elucidating the causes and consequences of deep-time paleoclimates, where changes in the climatological base-state can strongly modulate the magnitude of the CO2 IRF.

How to cite: Soden, B., He, H., Kramer, R., and Jeevanjee, N.: State Dependence of CO2 Forcing and Its Implications for Climate Sensitivity, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1015, https://doi.org/10.5194/egusphere-egu23-1015, 2023.

The slope of the quasi-linear relation between planetary outgoing longwave radiation (OLR) and surface temperature (TS) is an important parameter measuring the sensitivity of the Earth climate system. The main goal of this study is to seek a general explanation for the quasi-linear OLR-TS relation that does not require the narrowing of “atmospheric window” of planetary thermal radiation. The physical understanding on the quasi-linear OLR-TS relation and its slope is gained from observation analysis, climate simulations with radiative-convective equilibrium and general circulation models, and a series of online feedback suppression experiments.

The observed quasi-linear OLR-TS relation manifests a climate footprint of radiative (such as greenhouse effect) and non-radiative processes (poleward energy transport). The former acts to increase the meridional gradient of surface temperature and the latter decreases the meridional gradient of atmospheric temperatures, causing the flattening of the meridional profile of the OLR. Radiative processes alone can lead to a quasi-linear OLR-TS relation that is more steeply sloped. The atmospheric poleward energy transport alone can also lead to a quasi-linear OLR-TS relation by rerouting part of the OLR to be emitted from the warmer place to colder place. The combined effects of radiative and non-radiative processes make the quasi-linear OLR-TS relation less sloped with a higher degree of linearity. In response to anthropogenic radiative forcing, the slope of the quasi-linear OLR-TS relation would be further reduced via stronger water vapor feedback and enhanced poleward energy transport.

How to cite: Cai, M., Sun, J., Ding, F., Kang, W., and Hu, X.: The quasi-linear relation between planetary outgoing long wave radiation and surface temperature: a climate footprint of radiative and non-radiative processes, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1078, https://doi.org/10.5194/egusphere-egu23-1078, 2023.

EGU23-1130 | ECS | Posters on site | CL2.1

Analyzing Spatio-temporal variability of clouds over the Arabian Sea using ERA5 reanalysis dataset 

Jaswant Moher, Vimlesh Pant, and Sagnik Dey

Clouds cover 67% of the earth's surface hence they play an essential role in governing the energy balance of the earth. The combined effect of two properties, i.e., emissivity and albedo of clouds, defines the net radiative effect and their relative importance changes from day to night. In this study, we analyze four decades (1979-2018) of high-resolution (0.25°×0.25°) hourly cloud data from ECMWF fifth-generation reanalysis ERA5 dataset to study the long-term changes in Spatio-temporal variability of clouds over the Arabian Sea. The rationale behind choosing the ERA5 data is that, unlike any other climate variables, the long-term ground truth data for clouds do not exist, and satellite datasets have discrepancies. Ship-observation compiled Extended Edited Synoptic Cloud Reports Archive (EECRA) is a multidecadal data but has a coarse resolution (10°×10°) and suffers from human observational error. In this study, we used a combination of wind speed, air temperature, sea surface temperature (SST), and cloud cover data from ERA5  to explain the observed diurnal behavior and long-term changes in diurnal amplitude and local time of maximum clouds. The clouds over the Arabian Sea show two distinct diurnal peaks during June - August (JJA), but a single diurnal peak is found during the rest of the year. The seasonal and spatial variability in the diurnal behavior of clouds can be characterized in terms of the local thermodynamics of the Arabian Sea. The diurnal amplitude and local time of a maximum of low, mid, and high-level clouds have changed from 1979 to 2018, and the changes are spatially heterogeneous across all seasons. The diurnal amplitude of high-level clouds has increased through all seasons except during JJA. During the JJA season, the entire Arabian Sea shows a decrease in the diurnal amplitude of high-level clouds, with the largest decrease, observed in the eastern Arabian Sea along the west coast of India.

How to cite: Moher, J., Pant, V., and Dey, S.: Analyzing Spatio-temporal variability of clouds over the Arabian Sea using ERA5 reanalysis dataset, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1130, https://doi.org/10.5194/egusphere-egu23-1130, 2023.

Fossil-fuel combustion now outweighs solar variations in driving climate change (Higgs 2022, GSA, www.researchgate.net/publication/362103181). Remarkably, land (near-surface-air) warming is three times faster than ocean-surface warming, and Northern Hemisphere (NH; land-ocean average) three times Southern. This aberrant behavior began abruptly in 1985 (contrast pre-1985 lockstep warming-cooling; data.giss.nasa.gov/gistemp/graphs_v4). Moreover, over land and over the NH, warming is significantly slower at altitude (UAH satellite-measured lower-troposphere average temperature).

These strong lateral- and vertical warming gradients incriminate airborne soot (warms atmosphere by absorbing solar radiation). Soot’s poor dispersal causes strong concentration gradients, both (A) laterally, toward its main sources, which are predominantly on-land and NH (diesel engines, cooking woodfires, coal-fired powerplants/industries), e.g. over intensely industrialized nations (USA, Europe, China, etc.), average atmospheric soot concentration is ~1000% (i.e. 10 times) greater than over adjacent oceans (NASA 2011 global black carbon video https://svs.gsfc.nasa.gov/3844), starkly contrasting with CO2’s 1% difference (NASA global CO2 video); and (B) vertically, e.g. year-round average soot concentration above rural Siberia is ~500% higher at 0.5km than at 3km (doi: 10.3390/atmos12030351), far exceeding CO2’s 4% difference above Tokyo (10.3390/s18114064).

Two further observations implicate diesel- and coal-sourced soot specifically. Firstly, 25 years (y) before the 1985 decouplings (above), world annual oil consumption tripled in 1960, then remained high almost continuously (OurWorldinData, GlobalPrimaryEnergyConsumptionBySource graph). Secondly, coal’s distinctively stepwise growth (same graph) is mimicked, with a similar time-lag (10-20y), by stepwise land-air warming (data.giss.nasa.gov/gistemp/graphs_v4): COAL GROWTH fast 1974-1989 (tripled in 1974, due to 1973 oil crisis), nil 1989-1999, fast 1999-2014 (mainly China; OurWorldinData, CoalConsumptionByRegion graph); LAND WARMING fast 1994-2005, nil 2005-2011 (famed ‘hiatus’), fast since 2011.

CO2 cannot explain the observed strong lateral and vertical warming gradients, because its efficient dispersal produces near-homogenous atmospheric concentration. Even heavily industrial regions barely (<0.5%) exceed the global average (10.1038/s41598-019-53513-7). Furthermore, no leap in CO2 concentration occurred ~1985 or any other time; instead, CO2 grew by gradual acceleration, not stepwise (keelingcurve.ucsd.edu). Evidently, CO2 has negligible effect on climate, implying that its greenhouse effect is nullified by unknown and/or underestimated feedbacks (e.g. 10.1007/978-94-007-6606-8_17). If so, hyper-expensive CO2 capture is misconceived, besides counter-productive (today’s 420ppm is well below ~1,000ppm optimum for crop- and forest growth).

In the literature, the global-warming contribution of soot (‘black carbon’) is very uncertain. According to an influential review (10.1002/jgrd.50171; italic emphasis added here): “The best estimate of industrial-era climate forcing of black carbon ... is +1.1 W m-2 with 90% uncertainty bounds of +0.17 to +2.1 W m-2 (sic) ... We estimate that black carbon ... is the second most important human emission in terms of its climate forcing”. Black carbon’s warming effect was estimated to be 70% as strong as CO2. Recent IPCC estimates are 35% and 12% (2013, Physical Science Basis, Summary for Policymakers, fig.SPM.5; 2021, ditto, fig.SPM.2c). On the contrary, the data presented above suggest black carbon is overwhelmingly the dominant anthropogenic-warming agent. Helping to explain previous underestimates, two additional soot-induced warming mechanisms, via its effects on clouds, were recently recognised (10.1038/s41561-020-0631-0). Moreover, developing-world powerplants possibly emit far more soot (10.1029/1999JD900187) than the review assumed.

How to cite: Higgs, R.: Global land-surface warming much faster than ocean surface, and Northern Hemisphere faster than Southern: incriminates soot from burning oil and coal, exonerates CO2, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1416, https://doi.org/10.5194/egusphere-egu23-1416, 2023.

EGU23-2384 | ECS | Orals | CL2.1

Optimising water vapour retrievals by exploiting sensitivity within the far-infrared: A study in support of the ESA FORUM mission. 

Sanjeevani Panditharatne, Helen Brindley, Caroline Cox, and Richard Siddans

Theoretical models suggest that ∼55% of the outgoing longwave radiation from Earth is within the far-infrared region, 100-666 cm−1. Nevertheless, the top-of-atmosphere radiation spectrum in this region has never been measured, something that will change with ESA’s Far-infrared Outgoing Radiation Understanding and Monitoring (FORUM) mission, launching in 2027. Studies have indicated that absorption within this region is dominated by tropospheric water vapour, significantly impacting Earth’s radiation budget. Quantifying these concentrations plays a vital role in estimating its radiative effects and associated feedbacks.

The Infrared and Microwave Sounding (IMS) retrieval scheme developed at RAL Space is an optimal estimation scheme currently using channels within the mid- and near-infrared as well as the microwave region to obtain simultaneous retrievals of the vertical atmospheric profile and cloud properties. Current retrievals using this scheme have been performed on observations from Infrared Atmospheric Sounding Interferometer (IASI), Microwave Humidity Sounder (MHS) and the Advanced Microwave Sounding Unit (AMSU) onboard the MetOp satellites. Temperature and water vapour retrievals using this framework have been validated against radiosonde data with biases within 1 K and 10% of the reference respectively.

This work seeks to extend IMS into the far-infrared and exploit the known sensitivity of upwelling radiation within this region to improve current retrievals of water vapour. This would enhance our understanding of the spatial and temporal variations of water vapour within the atmosphere, and its role in Earth's radiation budget. Unique clear-sky airborne measurements will be used to analyse channel sensitivity within this region and maximise the information content for the retrieval. This retrieval capability would be the first of its kind to be thoroughly validated in this way and would be available for use on FORUM observations.

How to cite: Panditharatne, S., Brindley, H., Cox, C., and Siddans, R.: Optimising water vapour retrievals by exploiting sensitivity within the far-infrared: A study in support of the ESA FORUM mission., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2384, https://doi.org/10.5194/egusphere-egu23-2384, 2023.

EGU23-2448 | ECS | Orals | CL2.1

Including Ice-Cloud Longwave Scattering and Surface Spectral Emissivities in Climate Models Leads to More Impacts on Mean-State Climate than Climate Feedbacks 

Chongxing Fan, Yi-Hsuan Chen, Xiuhong Chen, Wuyin Lin, Xianglei Huang, and Ping Yang

Climate models often ignore cloud scattering and surface emissivity in the longwave (LW) for computational efficiency. Such approximations can cause biases in radiative fluxes and affect simulated climate, especially in the Arctic because of its large sensitivity to perturbations. We implemented treatments to both physics into the Energy Exascale Earth System Model (E3SM) version 2 by DoE and assessed their impacts on the simulated mean-state global climate as well as climate feedback and sensitivity.

By turning on and off the switches in the modified E3SMv2 model, we studied the changes in mean-state climate due to cloud LW scattering and surface emissivity effects by comparing four 35-year fully-coupled simulations. Cloud LW scattering warms the entire global troposphere by ~0.4 K on average; the warming is stronger in the Arctic (~0.8 K) than in the tropics, which is a manifestation of the polar amplification phenomenon. When realistic emissivity is incorporated into the model, the surface skin temperature increases by 0.36 K instantaneously on a global average, especially in the Sahara Desert (~0.7 K) where the surface emissivity is low. Surface skin temperature, as well as surface air temperature and tropospheric temperature, further increases by 0.19 K due to the inclusion of surface spectral emissivity. The mean-state climate changes due to both effects are linearly additive. The latitudinal and seasonal pattern of surface air temperature warming resulting from both effects is very similar to the response due to CO2 increase in the standard E3SMv2 model.

We also carried out four 35-year simulations under the abrupt 4xCO2 scenario, with cloud LW scattering and/or surface emissivity effects on and off. Based on standard radiative kernel analysis, we found that total global-mean climate feedback does not change significantly after including either or both physics. Nevertheless, lapse rate feedback, water vapor feedback, and cloud feedbacks in the tropics have changes by up to 10%. They are primarily associated with high cloud fraction response in the upper troposphere. Our study suggests that both the cloud LW scattering effect and the surface spectral emissivity effect should be included in climate models for a faithful representation of the radiative process in the atmosphere, especially at regional scales.

How to cite: Fan, C., Chen, Y.-H., Chen, X., Lin, W., Huang, X., and Yang, P.: Including Ice-Cloud Longwave Scattering and Surface Spectral Emissivities in Climate Models Leads to More Impacts on Mean-State Climate than Climate Feedbacks, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2448, https://doi.org/10.5194/egusphere-egu23-2448, 2023.